WorldWideScience

Sample records for hydraulic properties electronic

  1. Hydraulic properties of ladle slags

    Directory of Open Access Journals (Sweden)

    J. Vlček

    2016-07-01

    Full Text Available The article presents results of examining of hydraulic properties of ladle slags formed during production of steel. The studied ladle slags were subjected to different cooling mode from the molten state. Based on the ability of the slag react with the water was assessed their hydraulic activity. The hydraulic properties are caused by the presence of minerals dicalcium silicate, tricalcium aluminate, mayenite, brownmillerite and dicalcium ferite. The emergence of required hydrating phases in the ladle slags is conditioned by a sufficient CaO content and their cooling rate. The contact the slag with water during processing and their ageing has a negative effect. The experiment has shown that the phase transformation of the mineral dicalcium silicate which occurs during cooling of the ladle slags cause their volume instability.

  2. Scaling hydraulic properties of a macroporous soil

    Science.gov (United States)

    Mohanty, Binayak P.

    1999-06-01

    Macroporous soils exhibit significant differences in their hydraulic properties for different pore domains. Multimodal hydraulic functions may be used to describe the characteristics of multiporosity media. I investigated the usefulness of scaling to describe the spatial variability of hydraulic conductivity (K(-h)) functions of a macroporous soil in Las Nutrias, New Mexico. Piecewise-continuous hydraulic conductivity functions suitable for macroporous soils in conjunction with a hybrid similar media-functional normalization scaling approach were used. Results showed that gravity-dominated flow and the related hydraulic conductivity (K(minus;h) functions of the macropore region are more readily scalable than capillary-dominated flow properties of the mesopore and micropore regions. A possible reason for this behavior is that gravity-dominated flow in the larger pores is mostly influenced by the pore diameter which remains more uniform as compared to tortuous mesopores and micropores with variable neck and body sizes along the pore length.

  3. Microbial effect on soil hydraulic properties

    Science.gov (United States)

    Furman, Alex; Rosenzweig, Ravid; Volk, Elazar; Rosenkranz, Hella; Iden, Sascha; Durner, Wolfgang

    2014-05-01

    Although largely ignored, the soil contains large amount of biofilms (attached microbes) that can affect many processes. While biochemical processes are studied, biophysical processes receive only little attention. Biofilms may occupy some of the pore space, and by that affect the soil hydraulic properties. This effect on unsaturated soils, however, was not intensively studied. In this research we directly measure the hydraulic properties, namely the soil's unsaturated hydraulic conductivity function and retention curve, for soils containing real biofilm. To do that we inoculate soil with biofilm-forming bacteria and incubate it with sufficient amounts of nutrient until biofilm is formed. The hydraulic properties of the incubated soil are then measured using several techniques, including multi-step outflow and evaporation method. The longer measurements (evaporation method) are conducted under refrigeration conditions to minimize microbial activity during the experiment. The results show a clear effect of the biofilm, where the biofilm-affected soil (sandy loam in our case) behaves like a much finer soil. This qualitatively makes sense as the biofilm generates an effective pore size distribution that is characterized by smaller pores. However, the effect is much more complex and needs to be studied carefully considering (for example) dual porosity models. We compare our preliminary results with other experiments, including flow-through column experiments and experiments with biofilm analogues. Clearly a better understanding of the way microbial activity alters the hydraulic properties may help designing more efficient bioremediation, irrigation, and other soil-related processes.

  4. Measuring Disturbance Impact on Soil Hydraulic Properties

    Science.gov (United States)

    Hinshaw, S.; Mirus, B. B.

    2014-12-01

    Disturbances associated with land cover change such as forest clearing and mono-cropping can have a substantial impact on soil-hydraulic properties, which in turn have a cascading impact on surface and near-surface hydrologic response. Although disturbances and vegetation change can alter soil-water retention and conductivity relations, hydrologic models relying on traditional soil-texture based pedotransfer functions would not be able to capture the disturbance impact on infiltration and soil-moisture storage. Therefore, in-situ estimates of characteristic curves of soil water retention and hydraulic conductivity relations are needed to understand and predict hydrologic impacts of land cover change. We present a method for in-situ estimates of effective characteristic curves that capture hysteretic soil-water retention properties at the plot scale. We apply this method to two different forest treatments and in urban settings to investigate the impact of land-use disturbances on soil-hydraulic properties. We compare our in-situ estimation method to results for simple pedotransfer functions to illustrate how this approach can improve understanding of disturbance impacts on hydrologic processes and function.

  5. HYDRAULIC CONCRETE COMPOSITION AND PROPERTIES CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2015-08-01

    Full Text Available Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic–viscous–plastic bodies. The system of canonical equations consists of the equations for concrete strength, absolute volume, concrete mix consistency as well as the equation for optimal concrete saturation with aggregates while minimizing cement content. The joint solution of these four equations related to composition allows determining for the materials the concrete composition of required strength, concrete workability with minimum cement content. The procedure for calculation of hydraulic concrete composition according to the physico-analytical method consists of two parts: 1 physical, which is laboratory testing of concrete mix components in different concrete compositions; 2 analytical, which represents the calculation algorithm for concrete compositions equivalent in concrete strength and workability that comply with the specific conditions of concrete placing. Findings. To solve the problem of designing the concrete composition with the desired properties for railway structures and buildings it was proposed to use the information technology in the form of a developed computer program whose algorithm includes the physico-analytical method for hydraulic concrete composition determination. Originality. The developed concrete composition design method takes into account the basic properties of raw materials, concrete mix and concrete, which are pre-determined. The distinctive feature of physico-analytical method is obtaining of a set of equivalent compositions with a certain concrete mix

  6. Soil hydraulic properties near saturation, an improved conductivity model

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Jacobsen, Ole Hørbye; Hansen, Søren;

    2006-01-01

    The hydraulic properties near saturation can change dramatically due to the presence of macropores that are usually difficult to handle in traditional pore size models. The purpose of this study is to establish a data set on hydraulic conductivity near saturation, test the predictive capability...... of commonly used hydraulic conductivity models and give suggestions for improved models. Water retention and near saturated and saturated hydraulic conductivity were measured for a variety of 81 top and subsoils. The hydraulic conductivity models by van Genuchten [van Genuchten, 1980. A closed-form equation...... for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898.] (vGM) and Brooks and Corey, modified by Jarvis [Jarvis, 1991. MACRO—A Model of Water Movement and Solute Transport in Macroporous Soils. Swedish University of Agricultural Sciences. Department of Soil Sciences...

  7. Pedotransfer functions estimating soil hydraulic properties using different soil parameters

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Iversen, Bo Vangsø; Jacobsen, Ole Hørbye;

    2008-01-01

    Estimates of soil hydraulic properties using pedotransfer functions (PTF) are useful in many studies such as hydrochemical modelling and soil mapping. The objective of this study was to calibrate and test parametric PTFs that predict soil water retention and unsaturated hydraulic conductivity...... parameters. The PTFs are based on neural networks and the Bootstrap method using different sets of predictors and predict the van Genuchten/Mualem parameters. A Danish soil data set (152 horizons) dominated by sandy and sandy loamy soils was used in the development of PTFs to predict the Mualem hydraulic...... of the hydraulic properties of the studied soils. We found that introducing measured water content as a predictor generally gave lower errors for water retention predictions and higher errors for conductivity predictions. The best of the developed PTFs for predicting hydraulic conductivity was tested against PTFs...

  8. Hydraulics.

    Science.gov (United States)

    Decker, Robert L.; Kirby, Klane

    This curriculum guide contains a course in hydraulics to train entry-level workers for automotive mechanics and other fields that utilize hydraulics. The module contains 14 instructional units that cover the following topics: (1) introduction to hydraulics; (2) fundamentals of hydraulics; (3) reservoirs; (4) lines, fittings, and couplers; (5)…

  9. Anisotropy of Soil Hydraulic Properties Along Arable Slopes

    Institute of Scientific and Technical Information of China (English)

    JING Yuan-Shu; ZHANG Bin; A.THIMM; H.ZEPP

    2008-01-01

    The spatial variations of the soil hydraulic properties were mainly considered in vertical direction.The objectives of this study were to measure water-retention curves,θ(ψ),and unsaturated hydraulic conductivity functions,K(ψ),of the soils sampled at different slope positions in three directions,namely,in vertical direction,along the slope and along the contour,and to determine the effects of sampling direction and slope position of two soil catenas.At the upper slope positions,the surface soils (0-10 cm) sampled in the vertical direction had a lower soil water content,θ,at a certain soil water potential (-1500 kPa <ψ<-10 kPa) and had the greatest unsaturated hydraulic conductivity,K,at ψ> -10kPa.At the lower slope positions,K at ψ>-10 kPa was smaller in the vertical direction than in the direction along the slope.The deep soils (100-110 cm) had similar soil hydraulic properties in all the three directions.The anisotropic variations of the hydraulic properties of the surface soils were ascribed to the effects of natural wetting and drying cycles on the structural heterogeneity.These results suggested that the anisotropy of soil hydraulic properties might be significant in influencing soil water movement along the slope and need to be considered in modeling.

  10. Effects of model layer simplification using composite hydraulic properties

    Science.gov (United States)

    Sepulveda, Nicasio; Kuniansky, Eve L.

    2010-01-01

    The effects of simplifying hydraulic property layering within an unconfined aquifer and the underlying confining unit were assessed. The hydraulic properties of lithologic units within the unconfined aquifer and confining unit were computed by analyzing the aquifer-test data using radial, axisymmetric two-dimensional (2D) flow. Time-varying recharge to the unconfined aquifer and pumping from the confined Upper Floridan aquifer (USA) were simulated using 3D flow. Conceptual flow models were developed by gradually reducing the number of lithologic units in the unconfined aquifer and confining unit by calculating composite hydraulic properties for the simplified lithologic units. Composite hydraulic properties were calculated using either thickness-weighted averages or inverse modeling using regression-based parameter estimation. No significant residuals were simulated when all lithologic units comprising the unconfined aquifer were simulated as one layer. The largest residuals occurred when the unconfined aquifer and confining unit were aggregated into a single layer (quasi-3D), with residuals over 100% for the leakage rates to the confined aquifer and the heads in the confining unit. Residuals increased with contrasts in vertical hydraulic conductivity between the unconfined aquifer and confining unit. Residuals increased when the constant-head boundary at the bottom of the Upper Floridan aquifer was replaced with a no-flow boundary.

  11. Effects of model layer simplification using composite hydraulic properties

    Science.gov (United States)

    Kuniansky, Eve L.; Sepulveda, Nicasio; Elango, Lakshmanan

    2011-01-01

    Groundwater provides much of the fresh drinking water to more than 1.5 billion people in the world (Clarke et al., 1996) and in the United States more that 50 percent of citizens rely on groundwater for drinking water (Solley et al., 1998). As aquifer systems are developed for water supply, the hydrologic system is changed. Water pumped from the aquifer system initially can come from some combination of inducing more recharge, water permanently removed from storage, and decreased groundwater discharge. Once a new equilibrium is achieved, all of the pumpage must come from induced recharge and decreased discharge (Alley et al., 1999). Further development of groundwater resources may result in reductions of surface water runoff and base flows. Competing demands for groundwater resources require good management. Adequate data to characterize the aquifers and confining units of the system, like hydrologic boundaries, groundwater levels, streamflow, and groundwater pumping and climatic data for recharge estimation are to be collected in order to quantify the effects of groundwater withdrawals on wetlands, streams, and lakes. Once collected, three-dimensional (3D) groundwater flow models can be developed and calibrated and used as a tool for groundwater management. The main hydraulic parameters that comprise a regional or subregional model of an aquifer system are the hydraulic conductivity and storage properties of the aquifers and confining units (hydrogeologic units) that confine the system. Many 3D groundwater flow models used to help assess groundwater/surface-water interactions require calculating ?effective? or composite hydraulic properties of multilayered lithologic units within a hydrogeologic unit. The calculation of composite hydraulic properties stems from the need to characterize groundwater flow using coarse model layering in order to reduce simulation times while still representing the flow through the system accurately. The accuracy of flow models with

  12. Effect of filter designs on hydraulic properties and well efficiency.

    Science.gov (United States)

    Kim, Byung-Woo

    2014-09-01

    To analyze the effect of filter pack arrangement on the hydraulic properties and the well efficiency of a well design, a step drawdown was conducted in a sand-filled tank model. Prior to the test, a single filter pack (SFP), granule only, and two dual filter packs (DFPs), type A (granule-pebble) and type B (pebble-granule), were designed to surround the well screen. The hydraulic properties and well efficiencies related to the filter packs were evaluated using the Hazen's, Eden-Hazel's, Jacob's, and Labadie-Helweg's methods. The results showed that the hydraulic properties and well efficiency of the DFPs were higher than those of a SFP, and the clogging effect and wellhead loss related to the aquifer material were the lowest owing to the grain size and the arrangement of the filter pack. The hydraulic conductivity of the DFPs types A and B was about 1.41 and 6.43 times that of a SFP, respectively. In addition, the well efficiency of the DFPs types A and B was about 1.38 and 1.60 times that of the SFP, respectively. In this study, hydraulic property and well efficiency changes were observed according to the variety of the filter pack used. The results differed from the predictions of previous studies on the grain-size ratio. Proper pack-aquifer ratios and filter pack arrangements are primary factors in the construction of efficient water wells, as is the grain ratio, intrinsic permeability (k), and hydraulic conductivity (K) between the grains of the filter packs and the grains of the aquifer. © 2014, National Ground Water Association.

  13. Geometric properties of hydraulic-relevant tidal bedforms

    DEFF Research Database (Denmark)

    Winter, Christian; Ferret, Yann; Lefebvre, Alice

    2013-01-01

    to technical constraints and data reduction the (historic) data bases mostly are restricted to information on mean geometrical states, whereas individual bedform properties are often not reported. Recently Lefebvre et al. (2011) showed that the hydraulic effect of asymmetric compound tidal bedforms depends...

  14. Relations between soil hydraulic properties and burn severity

    NARCIS (Netherlands)

    Moody, J.A.; Ebel, B.A.; Stoof, C.R.; Nyman, P.; Martin, D.A.; McKinley, R.

    2016-01-01

    Wildfire can affect soil hydraulic properties, often resulting in reduced infiltration. The magnitude of change in infiltration varies depending on the burn severity. Quantitative approaches to link burn severity with changes in infiltration are lacking. This study uses controlled laboratory measure

  15. HYDRAULIC AND PHYSICAL PROPERTIES OF SALTSTONE GROUTS AND VAULT CONCRETES

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, K; John Harbour, J; Mark Phifer, M

    2008-11-25

    The Saltstone Disposal Facility (SDF), located in the Z-Area of the Savannah River Site (SRS), is used for the disposal of low-level radioactive salt solution. The SDF currently contains two vaults: Vault 1 (6 cells) and Vault 4 (12 cells). Additional disposal cells are currently in the design phase. The individual cells of the saltstone facility are filled with saltstone. Saltstone is produced by mixing the low-level radioactive salt solution, with blast furnace slag, fly ash, and cement (dry premix) to form a dense, micro-porous, monolithic, low-level radioactive waste form. The saltstone is pumped into the disposal cells where it subsequently solidifies. Significant effort has been undertaken to accurately model the movement of water and contaminants through the facility. Key to this effort is an accurate understanding of the hydraulic and physical properties of the solidified saltstone. To date, limited testing has been conducted to characterize the saltstone. The primary focus of this task was to estimate the hydraulic and physical properties of three types of saltstone and two vault concretes. The saltstone formulations included saltstone premix batched with (1) Deliquification, Dissolution, and Adjustment (DDA) salt simulant (w/pm 0.60), (2) Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) salt simulant (w/pm 0.60), and (3) Salt Waste Processing Facility (SWPF) salt simulant (w/pm 0.60). The vault concrete formulations tested included the Vault 1/4 concrete and two variations of the Vault 2 concrete (Mix 1 and Mix 2). Wet properties measured for the saltstone formulations included yield stress, plastic viscosity, wet unit weight, bleed water volume, gel time, set time, and heat of hydration. Hydraulic and physical properties measured on the cured saltstone and concrete samples included saturated hydraulic conductivity, moisture retention, compressive strength, porosity, particle density, and dry bulk density. These properties

  16. Modeling multidomain hydraulic properties of shrink-swell soils

    Science.gov (United States)

    Stewart, Ryan D.; Abou Najm, Majdi R.; Rupp, David E.; Selker, John S.

    2016-10-01

    Shrink-swell soils crack and become compacted as they dry, changing properties such as bulk density and hydraulic conductivity. Multidomain models divide soil into independent realms that allow soil cracks to be incorporated into classical flow and transport models. Incongruously, most applications of multidomain models assume that the porosity distributions, bulk density, and effective saturated hydraulic conductivity of the soil are constant. This study builds on a recently derived soil shrinkage model to develop a new multidomain, dual-permeability model that can accurately predict variations in soil hydraulic properties due to dynamic changes in crack size and connectivity. The model only requires estimates of soil gravimetric water content and a minimal set of parameters, all of which can be determined using laboratory and/or field measurements. We apply the model to eight clayey soils, and demonstrate its ability to quantify variations in volumetric water content (as can be determined during measurement of a soil water characteristic curve) and transient saturated hydraulic conductivity, Ks (as can be measured using infiltration tests). The proposed model is able to capture observed variations in Ks of one to more than two orders of magnitude. In contrast, other dual-permeability models assume that Ks is constant, resulting in the potential for large error when predicting water movement through shrink-swell soils. Overall, the multidomain model presented here successfully quantifies fluctuations in the hydraulic properties of shrink-swell soil matrices, and are suitable for use in physical flow and transport models based on Darcy's Law, the Richards Equation, and the advection-dispersion equation.

  17. Process fluids of aero-hydraulic systems and their properties

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2014-01-01

    Full Text Available The article considers process fluids, which are presently applied to aviation hydraulic systems in domestic and world practice. Aviation practice deals with rather wide list of fluids. Based on the technical specification a designer makes the choice of specific fluid for the specific aircraft. Process fluids have to possess the specified properties presented in the article, namely: lubricating properties; stability of physical and chemical characteristics at operation and storage; lowtemperature properties; acceptable congelation temperature; compatibility with materials of units and components of hydraulic systems; heat conductivity; high rigidity; minimum low coefficient of volume expansion; fire-explosion safety; low density. They should also have good dielectric properties, be good to resist to destruction of molecules, have good anticorrosion and antierosion properties, as well as not create conditions for emerging electro-kinetic erosion of spooltype and other precision devices, and a number of other properties.The article presents materials on the oil-based process fluids with + (200-320 °C boiling temperature, gelled by a polymer of vinyl butyl ether, with aging inhibitor and dye for hydraulic systems of the subsonic and transonic aircraft which are combustible, with a temperature interval of use from — 60oС до +125oС. It also describes materials on process fluids, which are based on the mix of polydialkylsiloxane oligomers with organic diester aging inhibitors, and wear-resistant additive to be applied to the hydraulic systems of supersonic aircrafts using a fluid within the temperature interval from - 6О oС to +175oС for a long duration. The fire-explosion safety process fluids representing a mix of phosphoric esters with additives to improve viscous, anti-oxidizing, anticorrosive and anti-erosive properties are considered as well. They are used within the temperature range from - 60оС to +125оС with overheats up to +150

  18. Improved Rosetta Pedotransfer Estimation of Hydraulic Properties and Their Covariance

    Science.gov (United States)

    Zhang, Y.; Schaap, M. G.

    2014-12-01

    Quantitative knowledge of the soil hydraulic properties is necessary for most studies involving water flow and solute transport in the vadose zone. However, it is always expensive, difficult, and time consuming to measure hydraulic properties directly. Pedotransfer functions (PTFs) have been widely used to forecast soil hydraulic parameters. Rosetta is is one of many PTFs and based on artificial neural network analysis coupled with the bootstrap sampling method. The model provides hierarchical PTFs for different levels of input data for Rosetta (H1-H5 models, with higher order models requiring more input variables). The original Rosetta model consists of separate PTFs for the four "van Genuchten" (VG) water retention parameters and saturated hydraulic conductivity (Ks) because different numbers of samples were available for these characteristics. In this study, we present an improved Rosetta pedotransfer function that uses a single model for all five parameters combined; these parameters are weighed for each sample individually using the covariance matrix obtained from the curve-fit of the VG parameters to the primary data. The optimal number of hidden nodes, weights for saturated hydraulic conductivity and water retention parameters in the neural network and bootstrap realization were selected. Results show that root mean square error (RMSE) for water retention decreased from 0.076 to 0.072 cm3/cm3 for the H2 model and decreased from 0.044 to 0.039 cm3/cm3 for the H5 model. Mean errors which indicate variable matric potential-dependent bias were also reduced significantly in the new model. The RMSE for Ks increased slightly (H2: 0.717 to 0.722; H5: 0.581 to 0.594); this increase is minimal and a result of using a single model for water retention and Ks. Despite this small increase the new model is recommended because of its improved estimation of water retention, and because it is now possible to calculate the full covariance matrix of soil water retention

  19. Novel evaporation experiment to determine soil hydraulic properties

    Directory of Open Access Journals (Sweden)

    K. Schneider

    2006-01-01

    Full Text Available A novel experimental approach to determine soil hydraulic material properties for the dry and very dry range is presented. Evaporation from the surface of a soil column is controlled by a constant flux of preconditioned air and the resulting vapour flux is measured by infrared absorption spectroscopy. The data are inverted under the assumptions that (i the simultaneous movement of water in the liquid and vapour is represented by Richards' equation with an effective hydraulic conductivity and that (ii the coupling between the soil and the well-mixed atmosphere can be modelled by a boundary layer with a constant transfer resistance. The optimised model fits the data exceptionally well. Remaining deviations during the initial phase of an experiment are thought to be well-understood and are attributed to the onset of the heat flow through the column which compensates the latent heat of evaporation.

  20. Determination of Hillside Hydraulic Properties With an Hillslope Infiltrometer

    Science.gov (United States)

    Steenhuis, T. S.; Mendoza, G.; Hanson, D.; Walter, M. T.

    2001-12-01

    Watersheds, in many parts of the world, consist of sloping soils with a dense subsoil at shallow depth. Very few measurement techniques exist for realistically determining hydraulic properties in situ on these hillside soils. A hillslope infiltrometer, open at the bottom, top, and downhill sides, was developed that could measure the vertical and lateral hydraulic conductivity by applying increasing amounts of rainfall. The infiltrometer was tested on the steeply sloping hillsides of Honduras and proved useful in the characterization of subsurface flow under five different land uses. The findings were in agreement with the farmers' perception: The hillsides with the infiltration rates higher than the prevailing rainfall rates were not considered by the farmers in need of conservation practices.

  1. A promising new device to assess key soil hydraulic properties

    Science.gov (United States)

    Alaoui, Abdallah; Schwilch, Gudrun

    2016-04-01

    Hydraulic functions measured at the core or plot scale are notoriously variable in natural soils, with properties such as infiltration rate ranging across several orders of magnitude within a typical field. Because the information required to create a continuous map of these properties' variability is unobtainable, plot- and field-scale models of flow processes generally use average or "effective" soil hydraulic properties to represent the processes. This makes it difficult to scale up knowledge from the local to the catchment scale, as soil heterogeneity increases with scale. Overcoming this difficulty requires an instrument that enables rapid and easy assessment of the relevant soil properties and their changes under varying land uses and climatic conditions. For this reason, we devised a new infiltrometer that makes it possible to rapidly and reliably assess soil infiltration capacity in the field. Based on laboratory and field data, we then developed a software (Soil Quality Analyzer) to determine key hydraulic properties such as saturated hydraulic conductivity, saturated water content, total porosity, and the van Genuchten parameters. Our device consists of a Plexiglas tube about 4 cm in diameter mounted on a semisoft, porous tube of the same diameter which easily adapts to surrounding soil, and ending in a conic steel point that facilitates insertion into the soil at different depths. We first calibrated our infiltrometer based on reconstructed soil columns of different textures with no coarse structures (i.e. organic material, macropores). A second series of infiltration experiments was carried out in situ in undisturbed soils under forest and grassland that had the same textures as those in the laboratory experiments. Finally, we analyzed all samples in the laboratory to determine the key hydraulic parameters. Linear relationships between the infiltrated water volume and the corresponding time intervals of infiltration were determined for each sample

  2. Effects of biochars on hydraulic properties of clayey soil

    Science.gov (United States)

    Zhen, Jingbo; Palladino, Mario; Lazarovitch, Naftali; Bonanomi, Giuliano; Battista Chirico, Giovanni

    2017-04-01

    Biochar has gained popularity as an amendment to improve soil hydraulic properties. Since biochar properties depend on feedstocks and pyrolysis temperatures used for its production, proper selection of biochar type as soil amendment is of great importance for soil hydraulic properties improvement. This study investigated the effects of eight types of biochar on physical and hydraulic properties of clayey soil. Biochars were derived from four different feedstocks (Alfalfa hay, municipal organic waste, corn residues and wood chip) pyrolyzed at two different temperatures (300 and 550 °C). Clayey soil samples were taken from Leone farm (40° 26' 15.31" N, 14° 59' 45.54" E), Italy, and were oven-dried at 105 °C to determine dry bulk density. Biochars were mixed with the clayey soil at 5% by mass. Bulk densities of the mixtures were also determined. Saturated hydraulic conductivities (Ks) of the original clayey soil and corresponding mixtures were measured by means of falling-head method. Soil water retention measurements were conducted for clayey soil and mixtures using suction table apparatus and Richards' plate with the pressure head (h) up to 12000 cm. van Genuchten retention function was selected to evaluate the retention characteristics of clayey soil and mixtures. Available water content (AWC) was calculated by field capacity (h = - 500 cm) minus wilting pointing (h = -12000 cm). The results showed that biochar addition decreased the bulk density of clayey soil. The Ks of clayey soil increased due to the incorporation of biochars except for waste and corn biochars pyrolyzed at 550 °C. AWC of soils mixed with corn biochar pyrolyzed at 300 °C and wood biochar pyrolyzed at 550 °C, increased by 31% and 7%, respectively. Further analysis will be conducted in combination of biochar properties such as specific surface area and total pore volume. Better understanding of biochar impact on clayey soil will be helpful in biochar selection for soil amendment and

  3. Mechanical and hydraulic properties of rocks related to induced seismicity

    Science.gov (United States)

    Witherspoon, P.A.; Gale, J.E.

    1977-01-01

    Witherspoon, P.A. and Gale, J.E., 1977. Mechanical and hydraulic properties of rocks related to induced seismicity. Eng. Geol., 11(1): 23-55. The mechanical and hydraulic properties of fractured rocks are considered with regard to the role they play in induced seismicity. In many cases, the mechanical properties of fractures determine the stability of a rock mass. The problems of sampling and testing these rock discontinuities and interpreting their non-linear behavior are reviewed. Stick slip has been proposed as the failure mechanism in earthquake events. Because of the complex interactions that are inherent in the mechanical behavior of fractured rocks, there seems to be no simple way to combine the deformation characteristics of several sets of fractures when there are significant perturbations of existing conditions. Thus, the more important fractures must be treated as individual components in the rock mass. In considering the hydraulic properties, it has been customary to treat a fracture as a parallel-plate conduit and a number of mathematical models of fracture systems have adopted this approach. Non-steady flow in fractured systems has usually been based on a two-porosity model, which assumes the primary (intergranular) porosity contributes only to storage and the secondary (fracture) porosity contributes only to the overall conductivity. Using such a model, it has been found that the time required to achieve quasi-steady state flow in a fractured reservoir is one or two orders of magnitude greater than it is in a homogeneous system. In essentially all of this work, the assumption has generally been made that the fractures are rigid. However, it is clear from a review of the mechanical and hydraulic properties that not only are fractures easily deformed but they constitute the main flow paths in many rock masses. This means that one must consider the interaction of mechanical and hydraulic effects. A considerable amount of laboratory and field data is now

  4. Predicting saturated hydraulic conductivity using soil morphological properties

    Directory of Open Access Journals (Sweden)

    Gülay Karahan

    2016-01-01

    Full Text Available Many studies have been conducted to predict soil saturated hydraulic conductivity (Ks by parametric soil properties such as bulk density and particle-size distribution. Although soil morphological properties have a strong effect on Ks, studies predicting Ks by soil morphological properties such as type, size, and strength of soil structure; type, orientation and quantity of soil pores and roots and consistency are rare. This study aimed at evaluating soil morphological properties to predict Ks. Undisturbed soil samples (15 cm length and 8.0 cm id. were collected from topsoil (0-15 cm and subsoil (15-30 cm (120 samples with a tractor operated soil sampler at sixty randomly selected sampling sites on a paddy field and an adjecent grassland in Central Anatolia (Cankırı, Turkey. Synchronized disturbed soil samples were taken from the same sampling sites and sampling depths for basic soil analyses. Saturated hydraulic conductivity was measured on the soil columns using a constant-head permeameter. Following the Ks measurements, the upper part of soil columns were covered to prevent evaporation and colums were left to drain in the laboratory. When the water flow through the column was stopped, a subsample were taken for bulk density and then soil columns were disturbed for describing the soil morphological properties. In addition, soil texture, bulk density, pH, field capacity, wilting point, cation exchange capacity, specific surface area, aggregate stability, organic matter, and calcium carbonate were measured on the synchronized disturbed soil samples. The data were divided into training (80 data values and validation (40 data values sets. Measured values of Ks ranged from 0.0036 to 2.14 cmh-1 with a mean of 0.86 cmh-1. The Ks was predicted from the soil morphological and parametric properties by stepwise multiple linear regression analysis. Soil structure class, stickiness, pore-size, root-size, and pore-quantity contributed to the Ks prediction

  5. Vadose-zone monitoring strategy to evaluate desalted groundwater effects on hydraulic properties

    Science.gov (United States)

    Valdes-Abellan, J.; Candela, L.; Jiménez-Martínez, J.

    2012-04-01

    Desalinated brackish groundwater is becoming a new source of water supply to comply with growing water demands, especially in (semi) arid countries. Irrigation with desalinated or a blend of desalinated and ground/surface water, presents associated impacts on plants, soil and aquifer media. Mixed waters with different salinities can lead to the formation of unexpected chemical precipitates. The use of desalted groundwater for irrigation counts with potential drawbacks, among them: changes of hydraulic properties of soil-aquifer systems (e.g. hydraulic conductivity, porosity) as a consequence of mineral precipitation; root growth blockage and plant uptake of pollutants; as well as leaching of contaminants to groundwater. An experimental plot located at SE Spain, covered by grass and irrigated by sprinklers with a blend of desalted and groundwater from a brackish aquifer, has been monitored in order to characterize at field scale the possible impacts on soil hydraulic properties. The monitoring strategy to control water and heat flux includes traditional and more updated devices. The field instrumentation, vertically installed from the ground surface and spatially distributed, consisted of: ten tensiometers (Soilmoisture Equipment Corp, Goleta, CA, USA) at different depths (two per depth); and, two access tubes (fiber glass, 44mm diameter 2m length) for soil moisture measurements from TRIME-FM TDR probe (Imko GmbH, Ettlingen, Germany). Automatic logging is carried out from a trench located in the border of the experimental plot and it takes in: a set of five 5TE devices (Decagon Devices Inc, Pullman, WA, USA) vertically installed, which measure volumetric water content, electric conductivity and temperature; and additionally, a suction sensor at 0.6m depth. Finally, a periodic sampling of undisturbed soil cores (2m length) takes place for the purpose of imaging porosity changes from environmental scanning electron microscope (ESEM). First results about water and heat

  6. SATURATED - UNSATURATED HYDRAULIC PROPERTIES OF SUBBASE COURSE MATERIAL AND SUBGRADE SOIL

    Science.gov (United States)

    Yano, Takao; Nishiyama, Satoshi; Nakashima, Shin-Ichiro; Moriishi, Kazushi; Ohnishi, Yuzo

    In order to evaluate the rainwate r storage and infiltration properties of the permeable pavement by unsaturated seepage analysis or gas-liquid two-phase flow analysis, it is important to know the unsaturated hydraulic properties of materials wh ich constitute the pavement. For this reason, we showed the unsaturated hydraulic properties of porous asphalt material s but we have not clarified the relation between the performance of the permeable pavement and the properties of all constituti on materials. In this paper, we try to determine the unsaturated hydraulic properties of subbase course and subgrade materials that greatly affect the rainwater storage and infiltration properties of the permeable pavement. We show from experiments that water retention characteristic and the un saturated hydraulic properties of subbase course and subgrade materials well match the van Genuchten model and the Irmay model.

  7. Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus.

    Science.gov (United States)

    Hajek, Peter; Leuschner, Christoph; Hertel, Dietrich; Delzon, Sylvain; Schuldt, Bernhard

    2014-07-01

    Trees face the dilemma that achieving high plant productivity is accompanied by a risk of drought-induced hydraulic failure due to a trade-off in the trees' vascular system between hydraulic efficiency and safety. By investigating the xylem anatomy of branches and coarse roots, and measuring branch axial hydraulic conductivity and vulnerability to cavitation in 4-year-old field-grown aspen plants of five demes (Populus tremula L. and Populus tremuloides Michx.) differing in growth rate, we tested the hypotheses that (i) demes differ in wood anatomical and hydraulic properties, (ii) hydraulic efficiency and safety are related to xylem anatomical traits, and (iii) aboveground productivity and hydraulic efficiency are negatively correlated to cavitation resistance. Significant deme differences existed in seven of the nine investigated branch-related anatomical and hydraulic traits but only in one of the four coarse-root-related anatomical traits; this likely is a consequence of high intra-plant variation in root morphology and the occurrence of a few 'high-conductivity roots'. Growth rate was positively related to branch hydraulic efficiency (xylem-specific conductivity) but not to cavitation resistance; this indicates that no marked trade-off exists between cavitation resistance and growth. Both branch hydraulic safety and hydraulic efficiency significantly depended on vessel size and were related to the genetic distance between the demes, while the xylem pressure causing 88% loss of hydraulic conductivity (P88 value) was more closely related to hydraulic efficiency than the commonly used P50 value. Deme-specific variation in the pit membrane structure may explain why vessel size was not directly linked to growth rate. We conclude that branch hydraulic efficiency is an important growth-influencing trait in aspen, while the assumed trade-off between productivity and hydraulic safety is weak.

  8. Predicting the impact of biochar additions on soil hydraulic properties

    Science.gov (United States)

    Spokas, Kurt; Lim, Tae Jun; Feyereisen, Gary; Novak, Jeff

    2015-04-01

    Different physical and chemical properties of biochar, which is made out of a variety of biomass materials, can impact water movement through amended soil. The objective of this research was to develop a decision support tool predicting the impact of biochar additions on soil saturated hydraulic conductivity (Ksat). Four different kinds of biochar were added to four different textured soils (coarse sand, fine sand, loam, and clay texture) to assess these effects at the rates of 0, 1, 2, and 5 % (w/w). The Ksat of the biochar amended soils were significantly influenced by the rate and type of biochar, as well as the original particle size of soil. The Ksat decreased when biochar was added to coarse and fine sands. Biochar with larger particles sizes (60%; >1 mm) decreased Ksat to a larger degree than the smaller particle size biochar (60%; soils. Increasing tortuosity in the amended sandy soil could explain this behavior. On the other hand, for the clay loam 1% and 2% biochar additions universally increased the Ksat with higher biochar amounts providing no further alterations. The developed model utilizes soil texture pedotransfer functions for predicting agricultural soil Ksat as a function of soil texture. The model accurately predicted the direction of the Ksat influence, even though the exact magnitude still requires further refinement.

  9. A Catalog of Vadose Zone Hydraulic Properties for the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Eugene J.; Khaleel, Raziuddin; Heller, Paula R.

    2002-09-30

    To predict contaminant release to the groundwater, it is necessary to understand the hydraulic properties of the material between the release point and the water table. Measurements of the hydraulic properties of the Hanford unsaturated sediments that buffer the water table are available from many areas of the site; however, the documentation is not well cataloged nor is it easily accessible. The purpose of this report is to identify what data is available for characterization of the unsaturated hydraulic properties at Hanford and Where these data can be found.

  10. Temperature effects on geotechnical and hydraulic properties of bentonite hydrated with inorganic salt solutions

    DEFF Research Database (Denmark)

    Rashid, H. M. A.; Kawamoto, K.; Saito, T.

    2015-01-01

    © 2015, International Journal of GEOMATE. This study investigated the combined effect of temperature and single-species salt solutions on geotechnical properties (swell index and liquid limit) and hydraulic conductivity of bentonite applying different cation types, concentrations, and temperature...

  11. Variation of soil hydraulic properties with alpine grassland degradation in the eastern Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    T. Pan

    2017-05-01

    hydrological effects of vegetation degradation. Further hydrological modelling studies in the Tibetan Plateau and similar regions are recommended to understand the effects of degraded alpine swamp meadows on soil hydraulic properties.

  12. Diamond electronic properties and applications

    CERN Document Server

    Kania, Don R

    1995-01-01

    The use of diamond in electronic applications is not a new idea, but limitations in size and control of properties restricted the use of diamond to a few specialised applications. The vapour-phase synthesis of diamond, however, has facilitated serious interest in the development of diamond-based electronic devices. The process allows diamond films to be laid down over large areas. Both intrinsic and doped diamond films have a unique combination of extreme properties for high speed, high power and high temperature applications. The eleven chapters in Diamond: Electronic Properties and Applications, written by the world's foremost experts on the subject, give a complete characterisation of the material, in both intrinsic and doped forms, explain how to grow it for electronic applications, how to use the grown material, and a description of both passive and active devices in which it has been used with success. Diamond: Electronic Properties and Applications is a compendium of the available literature on the sub...

  13. Hydraulic and anatomical properties of light bands in Norway spruce compression wood.

    Science.gov (United States)

    Mayr, Stefan; Bardage, Stig; Brändström, Jonas

    2006-01-01

    Compression wood (CW), which is formed on the underside of conifer branches, exhibits a lower specific hydraulic conductivity (k(s)) compared with normal wood. However, the first-formed tracheids of an annual ring on the underside of a conifer branch often share several properties with normal tracheids, e.g., thin cell walls and angular cross sections. These first-formed tracheids appear bright when observed by the naked eye and are therefore called light bands (LB). In this study, hydraulic and related anatomical properties of LBs were characterized and compared with typical CW and opposite wood (OW). Measurements were made on branches of Norway spruce (Picea abies (L.) Karst.). Specific hydraulic conductivity was measured with fine cannulas connected to microlitre syringes. Micro- and ultrastructural analysis were performed on transverse and radial longitudinal sections by light and scanning electron microscopy. Xylem areas containing both typical CW and LBs had a k(s) 51.5% that of OW (7.95 +/- 0.97 m(2) s(-1) MPa(-1) x 10(-4)), whereas k(s) of pure CW was only 26.7% that of OW. The k(s) of LBs (6.38 +/- 0.97 m(2) s(-1) MPa(-1) x 10(-4); 80.3% of OW) was estimated from these k(s) values because the cannulas were too wide to measure the k(s) of LBs directly. Mean lumen area of first-formed tracheids on the underside of branches was 65.7% that of first-formed tracheids in OW and about three times that of CW. Light-band tracheids exhibited a bordered pit frequency of 42.7 +/- 1.3 pits mm(-1), which was three times that in CW and 1.6 times that in OW. Bordered pit apertures in LB tracheids (9.15 +/- 0.60 microm(2)) were 1.7 times wider than those in CW and similar in aperture to those in OW. The high k(s) of LBs was correlated with their wide tracheid lumina, high pit frequency and wide pit apertures. We therefore suggest that LBs have a primarily hydraulic function within the mechanically optimized CW region. This might be important for supplying water to living

  14. An easily installable groundwater lysimeter to determine waterbalance components and hydraulic properties of peat soils

    Directory of Open Access Journals (Sweden)

    K. Schwaerzel

    2003-01-01

    Full Text Available A simple method for the installation of groundwater lysimeters in peat soils was developed which reduces both time and financial effort significantly. The method was applied on several sites in the Rhinluch, a fen peat land 60 km northwest of Berlin, Germany. Over a two-year period, upward capillary flow and evapotranspiration rates under grassland with different groundwater levels were measured. The installation of tensiometers and TDR probes additionally allowed the in situ determination of the soil hydraulic properties (water retention and unsaturated hydraulic conductivity. The results of the measurements of the unsaturated hydraulic conductivity demonstrate that more than one single method has to be applied if the whole range of the conductivity function from saturation to highly unsaturated is to be covered. Measuring the unsaturated conductivity can be done only in the lab for an adequately wide range of soil moisture conditions. Keywords: peat soils, soil hydraulic properties, evapotranspiration, capillary flow, root distribution, unsaturated zone

  15. Flood quantiles scaling with upper soil hydraulic properties for different land uses at catchment scale

    Science.gov (United States)

    Peña, Luis E.; Barrios, Miguel; Francés, Félix

    2016-10-01

    Changes in land use within a catchment are among the causes of non-stationarity in the flood regime, as they modify the upper soil physical structure and its runoff production capacity. This paper analyzes the relation between the variation of the upper soil hydraulic properties due to changes in land use and its effect on the magnitude of peak flows: (1) incorporating fractal scaling properties to relate the effect of the static storage capacity (the sum of capillary water storage capacity in the root zone, canopy interception and surface puddles) and the upper soil vertical saturated hydraulic conductivity on the flood regime; (2) describing the effect of the spatial organization of the upper soil hydraulic properties at catchment scale; (3) examining the scale properties in the parameters of the Generalized Extreme Value (GEV) probability distribution function, in relation to the upper soil hydraulic properties. This study considered the historical changes of land use in the Combeima River catchment in South America, between 1991 and 2007, using distributed hydrological modeling of daily discharges to describe the hydrological response. Through simulation of land cover scenarios, it was demonstrated that it is possible to quantify the magnitude of peak flows in scenarios of land cover changes through its Wide-Sense Simple Scaling with the upper soil hydraulic properties.

  16. Estimating hydraulic properties from tidal attenuation in the Northern Guam Lens Aquifer, territory of Guam, USA

    Science.gov (United States)

    Rotzoll, Kolja; Gingerich, Stephen B.; Jenson, John W.; El-Kadi, Aly I.

    2013-01-01

    Tidal-signal attenuations are analyzed to compute hydraulic diffusivities and estimate regional hydraulic conductivities of the Northern Guam Lens Aquifer, Territory of Guam (Pacific Ocean), USA. The results indicate a significant tidal-damping effect at the coastal boundary. Hydraulic diffusivities computed using a simple analytical solution for well responses to tidal forcings near the periphery of the island are two orders of magnitude lower than for wells in the island’s interior. Based on assigned specific yields of ~0.01–0.4, estimated hydraulic conductivities are ~20–800 m/day for peripheral wells, and ~2,000–90,000 m/day for interior wells. The lower conductivity of the peripheral rocks relative to the interior rocks may best be explained by the effects of karst evolution: (1) dissolutional enhancement of horizontal hydraulic conductivity in the interior; (2) case-hardening and concurrent reduction of local hydraulic conductivity in the cliffs and steeply inclined rocks of the periphery; and (3) the stronger influence of higher-conductivity regional-scale features in the interior relative to the periphery. A simple numerical model calibrated with measured water levels and tidal response estimates values for hydraulic conductivity and storage parameters consistent with the analytical solution. The study demonstrates how simple techniques can be useful for characterizing regional aquifer properties.

  17. The Comparison of Predicted and Measured Hydraulic Conductivities of Soils having Different Physical Properties

    Science.gov (United States)

    Zengin, Enes; Abiddin Erguler, Zeynal; Karakuş, Hüseyin

    2015-04-01

    Hydraulic conductivity is one of the most important parameter of earth science related studies such as engineering geology, soil physics, agriculture etc. In order to estimate the ability of soils to transport fluid through particles, field and laboratory tests have been performed since last decades of 19th century. Constant and falling head tests are widely used to directly measure hydraulic conductivity values in laboratory conditions for soils having different particle size distributions. The determination of hydraulic conductivity of soils by performing these methods are time consuming processes and also requires undisturbed samples to reflect in-situ natural condition. Considering these limitations, numerous approaches have been proposed to practically estimate hydraulic conductivity of soils by utilizing empirical equations based on simple physical and index properties such as grain size distribution curves related parameters, porosity, void ratio, etc. Many previous studies show that the hydraulic conductivity values calculated by empirical equations deviate more than two order magnitude than the measured hydraulic conductivity values obtained from convenient permeability tests. In order to investigate the main controlling parameters on hydraulic conductivity of soils, a comprehensive research program was carried out on some disturbed and undisturbed soil samples collected from different locations in Turkey. The hydraulic conductivity values of samples were determined as changing between 10-6 and 10-9 m/s by using falling head tests. In addition to these tests, basic soil properties such as natural water content, Atterberg limits, specific gravity and grain size analyses of these samples were also defined to be used as an input parameters of empirical equations for prediction hydraulic conductivity values. In addition, data from previous studies were also used for the aim of this study. The measured hydraulic conductivity values were correlated with all

  18. RHEOLOGICAL PROPERTIES OF RAPESEED OIL AND HYDRAULIC OIL

    Directory of Open Access Journals (Sweden)

    IOANA STANCIU

    2012-06-01

    Full Text Available This article presents the rheological behavior of refined rapeseed oil and hydraulic oil. Apparent viscosity of both oils was determined at temperatures between 40 and 90°C and shear rates ranging from 3.3 to 120 s-1. The aim of the study was to find a polynomial dependence of oil viscosity on temperature and shear rate. The modified Andrade equation was used. Constants A, B, C and correlation coefficient were determined by correlating a characteristic polynomial equation of each curve.

  19. Estimating soil moisture and soil thermal and hydraulic properties by assimilating soil temperatures using a particle batch smoother

    Science.gov (United States)

    Dong, Jianzhi; Steele-Dunne, Susan C.; Ochsner, Tyson E.; Giesen, Nick van de

    2016-05-01

    This study investigates the potential of estimating the soil moisture profile and the soil thermal and hydraulic properties by assimilating soil temperature at shallow depths using a particle batch smoother (PBS) using synthetic tests. Soil hydraulic properties influence the redistribution of soil moisture within the soil profile. Soil moisture, in turn, influences the soil thermal properties and surface energy balance through evaporation, and hence the soil heat transfer. Synthetic experiments were used to test the hypothesis that assimilating soil temperature observations could lead to improved estimates of soil hydraulic properties. We also compared different data assimilation strategies to investigate the added value of jointly estimating soil thermal and hydraulic properties in soil moisture profile estimation. Results show that both soil thermal and hydraulic properties can be estimated using shallow soil temperatures. Jointly updating soil hydraulic properties and soil states yields robust and accurate soil moisture estimates. Further improvement is observed when soil thermal properties were also estimated together with the soil hydraulic properties and soil states. Finally, we show that the inclusion of a tuning factor to prevent rapid fluctuations of parameter estimation, yields improved soil moisture, temperature, and thermal and hydraulic properties.

  20. Determination of mechanical and hydraulic properties of PVA hydrogels.

    Science.gov (United States)

    Kazimierska-Drobny, Katarzyna; El Fray, Miroslawa; Kaczmarek, Mariusz

    2015-03-01

    In this paper the identification of mechanical and hydraulic parameters of poly(vinyl alcohol) (PVA) hydrogels is described. The identification method follows the solution of inverse problem using experimental data from the unconfined compression test and the poroelastic creep model. The sensitivity analysis of the model shows significant dependence of the creep curves on investigated parameters. The hydrogels containing 22% PVA and 25% PVA were tested giving: the drained Youngs modulus of 0.71 and 0.9MPa; the drained Poisson's ratio of 0.18 and 0.31; and the permeability of 3.64·10(-15) and 3.29·10(15)m(4)/Ns, respectively. The values of undrained Youngs modulus were determined by measuring short period deformation of samples in the unconfined tests. A discussion on obtained results is presented.

  1. Structural and hydraulic properties of a small fault zone in a layered reservoir

    Directory of Open Access Journals (Sweden)

    Jeanne P.

    2014-01-01

    Full Text Available This paper focuses on a small fault zone (too small to be detected by geophysical imaging affecting a carbonate reservoir composed of porous and low-porous layers. In a gallery located at 250-m depth in the Underground Low Noise Laboratory, hydraulic properties of a 20-m thick section of the reservoir affected by the studied fault are characterized by structural measurements and by a hydraulic injection in boreholes. Main result is that the damage zone displays contrasted permeability values (up to two orders of magnitude inherited from the differential alteration of the intact rock layers. To characterize the impact of these hydraulic properties variations on the flow of fluids, numerical simulations of supercritical CO2 injections were performed with the TOUGH2 code. It appears, the permeability variations inside the fault zone favor the appearance of high fluid overpressure located in the layers having the highest permeability and storativity.

  2. Mechanical and Hydraulic Properties of Wax-coated Sands for Sport Surfaces

    Science.gov (United States)

    Bardet, J. P.; Benazza, C.; Bruchon, J. F.; Mishra, M.

    2009-06-01

    Natural soils such as sandy loams are being replaced by synthetic soils for various types of sport and recreational surfaces, including horseracing tracks. These synthetic soils are made of a mixture of sand, microcrystalline wax, synthetic fibers and rubber chips which optimize the mechanical and hydraulic properties of natural soils so that they drain faster after rainstorms and decrease risks of sport injuries while retaining appropriate sport performances. Silica sand, which makes up the largest fraction of synthetic soils, is hydrophyllic by nature, i.e., tends to retain water on sand grain surfaces. After rainstorms, hydrophilic surfaces retain a large amount of water, are difficult to compact, and yield uncontrollable mechanical and hydraulic properties when too moist. The addition of wax contributes to improving both mechanical and hydraulic properties of sands. Wax coats the sand grains with a thin layer, and enhances adherence between sand particles. It repels water from sand grains and influences both compaction and hydraulic properties. This study reports experimental results that help to understand the properties of wax-coated sands used in synthetic surfaces, especially the degradation of synthetic surfaces that have insufficient wax-coatings.

  3. Vertical groundwater storage properties and changes in confinement determined using hydraulic head response to atmospheric tides

    Science.gov (United States)

    Acworth, R. Ian; Rau, Gabriel C.; Halloran, Landon J. S.; Timms, Wendy A.

    2017-04-01

    Accurate determination of groundwater state of confinement and compressible storage properties at vertical resolution over depth is notoriously difficult. We use the hydraulic head response to atmospheric tides at 2 cpd frequency as a tracer to quantify barometric efficiency (BE) and specific storage (Ss) over depth. Records of synthesized Earth tides, atmospheric pressure, and hydraulic heads measured in nine piezometers completed at depths between 5 and 55 m into unconsolidated smectitic clay and silt, sand and gravel were examined in the frequency domain. The barometric efficiency increased over depth from ˜0.05 in silty clay to ˜0.15 in sands and gravels. BE for silty clay was confirmed by calculating the loading efficiency as 0.95 using rainfall at the surface. Specific storage was calculated using effective rather than total moisture. The differences in phase between atmospheric pressure and hydraulic heads at 2 cpd were ˜180° below 10 m indicating confined conditions despite the low BE. Heads in the sediment above a fine sand and silt layer at 12 m exhibited a time variable phase difference between 0° and 180° indicating varying confinement. Our results illustrate that the atmospheric tide at 2 cpd is a powerful natural tracer for quantifying groundwater state of confinement and compressible storage properties in layered formations from hydraulic heads and atmospheric pressure records without the need for externally induced hydraulic stress. This approach could significantly improve the development of conceptual hydrogeological model used for groundwater resource development and management.

  4. Variability and scaling of hydraulic properties for 200 Area soils, Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, R.; Freeman, E.J.

    1995-10-01

    Over the years, data have been obtained on soil hydraulic properties at the Hanford Site. Much of these data have been obtained as part of recent site characterization activities for the Environmental Restoration Program. The existing data on vadose zone soil properties are, however, fragmented and documented in reports that have not been formally reviewed and released. This study helps to identify, compile, and interpret all available data for the principal soil types in the 200 Areas plateau. Information on particle-size distribution, moisture retention, and saturated hydraulic conductivity (K{sub s}) is available for 183 samples from 12 sites in the 200 Areas. Data on moisture retention and K{sub s} are corrected for gravel content. After the data are corrected and cataloged, hydraulic parameters are determined by fitting the van Genuchten soil-moisture retention model to the data. A nonlinear parameter estimation code, RETC, is used. The unsaturated hydraulic conductivity relationship can subsequently be predicted using the van Genuchten parameters, Mualem`s model, and laboratory-measured saturated hydraulic conductivity estimates. Alternatively, provided unsaturated conductivity measurements are available, the moisture retention curve-fitting parameters, Mualem`s model, and a single unsaturated conductivity measurement can be used to predict unsaturated conductivities for the desired range of field moisture regime.

  5. Cryo-Pedotransfer Functions for Estimating Hydraulic Properties of Soils in Cold Regions

    Science.gov (United States)

    Misra, D.; Mailapalli, D. R.; Thompson, A.

    2013-12-01

    One of the arduous tasks in engineering hydrology of cold regions is estimating the soil hydraulic properties such as soil freezing characteristics and hydraulic conductivity, which are important when studying transport process during freeze-thaw processes. Expensive data collection methods and existing isothermal models are limitations in understanding soil water dynamics in frozen soils. Pedotransfer functions (PTFs) have been effectively used in the earth and environmental related sciences to estimate soil physical and chemical properties easily, routinely, or cheaply for a specific non-frozen geographical region. Based on similarity between wetting and freezing processes in soil, we present a new approach to derive soil freezing characteristics from soil water characteristics of non-frozen soils using existing PTFs. We refer to these as the Cryo-PTFs. We consider a conventional soil water characteristic model and existing PTFs for determining the relationships; unfrozen water content vs. subzero temperature, and hydraulic conductivity vs. subzero temperature using Clapeyron equation. The proposed approach successfully simulated unfrozen water content and hydraulic conductivity for different soils including peat when compared with those reported in the literature. Furthermore, effect of soil bulk density and organic matter content on unfrozen water content and hydraulic conductivity at different subzero temperatures was analyzed for a range of soils.

  6. Effects of subsoil compaction on hydraulic properties and preferential flow in a Swedish clay soil

    DEFF Research Database (Denmark)

    Mossadeghi-Björklund, M; Arvidsson, J.; Keller, Thomas;

    2016-01-01

    Soil compaction by vehicular traffic modifies the pore structure and soil hydraulic properties. These changes potentially influence the occurrence of preferential flow, which so far has been little studied. Our aim was to study the effect of compaction on soil hydraulic and transport properties in su...

  7. Electronic properties of physisorbed helium

    Energy Technology Data Exchange (ETDEWEB)

    Kossler, Sarah

    2011-09-22

    This thesis deals with electronic excitations of helium physisorbed on metal substrates. It is studied to what extent the electronic properties change compared to the gas phase due to the increased helium density and the proximity of the metal. Furthermore, the influence of different substrate materials is investigated systematically. To this end, up to two helium layers were adsorbed onto Ru (001), Pt (111), Cu (111), and Ag (111) surfaces in a custom-made cryostat. These samples were studied spectroscopically using synchrotron radiation and a time-of-flight detector. The experimental results were then analyzed in comparison with extensive theoretical model calculations.

  8. Physical and hydraulic properties of modern sinter deposits: El Tatio, Atacama

    Science.gov (United States)

    Munoz-Saez, Carolina; Saltiel, Seth; Manga, Michael; Nguyen, Chinh; Gonnermann, Helge

    2016-10-01

    Sinters are siliceous, sedimentary deposits that form in geothermal areas. Formation occurs in two steps. Hot water circulates in the subsurface and dissolves silica from the host rock, usually rhyolites. Silica then precipitates after hot water is discharged and cools. Extensive sinter formations are linked to up-flow areas of fluids originating from high temperature (> 175 °C) deep reservoirs. Fluid geochemistry, microbial communities, and environmental conditions of deposition determine the texture of sinter and pore framework. Porosity strongly influences physical and hydraulic properties of rocks. To better understand the properties controlling the transport of fluids, and interpret geophysical observations in geothermal systems, we studied 17 samples of modern geyserite sinter deposits (hydraulic, seismic, and electrical), and internal microstructure (using μX-Ray computed tomography). We find that the pore structure, and thus hydraulic and physical properties, is controlled by the distribution of microbial matter. Based on velocity-porosity relationships, permeability-porosity scaling, and image analysis of the 3D pore structure; we find that the physical and hydraulic properties of sinter more closely resemble those of vesicular volcanic rocks and other material formed by precipitation in geothermal settings (i.e., travertine) than clastic sedimentary rocks.

  9. Effects of sand compaction and mixing on pore structure and the unsaturated soil hydraulic properties

    NARCIS (Netherlands)

    Mahmoodlu, Mojtaba Ghareh|info:eu-repo/dai/nl/357287746; Raoof, A.|info:eu-repo/dai/nl/304842338; Sweijen, T.|info:eu-repo/dai/nl/369415191; van Genuchten, M. Th

    2016-01-01

    The hydraulic properties of unsaturated porous media very much depend on their pore structure as defined by the size, arrangement, and connectivity of pores. Several empirical and quasi-empirical approaches have been used over the years to derive pore structure information from the particle size dis

  10. Development and use of a database of hydraulic properties of European soils

    NARCIS (Netherlands)

    Wösten, J.H.M.; Nemes, A.; Lilly, A.; Bas, Le C.

    1999-01-01

    Many environmental studies on the protection of European soil and water resources make use of soil water simulation models. A major obstacle to the wider application of these models is the lack of easily accessible and representative soil hydraulic properties. In order to overcome this apparent lack

  11. Abrasion properties of homogenous and blended fill materials during pressure hydraulic transport

    Energy Technology Data Exchange (ETDEWEB)

    Turchaninov, S.P.

    1978-03-01

    A description is given of tests conducted to determine the abrasive properties of small and large-grain free-flowing fill materials during hydraulic transport of the materials under pressure. Data are given on the size, density, abrasiveness of various sized varieties of rock, sand, and blends comprising homogenous materials, simple and complex mixtures, and on the physical characteristics of various fill materials in relation to the trafficability and parameters of pipelines. Technical specifications are given for fill steel pipes. The study indicates that the durability of hydraulic fill pipelines largely depends on the abrasiveness of the fill materials. 3 references, 2 figures, 2 tables.

  12. Experimental investigation of the dielectric properties of soil under hydraulic loading

    Science.gov (United States)

    Bittner, Tilman; Bore, Thierry; Wagner, Norman; Karlovšek, Jurij; Scheuermann, Alexander

    2017-04-01

    An experimental set-up was developed in order to determine the coupled hydraulic, dielectric and mechanical properties of granular media under hydraulic loading. The set-up consisted of a modified column for permeability tests involving a flow meter and pressure transducers along the sample to quantify the hydraulic gradient. A newly developed open-ended coaxial probe allowed the measurement of the frequency dependent dielectric permittivity of the material under test. The shear strength of the sample within the column was measured using a conventional vane shear device. In this paper, the overall set-up is introduced with focus on the open-ended coaxial probe. The design and calibration of the probe are introduced in detail. A numerical study showed that the sensitive cylindrical volume of the probe was approximately 150 mm in diameter with a depth of 65 mm. An investigation with glass beads showed that the set-up allowed the parameterization of the hydraulic, mechanic and dielectric parameters of granular materials under the influence of vertical flow. A satisfactorily good correlation between porosity and the real part of the dielectric permittivity was detected. The critical hydraulic gradient defining the transition of a fixed bed of particles to fluidization was characterized by a sharp peak in the evolution of the hydraulic conductivity and could easily be determined from the measurements. The shear strength of the material under test reduces linearly with increasing hydraulic gradient. Future investigations will be carried out to provide the required parameterizations for experimental and numerical investigations of the internal erosion of granular media.

  13. Electronic Properties of Semiconductor Interfaces.

    Science.gov (United States)

    1983-02-01

    AD-A130 745 ELECTRONIC PROPERTIES OF SEMICONDUCTOR INTERFACES(U) /; UNIVERSIDAD AUfONOMA DE MADRID (SPAIN) DEPT DE FISICA DEL ESTADO SOLIDO F FLORES...J.Sfinchez-Dehesa 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK AREA & WORK UNIT NUMBERS Departamento de Fisica del...resistance (Esaki and Chang 1974). A SL which has received a great deal of attention is GaAs- AlxGa Ix as grown by molecular -beam-epitaxy. Several

  14. Spatial Prediction of Hydraulic Zones from Soil Properties and Secondary Data Using Factorial Kriging Analysis

    Science.gov (United States)

    Bevington, James; Morari, Francesco; Scudiero, Elia; Teatini, Pietro; Vellidis, George

    2015-04-01

    The development of pedotransfer functions (PTF) is an important topic in soil science research because there is a critical need for incorporation of vadose zone phenomena into large scale climate models. Soil measurements are inherently spatially dependent and therefore application of geospatial statistics provides an avenue for estimating soil properties. The aim of this study is to define management zones based on soil hydraulic properties. Samples were collected from 50 locations at 4 depths in a 20.8ha field located in the Po River delta in Italy. Water retention curves (WRC) and unsaturated hydraulic conductivity curves (UHC) and were determined via inversion of measurements taken using the Wind (Dane and Topp, 1994) method. This region is in known to have paleo-channel structures and highly heterogeneous soils. Factorial kriging analysis (FKA) was applied to hydraulic parameters in one data set and soil physical properties in another data set at 4 depths. The mapped principal components (PCs) were used in a fuzzy-c means algorithm to define zones of like properties. To examine the physical significance of these zones, curve parameters and hydraulic curves were investigated. Zones were able to distinguish between θ_s(saturated water content), n (shape parameter) and α (inverse of air entry) while θr (residual water content) and Ks (saturated conductivity) were not statistically different between the groups. For curve comparisons, WRC were found to be significantly different between zones at all tensions while effective saturation curves (Se) differ for the majority of tensions (except at 28cm), but UHC did not differ. The spatial relevance of the zones was examined by overlaying hydraulic zones with zones defined using the FKA and fuzzy-c means approach from soil physical properties such as texture and bulk density. The hydraulic zones overlaid with areal accuracy ranging from 46.66% to 92.41%. As there is much similarity between these sets of zones, there

  15. Scaling of material properties for Yucca Mountain: literature review and numerical experiments on saturated hydraulic conductivity

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, S.A.; Rautman, C.A.

    1996-08-01

    A review of pertinent literature reveals techniques which may be practical for upscaling saturated hydraulic conductivity at Yucca Mountain: geometric mean, spatial averaging, inverse numerical modeling, renormalization, and a perturbation technique. Isotropic realizations of log hydraulic conductivity exhibiting various spatial correlation lengths are scaled from the point values to five discrete scales through these techniques. For the variances in log{sub 10} saturated hydraulic conductivity examined here, geometric mean, numerical inverse and renormalization adequately reproduce point scale fluxes across the modeled domains. Fastest particle velocities and dispersion measured on the point scale are not reproduced by the upscaled fields. Additional numerical experiments examine the utility of power law averaging on a geostatistical realization of a cross-section similar to the cross-sections that will be used in the 1995 groundwater travel time calculations. A literature review on scaling techniques for thermal and mechanical properties is included. 153 refs., 29 figs., 6 tabs.

  16. Data of hydraulic properties of North East and North Central German soils

    Directory of Open Access Journals (Sweden)

    U. Schindler

    2010-07-01

    Full Text Available The paper presents a data base of soil physical and hydrological properties of North East and North Central German soils. Included are measured data of the soil water retention curve and the unsaturated hydraulic conductivity function. Information on geo-reference, soil type and horizon are given. Soil hydraulic functions were measured with the evaporation method. The applied measurement technique is described and information to actual innovations and advanced technology is given. Additional soil physical data like particle size distribution, dry bulk density, organic matter content and other variables are presented. The data base includes original measurement results of 278 organic and of 497 mineral soil samples from 103 sites. The mineral soils cover a wide range of texture classes and dry bulk densities. The organic soils and samples represent different states of decomposition and mineralization. Furthermore hydraulic functions are included of soils anthropogenically altered by deep plough sand covering measures.

  17. Characterization of thermal, hydraulic, and gas diffusion properties in variably saturated sand grades

    DEFF Research Database (Denmark)

    Deepagoda Thuduwe Kankanamge Kelum, Chamindu; Smits, Kathleen; Ramirez, Jamie

    2016-01-01

    transport models (thermal conductivity, saturated hydraulic conductivity, and gas diffusivity). An existing thermal conductivity model was improved to describe the distinct three-region behavior in observed thermal conductivity–water saturation relations. Applying widely used parametric models for saturated...... hydraulic conductivity and soil-gas diffusivity, we characterized porous media tortuosity in relation to grain size. Strong relations among average particle diameter, characteristic pore diameter from soil-water retention measurements, and saturated hydraulic conductivity were found. Thus, the results......Detailed characterization of partially saturated porous media is important for understanding and predicting vadose zone transport processes. While basic properties (e.g., particle- and pore-size distributions and soil-water retention) are, in general, essential prerequisites for characterizing most...

  18. Comparison among monitoring strategies to assess water flow dynamic and soil hydraulic properties in agricultural soils

    Directory of Open Access Journals (Sweden)

    Javier Valdes-Abellan

    2015-03-01

    Full Text Available Abstract Irrigated agriculture is usually performed in semi-arid regions despite scarcity of water resources. Therefore, optimal irrigation management by monitoring the soil is essential, and assessing soil hydraulic properties and water flow dynamics is presented as a first measure. For this purpose, the control of volumetric water content, θ, and pressure head, h, is required. This study adopted two types of monitoring strategies in the same experimental plot to control θ and h in the vadose zone: i non-automatic and more time-consuming; ii automatic connected to a datalogger. Water flux was modelled with Hydrus-1D using the data collected from both acquisition strategies independently (3820 daily values for the automatic; less than 1000 for the non-automatic. Goodness-of-fit results reported a better adjustment in case of automatic sensors. Both model outputs adequately predicted the general trend of θ and h, but with slight differences in computed annual drainage (711 mm and 774 mm. Soil hydraulic properties were inversely estimated from both data acquisition systems. Major differences were obtained in the saturated volumetric water content, θs, and the n and α van Genuchten model shape parameters. Saturated hydraulic conductivity, Ks, shown lower variability with a coefficient of variation range from 0.13 to 0.24 for the soil layers defined. Soil hydraulic properties were better assessed through automatic data acquisition as data variability was lower and accuracy was higher.

  19. Comparison among monitoring strategies to assess water flow dynamic and soil hydraulic properties in agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Valdes-Abellan, J.; Jiménez-Martínez, J.; Candela, L.; Tamoh, K.

    2015-07-01

    Irrigated agriculture is usually performed in semi-arid regions despite scarcity of water resources. Therefore, optimal irrigation management by monitoring the soil is essential, and assessing soil hydraulic properties and water flow dynamics is presented as a first measure. For this purpose, the control of volumetric water content, θ, and pressure head, h, is required. This study adopted two types of monitoring strategies in the same experimental plot to control θ and h in the vadose zone: i) non-automatic and more time-consuming; ii) automatic connected to a datalogger. Water flux was modelled with Hydrus-1D using the data collected from both acquisition strategies independently (3820 daily values for the automatic; less than 1000 for the non-automatic). Goodness-of-fit results reported a better adjustment in case of automatic sensors. Both model outputs adequately predicted the general trend of θ and h, but with slight differences in computed annual drainage (711 mm and 774 mm). Soil hydraulic properties were inversely estimated from both data acquisition systems. Major differences were obtained in the saturated volumetric water content, θs, and the n and α van Genuchten model shape parameters. Saturated hydraulic conductivity, Ks, shown lower variability with a coefficient of variation range from 0.13 to 0.24 for the soil layers defined. Soil hydraulic properties were better assessed through automatic data acquisition as data variability was lower and accuracy was higher. (Author)

  20. Investigation on hydraulic properties of compacted GMZ bentonite used as buffer/backfill material

    Directory of Open Access Journals (Sweden)

    Ye W. M.

    2016-01-01

    Full Text Available During the past decades, GMZ bentonite has been widely investigated for its use as buffer/backfill materials in China. Based on a comprehensive review of the former studies, achievements on experimental and theoretic works on the hydraulic aspects of compacted GMZ bentonite with consideration of temperature effects are presented in this paper. Water retention property of compacted GMZ bentonite depends on constraint conditions. Temperature effects on water-retention depend on constraint conditions and suction. The hysteresis behaviour is not obvious. Based on the test results, a revised water retention model was developed for considering the temperature effect. The saturated hydraulic conductivity of the densely compacted GMZ bentonite increases as dry density and temperature increases. A revised model, which considers temperature influence on water viscosity and the effective flow cross-sectional area of porous channels, for prediction of saturated hydraulic conductivity have been developed and verified. The unsaturated hydraulic conductivity of confined densely compacted GMZ bentonite samples decreases first and then increases with suction decrease from an initial value of 80 MPa to zero. With consideration of temperature effects and microstructure changes, a revised model for prediction of unsaturated hydraulic conductivity of compacted GMZ01 bentonite was proposed.

  1. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    Science.gov (United States)

    Mirus, Benjamin B.; Halford, Keith; Sweetkind, Don; Fenelon, Joe

    2016-08-01

    The suitability of geologic frameworks for extrapolating hydraulic conductivity ( K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.

  2. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    Science.gov (United States)

    Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald; Fenelon, Joseph M.

    2016-01-01

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.

  3. Prototype Data Models and Data Dictionaries for Hanford Sediment Physical and Hydraulic Properties

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L.; Last, George V.; Middleton, Lisa A.

    2010-09-30

    The Remediation Decision Support (RDS) project, managed by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) and the CH2M HILL Plateau Remediation Company (CHPRC), has been compiling physical and hydraulic property data and parameters to support risk analyses and waste management decisions at Hanford. In FY09 the RDS project developed a strategic plan for a physical and hydraulic property database. This report documents prototype data models and dictionaries for these properties and associated parameters. Physical properties and hydraulic parameters and their distributions are required for any type of quantitative assessment of risk and uncertainty associated with predictions of contaminant transport and fate in the subsurface. The central plateau of the Hanford Site in southeastern Washington State contains most of the contamination at the Site and has up to {approx}100 m of unsaturated and unconsolidated or semi-consolidated sediments overlying the unconfined aquifer. These sediments contain a wide variety of contaminants ranging from organic compounds, such as carbon tetrachloride, to numerous radionuclides including technetium, plutonium, and uranium. Knowledge of the physical and hydraulic properties of the sediments and their distributions is critical for quantitative assessment of the transport of these contaminants in the subsurface, for evaluation of long-term risks and uncertainty associated with model predictions of contaminant transport and fate, and for evaluating, designing, and operating remediation alternatives. One of the goals of PNNL's RDS project is to work with the Hanford Environmental Data Manager (currently with CHPRC) to develop a protocol and schedule for incorporation of physical property and hydraulic parameter datasets currently maintained by PNNL into HEIS. This requires that the data first be reviewed to ensure quality and consistency. New data models must then be developed for HEIS that are

  4. Research Note:Determination of soil hydraulic properties using pedotransfer functions in a semi-arid basin, Turkey

    Directory of Open Access Journals (Sweden)

    M. Tombul

    2004-01-01

    Full Text Available Spatial and temporal variations in soil hydraulic properties such as soil moisture q(h and hydraulic conductivity K(q or K(h, may affect the performance of hydrological models. Moreover, the cost of determining soil hydraulic properties by field or laboratory methods makes alternative indirect methods desirable. In this paper, various pedotransfer functions (PTFs are used to estimate soil hydraulic properties for a small semi-arid basin (Kurukavak in the north-west of Turkey. The field measurements were a good fit with the retention curve derived using Rosetta SSC-BD for a loamy soil. To predict parameters to describe soil hydraulic characteristics, continuous PTFs such as Rosetta SSC-BD (Model H3 and SSC-BD-q33q1500 (Model H5 have been applied. Using soil hydraulic properties that vary in time and space, the characteristic curves for three soil types, loam, sandy clay loam and sandy loam have been developed. Spatial and temporal variations in soil moisture have been demonstrated on a plot and catchment scale for loamy soil. It is concluded that accurate site-specific measurements of the soil hydraulic characteristics are the only and probably the most promising method to progress in the future. Keywords: soil hydraulic properties, soil characteristic curves, PTFs

  5. Water infiltration and hydraulic conductivity in a natural Mediterranean oak forest: impacts of hydrology-oriented silviculture on soil hydraulic properties

    Science.gov (United States)

    Di Prima, Simone; Bagarello, Vincenzo; Bautista, Inmaculada; Cerdà, Artemi; Cullotta, Sebastiano; del Campo, Antonio; González-Sanchis, María; Iovino, Massimo; Maetzke, Federico

    2016-04-01

    Prima, S., Iovino, M., 2015. Determining hydraulic properties of a loam soil by alternative infiltrometer techniques. Hydrol. Process. doi:10.1002/hyp.10607 Andréassian, V., 2004. Waters and forests: from historical controversy to scientific debate. Journal of Hydrology 291, 1-27. doi:10.1016/j.jhydrol.2003.12.015 Assouline, S., Mualem, Y., 2002. Infiltration during soil sealing: The effect of areal heterogeneity of soil hydraulic properties. Water Resour. Res. 38, 1286. doi:10.1029/2001WR001168 Aussenac, G., Granier, A., 1988. Effects of thinning on water stress and growth in Douglas-fir. Canadian Journal of Forest Research 18, 100-105. doi:10.1139/x88-015 Bagarello, V., Di Prima, S., Iovino, M., Provenzano, G., 2014. Estimating field-saturated soil hydraulic conductivity by a simplified Beerkan infiltration experiment. Hydrological Processes 28, 1095-1103. doi:10.1002/hyp.9649 Bens, O., Wahl, N.A., Fischer, H., Hüttl, R.F., 2006. Water infiltration and hydraulic conductivity in sandy cambisols: impacts of forest transformation on soil hydrological properties. Eur J Forest Res 126, 101-109. doi:10.1007/s10342-006-0133-7 Brooks, K.N., Folliott, P.F., Gregersen, H.M., DeBano, L.F., 2003. Hydrology and the Management of Watersheds. Hydrology and the Management of Watersheds 575. Cosandey, C., Andréassian, V., Martin, C., Didon-Lescot, J.F., Lavabre, J., Folton, N., Mathys, N., Richard, D., 2005. The hydrological impact of the mediterranean forest: a review of French research. Journal of Hydrology 301, 235-249. doi:10.1016/j.jhydrol.2004.06.040 del Campo, A.D., Fernandes, T.J.G., Molina, A.J., 2014. Hydrology-oriented (adaptive) silviculture in a semiarid pine plantation: How much can be modified the water cycle through forest management? European Journal of Forest Research 133, 879-894. doi:10.1007/s10342-014-0805-7 Di Prima, S., 2015. Automated single ring infiltrometer with a low-cost microcontroller circuit. Computers and Electronics in Agriculture 118, 390-395. doi

  6. Hydraulic properties of typical salt-affected soils in Jiangsu Province,China

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiaomin; SHEN Qirong; XU Yangchun

    2007-01-01

    Every year about 1,500 ha of land is reclaimed from the sea along the coastline of Jiangsu Province,China.It is important to characterize the hydraulic properties of this reclaimed land to be able to predict and manage salt and water movement for amelioration of these saline soils.In this paper,we report hydraulic properties of these salt-affected soils.The pressure-plate method,constant head method,the crust method and Klute's method were used in this study.The satu rated hydraulic conductivities of the soils ranged from 128.66 to 141.26 cm/day and decreased with increasing soil depth.The unsaturated hydraulic conductivities followed an expo nential function of pressure head.The soil water retention curves were similar for three soil layers in the soil.The satu rated water content,field capacity and wilting point decreased with increasing soil depth.Plant available water contents of the three layers in the soil profile were 0.21,0.20 and 0.19 cm3/cm3,respectively.The unsaturated soil water diffu sivity of the studied soils ranged from 0.07 to 10.46 cm2/min,and was related to the water content via an exponential relationship.

  7. Circadian patterns of xylem sap properties and their covariation with plant hydraulic traits in hybrid aspen.

    Science.gov (United States)

    Meitern, Annika; Õunapuu-Pikas, Eele; Sellin, Arne

    2017-06-01

    Physiological processes taking place in plants are subject to diverse circadian patterns but some of them are poorly documented in natural conditions. The daily dynamics of physico-chemical properties of xylem sap and their covariation with tree hydraulic traits were investigated in hybrid aspen (Populus tremula L.×P. tremuloides Michx) in field conditions in order to clarify which environmental drivers govern the daily variation in these parameters. K(+) concentration ([K(+)]), electrical conductivity (σsap), osmolality (Osm) and pH of the xylem sap, as well as branch hydraulic traits, were measured in the field over 24-h cycles. All studied xylem sap properties and hydraulic characteristics including whole-branch (Kwb), leaf blade (Klb) and petiole hydraulic conductances (KP) showed clear daily dynamics. Air temperature (TA) and photosynthetic photon flux density (PPFD), but also water vapour pressure deficit (VPD) and relative humidity (RH), had significant impacts on KwbKlb, KP, [K(+)] and σsap. Osm varied only with light intensity, while KB varied depending on atmospheric evaporative demand expressed as TA, VPD or RH. Xylem sap pH depended inversely on soil water potential (ΨS) and during daylight also on VPD. Although soil water content was close to saturation during the study period, ΨS influenced also [K(+)] and σsap. The present study presents evidence of coupling between circadian patterns of xylem sap properties and plant hydraulic conductance providing adequate water supply to foliage under environmental conditions characterised by diurnal variation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Unsaturated hydraulic properties of porous sedimentary rocks explained by mercury porosimetry

    Science.gov (United States)

    Clementina Caputo, Maria; Turturro, Celeste; Gerke, Horst H.

    2016-04-01

    The understanding of hydraulic properties is essential in the modeling of flow and solute transport including contaminants through the vadose zone, which consists of the soil as well as of the underlying porous sediments or rocks. The aim of this work is to study the relationships between unsaturated hydraulic properties of porous rocks and their pore size distribution. For this purpose, two different lithotypes belonging to Calcarenite di Gravina Formation, a Plio-Pleistocene sedimentary rock of marine origin, were investigated. The two lithotypes differ mainly in texture and came from two distinct quarry districts, Canosa di Puglia (C) and Massafra (M) in southern Italy, respectively. This relatively porous rock formation (porosities range between 43% for C and 41% for M) often constitutes a thick layer of vadose zone in several places of Mediterranean basin. The water retention curves (WRCs) and the unsaturated hydraulic conductivity functions were determined using four different experimental methods that cover the full range from low to high water contents: the WP4 psychrometer test, the Wind's evaporation method, the Stackman's method and the Quasi-steady centrifuge method. Pore size estimation by means of mercury intrusion porosimetry (MIP) was performed. WRCs were compared with the pore size distributions to understand the influence of fabric, in terms of texture and porosity, features of pores and pore size distribution on the hydraulic behavior of rocks. The preliminary results show that the pore size distributions obtained by MIP do not cover the entire pore size range of the investigated Calcarenite. In fact, some pores in the rock samples of both lithotypes were larger than the maximum size that could be investigated by MIP. This implies that for explaining the unsaturated hydraulic properties over the full moisture range MIP results need to be combined with results obtained by other methods such as image analysis and SEM.

  9. Numerical modeling of the effect of variation of boundary conditions on vadose zone hydraulic properties

    Directory of Open Access Journals (Sweden)

    Tairone Paiva Leão

    2011-02-01

    Full Text Available An accurate estimation of hydraulic fluxes in the vadose zone is essential for the prediction of water, nutrient and contaminant transport in natural systems. The objective of this study was to simulate the effect of variation of boundary conditions on the estimation of hydraulic properties (i.e. water content, effective unsaturated hydraulic conductivity and hydraulic flux in a one-dimensional unsaturated flow model domain. Unsaturated one-dimensional vertical water flow was simulated in a pure phase clay loam profile and in clay loam interlayered with silt loam distributed according to the third iteration of the Cantor Bar fractal object Simulations were performed using the numerical model Hydrus 1D. The upper and lower pressure heads were varied around average values of -55 cm for the near-saturation range. This resulted in combinations for the upper and lower constant head boundary conditions, respectively, of -50 and -60 cm, -40 and -70 cm, -30 and -80 cm, -20 and -90 cm, and -10 and -100 cm. For the drier range the average head between the upper and lower boundary conditions was set to -550 cm, resulting in the combinations -500 and -600 cm, -400 and -700 cm, -300 and -800 cm, -200 and -900 cm, and -100 and -1,000 cm, for upper and lower boundary conditions, respectively. There was an increase in water contents, fluxes and hydraulic conductivities with the increase in head difference between boundary conditions. Variation in boundary conditions in the pure phase and interlayered one-dimensional profiles caused significant deviations in fluxes, water contents and hydraulic conductivities compared to the simplest case (a head difference between the upper and lower constant head boundaries of 10 cm in the wetter range and 100 cm in the drier range.

  10. Property-Transfer Modeling to Estimate Unsaturated Hydraulic Conductivity of Deep Sediments at the Idaho National Laboratory, Idaho

    Science.gov (United States)

    Perkins, Kim S.; Winfield, Kari A.

    2007-01-01

    The unsaturated zone at the Idaho National Laboratory is complex, comprising thick basalt flow sequences interbedded with thinner sedimentary layers. Understanding the highly nonlinear relation between water content and hydraulic conductivity within the sedimentary interbeds is one element in predicting water flow and solute transport processes in this geologically complex environment. Measurement of unsaturated hydraulic conductivity of sediments is costly and time consuming, therefore use of models that estimate this property from more easily measured bulk-physical properties is desirable. A capillary bundle model was used to estimate unsaturated hydraulic conductivity for 40 samples from sedimentary interbeds using water-retention parameters and saturated hydraulic conductivity derived from (1) laboratory measurements on core samples, and (2) site-specific property transfer regression models developed for the sedimentary interbeds. Four regression models were previously developed using bulk-physical property measurements (bulk density, the median particle diameter, and the uniformity coefficient) as the explanatory variables. The response variables, estimated from linear combinations of the bulk physical properties, included saturated hydraulic conductivity and three parameters that define the water-retention curve. The degree to which the unsaturated hydraulic conductivity curves estimated from property-transfer-modeled water-retention parameters and saturated hydraulic conductivity approximated the laboratory-measured data was evaluated using a goodness-of-fit indicator, the root-mean-square error. Because numerical models of variably saturated flow and transport require parameterized hydraulic properties as input, simulations were run to evaluate the effect of the various parameters on model results. Results show that the property transfer models based on easily measured bulk properties perform nearly as well as using curve fits to laboratory-measured water

  11. Stabilization of soil hydraulic properties under a long term no-till system

    Directory of Open Access Journals (Sweden)

    Luis Alberto Lozano

    2014-08-01

    Full Text Available The area under the no-tillage system (NT has been increasing over the last few years. Some authors indicate that stabilization of soil physical properties is reached after some years under NT while other authors debate this. The objective of this study was to determine the effect of the last crop in the rotation sequence (1st year: maize, 2nd year: soybean, 3rd year: wheat/soybean on soil pore configuration and hydraulic properties in two different soils (site 1: loam, site 2: sandy loam from the Argentinean Pampas region under long-term NT treatments in order to determine if stabilization of soil physical properties is reached apart from a specific time in the crop sequence. In addition, we compared two procedures for evaluating water-conducting macroporosities, and evaluated the efficiency of the pedotransfer function ROSETTA in estimating the parameters of the van Genuchten-Mualem (VGM model in these soils. Soil pore configuration and hydraulic properties were not stable and changed according to the crop sequence and the last crop grown in both sites. For both sites, saturated hydraulic conductivity, K0, water-conducting macroporosity, εma, and flow-weighted mean pore radius, R0ma, increased from the 1st to the 2nd year of the crop sequence, and this was attributed to the creation of water-conducting macropores by the maize roots. The VGM model adequately described the water retention curve (WRC for these soils, but not the hydraulic conductivity (K vs tension (h curve. The ROSETTA function failed in the estimation of these parameters. In summary, mean values of K0 ranged from 0.74 to 3.88 cm h-1. In studies on NT effects on soil physical properties, the crop effect must be considered.

  12. Effects of substrate properties on the hydraulic and thermal behavior of a green roof

    Science.gov (United States)

    Sandoval, V. P.; Suarez, F. I.; Victorero, F.; Bonilla, C.; Gironas, J. A.; Vera, S.; Bustamante, W.; Rojas, V.; Pasten, P.

    2014-12-01

    Green roofs are a sustainable urban development solution that incorporates a growing media (also known as substrate) and vegetation into infrastructures to reach additional benefits such as the reduction of: rooftop runoff peak flows, roof surface temperatures, energy utilized for cooling/heating buildings, and the heat island effect. The substrate is a key component of the green roof that allows achieving these benefits. It is an artificial soil that has an improved behavior compared to natural soils, facilitating vegetation growth, water storage and typically with smaller densities to reduce the loads over the structures. Therefore, it is important to study the effects of substrate properties on green roof performance. The objective of this study is to investigate the physical properties of four substrates designed to improve the behavior of a green roof, and to study their impact on the efficiency of a green roof. The substrates that were investigated are: organic soil; crushed bricks; a mixture of mineral soil with perlite; and a mixture of crushed bricks and organic soil. The thermal properties (thermal conductivity, volumetric heat capacity and thermal diffusivity) were measured using a dual needle probe (Decagon Devices, Inc.) at different saturation levels, and the hydraulic properties were measured with a constant head permeameter (hydraulic conductivity) and a pressure plate extractor (water retention curve). This characterization, combined with numerical models, allows understanding the effect of these properties on the hydraulic and thermal behavior of a green roof. Results show that substrates composed by crushed bricks improve the thermal insulation of infrastructures and at the same time, retain more water in their pores. Simulation results also show that the hydraulic and thermal behavior of a green roof strongly depends on the moisture content prior to a rainstorm.

  13. Multiobjective Optimization of Effective Soil Hydraulic Properties on a Lysimeter from a Layered, Gravelly Vadose Zone

    Science.gov (United States)

    Werisch, Stefan; Lennartz, Franz

    2013-04-01

    Estimation of effective soil hydraulic parameters for characterization of the vadose zone properties is important for many applications from prediction of solute and pesticide transport to water balance modeling in small catchments. Inverse modeling has become a common approach to infer the parameters of the water retention and hydraulic conductivity functions from dynamic experiments under varying boundary conditions. To gain further inside into to the water transport behavior of an agricultural field site with a layered, gravelly vadose zone, a lysimeter was taken and equipped with a total of 48 sensors (24 tensiometers and 24 water content probes). The sensors were arranged in 6 vertical arrays consisting of 4 sensor pairs, respectively. Pressure heads and water contents were measured in four depths in each of the arrays allowing for the estimation of the soil hydraulic properties of the three individual soil layers by inverse modeling. For each of the soil horizons, a separate objective function was defined to fit the model to the observation. We used the global multiobjective multimethod search algorithm AMALGAM (Vrugt et al., 2007) in combination with the water flow and solute transport model Hydrus1D (Šimúnek et al., 2008) to estimate the soil hydraulic properties of the Mualem van Genuchten model (van Genuchten, 1980). This experimental design served for the investigation of two important questions: a) do effective soil hydraulic properties at the lysimeter scale exist, more specifically: can a single representative parameter set be found which describes the hydraulic behavior in each of the arrays with acceptable performance? And b) which degree of freedom is necessary or required for an accurate description of the one dimensional water flow at each of the arrays? Effective soil hydraulic parameters were obtained for each of the sensor arrays individually, resulting in good agreement between the model predictions and the observations for the individual

  14. Carbofuran biodegradation in brackish groundwater and its effect on the hydraulic properties of the porous medium

    Science.gov (United States)

    Amiaz, Yanai; Ronen, Zeev; Adar, Eilon; Weisbrod, Noam

    2015-04-01

    A chalk fractured aquitard beneath an industrial site is subjected to intense contamination due to percolation of contaminants from the different facilities operating at the site. In order to reduce further contamination, draining trenches were excavated and filled with coarse gravel (3-4 cm in diameter) forming a porous medium, to which the contaminated groundwater discharges from the fractures surrounding the trenches. This research is aimed at establishing a biodegrading process of high efficiency and performance within the draining trenches. The research includes both field and laboratory experiments. An experimental setup of five columns (50 cm length and 4.5 cm in diameter) was constructed under highly controlled conditions. Over the course of the experiments, the columns were filled with different particle sizes and placed in a temperature controlled chamber. Filtered groundwater (0.2 µm) from the site groundwater, enriched by a model contaminant carbofuran (CRF), was injected to the columns; as two of the columns were inoculated by CRF degrading microorganisms native in the site's groundwater, two columns were inoculated by CRF degrading bacteria from the external environment, and one column was used as a control. During the experiment, measurements were taken from different locations along each column. These include: (a) CRF concentration and (b) hydraulic pressure and solution viscosity (in order to obtain the changes in permeability). A tracer test using uranine was carried out in parallel, in order to obtain the changes in hydraulic parameters. Correlating CRF concentration variations to changes of hydraulic parameters enable the deduction due to the effect that biological activity (under different temperature regimes) has on the hydraulic properties of the porous medium and its effect on the process of contaminant groundwater bodies' remediation. Preliminary results suggest that although biodegradation occurs, microbial activity has minor effect on

  15. Inferring hydraulic properties of alpine aquifers from the propagation of diurnal snowmelt signals

    Science.gov (United States)

    Kurylyk, Barret L.; Hayashi, Masaki

    2017-05-01

    Alpine watersheds source major rivers throughout the world and supply essential water for irrigation, human consumption, and hydroelectricity. Coarse depositional units in alpine watersheds can store and transmit significant volumes of groundwater and thus augment stream discharge during the dry season. These environments are typically data scarce, which has limited the application of physically based models to investigate hydrologic sensitivity to environmental change. This study focuses on a coarse alpine talus unit within the Lake O'Hara watershed in the Canadian Rockies. We investigate processes controlling the hydrologic functioning of the talus unit using field observations and a numerical groundwater flow model driven with a distributed snowmelt model. The model hydraulic parameters are adjusted to investigate how these properties influence the propagation of snowmelt-induced diurnal signals. The model results expectedly demonstrate that diurnal signals at the talus outlet are progressively damped and lagged with lower hydraulic conductivity and higher specific yield. The simulations further indicate that the lag can be primarily controlled by a higher hydraulic conductivity upper layer, whereas the damping can be strongly influenced by a lower hydraulic conductivity layer along the base of the talus. The simulations specifically suggest that the talus slope can be represented as a two layer system with a high conductivity zone (0.02 m s-1) overlying a 10 cm thick lower conductivity zone (0.002 m s-1). This study demonstrates that diurnal signals can be used to elucidate the hydrologic functioning and hydraulic properties of shallow aquifers and thus aid in the parameterization of hydrological models.

  16. Numerical evaluation of effective unsaturated hydraulic properties for fractured rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhiming [Los Alamos National Laboratory; Kwicklis, Edward M [Los Alamos National Laboratory

    2009-01-01

    To represent a heterogeneous unsaturated fractured rock by its homogeneous equivalent, Monte Carlo simulations are used to obtain upscaled (effective) flow properties. In this study, we present a numerical procedure for upscaling the van Genuchten parameters of unsaturated fractured rocks by conducting Monte Carlo simulations of the unsaturated flow in a domain under gravity-dominated regime. The simulation domain can be chosen as the scale of block size in the field-scale modeling. The effective conductivity is computed from the steady-state flux at the lower boundary and plotted as a function of the averaging pressure head or saturation over the domain. The scatter plot is then fitted using van Genuchten model and three parameters, i.e., the saturated conductivity K{sub s}, the air-entry parameter {alpha}, the pore-size distribution parameter n, corresponding to this model are considered as the effective K{sub s}, effective {alpha}, and effective n, respectively.

  17. Uncertainty analysis and validation of the estimation of effective hydraulic properties at the Darcy scale

    Science.gov (United States)

    Mesgouez, A.; Buis, S.; Ruy, S.; Lefeuve-Mesgouez, G.

    2014-05-01

    The determination of the hydraulic properties of heterogeneous soils or porous media remains challenging. In the present study, we focus on determining the effective properties of heterogeneous porous media at the Darcy scale with an analysis of their uncertainties. Preliminary, experimental measurements of the hydraulic properties of each component of the heterogeneous medium are obtained. The properties of the effective medium, representing an equivalent homogeneous material, are determined numerically by simulating a water flow in a three-dimensional representation of the heterogeneous medium, under steady-state scenarios and using its component properties. One of the major aspects of this study is to take into account the uncertainties of these properties in the computation and evaluation of the effective properties. This is done using a bootstrap method. Numerical evaporation experiments are conducted both on the heterogeneous and on the effective homogeneous materials to evaluate the effectiveness of the proposed approach. First, the impact of the uncertainties of the component properties on the simulated water matric potential is found to be high for the heterogeneous material configuration. Second, it is shown that the strategy developed herein leads to a reduction of this impact. Finally, the adequacy between the mean of the simulations for the two configurations confirms the suitability of the homogenization approach, even in the case of dynamic scenarios. Although it is applied to green roof substrates, a two-component media composed of bark compost and pozzolan used in the construction of buildings, the methodology proposed in this study is generic.

  18. Regional characterization of hydraulic properties of rock using well test data

    Energy Technology Data Exchange (ETDEWEB)

    Wladis, D.; Joensson, P.; Wallroth, T. [Chalmers Univ. of Technology., Goeteborg (Sweden). Dept. of Geology

    1997-11-01

    This study was aimed at investigating the possible use of data from the SGU well archive for characterization of the hydraulic properties of the crystalline basement of Sweden at a regional scale. Two areas studied as possible candidates for a radioactive waste repository were selected. The SGU well data and the hydraulic conductivity data evaluated from packer tests in boreholes at the sites were characterized statistically also considering possible spatial dependence. The two types of data were compared and the correlation between the data sets was investigated. This part of the study considered the uppermost 100 m of the packer test data, which is the approximate depth range covered by the SGU data. In a second part of the work the packer test data from the two study areas were analyzed in terms of possible depth trends. The exploratory statistical analyses suggested that the SGU data are useful for estimations of hydrogeological parameters for areas of different geologic settings. The geostatistical analysis provided further understanding of the spatial behaviour of the studied parameters. The analysis of depth dependence indicates that at both sites there is a layer of higher hydraulic conductivity close to the surface. Within these layers, about 200 and 280 m thick, resp., the conductivity decreases with increasing depth. At larger depths however, the decrease with depth is very slow or negligible. It was found that the scatter in the measured hydraulic conductivity data is very large compared to differences between the depth functions tested 33 refs, 21 figs, 6 tabs

  19. Hydraulic and Seismic Properties of Methane-Bearing Coal

    Science.gov (United States)

    Kneafsey, T. J.; Gritto, R.; Tomutsa, L.

    2002-12-01

    In the last 10 years, coalbed methane (CBM) has transformed from being a coal mine hazard to a low-risk source of long term dry natural gas. The benefit of this clean burning natural gas as an energy source in conjunction with vast amounts stored in coal basins has led to the development of an industry that produces CBM. Reduction of carbon emissions to the atmosphere through carbon dioxide injection into coal has added another benefit to the production of CMB, as carbon dioxide may be used to desorb methane from coal seams. In order to successfully produce CBM, more information is needed on the migration of methane through fractures and cleats and on the replacement of methane by carbon dioxide in the coal seam. Laboratory experiments are underway to address these questions. Tests on core samples are being performed under in-situ pressure to gain insights on processes occurring in CBM extraction and carbon dioxide sequestration. A variety of techniques are being used including measuring physical properties, electrical resistivity, and saturation and phase location using x-ray computed tomography. Simultaneously measurements of seismic waves are performed including P- and S-wave velocities as well as amplitudes of body waves as a function of methane and carbon dioxide concentration in coal. The results can be used to design an experiment to monitor time-lapse changes and thus the production of gas from a coal seam during methane production.

  20. Variation of soil hydraulic properties with alpine grassland degradation in the eastern Tibetan Plateau

    Science.gov (United States)

    Pan, Tao; Hou, Shuai; Wu, Shaohong; Liu, Yujie; Liu, Yanhua; Zou, Xintong; Herzberger, Anna; Liu, Jianguo

    2017-05-01

    Ecosystems in alpine mountainous regions are vulnerable and easily disturbed by global environmental change. Alpine swamp meadow, a unique grassland type in the eastern Tibetan Plateau that provides important ecosystem services to the upstream and downstream regions of international rivers of Asia and other parts of the world, is undergoing severe degradation, which can dramatically alter soil hydraulic properties and water cycling processes. However, the effects of alpine swamp meadow degradation on soil hydraulic properties and the corresponding influencing mechanisms are still poorly understood. In this study, soil moisture content (SMC), field capacity (FC) and saturated hydraulic conductivity (Ks) together with several basic soil properties under lightly degraded (LD), moderately degraded (MD) and severely degraded (SD) alpine swamp meadow were investigated; the variations in SMC, FC and Ks with alpine swamp meadow degradation and their dominant influencing factors were analysed. The results showed that SMC and FC decreased consistently from LD to SD, while Ks decreased from LD to MD and then increased from MD to SD, following the order of LD > SD > MD. Significant differences in soil hydraulic properties between degradation degrees were found in the upper soil layers (0-20 cm), indicating that the influences of degradation were most pronounced in the topsoils. FC was positively correlated with capillary porosity, water-stable aggregates, soil organic carbon, and silt and clay content; Ks was positively correlated with non-capillary porosity (NCP). Relative to other soil properties, soil porosity is the dominant factor influencing FC and Ks. Capillary porosity explained 91.1 % of total variance in FC, and NCP explained 97.3 % of total variance in Ks. The combined effect of disappearing root activities and increasing sand content was responsible for the inconsistent patterns of NCP and Ks. Our findings suggest that alpine swamp meadow degradation would

  1. Soil hydraulic properties and REV study using X-ray microtomography and pore-scale modelling: saturated hydraulic conductivity

    Science.gov (United States)

    Gerke, Kirill; Khirevich, Siarhei; Sizonenko, Timofey; Karsanina, Marina; Umarova, Aminat; Korost, Dmitry; Matthai, Stephan; Mallants, Dirk

    2016-04-01

    To verify pore-scale modelling approach for determination of soil saturated hydraulic conductivity properties we scanned three cylindrical soil samples taken from A, Ah and B horizons using X-ray microtomography method. Resulting 3D soil images with resolutions of 15.25-20.96 μm were segmented into pores and solids and their maximum inscribed cube subvolumes were used as input data for three major pore-scale modelling methods to simulate saturated flow - lattice-Boltzmann method, finite-difference solution of the Stokes problem, and pore-network model. Provided that imaging resolution is high enough to capture the backbone of effective porosity and the main conducting pores all three methods resulted in simulated soil permeabilities close to experimental values for Ah and B samples. The resolution of A sample was not enough for an accurate modelling and we concluded that this soil requires multi-scale imaging to cover all relevant heterogeneities. We demonstrate that popular SWV method to choose segmentation threshold resulted in oversegmentation and order of magnitude higher permeability values. Careful manual thresholding combined with local segmentation algorithm provided much more accurate results. Detailed analysis of water retention curves showed that air-filled porosity at relevant pressure stages cannot be used for verification of the segmentation results. Representativity analysis by simulating flow in increasing soil volume up to 2.8 cm3 revealed no representative elementary volume (REV) within Ah sample and non-uniqueness of REV for B sample. The latter was explained by soil structure non-stationarity. We further speculate that structures soil horizons can exhibit no REV at all. We discuss numerous advantages of coupled imaging and pore-scale modelling approach and show how it can become a successor of the conventional soil coring method to parametrize large scale continuum models.

  2. River channel morphology and hydraulics properties due to introduction of plant basket hydraulic structures for river channel management

    Science.gov (United States)

    Kałuża, Tomasz; Radecki-Pawlik, Artur; Plesiński, Karol; Walczak, Natalia; Szoszkiewicz, Krzysztof; Radecki-Pawlik, Bartosz

    2016-04-01

    In the present time integrated water management is directly connected with management and direct works in river channels themselves which are taking into account morphological processes in rivers and improve flow conditions. Our work focused on the hydraulic and hydrodynamic consequences upon the introduction of the concept of the improvement of the hydromorphological conditions of the Flinta River in a given reach following river channel management concept. Based on a comprehensive study of the hydromorphological state of the river, four sections were selected where restoration measures can efficiently improve river habitat conditions in the river. For each section a set of technical and biological measures were proposed and implemented in practice. One of the proposed solutions was to construct plant basket hydraulic structures (PBHS) within the river channel, which are essentially plant barriers working as sediment traps, changing river channel morphology and are in line with concepts of Water Framework Directive. These relatively small structures work as crested weirs and unquestionably change the channel morphology. Along our work we show the results of three-year long (2013-2015) systematic measurements that provided information on the morphological consequences of introducing such structures into a river channel. Our main conclusions are as follows: 1. Plant basket hydraulic structures cause changes in hydrodynamic conditions and result in sediment accumulation and the formation of river backwaters upstream and downstream the obstacle; 2. The introduced plant basket hydraulic structures cause plant debris accumulation which influences the hydrodynamic flow conditions; 3. The installation of plant basket hydraulic structures on the river bed changes flow pattern as well as flow hydrodynamic conditions causing river braiding process; 4. The erosion rate below the plant basket hydraulic structures is due to the hydraulic work conditions of the PBHS and its

  3. Model-grid and hydraulic-property data arrays of the MULT package of the Central Valley Hydrologic Model

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the model-grid and hydraulic-property data arrays of the Multiplier (MULT) Package used in the transient hydrologic model of the Central...

  4. MODFLOW-2005 and PEST models used to simulate multiple-well aquifer tests and characterize hydraulic properties of volcanic rocks in Pahute Mesa, Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A three-dimensional, groundwater-flow model (MODFLOW-2005) was developed to estimate the hydraulic properties (e.g., transmissivity, hydraulic conductivity, specific...

  5. Linking hydraulic properties of fire-affected soils to infiltration and water repellency

    Science.gov (United States)

    Moody, J.A.; Kinner, D.A.; Ubeda, X.

    2009-01-01

    Heat from wildfires can produce a two-layer system composed of extremely dry soil covered by a layer of ash, which when subjected to rainfall, may produce extreme floods. To understand the soil physics controlling runoff for these initial conditions, we used a small, portable disk infiltrometer to measure two hydraulic properties: (1) near-saturated hydraulic conductivity, Kf and (2) sorptivity, S(??i), as a function of initial soil moisture content, ??i, ranging from extremely dry conditions (??i capillarity, and adsorption in a transitional domain corresponding to extremely dry soil, and moreover, it may explain the observed non-linear behavior, and the critical soil-moisture threshold of water repellent soils. Laboratory measurements of Kf and S(??i) are the first for ash and fire-affected soil, but additional measurements are needed of these hydraulic properties for in situ fire-affected soils. They provide insight into water repellency behavior and infiltration under extremely dry conditions. Most importantly, they indicate how existing rainfall-runoff models can be modified to accommodate a possible two-layer system in extremely dry conditions. These modified models can be used to predict floods from burned watersheds under these initial conditions.

  6. Modeling biofilm dynamics and hydraulic properties in variably saturated soils using a channel network model

    Science.gov (United States)

    Rosenzweig, Ravid; Furman, Alex; Dosoretz, Carlos; Shavit, Uri

    2014-07-01

    Biofilm effects on water flow in unsaturated environments have largely been ignored in the past. However, intensive engineered systems that involve elevated organic loads such as wastewater irrigation, effluent recharge, and bioremediation processes make understanding how biofilms affect flow highly important. In the current work, we present a channel-network model that incorporates water flow, substrate transport, and biofilm dynamics to simulate the alteration of soil hydraulic properties, namely water retention and conductivity. The change in hydraulic properties due to biofilm growth is not trivial and depends highly on the spatial distribution of the biofilm development. Our results indicate that the substrate mass transfer coefficient across the water-biofilm interface dominates the spatiotemporal distribution of biofilm. High mass transfer coefficients lead to uncontrolled biofilm growth close to the substrate source, resulting in preferential clogging of the soil. Low mass transfer coefficients, on the other hand, lead to a more uniform biofilm distribution. The first scenario leads to a dramatic reduction of the hydraulic conductivity with almost no change in water retention, whereas the second scenario has a smaller effect on conductivity but a larger influence on retention. The current modeling approach identifies key factors that still need to be studied and opens the way for simulation and optimization of processes involving significant biological activity in unsaturated soils.

  7. Estimating saturated hydraulic conductivity and air permeability from soil physical properties using state-space analysis

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe; Møldrup, Per; Nielsen, Don

    2003-01-01

    field were used. Multiple regression and ARIMA models yielded similar prediction accuracy, whereas state-space models generally gave significantly higher accuracy. State-space modeling suggested K-S at a given location could be predicted using nearby values of K-S, k(a100) and air-filled porosity......Estimates of soil hydraulic conductivity (K) and air permeability (k(a)) at given soil-water potentials are often used as reference points in constitutive models for K and k(a) as functions of moisture content and are, therefore, a prerequisite for predicting migration of water, air, and dissolved...... and gaseous chemicals in the vadose zone. In this study, three modeling approaches were used to identify the dependence of saturated hydraulic conductivity (K-S) and air permeability at -100 cm H2O soil-water potential (k(a100)) on soil physical properties in undisturbed soil: (i) Multiple regression, (ii...

  8. Effect of biocrust: study of mechanical and hydraulic properties and erodibility

    Science.gov (United States)

    Slavík, Martin; Bruthans, Jiří; Schweigstillová, Jana

    2016-04-01

    It is well-known that lichens and other organisms forming crust on soil or rock surface play important role in weathering but may also protect underlying material from fast erosion. So far, there have been only few measurements comparing mechanical or hydraulic properties of biocrust with its subsurface on locked sand and friable sandstones, so the overall effect of the biocrust is not well-understood. Objective of our study is to quantify the effect of the biocrust on mechanical and hydraulic properties of friable sandstone and locked sand of Cretaceous age in six different localities with varying aspect and inclination and age of exposure in sandpit Strelec (Czech Rep.). On the artificial exposures, biocrust developed within last 10-30 years. Beside measurements of mechanical and hydraulic properties, SEM and mercury intrusion porosimetry in crust and subsurface was performed. Drilling resistance technique was found an excellent method to distinguish the biocrust from its subsurface (~3 mm thick biocrust has up to 12 times higher drilling resistance than underlying material). Surface zone with the biocrust has 3 - 25 times higher tensile strength than the subsurface material (1 - 25 kPa). In comparison with the subsurface, the biocrust is considerably less erodible (based on water jet testing). Biocrust saturated hydraulic conductivity is 15 - 240 times lower than the subsurface (6*10 -5 - 1*10 -4 m/s) and its permeability for water vapor is 4 - 9 times lower than subsurface. Presence of the biocrust slows down capillary absorption of water 4 - 25 times. The biocrust is thus forming firm surface which protects underlying material from rain and flowing water erosion and which considerably modifies its hydraulic properties. Material with crust exposed to calcination, leaching by concentrated peroxide and experiments with zymoliase enzyme strongly indicate that major contribution to crust hardening is provided by organic matter. Based on DNA sequencing the crust is

  9. Effect of Corn Residue Biochar on the Hydraulic Properties of Sandy Loam Soil

    Directory of Open Access Journals (Sweden)

    Avanthi Deshani Igalavithana

    2017-02-01

    Full Text Available Biochar has an ability to alter the biological, chemical, and physical properties of soil due to its physicochemical properties such as surface area, porosity, nutrient retention ability, available nutrient contents, aromaticity, etc. The present study was designed to evaluate the impact of physical properties and application rate of biochar on the hydraulic properties of a sandy loam soil in the short term. Biochar was produced at 500 °C from dried corn residue (BC500. The BC500 was incorporated at the rates of 0, 2.5%, 5.0%, 7.5%, and 10% (w·w−1 into the sandy loam soil and filled up to a height of 4 cm, in cores having 5 cm diameter and height. Each treatment was performed in triplicate and equilibrated for 30 days. Then saturated hydraulic conductivity (Ksat, water holding capacity (WHC, and bulk density were determined in each sample after four days of saturation at room temperature in a water bath. The BC500 particle size distribution, pores, and surface functional groups were assessed. The Ksat exhibited a highly significant exponential reduction from 0% to 7.5% of BC500 application and approached an asymptote at 10% BC500. Bulk density showed a significant negative correlation to biochar application rate. The WHC and BC500 application rate illustrated a strong positive relationship. Biochar surface was free from hydrophobic functional groups. The addition of BC500 has a positive influence on soil hydraulic properties, primarily due to the increased soil porosity. The BC500 is composed of a microporous structure and hydrophilic surface that retain water in sandy textured soils. The application of BC500 would be a wise investment to maximize the water use efficiency in soils for agricultural production.

  10. A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves

    Science.gov (United States)

    Montzka, Carsten; Herbst, Michael; Weihermüller, Lutz; Verhoef, Anne; Vereecken, Harry

    2017-07-01

    Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC) and hydraulic conductivity (HCC) curves are typically derived from soil texture via pedotransfer functions (PTFs). Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller-Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem-van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional) climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based on the ROSETTA PTF

  11. A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves

    Directory of Open Access Journals (Sweden)

    C. Montzka

    2017-07-01

    Full Text Available Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC and hydraulic conductivity (HCC curves are typically derived from soil texture via pedotransfer functions (PTFs. Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller–Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem–van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based

  12. Hydraulic properties of a model dike from coupled Bayesian and multi-criteria hydrogeophysical inversion

    Science.gov (United States)

    Huisman, J. A.; Rings, J.; Vrugt, J. A.; Sorg, J.; Vereecken, H.

    2010-01-01

    SummaryCoupled hydrogeophysical inversion aims to improve the use of geophysical data for hydrological model parameterization. Several numerical studies have illustrated the feasibility and advantages of a coupled approach. However, there is still a lack of studies that apply the coupled inversion approach to actual field data. In this paper, we test the feasibility of coupled hydrogeophysical inversion for determining the hydraulic properties of a model dike using measurements of electrical resistance tomography (ERT). Our analysis uses a two-dimensional (2D) finite element hydrological model (HYDRUS-2D) coupled to a 2.5D finite element electrical resistivity code (CRMOD), and includes explicit recognition of parameter uncertainty by using a Bayesian and multiple criteria framework with the DREAM and AMALGAM population based search algorithms. To benchmark our inversion results, soil hydraulic properties determined from ERT data are compared with those separately obtained from detailed in situ soil water content measurements using Time Domain Reflectometry (TDR). Our most important results are as follows. (1) TDR and ERT data theoretically contain sufficient information to resolve most of the soil hydraulic properties, (2) the DREAM-derived posterior distributions of the hydraulic parameters are quite similar when estimated separately using TDR and ERT measurements for model calibration, (3) among all parameters, the saturated hydraulic conductivity of the dike material is best constrained, (4) the saturation exponent of the petrophysical model is well defined, and matches independently measured values, (5) measured ERT data sufficiently constrain model predictions of water table dynamics within the model dike. This finding demonstrates an innate ability of ERT data to provide accurate hydrogeophysical parameterizations for flooding events, which is of particular relevance to dike management, and (6) the AMALGAM-derived Pareto front demonstrates trade-off in the

  13. Tribological properties of hydraulic fluids modified by peat-based additives

    Science.gov (United States)

    Ionov, V. V.; Larionov, S. A.; Sarkisov, Ju S.; Kopanica, N. O.; Gorchkova, A. V.; Gorlenko, N. P.; Tzevtkov, N. A.; Ikonnikova, K. V.

    2017-02-01

    The paper presents physicochemical investigations of the structure and properties of a nano-modifier synthesized from peat, the local raw material subjected to pyrolysis in air-free conditions. This nano-modifying additive is a combination of various forms of nanocarbon and polar and non-polar adsorbing materials such as silica (SiO2), calcium carbonate (CaCO3) and carbon (C). Different nanocarbon forms (nanotubes, fullerenes, nanodiamonds, nanofiber, nanodispersed carbon) used in different proportions with micro and macro peat components give multifunctional properties to the synthesized nano-modifier and the ability to positively change tribological properties of hydraulic fluids and oil lubricants. Test results of type TMT-600 show that its different percentage is required to modify tribological properties of the steel tribocouple under different loading conditions. At 0.5 wt.% content of this nano-modifier, stabilization of the friction ratio and an increase of seizure load are observed.

  14. Characterization of hydraulic fractures and reservoir properties of shale using natural tracers

    Science.gov (United States)

    Heath, J. E.; Gardner, P.; Kuhlman, K. L.; Malama, B.

    2013-12-01

    Hydraulic fracturing plays a major role in the economic production of hydrocarbon from shale. Current fracture characterization techniques are limited in diagnosing the transport properties of the fractures on the near wellbore scale to that of the entire stimulated reservoir volume. Microseismic reveals information on fracture geometries, but not transport properties. Production analysis (e.g., rate transient analysis using produced fluids) estimates fracture and reservoir flow characteristics, but often relies on simplified models in terms of fracture geometries and fluid storage and transport. We present the approach and potential benefits of incorporating natural tracers with production data analysis for fracture and reservoir characterization. Hydraulic fracturing releases omnipresent natural tracers that accumulate in low permeability rocks over geologic time (e.g., radiogenic 4He and 40Ar). Key reservoir characteristics govern the tracer release, which include: the number, connectivity, and geometry of fractures; the distribution of fracture-surface-area to matrix-block-volume; and the nature of hydrocarbon phases within the reservoir (e.g., methane dissolved in groundwater or present as a separate gas phase). We explore natural tracer systematics using numerical techniques under relevant shale-reservoir conditions. We evaluate the impact on natural tracer transport due to a variety of conceptual models of reservoir-transport properties and boundary conditions. Favorable attributes for analysis of natural tracers include the following: tracer concentrations start with a well-defined initial condition (i.e., equilibrium between matrix and any natural fractures); there is a large suite of tracers that cover a range of at least 7x in diffusion coefficients; and diffusive mass-transfer out of the matrix into hydraulic fractures will cause elemental and isotopic fractionation. Sandia National Laboratories is a multi-program laboratory managed and operated by

  15. Non-linear hydraulic properties of woodchips necessary to design denitrification beds

    Science.gov (United States)

    Ghane, Ehsan; Feyereisen, Gary W.; Rosen, Carl J.

    2016-11-01

    Denitrification beds are being used to reduce the transport of water-soluble nitrate via subsurface drainage systems to surface water. Only recently has the non-linearity of water flow through woodchips been ascertained. To successfully design and model denitrification beds with optimum nitrate removal, a better understanding of flow in denitrification beds is needed. The main objectives of this study were to characterize the hydraulic properties of old degraded woodchips and provide a better understanding of the factors affecting flow. To achieve this goal, we conducted constant-head column experiments using old woodchips that were excavated from a four-year old denitrification bed near Willmar, Minnesota, USA. For Izbash's equation, the non-Darcy exponent (n) ranged from 0.76 to 0.87 that indicates post-linear regime, and the permeability coefficient (M10) at 10°C ranged from 0.9 to 2.6 cm s-1. For Forchheimer's equation, the intrinsic permeability of 5.6 × 10-5 cm2 and ω constant of 0.40 (at drainable porosity of 0.41) closely resembled the in-situ properties found in a previous study. Forchheimer's equation was better than that of Izbash's for describing water flow through old woodchips, and the coefficients of the former provided stronger correlations with drainable porosity. The strong correlation between intrinsic permeability and drainable porosity showed that woodchip compaction is an important factor affecting water flow through woodchips. Furthermore, we demonstrated the importance of temperature effects on woodchip hydraulics. In conclusion, the hydraulic properties of old woodchips should be characterized using a non-Darcy equation to help design efficient systems with optimum nitrate removal.

  16. Fractal And Multi-fractal Analysis Of The Hydraulic Property Variations Of Karst Aquifers

    Science.gov (United States)

    Majone, B.; Bellin, A.; Borsato, A.

    Karst aquifers are very heterogeneous systems with hydraulic property variations acting at several continuous and discrete scales, as a result of the fact that macro- structural elements, such as faults and karst channels, and fractures are intertwined in a complex, and largely unknown, manner. Many experimental studies on karst springs showed that the recession limb of the typical storm hydrograph can be divided into several regions with different decreasing rate, suggesting that the discharge is com- posed of contributions experiencing different travel times. Despite the importance of karst aquifers as a source of fresh water for most Mediterranean countries fostered the attention of scientists and practitioners, the mechanisms controlling runoff production in such a complex subsurface environment need to be further explored. A detailed sur- vey, lasting for one year and conducted by the Museo Tridentino di Scienze Naturali of Trento, represents a unique opportunity to analyze the imprint of hydraulic prop- erty variations on the hydrological signal recorded at the spring of Prese Val, located in the Dolomiti group near Trento. Data include water discharge (Q), temperature (T) and electric conductivity of water (E). Analysis of the data revealed that the power spectrum of E scales as 1/f, with slightly, but significantly, smaller than 1. The scaling nature of the E-signal has been confirmed by rescaled range analysis of the time series. Since the electric conductivity is proportional to the concentration of ions in the spring water, which increases with the residence time, one may conclude that the fractal structure of the E signal is the consequence of a similar structure in the hydraulic property variations. This finding confirms previous results of Kirchner et al. (2000), who reported a similar behavior for chloride concentration in the streamflow of three small Welsh catchments. A more detailed analysis revealed that E and T are both multifractal signals

  17. Correlating laboratory observations of fracture mechanical properties to hydraulically-induced microseismicity in geothermal reservoirs.

    Energy Technology Data Exchange (ETDEWEB)

    Stephen L. Karner, Ph.D

    2006-02-01

    To date, microseismicity has provided an invaluable tool for delineating the fracture network produced by hydraulic stimulation of geothermal reservoirs. While the locations of microseismic events are of fundamental importance, there is a wealth of information that can be gleaned from the induced seismicity (e.g. fault plane solutions, seismic moment tensors, source characteristics). Closer scrutiny of the spatial and temporal evolution of seismic moment tensors can shed light on systematic characteristics of fractures in the geothermal reservoir. When related to observations from laboratory experiments, these systematic trends can be interpreted in terms of mechanical processes that most likely operate in the fracture network. This paper reports on mechanical properties that can be inferred from observations of microseismicity in geothermal systems. These properties lead to interpretations about fracture initiation, seismicity induced after hydraulic shut-in, spatial evolution of linked fractures, and temporal evolution of fracture strength. The correlations highlight the fact that a combination of temperature, stressing rate, time, and fluid-rock interactions can alter the mechanical and fluid transport properties of fractures in geothermal systems.

  18. Correlating laboratory observations of fracture mechanical properties to hydraulically-induced microseismicity in geothermal reservoirs.

    Energy Technology Data Exchange (ETDEWEB)

    Stephen L. Karner, Ph.D

    2006-02-01

    To date, microseismicity has provided an invaluable tool for delineating the fracture network produced by hydraulic stimulation of geothermal reservoirs. While the locations of microseismic events are of fundamental importance, there is a wealth of information that can be gleaned from the induced seismicity (e.g. fault plane solutions, seismic moment tensors, source characteristics). Closer scrutiny of the spatial and temporal evolution of seismic moment tensors can shed light on systematic characteristics of fractures in the geothermal reservoir. When related to observations from laboratory experiments, these systematic trends can be interpreted in terms of mechanical processes that most likely operate in the fracture network. This paper reports on mechanical properties that can be inferred from observations of microseismicity in geothermal systems. These properties lead to interpretations about fracture initiation, seismicity induced after hydraulic shut-in, spatial evolution of linked fractures, and temporal evolution of fracture strength. The correlations highlight the fact that a combination of temperature, stressing rate, time, and fluid-rock interactions can alter the mechanical and fluid transport properties of fractures in geothermal systems.

  19. Isotope supported recession analysis to assess hydraulic properties of karst aquifers across Austria

    Science.gov (United States)

    Hartmann, Andreas; Brielmann, Heike

    2017-04-01

    Austria obtains almost half of its drinking water from karst aquifers. To manage karst aquifers in a sustainable way, reliable estimations of available karst water resources, their renewal rates and their hydrodynamics are of utmost importance. Hydrological models, which are a common tool for water resources assessment and planning, are difficult to apply at karst aquifers as their strong heterogeneity of hydraulic properties requires detailed measurements that are mostly not available. Here, we present the preliminary results of the first attempt to assess karst aquifer hydraulic properties at a national scale. Our approach uses karst specific recession analysis that is supported by water isotope measurements. We show for a subset of test sites that isotopic information results in a more realistic description of recession properties. Through this combined approach, we can approximate the degree of karstification by comparing the recession of the slow and diffuse parts of the aquifer and the recession of the fast and concentrated parts of the karst aquifers. In the future, we will use a much larger set of water isotope measurements (>7,000 water samples) at a large number of karst springs across Austria and apply landscape descriptors, such as river network density, to upscale the approximated degree of karstification from the karst springs to all karst areas in Austria.

  20. Measurement of hydraulic conductivity and water retention curves for different methods and prediction of soil physical properties by kriging

    OpenAIRE

    Eurileny Lucas de Almeida

    2013-01-01

    Knowledge of the physical and hydraulic properties of the soil and its spatial dependence is important because it allows you to perform the zoning of the area in plots that receive differentiated management. This work was divided into three chapters whose general objective is to measure the hydraulic conductivity and water retention curve in soil by different methods and by using the Kriging, draw maps of soil physical attributes of the Irrigation Perimeter Baixo AcaraÃ. To obtain the water r...

  1. Effect of Soil Washing for Lead and Zinc Removal on Soil Hydraulic Properties

    Science.gov (United States)

    Kammerer, Gerhard; Zupanc, Vesna; Gluhar, Simon; Lestan, Domen

    2017-04-01

    Soil washing as a metal pollution remediation process, especially part with intensive mixing of the soil slurry and soil compression after de-watering, significantly deteriorates physical properties of soil compared to those of non-remediated soil. Furthermore, changed physical characteristics of remediated soil influence interaction of plant roots with soil system and affect soil water regime. Remediated soils showed significant differences to their original state in water retention properties and changed structure due to the influence of artificial structure created during remediation process. Disturbed and undisturbed soil samples of remediated and original soils were analyzed. We evaluated soil hydraulic properties as a possible constraint for re-establishing soil structure and soil fertility after the remediation procedure.

  2. Measurement of unsaturated hydraulic properties and evaluation of property-transfer models for deep sedimentary interbeds, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Perkins, Kimberlie; Johnson, Brittany D.; Mirus, Benjamin B.

    2014-01-01

    Operations at the Idaho National Laboratory (INL) have the potential to contaminate the underlying Eastern Snake River Plain (ESRP) aquifer. Methods to quantitatively characterize unsaturated flow and recharge to the ESRP aquifer are needed to inform water-resources management decisions at INL. In particular, hydraulic properties are needed to parameterize distributed hydrologic models of unsaturated flow and transport at INL, but these properties are often difficult and costly to obtain for large areas. The unsaturated zone overlying the ESRP aquifer consists of alternating sequences of thick fractured volcanic rocks that can rapidly transmit water flow and thinner sedimentary interbeds that transmit water much more slowly. Consequently, the sedimentary interbeds are of considerable interest because they primarily restrict the vertical movement of water through the unsaturated zone. Previous efforts by the U.S. Geological Survey (USGS) have included extensive laboratory characterization of the sedimentary interbeds and regression analyses to develop property-transfer models, which relate readily available physical properties of the sedimentary interbeds (bulk density, median particle diameter, and uniformity coefficient) to water retention and unsaturated hydraulic conductivity curves.

  3. Biologically-initiated rock crust on sandstone: Mechanical and hydraulic properties and resistance to erosion

    Science.gov (United States)

    Slavík, Martin; Bruthans, Jiří; Filippi, Michal; Schweigstillová, Jana; Falteisek, Lukáš; Řihošek, Jaroslav

    2017-02-01

    Biocolonization on sandstone surfaces is known to play an important role in rock disintegration, yet it sometimes also aids in the protection of the underlying materials from rapid erosion. There have been few studies comparing the mechanical and/or hydraulic properties of the BIRC (Biologically-Initiated Rock Crust) with its subsurface. As a result, the overall effects of the BIRC are not yet well understood. The objective of the present study was to briefly characterize the BIRC from both the mineralogical and biological points of view, and especially to quantify the effect of the BIRC upon the mechanical and hydraulic properties of friable sandstone. The mineralogical investigation of a well-developed BIRC showed that its surface is enriched in kaolinite and clay- to silt-sized quartz particles. Total organic carbon increases with the age of the BIRC. Based on DNA sequencing and microscopy, the BIRC is formed by various fungi, including components of lichens and green algae. Using the method of drilling resistance, by measuring tensile strength, and based on water jet testing, it was determined that a BIRC is up to 12 times less erodible and has 3-35 times higher tensile strength than the subsurface friable sandstone. Saturated hydraulic conductivity of the studied BIRC is 15-300 times lower than the subsurface, and was measured to also decrease in capillary water absorption (2-33 times). Water-vapor diffusion is not significantly influenced by the presence of the BIRC. The BIRC thus forms a hardened surface which protects the underlying material from rain and flowing water erosion, and considerably modifies the sandstone's hydraulic properties. Exposing the material to calcination (550 °C), and experiments with the enzyme zymolyase indicated that a major contribution to the surface hardening is provided by organic matter. In firmer sandstones, the BIRC may still considerably decrease the rate of weathering, as it is capable of providing cohesion to strongly

  4. Synthesis of soil-hydraulic properties and infiltration timescales in wildfire-affected soils

    Science.gov (United States)

    Ebel, Brian A.; Moody, John A.

    2017-01-01

    We collected soil-hydraulic property data from the literature for wildfire-affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field-saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil-structural changes, organic matter impacts, quantitative water repellency trends, and soil-water content along with soil-hydraulic properties could drive the

  5. Alterations of hydraulic soil properties influenced by land-use changes and agricultural management systems

    Science.gov (United States)

    Weninger, Thomas; Kreiselmeier, Janis; Chandrasekhar, Parvathy; Jülich, Stefan; Schwärzel, Kai; Schwen, Andreas

    2016-04-01

    Estimation and modeling of soil water movement and the hydrologic balance of soils requires sound knowledge about hydraulic soil properties (HSP). The soil water characteristics, the hydraulic conductivity function and the pore size distribution (PSD) are commonly used instruments for the mathematical representation of HSP. Recent research highlighted the temporal variability of these functions caused by meteorological or land-use influences. State of the art modeling software for the continuous simulation of soil water movement uses a stationary approach for the HSP which means that their time dependent alterations and the subsequent effects on soil water balance is not considered. Mathematical approaches to describe the evolution of PSD are nevertheless known, but there is a lack of sound data basis for parameter estimation. Based on extensive field and laboratory measurements at 5 locations along a climatic gradient across Austria and Germany, this study will quantify short-term changes in HSP, detect driving forces and introduce a method to predict the effects of soil and land management actions on the soil water balance. Amongst several soil properties, field-saturated and unsaturated hydraulic conductivities will be determined using a hood infiltration experiments in the field as well as by evaporation and dewpoint potentiometer method in the lab. All measurements will be carried out multiple times over a span of 2 years which will allow a detailed monitoring of changes in HSP. Experimental sites where we expect significant inter-seasonal changes will be equipped with sensors for soil moisture and matric potential. The choice of experimental field sites follows the intention to involve especially the effects of tillage operations, different cultivation strategies, microclimatically effective structures and land-use changes. The international project enables the coverage of a broad range of soil types as well as climate conditions and hence will have broad

  6. Modeling Electronic Properties of Complex Oxides

    Science.gov (United States)

    Krishnaswamy, Karthik

    Complex oxides are a class of materials that have recently emerged as potential candidates for electronic applications owing to their interesting electronic properties. The goal of this dissertation is to develop a fundamental understanding of these electronic properties using a combination of first-principles approaches based on density functional theory (DFT), and Schr odinger-Poisson (SP) simulation (Abstract shortened by ProQuest.

  7. Effect of rainfall and tillage direction on the evolution of surface crusts, soil hydraulic properties and runoff generation for a sandy loam soil

    Science.gov (United States)

    Ndiaye, Babacar; Esteves, Michel; Vandervaere, Jean-Pierre; Lapetite, Jean-Marc; Vauclin, Michel

    2005-06-01

    The study was aimed at evaluating the effect of rainfall and tillage-induced soil surface characteristics on infiltration and runoff on a 2.8 ha catchment located in the central region of Senegal. This was done by simulating 30 min rain storms applied at a constant rate of about 70 mm h -1, on 10 runoff micro-plots of 1 m 2, five being freshly harrowed perpendicularly to the slope and five along the slope (1%) of the catchment. Runoff was automatically recorded at the outlet of each plot. Hydraulic properties such as capillary sorptivity and hydraulic conductivity of the sandy loam soil close to saturation were determined by running 48 infiltration tests with a tension disc infiltrometer. That allowed the calculation of a mean characteristic pore size hydraulically active and a time to ponding. Superficial water storage capacity was estimated using data collected with an electronic relief meter. Because the soil was subject to surface crusting, crust-types as well as their spatial distribution within micro-plots and their evolution with time were identified and monitored by taking photographs at different times after tillage. The results showed that the surface crust-types as well as their tillage dependent dynamics greatly explain the decrease of hydraulic conductivity and sorptivity as the cumulative rainfall since tillage increases. The exponential decaying rates were found to be significantly greater for the soil harrowed along the slope (where the runoff crust-type covers more than 60% of the surface after 140 mm of rain) than across to the slope (where crusts are mainly of structural (60%) and erosion (40%) types). That makes ponding time smaller and runoff more important. Also it was shown that soil hydraulic properties after about 160 mm of rain were close to those of untilled plot not submitted to any rain. That indicates that the effects of tillage are short lived.

  8. The effect of rock fragments on the hydraulic properties of soils

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, R.W.; Bodvarsson, G.S.

    1995-04-01

    Many soils contain rock fragments the sizes of which are much larger than the average pore size of the sieved soil. Due to the fact that these fragments are often fairly large in relation to the soil testing apparatus, it is common to remove them before performing hydrologic tests on the soil. The question then arises as to whether or not there is a simple way to correct the laboratory-measured values to account for the fragments, so as to arrive at property values that can apply to the soil in situ. This question has arisen in the surface infiltration studies that are part of the site characterization program at Yucca Mountain, where accurate values of the hydraulic conductivities of near-surface soils are needed in order to accurately estimate infiltration rates. Although this problem has been recognized for some time, and numerous review articles have been written there are as yet no proven models to account for the effect of rock fragments on hydraulic conductivity and water retention. In this report we will develop some simple physically-based models to account for the effects of rock fragments on gross hydrological properties, and apply the resulting equations to experimental data taken from the literature. These models are intended for application to data that is currently being collected by scientists from the USGS on near-surface soils from Yucca Mountain.

  9. Laboratory evaporation experiments in undisturbed peat columns for determining peat soil hydraulic properties

    Science.gov (United States)

    Dettmann, U.; Frahm, E.; Bechtold, M.

    2013-12-01

    Knowledge about hydraulic properties of organic soils is crucial for the interpretation of the hydrological situation in peatlands. This in turn is the basis for designing optimal rewetting strategies, for assessing the current and future climatic water balance and for quantifying greenhouse gas emissions of CO2, CH4 and N2O, which are strongly controlled by the depth of the peat water table. In contrast to mineral soils, the hydraulic properties of organic soils differ in several aspects. Due to the high amount of organic components, strong heterogeneity, and shrinkage and swelling of peat, accompanied by changing soil volume and bulk density, the applicability of standard hydraulic functions developed for mineral soils for describing peat soil moisture dynamics is often questioned. Hence, the objective of this study was to investigate the applicability of the commonly applied van Genuchten-Mualem (VGM) parameterization and to evaluate model errors for various peat types. Laboratory column experiments with undisturbed peat soils (diameter: 30 cm, height: 20 cm) from 5 different peatlands in Germany were conducted. In numerical simulations using HYDRUS-1D the experimental data were used for an inverse estimation of the soil hydraulic parameters. Using the VGM parameterization, the model errors between observed and measured pressure heads were quantified with a root mean square error (RMSE) of 20 - 65 cm. The RMSE increased for soils with higher organic carbon content and higher porosity. Optimizing the VGM 'tortuosity' parameter (τ) instead of fixing it to its default of 0.5 strongly reduced the RMSE, especially for the soils that showed high pressure head gradients during the experiment. Due to the fact, that very negative pressure heads in peatlands occur rarely, we reduced the range of pressured heads in the inversion to a 'field-relevant' range from 0 to -200 cm which strongly reduced the RMSE to 6 - 12 cm and makes the VGM parameterization applicable for all

  10. Soil Hydraulic Properties Influenced by Corn Stover Removal from No-Till Corn in Ohio.

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Canqui, H.; Lal, Rattan; Post, W. M.; Izaurralde, R Cesar C.; Shipitalo, M. J.

    2007-01-01

    Corn (Zea mays L.) stover removal for biofuel production and other uses may alter soil hydraulic properties, but site-specific information needed to determine the threshold levels of removal for the U.S. Corn Belt region is limited. We quantified impacts of systematic removal of corn stover on soil hydraulic parameters after one year of stover management under no-till (NT) systems in three soils in Ohio including Rayne silt loam (fine-loamy, mixed, mesic Typic Hapludult) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston. Interrelationships among soil properties and saturated hydraulic conductivity (Ksat) predictions were also studied. Earthworm middens, Ksat, bulk density (ρb), soil-water retention (SWR), pore-size distribution, and air permeability (ka) were determined for six stover treatments including 0 (T0), 25 (T25), 50 (T50), 75 (T75), 100 (T100), and 200 (T200) % of corn stover corresponding to 0, 1.25, 2.50, 3.75, 5.00, and 10.00 Mg ha-1 of stover, respectively. Stover removal reduced the number of middens, Ksat, SWR, and ka at all sites (P<0.01). Complete stover removal reduced earthworm middens by 20-fold across sites, decreased geometric mean Ksat from 6.3 to 0.1 mm h-1 at Coshocton, 3.2 to 0.3 mm h-1 at Hoytville, and 5.8 to 0.6 mm h-1 at Charleston, and increased ρb in the 0- to 10-cm depth by about 15% relative to double stover plots. The SWR for T100 was 1.3 times higher than that for T0 at 0 to -6 kPa. The log ka for T200, T100, and T75 significantly exceeded that under T50, T25, and T0 at Coshocton and Charleston. Measured parameters were strongly correlated, and ka was a potential Ksat predictor. Stover harvesting at rates above 1.25 Mg ha-1 affects soil hydraulic properties and earthworm activity, but further monitoring is needed to ascertain the threshold levels of stover removal.Corn (Zea mays L.) stover removal for

  11. Relation between hydraulic properties and plant coverage of the closed-landfill soils in Piacenza (Po Valley, Italy)

    Science.gov (United States)

    Cassinari, C.; Manfredi, P.; Giupponi, L.; Trevisan, M.; Piccini, C.

    2015-02-01

    In this paper the results of a study of soil hydraulic properties and plant coverage of a landfill located in Piacenza (Po Valley, Italy) are presented, together with the attempt to put the hydraulic properties in relation with plant coverage. The measured soil water retention curve was first compared with the output of some pedotransfer functions taken from the literature and then with the output of the same pedotransfer functions applied to a reference soil. The landfill plant coverage was also studied. The relation between soil hydraulic properties and plant coverage showed that the landfill soils have a low water content available for plants and this fact, together with their lack of depth and compacted structure, justifies the presence of a nitrophilous, disturbed-soil vegetation type, dominated by ephemeral annual species (therophytes).

  12. Relationship between hydraulic properties and plant coverage of the closed-landfill soils in Piacenza (Po Valley, Italy)

    Science.gov (United States)

    Cassinari, C.; Manfredi, P.; Giupponi, L.; Trevisan, M.; Piccini, C.

    2015-07-01

    In this paper the results of a study of soil hydraulic properties and plant coverage of a landfill located in Piacenza (Po Valley, Italy) are presented, together with the attempt to relate the hydraulic properties in relation with plant coverage. The measured soil water retention curve was first compared with the output of pedotransfer functions taken from the literature and then compared with the output of the same pedotransfer functions applied to a reference soil. The landfill plant coverage was also studied. The relationship between soil hydraulic properties and plant coverage showed that the landfill soils have a low water content available for plants. The soils' low water content, together with a lack of depth and a compacted structure, justifies the presence of a nitrophilous, disturbed-soil vegetation type, dominated by ephemeral annual species (therophytes).

  13. A Preliminary Description of the Moisture Moment Method to Describe Unsaturated Soil Hydraulic Properties

    Science.gov (United States)

    Tyner, J. S.; Cihan, A.; Lee, J.; Gentry, R. W.

    2007-12-01

    We will present a new experimental procedure to elicit unsaturated soil hydraulic properties from a bench-scale test. A slightly wetted horizontal soil column is hung from two load cells and water is slowly injected into one end. A data logger records the cumulative change of force acting on each load cell due to redistribution of water. A tensiometer present at the inlet measures soil tension throughout the test. Unlike previous horizontal infiltration tests, the proposed technique does not necessitate maintaining a constant water content at the inlet/outlet of the soil column (i.e. no Boltzmann transformation). By analyzing the change in forces on the two load cells, one can describe water retention curve and unsaturated hydraulic conductivity curve. In the future, we plan to test the procedure on a range of soil textures from sand to clay. We will validate our water retention curve predictions by measuring the actual water retention within the column using a computer controlled gamma-ray attenuation system. The new method requires a few hours to more than a day.

  14. Modelling long term biodenitrification processes from column experiments: Insight in how feeding strategy affect hydraulic properties

    Science.gov (United States)

    Rodríguez-Escales, Paula; Folch, Albert; van Breukelen, Boris; Vidal-Gavilan, Georgina; Sanchez-Vila, Xavier

    2015-04-01

    We developed a reactive transport model that reproduced a 342 days long laboratory column experiment of biodenitrification processes with different injection strategies in terms of frequency (daily, weekly) and C:N ratio. Furthermore, we evaluated changes in hydraulic properties as result of biodenitrification. It was found that biodenitrification promoted the transition from normal to anomalous (non-Fickian) transport due to the increase of heterogeneity in hydraulic parameters. Comparing the breakthrough curves from two conservative bromide tracer tests performed at the beginning and at the end of the experiment, two significant features were observed: first, an increase in dispersivity, and second, a transition from a curve that can be modeled with an advection-dispersion equation to a different one that can be modeled using a dual domain mass transfer model. This behavior is associated to the presence of a diffusive layer promoted by biofilm growth during the last 100 days of the experiment. Regarding the injection conditions, it was found that besides other parameters described in the literature (nutrient loading, flow rate, and grain size), injection frequency significantly modifies dispersivity, being largest for continuous injection. Moreover, reducing the C:N ratio for optimizing costs was possible after a substantial biomass developed. A careful design of injection conditions and substrate rates can then be devised in specific cases to promote biodenitrification.

  15. Combining Hydraulic and Phosphate Bonds to Improve Properties of Alumina-spinel Low Cement Castables

    Institute of Scientific and Technical Information of China (English)

    M.Paghandeh; A.Monshi; R.Emadi

    2009-01-01

    A basic alumina-spinel low cement castables (castables A) and another castables (castables B) with 5% addition of sodium hexametaphosphate were prepared and heat treated at 110 ℃,900 ℃ and 1 400 ℃.It is shown that after heat treating at 110 ℃,cold crushing strength (CCS) of castables B is more than 3 times of castables A and apparent porosity (AP) is less than half of castables A.The presence of 800-1 000 ℃ that hydraulic bond reverses to dehydrate condition and castables A becomes weak with high porosity,castables B shows a CCS more than 4 times of castables A.Needles of magnesium phosphate are responsible for reinforcing microstructure of castables B at 900 ℃.After firing at 1 400 ℃,castables B shows extra ordinary CCS of mare than 100 MPa.Reasons were discussed with X-ray diffraction and scanning electron microscopy.

  16. Changes in soil hydraulic properties caused by construction of a simulated waste trench at the Idaho National Engineering Laboratory, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Shakofsky, S.

    1995-03-01

    In order to assess the effect of filled waste disposal trenches on transport-governing soil properties, comparisons were made between profiles of undisturbed soil and disturbed soil in a simulated waste trench. The changes in soil properties induced by the construction of a simulated waste trench were measured near the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL) in the semiarid southeast region of Idaho. The soil samples were collected, using a hydraulically-driven sampler to minimize sample disruption, from both a simulated waste trench and an undisturbed area nearby. Results show that the undisturbed profile has distinct layers whose properties differ significantly, whereas the soil profile in the simulated waste trench is, by comparison, homogeneous. Porosity was increased in the disturbed cores, and, correspondingly, saturated hydraulic conductivities were on average three times higher. With higher soil-moisture contents (greater than 0.32), unsaturated hydraulic conductivities for the undisturbed cores were typically greater than those for the disturbed cores. With lower moisture contents, most of the disturbed cores had greater hydraulic conductivities. The observed differences in hydraulic conductivities are interpreted and discussed as changes in the soil pore geometry.

  17. Assessing Tillage Effects on Soil Hydraulic Properties via Inverse Parameter Estimation using Tension Infiltrometry

    Science.gov (United States)

    Schwen, Andreas; Bodner, Gernot; Loiskandl, Willibald

    2010-05-01

    Hydraulic properties are key factors controlling water and solute movement in soils. While several recent studies have focused on the assessment of the spatial variability of hydraulic properties, the temporal dynamics are commonly not taken into account, primarily because its measurement is costly and time-consuming. However, there is extensive empirical evidence that these properties are subject to temporal changes, particularly in the near-saturated range where soil structure strongly influences water flow. One main source of temporal variability is soil tillage. It can improve macroporosity by loosening the soil and thereby changing the pore-size distribution. Since these modifications are quite unstable over time, the pore space partially collapses after tillage. This effect should be largest for conventional tillage (CT), where the soil is ploughed after harvest every year. Assessing the effect of different tillage treatments on the temporal variability of hydraulic properties requires adequate measurement techniques. Tension infiltrometry has become a popular and convenient method providing not only the hydraulic conductivity function but also the soil rentention properties. The inverse estimation of parameters from infiltration measurements remains challenging, despite some progress since the first approach of Šimůnek et al. (1998). Measured data like the cumulative infiltration, the initial and final volumetric water content, as well as independently measured retention data from soil core analysis with laboratory methods, have to be considered to find an optimum solution describing the soil's pore space. In the present study we analysed tension infiltration measurements obtained several times between August 2008 and December 2009 on an arable field in the Moravian Basin, Lower Austria. The tillage treatments were conventional tillage including ploughing (CT), reduced tillage with chisel only (RT), and no-tillage treatment using a direct seeding

  18. Daytime and nighttime wind differentially affects hydraulic properties and thigmomorphogenic response of poplar saplings.

    Science.gov (United States)

    Huang, Ping; Wan, Xianchong; Lieffers, Victor J

    2016-05-01

    This study tested how wind in daytime and nighttime affects hydraulic properties and thigmomorphogenic response of poplar saplings. It shows that wind in daytime interrupted water balance of poplar plants by aggravating cavitation in the stem xylem under high xylem tension in the daytime, reducing water potential in midday and hence reducing gas exchange, including stomatal conductance and CO2 assimilation. The wind blowing in daytime significantly reduced plant growth, including height, diameter, leaf size, leaf area, root and whole biomass, whereas wind blowing in nighttime only caused a reduction in radial and height growth at the early stage compared with the control but decreased height:diameter ratios. In summary, the interaction between wind loading and xylem tension exerted a negative impact on water balance, gas exchanges and growth of poplar plants, and wind in nighttime caused only a small thigmomorphogenic response.

  19. Linking hydraulic properties of fire-affected soils to infiltration and water repellency

    Science.gov (United States)

    Moody, John A.; David Kinner,; Xavier Úbeda,

    2009-01-01

    Heat from wildfires can produce a two-layer system composed of extremely dry soil covered by a layer of ash, which when subjected to rainfall, may produce extreme floods. To understand the soil physics controlling runoff for these initial conditions, we used a small, portable disk infiltrometer to measure two hydraulic properties: (1) near-saturated hydraulic conductivity, Kf and (2) sorptivity, S(θi), as a function of initial soil moisture content, θi, ranging from extremely dry conditions (θi water repellency that influences Kf and S(θi).Values of Kf ranged from 4.5 × 10−3 to 53 × 10−3 cm s−1 for ash; from 0.93 × 10−3 to 130 × 10−3 cm s−1 for reference soils; and from 0.86 × 10−3 to 3.0 × 10−3 cm s−1, for soil unaffected by fire, which had the lowest values of Kf. Measurements indicated that S(θi) could be represented by an empirical non-linear function of θi with a sorptivity maximum of 0.18–0.20 cm s−0.5, between 0.03 and 0.08 cm3 cm−3. This functional form differs from the monotonically decreasing non-linear functions often used to represent S(θi) for rainfall–runoff modeling. The sorptivity maximum may represent the combined effects of gravity, capillarity, and adsorption in a transitional domain corresponding to extremely dry soil, and moreover, it may explain the observed non-linear behavior, and the critical soil-moisture threshold of water repellent soils. Laboratory measurements of Kf and S(θi) are the first for ash and fire-affected soil, but additional measurements are needed of these hydraulic properties for in situ fire-affected soils. They provide insight into water repellency behavior and infiltration under extremely dry conditions. Most importantly, they indicate how existing rainfall–runoff models can be modified to accommodate a possible two-layer system in extremely dry conditions. These modified models can be used to predict floods from burned watersheds

  20. Use of field and laboratory methods for estimating unsaturated hydraulic properties under different land-use

    Directory of Open Access Journals (Sweden)

    S. Siltecho

    2014-06-01

    Full Text Available Adequate water management is required to improve the efficiency and sustainability of agricultural systems when water is scarce or over-abundant, especially in the case of land-use changes. In order to quantify, to predict and eventually to control water and solute transport into soil, soil hydraulic properties need to be determined precisely. As their determination is often tedious, expensive and time-consuming, many alternative field and laboratory techniques are now available. The aim of this study was to determine unsaturated soil hydraulic properties under different land-uses and to compare the results obtained with different measurement methods (Beerkan, Disk infiltrometer, Evaporation, pedotransfer function. The study has been realised on a tropical sandy soil in a mini watershed in NE Thailand. The experimental plots were positioned in a rubber tree plantation in different positions along a slope, in ruzi grass pasture and in an original forest site. Non parametric statistics demonstrated that van Genuchten unsaturated soil parameters (Ks, α and n, were significantly different according to the measurement methods employed whereas location was not a significant discriminating factor when all methods were considered together. However within each method, parameters n and α were statistically different according to the sites. These parameters were used with Hydrus1D for a one year simulation and computed pressure head did not show noticeable differences for the various sets of parameters, highlighting the fact that for modelling, any of these measurement method could be employed. The choice of the measurement method would therefore be motivated by the simplicity, robustness and its low cost.

  1. Use of field and laboratory methods for estimating unsaturated hydraulic properties under different land uses

    Science.gov (United States)

    Siltecho, S.; Hammecker, C.; Sriboonlue, V.; Clermont-Dauphin, C.; Trelo-ges, V.; Antonino, A. C. D.; Angulo-Jaramillo, R.

    2015-03-01

    Adequate water management is required to improve the efficiency and sustainability of agricultural systems when water is scarce or over-abundant, especially in the case of land use changes. In order to quantify, to predict and eventually to control water and solute transport into soil, soil hydraulic properties need to be determined precisely. As their determination is often tedious, expensive and time-consuming, many alternative field and laboratory techniques are now available. The aim of this study was to determine unsaturated soil hydraulic properties under different land uses and to compare the results obtained with different measurement methods (Beerkan, disc infiltrometer, evaporation, pedotransfer function). The study has been realized on a tropical sandy soil in a mini-watershed in northeastern Thailand. The experimental plots were positioned in a rubber tree plantation in different positions along a slope, in ruzi grass pasture and in an original forest site. Non-parametric statistics demonstrated that van Genuchten unsaturated soil parameters (Ks, α and n) were significantly different according to the measurement methods employed, whereas the land use was not a significant discriminating factor when all methods were considered together. However, within each method, parameters n and α were statistically different according to the sites. These parameters were used with Hydrus1D for a 1-year simulation and computed pressure head did not show noticeable differences for the various sets of parameters, highlighting the fact that for modeling, any of these measurement methods could be employed. The choice of the measurement method would therefore be motivated by the simplicity, robustness and its low cost.

  2. Use of field and laboratory methods for estimating unsaturated hydraulic properties under different land-use

    Science.gov (United States)

    Siltecho, S.; Hammecker, C.; Sriboonlue, V.; Clermont-Dauphin, C.; Trelo-ges, V.; Antonino, A. C. D.; Angulo-Jaramillo, R.

    2014-06-01

    Adequate water management is required to improve the efficiency and sustainability of agricultural systems when water is scarce or over-abundant, especially in the case of land-use changes. In order to quantify, to predict and eventually to control water and solute transport into soil, soil hydraulic properties need to be determined precisely. As their determination is often tedious, expensive and time-consuming, many alternative field and laboratory techniques are now available. The aim of this study was to determine unsaturated soil hydraulic properties under different land-uses and to compare the results obtained with different measurement methods (Beerkan, Disk infiltrometer, Evaporation, pedotransfer function). The study has been realised on a tropical sandy soil in a mini watershed in NE Thailand. The experimental plots were positioned in a rubber tree plantation in different positions along a slope, in ruzi grass pasture and in an original forest site. Non parametric statistics demonstrated that van Genuchten unsaturated soil parameters (Ks, α and n), were significantly different according to the measurement methods employed whereas location was not a significant discriminating factor when all methods were considered together. However within each method, parameters n and α were statistically different according to the sites. These parameters were used with Hydrus1D for a one year simulation and computed pressure head did not show noticeable differences for the various sets of parameters, highlighting the fact that for modelling, any of these measurement method could be employed. The choice of the measurement method would therefore be motivated by the simplicity, robustness and its low cost.

  3. Correlations Between Physical and Hydraulic Properties and Uranium Desorption in Contaminated, Intact Sediment Cores

    Science.gov (United States)

    Rockhold, M. L.; Oostrom, M.; Wietsma, T. W.; Zachara, J. M.

    2010-12-01

    An unlined disposal pond in the 300 Area of the Hanford Site received uranium-bearing liquid effluents associated with nuclear reactor fuel rod processing from 1943 to 1975. Contaminated sediments from the base and sides of the former pond were excavated and removed from the site in the early 1990s, but a uranium plume has persisted in the groundwater at concentrations exceeding the drinking water standard. The former process pond is located adjacent to the Columbia River and seasonal fluctuations in the river stage and water table provide a mechanism for resupplying residual uranium from the vadose zone to the groundwater when the lower vadose zone is periodically rewetted. Intact cores were collected from the site for measurements of physical, hydraulic, and geochemical properties. Multistep outflow experiments were also performed on the intact cores to determine permeability-saturation-capillary pressure relations. Pore water displaced during these experiments for two of the vadose zone cores was also analyzed for uranium. For a core containing finer-textured sediment classified as muddy sandy gravel, and a core containing coarser-textured sediment classified as gravel, the relative aqueous uranium concentrations increased by factors of 8.3 and 1.5, respectively, as the cores were desaturated and progressively smaller pore-size classes were drained. Aqueous concentrations of uranium in the extracted pore waters were up to 115 times higher than the current drinking water standard of 30 ppb. These results confirm that there is a continuing source of uranium in the vadose zone at the site, and are consistent with a hypothesis that the persistence of the groundwater uranium plume is also associated, in part, with rate-limited mass transfer from finer-textured sediments. The data from these and several other intact cores from the site are evaluated to explore relationships between physical and hydraulic properties and uranium desorption characteristics.

  4. Electronic properties of aperiodic quantum dot chains

    Science.gov (United States)

    Korotaev, P. Yu.; Vekilov, Yu. Kh.; Kaputkina, N. E.

    2012-04-01

    The electronic spectral and transport properties of aperiodic quantum dot chains are investigated. The systems with singular continuous energy spectrum are considered: Thue-Morse chain, double-periodic chain, Rudin-Shapiro chain. The influence of electronic energy in quantum dot on the spectral properties, band structure, density of states and spectral resistivity, is discussed. Low resistivity regions correspond to delocalized states and these states could be current states. Also we discuss the magnetic field application as the way to tune electronic energy in quantum dot and to obtain metallic or insulating conducting states of the systems.

  5. Hydraulic Conductivity Functions in Relation to Some Chemical Properties in a Cultivated Oxisols of a Humid Region, Delta State, Nigeria

    Directory of Open Access Journals (Sweden)

    Egbuchua, C. N.

    2014-04-01

    Full Text Available The study was conducted to evaluate hydraulic conductivity functions in relation to some soil chemical properties in an oxisols of the tropics. Field and laboratory studies were carried out and data collected, subjected to statistical analytical procedure for computing coefficient of variability and correlation among soil properties. Results of the study showed that hydraulic conductivity functions varied spatially and temporarily across the experimental points with a moderate mean value of 0.0026 cm/h and a coefficient o variation of 31.45% soil chemical properties showed that the soils were acidic with a mean pH value of 5.12. Organic carbon, total nitrogen and available phosphorus were low with mean values of 1.29%, 0.68% and 4.43 mgkg-1. Coefficient of variability among soil properties indicated less to moderately variable. Soil pH had negative correlation with all the soil properties evaluated.

  6. The electronic properties of a Fibonacci chain

    Directory of Open Access Journals (Sweden)

    S. A. Ketabi

    2004-12-01

    Full Text Available  Using a tight-binding model and transfer-matrix technique, as well as Lanczos algorithm, we numerically investigate the nature of the electronic states and electron transmission in site, bond and mixing Fibonacci model chains. We rely on the Landauer formalism as the basis for studying the conduction properties of these systems. Calculating the Lyapunov exponent, we also study the localization properties of electronic eigenstates in the Fibonacci chains. The focus is on the significance of the relationship between the transmission spectra and the nature of the electronic states. Our results show that, in contrast to Anderson’s localization theorem, in the Fibonacci chains the electronic states are non-localized and the transparent states occurr near the Fermi level.

  7. Alteration of soil hydraulic properties and soil water repellency by fire and vegetation succession in a sagebrush steppe ecosystem

    Science.gov (United States)

    Chandler, D. G.; Seyfried, M. S.

    2016-12-01

    This study explores the impacts of fire and plant community succession on soil water repellency (SWR) and infiltration properties to improve understanding the long term impacts of prescribed fire on SWR and infiltration properties in sagebrush-steppe ecosystem. The objectives of this study were: 1) To explore the temporal effects of prescribed burning in sagebrush dominated landscape; 2) To investigate spatial variability of soil hydrologic properties; 3) To determine the relationship among soil organic fraction, soil hydrophobicity and infiltration properties. Fieldwork was conducted in paired catchments with three dominant vegetation cover communities: Low sage, big mountain sage and aspen. Detailed, heavily replicated analyses were conducted for unsaturated hydraulic conductivity, sorptivity water drop penetration time and static soil-water-air contact angle. The results show that the severity and presence of surface soil water repellency were considerably reduced six years after fire and that hydraulic conductivity increased significantly in each vegetation cover compared to pre-burn condition. Comparisons among soil hydrological properties shows that hydraulic conductivity is not strongly related to SWR, and that sorptivity is negatively correlated with SWR. The spatial variance of hydraulic properties within the burned high sage and low sage, in particularly, spatial variability of hydraulic conductivity is basically controlled by soil texture and sorptivity is affected by soil wettability. The average water repellency in Low Sage area was significantly different with Big Sage and Aspen as the gap of organic content between Low Sage and other vegetation area. The result of contact angle measurement and organic content analysis shows a strong positive correlation between SWR and organic matter.

  8. Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species.

    Science.gov (United States)

    Nolf, Markus; Creek, Danielle; Duursma, Remko; Holtum, Joseph; Mayr, Stefan; Choat, Brendan

    2015-12-01

    Coordination of stem and leaf hydraulic traits allows terrestrial plants to maintain safe water status under limited water supply. Tropical rain forests, one of the world's most productive biomes, are vulnerable to drought and potentially threatened by increased aridity due to global climate change. However, the relationship of stem and leaf traits within the plant hydraulic continuum remains understudied, particularly in tropical species. We studied within-plant hydraulic coordination between stems and leaves in three tropical lowland rain forest tree species by analyses of hydraulic vulnerability [hydraulic methods and ultrasonic emission (UE) analysis], pressure-volume relations and in situ pre-dawn and midday water potentials (Ψ). We found finely coordinated stem and leaf hydraulic features, with a strategy of sacrificing leaves in favour of stems. Fifty percent of hydraulic conductivity (P50 ) was lost at -2.1 to -3.1 MPa in stems and at -1.7 to -2.2 MPa in leaves. UE analysis corresponded to hydraulic measurements. Safety margins (leaf P50 - stem P50 ) were very narrow at -0.4 to -1.4 MPa. Pressure-volume analysis and in situ Ψ indicated safe water status in stems but risk of hydraulic failure in leaves. Our study shows that stem and leaf hydraulics were finely tuned to avoid embolism formation in the xylem.

  9. Soil hydraulic properties affected by topsoil thickness in cultivated switchgrass and corn-soybean rotation production systems

    Science.gov (United States)

    Loss of productive topsoil by soil erosion over time can reduce the productive capacity of soil and can significantly affect soil hydraulic properties. This study evaluated the effects of reduced topsoil thickness and perennial switchgrass (Panicum virgatum L.) versus corn (Zea mays L.)/soybean [Gly...

  10. Impact of within-field variability in soil hydraulic properties on transpiration fluxes and crop yields: A numerical study

    NARCIS (Netherlands)

    Hupet, F.; Dam, van J.C.; Vanclooster, M.

    2004-01-01

    By means of numerical modeling we investigate the impact of within-field variability in the soil hydraulic properties on actual transpiration and dry matter yield for three different climate scenarios. We first show that the sensitivity of the simulated actual transpiration and dry matter yield to s

  11. Assessing the potential of biochar and charcoal to improve soil hydraulic properties in the humid Ethiopian Highlands: The Anjeni watershed

    NARCIS (Netherlands)

    Bayabil, H.K.; Stoof, C.R.; Lehmann, J.C.; Yitaferu, B.; Steenhuis, T.S.

    2015-01-01

    Biochar has shown promise for restoring soil hydraulic properties. However, biochar production could be expensive in the developing world, while charcoal iswidely available and cheap. The objective of this study is therefore to investigate whether some of the charcoal made in developing countries

  12. Assessing the potential of biochar and charcoal to improve soil hydraulic properties in the humid Ethiopian Highlands: The Anjeni watershed

    NARCIS (Netherlands)

    Bayabil, H.K.; Stoof, C.R.; Lehmann, J.C.; Yitaferu, B.; Steenhuis, T.S.

    2015-01-01

    Biochar has shown promise for restoring soil hydraulic properties. However, biochar production could be expensive in the developing world, while charcoal iswidely available and cheap. The objective of this study is therefore to investigate whether some of the charcoal made in developing countries ca

  13. Use of LANDSAT images of vegetation cover to estimate effective hydraulic properties of soils

    Science.gov (United States)

    Eagleson, Peter S.; Jasinski, Michael F.

    1988-01-01

    The estimation of the spatially variable surface moisture and heat fluxes of natural, semivegetated landscapes is difficult due to the highly random nature of the vegetation (e.g., plant species, density, and stress) and the soil (e.g., moisture content, and soil hydraulic conductivity). The solution to that problem lies, in part, in the use of satellite remotely sensed data, and in the preparation of those data in terms of the physical properties of the plant and soil. The work was focused on the development and testing of a stochastic geometric canopy-soil reflectance model, which can be applied to the physically-based interpretation of LANDSAT images. The model conceptualizes the landscape as a stochastic surface with bulk plant and soil reflective properties. The model is particularly suited for regional scale investigations where the quantification of the bulk landscape properties, such as fractional vegetation cover, is important on a pixel by pixel basis. A summary of the theoretical analysis and the preliminary testing of the model with actual aerial radiometric data is provided.

  14. Estimating water and nitrate leaching in tree crops using inverse modelled plant and soil hydraulic properties

    Science.gov (United States)

    Couvreur, Valentin; Kandelous, Maziar; Mairesse, Harmony; Baram, Shahar; Moradi, Ahmad; Pope, Katrin; Hopmans, Jan

    2015-04-01

    Groundwater quality is specifically vulnerable in irrigated agricultural lands in California and many other (semi-)arid regions of the world. The routine application of nitrogen fertilizers with irrigation water in California is likely responsible for the high nitrate concentrations in groundwater, underlying much of its main agricultural areas. To optimize irrigation/fertigation practices, it is essential that irrigation and fertilizers are applied at the optimal concentration, place, and time to ensure maximum root uptake and minimize leaching losses to the groundwater. The applied irrigation water and dissolved fertilizer, root nitrate and water uptake interact with soil and root properties in a complex manner that cannot easily be resolved. It is therefore that coupled experimental-modelling studies are required to allow for unravelling of the relevant complexities that result from typical variations of crop properties, soil texture and layering across farmer-managed fields. A combined field monitoring and modelling approach was developed to quantify from simple measurements the leaching of water and nitrate below the root zone. The monitored state variables are soil water content within the root zone, soil matric potential below the root zone, and nitrate concentration in the soil solution. Plant and soil properties of incremented complexity are optimized with the software HYDRUS in an inverse modelling scheme, which allows estimating leaching under constraint of hydraulic principles. Questions of optimal irrigation and fertilization timing can then be addressed using predictive results and global optimization algorithms.

  15. Development of hydraulic properties and nitrate turnover processes in minerotrophic fen soil on differnet scales

    Science.gov (United States)

    Kleimeier, Christian; Lennartz, Bernd

    2014-05-01

    Generally, it is recommended to remove the uppermost highly degraded peat layer from fens prior to rewetting to eliminate a potential source of organic pollutants for downstream water bodies. We investigated this material as a potential medium for denitrifying filters to further use the organic material. We are aiming to remove nitrate from tile drainage runoff at the outlet drainage dominated catchments to fullfill the requirements of the European Water Framework Directive. In a lysimeter scale long term mesocosm experiments we were aiming to reveal the peats behavior after disturbing and rewetting under constant flow conditions. Tracer experiments revealed a restructuring of the peat ending up at 20/80 percentage of mobile immobile pore volume. Additionally we observed the nitrate turnover. The turnover rate was determined by the hydraulic load. Absolute turnover rates were equal at lower and higher concentrations as well as flow rates, whereas the turnover reached higher percentages at lower concentrations. To further reveal the nitrate turnover processes flow through rector experiments were conducted in an anaerobic environment. We found that strongly reducing conditions can be created in peat even at the presence of nitrate. Thus we can conclude that the minerotrophic peat with its high iron and sulfur concentrations also enables autotrophic denitrification oxidizing iron and sulfur. While the conditions are favorable to re-reduce iron and sulfur,thus an electron shuttling system developed transporting electrons from the organic material as initial e- donor to nitrate as terminal e- acceptor.

  16. Design and Construction of Experiment for Direct Electron Irradiation of Uranyl Sulfate Solution: Bubble Formation and Thermal Hydraulics Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, Roman [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakho [Argonne National Lab. (ANL), Argonne, IL (United States); Heltemes, Thad [Argonne National Lab. (ANL), Argonne, IL (United States); Sun, Zaijing [Argonne National Lab. (ANL), Argonne, IL (United States); Wardle, Kent E. [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, James [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States); Stepinski, Dominique [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-10-01

    Argonne is assisting SHINE Medical Technologies in developing SHINE, a system for producing fission-product 99Mo using a D/T-accelerator to produce fission in a non-critical target solution of aqueous uranyl sulfate. We have developed an experimental setup for studying thermal-hydraulics and bubble formation in the uranyl sulfate solution to simulate conditions expected in the SHINE target solution during irradiation. A direct electron beam from the linac accelerator will be used to irradiate a 20 L solution (sector of the solution vessel). Because the solution will undergo radiolytic decomposition, we will be able to study bubble formation and dynamics and effects of convection and temperature on bubble behavior. These experiments will serve as a verification/ validation tool for the thermal-hydraulic model. Utilization of the direct electron beam for irradiation allows homogeneous heating of a large solution volume and simplifies observation of the bubble dynamics simultaneously with thermal-hydraulic data collection, which will complement data collected during operation of the miniSHINE experiment. Irradiation will be conducted using a 30-40 MeV electron beam from the high-power linac accelerator. The total electron-beam power will be 20 kW, which will yield a power density on the order of 1 kW/L. The solution volume will be cooled on the front and back surfaces and central tube to mimic the geometry of the proposed SHINE solution vessel. Also, multiple thermocouples will be inserted into the solution vessel to map thermal profiles. The experimental design is now complete, and installation and testing are in progress.

  17. Deep rooting plants influence on soil hydraulic properties and air conductivity over time

    Science.gov (United States)

    Uteau, Daniel; Peth, Stephan; Diercks, Charlotte; Pagenkemper, Sebastian; Horn, Rainer

    2014-05-01

    Crop sequences are commonly suggested as an alternative to improve subsoil structure. A well structured soil can be characterized by enhanced transport properties. Our main hypothesis was, that different root systems can modify the soil's macro/mesopore network if enough cultivation time is given. We analyzed the influence of three crops with either shallower roots (Festuca arundinacea, fescue) or taproots (Cichorium intybus, chicory and Medicago sativa, alfalfa). The crops where cultivated on a Haplic Luvisol near Bonn (Germany) for one, two or three years. Undisturbed soil cores were taken for measurement of unsaturated hydraulic conductivity and air permeability. The unsaturated conductivity was measured using the evaporation method, monitoring the water content and tension at two depths of each undisturbed soil core. The van Genuchten-Mualem model (1991) was fitted to the measured data. Air permeability was measured in a permeameter with constant flow at low pressure gradient. The measurements were repeated at -1, -3, -6, -15, -30 and -50 kPa matric tension and the model of Ball et al. (1988) was used to describe permeability as function of matric tension. Furthermore, the cores equilibrated at -15 kPa matric tension were scanned with X-Ray computer tomography. By means of 3D image analysis, geometrical features as pore size distribution, tortuosity and connectivity of the pore network was analyzed. The measurements showed an increased unsaturated hydraulic conductivity associated to coarser pores at the taprooted cultivations. A enhanced pore system (related to shrink-swell processes) under alfalfa was observed in both transport measurements and was confirmed by the 3D image analysis. This highly functional pore system (consisting mainly of root paths, earthworm channels and shrinking cracks) was clearly visible below the 75 cm of depth and differentiated significantly from the other two treatments only after three years of cultivation, which shows the time

  18. Retrieving Soil Hydraulic Properties by Diffuse Spectral Reflectance Data in Vis-NIR-SWIR Range

    Science.gov (United States)

    Babaeian, E.; Homaee, M.; Vereecken, H.; Montzka, C.; Norouzi, A. A.; Van Genuchten, M.

    2014-12-01

    Information about the soil water characteristics is necessary for modeling water flow and solute transport processes in vadose zone. Soil spectroscopy in the visible, near-infrared and shortwave infrared (Vis-NIR-SWIR) range has been widely used as a rapid, cost-effective and non-destructive technique to predict basic soil properties. In this paper we used three different approaches to retrieve soil hydraulic parameters from spectral data in the visible, near-infrared and shortwave-infrared (Vis-NIR-SWIR) region and basic soil properties. Using stepwise multiple linear statistics coupled with bootstrapping, we derived and validated three types of point and parametric transfer functions: i) spectral transfer functions (STFs), ii) pedotransfer functions (PTFs) and iii) spectral pedotransfer functions (SPTFs) which respectively used spectral data, basic soil properties and spectral based basic soil predictions as their inputs. We further evaluated a direct fit of the van Genuchten (VG) and Brooks-Corey (BC) retention models to the predicted water contents obtained with each approach. According to the results, soil water contents, the VG and BC parameters as well as basic soil properties showed significant (pwater contents in the mid and dry parts of retention curve. In the wet range, PTFs were found to perform better than the other two approaches. Compared to the STFs, however, better water content estimates were obtained using the SPTFs in the wet range. The parametric STFs and SPTFs of both the VG and BC models developed from spectral data performed slightly better than parametric PTFs for the retention curve. The best predictions were obtained with a direct fit of the retention models to soil water contents estimated with point transfer functions. Our findings suggest that spectral information, as a promising approach, may be used to accurately predict soil water contents, and indirectly the water retention curve. Using spectral data as an input of PTFs provides an

  19. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E

    2011-01-01

    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  20. Design and Experiment of Electronic-hydraulic Loading Test-bed Based on Tractor’s Hydraulic Steering By-wire

    Institute of Scientific and Technical Information of China (English)

    Yue JIN; Yang LU; Jiahui GONG; Zhixiong LU; Wenming LI; Jungan WU

    2015-01-01

    An Electro-hydraulic loading system is designed based on a test-bed of tractor’s hydraulic steering by-wire. To simulate the steering resistance driving tractor in many kinds of soils and roads,the loading force is controlled to make proportional and continuous variable by an electro-hydraulic proportional relief valve. A steering resistance loading test-bed is built to test three kinds of steering resistance including constant,step and sine style. Tire lateral resistance is also tested under different steering conditions. The result shows that the electro-hydraulic loading system has high stability and following performance. Besides,the system’s steady state error is lower than 3. 1%,and it meets the test requirement of tractor’s hydraulic steering by-wire.

  1. Electronic properties of organic/metal interfaces

    CERN Document Server

    Koch, N

    2000-01-01

    Conjugated organic materials are the promising class of materials for the application in new electronic and opto-electronic devices. The successful realization of highly efficient organic light emitting devices with oligomers and polymers as active electroluminescent layers has lead to a large number of investigations on such systems, the key point being to find means of increasing efficiency and performance of the devices. Intrinsically present in light emitting devices are interfaces, and it appears that the structural and electronic properties of those are of uttermost importance for the device quality. In the present work, ultraviolet and X-ray photoelectron spectroscopy, plus related surface sensitive experimental methods, were used to investigate the electronic properties of interfaces between conjugated organic materials (based on para-phenylene) and various metals. The observed interactions between the two different kinds of materials ranged from physisorption (aluminum and samarium), to the formation...

  2. Petrophysics at the rock matrix scale: hydraulic properties and petrographic interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Montoto, M.

    2003-07-01

    The main objective of this publication is to review, summarize and make comprehensive the hydraulic properties of rocks, at the rock matrix or in tact rock scale. Also to describe how to petrographically interpret those properties. For this purpose, the procedures for the characterization and visualisation of the rock-forming components and in special the water path-ways at that scale are explained. Further more, to establish a methodological approach for an appropriate petrographic interpretation of all the mentioned properties is intended. This Technical Report is applied to the geological solution for the final disposal of high level radioactive wastes. In any case, most of the aspects covered here are of scientific and technical interest for any researcher interested in the behaviour of water in rocks and vice versa, also in the potential fluid- rock interactions. The document is divided into six Chapters, mainly theoretical and methodological, and six Appen - dixes, more focussed to practical tests and procedures for rock characterization. Two significant rock types in high level radioactive waste, HLW, granites and clays, have been used for illustrating most of the examples here included. Under a wide geological perspective, it must be stated that in any geological scenario two different systems or scales coexist; the rock massif (with fractures of about m to km) and the rock matrix (with internal discontinuities such as fissures and cracks to the order of Fm to dm). Their different behaviour is considered in Chapter 1 as well as the specific role played by the rock matrix in the long- and short-term period. General considerations about physical properties of rocks and comparative advantages and disadvantages of the main candidate rocks for radioactive repositories are also included. (Author)

  3. Constraints on structural evolution from correlations between hydraulic properties and P-wave velocities during brittle faulting of rocks

    Science.gov (United States)

    Ahrens, Benedikt; Duda, Mandy; Renner, Jörg

    2017-04-01

    One of the key challenges in geophysics concerns the derivation of structure and state of rocks and rock formations from constraints on the spatial distribution of their physical properties, as gained from laboratory experiments, borehole logging, and surveys at the surface covering scales from centimeters to kilometers. The use of information from the propagation of elastic waves constitutes the most common approach to derive the structure and state of rocks, if direct information on in-situ properties is limited (e.g., through boreholes) or inaccessible. Furthermore, the determination of hydraulic rock properties serves the dual purpose of constraining structure and providing the basis for predictions of the behavior of a system of interest during continued fluid injection or production, as associated with, e.g., exploitation of hydrocarbon reservoirs, operation of subsurface liquid-waste repositories, or geothermal energy provision. In-situ, wave observations potentially provide better coverage of rock volumes (in space and time) than hydraulic investigations and thus constraints on correlations between elastic and hydraulic properties bear the potential to improve subsurface characterization. In our laboratory study, we continuously monitored hydraulic properties and elastic wave velocities of porous Wilkeson sandstone samples during conventional triaxial deformation. Confining pressures applied in the tests cover the range from below to above the critical pressure for crack closure to control the state of pre-existing cracks. Hydraulic properties were determined using the oscillatory pore-pressure method owing to its benefits regarding continuous and highly resolved monitoring of permeability and specific storage capacity during deformation and even imminent localized failure. The magnitude of the deformation-associated variations in the monitored physical properties strongly depends on initial microstructure and degree of hydrostatically induced crack closure

  4. Hydraulic properties of Zinnia elegans : from cellular development in vitro to performance in planta

    NARCIS (Netherlands)

    Twumasi, P.

    2007-01-01

    The water status in plants is dependent on the xylem hydraulic conductance. In cut flowers, for example, the preservation of continuous hydraulic conductance is important for maintaining longer vase life, an important index for cut flower quality. Many factors, such as stomata performance, root wate

  5. Couple mechanics hydraulics and sorption properties of mixtures to evaluate buffer/backfill materials

    Energy Technology Data Exchange (ETDEWEB)

    Yi-Lin, Jan [Ching Yun Univ., Dept. of Civil Engineering, Taiwan (China); Shih-Chin, Tsaia [Fooyin Univ., Dept. of Industrial Safety and Hygiene, Taiwan (China); Yi-Lin, Jan; Chun-Nan, Hsu [National Tsing Hua Univ., Dept. of Nuclear Science, Taiwan (China)

    2005-07-01

    The technique of multi-barrier disposal systems of radwaste has been studying among the world. The buffer materials that retard the migration of nuclides and make the canisters stable play a very important role. To couple engineering and sorption properties to evaluate the buffer/backfill materials, synthetic groundwater (GW) and seawater(SW) were used as the liquid phases to simulate possible conditions for a deep geological disposal in an island. The R{sub d} value of Cs, I and Se (10{sup -4} M ) with respect to various composite ratios of bentonite/ laterite/ quartz sand mixtures were measured using batch sorption tests in GW and SW. De-ionic water (DIW) was used as the liquid phase for Atterberg limit tests, triaxial shear test s and hydraulic conductivity tests to acquire the engineering properties of those mixtures mention above. The Atterberg limit tests results showed that 7 samples are concluded inorganic clays of high plasticity and one is inorganic clays of medium plasticity. The samples with 30% quartz sand content indicate the higher shear strength than those with 50% quartz sand content and very low hydraulic conductivity for all samples are in the same order about 1{sup -10} m/s. The sorption of Cs on mixtures reveals that distribution coefficients (R{sub d}s) is higher in GW than those in SW. The Rd s of Cs are inverse proportion to plastic index (PI) in GW and SW as well as the R{sub d}s of Se. The sorption of Se on mixtures is affected significantly by composition of solid phase. However, the major affection for sorption of Se is solid phase and that of Cs is liquid phase. Very low sorption of I on all mixtures in GW and SW. Under these experimental conditions, these results reveal that more effective buffer material composition of 30% quartz sand content which PI are 40 to 60. Laterite is more effective sorbent for Cs and Se than Bentonite. (authors)

  6. Hydraulic properties and scale effects investigation in regional rock aquifers, south-western Quebec, Canada

    Science.gov (United States)

    Nastev, M.; Savard, M. M.; Lapcevic, P.; Lefebvre, R.; Martel, R.

    This paper reports on the characterization of hydraulic properties of regional rock aquifers carried out within a groundwater resources assessment project in the St. Lawrence Lowlands of south-western Quebec. To understand the aquifer behavior at both the fracture level and at field scale, hydraulic investigations were carried out using various aquifer tests. The groundwater flow at the local scale is controlled mostly by the fracture system. Results of the constant-head injection tests show a weak decreasing trend of hydraulic conductivity with depth indicating that a major part of the groundwater flow occurs in the first meters of the rock sequence. At the regional scale, the equivalent porous media approach is applicable. The hydraulic conductivity measurements were correlated to the scale of the aquifer tests expressed with the investigated aquifer volume. A simple interpolation procedure for the hydraulic conductivity field was developed based on the distance between field measurements and the tested aquifer volumes. The regional distribution of the hydraulic conductivity for the major fractured aquifer units indicates that dolostone is the most permeable whereas sandstone and crystalline rocks are the least permeable units. Este artículo trata de la caracterización de las propiedades hidráulicas en acuíferos regionales rocosos, la cual se llevó a cabo dentro del proyecto de evaluación de los recursos de agua subterránea en St. Lawrence Lowlands al suroeste de Quebec. Para entender el comportamiento del acuífero tanto a nivel de fractura como a escala del campo, se ejecutaron investigaciones hidráulicas usando varias pruebas de acuífero. El flujo del agua subterránea a escala local está controlado principalmente por el sistema de fracturas. Los resultados de las pruebas de inyección con cabeza constante muestran una tendencia decreciente débil de la conductividad hidráulica con la profundidad, indicando que la mayor parte del flujo de agua

  7. Bayesian inverse modelling of in situ soil water dynamics: using prior information about the soil hydraulic properties

    Directory of Open Access Journals (Sweden)

    B. Scharnagl

    2011-02-01

    Full Text Available In situ observations of soil water state variables under natural boundary conditions are often used to estimate field-scale soil hydraulic properties. However, many contributions to the soil hydrological literature have demonstrated that the information content of such data is insufficient to reliably estimate all the soil hydraulic parameters. In this case study, we tested whether prior information about the soil hydraulic properties could help improve the identifiability of the van Genuchten-Mualem (VGM parameters. Three different prior distributions with increasing complexity were formulated using the ROSETTA pedotransfer function (PTF with input data that constitutes basic soil information and is readily available in most vadose zone studies. The inverse problem was posed in a formal Bayesian framework and solved using Markov chain Monte Carlo (MCMC simulation with the DiffeRential Evolution Adaptive Metropolis (DREAM algorithm. Synthetic and real-world soil water content data were used to illustrate our approach. The results of this study corroborate and explicate findings previously reported in the literature. Indeed, soil water content data alone contained insufficient information to reasonably constrain all VGM parameters. The identifiability of these soil hydraulic parameters was substantially improved when an informative prior distribution was used with detailed knowledge of the correlation structure among the respective VGM parameters. A biased prior did not distort the results, which inspires confidence in the robustness and effectiveness of the presented method. The Bayesian framework presented in this study can be applied to a wide range of vadose zone studies and provides a blueprint for the use of prior information in inverse modelling of soil hydraulic properties at various spatial scales.

  8. Status Report for Remediation Decision Support Project, Task 1, Activity 1.B – Physical and Hydraulic Properties Database and Interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L.

    2008-09-26

    The objective of Activity 1.B of the Remediation Decision Support (RDS) Project is to compile all available physical and hydraulic property data for sediments from the Hanford Site, to port these data into the Hanford Environmental Information System (HEIS), and to make the data web-accessible to anyone on the Hanford Local Area Network via the so-called Virtual Library. In past years efforts were made by RDS project staff to compile all available physical and hydraulic property data for Hanford sediments and to transfer these data into SoilVision{reg_sign}, a commercial geotechnical software package designed for storing, analyzing, and manipulating soils data. Although SoilVision{reg_sign} has proven to be useful, its access and use restrictions have been recognized as a limitation to the effective use of the physical and hydraulic property databases by the broader group of potential users involved in Hanford waste site issues. In order to make these data more widely available and useable, a decision was made to port them to HEIS and to make them web-accessible via a Virtual Library module. In FY08 the objectives of Activity 1.B of the RDS Project were to: (1) ensure traceability and defensibility of all physical and hydraulic property data currently residing in the SoilVision{reg_sign} database maintained by PNNL, (2) transfer the physical and hydraulic property data from the Microsoft Access database files used by SoilVision{reg_sign} into HEIS, which has most recently been maintained by Fluor-Hanford, Inc., (3) develop a Virtual Library module for accessing these data from HEIS, and (4) write a User's Manual for the Virtual Library module. The development of the Virtual Library module was to be performed by a third party under subcontract to Fluor. The intent of these activities is to make the available physical and hydraulic property data more readily accessible and useable by technical staff and operable unit managers involved in waste site assessments

  9. Magnetic and electronic properties of ruthenocuprates

    Science.gov (United States)

    Hirai, Y.; Schneider, M. L.; Frazer, B. H.; Rast, S.; Onellion, M.; Asaf, U.; Felner, I.; Nowik, I.; Ali, N.; Roy, S.; Prester, M.; Drobac, D.; Zivkovic, I.; Perfetti, L.; Reginelli, A.; Ariosa, D.; Margaritondo, G.

    2001-03-01

    We present data on as-prepared, oxygen annealed, and hydrogen loaded ruthenocuprate samples. We include: * magnetic measurements: magnetization,^1 ac susceptibility; * electronic properties: x-ray photoemission,^1,2 x-ray absorption^3; * the effects of hydrogen loading and of oxygen annealing. We concentrate on the changes of magnetic properties with carrier concentration, and discuss the superconducting properties only briefly. ^1B.H. Frazer et.al., Phys. Rev. B. ^2B.H. Frazer et.al., Euro. J. Phys., in press (2000). ^3Y. Hirai et.al., submitted.

  10. Electronic Properties of low dimensional structures

    CERN Document Server

    Bendounan, Azzedine

    2010-01-01

    Exotic phenomena about the behavior of electrons inside the solid were a long time ago predicted by the quantum mechanic physics and are only recently experimentally observed, in particular for systems of extremely reduced dimensions. Here, I report on recent experimental observation of fundamental effect concerning the dispersion properties of the surface state influenced by the presence of surface reconstruction.

  11. May We Identify The Spatial Variability of Soil Hydraulic Properties Based On Measurements With "spatial Tdr"? A) Model Study

    Science.gov (United States)

    Zehe, E.; Becker, R.; Schädel, W.

    A dynamic system left without external disturbances, will always tend to a stable equilibrium state that is consistent with the internal physics. For natural soils such an equilibrium state is reached when the gradients of the total hydraulic potential tend to zero. This statement is still valid for heterogeneous soils, because the hydraulic po- tential is an intensive state variable and therefore continuous at discontinuities of the pore space. In contrary the soil water content is as an extensive property discontinu- ous at discontinuities of the pore space. Hence, a small scale soil moisture pattern that persists if the soil state tends to hydraulic equilibrium, reflects the lateral small scale variability of the pore space. The objectives of our study are to show a) whether and how we could use TDR observations to identify the small scale variability of the pore space. For that purpose we analyse artificial TDR measurements, taken from physi- cally based simulations of soil water dynamics in heterogeneous media. b) We want to introduce a new TDR technology which we call "Spatial TDR", that is suitable for that purposes. To produce the artificial TDR-datasets we generate random fields of soil porosity and saturated hydraulic conductivity with different statistical properties based on field data in a Luvisol and simulate artificial water dynamics in this model soil based on Richards-equation. Within this model soil we define several hypothetical "Spatial TDR" clusters, that differ in the lateral spacing and the number of the probes, in the temporal resolution of the hypothetical measurements and in the assumed mea- surement accuracy. If the model soil approaches hydraulic equilibrium, the remaining soil moisture pattern will be dominated by the statistical properties of the porosity. In contrary the variability of the hydraulic conductivity will dominate the soil moisture patterns during infiltration events. The hypothetical Spatial TDR measurements within the

  12. Physical soil properties and slope treatments effects on hydraulic excavator productivity for forest road construction.

    Science.gov (United States)

    Parsakho, Aidin; Hosseini, Seyed Ataollah; Jalilvand, Hamid; Lotfalian, Majid

    2008-06-01

    Effects of moisture, porosity and soil bulk density properties, grubbing time and terrain side slopes on pc 220 komatsu hydraulic excavator productivity were investigated in Miana forests road construction project which located in the northern forest of Iran. Soil moisture and porosity determined by samples were taken from undisturbed soil. The elements of daily works were measured with a digital stop watch and video camera in 14 observations (days). The road length and cross section profiles after each 20 m were selected to estimate earthworks volume. Results showed that the mean production rates for the pc 220 komatsu excavators were 60.13 m3 h(-1) and earthwork 14.76 m h(-1) when the mean depth of excavation or cutting was 4.27 m3 m(-1), respectively. There was no significant effects (p = 0.5288) from the slope classes' treatments on productivity, whereas grubbing time, soil moisture, bulk density and porosity had significantly affected on excavator earthworks volume (p excavator earthworks length.

  13. Effects of Carboxymethylcelluloses (CMC) on Some Hydraulic Properties of Sandy Soil

    Institute of Scientific and Technical Information of China (English)

    ANDRY Henintsoa; INOUE Mitsuhiro; MORITANI Shigeoki; UZOMA Kingsley Chinyere

    2010-01-01

    The property of hydrophilic polymers capable absorbing huge volumes of water led to many practical applications of these new materials in arid regions for improving the water retention in sandy soils. Effects of four carboxymethylcelluloses (CMC), mixed at various rates with the sandy soil, on the water-holding capacity and hydraulic conductivity (Ks) when leached with distilled water (simulating rain), tap water, and saline water were evaluated. The maximum water absorption of CMCs ranged between 80 and 100 kg. kg-1 of polymer; however, the absorbent swelling capacity decreased significantly with increasing the salt concentration in the solution. The water absorption capacity of CMCs decreased significantly when incorporated in the sandy soil compared to that of the absorbent alone. Application of CMC increased significantly the available water content up to 3 ±0.5 times. All soils treated with CMCs showed a significant lower in Ks compared to the control soil. Meanwhile, Ks was found increased with increasing the salt concentration in the leaching solution. This understanding of characteristics of the absorbents and the interactions among absorbents, soil, and irrigation water quality would be of help in water management of sandy soil.

  14. A Comparison of Land Surface Model Soil Hydraulic Properties Estimated by Inverse Modeling and Pedotransfer Functions

    Science.gov (United States)

    Gutmann, Ethan D.; Small, Eric E.

    2007-01-01

    Soil hydraulic properties (SHPs) regulate the movement of water in the soil. This in turn plays an important role in the water and energy cycles at the land surface. At present, SHPS are commonly defined by a simple pedotransfer function from soil texture class, but SHPs vary more within a texture class than between classes. To examine the impact of using soil texture class to predict SHPS, we run the Noah land surface model for a wide variety of measured SHPs. We find that across a range of vegetation cover (5 - 80% cover) and climates (250 - 900 mm mean annual precipitation), soil texture class only explains 5% of the variance expected from the real distribution of SHPs. We then show that modifying SHPs can drastically improve model performance. We compare two methods of estimating SHPs: (1) inverse method, and (2) soil texture class. Compared to texture class, inverse modeling reduces errors between measured and modeled latent heat flux from 88 to 28 w/m(exp 2). Additionally we find that with increasing vegetation cover the importance of SHPs decreases and that the van Genuchten m parameter becomes less important, while the saturated conductivity becomes more important.

  15. Implementing ground surface deformation tools to characterize field-scale properties of a fractured aquifer during a short hydraulic test

    Science.gov (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Boudin, Frédérick; Durand, Stéphane

    2016-04-01

    In naturally fractured reservoirs, fluid flow is governed by the structural and hydromechanical properties of fracture networks or conductive fault zones. In order to ensure a sustained exploitation of resources or to assess the safety of underground storage, it is necessary to evaluate these properties. As they generally form highly heterogeneous and anisotropic reservoirs, fractured media may be well characterized by means of several complementary experimental methods or sounding techniques. In this framework, the observation of ground deformation has been proved useful to gain insight of a fractured reservoir's geometry and hydraulic properties. Commonly, large conductive structures like faults can be studied from surface deformation from satellite methods at monthly time scales, whereas meter scale fractures have to be examined under short-term in situ experiments using high accuracy intruments like tiltmeters or extensometers installed in boreholes or at the ground's surface. To the best of our knowledge, the feasability of a field scale (~ 100 m) characterization of a fractured reservoir with geodetic tools in a short term experiment has not yet been addressed. In the present study, we implement two complementary ground surface geodetic tools, namely tiltmetry and optical leveling, to monitor the deformation induced by a hydraulic recovery test at the Ploemeur hydrological observatory (France). Employing a simple purely elastic modeling approach, we show that the joint use of time constraining data (tilt) and spatially constraining data (vertical displacement) makes it possible to evaluate the geometry (dip, root depth and lateral extent) and the storativity of a hydraulically active fault zone, in good agreement with previous studies. Hence we demonstrate that the adequate use of two complementary ground surface deformation methods offer a rich insight of large conductive structure's properties using a single short term hydraulic load. Ground surface

  16. Electronic properties of graphene antidot lattices

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Pedersen, Jesper Goor; Flindt, C.

    2009-01-01

    Graphene antidot lattices constitute a novel class of nano-engineered graphene devices with controllable electronic and optical properties. An antidot lattice consists of a periodic array of holes that causes a band gap to open up around the Fermi level, turning graphene from a semimetal...... into a semiconductor. We calculate the electronic band structure of graphene antidot lattices using three numerical approaches with different levels of computational complexity, efficiency and accuracy. Fast finite-element solutions of the Dirac equation capture qualitative features of the band structure, while full...

  17. Structural and electronic properties for atomic clusters

    Science.gov (United States)

    Sun, Yan

    We have studied the structural and electronic properties for different groups of atomic clusters by doing a global search on the potential energy surface using the Taboo Search in Descriptors Space (TSDS) method and calculating the energies with Kohn-Sham Density Functional Theory (KS-DFT). Our goal was to find the structural and electronic principles for predicting the structure and stability of clusters. For Ben (n = 3--20), we have found that the evolution of geometric and electronic properties with size reflects a change in the nature of the bonding from van der Waals to metallic and then bulk-like. The cluster sizes with extra stability agree well with the predictions of the jellium model. In the 4d series of transition metal (TM) clusters, as the d-type bonding becomes more important, the preferred geometric structure changes from icosahedral (Y, Zr), to distorted compact structures (Nb, Mo), and FCC or simple cubic crystal fragments (Tc, Ru, Rh) due to the localized nature of the d-type orbital. Analysis of relative isomer energies and their electronic density of states suggest that these clusters tend to follow a maximum hardness principle (MHP). For A4B12 clusters (A is divalent, B is monovalent), we found unusually large (on average 1.95 eV) HOMO-LUMO gap values. This shows the extra stability at an electronic closed shell (20 electrons) predicted by the jellium model. The importance of symmetry, closed electronic and ionic shells in stability is shown by the relative stability of homotops of Mg4Ag12 which also provides support for the hypothesis that clusters that satisfy more than one stability criterion ("double magic") should be particularly stable.

  18. Hydraulic properties of dune sandebentonite mixtures of insulation barriers for hazardous waste facilities

    Institute of Scientific and Technical Information of China (English)

    M.K. Gueddouda; I. Goual; B. Benabed; S. Taibi; N. Aboubekr

    2016-01-01

    This paper presents a study on the valorization of local materials such as desert dune sand obtained from Laghouat region in the South Algeria and mine bentonite intended for the realization of liner base layers in the conception of insulation barriers for hazardous waste facilities. In practice, an economical mixture satisfying the hydraulic requirements is generally concerned. First, in order to get an adequate dune sand ebentonite mixture compacted to the optimum Proctor condition, an investigation on saturated hy-draulic behavior is carried out in this study for different mixtures. Using oedometer test (indirect measurement), the adequate mixture of 85% dune sand and 15% bentonite satisfies the conditions of saturated hydraulic conductivity (k 3 MPa). This technique is conducted based on the exploitation of the water retention curve in order to establish the relationships between hydraulic conductivity, degree of saturation, and suction. It shows that the hydraulic conductivity increases with the degree of saturation and decreases with the suction. However, the hydraulic conductivity has a constant value for suctions larger than 20 MPa. The selected dune sandebentonite mixture satisfies the regulation requirements and hence constitutes a good local and economical material for the conception of barrier base liners.

  19. Scale dependence of the hydraulic properties of a fractured aquifer estimated using transfer functions

    Science.gov (United States)

    Pedretti, D.; Russian, A.; Sanchez-Vila, X.; Dentz, M.

    2016-07-01

    We present an investigation of the scale dependence of hydraulic parameters in fractured media based on the concept of transfer functions (TF). TF methods provide an inexpensive way to perform aquifer parameter estimation, as they relate the fluctuations of an observation time series (hydraulic head fluctuations) to an input function (aquifer recharge) in frequency domain. Fractured media are specially sensitive to this approach as hydraulic parameters are strongly scale-dependent, involving nonstationary statistical distributions. Our study is based on an extensive data set, involving up to 130 measurement points with periodic head measurements that in some cases extend for more than 30 years. For each point, we use a single-porosity and dual-continuum TF formulation to obtain a distribution of transmissivities and storativities in both mobile and immobile domains. Single-porosity TF estimates are compared with data obtained from the interpretation of over 60 hydraulic tests (slug and pumping tests). Results show that the TF is able to estimate the scale dependence of the hydraulic parameters, and it is consistent with the behavior of estimates from traditional hydraulic tests. In addition, the TF approach seems to provide an estimation of the system variance and the extension of the ergodic behavior of the aquifer (estimated in approximately 500 m in the analyzed aquifer). The scale dependence of transmissivity seems to be independent from the adopted formulation (single or dual-continuum), while storativity is more sensitive to the presence of multiple continua.

  20. Hydraulic properties of dune sand–bentonite mixtures of insulation barriers for hazardous waste facilities

    Directory of Open Access Journals (Sweden)

    M.K. Gueddouda

    2016-08-01

    Full Text Available This paper presents a study on the valorization of local materials such as desert dune sand obtained from Laghouat region in the South Algeria and mine bentonite intended for the realization of liner base layers in the conception of insulation barriers for hazardous waste facilities. In practice, an economical mixture satisfying the hydraulic requirements is generally concerned. First, in order to get an adequate dune sand–bentonite mixture compacted to the optimum Proctor condition, an investigation on saturated hydraulic behavior is carried out in this study for different mixtures. Using oedometer test (indirect measurement, the adequate mixture of 85% dune sand and 15% bentonite satisfies the conditions of saturated hydraulic conductivity (k  3 MPa. This technique is conducted based on the exploitation of the water retention curve in order to establish the relationships between hydraulic conductivity, degree of saturation, and suction. It shows that the hydraulic conductivity increases with the degree of saturation and decreases with the suction. However, the hydraulic conductivity has a constant value for suctions larger than 20 MPa. The selected dune sand–bentonite mixture satisfies the regulation requirements and hence constitutes a good local and economical material for the conception of barrier base liners.

  1. Physical, Hydraulic, and Transport Properties of Sediments and Engineered Materials Associated with Hanford Immobilized Low-Activity Waste

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Z. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meyer, Philip D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thomle, Jonathan N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-02-28

    Current plans for treatment and disposal of immobilized low-activity waste (ILAW) from Hanford’s underground waste storage tanks include vitrification and storage of the glass waste form in a nearsurface disposal facility. This Integrated Disposal Facility (IDF) is located in the 200 East Area of the Hanford Central Plateau. Performance assessment (PA) of the IDF requires numerical modeling of subsurface flow and reactive transport processes over very long periods (thousands of years). The models used to predict facility performance require parameters describing various physical, hydraulic, and transport properties. This report provides updated estimates of physical, hydraulic, and transport properties and parameters for both near- and far-field materials, intended for use in future IDF PA modeling efforts. Previous work on physical and hydraulic property characterization for earlier IDF PA analyses is reviewed and summarized. For near-field materials, portions of this document and parameter estimates are taken from an earlier data package. For far-field materials, a critical review is provided of methodologies used in previous data packages. Alternative methods are described and associated parameters are provided.

  2. Improvement of diesel engine performance by hydraulically powered electronic control (mechatronics) system. Hakuyo diesel kikan no mechatronics system ni yoru seino kojo

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, K.; Nakamura, Y.; Kajima, T.; Sato, S.; Fujii, T.; Tobe, Y. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan))

    1992-07-20

    This paper describes new hydraulically-actuated mechanisms for both fuel injection and inlet/exhaust valve operation of diesel engines through solenoid valves, which obviate the conventional cam-driven system. These mechanisms were integrated with an electronic control unit also developed in this study and they were mounted as a mechatronics system'' on a power-increased single-cylinder engine. This mechatronics system was mainly composed of an injection control. boost and accumulation component, an inlet and exhaust valve control component, a solenoid valve, an electronic control equipment, a hydraulic power unit, and a maneuvering unit. The verification test was carried out for the improvement of diesel engine performance by the hydraulically powered mechatronics system. As a result, it was proved not only that these mechanisms provide stable operating characteristics over a wide range of conditions, but also that the electronic control system allows accurate, smooth response. 3 refs., 23 figs., 2 tabs.

  3. The electronic spectral properties of gallic acid

    Science.gov (United States)

    Fink, David W.; Stong, John D.

    The electronic spectral properties of gallic acid (3,4,5-trihydroxybenzoic acid), a chemiluminescence reagent which is unstable in oxygenated aqueous solution, have been determined under conditions regulated to retard decomposition. The characteristic blue and red shifts in the u.v. absorption spectra which accompany carboxyl and phenol dissociation, respectively, are in accord with the trends usually observed for these functional groups. The dianionic species exhibits a fluorescence emission band with a peak at 370 nm under 300-nm excitation.

  4. Electronic Properties of Ordered Ladder Polymers

    Science.gov (United States)

    1989-01-01

    DHTAP.X" + NO. Electron Spin Resonance (ESR) spectroscopy will be used to confirm the nature of these later complexes in future studies. Figure...b) stirring of the monomer solution with a magnetic stirring bar; and (c) no air bubbling through the solution and no stirring. The product recovered...The electrochemical properties of BBL film were studied by cyclic voltammetry at neutral pH in non-aqueous electrolyte and as a funtion of pH in aqueous

  5. Electronic and transport properties of kinked graphene

    DEFF Research Database (Denmark)

    Rasmussen, Jesper Toft; Gunst, Tue; Bøggild, Peter

    2013-01-01

    Local curvature, or bending, of a graphene sheet is known to increase the chemical reactivity presenting an opportunity for templated chemical functionalisation. Using first-principles calculations based on density functional theory (DFT), we investigate the reaction barrier reduction...... for the adsorption of atomic hydrogen at linear bends in graphene. We find a significant barrier lowering (≈15%) for realistic radii of curvature (≈20 Å) and that adsorption along the linear bend leads to a stable linear kink. We compute the electronic transport properties of individual and multiple kink lines......, and demonstrate how these act as efficient barriers for electron transport. In particular, two parallel kink lines form a graphene pseudo-nanoribbon structure with a semimetallic/semiconducting electronic structure closely related to the corresponding isolated ribbons; the ribbon band gap translates...

  6. A mechanistic model (BCC-PSSICO) to predict changes in the hydraulic properties for bio-amended variably saturated soils

    Science.gov (United States)

    Carles Brangarí, Albert; Sanchez-Vila, Xavier; Freixa, Anna; M. Romaní, Anna; Rubol, Simonetta; Fernà ndez-Garcia, Daniel

    2017-01-01

    The accumulation of biofilms in porous media is likely to influence the overall hydraulic properties and, consequently, a sound understanding of the process is required for the proper design and management of many technological applications. In order to bring some light into this phenomenon we present a mechanistic model to study the variably saturated hydraulic properties of bio-amended soils. Special emphasis is laid on the distribution of phases at pore-scale and the mechanisms to retain and let water flow through, providing valuable insights into phenomena behind bioclogging. Our approach consists in modeling the porous media as an ensemble of capillary tubes, obtained from the biofilm-free water retention curve. This methodology is extended by the incorporation of a biofilm composed of bacterial cells and extracellular polymeric substances (EPS). Moreover, such a microbial consortium displays a channeled geometry that shrinks/swells with suction. Analytical equations for the volumetric water content and the relative permeability can then be derived by assuming that biomass reshapes the pore space following specific geometrical patterns. The model is discussed by using data from laboratory studies and other approaches already existing in the literature. It can reproduce (i) displacements of the retention curve toward higher saturations and (ii) permeability reductions of distinct orders of magnitude. Our findings also illustrate how even very small amounts of biofilm may lead to significant changes in the hydraulic properties. We, therefore, state the importance of accounting for the hydraulic characteristics of biofilms and for a complex/more realistic geometry of colonies at the pore-scale.

  7. Bole girdling affects metabolic properties and root, trunk and branch hydraulics of young ponderosa pine trees.

    Science.gov (United States)

    Domec, Jean-Christophe; Pruyn, Michele L

    2008-10-01

    Effects of trunk girdling on seasonal patterns of xylem water status, water transport and woody tissue metabolic properties were investigated in ponderosa pine (Pinus ponderosa Dougl. ex P. Laws.) trees. At the onset of summer, there was a sharp decrease in stomatal conductance (g(s)) in girdled trees followed by a full recovery after the first major rainfall in September. Eliminating the root as a carbohydrate sink by girdling induced a rapid reversible reduction in g(s). Respiratory potential (a laboratory measure of tissue-level respiration) increased above the girdle (branches and upper trunk) and decreased below the girdle (lower trunk and roots) relative to control trees during the growing season, but the effect was reversed after the first major rainfall. The increase in branch respiratory potential induced by girdling suggests that the decrease in g(s) was caused by the accumulation of carbohydrates above the girdle, which is consistent with an observed increase in leaf mass per area in the girdled trees. Trunk girdling did not affect native xylem embolism or xylem conductivity. Both treated and control trunks experienced loss of xylem conductivity ranging from 10% in spring to 30% in summer. Girdling reduced xylem growth and sapwood to leaf area ratio, which in turn reduced branch leaf specific conductivity (LSC). The girdling-induced reductions in g(s) and transpiration were associated with a decrease in leaf hydraulic conductance. Two years after girdling, when root-to-shoot phloem continuity had been restored, girdled trees had a reduced density of new wood, which increased xylem conductivity and whole-tree LSC, but also vulnerability to embolism.

  8. Unsaturated hydraulic properties of Sphagnum moss and peat reveal trimodal pore-size distributions

    Science.gov (United States)

    Weber, Tobias K. D.; Iden, Sascha C.; Durner, Wolfgang

    2017-01-01

    In ombrotrophic peatlands, the moisture content of the vadose zone (acrotelm) controls oxygen diffusion rates, redox state, and the turnover of organic matter. Whether peatlands act as sinks or sources of atmospheric carbon thus relies on variably saturated flow processes. The Richards equation is the standard model for water flow in soils, but it is not clear whether it can be applied to simulate water flow in live Sphagnum moss. Transient laboratory evaporation experiments were conducted to observe evaporative water fluxes in the acrotelm, containing living Sphagnum moss, and a deeper layer containing decomposed moss peat. The experimental data were evaluated by inverse modeling using the Richards equation as process model for variably-saturated flow. It was tested whether water fluxes and time series of measured pressure heads during evaporation could be simulated. The results showed that the measurements could be matched very well providing the hydraulic properties are represented by a suitable model. For this, a trimodal parametrization of the underlying pore-size distribution was necessary which reflects three distinct pore systems of the Sphagnum constituted by inter-, intra-, and inner-plant water. While the traditional van Genuchten-Mualem model led to great discrepancies, the physically more comprehensive Peters-Durner-Iden model which accounts for capillary and noncapillary flow, led to a more consistent description of the observations. We conclude that the Richards equation is a valid process description for variably saturated moisture fluxes over a wide pressure range in peatlands supporting the conceptualization of the live moss as part of the vadose zone.

  9. Understanding the influence of biofilm accumulation on the hydraulic properties of soils: a mechanistic approach based on experimental data

    Science.gov (United States)

    Carles Brangarí, Albert; Sanchez-Vila, Xavier; Freixa, Anna; Romaní, Anna M.; Fernàndez-Garcia, Daniel

    2017-04-01

    The distribution, amount, and characteristics of biofilms and its components govern the capacity of soils to let water through, to transport solutes, and the reactions occurring. Therefore, unraveling the relationship between microbial dynamics and the hydraulic properties of soils is of concern for the management of natural systems and many technological applications. However, the increased complexity of both the microbial communities and the geochemical processes entailed by them causes that the phenomenon of bioclogging remains poorly understood. This highlights the need for a better understanding of the microbial components such as live and dead bacteria and extracellular polymeric substances (EPS), as well as of their spatial distribution. This work tries to shed some light on these issues, providing experimental data and a new mechanistic model that predicts the variably saturated hydraulic properties of bio-amended soils based on these data. We first present a long-term laboratory infiltration experiment that aims at studying the temporal variation of selected biogeochemical parameters along the infiltration path. The setup consists of a 120-cm-high soil tank instrumented with an array of sensors plus soil and liquid samplers. Sensors measured a wide range of parameters in continuous, such as volumetric water content, electrical conductivity, temperature, water pressure, soil suction, dissolved oxygen, and pH. Samples were kept for chemical and biological analyses. Results indicate that: i) biofilm is present at all depths, denoting the potential for deep bioclogging, ii) the redox conditions profile shows different stages, indicating that the community was adapted to changing redox conditions, iii) bacterial activity, richness and diversity also exhibit zonation with depth, and iv) the hydraulic properties of the soil experienced significant changes as biofilm proliferated. Based on experimental evidences, we propose a tool to predict changes in the

  10. Electronic transport properties in graphene oxide frameworks

    Science.gov (United States)

    Zhu, P.; Cruz-Silva, E.; Meunier, V.

    2014-02-01

    The electronic transport properties in multiterminal graphene oxide framework (GOF) materials are investigated using a combination of theoretical and computational methods. GOFs make up four-terminal [origin=c]90H-shaped GNR-L-GNR junctions where sandwiched boronic acid molecules (L) are covalently linked to two graphene nanoribbons (GNRs) of different edge chiralities. The transport properties are governed by both tunneling and quasiresonant regimes. We determine how the presence of linker molecules affects the transport properties and establish that the through-molecule transport properties can be tuned by varying the chemical composition of the pillar molecules but are not significantly modified when changing the type of electrodes from zigzag GNRs to armchair GNRs. In addition, we find that in multilinker systems containing two parallel molecules in the device area, the coupling between the molecules can lead to both constructive and destructive quantum interferences. We also examine the inability of the classical Kirchhoff's superposition law to account for electron flow in multilinker GOF nanonetworks.

  11. Estimation of Hydraulic properties of a sandy soil using ground-based active and passive microwave remote sensing

    KAUST Repository

    Jonard, François

    2015-06-01

    In this paper, we experimentally analyzed the feasibility of estimating soil hydraulic properties from 1.4 GHz radiometer and 0.8-2.6 GHz ground-penetrating radar (GPR) data. Radiometer and GPR measurements were performed above a sand box, which was subjected to a series of vertical water content profiles in hydrostatic equilibrium with a water table located at different depths. A coherent radiative transfer model was used to simulate brightness temperatures measured with the radiometer. GPR data were modeled using full-wave layered medium Green\\'s functions and an intrinsic antenna representation. These forward models were inverted to optimally match the corresponding passive and active microwave data. This allowed us to reconstruct the water content profiles, and thereby estimate the sand water retention curve described using the van Genuchten model. Uncertainty of the estimated hydraulic parameters was quantified using the Bayesian-based DREAM algorithm. For both radiometer and GPR methods, the results were in close agreement with in situ time-domain reflectometry (TDR) estimates. Compared with radiometer and TDR, much smaller confidence intervals were obtained for GPR, which was attributed to its relatively large bandwidth of operation, including frequencies smaller than 1.4 GHz. These results offer valuable insights into future potential and emerging challenges in the development of joint analyses of passive and active remote sensing data to retrieve effective soil hydraulic properties.

  12. Ecological Engineering Approaches to Improve Hydraulic Properties of Infiltration Basins Designed for Groundwater Recharge.

    Science.gov (United States)

    Gette-Bouvarot, Morgane; Volatier, Laurence; Lassabatere, Laurent; Lemoine, Damien; Simon, Laurent; Delolme, Cécile; Mermillod-Blondin, Florian

    2015-08-18

    Infiltration systems are increasingly used in urban areas for groundwater recharge. The reduction of sediment permeability by physical and/or biological processes is a major problem in management of infiltration systems often requiring expensive engineering operations for hydraulic performance maintenance. To reduce these costs and for the sake of sustainable development, we proposed to evaluate the ability of ecological engineering approaches to reduce the biological clogging of infiltration basins. A 36-day field-scale experiment using enclosures was performed to test the influences of abiotic (light reduction by shading) and biotic (introduction of the macrophyte Vallisneria spiralis (L.) or the gastropod Viviparus viviparus (Linnaeus, 1758)) treatments to limit benthic biofilm biomass and to maintain or even increase hydraulic performances. We coupled biological characterization of sediment (algal biomass, bacterial abundance, total organic carbon, total nitrogen, microbial enzymatic activity, photosynthetic activity, and photosystem II efficiency) with hydraulic conductivity measurements to assess the effects of treatments on sediment permeability. The grazer Viviparus viviparus significantly reduced benthic biofilm biomass and enhanced hydraulic conductivity. The other treatments did not produce significant changes in hydraulic conductivity although Vallisneria spiralis affected photosynthetic activity of biofilm. Finally, our results obtained with Viviparus viviparus are promising for the development of ecological engineering solutions to prevent biological fouling in infiltration systems.

  13. Bayesian estimation of the hydraulic and solute transport properties of a small-scale unsaturated soil column

    Directory of Open Access Journals (Sweden)

    Moreira Paulo H. S.

    2016-03-01

    Full Text Available In this study the hydraulic and solute transport properties of an unsaturated soil were estimated simultaneously from a relatively simple small-scale laboratory column infiltration/outflow experiment. As governing equations we used the Richards equation for variably saturated flow and a physical non-equilibrium dual-porosity type formulation for solute transport. A Bayesian parameter estimation approach was used in which the unknown parameters were estimated with the Markov Chain Monte Carlo (MCMC method through implementation of the Metropolis-Hastings algorithm. Sensitivity coefficients were examined in order to determine the most meaningful measurements for identifying the unknown hydraulic and transport parameters. Results obtained using the measured pressure head and solute concentration data collected during the unsaturated soil column experiment revealed the robustness of the proposed approach.

  14. Impact of High Concentration Solutions on Hydraulic Properties of Geosynthetic Clay Liner Materials

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2012-11-01

    Full Text Available This study focuses on the impact of landfill high concentration solutions erosion on geosynthetic clay liner (GCL materials permeability. The permeation tests on the GCL, submerged using different kinds of solutions with different concentrations, were carried out systematically by taking these chemical solutions as permeant liquids. Based on seasonal variations of ion concentrations in Chenjiachong landfill leachate (Wuhan Province, CaCl2, MgCl2, NaCl, and KCl were selected as chemical attack solutions to carry out experimental investigations under three concentrations (50 mM, 100 mM, 200 mM and soak times (5, 10, and 20 days. The variation law of the GCL hydraulic conductivity under different operating conditions was analyzed. The relationship between GCL hydraulic conductivity, chemical solutions categories, concentrations, and soak times were further discussed. The GCL hydraulic conductivity, when soaked and permeated with high concentration chemical solutions, increases several times or exceeds two orders of magnitude, as compared with the permeation test under normal conditions that used water as the permeant liquid. This reveals that GCL is very susceptible to chemical attack. For four chemical solutions, the chemical attack effect on GCL hydraulic conductivity is CaCl2 > MgCl2 > KCl > NaCl. The impact of soak times on GCL hydraulic conductivity is the cooperative contribution of the liner chemical attack reaction and hydration swelling. A longer soak time results in a more advantageous hydration swelling effect. The chemical attack reaction restrains the hydration swelling of the GCL. Moreover, the GCL hydraulic conductivity exponentially decreases with the increased amplitude of thickness.

  15. Electronic properties of a biased graphene bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Eduardo V; Lopes dos Santos, J M B [CFP and Departamento de Fisica, Faculdade de Ciencias Universidade do Porto, P-4169-007 Porto (Portugal); Novoselov, K S; Morozov, S V; Geim, A K [Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Peres, N M R [Centre of Physics and Departamento de Fisica, Universidade do Minho, P-4710-057 Braga (Portugal); Nilsson, Johan; Castro Neto, A H [Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215 (United States); Guinea, F [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain)

    2010-05-05

    We study, within the tight-binding approximation, the electronic properties of a graphene bilayer in the presence of an external electric field applied perpendicular to the system-a biased bilayer. The effect of the perpendicular electric field is included through a parallel plate capacitor model, with screening correction at the Hartree level. The full tight-binding description is compared with its four-band and two-band continuum approximations, and the four-band model is shown to always be a suitable approximation for the conditions realized in experiments. The model is applied to real biased bilayer devices, made out of either SiC or exfoliated graphene, and good agreement with experimental results is found, indicating that the model is capturing the key ingredients, and that a finite gap is effectively being controlled externally. Analysis of experimental results regarding the electrical noise and cyclotron resonance further suggests that the model can be seen as a good starting point for understanding the electronic properties of graphene bilayer. Also, we study the effect of electron-hole asymmetry terms, such as the second-nearest-neighbour hopping energies t' (in-plane) and {gamma}{sub 4} (inter-layer), and the on-site energy {Delta}.

  16. Electronic properties of a biased graphene bilayer.

    Science.gov (United States)

    Castro, Eduardo V; Novoselov, K S; Morozov, S V; Peres, N M R; Lopes dos Santos, J M B; Nilsson, Johan; Guinea, F; Geim, A K; Castro Neto, A H

    2010-05-01

    We study, within the tight-binding approximation, the electronic properties of a graphene bilayer in the presence of an external electric field applied perpendicular to the system-a biased bilayer. The effect of the perpendicular electric field is included through a parallel plate capacitor model, with screening correction at the Hartree level. The full tight-binding description is compared with its four-band and two-band continuum approximations, and the four-band model is shown to always be a suitable approximation for the conditions realized in experiments. The model is applied to real biased bilayer devices, made out of either SiC or exfoliated graphene, and good agreement with experimental results is found, indicating that the model is capturing the key ingredients, and that a finite gap is effectively being controlled externally. Analysis of experimental results regarding the electrical noise and cyclotron resonance further suggests that the model can be seen as a good starting point for understanding the electronic properties of graphene bilayer. Also, we study the effect of electron-hole asymmetry terms, such as the second-nearest-neighbour hopping energies t' (in-plane) and γ(4) (inter-layer), and the on-site energy Δ.

  17. Fabrication and Electronic Properties of CZTSe

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, Douglas M.; McCandless, Brian E.; Haight, Richard; Mitzi, David B.; Birkmire, Robert W.

    2014-06-09

    To solve the open circuit voltage limitation in Cu2ZnSn(SSe)4 further understanding of defects and the fundamental properties of the bulk material are needed. Although there are a number of literature reports of single crystals, the vast majority are made with a flux agent such as iodine which could potentially act as a dopant or affect defect properties in the material. In this report 2-5 mm single crystals of CZTSe of different compositions were achieved by solid state reaction of elements in a sealed ampoule below the melt temperature without a flux agent. The bulk composition of single crystals are compared to electronic and opto-electronic properties from Hall and photoluminescence (PL) measurements. Intergrain measurements showed record hole mobilities for pure CZTSe in excess of 100 cm2/Vs. PL intensity and uniformity were improved by removing inhomogeneities and surface phases through crystal polishing, followed by Br-methanol etching to remove polishing damage. Despite processing conditions more favorable to equilibrium crystal conditions, a broad PL peak is observed with significant luminescence below the band-gap similar to literature reports of band-tailing. A more detailed publication of results and further experiments will be reported in an upcoming Journal of Photovoltaics.

  18. Electronic and optical properties of Praseodymium trifluoride

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Sapan Mohan, E-mail: smsaini.phy@nitrr.ac.in [Department of Physics, National Institute of Technology, Raipur-492010, (CG) (India)

    2014-10-24

    We report the role of f- states on electronic and optical properties of Praseodymium trifluoride (PrF{sub 3}) compound. Full potential linearized augmented plane wave (FPLAPW) method with the inclusion of spin orbit coupling has been used. We employed the local spin density approximation (LSDA) and Coulomb-corrected local spin density approximation (LSDA+U). LSDA+U is known for treating the highly correlated 4f electrons properly. Our theoretical investigation shows that LSDA+U approximation reproduce the correct insulating ground state of PrF{sub 3}. On the other hand there is no significant difference of reflectivity calculated by LSDA and LSDA+U. We find that the reflectivity for PrF{sub 3} compound stays low till around 7 eV which is consistent with their large energy gaps. Our calculated reflectivity compares well with the experimental data. The results are analyzed in the light of transitions involved.

  19. Electronic transport properties of (fluorinated) metal phthalocyanine

    KAUST Repository

    Fadlallah, M M

    2015-12-21

    The magnetic and transport properties of the metal phthalocyanine (MPc) and F16MPc (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Ag) families of molecules in contact with S–Au wires are investigated by density functional theory within the local density approximation, including local electronic correlations on the central metal atom. The magnetic moments are found to be considerably modified under fluorination. In addition, they do not depend exclusively on the configuration of the outer electronic shell of the central metal atom (as in isolated MPc and F16MPc) but also on the interaction with the leads. Good agreement between the calculated conductance and experimental results is obtained. For M = Ag, a high spin filter efficiency and conductance is observed, giving rise to a potentially high sensitivity for chemical sensor applications.

  20. Electronic properties of anodic bonded graphene

    Science.gov (United States)

    Deepika, Balan, Adrian; Shukla, Abhay; Walter, Escoffier; Kumar, Rakesh

    2013-02-01

    Here, we report electronic properties of graphene field-effect transistor in a magnetic field of 9.0 tesla. Raman spectroscopy on graphene sample prepared by anodic bonding method shows it to be of the highest quality. The observation of charge neutrality point at a positive gate voltage is due to hole doping in the sample from the immobile oxygen ions created during anodic bonding process. Hysteresis observed in the longitudinal resistance (between source and drain) while sweeping voltage at gate in a loop may be due to high viscosity of polythene oxide matrix for mobile Li ions. The longitudinal resistance as a function of gate voltage Vg shows that both kind of charge carriers (electron and hole) can be doped in graphene, which is further ascertained by the Hall measurements.

  1. Unsaturated hydraulic properties of xerophilous mosses: towards implementation of moss covered soils in hydrological models

    NARCIS (Netherlands)

    Voortman, B.R.; Bartholomeus, R.P.; Bodegom, van P.M.; Gooren, H.P.A.; Zee, van der S.E.A.T.M.; Witte, J.P.M.

    2014-01-01

    Evaporation from mosses and lichens can form a major component of the water balance, especially in ecosystems where mosses and lichens often grow abundantly, such as tundra, deserts and bogs. To facilitate moss representation in hydrological models, we parameterized the unsaturated hydraulic propert

  2. Electronic and optical properties of lead iodide

    DEFF Research Database (Denmark)

    Ahuja, R.; Arwin, H.; Ferreira da Silva, A.

    2002-01-01

    The electronic properties and the optical absorption of lead iodide (PbI2) have been investigated experimentally by means of optical absorption and spectroscopic ellipsometry, and theoretically by a full-potential linear muffin-tin-orbital method. PbI2 has been recognized as a very promising...... detector material with a large technological applicability. Its band-gap energy as a function of temperature has also been measured by optical absorption. The temperature dependence has been fitted by two different relations, and a discussion of these fittings is given. ©2002 American Institute of Physics....

  3. Electronic Properties in a Hierarchical Multilayer Structure

    Institute of Scientific and Technical Information of China (English)

    ZHU Chen-Ping; XIONG Shi-Jie

    2001-01-01

    We investigate electronic properties of a hierarchical multilayer structure consisting of stacking of barriers and wells. The structure is formed in a sequence of generations, each of which is constructed with the same pattern but with the previous generation as the basic building blocks. We calculate the transmission spectrum which shows the multifractal behavior for systems with large generation index. From the analysis of the average resistivity and the multifractal structure of the wavefunctions, we show that there exist different types of states exhibiting extended, localized and intermediate characteristics. The degree of localization is sensitive to the variation of the structural parameters.Suggestion of the possible experimental realization is discussed.

  4. Acrotelm pedogenesis of a Sphagnum bog is reflected in effective unsaturated hydraulic properties

    Science.gov (United States)

    Weber, Tobias K. D.; Iden, Sascha C.; Durner, Wolfgang

    2017-04-01

    In ombrotrophic peatlands, the moisture content of the vadose zone (acrotelm) controls oxygen diffusion rates, redox state, and the turnover of organic matter. Whether peatlands act as sinks or sources of atmospheric carbon thus relies on variably saturated flow processes. Modeling of these processes is crucial in assessing effects of changed environmental conditions on the future development of these ecosystems. The Richards equation (RE) is the standard model for water flow in soils, but it is not clear whether it can be applied to simulate water flow in live Sphagnum moss. To check the suitability of the RE to describe the water dynamics in drying moss and peat we conducted transient laboratory evaporation experiments on undisturbed samples from the entire acrotelm. The experimental data consisted of measured pressure heads in two depths and water fluxes, and were evaluated by inverse modelling using the RE as process model. The results showed that the measurements could be matched very well only if the soil hydraulic properties (SHPs) were represented by a suitable model. A successful parameterisation of the SHPs of the moss was based on pore-size distributions (PSD) which combine three distinct pore systems of the Sphagnum moss, reflecting an inter-, intra-, and inner-plant pore space. We had to extend the traditional van Genuchten-Mualem model to account for non-capillary water storage and flow to obtain consistent descriptions of the observations. For the deeper samples, the pedogenesis of the acrotelm, a process of compaction and biochemical degradation of the solid matrix, had considerably impact on the shape of the SHPs. The collapse of the inter-plant pores and their filling with smaller particles led gradually to bi-modal PSDs with increasing depth. This coincides with a homogenisation and a considerably reduction in horizontal variability of SHPs at greater depths. We conclude that the RE with adequate representation of SHPs is a valid process

  5. Limitation of Cell Elongation in Barley (Hordeum vulgare L.) Leaves Through Mechanical and Tissue-Hydraulic Properties.

    Science.gov (United States)

    Touati, Mostefa; Knipfer, Thorsten; Visnovitz, Tamás; Kameli, Abdelkrim; Fricke, Wieland

    2015-07-01

    The aim of the present study was to assess the mechanical and hydraulic limitation of growth in leaf epidermal cells of barley (Hordeum vulgare L.) in response to agents which affect cellular water (mercuric chloride, HgCl(2)) and potassium (cesium chloride, CsCl; tetraethylammonium, TEA) transport, pump activity of plasma membrane H(+)-ATPase and wall acidification (fusicoccin, FC). Cell turgor (P) was measured with the cell pressure probe, and cell osmotic pressure (π) was analyzed through picoliter osmometry of single-cell extracts. A wall extensibility coefficient (M) and tissue hydraulic conductance coefficient (L) were derived using the Lockhart equation. There was a significant positive linear relationship between relative elemental growth rate and P, which fit all treatments, with an overall apparent yield threshold of 0.368 MPa. Differences in growth between treatments could be explained through differences in P. A comparison of L and M showed that growth in all except the FC treatment was co-limited through hydraulic and mechanical properties, though to various extents. This was accompanied by significant (0.17-0.24 MPa) differences in water potential (ΔΨ) between xylem and epidermal cells in the leaf elongation zone. In contrast, FC-treated leaves showed ΔΨ close to zero and a 10-fold increase in L. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Temporal and spatial variability of soil hydraulic properties with implications on soil moisture simulations and irrigation scheduling

    Science.gov (United States)

    Feki, Mouna; Ravazzani, Giovanni; Mancini, Marco

    2017-04-01

    The increase in consumption of water resources, combined with climate change impacts, calls for new sources of water supply and/or different managements of available resources in agriculture. One way to increase the quality and quantity of agricultural production is using modern technology to make farms more "intelligent", the so-called "precision agriculture" also known as 'smart farming'. To this aim hydrological models play crucial role for their ability to simulate water movement from soil surface to groundwater and to predict onset of stress condition. However, optimal use of mathematical models requires intensive, time consuming and expensive collection of soil related parameters. Typically, soils to be characterized, exhibit large variations in space and time as well during the cropping cycle, due to biological processes and agricultural management practices: tillage, irrigation, fertilization and harvest. Soil properties are subjected to diverse physical and chemical changes that lead to a non-stability in terms of water and chemical movements within the soil and to the groundwater as well. The aim of this study is to assess the variability of soil hydraulic properties over a cropping cycle. The study site is a surface irrigated Maize field located in Secugnago (45◦13'31.70" N, 9 ◦36'26.82 E), in Northern Italy-Lombardy region. The field belongs to the Consortium Muzza Bassa Lodigiana, within which meteorological data together with soil moisture were monitored during the cropping season of 2015. To investigate soil properties variations, both measurements in the field and laboratory tests on both undisturbed and disturbed collected samples were performed. Soil samples were taken from different locations within the study area and at different depths (surface, 20cm and 40cm) at the beginning and in the middle of the cropping cycle and after the harvest. During three measuring campaigns, for each soil samples several parameters were monitored (Organic

  7. Development of property-transfer models for estimating the hydraulic properties of deep sediments at the Idaho National Engineering and Environmental Laboratory, Idaho

    Science.gov (United States)

    Winfield, Kari A.

    2005-01-01

    Because characterizing the unsaturated hydraulic properties of sediments over large areas or depths is costly and time consuming, development of models that predict these properties from more easily measured bulk-physical properties is desirable. At the Idaho National Engineering and Environmental Laboratory, the unsaturated zone is composed of thick basalt flow sequences interbedded with thinner sedimentary layers. Determining the unsaturated hydraulic properties of sedimentary layers is one step in understanding water flow and solute transport processes through this complex unsaturated system. Multiple linear regression was used to construct simple property-transfer models for estimating the water-retention curve and saturated hydraulic conductivity of deep sediments at the Idaho National Engineering and Environmental Laboratory. The regression models were developed from 109 core sample subsets with laboratory measurements of hydraulic and bulk-physical properties. The core samples were collected at depths of 9 to 175 meters at two facilities within the southwestern portion of the Idaho National Engineering and Environmental Laboratory-the Radioactive Waste Management Complex, and the Vadose Zone Research Park southwest of the Idaho Nuclear Technology and Engineering Center. Four regression models were developed using bulk-physical property measurements (bulk density, particle density, and particle size) as the potential explanatory variables. Three representations of the particle-size distribution were compared: (1) textural-class percentages (gravel, sand, silt, and clay), (2) geometric statistics (mean and standard deviation), and (3) graphical statistics (median and uniformity coefficient). The four response variables, estimated from linear combinations of the bulk-physical properties, included saturated hydraulic conductivity and three parameters that define the water-retention curve. For each core sample,values of each water-retention parameter were

  8. Effects of prescribed burning on ecophysiological, anatomical and stem hydraulic properties in Pinus pinea L.

    Science.gov (United States)

    Battipaglia, Giovanna; Savi, Tadeja; Ascoli, Davide; Castagneri, Daniele; Esposito, Assunta; Mayr, Stefan; Nardini, Andrea

    2016-08-01

    Prescribed burning (PB) is a widespread management technique for wildfire hazard abatement. Understanding PB effects on tree ecophysiology is key to defining burn prescriptions aimed at reducing fire hazard in Mediterranean pine plantations, such as Pinus pinea L. stands. We assessed physiological responses of adult P. pinea trees to PB using a combination of dendroecological, anatomical, hydraulic and isotopic analyses. Tree-ring widths, xylem cell wall thickness, lumen area, hydraulic diameter and tree-ring δ(13)C and δ(18)O were measured in trees on burned and control sites. Vulnerability curves were elaborated to assess tree hydraulic efficiency or safety. Despite the relatively intense thermal treatment (the residence time of temperatures above 50 °C at the stem surface ranged between 242 and 2239 s), burned trees did not suffer mechanical damage to stems, nor significant reduction in radial growth. Moreover, the PB did not affect xylem structure and tree hydraulics. No variations in (13)C-derived water use efficiency were recorded. This confirmed the high resistance of P. pinea to surface fire at the stem base. However, burned trees showed consistently lower δ(18)O values in the PB year, as a likely consequence of reduced competition for water and nutrients due to the understory burning, which increased both photosynthetic activity and stomatal conductance. Our multi-approach analysis offers new perspectives on post-fire survival strategies of P. pinea in an environment where fires are predicted to increase in frequency and severity during the 21st century.

  9. Inverse modeling of soil water content to estimate the hydraulic properties of a shallow soil and the associated weathered bedrock

    Science.gov (United States)

    Le Bourgeois, O.; Bouvier, C.; Brunet, P.; Ayral, P.-A.

    2016-10-01

    Modeling soil water flow requires the knowledge of numerous parameters associated to the water content and the soil hydraulic properties. Direct estimations of those parameters in laboratory require expensive equipment and the obtained parameters are generally not representative at the field scale because of the limitation of core sample size. Indirect methods such as inverse modeling are known to get efficient estimations and are easier to set up and process for large-scale studies. In this study, we investigated the capacity of an inverse modeling procedure to estimate the soil and the bedrock hydrodynamic properties only from in situ soil water content measurements at multiple depths under natural conditions. Multi-objective parameter optimization was performed using the HYDRUS-1D software and an external optimization procedure based on the NSGA-II algorithm. In a midslope shallow soil, water content was monitored at 3 depths, 20, 40, and 60 cm during 12 intense rainfall events, whose amounts ranged between 50 and 250 mm and duration between 1 and 5 days. The vertical profile was considered as 2 layers of soils above a third layer representing the weathered schist rock. This deep layer acted as a deep boundary condition, which features the bedrock permeability and water storage. Each layer was described trough the 6 parameters of the Mualem-van Genuchten formulation. The calibrated parameters appeared to have very low uncertainty while allowing a good modelisation of the observed water content variations. The calibrated saturated water content was close to the laboratory porosity measurements while the saturated hydraulic conductivity showed that the soil was highly permeable, as measured in the field. The inverse modeling approach allowed an estimation of the hydraulic properties of the bedrock layer where no measurement was available. The bedrock layer was found to have a low saturated hydraulic conductivity (model failed sometimes to reproduce the saturation

  10. Electronic and conformational properties of 2,3-benzodiazepine derivates

    Energy Technology Data Exchange (ETDEWEB)

    Pelaggi, M.; Girlanda, R. [Messina Univ. (Italy). Dip. di Fisica della Materia e Fisica dell`Ambiente; Chimirri, A.; Gitto, R. [Messina Univ. (Italy). Dip. Farmaco-Chimico

    1996-04-01

    The molecular geometric and electronic structures of 2,3-benzodiazepine derivates have been studied by means of the MNDO-PM3 method. A number of electronic properties have been computed and examined in order to find indication of the role of the electronic characteristics of the different molecules and their pharmacological properties. Theoretical data indicate that both electronic and structural properties appear responsible for the varying degree of anticonvulsant activity exhibited by compounds 1-4.

  11. Parameter estimation of soil hydraulic and thermal property functions for unsaturated porous media using the HYDRUS-2D code

    Directory of Open Access Journals (Sweden)

    Nakhaei Mohammad

    2014-03-01

    Full Text Available Knowledge of soil hydraulic and thermal properties is essential for studies involving the combined effects of soil temperature and water input on water flow and redistribution processes under field conditions. The objective of this study was to estimate the parameters characterizing these properties from a transient water flow and heat transport field experiment. Real-time sensors built by the authors were used to monitor soil temperatures at depths of 40, 80, 120, and 160 cm during a 10-hour long ring infiltration experiment. Water temperatures and cumulative infiltration from a single infiltration ring were monitored simultaneously. The soil hydraulic parameters (the saturated water content θ s, empirical shape parameters α and n, and the saturated hydraulic conductivity Ks and soil thermal conductivity parameters (coefficients b1, b2, and b3 in the thermal conductivity function were estimated from cumulative infiltration and temperature measurements by inversely solving a two-dimensional water flow and heat transport using HYDRUS-2D. Three scenarios with a different, sequentially decreasing number of optimized parameters were considered. In scenario 1, seven parameters (θ s, Ks, α, n, b1, b2, and b3 were included in the inverse problem. The results indicated that this scenario does not provide a unique solution. In scenario 2, six parameters (Ks, α, n, b1, b2, and b3 were included in the inverse problem. The results showed that this scenario also results in a non-unique solution. Only scenario 3, in which five parameters (α, n, b1, b2, and b3 were included in the inverse problem, provided a unique solution. The simulated soil temperatures and cumulative infiltration during the ring infiltration experiment compared reasonably well with their corresponding observed values.

  12. Reactive transport modelling to infer changes in soil hydraulic properties induced by non-conventional water irrigation

    Science.gov (United States)

    Valdes-Abellan, Javier; Jiménez-Martínez, Joaquín; Candela, Lucila; Jacques, Diederik; Kohfahl, Claus; Tamoh, Karim

    2017-06-01

    The use of non-conventional water (e.g., treated wastewater, desalinated water) for different purposes is increasing in many water scarce regions of the world. Its use for irrigation may have potential drawbacks, because of mineral dissolution/precipitation processes, such as changes in soil physical and hydraulic properties (e.g., porosity, permeability), modifying infiltration and aquifer recharge processes or blocking root growth. Prediction of soil and groundwater impacts is essential for achieving sustainable agricultural practices. A numerical model to solve unsaturated water flow and non-isothermal multicomponent reactive transport has been modified implementing the spatio-temporal evolution of soil physical and hydraulic properties. A long-term process simulation (30 years) of agricultural irrigation with desalinated water, based on a calibrated/validated 1D numerical model in a semi-arid region, is presented. Different scenarios conditioning reactive transport (i.e., rainwater irrigation, lack of gypsum in the soil profile, and lower partial pressure of CO2 (pCO2)) have also been considered. Results show that although boundary conditions and mineral soil composition highly influence the reactive processes, dissolution/precipitation of carbonate species is triggered mainly by pCO2, closely related to plant roots. Calcite dissolution occurs in the root zone, precipitation takes place under it and at the soil surface, which will lead a root growth blockage and a direct soil evaporation decrease, respectively. For the studied soil, a gypsum dissolution up to 40 cm depth is expected at long-term, with a general increase of porosity and hydraulic conductivity.

  13. Electronic processes in organic electronics bridging nanostructure, electronic states and device properties

    CERN Document Server

    Kudo, Kazuhiro; Nakayama, Takashi; Ueno, Nobuo

    2015-01-01

    The book covers a variety of studies of organic semiconductors, from fundamental electronic states to device applications, including theoretical studies. Furthermore, innovative experimental techniques, e.g., ultrahigh sensitivity photoelectron spectroscopy, photoelectron yield spectroscopy, spin-resolved scanning tunneling microscopy (STM), and a material processing method with optical-vortex and polarization-vortex lasers, are introduced. As this book is intended to serve as a textbook for a graduate level course or as reference material for researchers in organic electronics and nanoscience from electronic states, fundamental science that is necessary to understand the research is described. It does not duplicate the books already written on organic electronics, but focuses mainly on electronic properties that arise from the nature of organic semiconductors (molecular solids). The new experimental methods introduced in this book are applicable to various materials (e.g., metals, inorganic and organic mater...

  14. Greenland Analogue Project - Hydraulic properties of deformation zones and fracture domains at Forsmark, Laxemar and Olkiluoto for usage together with Geomodel version 1

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB (Sweden)); Stigsson, Martin (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Rhen, Ingvar (Sweco Environment AB (Sweden)); Engstroem, Jon (Geologian tutkimuskeskus (Finland)); Klint, Knut Erik (De Nationale Geologiske Undersoegelser for Danmark og Groenland (Denmark))

    2011-05-15

    The database of the GAP site is under development. In order to meet the data needs of the different modelling teams working with groundwater flow modelling it has been decided to compile trial data sets comprising structural-hydraulic properties suitable for flow modelling on different scales. The properties provided in this report are based on data and groundwater flow modelling studies conducted for three sites located in the Fennoscandian Shield, two of which are studied by SKB, Forsmark and Laxemar, and one by Posiva, Olkiluoto. The provided hydraulic properties provided here are simplified to facilitate a readily usage together with the GAP Geomodel version 1.

  15. Electronic transport properties of phenylacetylene molecular junctions

    Institute of Scientific and Technical Information of China (English)

    Liu Wen; Cheng Jie; Yah Cui-Xia; Li Hai-Hong; Wang Yong-Juan; Liu De-Sheng

    2011-01-01

    Electronic transport properties of a kind of phenylacetylene compound- (4-mercaptophenyl)-phenylacetylene are calculated by the first-principles method in the framework of density functional theory and the nonequilibrium Green's function formalism.The molecular junction shows an obvious rectifying behaviour at a bias voltage larger than 1.0 V.The rectification effect is attributed to the asymmetry of the interface contacts.Moreover,at a bias voltage larger than 2.0 V,which is not referred to in a relevant experiment [Fang L,Park J Y,Ma H,Jan A K Y and Salmeron M 2007 Langmuir 23 11522],we find a negative differential resistance phenomenon.The negative differential resistance effect may originate from the change of the delocalization degree of the molecular orbitais induced by the bias.

  16. Electron transport properties of cobalt doped polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, P [Department of Physics, National Institute of Technology, Durgapur, Deemed University, Mahatma Gandhi Avenue, PIN-713 209, West Bengal (India); Sarkar, A [Department of Physics, National Institute of Technology, Durgapur, Deemed University, Mahatma Gandhi Avenue, PIN-713 209, West Bengal (India); Meikap, A K [Department of Physics, National Institute of Technology, Durgapur, Deemed University, Mahatma Gandhi Avenue, PIN-713 209, West Bengal (India); Chattopadhyay, S K [Department of Physics, National Institute of Technology, Durgapur, Deemed University, Mahatma Gandhi Avenue, PIN-713 209, West Bengal (India); Chatterjee, S K [Department of Physics, National Institute of Technology, Durgapur, Deemed University, Mahatma Gandhi Avenue, PIN-713 209, West Bengal (India); Ghosh, M [Department of Physics, Ramananda College, Bishnupur, Bankura-722 122, West Bengal (India)

    2006-07-21

    Electrical transport properties of cobalt doped polyaniline in an aqueous ethanol medium were investigated in the temperature range 77 {<=} T {<=} 300 K, applying magnetic fields up to 1 T in the frequency range 20 Hz-1 MHz. The room temperature dc resistivity increases with increase in Co content. The dc resistivity and magnetoresistivity of these samples have been interpreted in terms of the variable range hopping theory. The frequency dependence of conductivity has been described by a power law {sigma}({omega}) {approx} {omega}{sup S}. The value of s is found to be temperature dependent, which shows a decreasing trend with temperature. The correlated barrier hopping model is the most likely mechanism for the electron transport. The different physical parameters were calculated from the experimental data.

  17. Comparison of hydraulic and hemolytic properties of different impeller designs of an implantable rotary blood pump by computational fluid dynamics.

    Science.gov (United States)

    Arvand, Arash; Hahn, Nicole; Hormes, Marcus; Akdis, Mustafa; Martin, Michael; Reul, Helmut

    2004-10-01

    A mixed-flow blood pump for long-term applications has been developed at the Helmholtz-Institute in Aachen, Germany. Central features of this implantable pump are a centrally integrated motor, a blood-immersed mechanical bearing, magnetic coupling of the impeller, and a shrouded impeller, which allows a relatively wide clearance. The aim of the study was a numerical analysis of hydraulic and hemolytic properties of different impeller design configurations. In vitro testing and numerical simulation techniques (computational fluid dynamics [CFD]) were applied to achieve a comprehensive overview. Pressure-flow charts were experimentally measured in a mock loop in order to validate the CFD data. In vitro hemolysis tests were performed at the main operating point of each impeller design. General flow patterns, pressure-flow charts, secondary flow rates, torque, and axial forces on the impeller were calculated by means of CFD. Furthermore, based on streak line techniques, shear stress (stress loading), exposure times, and volume percentage with critical stress loading have been determined. Comparison of CFD data with pressure head measurements showed excel-lent agreement. Also, impressive trend conformity was observed between in-vitro hemolysis results and numerical data. Comparison of design variations yielded clear trends and results. Design C revealed the best hydraulic and hemolytic properties and was chosen as the final design for the mixed-flow rotary blood pump.

  18. Electronic properties of epitaxial erbium silicide

    Science.gov (United States)

    Veuillen, J. Y.; Tan, T. A. Nguyen; Lollman, D. B. B.; Guerfi, N.; Cinti, R.

    1991-07-01

    The electronic properties of erbium silicide thin films epitaxially grown on Si(111) have been investigated by X-ray and UV photoemission. The crystalline quality has been checked by low-energy electron diffraction. XPS indicates very weak charge transfer and metallic bonding in the silicide phase. The Si 2p core-level and the Auger transition Si KLL present double structures revealing two types of Si sites, the first one attributed to Si atoms in normal sites in the silicide and the second one to Si atoms in the vicinity of the vacancies and (or) the Si substrate portions seen through the holes of the film. The UPS valence band of about 4 eV width and formed of Er(6s5d)-Si(3s3p) hybridized states disperses weakly in the direction perpendicular to the surface and strongly in the surface plane. This valence band is compared to the ones already measured on YSi-1.7 and GdSi-1.7 and to the calculations made for YSi2

  19. INVERSE METHOD TO DETERMINE SOIL HYDRAULIC PROPERTIES FROM TRANSIENT OUTFLOW EXPERIMENTS

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun; XU Shao-hui; LIU Jian-li; ZHANG Jia-bao

    2004-01-01

    Transient outflow experiments coupling with an inverse method are promising to derive soil hydraulic information. The water retention curves obtained from one-step and multi-step outflow experiments were compared with those from the pressure cell method. We found that in one-step experiments the increment of pressure would reduce the non-uniqueness of inverse technique and that in multi-step experiment the combination of cumulative outflow with pressure head in the objective function would improve the final estimation and also reduce the non-uniqueness of inverse problem.

  20. Vertical variations of soil hydraulic properties within two soil profiles and its relevance for soil water simulations

    Science.gov (United States)

    Schwen, Andreas; Zimmermann, Michael; Bodner, Gernot

    2014-08-01

    Numerical simulations of soil water dynamics can be valuable tools for the assessment of different soil and land management practices. For accurate simulations, the soil hydraulic properties (SHP), i.e. the hydraulic conductivity and water retention function have to be properly known. They can be either estimated from physical soil properties by pedotransfer functions (PTF) or measured. In most studies, soil profiles are analyzed and sampled with respect to their pedogenic horizons. While considerable effort has been put on horizontal spatial SHP variations, vertical changes within soil profiles have not been analyzed in detail. Therefore, the objectives of this study were (i) the SHP measurement along vertical transects within two soil profiles, (ii) to evaluate their spatial variation and correlation with physical soil properties, and (iii) to assess the impact of the SHP determination method and its spatial discretization on simulated soil water balance components. Two soils, an agriculturally used silty-loam Chernozem and a forested sandy Cambisol were sampled in 0.05 m increments along vertical transects. The parameters of a dual porosity model were derived using the evaporation method and scaling was applied to derive representative mean SHP parameters and scaling factors as a measure of spatial variability. State-space models described spatial variations of the scaling factors by physical soil properties. Simulations with HYDRUS 1D delivered the soil water balance for different climatic conditions with the SHP being estimated from horizon-wise PTFs, or discretized either sample-wise, according to the pedogenic horizons, or as hydrologically relevant units (hydropedological approach). Considerable SHP variations were found for both soil profiles. In the Chernozem, variations of the hydraulic conductivity were largest within the ploughed Ap-horizon and could be attributed to variations in soil structure (macropores). In the subsoil, soil water retention showed

  1. Examining the information content of time-lapse crosshole GPR data collected under different infiltration conditions to estimate unsaturated soil hydraulic properties

    DEFF Research Database (Denmark)

    Scholer, M.; Irving, J.; Zibar, Majken Caroline Looms

    2013-01-01

    by natural or artificial means, have been demonstrated in a number of studies to contain valuable information concerning the hydraulic properties of the unsaturated zone. Previous work in this domain has considered a variety of infiltration conditions and different amounts of time-lapse GPR data......Time-lapse geophysical data acquired during transient hydrological experiments are being increasingly employed to estimate subsurface hydraulic properties at the field scale. In particular, crosshole ground-penetrating radar (GPR) data, collected while water infiltrates into the subsurface either...... subsurface hydraulic properties as a function of depth, with forced infiltration offering the greatest potential for VGM parameter refinement because of the higher stressing of the hydrological system. Considering greater amounts of time-lapse data in the inversion procedure is also found to help refine VGM...

  2. Evaluating lysimeter drainage against soil deep percolation modeled with profile soil moisture, field tracer propagation, and lab measured soil hydraulic properties

    DEFF Research Database (Denmark)

    Vasquez, Vicente; Thomsen, Anton Gårde; Iversen, Bo Vangsø;

    them have been reported. To compare among methods, one year of four large-scale lysimeters drainage (D) was evaluated against modeled soil deep percolation using either profile soil moisture, bromide breakthrough curves from suction cups, or measured soil hydraulic properties in the laboratory...... model using field q, and 572 mm with the laboratory measured soil hydraulic properties. In conclusion, lysimeters presented the lowest D and can be considered as a lower bound for D; whereas either laboratory measured soil hydraulic properties or models calibrated with profile soil moisture yielded......Quantifying recharge to shallow aquifers via soil deep percolation is needed for sustainable management of water resources. This includes modeled predictions to address the effects of climate change on recharge. Different methods to estimate soil deep percolation exist but few comparisons among...

  3. Estimating the Hydraulic Properties of Mountainous Podzol Soils Using Inverse Modeling Methods

    Science.gov (United States)

    Kuraz, Michal; Jacka, Lukas; Havlicek, Vojtech; Pavlasek, Jirka; Pech, Pavel

    2016-04-01

    The aim of this research is an evaluation of the soil hydraulic parameters (SHP) for a mountainous podzolic soil profile. The SHPs for the lower layers can be identified using standard approaches - a single ring (SR) infiltration experiment and a Guelph permeameter (GP) measurement. However, the thickness of the top soil layer is often much lower than the depth required to embed an SR or GP device, and the SHP for the top soil layer exhibits large temporal and spatial changes due to changes in vegetation activity during the seasons and a distinct alternation of wetting and drying cycles. SHPs for the top soil layer are therefore very difficult to measure directly. The SHPs for the top soil layer were therefore identified here by inverse modeling of the SR infiltration process, where, especially, the initial unsteady part of the experiment can provide very useful data for evaluating the retention curve parameters and the saturated hydraulic conductivity. This inverse analysis is the main topic of this paper. We discuss issues in assigning the initial and boundary condition setup, and the influence of spatial and temporal discretization on the values of the identified SHPs. Since the infiltration process is a typical case of a model that describes the progressive breakthrough of the wetting curve, we made use of adaptive domain decomposition (dd-adaptivity) described by Kuraz et al. (2013, 2014, 2015) for sequential activation and deactivation of the segments of our computational domain. Finally, we conducted a sensitivity analysis of our objective function on the SHP set.

  4. Electronic properties of superlattices on quantum rings

    Science.gov (United States)

    da Costa, D. R.; Chaves, A.; Ferreira, W. P.; Farias, G. A.; Ferreira, R.

    2017-04-01

    We present a theoretical study of the one-electron states of a semiconductor-made quantum ring (QR) containing a series of piecewise-constant wells and barriers distributed along the ring circumference. The single quantum well and the superlattice cases are considered in detail. We also investigate how such confining potentials affect the Aharonov–Bohm like oscillations of the energy spectrum and current in the presence of a magnetic field. The model is simple enough so as to allow obtaining various analytical or quasi-analytical results. We show that the well-in-a-ring structure presents enhanced localization features, as well as specific geometrical resonances in its above-barrier spectrum. We stress that the superlattice-in-a-ring structure allows giving a physical meaning to the often used but usually artificial Born–von-Karman periodic conditions, and discuss in detail the formation of energy minibands and minigaps for the circumferential motion, as well as several properties of the superlattice eigenstates in the presence of the magnetic field. We obtain that the Aharonov–Bohm oscillations of below-barrier miniband states are reinforced, owing to the important tunnel coupling between neighbour wells of the superlattice, which permits the electron to move in the ring. Additionally, we analysis a superlattice-like structure made of a regular distribution of ionized impurities placed around the QR, a system that may implement the superlattice in a ring idea. Finally, we consider several random disorder models, in order to study roughness disorder and to tackle the robustness of some results against deviations from the ideally nanostructured ring system.

  5. Electronic properties of superlattices on quantum rings.

    Science.gov (United States)

    da Costa, D R; Chaves, A; Ferreira, W P; Farias, G A; Ferreira, R

    2017-04-26

    We present a theoretical study of the one-electron states of a semiconductor-made quantum ring (QR) containing a series of piecewise-constant wells and barriers distributed along the ring circumference. The single quantum well and the superlattice cases are considered in detail. We also investigate how such confining potentials affect the Aharonov-Bohm like oscillations of the energy spectrum and current in the presence of a magnetic field. The model is simple enough so as to allow obtaining various analytical or quasi-analytical results. We show that the well-in-a-ring structure presents enhanced localization features, as well as specific geometrical resonances in its above-barrier spectrum. We stress that the superlattice-in-a-ring structure allows giving a physical meaning to the often used but usually artificial Born-von-Karman periodic conditions, and discuss in detail the formation of energy minibands and minigaps for the circumferential motion, as well as several properties of the superlattice eigenstates in the presence of the magnetic field. We obtain that the Aharonov-Bohm oscillations of below-barrier miniband states are reinforced, owing to the important tunnel coupling between neighbour wells of the superlattice, which permits the electron to move in the ring. Additionally, we analysis a superlattice-like structure made of a regular distribution of ionized impurities placed around the QR, a system that may implement the superlattice in a ring idea. Finally, we consider several random disorder models, in order to study roughness disorder and to tackle the robustness of some results against deviations from the ideally nanostructured ring system.

  6. Analysis of Tidal DC Resistivity Time Series for Periodic Saltwater Mixing Patterns and Determination of Hydraulic Ground Properties

    Science.gov (United States)

    Sutter, E. M.; Ingham, M.

    2016-12-01

    Saline intrusion research using geoelectrical time-lapse monitoring, is often directed towards imaging the saltwater-freshwater boundary and the amount of seawater mixing within a coastal aquifer. However, these time series can contain additional information about subsurface hydrologic properties like hydraulic conductivity and permeability which are crucial elements in coastal groundwater management. In this study, DC resistivity time series from tidal time-lapse monitoring surveys of a shallow coastal sand and gravel aquifer in New Zealand have been analysed for recurring patterns of percentage seawater mixing in different portions of the aquifer. The results show a distinctly different behaviour of percentage seawater change with time for several horizontal locations along two profile lines with varying depth. In addition, the geoelectric time series have been cross-correlated with tidal stage data approximated near the survey location in order to find portions of the aquifer that exhibit different time lags with respect to a diurnal tidal cycle. First results yield a remarkably similar picture to resistivity ratios obtained between high and low tide inversion models of the DC resistivity time series both at different locations and for different seasons. The two methods indicate a correlation between rising and falling tides and the resistivity changes observed from geoelectrical monitoring studies .This may be used to distinguish between more or less hydraulically conductive portions of a coastal aquifer.

  7. Regional characterisation of hydraulic properties of rock using air-lift data

    Science.gov (United States)

    Wladis, David; Gustafson, Gunnar

    Hydrogeologic studies are commonly data-intense. In particular, estimations of hydraulic properties of hard rock often require large amounts of data. In many countries, large quantities of hydrogeologic data have been collected and archived over the years. Therefore, the use of existing data may provide a cost-efficient alternative to collecting new data in early stages of hydrogeologic studies, although the available data may be considered imprecise. Initially, however, the potential usefulness, i.e., the expected accuracy, of the available data in each specific case must be carefully examined. This study investigates the possibilities of obtaining estimates of transmissivity from hard-rock air-lift data in Sweden within an order of magnitude of results obtained from high-quality injection-test data. The expected accuracy of the results was examined analytically and by means of statistical methods. The results were also evaluated by comparison with injection-test data. The results indicate that air-lift data produce estimates of transmissivity within an order of magnitude compared to injection-test data in the studied examples. The study also shows that partial penetration and hydrofracturing may only affect the estimations approximately half an order of magnitude. Thus, existing data may provide a cost-efficient alternative to collection of new data in early stages of hydrogeologic studies. Résumé Les études hydrogéologiques reposent en général sur un nombre important de données. En particulier, l'estimation des propriétés hydrauliques des roches indurées exige souvent un grand nombre de données. Dans de nombreuses régions, des données hydrogéologiques très nombreuses ont été recueillies et archivées depuis longtemps. C'est pourquoi le recours à des données existantes peut être une alternative intéressante en termes de coût par rapport à l'obtention de nouvelles données dans les premières étapes des études hydrogéologiques, même si

  8. Changes in petiole hydraulic properties and leaf water flow in birch and oak saplings in a CO{sub 2}-enriched atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, N.; Morii, N.; Koike, T. [Hokkaido Univ., Sapporo (Japan). Graduate School of Agriculture; Ueda, T. [Hokkaido DALTON, Sapporo (Japan); Funada, R. [Tokyo Univ. of Agriculture and Technology, Tokyo (Japan). Faculty of Agriculture; Takagi, K.; Hiura, T.; Sasa, K. [Hokkaido Univ., Sapporo (Japan). Forests, Field Science Center for Northern Biosphere

    2008-02-15

    This study examined the water flow and petiole hydraulic properties in the individual leaves of Betula maximowicziana Regel and ring-porous Quercus mongolica Fish. ex Ledeb ssp. crispula Menitsky. The aim of the study was to examine the relationship between water flow, hydraulic properties and elevated carbon dioxide (CO2). The effects of elevated CO{sub 2} on sun and shade leaves of 2 petioles were investigated in order to examine structural changes in response to CO{sub 2}. The study was conducted at the Sapporo Experimental Forest in Japan, where a free air CO{sub 2} enrichment system was used to maintain CO{sub 2} levels. Results of the study demonstrated that elevated CO{sub 2} levels consistently decreased water flow, including leaf-specific hydraulic conductivity and total vessel area of the petiole in leaves exposed to the sun. Elevated CO{sub 2} levels had no impact on the hydraulic conductivity of shade leaves. It was concluded that changes in water flow were also associated with changes in petiole hydraulic properties. 57 refs., 2 tabs., 4 figs.

  9. The method of distributions for dispersive transport in porous media with uncertain hydraulic properties

    Science.gov (United States)

    Boso, Francesca; Tartakovsky, Daniel M.

    2016-06-01

    Predictions of solute transport in subsurface environments are notoriously unreliable due to aquifer heterogeneity and uncertainty about the values of hydraulic parameters. Probabilistic framework, which treats the relevant parameters and solute concentrations as random fields, allows for quantification of this predictive uncertainty. By providing deterministic equations for either probability density function or cumulative distribution function (CDF) of predicted concentrations, the method of distributions enables one to estimate, e.g., the probability of a contaminant's concentration exceeding a safe dose. We derive a deterministic equation for the CDF of solute concentration, which accounts for uncertainty in flow velocity and initial conditions. The coefficients in this equation are expressed in terms of the mean and variance of concentration. The accuracy and robustness of the CDF equations are analyzed by comparing their predictions with those obtained with Monte Carlo simulations and an assumed beta CDF.

  10. Research on Construction Optimization of Three-Connected-Arch Hydraulic Underground Cavities Considering Creep Property

    Directory of Open Access Journals (Sweden)

    Bao-yun Zhao

    2014-01-01

    Full Text Available In order to prevent the creep of surrounding rock in long-term construction, with consideration of different construction methods and other factors during the construction of large-scale underground cavity, three different construction schemes are designed for specific projects and a nonlinear viscoelastic-plastic creep model which can describe rock accelerated creeping is introduced and applied to construction optimization calculation of the large-scale three-connected-arch hydraulic underground cavity through secondary development of FLAC3D. The results show that the adoption of middle cavity construction method, the second construction method, enables the maximum vault displacement of 16.04 mm. This method results in less stress redistribution and plastic zone expansion to the cavity’s surrounding rock than the other two schemes, which is the safest construction scheme. The conclusion can provide essential reference and guidance to similar engineering for construction optimization.

  11. Transition of effective hydraulic properties from low to high Reynolds number flow in porous media

    Science.gov (United States)

    Sivanesapillai, R.; Steeb, H.; Hartmaier, A.

    2014-07-01

    We numerically analyze fluid flow through porous media up to a limiting Reynolds number of O(103). Due to inertial effects, such processes exhibit a gradual transition from laminar to turbulent flow for increasing magnitudes of Re. On the macroscopic scale, inertial transition implies nonlinearities in the relationship between the effective macroscopic pressure gradient and the filter velocity, typically accounted for in terms of the quadratic Forchheimer equation. However, various inertia-based extensions to the linear Darcy equation have been discussed in the literature; most prominently cubic polynomials in velocity. The numerical results presented in this contribution indicate that inertial transition, as observed in the apparent permeability, hydraulic tortuosity, and interfacial drag, is inherently of sigmoidal shape. Based on this observation, we derive a novel filtration law which is consistent with Darcy's law at small Re, reproduces Forchheimer's law at large Re, and exhibits higher-order leading terms in the weak inertia regime.

  12. EFFECT OF HYDRAULIC AND GEOMETRICAL PROPERTIES ON STEPPED CASCADE AERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    VEDHACHALAM RATHINAKUMAR

    2017-03-01

    Full Text Available Stepped cascade aeration system is commonly used to aerate the water and wastewater to increase the dissolved oxygen during pre and post treatment process. In the present research, experiments were conducted to evaluate the performance of a rectangular Cascade Aeration System with varying flow rates, risers and tread by maintaining constant width of the channel using water collected from reverse osmosis plant. The experiments were carried out with four different risers such as 0.15 m, 0.18 m, 0.225 m and 0.30 m. Each rise was investigated with five different tread of 0.60 m, 0.55 m, 0.50 m, 0.45 m and 0.40 m. Comprehensive experimental investigations were carried out for different hydraulic loading rates of 0.005 to 0.035 m3/s/m2. Results obtained from the experiments reveals that increasing dimensionless discharges promotes more aeration, attains a maximum up to dimensionless discharge= 2.22 and beyond this there was a significant decrease in aeration. In addition, the increased in number of steps significantly enhances air entertainment and surface fall rate in the Stepped Cascade Aeration System. A regression equation was derived by keeping aeration efficiency as response with dimensionless discharge and oxygen saturation concentration as influencing parameters. The dimension less discharge is a function of critical depth of the rectangular channel and step height, whereas oxygen saturation concentration represents the ratio of oxygen deficit and oxygen saturation concentration. Based on the experimental results, the optimum design and/or results such as number of steps (12 numbers and hydraulic loading rate (0.025 m3/s/m2 with fixed tread width of 0.6 m were identified to achieve maximum aeration rate (0.5-0.60 in Aeration system.

  13. Transfer of Physical and Hydraulic Properties Databases to the Hanford Environmental Information System - PNNL Remediation Decision Support Project, Task 1, Activity 6

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L.; Middleton, Lisa A.

    2009-03-31

    This report documents the requirements for transferring physical and hydraulic property data compiled by PNNL into the Hanford Environmental Information System (HEIS). The Remediation Decision Support (RDS) Project is managed by Pacific Northwest National Laboratory (PNNL) to support Hanford Site waste management and remedial action decisions by the U.S. Department of Energy and one of their current site contractors - CH2M-Hill Plateau Remediation Company (CHPRC). The objective of Task 1, Activity 6 of the RDS project is to compile all available physical and hydraulic property data for sediments from the Hanford Site, to port these data into the Hanford Environmental Information System (HEIS), and to make the data web-accessible to anyone on the Hanford Local Area Network via the so-called Virtual Library.1 These physical and hydraulic property data are used to estimate parameters for analytical and numerical flow and transport models that are used for site risk assessments and evaluation of remedial action alternatives. In past years efforts were made by RDS project staff to compile all available physical and hydraulic property data for Hanford sediments and to transfer these data into SoilVision{reg_sign}, a commercial geotechnical software package designed for storing, analyzing, and manipulating soils data. Although SoilVision{reg_sign} has proven to be useful, its access and use restrictions have been recognized as a limitation to the effective use of the physical and hydraulic property databases by the broader group of potential users involved in Hanford waste site issues. In order to make these data more widely available and useable, a decision was made to port them to HEIS and to make them web-accessible via a Virtual Library module. In FY08 the original objectives of this activity on the RDS project were to: (1) ensure traceability and defensibility of all physical and hydraulic property data currently residing in the SoilVision{reg_sign} database

  14. Summary and evaluation of hydraulic property data available for the Hanford Site upper basalt confined aquifer system

    Energy Technology Data Exchange (ETDEWEB)

    Spane, F.A. Jr.; Vermeul, V.R.

    1994-09-01

    Pacific Northwest Laboratory, as part of the Hanford Site Ground-Water Surveillance Project, examines the potential for offsite migration of contamination within the upper basalt confined aquifer system. For the past 40 years, hydrologic testing of the upper basalt confined aquifer has been conducted by a number of Hanford Site programs. Hydraulic property estimates are important for evaluating aquifer flow characteristics (i.e., ground-water flow patterns, flow velocity, transport travel time). Presented are the first comprehensive Hanford Site-wide summary of hydraulic properties for the upper basalt confined aquifer system (i.e., the upper Saddle Mountains Basalt). Available hydrologic test data were reevaluated using recently developed diagnostic test analysis methods. A comparison of calculated transmissivity estimates indicates that, for most test results, a general correspondence within a factor of two between reanalysis and previously reported test values was obtained. For a majority of the tests, previously reported values are greater than reanalysis estimates. This overestimation is attributed to a number of factors, including, in many cases, a misapplication of nonleaky confined aquifer analysis methods in previous analysis reports to tests that exhibit leaky confined aquifer response behavior. Results of the test analyses indicate a similar range for transmissivity values for the various hydro-geologic units making up the upper basalt confined aquifer. Approximately 90% of the calculated transmissivity values for upper basalt confined aquifer hydrogeologic units occur within the range of 10{sup 0} to 10{sup 2} m{sup 2}/d, with 65% of the calculated estimate values occurring between 10{sup 1} to 10{sup 2} m{sup 2}d. These summary findings are consistent with the general range of values previously reported for basalt interflow contact zones and sedimentary interbeds within the Saddle Mountains Basalt.

  15. Electron impact phenomena and the properties of gaseous ions

    CERN Document Server

    Field, F H; Massey, H S W; Brueckner, Keith A

    1970-01-01

    Electron Impact Phenomena and the Properties of Gaseous Ions, Revised Edition deals with data pertaining to electron impact and to molecular gaseous ionic phenomena. This book discusses electron impact phenomena in gases at low pressure that involve low-energy electrons, which result in ion formation. The text also describes the use of mass spectrometers in electron impact studies and the degree of accuracy obtained when measuring electron impact energies. This book also reviews relatively low speed electrons and the transitions that result in the ionization of the atomic system. This text the

  16. Opto-electronic properties of charged conjugated molecules

    NARCIS (Netherlands)

    Fratiloiu, S.

    2007-01-01

    The aim of this thesis is to provide fundamental insight into the nature and opto-electronic properties of charge carriers on conjugated oligomers and polymers. Electronic structure, optical absorption properties and distribution of charge carriers along the chains of different conjugated materials

  17. Remote estimation of the hydraulic properties of a sand using full-waveform integrated hydrogeophysical inversion of time-lapse, off-ground GPR data

    NARCIS (Netherlands)

    Lambot, S.; Slob, E.; Rhebergen, J.B.; Lopera, O.; Jadoon, K.Z.; Vereecken, H.

    2009-01-01

    We used integrated hydrogeophysical inversion of time-lapse, proximal ground penetrating radar (GPR) data to remotely infer the unsaturated soil hydraulic properties of a laboratory sand during an infiltration event. The inversion procedure involved full-waveform modeling of the radar signal and one

  18. Ab initio electronic properties of dual phosphorus monolayers in silicon

    DEFF Research Database (Denmark)

    Drumm, Daniel W.; Per, Manolo C.; Budi, Akin;

    2014-01-01

    , investigating the fundamental electronic properties of monolayer pairs. Quantitative band splittings and the electronic density are presented, along with effects of the layers’ relative alignment and comments on disordered systems, and for the first time, the effective electronic widths of such device...

  19. Changes in catchment-scale water fluxes due to time-variant soil hydraulic properties in a subtropical agricultural watershed

    Science.gov (United States)

    Verrot, Lucile; Geris, Josie; Gao, Lei; Peng, Xinhua; Hallett, Paul

    2017-04-01

    In agricultural landscapes, temporal fluxes in hydraulic properties due to tillage, grazing, crop root growth and cycles of wetting and drying influenced by irrigation, could have large impacts at catchment scale. These effects are particularly evident in tropical climates where long periods of drought are followed by intense rainfall that greatly exceeds the infiltration capacity of the soil. This work explores the impact of the seasonal development of crops and the shifts in time between crop types on soil physical properties and the relative changes in the probability distribution of the water storage and fluxes dynamics. We focussed on an agricultural catchment in south east China where the climatic conditions include periods of droughts and heavy rainfall. Using coupled 1-dimension and semi-distributed catchment modelling combined with basic water balance data and both on-site and literature values for soil and crop properties, we investigated the impact of soil physical changes in the root-zone of the soil over different time scales ranging from daily to annual. Our results also showed that the resulting time-variant spatial patterns in soil water storage and flow had an impact on the integrated catchment runoff response at different times of the year.

  20. Solution strengthened ferritic ductile iron ISO 1083/JS/500-10 provides superior consistent properties in hydraulic rotators

    Institute of Scientific and Technical Information of China (English)

    Dr.Richard Larker

    2009-01-01

    Consistent mechanical and machining properties are essential in many applications where ductile irons offer the most cost-effective way to produce structural parts. In the production of hydraulic rotators, dimensional tolerances are typically 20 μm to obtain designated performance.For castings where intermediate strength and ductility is required, it is common knowledge that conventional ferritic-pearlitic ductile irons such as ISO 1083/500-7 show large hardness variations. These are mainly caused by the notoriously varying pearlite content, both at different locations within a part and between parts in the same or different batches. Cooling rate variations due to different wall thickness and position in the molding box, as well as varying amounts of pearlite-stabilizing elements, all contribute to detrimental hardness variations.The obvious remedy is to avoid pearlite formation, and instead obtain the necessary mechanical properties by solution strengthening of the ferritic matrix by increasing silicon content to 3.7wt% -3.8wt%. The Swedish development in this field 1998 resulted in a national standardization as SS 140725, followed in 2004 by ISO 1083/ JS/500-10.Indexator AB decided 2005 to specify JS/500-10 for all new ductile iron parts and to convert all existing parts. Improvements include reduction by 75% in hardness variations and increase by 30% in cutting tool life, combined with consistently better mechanical properties.

  1. Electronic properties of Li-doped zigzag graphene nanoribbons

    Science.gov (United States)

    Narin, P.; Kutlu, E.; Sarikavak-Lisesivdin, B.; Lisesivdin, S. B.; Özbay, E.

    2016-10-01

    Zigzag graphene nanoribbons (ZGNRs) are known to exhibit metallic behavior. Depending on structural properties such as edge status, doping and width of nanoribbons, the electronic properties of these structures may vary. In this study, changes in electronic properties of crystal by doping Lithium (Li) atom to ZGNR structure are analyzed. In spin polarized calculations are made using Density Functional Theory (DFT) with generalized gradient approximation (GGA) as exchange correlation. As a result of calculations, it has been determined that Li atom affects electronic properties of ZGNR structure significantly. It is observed that ZGNR structure exhibiting metallic behavior in pure state shows half-metal and semiconductor behavior with Li atom.

  2. Mineralogical composition and phase-to-phase relationships in natural hydraulic lime and/or natural cement - raw materials and burnt products revealed by scanning electron microscopy

    Science.gov (United States)

    Kozlovcev, Petr; Přikryl, Richard; Racek, Martin; Přikrylová, Jiřina

    2016-04-01

    In contrast to modern process of production of cement clinker, traditional burning of natural hydraulic lime below sintering temperature relied on the formation of new phases from ion migration between neighbouring mineral grains composing raw material. The importance of the mineralogical composition and spatial distribution of rock-forming minerals in impure limestones used as a raw material for natural hydraulic lime presents not well explored issue in the scientific literature. To fill this gap, the recent study focuses in detailed analysis of experimentally burnt impure limestones (mostly from Barrandian area, Bohemian Massif). The phase changes were documented by optical microscopy, X-ray diffraction, and scanning electron microscopy with an energy dispersive spectrometer (SEM-EDS) coupled with x-ray elemental mapping. The latest allowed for visualization of distribution of elements within raw materials and burnt products. SEM/EDS study brought valuable data on the presence of transitional and/or minor phases, which were poorly detectable by other methods.

  3. Estimation of Effective Soil Hydraulic Properties Using Data From High Resolution Gamma Densiometry and Tensiometers of Multi-Step-Outflow Experiments

    Science.gov (United States)

    Werisch, Stefan; Lennartz, Franz; Bieberle, Andre

    2013-04-01

    Dynamic Multi Step Outflow (MSO) experiments serve for the estimation of the parameters from soil hydraulic functions like e.g. the Mualem van Genuchten model. The soil hydraulic parameters are derived from outflow records and corresponding matric potential measurements from commonly a single tensiometer using inverse modeling techniques. We modified the experimental set up allowing for simultaneous measurements of the matric potential with three tensiometers and the water content using a high-resolution gamma-ray densiometry measurement system (Bieberle et al., 2007, Hampel et al., 2007). Different combinations of the measured time series were used for the estimation of effective soil hydraulic properties, representing different degrees of information of the "hydraulic reality" of the sample. The inverse modeling task was solved with the multimethod search algorithm AMALGAM (Vrugt et al., 2007) in combination with the Hydrus1D model (Šimúnek et al., 2008). Subsequently, the resulting effective soil hydraulic parameters allow the simulation of the MSO experiment and the comparison of model results with observations. The results show that the information of a single tensiometer together with the outflow record result in a set of effective soil hydraulic parameters producing an overall good agreement between the simulation and the observation for the location of the tensiometer. Significantly deviating results are obtained for the other tensiometer positions using this parameter set. Inclusion of more information, such as additional matric potential measurements with the according water contents within the optimization procedure lead to different, more representative hydraulic parameters which improved the overall agreement significantly. These findings indicate that more information about the soil hydraulic state variables in space and time are necessary to obtain effective soil hydraulic properties of soil core samples. Bieberle, A., Kronenberg, J., Schleicher, E

  4. Thermal properties for the thermal-hydraulics analyses of the BR2 maximum nominal heat flux.

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B.; Kim, Y. S.; Hofman, G. L. (Nuclear Engineering Division)

    2011-05-23

    This memo describes the assumptions and references used in determining the thermal properties for the various materials used in the BR2 HEU (93% enriched in {sup 235}U) to LEU (19.75% enriched in {sup 235}U) conversion feasibility analysis. More specifically, this memo focuses on the materials contained within the pressure vessel (PV), i.e., the materials that are most relevant to the study of impact of the change of fuel from HEU to LEU. This section is regrouping all of the thermal property tables. Section 2 provides a summary of the thermal properties in form of tables while the following sections present the justification of these values. Section 3 presents a brief background on the approach used to evaluate the thermal properties of the dispersion fuel meat and specific heat capacity. Sections 4 to 7 discuss the material properties for the following materials: (i) aluminum, (ii) dispersion fuel meat (UAlx-Al and U-7Mo-Al), (iii) beryllium, and (iv) stainless steel. Section 8 discusses the impact of irradiation on material properties. Section 9 summarizes the material properties for typical operating temperatures. Appendix A elaborates on how to calculate dispersed phase's volume fraction. Appendix B shows the evolution of the BR2 maximum heat flux with burnup.

  5. Hydraulic structures

    CERN Document Server

    Chen, Sheng-Hong

    2015-01-01

    This book discusses in detail the planning, design, construction and management of hydraulic structures, covering dams, spillways, tunnels, cut slopes, sluices, water intake and measuring works, ship locks and lifts, as well as fish ways. Particular attention is paid to considerations concerning the environment, hydrology, geology and materials etc. in the planning and design of hydraulic projects. It also considers the type selection, profile configuration, stress/stability calibration and engineering countermeasures, flood releasing arrangements and scouring protection, operation and maintenance etc. for a variety of specific hydraulic structures. The book is primarily intended for engineers, undergraduate and graduate students in the field of civil and hydraulic engineering who are faced with the challenges of extending our understanding of hydraulic structures ranging from traditional to groundbreaking, as well as designing, constructing and managing safe, durable hydraulic structures that are economical ...

  6. HYDRAULIC SERVO

    Science.gov (United States)

    Wiegand, D.E.

    1962-05-01

    A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

  7. Hydraulic Properties of Fractured Rock Samples at In-Situ Conditions - Insights from Lab Experiments Using X-Ray Tomography

    Science.gov (United States)

    Nehler, Mathias; Stöckhert, Ferdinand; Duda, Mandy; Renner, Jörg; Bracke, Rolf

    2017-04-01

    The hydraulic properties of low-porosity rock formations are controlled by the geometry of open fractures, joints and faults. Aperture, surface roughness, accessible length, and thus, the volume available for fluids associated of such interfaces are strongly affected by their state of stress. Moreover, these properties may evolve with time in particular due to processes involving chemically active fluids. Understanding the physico-chemical interactions of rocks with fluids at reservoir conditions will help to predict the long-term reservoir development and to increase the efficiency of geothermal power plants. We designed an x-ray transparent flow-through cell. Confining pressure can be up to 50 MPa and pore fluid can currently be circulated through the sample with pressures of up to 25 MPa. All wetted parts are made of PEEK to avoid corrosion when using highly saline fluids. Laboratory experiments were performed to investigate hydraulic properties of fractured low-porosity samples under reservoir conditions while x-rays transmit the sample. The cell is placed inside a µCT scanner with a 225 kV multifocal x-ray tube for high resolution x-ray tomography. Samples measure 10 mm in diameter and 25 mm in length resulting in a voxel resolution of approximately 10 µm. Samples with single natural as well as artificial fractures were subjected to various confining pressures ranging from 2.5 MPa to 25 MPa. At each pressure level, effective permeability was determined from steady-state flow relying on Darcy's law. In addition, a full 3D image was recorded by the µCT scanner to gain information on the fracture aperture and geometry. Subvolumes (400x400x400 voxels) of the images were analyzed to reduce computational cost. The subvolumes were filtered in 3D with an edge preserving non-local means filter. Further quantification algorithms were implemented in Matlab. Segmentation into pore space and minerals was done automatically for all datasets by a peak finder algorithm

  8. Electronic Properties of Cyclacenes from TAO-DFT

    CERN Document Server

    Wu, Chun-Shian; Chai, Jeng-Da

    2016-01-01

    Owing to the presence of strong static correlation effects, accurate prediction of the electronic properties (e.g., the singlet-triplet energy gaps, vertical ionization potentials, vertical electron affinities, fundamental gaps, symmetrized von Neumann entropy, active orbital occupation numbers, and real-space representation of active orbitals) of cyclacenes with n fused benzene rings (n = 4-100) has posed a great challenge to traditional electronic structure methods. To meet the challenge, we study these properties using our newly developed thermally-assisted-occupation density functional theory (TAO-DFT), a very efficient method for the study of large systems with strong static correlation effects. Besides, to examine the role of cyclic topology, the electronic properties of cyclacenes are also compared with those of acenes. Similar to acenes, the ground states of cyclacenes are singlets for all the cases studied. In contrast to acenes, the electronic properties of cyclacenes, however, exhibit oscillatory b...

  9. Anatomical and hydraulic properties of sorghum roots exposed to water deficit. [Sorghum bicolor

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, R.T.; Jordan, W.R.; Drew, M.C. (Texas A and M Univ., College Station (United States))

    1991-05-01

    The effects of a severe water stress in the upper 0-0.15 m rooting zone on development of the exodermis, endodermis and xylem and on radial (Lp) and axial (Ls) hydraulic conductances were studied for Sorghum bicolor. Lp and Lx were based on water flow rates obtained by applying a negative hydrostatic pressure to the proximal xylem ends of excised roots placed in aerated nutrient solution. The same roots were stained with fluorescent berberine and acid phloroglucinol to describe the development of the exodermal and endodermal cell walls from formation of the Casparian band (State I), to deposition of suberin lamellae (State II), and lignification (State III). Lp of 1.5 {times} 10{sup {minus}11} m{sup 3}s{sup {minus}1}MPa{sup {minus}1} was 80% lower in stressed roots than in unstressed controls. At 0.01 and 0.07 m from the root apex, stressed roots were in State III while control roots were in States I and II, respectively. SEM-image analysis for stressed roots indicated that in the exodermis a greater proportion of the cross sectional area was occupied by lignified walls than in the endodermis. Cellufluor, an apoplastic tracer, was blocked at the lignified exodermis even at 0.01 m from the apex in stressed roots. Uranin, a symplastic tracer, was taken up only in the apical region in stressed roots but farther from the apex in the controls. Lx of 7.1 {times} 10{sup {minus}11}m{sup 3}s{sup {minus}1}MPa{sup {minus}1} was 90% lower in stressed roots compared with the controls. Cellufluor test and image analysis showed that although the protoxylem and early metaxylem were conductive in both treatments, stress caused more than a 50% reduction in the diameter of the xylem elements. Results suggest that lignification of the exodermis and endodermis to a large extent decreased apoplastic and symplastic flows and hence Lp in stressed roots. The low Lx in stressed roots was due to a decrease in the diameters of the conductive xylem elements.

  10. MeProRisk - Acquisition and Prediction of thermal and hydraulic properties

    Science.gov (United States)

    Arnold, J.; Mottaghy, D.; Pechnig, R.

    2009-04-01

    MeProRisk is a joint project of five university institutes at RWTH Aachen University, Free University Berlin, and Kiel University. Two partners, namely Geophysica Beratunggesellschaft mbH (Aachen) and RWE Dea AG (Hamburg) present the industrial side. It is funded by the German Ministry of Education and Science (BMBF). The MeProRisk project aims to improve strategies to reduce the risk for planning geothermal power plants. Within our subproject we estimate geothermal relevant parameters in the laboratory and in the borehole scale. This basis data will be integrated with hydraulic and seismic experiments to provide a 3D reservoir model. Hitherto we focussed on two different type locations in Germany. These are (1) the crystalline basement in South Germany and (2) the Rotliegend formation and volcanic rocks in the Northern German Sedimentary Basin. In the case of the crystalline basement an extensive dataset could be composed from the 9 km deep KTB borehole including logging, core and cutting data. The whole data could be interpreted with respect to lithology, structure and alteration of the formation which mainly consists of alternating sequences of gneiss and metabasite. For the different rock types the data was analyzed statistically to provide specific values for geothermal key parameters. Important key parameters are for example: p-wave velocity, density, thermal conductivity, permeability and porosity. For the second type location we used logging data recovered within one borehole (> 5 km deep) which was drilled in the so called Voelkersen gas field. The data was supplied by the RWE DEA company. The formation comprises volcanic rocks and sandstones. On corresponding cores we measured p-wave velocity, thermal conductivity, density and porosity in the laboratory. In the same way as for type location (1) the complete data set was analyzed statistically to derive specific values which are relevant for the geothermal reservoir model. Finally this study will end up in

  11. Electronic, transport, and magnetic properties of punctured carbon nanotubes

    Science.gov (United States)

    dos Santos, Jeová Calisto; de Vasconcelos, Fabrício Morais; de Aguiar, Acrísio Lins; Alves, Tayroni Francisco de Alencar; Meunier, Vincent; Girão, Eduardo Costa

    2016-12-01

    We use a spin-polarized tight-binding model Hamiltonian and the Landauer transport formalism to investigate the electronic transport properties of carbon nanotubes where different types of holes have been drilled through their sidewalls. We focus on zigzag edged defects with different atomic configurations since these systems enable the emergence of magnetic properties. We show that a number of hole geometries, magnetic states, and electronic spins yield attractive transport properties, such as ON/OFF switching for the electronic current, and nontrivial dependence of transmission with hole size.

  12. Electronic structure and magnetic properties of solids

    Science.gov (United States)

    Savrasov, Sergej Y.; Toropova, Antonina; Katsnelson, Mikhail I.; Lichtenstein, Alexander I.; Antropov, Vladimir; Kotliar, Gabriel

    2005-05-01

    We review basic computational techniques for simulations of various magnetic properties of solids. Several applications to compute magnetic anisotropy energy, spin wave spectra, magnetic susceptibilities and temperature dependent magnetisations for a number of real systems are presented for illustrative purposes.

  13. Electronic structure and magnetic properties of solids

    OpenAIRE

    Savrasov, S. Y.; Toropova, A.; Katsnelson, M. I.; Lichtenstein, A. I.; Antropov, V.; Kotliar, G.

    2005-01-01

    We review basic computational techniques for simulations of various magnetic properties of solids. Several applications to compute magnetic anisotropy energy, spin wave spectra, magnetic susceptibilities and temperature dependent magnetisations for a number of real systems are presented for illustrative purposes.

  14. Interfacial Properties of Electron Beam Cured Composites

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, C.C.

    1999-12-30

    The objectives of the CRADA are to: Confirm that fiber-resin adhesion is responsible for the observed poor shear properties; Determine the mechanism(s) responsible for poor adhesion between carbon fibers and epoxy resins after e-beam curing; Develop and evaluate resin systems and fiber treatments to improve the properties of e-beam cured, carbon-fiber-reinforced composites; and Develop refined methods for processing e-beam cured, carbon-fiber-reinforced composites.

  15. Frictional, Hydraulic, and Acoustic Properties of Alpine Fault DFDP-1 Core

    Science.gov (United States)

    Carpenter, B. M.; Ikari, M.; Kitajima, H.; Kopf, A.; Marone, C.; Saffer, D. M.

    2012-12-01

    .62 x 10-20 m2) samples exhibit the lowest permeabilities. The cataclasite, and wall rock mylonite and gravel samples, all exhibit permeabilities > 10-18 m2. We also observe that permeability of the cataclasites appears to decrease with proximity to the active fault zone. Our laboratory measurements are consistent with borehole slug tests that show the fault is a hydraulic barrier, and suggest that fault rock permeability is sufficiently low to facilitate transient pore pressure effects during rapid slip, including thermal pressurization and dilatancy hardening. Elastic wave velocity increases systematically with increasing effective stress. We find the lowest P-wave velocities in clay-rich, poorly lithified samples from within and near the active fault, including hanging wall cataclasite, fault gouge, and footwall gravel. Our results are consistent with borehole logging data that show an increase in P-wave velocity from the mylonite into the competent cataclasites, and a decrease in P-wave velocity through the clay-rich cataclasite and into the fault zone.

  16. Electronic properties of magnetically doped nanotubes

    Indian Academy of Sciences (India)

    Keivan Esfarjani; Z Chen; Y Kawazoe

    2003-01-01

    Effect of doping of carbon nanotubes by magnetic transition metal atoms has been considered in this paper. In the case of semiconducting tubes, it was found that the system has zero magnetization, whereas in metallic tubes the valence electrons of the tube screen the magnetization of the dopants: the coupling to the tube is usually antiferromagnetic (except for Cr).

  17. Using scaling factors for evaluating spatial and temporal variability of soil hydraulic properties within one elevation transect

    Science.gov (United States)

    Nikodem, Antonín; Kodešová, Radka; Jakšík, Ondřej; Fér, Miroslav; Klement, Aleš

    2016-04-01

    This study was carried out in Southern Moravia, in the Czech Republic. The original soil unit in the wider area is a Haplic Chernozem developed on loess. The intensive agricultural exploitation in combination with terrain morphology has resulted in a highly diversified soil spatial pattern. Nowadays the original soil unit is preserved only on top of relatively flat parts, and is gradually transformed by water erosion up to Regosols on the steepest slopes, while colluvial soils are formed in terrain depressions and at toe slopes due to sedimentation of previously eroded material. Soils within this area has been intensively investigated during the last several years (e.g. Jakšík et al., 2015; Vašát et al., 2014, 2015a,b). Soil sampling (disturbed and undisturbed 100-cm3 soil samples) was performed at 5 points of one elevation transect in November 2010 (after wheat sowing) and August 2011 (after wheat harvest). Disturbed soil samples were used to determine basic soil properties (grain size distribution and organic carbon content etc.). Undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. Scaling factors (alpha-h for pressure head, alpha-theta for soil water contents and alpha-k for hydraulic conductivities) were used here to express soil hydraulic properties variability. Evaluated scaling factors reflected position within the elevation transect as well as time of soil sampling. In general large values of alpha-h, lower values of alpha-k and similar values of alpha-theta were obtained in 2010 in comparison to values obtained in 2011, which indicates development of soil structure during the vegetation season. Jakšík, O., Kodešová, R., Kubiš, A., Stehlíková, I., Drábek, O., Kapička, A. (2015): Soil aggregate stability within morphologically diverse areas. Catena, 127, 287-299. Vašát, R., Kode

  18. Influence of the Lubricant Thermo-Piezo-Viscous Property on Hydrostatic Bearings in Oil Hydraulics

    DEFF Research Database (Denmark)

    Johansen, Per; Roemer, Daniel Beck; Andersen, Torben O.

    2016-01-01

    In fluid power machinery hydrostatic bearings are frequently used, and a first approximation approach to design is determination of a balance ratio by analytical calculations of the hydrostatic presure force. Usually this is performed assuming that the thermo-piezo-viscous property can be neglected....... However, in applications as piston machines, where pressure in many cases exceeds 200 Bar, such assumption leads to considerable error in the valance ratio prediction, due to the piezo-viscous property of the lubricant. Furthermore, the thermo-viscosity relation also has a significant influence, which...... adds to the discrepancy of such simple design approach. In this paper the hydrostatic pressure force calculation is reviewed in terms of thermohydrodynamic (THD) lubrication theory, and simple analytical approximations of the hydrostatic pressure force, incorporating the piezo-viscous and thermo...

  19. Machine Learning of Molecular Electronic Properties in Chemical Compound Space

    CERN Document Server

    Montavon, Grégoire; Gobre, Vivekanand; Vazquez-Mayagoitia, Alvaro; Hansen, Katja; Tkatchenko, Alexandre; Müller, Klaus-Robert; von Lilienfeld, O Anatole

    2013-01-01

    The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel, and predictive structure-property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning (ML) model, trained on a data base of \\textit{ab initio} calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity, and excitation energies. The ML model is based on a deep multi-task artificial neural network, exploiting underlying correlations between various molecular properties. The input is identical to \\emph{ab initio} methods, \\emph{i.e.} nucle...

  20. Electronic properties of strongly correlated layered oxides

    Science.gov (United States)

    Lee, Wei-Cheng

    The two-dimensional electronic systems (2DESs) have kept surprising physicists for the last few decades. Examples include the integer and fractional quantum Hall effects, cuprate superconductivity, and graphene. This thesis is intended to develop suitable theoretical tools which can be generalized to study new types of 2DESs with strong correlation feature. The first part of this thesis describes the investigation of heterostructures made by Mott insulators. This work is mostly motivated by the significant improvement of techniques for layer-by-layer growth of transition metal oxides in the last few years. We construct a toy model based on generalized Hubbard model complemented with long-ranged Coulomb interaction, and we study it by Hartree-Fock theory, dynamical mean-field theory, and Thomas-Fermi theory. We argue that interesting 2D strongly correlated electronic systems can be created in such heterostructures under several conditions. Since these 2D systems are formed entirely due to the gap generated by electron-electron interaction, they are not addiabatically connected to a noninteracting electron states. This feature makes these 2D systems distinguish from the ones created in semiconductor heterostructures, and they may be potential systems having non-Fermi liquid behaviors. The second part of this thesis is devoted to the study of collective excitations in high-temperature superconductors. One important achievement in this work is to develop a time-dependent mean-field theory for t -- U -- J -- V model, an effective low energy model for cuprates. The time-dependent mean-field theory is proven to be identical to the generalized random-phase approximation (GRPA) which includes both the bubble and ladder diagrams. We propose that the famous 41 meV magnetic resonance mode observed in the inelastic neutron scattering measurements is a collective mode arising from a conjugation relation, which has been overlooked in previous work, between the antiferromagnetic

  1. Development of a New Apparatus for Investigating Acoustic Effects on Hydraulic Properties of Low-Permeability Geo-Materials

    Science.gov (United States)

    Nakajima, H.; Sawada, A.; Sugita, H.; Takeda, M.; Komai, T.; Zhang, M.

    2006-12-01

    feasibility of the EASD method and to obtain the fundamental but important knowledge for the design of this method, it is first necessary to understand the effects of acoustic wave application on pore water flow behavior. A new apparatus is developed to investigate the effects of acoustic wave on hydraulic properties of soil sample. This test apparatus enables to confine a cylindrical specimen under hydrostatic pressure conditions and to apply acoustic wave simultaneously. Preliminary results associated with the effects of acoustic wave frequency on changes of permeability of kaolin clay samples are illustrated in this report. A program investigating the effects of electricity and pore water chemistry on efficiency of decontamination using the same samples is also ongoing and briefly presented. The two strategies for enhancing the efficiency of remediation for low permeable soils will be combined in the near future

  2. Surface structure and electronic properties of materials

    Science.gov (United States)

    Siekhaus, W. J.; Somorjai, G. A.

    1975-01-01

    A surface potential model is developed to explain dopant effects on chemical vapor deposition. Auger analysis of the interaction between allotropic forms of carbon and silicon films has shown Si-C formation for all forms by glassy carbon. LEED intensity measurements have been used to determine the mean square displacement of surface atoms of silicon single crystals, and electron loss spectroscopy has shown the effect of structure and impurities on surface states located within the band gap. A thin film of Al has been used to enhance film crystallinity at low temperature.

  3. Electronic properties of rare gas molecules

    Science.gov (United States)

    Castex, Marie-Claude

    In the theoretical bases for the electronic structures of excited homonuclear dimers, the molecular excited states are Rydberg in character, and their qualitative behavior can be deduced from that of the dimer ions. The derivation of accurate gas adiabatic potential curves in the full distance range requires calculations accounting not only for repulsive and overlap effects that induce the characteristic excimer well depths, but also for the long-range forces, and especially for dispersion. Attention is given to experimental results furnishing useful tests for the theoretical potential curves in a large domain of internuclear distances.

  4. Basic hydraulics

    CERN Document Server

    Smith, P D

    1982-01-01

    BASIC Hydraulics aims to help students both to become proficient in the BASIC programming language by actually using the language in an important field of engineering and to use computing as a means of mastering the subject of hydraulics. The book begins with a summary of the technique of computing in BASIC together with comments and listing of the main commands and statements. Subsequent chapters introduce the fundamental concepts and appropriate governing equations. Topics covered include principles of fluid mechanics; flow in pipes, pipe networks and open channels; hydraulic machinery;

  5. Electronic and magnetic properties of ultrathin rhodium nanowires

    CERN Document Server

    Wang Bao Lin; Ren-Yun; Sun Hou Qian; Chen Xiao Shuang; Zhao Ji Jun

    2003-01-01

    The structures of ultrathin rhodium nanowires are studied using empirical molecular dynamics simulations with a genetic algorithm. Helical multishell cylindrical and pentagonal packing structures are found. The electronic and magnetic properties of the rhodium nanowires are calculated using an spd tight-binding Hamiltonian in the unrestricted Hartree-Fock approximation. The average magnetic moment and electronic density of states are obtained. Our results indicate that the electronic and magnetic properties of the rhodium nanowires depend not only on the size of the wire but also on the atomic structure. In particular, centred pentagonal and hexagonal structures can be unusually ferromagnetic.

  6. Analogies in electronic properties of graphene wormhole and perturbed nanocylinder

    Science.gov (United States)

    Pincak, R.; Smotlacha, J.

    2013-11-01

    The electronic properties of the wormhole and the perturbed nanocylinder were investigated using two different methods: the continuum gauge field-theory model that deals with the continuum approximation of the surface and the Haydock recursion method that transforms the surface into a simplier structure and deals with the nearest-neighbor interactions. Furthermore, the changes of the electronic properties were investigated for the case of enclosing the appropriate structure, and possible substitutes for the encloser were derived. Finally, the character of the electron flux through the perturbed wormhole was predicted from the model based on the multiwalled nanotubes. The effect of the "graphene blackhole" is introduced.

  7. Area 5 Site Characterization Project: Report of hydraulic property analysis through August 1993

    Energy Technology Data Exchange (ETDEWEB)

    Estrella, R.; Tyler, S.; Chapman, J.; Miller, M.

    1993-12-01

    The Area 5 Site Characterization Project is designed to determine the suitability of the Radioactive Waste Management Site (RWMS) for disposal of low-level waste (LLW), mixed waste (MW) and transuranic waste (TRU). The Desert Research Institute (DRI) has supported the Area 5 Site Characterization Project for the US Department of Energy, Nevada Operations Office (DOE/NV), Environmental Restoration and Waste Management Division (ERWM), Waste Operations Branch (WOB). The purpose of DRI`s Area 5 Site Characterization project is to characterize important properties of the upper vadose zone which influence infiltration and redistribution of water and transport of solutes as well as to characterize the water quality and hydrologic conditions of the uppermost aquifer. This report describes methods and presents a summary of all data and results from laboratory physical and chemical testing from Pilot Wells and Science Trench borehole samples through August 1993. DRI laboratories performed soil water content, soil water potential, soil bulk density, soil water extract isotope analyses and soil water chemistry analyses.

  8. Hydraulic Structures

    Data.gov (United States)

    Department of Homeland Security — This table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the FIRM, channels containing the...

  9. Status Report on Transfer of Physical and Hydraulic Properties Databases to the Hanford Environmental Information System - PNNL Remediation Decision Support Project, Task 1, Activity 6

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L.; Middleton, Lisa A.; Cantrell, Kirk J.

    2009-06-30

    This document provides a status report on efforts to transfer physical and hydraulic property data from PNNL to CHPRC for incorporation into HEIS. The Remediation Decision Support (RDS) Project is managed by Pacific Northwest National Laboratory (PNNL) to support Hanford Site waste management and remedial action decisions by the U.S. Department of Energy and their contractors. The objective of Task 1, Activity 6 of the RDS project is to compile all available physical and hydraulic property data for sediments from the Hanford Site, to port these data into the Hanford Environmental Information System (HEIS), and to make the data web-accessible to anyone on the Hanford Local Area Network via the so-called Virtual Library. These physical and hydraulic property data are used to estimate parameters for analytical and numerical flow and transport models that are used for site risk assessments and evaluation of remedial action alternatives. In past years efforts were made by RDS project staff to compile all available physical and hydraulic property data for Hanford sediments and to transfer these data into SoilVision{reg_sign}, a commercial geotechnical software package designed for storing, analyzing, and manipulating soils data. Although SoilVision{reg_sign} has proven to be useful, its access and use restrictions have been recognized as a limitation to the effective use of the physical and hydraulic property databases by the broader group of potential users involved in Hanford waste site issues. In order to make these data more widely available and useable, a decision was made to port them to HEIS and to make them web-accessible via a Virtual Library module. In FY08 the original objectives of this activity on the RDS project were to: (1) ensure traceability and defensibility of all physical and hydraulic property data currently residing in the SoilVision{reg_sign} database maintained by PNNL, (2) transfer the physical and hydraulic property data from the Microsoft

  10. Electronic and thermal properties of Biphenyl molecules

    Science.gov (United States)

    Medina, F. G.; Ojeda, J. H.; Duque, C. A.; Laroze, D.

    2015-11-01

    Transport properties of a single Biphenyl molecule coupled to two contacts are studied. We characterise this system by a tight-binding Hamiltonian. Based on the non-equilibrium Green's functions technique with a Landauer-Büttiker formalism the transmission probability, current and thermoelectrical power are obtained. We show that the Biphenyl molecule may have semiconductor behavior for certain values of the electrode-molecule-electrode junctions and different values of the angle between the two rings of the molecule. In addition, the density of states (DOS) is calculated to compare the bandwidths with the profile of the transmission probability. DOS allows us to explain the asymmetric shape with respect to the molecule's Fermi energy.

  11. Properties Research of Water-polyols Fire Resistant Hydraulic Fluid%水-多元醇型难燃液压液的性能研究

    Institute of Scientific and Technical Information of China (English)

    宋开财; 沈国钦; 王建华; 李春生; 宋敏

    2012-01-01

    The major physical and chemical properties of fire resistant hydraulic fluids with different composition have been analyzed, such as fire-resistant, viscosity-temperature and evaporation characteristics. The influences of different water content, different types of polyols and tackifier on the main properties of water based fire resistant hydraulic fluid have been studied. Hie results show that the higher water content of water based fire resistant hydraulic fluid, the better the flame resistance is, and the higher the evaporation rate. The rule of change at evaporation rate along with time was first increased and then decreased. The low temperature performance of water-glycol-based hydraulic fluid was better, but the air releasing property and the susceptibility on thickening agent of water-glycerol-based hydraulic fluid were better. The thickening ability of water-soluble polyether is far superior to polyethylene glycol, with no crystallization phenomena at low temperature. The study results are of certain reference significance to the research and application of water-based fire resistant hydraulic fluid.%分析了不同组成难燃液压液的难燃性、黏温特性和蒸发特性等主要理化性能,研究了不同含水量、不同类型多元醇和增黏剂对水基难燃液压液主要性能的影响.结果表明:水基难燃液压液的水含量越高,难燃性越好,蒸发率越高,且蒸发率随时间的变化规律是先增大后减少.水-乙二醇型液压液的低温性能较好,水-甘油型液压液的空气释放性和对稠化剂的感受性较好.水溶性聚醚的稠化能力远远优于聚乙二醇,低温时无结晶现象.研究结果对于水基难燃液压液的配方研究和使用具有参考意义.

  12. Electronic Properties of Cyclacenes from TAO-DFT

    Science.gov (United States)

    Wu, Chun-Shian; Lee, Pei-Yin; Chai, Jeng-Da

    2016-11-01

    Owing to the presence of strong static correlation effects, accurate prediction of the electronic properties (e.g., the singlet-triplet energy gaps, vertical ionization potentials, vertical electron affinities, fundamental gaps, symmetrized von Neumann entropy, active orbital occupation numbers, and real-space representation of active orbitals) of cyclacenes with n fused benzene rings (n = 4-100) has posed a great challenge to traditional electronic structure methods. To meet the challenge, we study these properties using our newly developed thermally-assisted-occupation density functional theory (TAO-DFT), a very efficient method for the study of large systems with strong static correlation effects. Besides, to examine the role of cyclic topology, the electronic properties of cyclacenes are also compared with those of acenes. Similar to acenes, the ground states of cyclacenes are singlets for all the cases studied. In contrast to acenes, the electronic properties of cyclacenes, however, exhibit oscillatory behavior (for n ≤ 30) in the approach to the corresponding properties of acenes with increasing number of benzene rings. On the basis of the calculated orbitals and their occupation numbers, the larger cyclacenes are shown to exhibit increasing polyradical character in their ground states, with the active orbitals being mainly localized at the peripheral carbon atoms.

  13. Determining the hydraulic and fracture properties of the Coal Seam Gas well by numerical modelling and GLUE analysis

    Science.gov (United States)

    Askarimarnani, Sara; Willgoose, Garry; Fityus, Stephen

    2017-04-01

    Coal seam gas (CSG) is a form of natural gas that occurs in some coal seams. Coal seams have natural fractures with dual-porosity systems and low permeability. In the CSG industry, hydraulic fracturing is applied to increase the permeability and extract the gas more efficiently from the coal seam. The industry claims that it can design fracking patterns. Whether this is true or not, the public (and regulators) requires assurance that once a well has been fracked that the fracking has occurred according to plan and that the fracked well is safe. Thus defensible post-fracking testing methodologies for gas generating wells are required. In 2009 a fracked well HB02, owned by AGL, near Broke, NSW, Australia was subjected to "traditional" water pump-testing as part of this assurance process. Interpretation with well Type Curves and simple single phase (i.e. only water, no gas) highlighted deficiencies in traditional water well approaches with a systemic deviation from the qualitative characteristic of well drawdown curves (e.g. concavity versus convexity of drawdown with time). Accordingly a multiphase (i.e. water and methane) model of the well was developed and compared with the observed data. This paper will discuss the results of this multiphase testing using the TOUGH2 model and its EOS7C constitutive model. A key objective was to test a methodology, based on GLUE monte-carlo calibration technique, to calibrate the characteristics of the frack using the well test drawdown curve. GLUE involves a sensitivity analysis of how changes in the fracture properties change the well hydraulics through and analysis of the drawdown curve and changes in the cone of depression. This was undertaken by changing the native coal, fracture, and gas parameters to see how changing those parameters changed the match between simulations and the observed well drawdown. Results from the GLUE analysis show how much information is contained in the well drawdown curve for estimating field scale

  14. Ultrasmall Carbide Nanospheres - Formation and Electronic Properties

    Science.gov (United States)

    Reinke, Petra; Monazami, Ehsan; McClimon, John

    2015-03-01

    Metallic nanoparticles are highly coveted but are subject to rapid Ostwald ripening even at moderate temperatures limiting study of their properties. Ultrasmall transition metal carbide ``nanospheres'' are synthesized by a solid-state reaction between fullerene as carbon scaffold, and a W surface. This produces nanospheres with a narrow size distribution below 2.5 nm diameter. The nanosphere shape is defined by the scaffold and densely packed arrays can be achieved. The metal-fullerene reaction is temperature driven and progresses through an intermediate semiconducting phase until the fully metallic nanospheres are created at about 350 C. The reaction sequence is observed with STM, and STS maps yield the local density of states. The reaction presumably progresses by stepwise introduction of W-atoms in the carbon scaffold. The results of high resolution STM/STS in combination with DFT calculations are used to unravel the reaction mechanism. We will discuss the transfer of this specific reaction mechanism to other transition metal carbides. The nanospheres are an excellent testbed for the physics and chemistry of highly curved surfaces.

  15. Hydrogeologic setting, hydraulic properties, and ground-water flow at the O-Field area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Banks, W.S.; Smith, B.S.; Donnelly, C.A.

    1996-01-01

    The U.S. Army disposed chemical agents, laboratory materials, and unexploded ordnance at O-Field in the Edgewood area of Aberdeen Proving Ground, Maryland, from before World War II until at least the 1950's. Soil, ground water, surface water,and wetland sediments in the O-Field area were contaminated from the disposal activity. A ground-water-flow model of the O-Field area was constructed by the U.S. Geological Survey (USGS) in 1989 to simulate flow in the central and southern part of the Gunpowder Neck. The USGS began an additional study of the contamination in the O-Field area in cooperation with the U.S. Army in 1990 to (1) further define the hydrogeologic framework of the O-Field area, (2) characterize the hydraulic properties of the aquifers and confining units, and (3) define ground-water flow paths at O-Field based on the current data and simulations of ground-water flow. A water-table aquifer, an upper confining unit, and an upper confined aquifer comprise the shallow ground-water aquifer system of the O-Field area. A lower confining unit, through which ground-water movement is negligible, is considered a lower boundary to the shallow aquifer system. These units are all part of the Pleistocene Talbot Formation. The model developed in the previous study was redesigned using the data collected during this study and emphasized New O-Field. The current steady-state model was calibrated to water levels of June 1993. The rate of ground-water flow calculated by the model was approximately 0.48 feet per day (ft/d) and the rate determined from chlorofluorocarbon dates was approximately 0.39 ft/d.

  16. Assessment of Temporal and spatial variability of soil hydraulic properties and its implications on soil water content predictions for a maize field in Northern Italy

    Science.gov (United States)

    Feki, Mouna; Ravazzani, Giovanni; Ceppi, Alessandro; Mancini, Marco

    2016-04-01

    Use of hydrological models to simulate water movement from soil surface to groundwater requires intensive, time consuming and expensive soil related parameters collection, such as, water retention curve (WRC) parameters and hydraulic conductivity (K).Typically, soils to be characterized, , exhibit large variations in space and time as well during the cropping cycle, due to biological processes and agricultural management practices : tillage , irrigation , fertilization and harvest. Soil properties are subjected to diverse physical and chemical changes that leads to a non-stability in term of water and chemical movements within the soil as well to the groundwater. The aim of this study is to assess the variability of soil hydraulic properties dynamics over a cropping cycle. The study site is a surface irrigated Maize field (typical in this area) located in Secugnago (45°13'31.70'' N, 9°36'26.82 E), in Northern Italy-Lombardy region. The field belongs to the Consortium Muzza Bassa Lodigiana, within which meteorological data together with soil moisture were monitored during the cropping season of 2015 . To investigate soil properties variations, both measurements in the field and laboratory tests on both undisturbed and disturbed collected samples were performed. Soil samples were taken from different locations within the study area and at different depths( 0cm , 20cm and 40cm) as well at different growth stages of the plant ,after irrigation events or tillage and as well after harvest. During three measuring campaigns, for each soil samples several parameters were monitored (Organic matter , bulk density) together with soil-water related parameters (Soil water retention curve parameters , saturated hydraulic conductivity). Soil water retention curves parameters were measured following the evaporative method, using the Hyprop (Hydraulic Property Analyzer; UMS Munich, 2010). Parameters were assessed using Hyprop-fit software, by fitting data to Brooks and Corey and

  17. Structural and electronic properties of dense liquid and amorphous nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Boates, B; Bonev, S A

    2011-02-11

    We present first-principles calculations of the structural and electronic properties of liquid nitrogen in the pressure-temperature range of 0-200 GPa and 2000-6000 K. The molecular-polymerization and molecular-atomic liquid phase boundaries have been mapped over this region. We find the polymeric liquid to be metallic, similar to what has been reported for the higher-temperature atomic fluid. An explanation of the electronic properties is given based on the structure and bonding character of the transformed liquids. We discuss the structural and bonding differences between the polymeric liquid and insulating solid cubic-gauche nitrogen to explain the differences in their electronic properties. Furthermore, we discuss the mechanism responsible for charge transport in polymeric nitrogen systems to explain the conductivity of the polymeric fluid and the semi-conducting nature of low-temperature amorphous nitrogen.

  18. Electronic properties of multi-defected zigzag carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Electronic properties of multi-defected zigzag single-walled carbon nanotubes are investigated by use of the tight-binding Green’s function method. The Stone-Wales defects and the vacancies are considered. We find that the conductance sensitively depends on the realistic defect configurations for the metallic zigzag carbon nanotubes. Interestingly, the electronic transport properties of the nanotubes with three vacancies can be considered as the sum effect of two double-vacancies, while those with Stone-Wales defects can not. The electron interference along the longitudinal axis and the transport blocking are observed, which may be useful for understanding the electron transport behavior of carbon nanotube in experiments.

  19. Plant root-driven hydraulic redistribution, root nutrient uptake and carbon exudation interact with soil properties to generate rhizosphere resource hotspots that vary in space and time

    Science.gov (United States)

    Espeleta, J. F.; Neumann, R. B.; Cardon, Z. G.; Mayer, K. U.; Rastetter, E. B.

    2014-12-01

    Hydraulic redistribution (HR) of soil water by plants occurs in seasonally dry ecosystems worldwide. During drought, water flows from deep moist soil, through plant roots, into dry (often litter-rich) upper soil layers. Using modeling, we explored how physical transport processes driven by transpiration and hydraulic redistribution interact with root physiology (nutrient uptake and carbon exudation) and soil properties (soil texture and cation exchange) to influence nitrogen and carbon concentrations in the rhizosphere. At the single root scale, we modeled a 10-cm radial soil domain, and simulated solute transport, soil cation exchange, and root exudation and nutrient uptake under two water flow patterns: daytime transpiration without nighttime HR, and daytime transpiration with nighttime HR. During HR, water efflux flushed solutes away from the root, diluting the concentrations of key nutrients like nitrate. The transport of cations by transpiration in the day and their accumulation near the root led to competitive desorption of ammonium from soil further from the root and generation of hotspots of ammonium availability at night. HR influenced the spatial and temporal patterns of these hotspots and their intensity. They were also influenced by soil properties of texture and cation exchange capacity. This dynamic resource landscape caused by diel cycling between transpiration and hydraulic redistribution presents a stage for greater complexity of microbial interactions. We are currently embedding a microbial community and small food web into this rhizosphere model in order to explore how organisms responsible for nutrient and soil carbon cycling respond to these fluctuating resource regimes.

  20. Electron paramagnetic resonance of material properties and processes

    Energy Technology Data Exchange (ETDEWEB)

    Brower, K. L.

    1980-01-01

    This paper demonstrates, primarily for the non-specialist and within the context of new and recent achievements, the diagnostic value of electron paramagnetic resonance (EPR) in the study of material properties and processes. I have selected three EPR studies which demonstrate the elegance and uniqueness of EPR in atomic defect studies and exemplify unusual achievements through the use of new techniques for material measurement and preparation. A brief introduction into the origin, interaction, and detection of unpaired electrons is included.

  1. Theoretical Study of Electronic Properties of Carbon Allotropes

    OpenAIRE

    Dral, Pavlo

    2013-01-01

    This doctoral thesis describes theoretical investigations of the different physicochemical and above all electronic properties of numerous already discovered and yet to be synthesized modern carbon allotropes, their model compounds and derivatives. In the last century it was ascertained that carbon is not only the most important chemical element for the existence of living beings, but is also becoming increasingly more important for electronics and especially in recent decades for molecula...

  2. Determination of hydraulic properties of the Callovo-Oxfordian argillite at the bure site: Synthesis of the results obtained in deep boreholes using several in situ investigation techniques

    Science.gov (United States)

    Distinguin, Marc; Lavanchy, Jean-Marc

    -term monitoring sections). Borehole simulators were used to define a suitable flow model taking into account the complete pressure history of the borehole, and to derive best-guess estimates and uncertainty ranges for the hydraulic parameters. The sources of perturbations and the consistency of results are discussed in this paper. For instance, for a same interval tested through different techniques, an overestimation by one order of magnitude of the hydraulic conductivity due to a large overestimation of pore pressure during packer test was observed. In situ permeability estimations are also compared with those obtained from laboratory tests on core samples. Both short-term and long-term measurements provide values for the hydraulic conductivity at different scales with high consistency. This parameter is shown to be less than 2 × 10 -12 m/s. Pressures measurements from long-term monitoring are sufficiently accurate for determining formation hydraulic heads. A pressure profile in the argillite, derived from the extensive set of data currently available, shows an overpressure in the argillite 20-60 m above its surrounding formations. As a whole, the pressure data and derived hydraulic properties acquired from deep boreholes, offer a high degree of reliability and constitute a major contribution to the hydraulic characterisation of the low-permeable argillite formation. In 2006, this data will be complemented with measurements carried out in the Laboratory at 490 m depth, with the aim to characterize in greater depth the pressure profile of the argillite.

  3. Structural and luminescent properties of electron-irradiated silicon

    Science.gov (United States)

    Sobolev, N. A.; Aruev, P. N.; Kalyadin, A. E.; Shek, E. I.; Zabrodskiy, V. V.; Loshachenko, A. S.; Shtel`makh, K. F.; Vdovin, V. I.; Xiang, Luelue; Yang, Deren

    2014-02-01

    Structural defects induced by electron irradiation of p-Cz-Si wafers were identified. The influence of the annealing conditions in a chlorine-containing atmosphere on the structural and luminescent properties of the samples was examined. Light-emitting diodes based on electron-irradiated and high-temperature-annealed wafers were fabricated by a vapour-phase epitaxy technique and their luminescence properties were studied. A high-intensity dislocation-related D1 line was observed at 1.6 μm in the room-temperature electroluminescence spectrum.

  4. Electronic properties of graphene-based bilayer systems

    Energy Technology Data Exchange (ETDEWEB)

    Rozhkov, A.V., E-mail: arozhkov@gmail.com [CEMS, RIKEN, Saitama 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700 (Russian Federation); Sboychakov, A.O. [CEMS, RIKEN, Saitama 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Rakhmanov, A.L. [CEMS, RIKEN, Saitama 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700 (Russian Federation); All-Russia Research Institute of Automatics, Moscow, 127055 (Russian Federation); Nori, Franco, E-mail: fnori@riken.jp [CEMS, RIKEN, Saitama 351-0198 (Japan); Physics Department, The University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2016-08-23

    This article reviews the theoretical and experimental work related to the electronic properties of bilayer graphene systems. Three types of bilayer stackings are discussed: the AA, AB, and twisted bilayer graphene. This review covers single-electron properties, effects of static electric and magnetic fields, bilayer-based mesoscopic systems, spin–orbit coupling, dc transport and optical response, as well as spontaneous symmetry violation and other interaction effects. The selection of the material aims to introduce the reader to the most commonly studied topics of theoretical and experimental research in bilayer graphene.

  5. Structural and luminescent properties of electron-irradiated silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sobolev, N. A.; Loshachenko, A. S. [Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia and Fok Institute of Physics, St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Aruev, P. N.; Kalyadin, A. E.; Shek, E. I.; Zabrodskiy, V. V. [Ioffe Physical-Technical Institute, 194021 St. Petersburg (Russian Federation); Shtel' makh, K. F. [Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia and St. Petersburg State Technical University, 195251 St. Petersburg (Russian Federation); Vdovin, V. I. [Rzhanov Institute of Semiconductor Physics, 630090 Novosibirsk (Russian Federation); Xiang, Luelue; Yang, Deren [State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, 310027 Hangzhou (China)

    2014-02-21

    Structural defects induced by electron irradiation of p-Cz-Si wafers were identified. The influence of the annealing conditions in a chlorine-containing atmosphere on the structural and luminescent properties of the samples was examined. Light-emitting diodes based on electron-irradiated and high-temperature-annealed wafers were fabricated by a vapour-phase epitaxy technique and their luminescence properties were studied. A high-intensity dislocation-related D1 line was observed at 1.6 μm in the room-temperature electroluminescence spectrum.

  6. Electronic properties of graphene-based bilayer systems

    Science.gov (United States)

    Rozhkov, A. V.; Sboychakov, A. O.; Rakhmanov, A. L.; Nori, Franco

    2016-08-01

    This article reviews the theoretical and experimental work related to the electronic properties of bilayer graphene systems. Three types of bilayer stackings are discussed: the AA, AB, and twisted bilayer graphene. This review covers single-electron properties, effects of static electric and magnetic fields, bilayer-based mesoscopic systems, spin-orbit coupling, dc transport and optical response, as well as spontaneous symmetry violation and other interaction effects. The selection of the material aims to introduce the reader to the most commonly studied topics of theoretical and experimental research in bilayer graphene.

  7. Fundamentals of the Physics of Solids Volume 2: Electronic Properties

    CERN Document Server

    Sólyom, Jenő

    2009-01-01

    This book is the second of a single-authored, three-volume series that aims to deliver a comprehensive and self-contained account of the vast field of solid-state physics. It goes far beyond most classic texts in the presentation of the properties of solids and experimentally observed phenomena, along with the basic concepts and theoretical methods used to understand them and the essential features of various experimental techniques. The first volume deals with the atomic and magnetic structure and dynamics of solids, the second with those electronic properties that can be understood in the one-particle approximation, and the third with the effects due to interactions and correlations between electrons. This volume is devoted to the electronic properties of metals and semiconductors in the independent-electron approximation. After a brief discussion of the free-electron models by Drude and Sommerfeld, the methods for calculating and measuring the band structure of Bloch electrons moving in the periodic potent...

  8. Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Neil; /SLAC

    2009-10-30

    Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped

  9. Correlating substituent parameter values to electron transport properties of molecules

    Science.gov (United States)

    Vedova-Brook, Natalie; Matsunaga, Nikita; Sohlberg, Karl

    2004-03-01

    There are a vast number of organic compounds that could be considered for use in molecular electronics. Because of this, the need for efficient and economical screening tools has emerged. We demonstrate that the substituent parameter values ( σ), commonly found in advanced organic chemistry textbooks, correlate strongly with features of the charge migration process, establishing them as useful indicators of electronic properties. Specifically, we report that ab initio derived electronic charge transfer values for 16 different substituted aromatic molecules for molecular junctions correlate to the σ values with a correlation coefficient squared ( R2) of 0.863.

  10. Electronic Transmission Properties of Two-Dimensional Quasi-Lattice

    Institute of Scientific and Technical Information of China (English)

    侯志林; 傅秀军; 刘有延

    2002-01-01

    In the framework of the tight binding model, the electronic transmission properties of two-dimensional Penrose lattices with free boundary conditions are studied using the generalized eigenfunction method (Phys. Rev. B 60(1999)13444). The electronic transmission coefficients for Penrose lattices with different sizes and widths are calculated, and the result shows strong energy dependence because of the quasiperiodic structure and quantum coherent effect. Around the Fermi level E = 0, there is an energy region with zero transmission amplitudes,which suggests that the studied systems are insulating. The spatial distributions of several typical electronic states with different transmission coefficients are plotted to display the propagation process.

  11. Electronic properties of bromine-doped carbon nanotubes

    CERN Document Server

    Jhi, S H; Cohen, M L

    2002-01-01

    Intercalation of bromine molecules (Br2) into single-wall carbon nanotube (SWNT) ropes is studied using the ab initio pseudopotential density functional method. Electronic and vibrational properties of the SWNT and Br2 are studied for various bromine concentrations. A drastic change in the charge transfer, bromine stretching-mode, and bromine bond-length is observed when the bromine-bromine distance decreases. Calculated electronic structures show that, at high bromine concentrations, the bromine ppsigma level broadens due to the interbromine interaction. These states overlap with the electronic bands of the SWNT near the Fermi level which results in a substantial charge transfer from carbon to bromine.

  12. Ab initio electronic properties of dual phosphorus monolayers in silicon

    DEFF Research Database (Denmark)

    Drumm, Daniel W.; Per, Manolo C.; Budi, Akin

    2014-01-01

    In the midst of the epitaxial circuitry revolution in silicon technology, we look ahead to the next paradigm shift: effective use of the third dimension - in particular, its combination with epitaxial technology. We perform ab initio calculations of atomically thin epitaxial bilayers in silicon......, investigating the fundamental electronic properties of monolayer pairs. Quantitative band splittings and the electronic density are presented, along with effects of the layers’ relative alignment and comments on disordered systems, and for the first time, the effective electronic widths of such device...

  13. One-Electron Theory of Metals. Cohesive and Structural Properties

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt

    by means of the Linear Muffin-Tin Orbital (LMTO) method. It has been the goal of the work to establish how well this one-electron approach describes physical properties such as the crystal structures of the transition metals, the structural phase transitions in the alkali, alkaline earth, and rare earth......The work described in the report r.nd the 16 accompanying publications is based upon a one-electron theory obtained within the local approximation to density-functional theory, and deals with the ground state of metals as obtained from selfconsistent electronic-structure calculations performed...

  14. Electronic properties of delta -doped GaAs

    Science.gov (United States)

    Gold, A.; Ghazali, A.; Serre, J.

    1992-07-01

    For temperature zero the authors study the effects of disorder on the electronic properties of the two-dimensional electron gas which exists in planar-doped ( delta -doped) GaAs. The density of states, the Fermi level, the single-particle relaxation time and the electron mobility are calculated as functions of the dopant concentration. The transition from a band tail to an impurity band and the nature of the metal-insulator transition are discussed. The authors compare the theoretical results on the mobility with some available experimental data.

  15. Laboratory-Measured and Property-Transfer Modeled Saturated Hydraulic Conductivity of Snake River Plain Aquifer Sediments at the Idaho National Laboratory, Idaho

    Science.gov (United States)

    Perkins, Kim S.

    2008-01-01

    Sediments are believed to comprise as much as 50 percent of the Snake River Plain aquifer thickness in some locations within the Idaho National Laboratory. However, the hydraulic properties of these deep sediments have not been well characterized and they are not represented explicitly in the current conceptual model of subregional scale ground-water flow. The purpose of this study is to evaluate the nature of the sedimentary material within the aquifer and to test the applicability of a site-specific property-transfer model developed for the sedimentary interbeds of the unsaturated zone. Saturated hydraulic conductivity (Ksat) was measured for 10 core samples from sedimentary interbeds within the Snake River Plain aquifer and also estimated using the property-transfer model. The property-transfer model for predicting Ksat was previously developed using a multiple linear-regression technique with bulk physical-property measurements (bulk density [pbulk], the median particle diameter, and the uniformity coefficient) as the explanatory variables. The model systematically underestimates Ksat,typically by about a factor of 10, which likely is due to higher bulk-density values for the aquifer samples compared to the samples from the unsaturated zone upon which the model was developed. Linear relations between the logarithm of Ksat and pbulk also were explored for comparison.

  16. Using electron microscopy to calculate optical properties of biological samples

    OpenAIRE

    Wu, Wenli; Radosevich, Andrew J.; Eshein, Adam; Nguyen, The-Quyen; Yi, Ji; Cherkezyan, Lusik; Roy, Hemant K.; Szleifer, Igal; Backman, Vadim

    2016-01-01

    The microscopic structural origins of optical properties in biological media are still not fully understood. Better understanding these origins can serve to improve the utility of existing techniques and facilitate the discovery of other novel techniques. We propose a novel analysis technique using electron microscopy (EM) to calculate optical properties of specific biological structures. This method is demonstrated with images of human epithelial colon cell nuclei. The spectrum of anisotropy...

  17. Hot-electron noise properties of graphene-like systems

    Science.gov (United States)

    Rustagi, A.; Stanton, C. J.

    2014-12-01

    We study the hot-electron noise properties of two-dimensional materials with a graphene-like energy dispersion under a strong applied electric field which drives the system far from equilibrium. Calculations are based on a Boltzmann-Green-function method within a two-relaxation-time approximation that allows for both inelastic scattering coming from electron-phonon scattering and elastic scattering coming from electron-impurity scattering. The steady-state distribution function is used to calculate the average current and the low-frequency spectral density for current fluctuations (noise) in the nonequilibrium steady-state. We find that as the electric field strength increases, the noise decreases from its equilibrium thermal noise value. This is in contrast with semiconductors with a quadratic energy-wave-vector dispersion where the noise increases in a constant-relaxation-time model with the square of the electric field due to the Joule heating of the electron gas by the electric field. We have also studied these properties for an electronic dispersion with a gap introduced into the Dirac spectrum. The inclusion of the gap in the electronic dispersion causes an initial increase in the noise as a function of external electric field due to the heating of the electron gas for large gap values. At high electric fields, the noise decreases with increasing electric field as in the case of gapless dispersion at higher fields.

  18. Properties of Commercial PVC Films with Respect to Electron Dosimetry

    DEFF Research Database (Denmark)

    Miller, Arne; Liqing, Xie

    The properties of three commercially available polyvinyl chloride (PVC) film supplies and one made without additives were tested with respect to their application as routine dose monitors at electron accelerators. Dose fractionation was found to increase the response and the post-irradiation heat...

  19. Electronic properties of crystalline fluorides of a cubic crystal system

    Science.gov (United States)

    Eremin, I. E.; Eremin, E. L.; Demchuk, V. A.; Moiseenko, V. G.

    2014-01-01

    The possibility of effective mathematical modeling of polarization characteristics of crystalline dielectrics is considered. It is shown that the generation of frequency dielectric spectra of the substances under consideration, which equivalent to their physically measured properties, gives the objective possibility of mediated visualization of their electron-atomic structure.

  20. Hydraulic properties at the North Sea island Borkum derived from joint inversion of magnetic resonance and electrical resistivity soundings

    Directory of Open Access Journals (Sweden)

    T. Günther

    2012-03-01

    Full Text Available In order to do hydraulic modelling for simulating the salt-/fresh water dynamics, the parameters porosity, salinity and hydraulic conductivity are needed. We present a methodology retrieve them by the joint analysis of magnetic resonance (MRS and and vertical electric (VES soundings. Both data sets are jointly inverted for resistivity, water content and decay time using a block discretization.

    We show the results of three soundings measured in the east part of the CLIWAT pilot area Borkum. Pumping test data is used to calibrate the petrophysical relationship for the local conditions. As a result we are able to predict porosity, salinity and hydraulic conductivities of the aquifers including their uncertainty.

    The joint inversion significantly improves the reliability of the results, which can be shown by comparison with a borehole. By a sounding in the flooding area we demonstrate that only the combined inversion leads to a correct subsurface model. Thanks to the joint application we are able to distinguish fluid conductivity from lithology and provide reliable hydraulic parameters.

  1. The role of uncertainty in bedrock depth and hydraulic properties on the stability of a variably-saturated slope

    NARCIS (Netherlands)

    Gomes, Guilherme J.C.; Vrugt, Jasper A.; Vargas, Eurípedes A.; Camargo, Julia T.; Velloso, Raquel Q.; van Genuchten, Martinus Th

    2017-01-01

    We investigate the uncertainty in bedrock depth and soil hydraulic parameters on the stability of a variably-saturated slope in Rio de Janeiro, Brazil. We couple Monte Carlo simulation of a three-dimensional flow model with numerical limit analysis to calculate confidence intervals of the safety fac

  2. Potential Impacts of Spilled Hydraulic Fracturing Fluid Chemicals on Water Resources: Types, volumes, and physical-chemical properties of chemicals

    Science.gov (United States)

    Hydraulic fracturing (HF) fluid chemicals spilled on-site may impact drinking water resources. While chemicals generally make up <2% of the total injected fluid composition by mass, spills may have undiluted concentrations. HF fluids typically consist of a mixture of base flui...

  3. Pressure Dependent Electronic Properties of Organic Semiconductors from First Principles

    Science.gov (United States)

    Knuth, Franz; Carbogno, Christian; Blum, Volker; Scheffler, Matthias

    2015-03-01

    The electronic properties of organic semiconductors typically exhibit a significant dependence on the strain, stress, and pressure. In this contribution, we present the theoretical background, assessment of approximations, and results of electronic and transport properties in the framework of density-functional theory. Our implementation considers the analytical strain derivatives (stress tensor) including the contributions that stem from (a) van-der-Waals interactions and (b) the Fock-exchange in hybrid functionals. We validate our approach by investigating the geometric and electronic changes that occur in polyacetylene and anthracene under hydrostatic pressure. We show that the fraction of exact exchange included in the calculations is critical - and non-trivial to choose - for a correct description of these systems. Furthermore, we point out trends for the electrical conductivity under pressure and identify the dominant charge carriers and transport directions.

  4. Electronic properties of asymmetrically doped twisted graphene bilayers

    Science.gov (United States)

    Trambly de Laissardière, Guy; Namarvar, Omid Faizy; Mayou, Didier; Magaud, Laurence

    2016-06-01

    Rotated graphene bilayers form an exotic class of nanomaterials with fascinating electronic properties governed by the rotation angle θ . For large rotation angles, the electron eigenstates are restricted to one layer and the bilayer behaves like two decoupled graphene layers. At intermediate angles, Dirac cones are preserved but with a lower velocity and van Hove singularities are induced at energies where the two Dirac cones intersect. At very small angles, eigenstates become localized in peculiar moiré zones. We analyze here the effect of an asymmetric doping for a series of commensurate rotated bilayers on the basis of tight-binding calculations of their band dispersions, density of states, participation ratio, and diffusive properties. While a small doping level preserves the θ dependence of the rotated bilayer electronic structure, larger doping induces a further reduction of the band velocity in the same way as a further reduction of the rotation angle.

  5. Optical properties and electron dynamics in carbon nanodots

    Science.gov (United States)

    Wen, Xiaoming; Huang, Shujuan; Conibeer, Gavin; Shrestha, Santosh; Yu, Pyng; Toh, Yon-Rui; Tang, Jau

    2013-12-01

    Carbon nanodots (CNDs) have emerged as fascinating materials with exceptional electronic and optical properties, and thus they offer promising applications in photonics, photovoltaics and photocatalysis. Herein we study the optical properties and electron dynamics in CNDs using steady state and time-resolved spectroscopy. The photoluminescence (PL) is determined to originate from both core and surface. The massive surface fluorophores result in a broad spectral fluorescence. In addition to various synthesis techniques, it is demonstrated that the PL of CNDs can be extended from the blue to the near infrared by thermal assisted growth. Directional electron transfer was observed as fast as femtosecond in CND-graphene oxide nanocomposites from CND into graphene oxide. These results suggest CNDs can be promising in many applications.

  6. The electronic properties of superatom states of hollow molecules.

    Science.gov (United States)

    Feng, Min; Zhao, Jin; Huang, Tian; Zhu, Xiaoyang; Petek, Hrvoje

    2011-05-17

    Electronic and optical properties of molecules and molecular solids are traditionally considered from the perspective of the frontier orbitals and their intermolecular interactions. How molecules condense into crystalline solids, however, is mainly attributed to the long-range polarization interaction. In this Account, we show that long-range polarization also introduces a distinctive set of diffuse molecular electronic states, which in quantum structures or solids can combine into nearly-free-electron (NFE) bands. These NFE properties, which are usually associated with good metals, are vividly evident in sp(2) hybridized carbon materials, specifically graphene and its derivatives. The polarization interaction is primarily manifested in the screening of an external charge at a solid/vacuum interface. It is responsible for the universal image potential and the associated unoccupied image potential (IP) states, which are observed even at the He liquid/vacuum interface. The molecular electronic properties that we describe are derived from the IP states of graphene, which float above and below the molecular plane and undergo free motion parallel to it. Rolling or wrapping a graphene sheet into a nanotube or a fullerene transforms the IP states into diffuse atom-like orbitals that are bound primarily to hollow molecular cores, rather than the component atoms. Therefore, we named them the superatom molecular orbitals (SAMOs). Like the excitonic states of semiconductor nanostructures or the plasmonic resonances of metallic nanoparticles, SAMOs of fullerene molecules, separated by their van der Waals distance, can combine to form diatomic molecule-like orbitals of C(60) dimers. For larger aggregates, they form NFE bands of superatomic quantum structures and solids. The overlap of the diffuse SAMO wavefunctions in van der Waals solids provides a different paradigm for band formation than the valence or conduction bands formed by interaction of the more tightly bound

  7. Properties of the electron cloud in a high-energy positron and electron storage ring

    Directory of Open Access Journals (Sweden)

    K. C. Harkay

    2003-03-01

    Full Text Available Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in a positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.

  8. Effects of two arbuscular mycorrhizae fungi on some soil hydraulic properties and nutrient uptake by spring barley in an alkaline soil under greenhouse conditions

    Directory of Open Access Journals (Sweden)

    2015-06-01

    Full Text Available In order to investigate the effects of mycorrhizal symbiosis on some soil hydraulic properties and nutrients uptake by spring barley, a greenhouse experiment was conducted based on a completely randomized blocks design with four replications, using two mycorrhizl fungi including Glomus intraradices (GI and Glomus etunicatum (GE and non-mycorrhizal (control treatments, in an alkaline coarse-textured soil. Results showed that GE and GI significantly increased (P< 0.01 field capacity (FC water content by 24.7 and 12.6%, permanent wilting point (PWP water content by 20.1 and 11.1%, available water capacity (AWC by 27.1 and 13.3%, micropores by 14.1 and 5%, mesopores by 27.8 and 20.8% and decreased macropores by 17.3 and 9.5% and saturated hydraulic conductivity by 88.2 and 68.8% relative to the control, respectively. Also, GE and GI fungi significantly increased (P< 0.01 uptake of phosphorus in barely seeds by 44.1 and 20.3% and in stem by 181 and 50.6% and potassium in seeds by 290.8 and 167.9%, respectively. It is concluded that mycorrhizal symbiosis, as a biological and sustainable method, improved hydraulic and chemical quality of the alkaline coarse-textured soil.

  9. Substitutionally doped phosphorene: electronic properties and gas sensing

    Science.gov (United States)

    Suvansinpan, Nawat; Hussain, Fayyaz; Zhang, Gang; Hsin Chiu, Cheng; Cai, Yongqing; Zhang, Yong-Wei

    2016-02-01

    Phosphorene, a new elemental two-dimensional material, has attracted increasing attention owing to its intriguing electronic properties. In particular, pristine phospohorene, due to its ultrahigh surface-volume ratio and high chemical activity, has been shown to be promising for gas sensing (Abbas et al 2015 ACS Nano 9 5618). To further enhance its sensing ability, we perform first-principles calculations based on density functional theory to study substitutionally doped phosphorene with 17 different atoms, focusing on structures, energetics, electronic properties and gas sensing. Our calculations reveal that anionic X (X = O, C and S) dopants have a large binding energy and highly dispersive electronic states, signifying the formation of covalent X-P bonds and thus strong structural stability. Alkali atom (Li and Na) doping is found to donate most of the electrons in the outer s-orbital by forming ionic bonds with P, and the band gap decreases by pushing down the conduction band, suggesting that the optical and electronic properties of the doped phosphorene can be tailored. For doping with VIIIB-group (Fe, Co and Ni) elements, a strong affinity is predicted and the binding energy and charge transfer are correlated strongly with their electronegativity. By examining NO molecule adsorption, we find that these metal doped phosphorenes (MDPs) in general exhibit a significantly enhanced chemical activity compared with pristine phosphorene. Our study suggests that substitutionally doped phosphorene shows many intriguing electronic and optic properties different from pristine phosphorene and MDPs are promising in chemical applications involving molecular adsorption and desorption processes, such as materials growth, catalysis, gas sensing and storage.

  10. The effect of measured and estimated soil hydraulic properties on simulated water regime in the analysis of grapevine adaptability to future climate

    Science.gov (United States)

    Bonfante, Antonello; Alfieri, Silvia Maria; Agrillo, Antonietta; Dragonetti, Giovanna; Mileti, Antonio; Monaco, Eugenia; De Lorenzi, Francesca

    2013-04-01

    In the last years many research works have been addressed to evaluate the impact of future climate on crop productivity and plant water use at different spatial scales (global, regional, field) by means of simulation models of agricultural crop systems. Most of these approaches use estimated soil hydraulic properties, through pedotransfer functions (PTF). This choice is related to soil data availability: soil data bases lack measured soil hydraulic properties, but generally they contain information that allow the application of PTF . Although the reliability of the predicted future climate scenarios cannot be immediately validated, we address to evaluate the effects of a simplification of the soil system by using PTF. Thus we compare simulations performed with measured soil hydraulic properties versus simulations carried out with estimated properties. The water regimes resulting from the two procedures are evaluated with respect to crop adaptability to future climate. In particular we will examine if the two procedures bring about different seasonal and spatial variations in the soil water regime patterns, and if these patterns influence adaptation options. The present case study uses the agro-hydrological model SWAP (soil-water-atmosphere and plant) and studies future adaptability of grapevine. The study area is a viticultural area of Southern Italy (Valle Telesina, BN) devoted to the production of high quality wines (DOC and DOCG), and characterized by a complex geomorphology and pedology. The future climate scenario (2021-2050) was constructed applying statistical downscaling techniques to GCMs scenarios. The moisture regime for 25 soils of the selected study area was calculated by means of SWAP model, using both measured and estimated soil hydraulic properties. In the simulation, the upper boundary conditions were derived from the regional climate scenarios. Unit gradient in soil water potential was set as lower boundary condition. Crop-specific input data and

  11. Characterization of natural porous media by NMR and MRI techniques. High and low magnetic field studies for estimation of hydraulic properties

    Energy Technology Data Exchange (ETDEWEB)

    Stingaciu, Laura-Roxana

    2010-07-01

    The aim of this thesis is to apply different NMR techniques for: i) understanding the relaxometric properties of unsaturated natural porous media and ii) for a reliable quantification of water content and its spatial and temporal change in model porous media and soil cores. For that purpose, porous media with increasing complexity and heterogeneity were used (coarse and fine sand and different mixture of sand/clay) to determine the relaxation parameters in order to adapt optimal sequence and parameters for water imaging. Conventional imaging is mostly performed with superconducting high field scanners but low field scanners promise longer relaxation times and therefore smaller loss of signal from water in small and partially filled pores. By this reason high and low field NMR experiments were conducted on these porous media to characterize the dependence on the magnetic field strength. Correlations of the NMR experiments with classical soil physics method like mercury intrusion porosimetry; water retention curves (pF) and multi-step-outflow (MSO) were performed for the characterization of the hydraulic properties of the materials. Due to the extensive research the experiments have been structured in three major parts as follows. In the first part a comparison study between relaxation experiments in high and low magnetic field was performed in order to observe the influence of the magnetic field on the relaxation properties. Due to these results, in the second part of the study only low field relaxation experiments were used in the attempt of correlations with classical soil physics methods (mercury intrusion porosimetry and water retention curves) for characterizing the hydraulic behavior of the samples. Further, the aim was to combine also MRI experiments (2D and 3D NMR) with classical soil physics methods (multi-step-outflow, MSO) for the same purpose of investigating the hydraulic properties. Because low field MRI systems are still under developing for the

  12. Structural and electronic properties of arsenic nitrogen monolayer

    Science.gov (United States)

    Liu, Pei; Nie, Yao-zhuang; Xia, Qing-lin; Guo, Guang-hua

    2017-03-01

    We present our first-principles calculations of a new two-dimensional material, arsenic nitrogen monolayer. The structural, electronic, and mechanical properties are investigated in detail by means of density functional theory computations. The calculated binding energy and the phonon spectra demonstrate that the AsN can form stable monolayer in puckered honeycomb structure. It is a semiconductor with indirect band gap of 0.73 eV, and displays highly anisotropic mechanical properties. Strain has obvious influence on the electronic properties of AsN monolayer. It is found that in the armchair direction, a moderate compression strain (-12%) can trigger an indirect to direct band gap transition and a tensile strain of 18% can make the AsN becoming a stable metal. In the zigzag direction, a rather smaller strain than armchair direction (12% for compression and 8% for stretch) can induce the indirect band gap to metal transition.

  13. Electronic Properties of Nano and Molecular Quantum Devices

    CERN Document Server

    Al-Owaedi, Oday Arkan Abbas

    2016-01-01

    The exploring and understanding the electronic properties of molecules connected to metallic leads is a vital part of nanoscience if molecule is to have a future. This thesis documents a study for various families of organic and organometallic molecules, which offer unique concepts and new insights into the electronic properties of molecular junctions. Different families of molecules were studied using a combination of density functional theory DFT and nonequilibrium Greens function formalism of transport theory.The main results of this thesis are as follows. A quantum circuit rule for combining quantum interference effects in the conductive properties of oligo phenyleneethynylene OPE type molecules possessing three aromatic rings was investigated both theoretically and experimentally. The theoretical and experimental studies of conductance and the decay of conductance as a function of molecular length within a homologous series of oligoynes. The single molecule conductances of a series of bis-terpyridine com...

  14. Intellectual property in consumer electronics, software and technology startups

    CERN Document Server

    Halt, Jr , Gerald B; Stiles, Amber R; Fesnak, Robert

    2014-01-01

    This book provides a comprehensive guide to procuring, utilizing and monetizing intellectual property rights, tailored for readers in the high-tech consumer electronics and software industries, as well as technology startups.  Numerous, real examples, case studies and scenarios are incorporated throughout the book to illustrate the topics discussed.  Readers will learn what to consider throughout the various creative phases of a product’s lifespan from initial research and development initiatives through post-production.  Readers will gain an understanding of the intellectual property protections afforded to U.S. corporations, methods to pro-actively reduce potential problems, and guidelines for future considerations to reduce legal spending, prevent IP theft, and allow for greater profitability from corporate innovation and inventiveness. • Offers a comprehensive guide to intellectual property for readers in high-tech consumer electronics, software and technology startups; • Uses real case studies...

  15. Determination of the saturated film conductivity to improve the EMFX model in describing the soil hydraulic properties over the entire moisture range

    Science.gov (United States)

    Wang, Yunquan; Ma, Jinzhu; Guan, Huade; Zhu, Gaofeng

    2017-06-01

    Difficulty in measuring hydraulic conductivity, particularly under dry conditions, calls for methods of predicting the conductivity from easily obtained soil properties. As a complement to the recently published EMFX model, a method based on two specific suction conditions is proposed to estimate saturated film conductivity from the soil water retention curve. This method reduces one fitting parameter in the previous EMFX model, making it possible to predict the hydraulic conductivity from the soil water retention curve over the complete moisture range. Model performance is evaluated with published data of soils in a broad texture range from sand to clay. The testing results indicate that 1) the modified EMFX model (namely the EMFX-K model), incorporating both capillary and adsorption forces, provides good agreement with the conductivity data over the entire moisture range; 2) a value of 0.5 for the tortuosity factor in the EMFX-K model as that in the Mualem's model gives comparable estimation of the relative conductivity associated with the capillary force; and 3) a value of -1.0 × 10-20 J for the Hamaker constant, rather than the commonly used value of -6.0 × 10-20 J, appears to be more appropriate to represent solely the effect of the van der Waals forces and to predict the film conductivity. In comparison with the commonly used van Genuchten-Mualem model, the EMFX-K model significantly improves the prediction of hydraulic conductivity under dry conditions. The sensitivity analysis result suggests that the uncertainty in the film thickness estimation is important in explaining the model underestimation of hydraulic conductivity for the soils with fine texture, in addition to the uncertainties from the measurements and the model structure. High quality data that cover the complete moisture range for a variety of soil textures are required to further test the method.

  16. Machine Learning for Silver Nanoparticle Electron Transfer Property Prediction.

    Science.gov (United States)

    Sun, Baichuan; Fernandez, Michael; Barnard, Amanda S

    2017-09-22

    Nanoparticles exhibit diverse structural and morphological features that are often inter-connected, making the correlation of structure/property relationships challenging. In this study a multi-structure/single-property relationship of silver nanoparticles is developed for the energy of Fermi level, which can be tuned to improve the transfer of electrons in a variety of applications. By combining different machine learning analytical algorithms, including k-mean, logistic regression and random forest with electronic structure simulations, we find that the degree of twinning (characterised by the fraction of hexagonal closed packed atoms) and the population of {111} facet (characterized by a surface coordination number of 9) are strongly correlated to the Fermi energy of silver nanoparticles. A concise 3 layer artificial neural network together with principal component analysis is built to predict this property, with reduced geometrical, structural and topological features, making the method ideal for efficient and accurate high-throughput screening of large-scale virtual nanoparticles libraries, and the creation of single-structure/single-property, multi-structure/single-property and single-structure/multi-property relationships in the near future.

  17. Electron Density Determination, Bonding and Properties of Tetragonal Ferromagnetic Intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Wiezorek, Jorg [Univ. of Pittsburgh, PA (United States)

    2016-09-01

    The project developed quantitative convergent-beam electron diffraction (QCBED) methods by energy-filtered transmission electron microscopy (EFTEM) and used them in combination with density functional theory (DFT) calculations to study the electron density distribution in metallic and intermetallic phases with different cubic and non-cubic crystal structures that comprise elements with d-electron shells. The experimental methods developed here focus on the bonding charge distribution as one of the quantum mechanical characteristics central for understanding of intrinsic properties and validation of DFT calculations. Multiple structure and temperature factors have been measured simultaneously from nano-scale volumes of high-quality crystal with sufficient accuracy and precision for comparison with electron density distribution calculations by DFT. The often anisotropic temperature factors for the different atoms and atom sites in chemically ordered phases can differ significantly from those known for relevant pure element crystals due to bonding effects. Thus they have been measured from the same crystal volumes from which the structure factors have been determined. The ferromagnetic ordered intermetallic phases FePd and FePt are selected as model systems for 3d-4d and 3d-5d electron interactions, while the intermetallic phases NiAl and TiAl are used to probe 3d-3p electron interactions. Additionally, pure transition metal elements with d-electrons have been studied. FCC metals exhibit well defined delocalized bonding charge in tetrahedral sites, while less directional, more distributed bonding charge attains in BCC metals. Agreement between DFT calculated and QCBED results degrades as d-electron levels fill in the elements, and for intermetallics as d-d interactions become prominent over p-d interactions. Utilizing the LDA+U approach enabled inclusion of onsite Coulomb-repulsion effects in DFT calculations, which can afford improved agreements with QCBED results

  18. Electronic and optical properties of pristine and oxidized borophene

    Science.gov (United States)

    Lherbier, Aurélien; Botello-Méndez, Andrés Rafael; Charlier, Jean-Christophe

    2016-12-01

    Borophene, a two-dimensional monolayer of boron atoms, was recently synthesized experimentally and was shown to exhibit polymorphism. In its closed-packed triangular form, borophene is expected to exhibit anisotropic metallic character with relatively high electron velocities. At the same time, very low optical conductivities in the infrared-visible light region were predicted. Based on its promising electronic transport properties and its high transparency, borophene could become a genuine lego piece in the 2D materials assembling game known as the van der Waals heterocrystal approach. However, borophene is naturally degraded in ambient conditions and it is therefore important to assess the mechanisms and the effects of oxidation on borophene monolayers. Optical and electronic properties of pristine and oxidized borophene are here investigated by first-principles approaches. The transparent and conductive properties of borophene are elucidated by analyzing the electronic structure and its interplay with light. Optical response of borophene is found to be strongly affected by oxidation, suggesting that optical measurements can serve as an efficient probe for borophene surface contamination.

  19. Evaluation of land surface model simulations of evapotranspiration over a 12 year crop succession: impact of the soil hydraulic properties

    Directory of Open Access Journals (Sweden)

    S. Garrigues

    2014-10-01

    underestimation of transpiration at the end of the crop cycles. The overestimation of the soil moisture at saturation triggers the underestimation of the soil evaporation during the wet soil periods. The use of field capacity values derived from laboratory retention measurements leads to inaccurate simulation of soil evaporation due to the lack of representativeness of the soil structure variability at the field scale. The most accurate simulation is achieved with the values of the soil hydraulic properties derived from field measured soil moisture. Their temporal analysis over each crop cycle provides meaningful estimates of the wilting point, the field capacity and the rooting depth to represent the crop water needs and accurately simulate the evapotranspiration over the crop succession. We showed that the uncertainties in the eddy-covariance measurements are significant and can explain a large part of the unresolved random differences between the simulations and the measurements of evapotranspiration. Other possible model shortcomings include the lack of representation of soil vertical heterogeneity and root profile along with inaccurate energy balance partitioning between the soil and the vegetation at low LAI.

  20. Evaluation of land surface model simulations of evapotranspiration over a 12 year crop succession: impact of the soil hydraulic properties

    Science.gov (United States)

    Garrigues, S.; Olioso, A.; Calvet, J.-C.; Martin, E.; Lafont, S.; Moulin, S.; Chanzy, A.; Marloie, O.; Desfonds, V.; Bertrand, N.; Renard, D.

    2014-10-01

    transpiration at the end of the crop cycles. The overestimation of the soil moisture at saturation triggers the underestimation of the soil evaporation during the wet soil periods. The use of field capacity values derived from laboratory retention measurements leads to inaccurate simulation of soil evaporation due to the lack of representativeness of the soil structure variability at the field scale. The most accurate simulation is achieved with the values of the soil hydraulic properties derived from field measured soil moisture. Their temporal analysis over each crop cycle provides meaningful estimates of the wilting point, the field capacity and the rooting depth to represent the crop water needs and accurately simulate the evapotranspiration over the crop succession. We showed that the uncertainties in the eddy-covariance measurements are significant and can explain a large part of the unresolved random differences between the simulations and the measurements of evapotranspiration. Other possible model shortcomings include the lack of representation of soil vertical heterogeneity and root profile along with inaccurate energy balance partitioning between the soil and the vegetation at low LAI.

  1. Electronic properties and phase transitions in low-dimensional semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Panich, A M [Department of Physics, Ben-Gurion University of the Negev, PO Box 653, Beer Sheva 84105 (Israel)], E-mail: pan@bgu.ac.il

    2008-07-23

    We present the first review of the current state of the literature on electronic properties and phase transitions in TlX and TlMX{sub 2} (M = Ga, In; X = Se, S, Te) compounds. These chalcogenides belong to a family of the low-dimensional semiconductors possessing chain or layered structure. They are of significant interest because of their highly anisotropic properties, semi- and photoconductivity, nonlinear effects in their I-V characteristics (including a region of negative differential resistance), switching and memory effects, second harmonic optical generation, relaxor behavior and potential applications for optoelectronic devices. We review the crystal structure of TlX and TlMX{sub 2} compounds, their transport properties under ambient conditions, experimental and theoretical studies of the electronic structure, transport properties and semiconductor-metal phase transitions under high pressure, and sequences of temperature-induced structural phase transitions with intermediate incommensurate states. The electronic nature of the ferroelectric phase transitions in the above-mentioned compounds, as well as relaxor behavior, nanodomains and possible occurrence of quantum dots in doped and irradiated crystals is discussed. (topical review)

  2. Structural and electronic properties of arsenic nitrogen monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei; Nie, Yao-zhuang, E-mail: yznie@csu.edu.cn; Xia, Qing-lin; Guo, Guang-hua, E-mail: guogh@mail.csu.edu.cn

    2017-03-26

    We present our first-principles calculations of a new two-dimensional material, arsenic nitrogen monolayer. The structural, electronic, and mechanical properties are investigated in detail by means of density functional theory computations. The calculated binding energy and the phonon spectra demonstrate that the AsN can form stable monolayer in puckered honeycomb structure. It is a semiconductor with indirect band gap of 0.73 eV, and displays highly anisotropic mechanical properties. Strain has obvious influence on the electronic properties of AsN monolayer. It is found that in the armchair direction, a moderate compression strain (−12%) can trigger an indirect to direct band gap transition and a tensile strain of 18% can make the AsN becoming a stable metal. In the zigzag direction, a rather smaller strain than armchair direction (12% for compression and 8% for stretch) can induce the indirect band gap to metal transition. - Highlights: • A new two-dimensional material, arsenic nitrogen monolayer is predicated by first-principles calculations. • Arsenic nitrogen monolayer displays highly anisotropic mechanical properties. • Electronic structures of arsenic nitrogen monolayer can be effectively manipulated by applied strains.

  3. Polymeric Thin Films for Organic Electronics: Properties and Adaptive Structures

    Directory of Open Access Journals (Sweden)

    Bruno Pignataro

    2013-03-01

    Full Text Available This review deals with the correlation between morphology, structure and performance of organic electronic devices including thin film transistors and solar cells. In particular, we report on solution processed devices going into the role of the 3D supramolecular organization in determining their electronic properties. A selection of case studies from recent literature are reviewed, relying on solution methods for organic thin-film deposition which allow fine control of the supramolecular aggregation of polymers confined at surfaces in nanoscopic layers. A special focus is given to issues exploiting morphological structures stemming from the intrinsic polymeric dynamic adaptation under non-equilibrium conditions.

  4. Atomic arrangements and electronic properties of semiconductor surfaces and interfaces

    Science.gov (United States)

    Chadi, D. J.; Martin, R. M.

    1982-05-01

    The areas of research during the past 12 months have included: step-formation energies and domain orientation at Si(111) surfaces; the electronic structure of the Al-GaAs(110) surface chemisorption system; density-functional calculations of bulk properties of GaAs and of (100)GaAs-Ge interfaces; demonstration of the importance of correlation effects on the atomic and electronic structure of Si(111) surfaces; and derivation of an exact scaling law for the resistance of a thin wire for the one dimensional Anderson model containing Loth diagonal and off-diagonal disorder.

  5. Electronic, mechanical and dielectric properties of silicane under tensile strain

    Energy Technology Data Exchange (ETDEWEB)

    Jamdagni, Pooja, E-mail: j.poojaa1228@gmail.com; Sharma, Munish; Ahluwalia, P. K. [Physics Department, Himachal Pradesh University, Shimla, Himachal Pradesh, India 171005 (India); Kumar, Ashok [Physics Department, Panjab University, Chandigarh, India, 160014 (India); Thakur, Anil [Physics Department, Govt. Collage Solan, Himachal Pradesh, India,173212 (India)

    2015-05-15

    The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices.

  6. Formation of Ferric Porphyrinoids with Unusual Electronic and Magnetic Properties

    Institute of Scientific and Technical Information of China (English)

    M.Nakamura; Y.Ohgo; A.Ikezaki

    2007-01-01

    1 Results Energy levels of the metal 3d orbitals in iron(Ⅲ) porphyrinoids are controlled by various factors such as the nature and number of axial ligands, electronic and steric effects of peripheral substituents, deformation and core modification of porphyrin ring, hydrogen bonding to the axial ligand, etc. By manipulating these factors, we are now able to prepare various iron(Ⅲ) porphyrinoids withunusual electronic and magnetic properties[1]. Here, we report the formation of such complexes as ⅰ) low-s...

  7. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.

    Science.gov (United States)

    Heine, Thomas

    2015-01-20

    CONSPECTUS: After the discovery of graphene and the development of powerful exfoliation techniques, experimental preparation of two-dimensional (2D) crystals can be expected for any layered material that is known to chemistry. Besides graphene and hexagonal boron nitride (h-BN), transition metal chalcogenides (TMC) are among the most studied ultrathin materials. In particular, single-layer MoS2, a direct band gap semiconductor with ∼1.9 eV energy gap, is popular in physics and nanoelectronics, because it nicely complements semimetallic graphene and insulating h-BN monolayer as a construction component for flexible 2D electronics and because it was already successfully applied in the laboratory as basis material for transistors and other electronic and optoelectronic devices. Two-dimensional crystals are subject to significant quantum confinement: compared with their parent layered 3D material, they show different structural, electronic, and optical properties, such as spontaneous rippling as free-standing monolayer, significant changes of the electronic band structure, giant spin-orbit splitting, and enhanced photoluminescence. Most of those properties are intrinsic for the monolayer and already absent for two-layer stacks of the same 2D crystal. For example, single-layer MoS2 is a direct band gap semiconductor with spin-orbit splitting of 150 meV in the valence band, while the bilayer of the same material is an indirect band gap semiconductor without observable spin-orbit splitting. All these properties have been observed experimentally and are in excellent agreement with calculations based on density-functional theory. This Account reports theoretical studies of a subgroup of transition metal dichalcogenides with the composition MX2, with M = Mo, or W and X = Se or S, also referred to as "MoWSeS materials". Results on the electronic structure, quantum confinement, spin-orbit coupling, spontaneous monolayer rippling, and change of electronic properties in the

  8. Powertrains 2011. Electronics, mechanics and hydraulics in application; Antriebssysteme 2011. Elektrik, Mechanik und Hydraulik in der Anwendung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the VDI/VDE conference at 13th-14th September, 2011 in Stuttgart (Federal Republic of Germany) the following lectures and posters were presented: (1) Sieve printed windings of rotating small drives and their evaluation (P. Braeuer); (2) Variable impedance induction motor - Measurement results of a variable impedance induction motor prototype (H. Gholizad); (3) Utilization of a multiphase winding in a star-polygon hybrid circuit for squirrel asynchronous motors for increasing the energy efficiency - generation of flooding waves of a 6-phase machine with a 3-phase connection (T. Knopik); (4) Virtual development of electric moors - Design of an asynchronous motor for propel drives by means of a numeric optimization and software automation (V. Reinhardt); (5) A hybrid microproduction system driven by piezoactuators and linear motors (C. Hast); (6) MRF actors with minimized standby losses (D. Gueth); (7) Experimental determination of rotor losses in a homopolar magnetic bearing (E. Fleischer); (8) Vibrational condition monitoring of coiler heads of electric large machines (C. Kreischer); (9) Recovery potentials in the electric propulsion technology - ''What is left usable from the energy'' (M. Schumacher); (10) Overall energy balance in the powertrain - The application decides - Energetic analysis of a powertrain (A. Thomas); (11) Optimal dimensioning of an actuator in the mechatronic overall system electric motor - gear - load (M. Lindner); (12) Electric and hydraulic hybrid actuator: Competing and complementary systems (K. Dehnert); (13) Intelligent pump drives - Simulation, condition monitoring, fault diagnosis and energy efficiency (S. Kleinmann); (14) Parametric models of the permanent magnet-synchronous machine (PMSM) under consideration of the impacts of magnetic saturation (F. Mink); (15) Electromagnetic, structure dynamic acoustic FEM simulation of an asynchronous motor for the evaluation of noise emission (J. Wibbeler); (16

  9. Hydraulic properties at the North Sea island of Borkum derived from joint inversion of magnetic resonance and electrical resistivity soundings

    Directory of Open Access Journals (Sweden)

    T. Günther

    2012-09-01

    Full Text Available For reliably predicting the impact of climate changes on salt/freshwater systems below barrier islands, a long-term hydraulic modelling is inevitable. As input we need the parameters porosity, salinity and hydraulic conductivity at the catchment scale, preferably non-invasively acquired with geophysical methods. We present a methodology to retrieve the searched parameters and a lithological interpretation by the joint analysis of magnetic resonance soundings (MRS and vertical electric soundings (VES. Both data sets are jointly inverted for resistivity, water content and decay time using a joint inversion scheme. Coupling is accomplished by common layer thicknesses.

    We show the results of three soundings measured on the eastern part of the North Sea island of Borkum. Pumping test data is used to calibrate the petrophysical relationship for the local conditions in order to estimate permeability from nuclear magnetic resonance (NMR data. Salinity is retrieved from water content and resistivity using a modified Archie equation calibrated by local samples. As a result we are able to predict porosity, salinity and hydraulic conductivities of the aquifers, including their uncertainties.

    The joint inversion significantly improves the reliability of the results. Verification is given by comparison with a borehole. A sounding in the flooding area demonstrates that only the combined inversion provides a correct subsurface model. Thanks to the joint application, we are able to distinguish fluid conductivity from lithology and provide reliable hydraulic parameters as shown by uncertainty analysis.

    These findings can finally be used to build groundwater flow models for simulating climate changes. This includes the improved geometry and lithological attribution, and also the parameters and their uncertainties.

  10. Exploring the morphological and electronic properties of silicene superstructures

    Energy Technology Data Exchange (ETDEWEB)

    Grazianetti, Carlo, E-mail: carlo.grazianetti@mdm.imm.cnr.it [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza, MB (Italy); Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, via R. Cozzi 53, I-20126 Milano, MI (Italy); Chiappe, Daniele; Cinquanta, Eugenio; Tallarida, Grazia [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza, MB (Italy); Fanciulli, Marco [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza, MB (Italy); Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, via R. Cozzi 53, I-20126 Milano, MI (Italy); Molle, Alessandro, E-mail: alessandro.molle@mdm.imm.cnr.it [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza, MB (Italy)

    2014-02-01

    Silicene, the Si counterpart of graphene, grows on Ag(111) forming domains. Investigation, by means of scanning tunneling microscopy, of morphological properties is carried out by considering post-deposition process. Particular attention is here addressed to the post-deposition annealing temperature, which plays an important role in determining the resulting morphology. On the other hand, electronic properties are probed by scanning tunneling spectroscopy and a position-dependent local density of states results, which can be understood in terms of symmetry breaking in the honeycomb lattice.

  11. Electronic Transport Properties of (7,0) Semiconducting Carbon Nanotube

    Institute of Scientific and Technical Information of China (English)

    SONG Jiu-Xu; YANG Yin-Wang; CHAI Chang-Chun; LIU Hong-Xia; DING Rui-Xue

    2008-01-01

    Electronic transport properties of a finite (7,0) carbon nanotube (CNT) coupled to Au (111) surfaces are investigated with a fully nonequilibrium Green's functions method combined with the density functional theory. The results show that the coupling effect between the CNT and Au electrode plays an important role in the transport properties, which leads to the formation of a high plateau in the transmission spectrum around Fermi energy. In addition, the current-voltage characteristic of the (7,0) CNT coupled to Au electrodes is different from an isolated (7,0) CNT.

  12. Structural and Electronic Properties of IV-VI Semiconductor Nanodots

    Science.gov (United States)

    Leitsmann, Roman; Bechstedt, Friedhelm

    2008-03-01

    The characterization of nanostructure properties versus dimension and surface passivation is of increasing importance for the nanotechnology. Especially the stoichiometry, geometry, and the electronic states of IV-VI semiconductor nanodots are of special interest [1,2]. We use ab initio methods to calculate structural and electronic properties of colloidal IV-VI semiconductor nanodots as a function of the dot diameter. A method to passivate the non-directional dangling bonds at the nanodot surfaces is derived and used to study the confinement effect on the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) states. In addition we take the influence of relativistic (spin-orbit coupling -- SOC ) and excitonic effects into account. While the SOC leads to a considerable decrease of the HOMO-LUMO gap, excitonic effects play a minor role. [1] JACS 128, 10337 (2006) [2] JACS 129, 11354 (2007)

  13. Microscopical Studies of Structural and Electronic Properties of Semiconductors

    CERN Multimedia

    2002-01-01

    The electronic and structural properties of point defects in semiconductors, e.g. radiation defects, impurities or passivating defects can excellently be studied by the hyperfine technique of Perturbed Angular Correlation (PAC). The serious limitation of this method, the small number of chemically different radioactive PAC probe atoms can be widely overcome by means of ISOLDE. Providing shortliving isotopes, which represent common dopants as well as suitable PAC probe atoms, the ISOLDE facility enables a much broader application of PAC to problems in semiconductor physics.\\\\ Using the probe atom $^{111m}$ Cd , the whole class of III-V compounds becomes accessible for PAC investigations. First successful experiments in GaAs, InP and GaP have been performed, concerning impurity complex formation and plasma induced defects. In Si and Ge, the electronic properties~-~especially their influence on acceptor-donor interaction~-~could be exemplarily st...

  14. Elastic properties and electron transport in InAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Migunov, Vadim

    2013-02-22

    The electron transport and elastic properties of InAs nanowires grown by chemical vapor deposition on InAs (001) substrate were studied experimentally, in-situ in a transmission electron microscope (TEM). A TEM holder allowing the measurement of a nanoforce while simultaneous imaging nanowire bending was used. Diffraction images from local areas of the wire were recorded to correlate elastic properties with the atomic structure of the nanowires. Another TEM holder allowing the application of electrical bias between the nanowire and an apex of a metallic needle while simultaneous imaging the nanowire in TEM or performing electron holography was used to detect mechanical vibrations in mechanical study or holographical observation of the nanowire inner potential in the electron transport studies. The combination of the scanning probe methods with TEM allows to correlate the measured electric and elastic properties of the nanowires with direct identification of their atomic structure. It was found that the nanowires have different atomic structures and different stacking fault defect densities that impacts critically on the elastic properties and electric transport. The unique methods, that were applied in this work, allowed to obtain dependencies of resistivity and Young's modulus of left angle 111 right angle -oriented InAs nanowires on defect density and diameter. It was found that the higher is the defect density the higher are the resistivity and the Young's modulus. Regarding the resistivity, it was deduced that the stacking faults increase the scattering of the electrons in the nanowire. These findings are consistent with the literature, however, the effect described by the other groups is not so pronounced. This difference can be attributed to the significant incompleteness of the physical models used for the data analysis. Regarding the elastic modulus, there are several mechanisms affecting the elasticity of the nanowires discussed in the thesis. It

  15. Electronic transport properties of metallic single-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    曹觉先; 颜晓红; 肖杨; 丁建文

    2003-01-01

    We have calculated the differential conductance of metallic carbon nanotubes by the scatter matrix method. It is found that the differential conductance of metallic nanotube-based devices oscillates as a function of the bias voltage between the two leads and the gate voltage. Oscillation period T is directly proportional to the reciprocal of nanotube length. In addition, we found that electronic transport properties are sensitive to variation of the length of the nanotube.

  16. Structural and electronic properties of hydrosilylated silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Baumer, A.

    2005-11-15

    The structural and electronic properties of alkyl-terminated Si surfaces prepared by thermallyinduced hydrosilylation have been studied in detail in the preceding chapters. Various surfaces have been used for the functionalization ranging from crystalline Si over amorphous hydrogenated Si to nanoscaled materials such as Si nanowires and nanoparticles. In each case, the alkyl-terminated surfaces have been compared to the native oxidized and H-terminated surfaces. (orig.)

  17. Positron studies of surfaces, structure and electronic properties of nanocrystals

    OpenAIRE

    Eijt, S. W. H.; Barbiellini, B.; Houtepen, A.J.; Vanmaekelbergh, D.; Mijnarends, P. E.; Bansil, A.

    2007-01-01

    A brief review is given of recent positron studies of metal and semiconductor nanocrystals. The prospects offered by positron annihilation as a sensitive method to access nanocrystal (NC) properties are described and compared with other experimental methods. The tunability of the electronic structure of nanocrystals underlies their great potential for application in many areas. Owing to their large surface-to-volume ratio, the surfaces and interfaces of NCs play a crucial role in determining ...

  18. Decay properties of spectral projectors with applications to electronic structure

    CERN Document Server

    Benzi, Michele; Razouk, Nader

    2012-01-01

    Motivated by applications in quantum chemistry and solid state physics, we apply general results from approximation theory and matrix analysis to the study of the decay properties of spectral projectors associated with large and sparse Hermitian matrices. Our theory leads to a rigorous proof of the exponential off-diagonal decay ("nearsightedness") for the density matrix of gapped systems at zero electronic temperature in both orthogonal and non-orthogonal representations, thus providing a firm theoretical basis for the possibility of linear scaling methods in electronic structure calculations for non-metallic systems. We further discuss the case of density matrices for metallic systems at positive electronic temperature. A few other possible applications are also discussed.

  19. Electronic structures and physical properties of pure aluminum metal

    Institute of Scientific and Technical Information of China (English)

    谢佑卿; 刘心笔

    1999-01-01

    By one-atom theory, the electronic structure of pure Al metal with f.c.c, structure has been determined to be [Ne](3sc)1.8790(3pc)0.4982(3sf+3pf)0.6228. According to this electronic structure, the potential curve, lattice constant, cohesive energy, elastisity, and the temperature dependence of the linear thermal expansion coefficients have been calculated. The electronic structures and characteristic properties of Al metals with b. c. c., h.c.p. structures and liquid have been studied. It is argued that the pure Al metal with f. c.c. structure can exist naturally, but with b. c. c.and h. c.p. structures cannot.##属性不符

  20. Electron and phonon properties and gas storage in carbon honeycomb

    CERN Document Server

    Gao, Yan; Zhong, Chengyong; Zhang, Zhongwei; Xie, Yuee; Zhang, Shengbai

    2016-01-01

    A new kind of three-dimensional carbon allotropes, termed carbon honeycomb (CHC), has recently been synthesized [PRL 116, 055501 (2016)]. Based on the experimental results, a family of graphene networks are constructed, and their electronic and phonon properties are calculated by using first principles methods. All networks are porous metal with two types of electron transport channels along the honeycomb axis and they are isolated from each other: one type of channels is originated from the orbital interactions of the carbon zigzag chains and is topologically protected, while the other type of channels is from the straight lines of the carbon atoms that link the zigzag chains and is topologically trivial. The velocity of the electrons can reach ~106 m/s. Phonon transport in these allotropes is strongly anisotropic, and the thermal conductivities can be very low when compared with graphite by at least a factor of 15. Our calculations further indicate that these porous carbon networks possess high storage capa...

  1. Electronic and magnetic properties of pristine and hydrogenated borophene nanoribbons

    Science.gov (United States)

    Meng, Fanchen; Chen, Xiangnan; Sun, Songsong; He, Jian

    2017-07-01

    The groundbreaking works in graphene and graphene nanoribbons (GNRs) over the past decade, and the very recent discovery of borophene naturally draw attention to the yet-to-be-explored borophene nanoribbons (BNRs). We herein report a density functional theory (DFT) study of the electronic and magnetic properties of BNRs. The foci are the impact of orientation (denoted as BxNRs and ByNRs with their respective periodic orientations along x- and y-axis), ribbon width (Nx, Ny=4-15), and hydrogenation effects on the geometric, electronic and magnetic properties of BNRs. We found that the anisotropic quasi-planar geometric structure of BNR and the edge states largely govern its electronic and magnetic properties. In particular, pristine ByNRs adopt a magnetic ground state, either anti-ferromagnetic (AFM) or ferromagnetic (FM) depending on the ribbon width, while pristine BxNRs are non-magnetic (NM). Upon hydrogenation, all BNRs exhibit NM. Interestingly, both pristine and hydrogenated ByNRs undergo a metal-semiconductor-metal transition at Ny=7, while all BxNRs remain metallic.

  2. Quasiparticle properties of a coupled quantum-wire electron-phonon system

    DEFF Research Database (Denmark)

    Hwang, E. H.; Hu, Ben Yu-Kuang; Sarma, S. Das

    1996-01-01

    We study leading-order many-body effects of longitudinal-optical phonons on electronic properties of one-dimensional quantum-wire systems. We calculate the quasiparticle properties of a weakly polar one-dimensional electron gas in the presence of both electron-phonon and electron-electron interac...

  3. Physical-hydraulic properties of a sandy loam typic paleudalf soil under organic cultivation of 'montenegrina' mandarin (Citrus deliciosa Tenore¹

    Directory of Open Access Journals (Sweden)

    Caroline Valverde dos Santos

    2014-12-01

    Full Text Available Citrus plants are the most important fruit species in the world, with emphasis to oranges, mandarins and lemons. In Rio Grande do Sul, Brazil, most fruit production is found on small properties under organic cultivation. Soil compaction is one of the factors limiting production and due to the fixed row placement of this crop, compaction can arise in various manners in the interrows of the orchard. The aim of this study was to evaluate soil physical properties and water infiltration capacity in response to interrow management in an orchard of mandarin (Citrus deliciosa Tenore 'Montenegrina' under organic cultivation. Interrow management was performed through harrowing, logs in em "V", mowing, and cutting/knocking down plants with a knife roller. Soil physical properties were evaluated in the wheel tracks of the tractor (WT, between the wheel tracks (BWT, and in the area under the line projection of the canopy (CLP, with undisturbed soil samples collected in the 0.00-0.15, 0.15-0.30, 0.30-0.45, and 0.45-0.60 m layers, with four replicates. The soil water infiltration test was performed using the concentric cylinder method, with a maximum time of 90 min for each test. In general, soil analysis showed a variation in the physical-hydraulic properties of the Argissolo Vermelho-Amarelo distrófico arênico (sandy loam Typic Paleudalf in the three sampling sites in all layers, regardless of the management procedure in the interrows. Machinery traffic leads to heterogeneity in the soil physical-hydraulic properties in the interrows of the orchard. Soil porosity and bulk density are affected especially in the wheel tracks of the tractor (WT, which causes a reduction in the constant rate of infiltration and in the accumulated infiltration of water in this sampling site. The use of the disk harrow and mower leads to greater harmful effects on the soil, which can interfere with mandarin production.

  4. Structural, electronic and optical properties of brookite phase titanium dioxide

    Science.gov (United States)

    Samat, M. H.; Taib, M. F. M.; Hassan, O. H.; Yahya, M. Z. A.; Ali, A. M. M.

    2017-04-01

    Structural, electronic and optical properties of titanium dioxide (TiO2) in brookite phase were studied via first-principles calculations in the framework of density functional theory (DFT). The exchange-correlation functional from local density approximation (LDA) and generalized gradient approximation (GGA) were used to calculate the properties of brookite TiO2. The structural parameters of brookite in orthorhombic structure (Pbca space group) are in good agreement with the previous theoretical and experimental data. The obtained direct band gaps from GGA are slightly higher than LDA. Both LDA and GGA band gaps underestimate the experimental band gap due to the well-known limitation of DFT. The density of states (DOS) displays the hybridization of O 2p and Ti 3d states and Mulliken population analysis presents the net charge of Ti and O atoms in brookite. The dielectric function was also analyzed together with other optical properties such as refractive index, reflectivity, loss function and absorption coefficient. The first-principles calculations on the least studied TiO2 in brookite phase using different exchange-correlation functional from LDA and GGA provide theoretical understanding about its structural, electronic and optical properties. Besides, these results would give a better support for technological applications concerning TiO2 materials using brookite phase.

  5. Using electron microscopy to calculate optical properties of biological samples.

    Science.gov (United States)

    Wu, Wenli; Radosevich, Andrew J; Eshein, Adam; Nguyen, The-Quyen; Yi, Ji; Cherkezyan, Lusik; Roy, Hemant K; Szleifer, Igal; Backman, Vadim

    2016-11-01

    The microscopic structural origins of optical properties in biological media are still not fully understood. Better understanding these origins can serve to improve the utility of existing techniques and facilitate the discovery of other novel techniques. We propose a novel analysis technique using electron microscopy (EM) to calculate optical properties of specific biological structures. This method is demonstrated with images of human epithelial colon cell nuclei. The spectrum of anisotropy factor g, the phase function and the shape factor D of the nuclei are calculated. The results show strong agreement with an independent study. This method provides a new way to extract the true phase function of biological samples and provides an independent validation for optical property measurement techniques.

  6. Electronic and Thermal Properties of Graphene and Carbon Structures

    Science.gov (United States)

    Anthony, Gilmore; Khatun, Mahfuza

    2011-10-01

    We will present the general properties of carbon structures. The research involves the study of carbon structures: Graphene, Graphene nanoribbons (GNRs), and Carbon Nanotubes (CNTs). A review of electrical and thermal conduction phenomena of the structures will be discussed. Particularly carbon nanoribbons and CNTs have many interesting physical properties, and have the potential for device applications. Our research interests include the study of electronic structures, electrical and thermal transport properties of the carbon structures. Results are produced analytically as well as by simulation. The numerical simulations are conducted using various tools such as Visual Molecular Dynamics (VMD), Large Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), NanoHub at Purdue University and the Beowulf Cluster at Ball State University.

  7. Improvement of carbon fiber surface properties using electron beam irradiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Carbon fiber-reinforced advance composites have been used for struetural applications, mainly on account of their mechanical properties. The main factor for a good mechanical performance of carbon fiber-reinforced composite is the interfacial interaction between its components, which are carbon fiber and polymeric matrix. The aim of this study is to improve the surface properties of the carbon fiber using ionizing radiation from an electron beam to obtain better adhesion properties in the resultant composite. EB radiation was applied on the carbon fiber itself before preparing test specimens for the mechanical tests. Experimental results showed that EB irradiation improved the tensile strength of carbon fiber samples. The maximum value in tensile strength was reached using doses of about 250kGy. After breakage, the morphology aspect of the tensile specimens prepared with irradiated and non-irradiated carbon fibers were evaluated. SEM micrographs showed modifications on the carbon fiber surface.

  8. Electronic, structural, and thermodynamic properties of actinide dioxides

    Science.gov (United States)

    Ma, Li; Atta-Fynn, Raymond; Ray, Asok K.

    2010-03-01

    As a continuation of our studies of pure actinide metals using hybrid density functional theory,footnotetextR. Atta-Fynn and A. K. Ray, Europhysics Letters, 85, 27008-p1- p6 (2009); Chemical Physics Letters, 482, 223-227 (2009). we present here a systematic study of the electronic and geometric structure properties of the actinide dioxides, UO2, PuO2 and AmO2, using both density functional and hybrid density functional theories. For the hybrid density functionals, the fractions of exact Hartree-Fock exchange used were 25% and 40%. Each compound has been studied at the nonmagnetic, ferromagnetic and antiferromagnetic configurations, with and without spin-orbit coupling (SOC). The influence of SOC on the properties of the actinide dioxides will be discussed. Thermodynamic properties such as phonon dispersion curves, heat capacity, entropy, internal energy and free energy have been calculated by a coupling of first-principles calculations and lattice dynamics.

  9. Using Remotely-Sensed Estimates of Soil Moisture to Infer Soil Texture and Hydraulic Properties across a Semi-arid Watershed

    Science.gov (United States)

    Santanello, Joseph A.; Peters-Lidard, Christa D.; Garcia, Matthew E.; Mocko, David M.; Tischler, Michael A.; Moran, M. Susan; Thoma, D. P.

    2007-01-01

    Near-surface soil moisture is a critical component of land surface energy and water balance studies encompassing a wide range of disciplines. However, the processes of infiltration, runoff, and evapotranspiration in the vadose zone of the soil are not easy to quantify or predict because of the difficulty in accurately representing soil texture and hydraulic properties in land surface models. This study approaches the problem of parameterizing soils from a unique perspective based on components originally developed for operational estimation of soil moisture for mobility assessments. Estimates of near-surface soil moisture derived from passive (L-band) microwave remote sensing were acquired on six dates during the Monsoon '90 experiment in southeastern Arizona, and used to calibrate hydraulic properties in an offline land surface model and infer information on the soil conditions of the region. Specifically, a robust parameter estimation tool (PEST) was used to calibrate the Noah land surface model and run at very high spatial resolution across the Walnut Gulch Experimental Watershed. Errors in simulated versus observed soil moisture were minimized by adjusting the soil texture, which in turn controls the hydraulic properties through the use of pedotransfer functions. By estimating a continuous range of widely applicable soil properties such as sand, silt, and clay percentages rather than applying rigid soil texture classes, lookup tables, or large parameter sets as in previous studies, the physical accuracy and consistency of the resulting soils could then be assessed. In addition, the sensitivity of this calibration method to the number and timing of microwave retrievals is determined in relation to the temporal patterns in precipitation and soil drying. The resultant soil properties were applied to an extended time period demonstrating the improvement in simulated soil moisture over that using default or county-level soil parameters. The methodology is also

  10. Electronic properties of solids excited with intermediate laser power densities

    Science.gov (United States)

    Sirotti, Fausto; Tempo Beamline Team

    Intermediate laser power density up to about 100 GW/cm2 is below the surface damage threshold is currently used to induce modification in the physical properties on short time scales. The absorption of a short laser pulse induces non-equilibrium electronic distributions followed by lattice-mediated equilibrium taking place only in the picosecond range. The role of the hot electrons is particularly important in several domains as for example fast magnetization and demagnetization processes, laser induced phase transitions, charge density waves. Angular resolved photoelectron spectroscopy measuring directly energy and momentum of electrons is the most adapted tool to study the electronic excitations at short time scales during and after fast laser excitations. The main technical problem is the space charge created by the pumping laser pulse. I will present angular resolved multiphoton photoemission results obtained with 800 nm laser pulses showing how space charge electrons emitted during fast demagnetization processes can be measured. Unable enter Affiliation: CNRS-SOLEIL Synchrotron L'Orme des Merisiers , Saint Aubin 91192 Gif sur Yvette France.

  11. Manganites in Perovskite Superlattices: Structural and Electronic Properties

    KAUST Repository

    Jilili, Jiwuer

    2016-07-13

    Perovskite oxides have the general chemical formula ABO3, where A is a rare-earth or alkali-metal cation and B is a transition metal cation. Perovskite oxides can be formed with a variety of constituent elements and exhibit a wide range of properties ranging from insulators, metals to even superconductors. With the development of growth and characterization techniques, more information on their physical and chemical properties has been revealed, which diversified their technological applications. Perovskite manganites are widely investigated compounds due to the discovery of the colossal magnetoresistance effect in 1994. They have a broad range of structural, electronic, magnetic properties and potential device applications in sensors and spintronics. There is not only the technological importance but also the need to understand the fundamental mechanisms of the unusual magnetic and transport properties that drive enormous attention. Manganites combined with other perovskite oxides are gaining interest due to novel properties especially at the interface, such as interfacial ferromagnetism, exchange bias, interfacial conductivity. Doped manganites exhibit diverse electrical properties as compared to the parent compounds. For instance, hole doped La0.7Sr0.3MnO3 is a ferromagnetic metal, whereas LaMnO3 is an antiferromagnetic insulator. Since manganites are strongly correlated systems, heterojunctions composed of manganites and other perovskite oxides are sunject to complex coupling of the spin, orbit, charge, and lattice degrees of freedom and exhibit unique electronic, magnetic, and transport properties. Electronic reconstructions, O defects, doping, intersite disorder, magnetic proximity, magnetic exchange, and polar catastrophe are some effects to explain these interfacial phenomena. In our work we use first-principles calculations to study the structural, electronic, and magnetic properties of manganite based superlattices. Firstly, we investigate the electronic

  12. Hydration effects on the electronic properties of eumelanin building blocks

    Science.gov (United States)

    Assis Oliveira, Leonardo Bruno; L. Fonseca, Tertius; Costa Cabral, Benedito J.; Coutinho, Kaline; Canuto, Sylvio

    2016-08-01

    Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in the electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54-79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180-220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a "chemical disorder model," where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.

  13. Optical absorption properties of electron bubbles and experiments on monitoring individual electron bubbles in liquid helium

    Science.gov (United States)

    Guo, Wei

    When a free electron is injected into liquid helium, it forms a microscopic bubble essentially free of helium atoms, which is referred to as an electron bubble. It represents a fine example of a quantum-mechanical particle confined in a potential well. In this dissertation, we describe our studies on bubble properties, especially the optical absorption properties of ground state electron bubbles and experiments on imaging individual electron bubbles in liquid helium. We studied the effect of zero-point and thermal fluctuations on the shape of ground state electron bubbles in liquid helium. The results are used to determine the line shape for the 1S to 1P optical transition. The calculated line shape is in very good agreement with the experimental measurements of Grimes and Adams. For 1S to 2P transition, the obtained transition line width agrees well with the measured data of Zipfel over a range of pressure up to 15 bars. Fluctuations in the bubble shape also make other "unallowed" transitions possible. The transition cross-sections from the 1S state to the 1D and 2D states are calculated with magnitude approximately two orders smaller than that of the 1S to 1P and 2P transitions. In our electron bubble imaging experiments, a planar ultrasonic transducer was used to generate strong sound wave pulse in liquid helium. The sound pulse passed through the liquid so as to produce a transient negative pressure over a large volume (˜ 1 cm3). An electron bubble that was passed by the sound pulse exploded for a fraction of a microsecond and grew to have a radius of around 10 microns. While the bubble had this large size it was illuminated with a flash lamp and its position was recorded. In this way, we can determine its position. Through the application of a series of sound pulses, we can then take images along the track of individual electrons. The motion of individual electron bubbles has been successfully monitored. Interesting bubble tracks that may relate to electrons

  14. Scanning Probe Evaluation of Electronic, Mechanical and Structural Material Properties

    Science.gov (United States)

    Virwani, Kumar

    2011-03-01

    We present atomic force microscopy (AFM) studies of a range of properties from three different classes of materials: mixed ionic electronic conductors, low-k dielectrics, and polymer-coated magnetic nanoparticles. (1) Mixed ionic electronic conductors are being investigated as novel diodes to drive phase-change memory elements. Their current-voltage characteristics are measured with direct-current and pulsed-mode conductive AFM (C-AFM). The challenges to reliability of the C-AFM method include the electrical integrity of the probe, the sample and the contacts, and the minimization of path capacitance. The role of C-AFM in the optimization of these electro-active materials will be presented. (2) Low dielectric constant (low-k) materials are used in microprocessors as interlayer insulators, a role directly affected by their mechanical performance. The mechanical properties of nanoporous silicate low-k thin films are investigated in a comparative study of nanomechanics measured by AFM and by traditional nanoindentation. Both methods are still undergoing refinement as reliable analytical tools for determining nanomechanical properties. We will focus on AFM, the faster of the two methods, and its developmental challenges of probe shape, cantilever force constant, machine compliance and calibration standards. (3) Magnetic nanoparticles are being explored for their use in patterned media for magnetic storage. Current methods for visualizing the core-shell structure of polymer-coated magnetic nanoparticles include dye-staining the polymer shell to provide contrast in transmission electron microscopy. AFM-based fast force-volume measurements provide direct visualization of the hard metal oxide core within the soft polymer shell based on structural property differences. In particular, the monitoring of adhesion and deformation between the AFM tip and the nanoparticle, particle-by-particle, provides a reliable qualitative tool to visualize core-shell contrast without the use

  15. Local Electronic And Dielectric Properties at Nanosized Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bonnell, Dawn A. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2015-02-23

    Final Report to the Department of Energy for period 6/1/2000 to 11/30/2014 for Grant # DE-FG02-00ER45813-A000 to the University of Pennsylvania Local Electronic And Dielectric Properties at Nanosized Interfaces PI: Dawn Bonnell The behavior of grain boundaries and interfaces has been a focus of fundamental research for decades because variations of structure and composition at interfaces dictate mechanical, electrical, optical and dielectric properties in solids. Similarly, the consequence of atomic and electronic structures of surfaces to chemical and physical interactions are critical due to their implications to catalysis and device fabrication. Increasing fundamental understanding of surfaces and interfaces has materially advanced technologies that directly bear on energy considerations. Currently, exciting developments in materials processing are enabling creative new electrical, optical and chemical device configurations. Controlled synthesis of nanoparticles, semiconducting nanowires and nanorods, optical quantum dots, etc. along with a range of strategies for assembling and patterning nanostructures portend the viability of new devices that have the potential to significantly impact the energy landscape. As devices become smaller the impact of interfaces and surfaces grows geometrically. As with other nanoscale phenomena, small interfaces do not exhibit the same properties as do large interfaces. The size dependence of interface properties had not been explored and understanding at the most fundamental level is necessary to the advancement of nanostructured devices. An equally important factor in the behavior of interfaces in devices is the ability to examine the interfaces under realistic conditions. For example, interfaces and boundaries dictate the behavior of oxide fuel cells which operate at extremely high temperatures in dynamic high pressure chemical environments. These conditions preclude the characterization of local properties during fuel cell

  16. Effects of variable regolith depth, hydraulic properties, and rainfall on debris-flow initiation during the September 2013 northern Colorado Front Range rainstorm

    Science.gov (United States)

    Baum, R. L.; Coe, J. A.; Kean, J. W.; Jones, E. S.; Godt, J.

    2015-12-01

    Heavy rainfall during 9 - 13 September 2013 induced about 1100 debris flows in the foothills and mountains of the northern Colorado Front Range. Weathered bedrock was partially exposed in the basal surfaces of many of the shallow source areas at depths ranging from 0.2 to 5 m. Typical values of saturated hydraulic conductivity of soils and regolith units mapped in the source areas range from about 10-4 - 10-6 m/s, with a median value of 2.8 x 10-5 m/s based on number of source areas in each map unit. Rainfall intensities varied spatially and temporally, from 0 to 2.5 x 10-5 m/s (90 mm/hour), with two periods of relatively heavy rainfall on September 12 - 13. The distribution of debris flows appears to correlate with total storm rainfall, and reported times of greatest landslide activity coincide with times of heaviest rainfall. Process-based models of rainfall infiltration and slope stability (TRIGRS) representing the observed ranges of regolith depth, hydraulic conductivity, and rainfall intensity, provide additional insights about the timing and distribution of debris flows from this storm. For example, small debris flows from shallower source areas (debris flows from deeper (3 - 5 m) source areas in the western part of the affected area occurred late on September 12. Timing of these flows can be understood in terms of the time required for pore pressure rise depending on regolith depth and rainfall intensity. The variable hydraulic properties combined with variable regolith depth and slope angles account for much of the observed range in timing in areas of similar rainfall intensity and duration. Modeling indicates that the greatest and most rapid pore pressure rise likely occurred in areas of highest rainfall intensity and amount. This is consistent with the largest numbers of debris flows occurring on steep canyon walls in areas of high total storm rainfall.

  17. Synthesis and electron emission properties of aligned carbon nanotube arrays

    Science.gov (United States)

    Neupane, Suman

    Carbon nanotubes (CNTs) have become one of the most interesting allotropes of carbon due to their intriguing mechanical, electrical, thermal and optical properties. The synthesis and electron emission properties of CNT arrays have been investigated in this work. Vertically aligned CNTs of different densities were synthesized on copper substrate with catalyst dots patterned by nanosphere lithography. The CNTs synthesized with catalyst dots patterned by spheres of 500 nm diameter exhibited the best electron emission properties with the lowest turn-on/threshold electric fields and the highest field enhancement factor. Furthermore, CNTs were treated with NH3 plasma for various durations and the optimum enhancement was obtained for a plasma treatment of 1.0 min. CNT point emitters were also synthesized on a flat-tip or a sharp-tip to understand the effect of emitter geometry on the electron emission. The experimental results show that electron emission can be enhanced by decreasing the screening effect of the electric field by neighboring CNTs. In another part of the dissertation, vertically aligned CNTs were synthesized on stainless steel (SS) substrates with and without chemical etching or catalyst deposition. The density and length of CNTs were determined by synthesis time. For a prolonged growth time, the catalyst activity terminated and the plasma started etching CNTs destructively. CNTs with uniform diameter and length were synthesized on SS substrates subjected to chemical etching for a period of 40 minutes before the growth. The direct contact of CNTs with stainless steel allowed for the better field emission performance of CNTs synthesized on pristine SS as compared to the CNTs synthesized on Ni/Cr coated SS. Finally, fabrication of large arrays of free-standing vertically aligned CNT/SnO2 core-shell structures was explored by using a simple wet-chemical route. The structure of the SnO2 nanoparticles was studied by X-ray diffraction and electron microscopy

  18. Electronic and Mechanical Properties of Hydrogenated Irradiated and Amorphous Graphene

    Science.gov (United States)

    Weerasinghe, Asanka; Ramasubramaniam, Ashwin; Maroudas, Dimitrios

    Defect engineering and chemical functionalization of graphene are promising routes for fabrication of carbon nanostructures and 2D metamaterials with unique properties and function. Here, we use hydrogenation of irradiated, including irradiation-induced amorphous, graphene as a means of studying chemical functionalization effects on its electronic structure and mechanical response. We use molecular-dynamics simulations based on a reliable bond-order potential to prepare the hydrogenated configurations and carry out dynamic deformation tests at constant strain rate and temperature. Our mechanical tests show that hydrogenation does not affect the ultimate tensile strength (UTS) of the irradiated graphene sheet if the hydrogenated C atoms remain sp2-hybridized; however, upon inducing sp3 hybridization of these C atoms, UTS decreases by about 10 GPa. Furthermore, the fracture strain of the irradiated structure decreases by up to 30% upon hydrogenation independent of the hybridization type. We also report results for the electronic structure of hydrogenated configurations based on a density-functional tight-binding approach and assess the potential for tuning the electronic properties of these defective, functionalized graphenes.

  19. Characterisation of hydraulic head changes and aquifer properties in the London Basin using Persistent Scatterer Interferometry ground motion data

    Science.gov (United States)

    Bonì, R.; Cigna, F.; Bricker, S.; Meisina, C.; McCormack, H.

    2016-09-01

    In this paper, Persistent Scatterer Interferometry was applied to ERS-1/2 and ENVISAT satellite data covering 1992-2000 and 2002-2010 respectively, to analyse the relationship between ground motion and hydraulic head changes in the London Basin, United Kingdom. The integration of observed groundwater levels provided by the Environment Agency and satellite-derived displacement time series allowed the estimation of the spatio-temporal variations of the Chalk aquifer storage coefficient and compressibility over an area of ∼1360 km2. The average storage coefficient of the aquifer reaches values of 1 × 10-3 and the estimated average aquifer compressibility is 7.7 × 10-10 Pa-1 and 1.2 × 10-9 Pa-1 for the periods 1992-2000 and 2002-2010, respectively. Derived storage coefficient values appear to be correlated with the hydrogeological setting, where confined by the London Clay the storage coefficient is typically an order of magnitude lower than where the chalk is overlain by the Lambeth Group. PSI-derived storage coefficient estimates agree with the values obtained from pumping tests in the same area. A simplified one-dimensional model is applied to simulate the ground motion response to hydraulic heads changes at nine piezometers. The comparison between simulated and satellite-observed ground motion changes reveals good agreement, with errors ranging between 1.4 and 6.9 mm, and being 3.2 mm on average.

  20. Thermoelectric properties of hole- and electron-doped ambipolar polymers

    Science.gov (United States)

    Glaudell, Anne; Perry, Erin; Schlitz, Ruth; Chabinyc, Michael

    2015-03-01

    The library of possible materials, both p- and n-type, for organic thermoelectric devices has been steadily growing with the continuous improvement in electrical properties and stability. Maximizing the thermoelectric power factor in these materials requires the simultaneous optimization of both electrical conductivity and thermopower. The challenge remains that charge transport is not well understood in organic materials due to energetic disorder from crystalline and non-crystalline domains. We have performed temperature-dependent measurements of both thermopower and electrical conductivity to uncover the relationship between microstructure and thermoelectric performance. These measurements were complemented by techniques such as electronic paramagnetic resonance (EPR) that help provide the carrier concentration to give a more complete picture of the competing charge transport mechanisms and structure-property relationships. We will present results on p- and n-type doping of ambipolar polymers that reveal the difference in thermopower for electrons and holes in the same material. An ideal thermoelectric device has n- and p-type legs with similar mechanical and thermoelectric properties, a balance more easily realized using the same polymer for each leg.

  1. Electron and phonon properties and gas storage in carbon honeycombs

    Science.gov (United States)

    Gao, Yan; Chen, Yuanping; Zhong, Chengyong; Zhang, Zhongwei; Xie, Yuee; Zhang, Shengbai

    2016-06-01

    A new kind of three-dimensional carbon allotrope, termed carbon honeycomb (CHC), has recently been synthesized [PRL 116, 055501 (2016)]. Based on the experimental results, a family of graphene networks has been constructed, and their electronic and phonon properties are studied by various theoretical approaches. All networks are porous metals with two types of electron transport channels along the honeycomb axis and they are isolated from each other: one type of channel originates from the orbital interactions of the carbon zigzag chains and is topologically protected, while the other type of channel is from the straight lines of the carbon atoms that link the zigzag chains and is topologically trivial. The velocity of the electrons can reach ~106 m s-1. Phonon transport in these allotropes is strongly anisotropic, and the thermal conductivities can be very low when compared with graphite by at least a factor of 15. Our calculations further indicate that these porous carbon networks possess high storage capacity for gaseous atoms and molecules in agreement with the experiments.A new kind of three-dimensional carbon allotrope, termed carbon honeycomb (CHC), has recently been synthesized [PRL 116, 055501 (2016)]. Based on the experimental results, a family of graphene networks has been constructed, and their electronic and phonon properties are studied by various theoretical approaches. All networks are porous metals with two types of electron transport channels along the honeycomb axis and they are isolated from each other: one type of channel originates from the orbital interactions of the carbon zigzag chains and is topologically protected, while the other type of channel is from the straight lines of the carbon atoms that link the zigzag chains and is topologically trivial. The velocity of the electrons can reach ~106 m s-1. Phonon transport in these allotropes is strongly anisotropic, and the thermal conductivities can be very low when compared with graphite by

  2. Electronic structures and optical properties of two anthracene derivatives

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng; XIA Baohui; SUN Yinghui; YANG Bing; TIAN Wenjing; WANG Yue; ZHANG Guo

    2006-01-01

    The electronic structures and the optical properties of two anthracene derivatives, DBMA and DAA, are investigated by both experimental techniques and quantum chemical calculations. The cyclic voltammetry and differential pulse polarograph measurement revealed that the introduction of benzol-imidazol and pyrrolo-pyridine group on the anthracene block can affect the electrochemical behavior of DBMA and DAA. Both UV/visible absorption and emission spectra of DBMA and DAA are red-shifted in contrast to the unsubstituted anthracene, so that the anthracene derivatives emit at blue-green region and the luminescence yields are remarkably elevated (over 90%). The B3LYP/6-31G theoretical calculations explored that the electronic structures of the anthracene derivatives are perturbed by the side substitutes on the anthracene block, and the slight variation of the electronic structures results in the enhanced electron accepting ability and the decrease of the HOMO-LUMO energy gap,which is the origin of the emission to be shifted to blue-green region. The non-planar geometry structures of DBMA and DAA are responsible for the excellent luminescence yields.

  3. Electronic structures and properties of Ti, Zr and Hf metals

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The electronic structures of pure Ti, Zr and Hf metals with hcp structure were determined by one-atom (OA) theory. According to the electronic structures of these metals,their potential curves, cohesive energies, lattice constants, elasticities and the temperature dependence of linear thermal expansion coefficients were calculated. The electronic structures and characteristic properties of these metals with bcc and fcc structures and liquids were also studied. The results show that the electronic structures of Ti, Zr and Hf metals are respectively [Ar](3dn)0.481 0(3dc)2.085 7(4sc)1.000 0(4sf)0.433 3, [Kr](4dn)0.396 8(4dc)2.142 8(5sc)1.262 0(5sf)0.198 4, [Xe](5dn)0.368 0(5dc)2.041 4(6sc)1.406 6(6sf)0.184 0. It is explained why the pure Ti, Zr and Hf metals with hcp and bcc structures can exist naturally, while those with fcc structure can not.

  4. Electronic structure and optical properties of thorium monopnictides

    Indian Academy of Sciences (India)

    S Kumar; S Auluck

    2003-01-01

    We have calculated the electronic density of states (DOS) and dielectric function for the ThX (X = P, As and Sb) using the linear muffin tin orbital method within atomic sphere approximation (LMTO–ASA) including the combined correction terms. The calculated electronic DOS of ThSb has been compared with the available experimental data and we find a good agreement. The calculated optical conductivity for ThP and ThAs is increasing monotonically, while for ThSb a sharp peak has been found at 6.5 eV. Unfortunately there are no experimental data to compare with calculated optical properties, we hope our calculations will motivate some experimentalists.

  5. Electronic transport properties of carbon nanotube metal-semiconductor-metal

    Directory of Open Access Journals (Sweden)

    F Khoeini

    2008-07-01

    Full Text Available  In this work, we study electronic transport properties of a quasi-one dimensional pure semi-conducting Zigzag Carbon Nanotube (CNT attached to semi-infinite clean metallic Zigzag CNT leads, taking into account the influence of topological defect in junctions. This structure may behave like a field effect transistor. The calculations are based on the tight-binding model and Green’s function method, in which the local density of states(LDOS in the metallic section to semi-conducting section, and muli-channel conductance of the system are calculated in the coherent and linear response regime, numerically. Also we have introduced a circuit model for the system and investigated its current. The theoretical results obtained, can be a base, for developments in designing nano-electronic devices.

  6. Electronic and Magnetic Properties of the p-NPNN

    Institute of Scientific and Technical Information of China (English)

    LUOShi-Jun; YAOKai-Lun

    2003-01-01

    In this paper, we study the electronic band structure and the ferromagnetic properties of the organic radical p-NPNN by employing density-functional theory with generalized gradient approximation (GGA ) and local-spin density approximation (LSDA). The density of states, the total energy, and the spin magnetic moment are calculated. The calculations reveal that the δ-phase of p-NPNN has a stable ferromagnetic ground state. It is found that an unpaired electron in this compound is localized in a single occupied molecular orbital (SOMO) constituted primarily of π* (NO) orbitals, and the main contribution of the spin magnetic moment comes from the π* (NO) orbitals. By comparison, we find that the GGA is more suitable to describe free radical systems than LSDA.

  7. Electronic transport properties of the armchair silicon carbide nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Song Jiuxu; Yang Yintang; Liu Hongxia [Key Laboratory of Ministry of Education for Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China); Guo Lixin [School of Science, Xidian University, Xi' an 710071 (China); Zhang Zhiyong, E-mail: songjiuxu@126.com [Information Science and Technology Institution, Northwest University, Xi' an 710069 (China)

    2010-11-15

    The electronic transport properties of the armchair silicon carbide nanotube (SiCNT) are investigated by using the combined nonequilibrium Green's function method with density functional theory. In the equilibrium transmission spectrum of the nanotube, a transmission valley of about 2.12 eV is discovered around Fermi energy, which means that the nanotube is a wide band gap semiconductor and consistent with results of first principle calculations. More important, negative differential resistance is found in its current voltage characteristic. This phenomenon originates from the variation of density of states caused by applied bias voltage. These investigations are meaningful to modeling and simulation in silicon carbide nanotube electronic devices.

  8. Magneto-electronic and optical properties of zigzag silicene nanoribbons

    Science.gov (United States)

    Shyu, Feng-Lin

    2017-03-01

    The tight-binding model including the spin-orbit coupling (SOC) is used to study electronic and optical properties of zigzag silicene nanoribbons (ZSiNRs) in magnetic and electric fields. The SOC affects the low-energy bands and induces new selection rules leading to richer optical spectra. Except an increase in bandgaps, perpendicular magnetic field further exhibits spin-polarized Landau levels, in which electron's probability density of band-edge states distributes like a standing-wave. Landau levels could enhance the DOS and increases absorption frequency and strength. Perpendicular electric field (Fz) increases bandgap and thus absorption frequency, but it does not change band symmetry, edge-states, and selection rules. Moreover, Fz enhances the split of spin-polarized states inducing more absorption peaks. Parallel electric field (Fx) leads to an overlap between conduction and valence bands and destroys band symmetry and Landau levels. Consequently, Fx exhibits new selection rules and enriches absorption spectra.

  9. Structure and electronic properties of alkali-C60 nanoclusters.

    Science.gov (United States)

    Rabilloud, Franck

    2010-07-08

    I investigated the structural and electronic properties of both Na(n)C(60) and Li(n)C(60) (n alkali atoms over the C(60) surface is analyzed. The hypotheses for either an homogeneous coating of the C(60) surface by the alkali atoms or the growth of an alkali droplet not wetting the fullerene surface are discussed. Lithium atoms are found to coat homogeneously the fullerene on the C(60) surface via pentagonal sites, contrary to sodium atoms, which prefer to form 4-atom islands on the surface. The charge transfer, the energetics, and the dipole moments are discussed in relation with available results. The adsorption of alkali atoms on the C(60) surface considerably enhances the capacity of C(60) to accept electrons. The arrangement of lithium atoms seems more favorable for the hydrogen storage than that of sodium atoms.

  10. Hyperhoneycomb boron nitride with anisotropic mechanical, electronic, and optical properties

    Science.gov (United States)

    Yu, Jin; Qu, Lihua; van Veen, Edo; Katsnelson, Mikhail I.; Yuan, Shengjun

    2017-09-01

    Boron nitride structures have excellent thermal and chemical stabilities. Based on state-of-art theoretical calculations, we propose a wide-gap semiconducting BN crystal with a three-dimensional hyperhoneycomb structure (Hp-BN), which is both mechanically and thermodynamically stable. Our calculated results show that Hp-BN has a higher bulk modulus and a smaller energy gap as compared to c-BN. Moreover, due to the unique bonding structure, Hp-BN exhibits anisotropic electronic and optical properties. It has great adsorption in the ultraviolet region, but it is highly transparent in the visible and infrared region, suggesting that the Hp-BN crystal could have potential applications in electronic and optical devices.

  11. Primary Study on Hydraulic Properties of Podocarpus%四种罗汉松属植物茎水力结构特征初步研究

    Institute of Scientific and Technical Information of China (English)

    高永茜; 易传辉

    2012-01-01

    The Hydraulic properties of four Podocarpus plant, P. Nagi, P. Fleuryi, P. Macrophyllus and P. Forrestii were studied. The results showed that there were significant differences among the average leaf area of four species. However, there was no significant difference among the total leaf areas, Huber value, sapwood density, hydraulic conductivity, specific conductivity, leaf specific conductivity and the leaf area of four species; and also no significant correlation between these five parameters and their average leaf area.%对罗汉松属(Podocarpus)竹柏(P.nagi)、长叶竹柏(P.fleuryi)、罗汉松(P.macrophyllus)和大理罗汉松(P.forrestii)4种植物茎水力结构特征参数进行了测定.结果显示,4种植物平均叶面积和茎端总叶面积均差异明显;4种植物的胡伯尔值(Hv)、边材密度、导水率(Kh)、比导率(Ks)、叶比导率(LSC)没有显著差异,与其平均叶面积也没有显著的相关性,可能是由于4种植物的茎端总叶面积没有显著差异引起的.

  12. Structural properties and electronic structure of some ternary d-electron and f-electron intermetallics

    Science.gov (United States)

    Slebarski, A.; Orzechowska, M.; Wrona, A.; Szade, J.; Jezierski, A.

    2000-02-01

    We report on structural measurements on and electronic structure investigations of the alloyed compounds ZrNiSn, TiNiSn, CeNiSn and CeRhSb. We present measurements of lattice parameters as a function of temperature and analysis of a (T ) and its relation to icons/Journals/Common/chi" ALT="chi" ALIGN="TOP"/> T , icons/Journals/Common/chi" ALT="chi" ALIGN="TOP"/> being the magnetic susceptibility. We observed a linear dependence of a (T ) versus icons/Journals/Common/chi" ALT="chi" ALIGN="TOP"/> T for Zr, Ti and Ce alloys (for orthorhombic Ce alloys, the lattice parameters a , b and c scale linearly with icons/Journals/Common/chi" ALT="chi" ALIGN="TOP"/> T ). The x-ray photoelectron and ultraviolet photoemission spectra are further compared to the density of states, obtained from band-structure calculations.

  13. Electronic Transport Properties of Doped C28 Fullerene

    Directory of Open Access Journals (Sweden)

    Akshu Pahuja

    2014-01-01

    Full Text Available Endohedral doping of small fullerenes like C28 affects their electronic structure and increases their stability. The transport properties of Li@C28 sandwiched between two gold surfaces have been calculated using first-principles density functional theory and nonequilibrium Green’s function formalism. The transmission curves, IV characteristics, and molecular projected self-consistent Hamiltonian eigenstates of both pristine and doped molecule are computed. The current across the junction is found to decrease upon Li encapsulation, which can be attributed to change in alignment of molecular energy levels with bias voltage.

  14. Electronic and optical properties of CuInTe2

    Science.gov (United States)

    Shankar, A.; Thapa, R. K.; Mandal, P. K.

    2016-10-01

    The electronic and optical properties of a ternary chalcopyrite compound CuInTe2 with diamond like structure have been studied. The calculations are carried out using the density functional theory (DFT) based full potential-linearized augmented plane wave (FP- LAPW) method within the framework of GGA and modified Becke Johnson (mBJ) potential approach. The presence of direct energy band gap of 0.8 eV suggests the sample material can be a good material for solar cell application. The study of the optical response of the material against the incident photon energy radiation indicates the material can be an effective candidate for the optoelectronic devices.

  15. Electronic properties and Compton profiles of silver iodide

    Indian Academy of Sciences (India)

    Alpa Dashora; Ambica Marwal; K R Soni; B L Ahuja

    2010-06-01

    We have carried out an extensive study of electronic properties of silver iodide in - and -phases. The theoretical Compton profiles, energy bands, density of states and anisotropies in momentum densities are computed using density functional theories. We have also employed full-potential linearized augmented plane-wave method to derive the energy bands and the density of states. To compare our theoretical data, isotropic Compton profile measurement on -AgI using 137Cs Compton spectrometer at an intermediate resolution of 0.38 a.u. has been undertaken. The theoretical anisotropies are also interpreted on the basis of energy bands.

  16. Stability and electronic properties of silicene on WSe2

    KAUST Repository

    Zhu, Jiajie

    2015-03-17

    Many semiconducting substrates, such as GaS and MgBr2, have been explored for silicene. However, large lattice mismatches, complicated control of terminal layers and small band gaps are critical limiting factors. First-principles results on the stability and electronic properties of silicene on WSe2 show that the energy barriers for lateral translation between the two subsystems are very small due to weak van der Waals interactions. For the same reason, the Dirac physics of silicene is preserved. It turns out that the induced band gap is sufficient to withstand thermal fluctuations. This journal is © The Royal Society of Chemistry 2015.

  17. Elastic and Electronic Properties of Point Defects in Titanium Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Daebok [Kyungsung Univ., Busan (Korea, Republic of)

    2013-12-15

    A theoretical study of the electronic structures of TiC{sub 1-x} and Ti{sub -1-x}W{sub x}C (x = 0, 0.25) is presented. The density of states and crystal orbital overlap population calculations were used to interpret variations of elastic properties induced by carbon vacancies and alloying substitutions. Our results show why the introduction of vacancies into TiC reduces bulk moduli, while W substitution at a Ti site increases the elastic modulus. The effect of the point defects on the bonding in TiC is investigated by means of extended Huckel tight-binding band calculations.

  18. Electronic and Magnetic Properties of Small Iridium Clusters

    Institute of Scientific and Technical Information of China (English)

    KUANG Xiang-jun

    2004-01-01

    The electronic and magnetic properties of small IrN clusters (N=5, 6, 9, 13, and 19 ) are studied by using the discrete-variational local-spin-density-functional method. The equilibrium bond length in the chosen geometry for IrN clusters are determined and show bond contraction compared with the bulk interatomic spacing. The clusters with magnetic ground state have ferromagnetic interaction and their average magnetic moment per atom has a complex size dependence. At last, the reactivity of IrN clusters toward H2, N2 and CO molecules is predicted.

  19. Estimating soil hydraulic properties from soil moisture time series by inversion of a dual-permeability model

    Science.gov (United States)

    Dalla Valle, Nicolas; Wutzler, Thomas; Meyer, Stefanie; Potthast, Karin; Michalzik, Beate

    2017-04-01

    Dual-permeability type models are widely used to simulate water fluxes and solute transport in structured soils. These models contain two spatially overlapping flow domains with different parameterizations or even entirely different conceptual descriptions of flow processes. They are usually able to capture preferential flow phenomena, but a large set of parameters is needed, which are very laborious to obtain or cannot be measured at all. Therefore, model inversions are often used to derive the necessary parameters. Although these require sufficient input data themselves, they can use measurements of state variables instead, which are often easier to obtain and can be monitored by automated measurement systems. In this work we show a method to estimate soil hydraulic parameters from high frequency soil moisture time series data gathered at two different measurement depths by inversion of a simple one dimensional dual-permeability model. The model uses an advection equation based on the kinematic wave theory to describe the flow in the fracture domain and a Richards equation for the flow in the matrix domain. The soil moisture time series data were measured in mesocosms during sprinkling experiments. The inversion consists of three consecutive steps: First, the parameters of the water retention function were assessed using vertical soil moisture profiles in hydraulic equilibrium. This was done using two different exponential retention functions and the Campbell function. Second, the soil sorptivity and diffusivity functions were estimated from Boltzmann-transformed soil moisture data, which allowed the calculation of the hydraulic conductivity function. Third, the parameters governing flow in the fracture domain were determined using the whole soil moisture time series. The resulting retention functions were within the range of values predicted by pedotransfer functions apart from very dry conditions, where all retention functions predicted lower matrix potentials

  20. Structural and electronic properties of LaN

    Energy Technology Data Exchange (ETDEWEB)

    Ghezali, Mohamed [Centre Universitaire de Bechar, Departement de Sciences Exactes, BP 417 Rue de Kanadissa, 08000 Bechar (Algeria); Amrani, Bouhalouane [Laboratoire de Traitement de Surface et Sciences des Materiaux, Departement de Physique, Faculte des Sciences, Universite des Sciences et de la Technologie d' Oran (U.S.T.O.), Oran 31000 (Algeria); Cherchab, Youcef [Centre Universitaire de Bechar, Departement de Sciences Exactes, BP 417 Rue de Kanadissa, 08000 Bechar (Algeria); Sekkal, Nadir [Departement de Physique-Chimie, Ecole Normale Superieure de l' Enseignement Technique, BP 1523, El M' Naouer, 31000 Oran (Algeria); Condensed Matter Section, Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34014 Trieste (Italy); Physia-Laboratory, BP 47 (RP), 22000 Sidi Bel Abbes (Algeria)], E-mail: nsekkal@yahoo.fr

    2008-12-20

    Using two different first principle methods, the full potential linear augmented plane waves (FPLAPW) and a version of the full potential linear muffin-tin orbitals method (FPLMTO) which enables an accurate treatment of the interstitial regions, the structural properties of LaN are investigated. It predicts the possibility of an additional local minimum in the wurtzite (B4) phase, approximately like ScN and YN for which a second minimum for the hexagonal A3 phase was found. A competition between the rocksalt (B1) and the wurtzite (B4) as the ground state phase is found depending on whether LDA (local density approximation) or GGA (generalized gradient approximation) is used. The electronic properties are also discussed.

  1. Influence of impurity on electronic properties of carbon nanotube superlattices

    Directory of Open Access Journals (Sweden)

    AA Shokri

    2013-09-01

    Full Text Available   In this paper, electronic properties of single-wall armchair and zigzag carbon nanotubes (CNTs superlattices, n(12,0/m(6,6 and n(12,0/m(11,0 are investigated. For this reason, the topological defects of pentagon–heptagon pairs at interfaces of carbon hexagonal network appear. These defects break the symmetry of the system, and then change the electrical properties. The calculations include two parts: investigation of the structures in the absence and presence of the impurity effect, which are calculated by the nearest-neighbor tight binding model . Out numerical results can be useful in designing nanoelectronic devices based on carbon nanotubes.

  2. Structure and Electronic Properties of Cerium Orthophosphate: Theory and Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adelstein, Nicole; Mun, B. Simon; Ray, Hannah; Ross Jr, Phillip; Neaton, Jeffrey; De Jonghe, Lutgard

    2010-07-27

    Structural and electronic properties of cerium orthophosphate (CePO{sub 4}) are calculated using density functional theory (DFT) with the local spin-density approximation (LSDA+U), with and without gradient corrections (GGA-(PBE)+U), and compared to X-ray diffraction and photoemission spectroscopy measurements. The density of states is found to change significantly as the Hubbard parameter U, which is applied to the Ce 4f states, is varied from 0 to 5 eV. The calculated structural properties are in good agreement with experiment and do not change significantly with U. Choosing U = 3 eV for LDSA provides the best agreement between the calculated density of states and the experimental photoemission spectra.

  3. Experimental Results for Direct Electron Irradiation of a Uranyl Sulfate Solution: Bubble Formation and Thermal Hydraulics Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakhtang [Argonne National Lab. (ANL), Argonne, IL (United States); Heltemes, Thad [Argonne National Lab. (ANL), Argonne, IL (United States); Sun, Zaijing [Argonne National Lab. (ANL), Argonne, IL (United States); Wardle, Kent E. [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, James [Argonne National Lab. (ANL), Argonne, IL (United States); Stepinski, Dominique [Argonne National Lab. (ANL), Argonne, IL (United States); Jerden, James [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-30

    In support of the development of accelerator-driven production of fission product Mo-99 as proposed by SHINE Medical Technologies, a 35 MeV electron linac was used to irradiate depleted-uranium (DU) uranyl sulfate dissolved in pH 1 sulfuric acid at average power densities of 6 kW, 12 kW, and 15 kW. During these irradiations, gas bubbles were generated in the solution due to the radiolytic decomposition of water molecules in the solution. Multiple video cameras were used to record the behavior of bubble generation and transport in the solution. Seven six-channel thermocouples were used to record temperature gradients in the solution from self-heating. Measurements of hydrogen and oxygen concentrations in a helium sweep gas were recorded by a gas chromatograph to estimate production rates during irradiation. These data are being used to validate a computational fluid dynamics (CFD) model of the experiment that includes multiphase flow and a custom bubble injection model for the solution region.

  4. Characterizing Hydraulic Properties and Ground-Water Chemistry in Fractured-Rock Aquifers: A User's Manual for the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3)

    Science.gov (United States)

    Shapiro, Allen M.

    2007-01-01

    packers, the submersible pump, and other downhole components to land surface. Borehole geophysical logging must be conducted prior to deploying the Multifunction BAT3 in bedrock boreholes. In particular, it is important to identify the borehole diameter as a function of depth to avoid placing the packers over rough sections of the borehole, where they may be damaged during inflation. In addition, it is advantageous to identify the location of fractures intersecting the borehole wall, for example, using an acoustic televiewer log or a borehole camera. A knowledge of fracture locations is helpful in designing the length of the test interval and the locations where hydraulic tests and geochemical sampling are to be conducted. The Multifunction BAT3 is configured to conduct both fluid-injection and fluid-withdrawal tests. Fluid-injection tests are used to estimate the hydraulic properties of low-permeability fractures intersecting the borehole. The lower limit of the transmissivity that can be estimated using the configuration of the Multifunction BAT3 described in this report is approximately 10-3 square feet per day (ft2/d). Fluid-withdrawal tests are used to collect water samples for geochemical analyses and estimate the hydraulic properties of high-permeability fractures intersecting the borehole. The Multifunction BAT3 is configured with a submersible pump that can support pumping rates ranging from approximately 0.05 to 2.5 gallons per minute, and the upper limit of the of the transmissivity that can be estimated is approximately 104 ft2/d. The Multifunction BAT3 also can be used to measure the ambient hydraulic head of a section of a bedrock borehole, and to conduct single-hole tracer tests by injecting and later withdrawing a tracer solution.

  5. Electronic and optical properties of Fe, Pd, and Ti studied by reflection electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Dahlang [Department of Physics, Hasanuddin University, Makassar 90245 (Indonesia); Kraaer, Jens; Tougaard, Sven [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark)

    2014-06-28

    We have studied the electronic and optical properties of Fe, Pd, and Ti by reflection electron energy-loss spectroscopy (REELS). REELS spectra recorded for primary energies in the range from 300 eV to 10 keV were corrected for multiple inelastically scattered electrons to determine the effective inelastic-scattering cross section. The dielectric functions and optical properties were determined by comparing the experimental inelastic-electron scattering cross section with a simulated cross section calculated within the semi-classical dielectric response model in which the only input is Im(−1/ε) by using the QUEELS-ε(k,ω)-REELS software package. The complex dielectric functions ε(k,ω), in the 0–100 eV energy range, for Fe, Pd, and Ti were determined from the derived Im(−1/ε) by Kramers-Kronig transformation and then the refractive index n and extinction coefficient k. The validity of the applied model was previously tested and found to give consistent results when applied to REELS spectra at energies between 300 and 1000 eV taken at widely different experimental geometries. In the present paper, we provide, for the first time, a further test on its validity and find that the model also gives consistent results when applied to REELS spectra in the full range of primary electron energies from 300 eV to 10000 eV. This gives confidence in the validity of the applied method.

  6. Mechanical properties and electronic structures of Fe-Al intermetallic

    Energy Technology Data Exchange (ETDEWEB)

    Liu, YaHui; Chong, XiaoYu; Jiang, YeHua, E-mail: jiangyehua@kmust.edu.cn; Zhou, Rong; Feng, Jing, E-mail: jingfeng@kmust.edu.cn

    2017-02-01

    Using the first-principles calculations, the elastic properties, anisotropy properties, electronic structures, Debye temperature and stability of Fe-Al (Fe{sub 3}Al, FeAl, FeAl{sub 2}, Fe{sub 2}Al{sub 5} and FeAl{sub 3}) binary compounds were calculated. The formation enthalpy and cohesive energy of these Fe-Al compounds are negative, and show they are thermodynamically stable structures. Fe{sub 2}Al{sub 5} has the lowest formation enthalpy, which shows the Fe{sub 2}Al{sub 5} is the most stable of Fe-Al binary compounds. These Fe-Al compounds display disparate anisotropy due to the calculated different shape of the 3D curved surface of the Young’s modulus and anisotropic index. Fe{sub 3}Al has the biggest bulk modulus with the value 233.2 GPa. FeAl has the biggest Yong’s modulus and shear modulus with the value 296.2 GPa and 119.8 GPa, respectively. The partial density of states, total density of states and electron density distribution maps of the binary Fe-Al binary compounds are analyzed. The bonding characteristics of these Fe-Al binary compounds are mainly combination by covalent bond and metallic bonds. Meanwhile, also exist anti-bond effect. Moreover, the Debye temperatures and sound velocity of these Fe-Al compounds are explored.

  7. Mechanical properties and electronic structures of Fe-Al intermetallic

    Science.gov (United States)

    Liu, YaHui; Chong, XiaoYu; Jiang, YeHua; Zhou, Rong; Feng, Jing

    2017-02-01

    Using the first-principles calculations, the elastic properties, anisotropy properties, electronic structures, Debye temperature and stability of Fe-Al (Fe3Al, FeAl, FeAl2, Fe2Al5 and FeAl3) binary compounds were calculated. The formation enthalpy and cohesive energy of these Fe-Al compounds are negative, and show they are thermodynamically stable structures. Fe2Al5 has the lowest formation enthalpy, which shows the Fe2Al5 is the most stable of Fe-Al binary compounds. These Fe-Al compounds display disparate anisotropy due to the calculated different shape of the 3D curved surface of the Young's modulus and anisotropic index. Fe3Al has the biggest bulk modulus with the value 233.2 GPa. FeAl has the biggest Yong's modulus and shear modulus with the value 296.2 GPa and 119.8 GPa, respectively. The partial density of states, total density of states and electron density distribution maps of the binary Fe-Al binary compounds are analyzed. The bonding characteristics of these Fe-Al binary compounds are mainly combination by covalent bond and metallic bonds. Meanwhile, also exist anti-bond effect. Moreover, the Debye temperatures and sound velocity of these Fe-Al compounds are explored.

  8. [KEEPING THE ELECTRON-DONOR PROPERTIES OF DRINKING WATER].

    Science.gov (United States)

    Gibert, K K; Stekhin, A A; Iakovleva, G V; Sul'ina, Iu S

    2015-01-01

    In a study there was performed the experimental evaluation of long-term structural--physical changes of the phase of associated water in drinking water treated in hypomagnetic conditions according to the the technology providing the retention of of ortho/para isomers of water in the presence of a catalyst--triplet oxygen. According to the results of measurements ofparameters of nano-associates formed in the water there was found a series ofconsistencies, allowing to determine the mechanisms of the impact of hypomagnetic treatment on the catalytic properties ofwater and long-term stability of its activated state, that provides the long-term maintenance of high biological activity of drinking water. In particular, under hypomagnetic conditions of the treatment there is formed denser packing of amorphous ice--VI in the composition of associates peroxide, serving as a kind of "reservoir" of atmospheric gases. In such a "reservoir" there realized higher pressure, compared with normal geophysical conditions, that stimulates the gas-phase reactions with the formation of dimers and trimers of oxygen existing in the 2-electron--active configurations with binding energies of 0.3 eVand ~0.2 eV providing phase modulation, resulting in condensation of environment additional electrons on paramagnetic oxygen, which provides the long-term maintenance of the electron--donor ability of water and electrically non-equilibrium state.

  9. Ab initio calculations of yttrium nitride: structural and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Zerroug, S.; Ali Sahraoui, F. [Universite Ferhat Abbas, Laboratoire d' Optoelectronique et Composants, Departement de Physique, Setif (Algeria); Bouarissa, N. [King Khalid University, Department of Physics, Faculty of Science, P.O. Box 9004, Abha (Saudi Arabia)

    2009-11-15

    Using first principles total energy calculations within the full-potential linearized augmented plane wave method, we have studied the structural and electronic properties of yttrium nitride (YN) in the three phases, namely wurtzite, caesium chloride and rocksalt structures. The calculations are performed at zero and under hydrostatic pressure. In agreement with previous findings, it is found that the favored phase for YN is the rocksalt-like structure. We predict that at zero pressure YN in the rocksalt structure is a semiconductor with an indirect bandgap of 0.8 eV. A phase transition from a rocksalt to a caesium chloride structure is found to occur at {proportional_to}134 GPa. Besides, a transition from an indirect ({gamma}-X) bandgap semiconductor to a direct (X-X) one is predicted at pressure of {proportional_to}84 GPa. For the electron effective mass of rocksalt YN, these are the first results, to our knowledge. The information derived from the present study may be useful for the use of YN as an active layer in electronic devices such as diodes and transistors. (orig.)

  10. Stability and electronic properties of two-dimensional indium iodide

    Science.gov (United States)

    Wang, Jizhang; Dong, Baojuan; Guo, Huaihong; Yang, Teng; Zhu, Zhen; Hu, Gan; Saito, Riichiro; Zhang, Zhidong

    2017-01-01

    Based on ab initio density functional calculations, we studied the stability and electronic properties of two-dimensional indium iodide (InI). The calculated results show that monolayer and few-layer InI can be as stable as its bulk counterpart. The stability of the monolayer structure is further supported by examining the electronic and dynamic stability. The interlayer interaction is found to be fairly weak (˜160 meV/atom) and mechanical exfoliation to obtain monolayer and few-layer structures will be applicable. A direct band gap of 1.88 eV of the bulk structure is obtained from the hybrid functional method, and is comparable to the experimental one (˜2.00 eV). The electronic structure can be tuned by layer stacking and external strain. The size of the gap is a linear function of an inverse number of layers, suggesting that we can design few-layer structures for optoelectronic applications in the visible optical range. In-plane tensile or hydrostatic compressive stress is found to be useful not only in varying the gap size to cover the whole visible optical range, but also in inducing a semiconductor-metal transition with an experimentally accessible stress. The present result strongly supports the strategy of broadening the scope of group-V semiconductors by looking for isoelectronic III-VII atomic-layered materials.

  11. Electronic properties of Fibonacci and random Si-Ge chains

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, M S [Escola de Ciencias e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Azevedo, David L; Hadad, A [Departamento de Fisica, Universidade Federal do Maranhao 65080-040, Sao LuIs-MA (Brazil); Galvao, D S, E-mail: mvasconcelos@ect.ufrn.br [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas CP 6165, 13083-970 Campinas, SP (Brazil)

    2011-10-12

    In this paper we address a theoretical calculation of the electronic spectra of an Si-Ge atomic chain that is arranged in a Fibonacci quasi-periodic sequence, by using a semi-empirical quantum method based on the Hueckel extended model. We apply the Fibonacci substitutional sequences in the atomic building blocks A(Si) and B(Ge) through the inflation rule or a recursion relation. In our ab initio calculations we use only a single point, which is sufficient for considering all the orbitals and charge distribution across the entire system. Although the calculations presented here are more complete than the models adopted in the literature which take into account the electronic interaction only up to the second and third neighbors, an interesting property remains in their electronic spectra: the fractality (which is the main signature of this kind of system). We discuss this fractality of the spectra and we compare them with the random arrangement of the Si-Ge atomic chain, and with previous results based on the tight-binding approximation of the Schroedinger equation considering up to the nearest neighbor. (paper)

  12. Electronic properties of Fibonacci and random Si-Ge chains.

    Science.gov (United States)

    Vasconcelos, M S; Azevedo, David L; Hadad, A; Galvão, D S

    2011-10-12

    In this paper we address a theoretical calculation of the electronic spectra of an Si-Ge atomic chain that is arranged in a Fibonacci quasi-periodic sequence, by using a semi-empirical quantum method based on the Hückel extended model. We apply the Fibonacci substitutional sequences in the atomic building blocks A(Si) and B(Ge) through the inflation rule or a recursion relation. In our ab initio calculations we use only a single point, which is sufficient for considering all the orbitals and charge distribution across the entire system. Although the calculations presented here are more complete than the models adopted in the literature which take into account the electronic interaction only up to the second and third neighbors, an interesting property remains in their electronic spectra: the fractality (which is the main signature of this kind of system). We discuss this fractality of the spectra and we compare them with the random arrangement of the Si-Ge atomic chain, and with previous results based on the tight-binding approximation of the Schrödinger equation considering up to the nearest neighbor.

  13. Cone-like graphene nanostructures: electronic and optical properties.

    Science.gov (United States)

    Ulloa, Pablo; Latgé, Andrea; Oliveira, Luiz E; Pacheco, Monica

    2013-09-12

    : A theoretical study of electronic and optical properties of graphene nanodisks and nanocones is presented within the framework of a tight-binding scheme. The electronic densities of states and absorption coefficients are calculated for such structures with different sizes and topologies. A discrete position approximation is used to describe the electronic states taking into account the effect of the overlap integral to first order. For small finite systems, both total and local densities of states depend sensitively on the number of atoms and characteristic geometry of the structures. Results for the local densities of charge reveal a finite charge distribution around some atoms at the apices and borders of the cone structures. For structures with more than 5,000 atoms, the contribution to the total density of states near the Fermi level essentially comes from states localized at the edges. For other energies, the average density of states exhibits similar features to the case of a graphene lattice. Results for the absorption spectra of nanocones show a peculiar dependence on the photon polarization in the infrared range for all investigated structures.

  14. Structural and electronic properties of SnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Akgul, Funda Aksoy, E-mail: fundaaksoy01@gmail.com [Physics Department, Nigde University, 51240 Nigde (Turkey); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gumus, Cebrail, E-mail: cgumus@cu.edu.tr [Physics Department, Cukurova University, 01330 Adana (Turkey); Er, Ali O. [Department of Chemistry, University of California, Irvine, CA 92612 (United States); Farha, Ashraf H. [Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 (United States); Physics Department, Ain Shams University, Cairo 11566 (Egypt); Akgul, Guvenc [Bor Vocational School, Nigde University, 51700 Nigde (Turkey); Ufuktepe, Yuksel [Physics Department, Cukurova University, 01330 Adana (Turkey); Liu, Zhi [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2013-12-05

    Highlights: •Structural and electronic properties of SnO{sub 2} films were determined. •Oxidation states of the SnO{sub 2} thin films were confirmed by XPS analysis. •Chemical component is non-stoichiometric and ratio of oxygen to tin was 1.85. -- Abstract: Highly transparent polycrystalline thin film of SnO{sub 2} (tin dioxide) was deposited using a simple and low cost spray pyrolysis method. The film was prepared from an aqueous solution of tin tetrachloride (stannic chloride) onto glass substrates at 400 °C. A range of diagnostic techniques including X-ray diffraction (XRD), UV–visible absorption, atomic force microscopy (AFM), scanning electron microscopy (SEM), and synchrotron-based X-ray photoelectron spectroscopy (XPS) were used to investigate structural, optical, and electronic properties of the resulting film. Deposited film was found to be polycrystalline. A mixture of SnO and SnO{sub 2} phases was observed. The average crystallite size of ∼21.3 nm for SnO{sub 2} was calculated by Rietveld method using XRD data. The oxidation states of the SnO{sub 2} thin film were confirmed by the shape analysis of corresponding XPS O 1s, Sn 3d, and Sn 4d peaks using the decomposition procedure. The analysis of the XPS core level peaks showed that the chemical component is non-stoichiometric and the ratio of oxygen to tin (O/Sn) is 1.85 which is slightly under stoichiometry.

  15. A method for the determination of the hydraulic properties of soil from MODIS surface temperature for use in land-surface models

    Science.gov (United States)

    Gutmann, Ethan D.; Small, Eric E.

    2010-06-01

    Soil hydraulic properties (SHPs) play an important role in land-surface models, but their spatial distribution is poorly known, and it is not feasible to make field measurements of SHPs everywhere they are needed. In addition, the scale SHPs are measured on (10 cm) is substantially smaller than the scale at which land-surface models are run (>1 km). As a result, land-surface models need landscape hydraulic properties (LHPs), not SHPs. We present a method for identifying LHPs from MODIS surface temperatures. We calibrated LHPs in the Noah land-surface model using MODIS surface temperatures in 2005 at 14 sites from the Atmospheric Radiation Measurement Program (ARM) using locally observed forcing data from 2005. We then used observed flux data during this same time period for model verification. Next, we determined LHPs from MODIS surface temperature at five sites using High Resolution Land Data Assimilation forcing data from 2002. We then used these LHPS to run Noah with 2005 ARM forcing data and compared the output to the same observed 2005 fluxes. Fitting LHPs to MODIS data decreases the error in modeled latent heat flux from 98 W/m2 to 67 W/m2. Fitting LHPs to these same latent heat flux measurements decreases the error to 50 W/m2. Therefore, two thirds of the parameter estimation improvement from calibration to in situ flux data can be achieved using remotely sensed surface temperature. These results are insensitive to errors in other parameters. For example, changing albedo by 0.1 changes the saturated conductivity (Ks) by 10% and the van Genuchten "m" parameter by 1%. However, changing minimum canopy resistance by 40 s/m produced a significant but mutually compensating change in both Ks and "m."

  16. Efficient Density Functional Approximation for Electronic Properties of Conjugated Systems

    Science.gov (United States)

    Caldas, Marília J.; Pinheiro, José Maximiano, Jr.; Blum, Volker; Rinke, Patrick

    2014-03-01

    There is on-going discussion about reliable prediction of electronic properties of conjugated oligomers and polymers, such as ionization potential IP and energy gap. Several exchange-correlation (XC) functionals are being used by the density functional theory community, with different success for different properties. In this work we follow a recent proposal: a fraction α of exact exchange is added to the semi-local PBE XC aiming consistency, for a given property, with the results obtained by many-body perturbation theory within the G0W0 approximation. We focus the IP, taken as the negative of the highest occupied molecular orbital energy. We choose α from a study of the prototype family trans-acetylene, and apply this same α to a set of oligomers for which there is experimental data available (acenes, phenylenes and others). Our results indicate we can have excellent estimates, within 0,2eV mean ave. dev. from the experimental values, better than through complete EN - 1 -EN calculations from the starting PBE functional. We also obtain good estimates for the electrical gap and orbital energies close to the band edge. Work supported by FAPESP, CNPq, and CAPES, Brazil, and DAAD, Germany.

  17. Organic/metal interfaces. Electronic and structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Duhm, Steffen

    2008-07-17

    This work addresses several important topics of the field of organic electronics. The focus lies on organic/metal interfaces, which exist in all organic electronic devices. Physical properties of such interfaces are crucial for device performance. Four main topics have been covered: (i) the impact of molecular orientation on the energy levels, (ii) energy level tuning with strong electron acceptors, (iii) the role of thermodynamic equilibrium at organic/ organic homo-interfaces and (iv) the correlation of interfacial electronic structure and bonding distance. To address these issues a broad experimental approach was necessary: mainly ultraviolet photoelectron spectroscopy was used, supported by X-ray photoelectron spectroscopy, metastable atom electron spectroscopy, X-ray diffraction and X-ray standing waves, to examine vacuum sublimed thin films of conjugated organic molecules (COMs) in ultrahigh vacuum. (i) A novel approach is presented to explain the phenomenon that the ionization energy in molecular assemblies is orientation dependent. It is demonstrated that this is due to a macroscopic impact of intramolecular dipoles on the ionization energy in molecular assemblies. Furthermore, the correlation of molecular orientation and conformation has been studied in detail for COMs on various substrates. (ii) A new approach was developed to tune hole injection barriers ({delta}{sub h}) at organic/metal interfaces by adsorbing a (sub-) monolayer of an organic electron acceptor on the metal electrode. Charge transfer from the metal to the acceptor leads to a chemisorbed layer, which reduces {delta}{sub h} to the COM overlayer. This concept was tested with three acceptors and a lowering of {delta}{sub h} of up to 1.2 eV could be observed. (iii) A transition from vacuum-level alignment to molecular level pinning at the homo-interface between a lying monolayer and standing multilayers of a COM was observed, which depended on the amount of a pre-deposited acceptor. The

  18. Electronic properties of antiferromagnetic UBi2 metal by exact exchange for correlated electrons method

    Directory of Open Access Journals (Sweden)

    E Ghasemikhah

    2012-03-01

    Full Text Available This study investigated the electronic properties of antiferromagnetic UBi2 metal by using ab initio calculations based on the density functional theory (DFT, employing the augmented plane waves plus local orbital method. We used the exact exchange for correlated electrons (EECE method to calculate the exchange-correlation energy under a variety of hybrid functionals. Electric field gradients (EFGs at the uranium site in UBi2 compound were calculated and compared with the experiment. The EFGs were predicted experimentally at the U site to be very small in this compound. The EFG calculated by the EECE functional are in agreement with the experiment. The densities of states (DOSs show that 5f U orbital is hybrided with the other orbitals. The plotted Fermi surfaces show that there are two kinds of charges on Fermi surface of this compound.

  19. Electronic properties of semiconductor surfaces and metal/semiconductor interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tallarida, M.

    2005-05-15

    This thesis reports investigations of the electronic properties of a semiconductor surface (silicon carbide), a reactive metal/semiconductor interface (manganese/silicon) and a non-reactive metal/semiconductor interface (aluminum-magnesium alloy/silicon). The (2 x 1) reconstruction of the 6H-SiC(0001) surface has been obtained by cleaving the sample along the (0001) direction. This reconstruction has not been observed up to now for this compound, and has been compared with those of similar elemental semiconductors of the fourth group of the periodic table. This comparison has been carried out by making use of photoemission spectroscopy, analyzing the core level shifts of both Si 2p and C 1s core levels in terms of charge transfer between atoms of both elements and in different chemical environments. From this comparison, a difference between the reconstruction on the Si-terminated and the C-terminated surface was established, due to the ionic nature of the Si-C bond. The growth of manganese films on Si(111) in the 1-5 ML thickness range has been studied by means of LEED, STM and photoemission spectroscopy. By the complementary use of these surface science techniques, two different phases have been observed for two thickness regimes (<1 ML and >1 ML), which exhibit a different electronic character. The two reconstructions, the (1 x 1)-phase and the ({radical}3 x {radical}3)R30 -phase, are due to silicide formation, as observed in core level spectroscopy. The growth proceeds via island formation in the monolayer regime, while the thicker films show flat layers interrupted by deep holes. On the basis of STM investigations, this growth mode has been attributed to strain due to lattice mismatch between the substrate and the silicide. Co-deposition of Al and Mg onto a Si(111) substrate at low temperature (100K) resulted in the formation of thin alloy films. By varying the relative content of both elements, the thin films exhibited different electronic properties

  20. Electronic transport properties of a quinone-based molecular switch

    Science.gov (United States)

    Zheng, Ya-Peng; Bian, Bao-An; Yuan, Pei-Pei

    2016-09-01

    In this paper, we carried out first-principles calculations based on density functional theory and non-equilibrium Green's function to investigate the electronic transport properties of a quinone-based molecule sandwiched between two Au electrodes. The molecular switch can be reversibly switched between the reduced hydroquinone (HQ) and oxidized quinone (Q) states via redox reactions. The switching behavior of two forms is analyzed through their I- V curves, transmission spectra and molecular projected self-consistent Hamiltonian at zero bias. Then we discuss the transmission spectra of the HQ and Q forms at different bias, and explain the oscillation of current according to the transmission eigenstates of LUMO energy level for Q form. The results suggest that this kind of a quinone-based molecule is usable as one of the good candidates for redox-controlled molecular switches.

  1. The Electronic Structure and Secondary Pyroelectric Properties of Lithium Tetraborate

    Directory of Open Access Journals (Sweden)

    Peter A. Dowben

    2010-09-01

    Full Text Available We review the pyroelectric properties and electronic structure of Li2B4O7(110 and Li2B4O7(100 surfaces. There is evidence for a pyroelectric current along the [110] direction of stoichiometric Li2B4O7 so that the pyroelectric coefficient is nonzero but roughly 103 smaller than along the [001] direction of spontaneous polarization. Abrupt decreases in the pyroelectric coefficient along the [110] direction can be correlated with anomalies in the elastic stiffness  contributing to the concept that the pyroelectric coefficient is not simply a vector but has qualities of a tensor, as expected. The time dependent surface photovoltaic charging suggests that surface charging is dependent on crystal orientation and doping, as well as temperature.

  2. Electronic properties of graphene-single crystal diamond heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Fang; Thuong Nguyen, Thuong; Golsharifi, Mohammad; Amakubo, Suguru; Jackman, Richard B., E-mail: r.jackman@ucl.ac.uk [London Centre for Nanotechnology and Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London WC1H 0AH (United Kingdom); Loh, K. P. [Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543 (Singapore)

    2013-08-07

    Single crystal diamond has been used as a substrate to support single layer graphene grown by chemical vapor deposition methods. It is possible to chemically functionalise the diamond surface, and in the present case H-, F-, O-, and N-group have been purposefully added prior to graphene deposition. The electronic properties of the resultant heterostructures vary strongly; a p-type layer with good mobility and a band gap of ∼0.7 eV is created when H-terminated diamond layers are used, whilst a layer with more metallic-like character (high carrier density and low carrier mobility) arises when N(O)-terminations are introduced. Since it is relatively easy to pattern these functional groups on the diamond surface, this suggests that this approach may offer an exciting route to 2D device structures on single layer graphene sheets.

  3. Electronic and elastic properties of PbS under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Li Wei, E-mail: towangteng@263.ne [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, 5100006, Guangzhou (China); Chen Junfang [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, 5100006, Guangzhou (China); Wang Teng [School of Computer, South China Normal University, 510631, Guangzhou (China)

    2010-03-01

    The electronic structures and elastic properties of lead sulfide are studied usingfirst-principles calculations. The energy band structure and density of state (DOS) of PbS at 0 GPa are calculated. The band gap energy of PbS versus the pressure 0-40 GPa is obtained. We find that the band gap energy decreases as the pressure increases. The geometry optimized structural parameters for PbS under different pressures are listed. The lattice parameter a, and enthalpy E both decrease with increasing pressure. However, parameter B, S and Y increase with pressure. The normalized lattice constants and the elastic modulus as two functions of pressure from 0-40 GPa are obtained. The calculated elastic constants C11 and C12 increase but with different rates under increasing pressure. However, C44 decrease under increasing pressure.

  4. Electronic and elastic properties of MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Li Wei, E-mail: tolwwt@163.co [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, 510006, Guangzhou (China); Chen Junfang; He Qinyu [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, 510006, Guangzhou (China); Wang Teng [School of Computer, South China Normal University, 510631, Guangzhou (China)

    2010-05-15

    The electronic structures and elastic properties of molybdenum disulfide are studied using first-principles calculations. The energy band structure and density of state (DOS) of MoS{sub 2} at 0 GPa are calculated. The band gap energy of MoS{sub 2} versus the pressure 0-40 GPa is obtained. We find that the band gap energy decreases as the pressure increases. The geometry optimized structural parameters for lithium nitride under different pressures are listed. The parameters a, c, and E (the enthalpy) all decrease with increasing pressure. However, parameter B (the bulk modulus), S (the shear modulus) and Y (the Young's modulus) increase with pressure. The normalized lattice constants and the elastic modulus as two functions of pressure from 0-40 GPa are obtained. All the calculated elastic constants C{sub ij} increase by different rates with increasing pressure.

  5. Electronic and Magnetic Properties of the p-NPNN

    Institute of Scientific and Technical Information of China (English)

    LUO Shi-Jun; YAO Kai-Lun

    2003-01-01

    In this paper, we study the electronic band structure and the ferromagnetic properties of the organic radicalp-NPNN by employing density-functional theory with generalized gradient approximation (GGA) and local-spin densityapproximation (LSDA). The density of states, the total energy, and the spin magnetic moment are calculated. Thecalculations reveal that the δ-phase of p-NPNN has a stable ferromagnetic ground state. It is found that an unpairedelectron in this compound is localized in a single occupied molecular orbital (SOMO) constituted primarily of π* (NO)orbitals, and the main contribution of the spin magnetic moment comes from the π* (NO) orbitals. By comparison, wefind that the GGA is more suitable to describe free radical systems than LSDA.

  6. Electronic Properties of Graphene–PtSe2 Contacts

    KAUST Repository

    Sattar, Shahid

    2017-04-26

    In this article, we study the electronic properties of graphene in contact with monolayer and bilayer PtSe2 using first-principles calculations. It turns out that there is no charge transfer between the components because of the weak van der Waals interaction. We calculate the work functions of monolayer and bilayer PtSe2 and analyze the band bending at the contact with graphene. The formation of an n-type Schottky contact with monolayer PtSe2 and a p-type Schottky contact with bilayer PtSe2 is demonstrated. The Schottky barrier height is very low in the bilayer case and can be reduced to zero by 0.8% biaxial tensile strain.

  7. Structural and electronic properties of carbon nanotubes under hydrostatic pressures

    Institute of Scientific and Technical Information of China (English)

    Zhang Ying; Cao Jue-Xian; Yang Wei

    2008-01-01

    We studied the structural and electronic properties of carbon nanotubes under hydrostatic pressures based on molecular dynamics simulations and first principles band structure calculations.It is found that carbon nanotubes experience a hard-to-soft transition as external pressure increases.The bulk modulus of soft phase is two orders of magnitude smaller than that of hard phase.The band structure calculations show that band gap of (10,0) nanotube increases with the increase of pressure at low pressures. Above a critical pressure (5.70GPa),band gap of (10,0) nanotube drops rapidly and becomes zero at 6.62GPa. Moreover,the calculated charge density shows that a large pressure can induce an sp2-to-sp3 bonding transition,which is confirmed by recent experiments on deformed carbon nanotubes.

  8. Electronic, Vibrational and Thermoelectric Properties of Two-Dimensional Materials

    Science.gov (United States)

    Wickramaratne, Darshana

    The discovery of graphene's unique electronic and thermal properties has motivated the search for new two-dimensional materials. Examples of these materials include the layered two-dimensional transition metal dichalcogenides (TMDC) and metal mono-chalcogenides. The properties of the TMDCs (eg. MoS 2, WS2, TaS2, TaSe2) and the metal mono-chalcogenides (eg. GaSe, InSe, SnS) are diverse - ranging from semiconducting, semi-metallic and metallic. Many of these materials exhibit strongly correlated phenomena and exotic collective states such as exciton condensates, charge density waves, Lifshitz transitions and superconductivity. These properties change as the film thickness is reduced down to a few monolayers. We use first-principles simulations to discuss changes in the electronic and the vibrational properties of these materials as the film thickness evolves from a single atomic monolayer to the bulk limit. In the semiconducting TMDCs (MoS2, MoSe2, WS2 and WSe2) and monochalcogenides (GaS, GaSe, InS and InSe) we show confining these materials to their monolayer limit introduces large band degeneracies or non-parabolic features in the electronic structure. These changes in the electronic structure results in increases in the density of states and the number of conducting modes. Our first-principles simulations combined with a Landauer approach show these changes can lead to large enhancements up to an order of magnitude in the thermoelectric performance of these materials when compared to their bulk structure. Few monolayers of the TMDCs can be misoriented with respect to each other due to the weak van-der-Waals (vdW) force at the interface of two monolayers. Misorientation of the bilayer semiconducting TMDCs increases the interlayer van-der-Waals gap distance, reduces the interlayer coupling and leads to an increase in the magnitude of the indirect bandgap by up to 100 meV compared to the registered bilayer. In the semi-metallic and metallic TMDC compounds (TiSe2, Ta

  9. Electronic properties of graphene nanoribbons: A density functional investigation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sandeep, E-mail: skumar198712@gmail.com; Sharma, Hitesh, E-mail: dr.hitesh.phys@gmail.com [Department of Physics, Punjab Technical University Kapurthala, Punjab-144601 (India)

    2015-05-15

    Density functional theory calculations have been performed on graphene nano ribbons (GNRs) to investigate the electronic properties as a function of chirality, size and hydrogenation on the edges. The calculations were performed on GNRs with armchair and zigzag configurations with 28, 34, 36, 40, 50, 56, 62, 66 carbon atoms. The structural stability of AGNR and ZGNR increases with the size of nanoribbon where as hydrogenation of GNR tends to lowers their structural stability. All GNRs considered have shown semiconducting behavior with HOMO-LUMO gap decreasing with the increase in the GNR size. The hydrogenation of GNR decreases its HOMO-LUMO gap significantly. The results are in agreement with the available experimental and theoretical results.

  10. Electronic transport properties of Ir-decorated graphene.

    Science.gov (United States)

    Wang, Yilin; Xiao, Shudong; Cai, Xinghan; Bao, Wenzhong; Reutt-Robey, Janice; Fuhrer, Michael S

    2015-10-28

    Graphene decorated with 5d transitional metal atoms is predicted to exhibit many intriguing properties; for example iridium adatoms are proposed to induce a substantial topological gap in graphene. We extensively investigated the conductivity of single-layer graphene decorated with iridium deposited in ultra-high vacuum at low temperature (7 K) as a function of Ir concentration, carrier density, temperature, and annealing conditions. Our results are consistent with the formation of Ir clusters of ~100 atoms at low temperature, with each cluster donating a single electronic charge to graphene. Annealing graphene increases the cluster size, reducing the doping and increasing the mobility. We do not observe any sign of an energy gap induced by spin-orbit coupling, possibly due to the clustering of Ir.

  11. Electron Transport Materials: Synthesis, Properties and Device Performance

    Energy Technology Data Exchange (ETDEWEB)

    Cosimbescu, Lelia; Wang, Liang; Helm, Monte L.; Polikarpov, Evgueni; Swensen, James S.; Padmaperuma, Asanga B.

    2012-06-01

    We report the design, synthesis and characterization, thermal and photophysical properties of two silane based electron transport materials, dibenzo[b,d]thiophen-2-yltriphenylsilane (Si{phi}87) and (dibenzo[b,d]thiophen-2-yl)diphenylsilane (Si{phi}88) and their performance in blue organic light emitting devices (OLEDs). The utility of these materials in blue OLEDs with iridium (III) bis[(4,6-difluorophenyl)-pyridinato-N,C']picolinate (Firpic) as the phosphorescent emitter was demonstrated. Using the silane Si{phi}87 as the electron transport material (ETm) an EQE of 18.2% was obtained, with a power efficiency of 24.3 lm/W (5.8V at 1mA/cm{sup 2}), in a heterostructure. When Si{phi}88 is used, the EQE is 18.5% with a power efficiency of 26.0 lm/W (5.5V at 1mA/cm{sup 2}).

  12. Electronic transport properties of copper and gold at atomic scale

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadzadeh, Saeideh

    2010-11-23

    The factors governing electronic transport properties of copper and gold atomic-size contacts are theoretically examined in the present work. A two-terminal conductor using crystalline electrodes is adopted. The non-equilibrium Green's function combined with the density functional tight-binding method is employed via gDFTB simulation tool to calculate the transport at both equilibrium and non-equilibrium conditions. The crystalline orientation, length, and arrangement of electrodes have very weak influence on the electronic characteristics of the considered atomic wires. The wire width is found to be the most effective geometric aspect determining the number of conduction channels. The obtained conductance oscillation and linear current-voltage curves are interpreted. To analyze the conduction mechanism in detail, the transmission channels and their decomposition to the atomic orbitals are calculated in copper and gold single point contacts. The presented results offer a possible explanation for the relation between conduction and geometric structure. Furthermore, the results are in good agreement with available experimental and theoretical studies. (orig.)

  13. Structural and electronic properties of Diisopropylammonium bromide molecular ferroelectric crystal

    Science.gov (United States)

    Alsaad, A.; Qattan, I. A.; Ahmad, A. A.; Al-Aqtash, N.; Sabirianov, R. F.

    2015-10-01

    We report the results of ab-initio calculations based on Generalized Gradient Approximation (GGA) and hybrid functional (HSE06) of electronic band structure, density of states and partial density of states to get a deep insight into structural and electronic properties of P21 ferroelectric phase of Diisopropylammonium Bromide molecular crystal (DIPAB). We found that the optical band gap of the polar phase of DIPAB is ∼ 5 eV confirming it as a good dielectric. Examination of the density of states and partial density of states reveal that the valence band maximum is mainly composed of bromine 4p orbitals and the conduction band minimum is dominated by carbon 2p, carbon 2s, and nitrogen 2s orbitals. A unique aspect of P21 ferroelectric phase is the permanent dipole within the material. We found that P21 DIPAB has a spontaneous polarization of 22.64 consistent with recent findings which make it good candidate for the creation of ferroelectric tunneling junctions (FTJs) which have the potential to be used as memory devices.

  14. Tuning of electronic properties of fullerene-oligothiophene layers

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowska, Kornelia [Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland); Pilarczyk, Kacper, E-mail: kacper.pilarczyk@fis.agh.edu.pl, E-mail: szacilow@agh.edu.pl [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków (Poland); Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków (Poland); Podborska, Agnieszka [Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków (Poland); Kim, Tae-Dong; Lee, Kwang-Sup [Department of Advanced Materials, Hannam University, 305-811 Daejeon (Korea, Republic of); Szaciłowski, Konrad, E-mail: kacper.pilarczyk@fis.agh.edu.pl, E-mail: szacilow@agh.edu.pl [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków (Poland); Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków (Poland)

    2015-01-26

    Electronic properties of fullerene derivatives containing oligothiophene pendant chain (1–3 thiophene moieties) were investigated using the Kelvin probe technique and quantum chemistry methods. For electrochemical examination of these systems, Langmuir–Blodgett (LB) layers were prepared by the deposition on a gold substrate. The analysis of the experimental data shows that the value of the work function depends strongly on the length of oligothiophene chain. Similar dependence was also found for the surface photovoltage measurements conducted for the layers consisting of multiple LB films of the examined compounds deposited on gold surfaces. The assumption has been made that these changes are associated with the influence of oligothiophene chain on the electrostatic potential distribution near the surface of the sample. The hypothesis was confirmed by the results of DFT calculations, which revealed that the value of Fermi level energy shifts in the opposite direction to the determined work function. The key highlights of this study are as follows: electronic structure tuning by oligothiophene side chain; DFT calculation on fullerene-thiophene system; work function measurements of thin molecular layers.

  15. Nuclear Quantum Effects on Aqueous Electron Attachment and Redox Properties.

    Science.gov (United States)

    Rybkin, Vladimir V; VandeVondele, Joost

    2017-03-17

    Nuclear quantum effects (NQEs) on the reduction and oxidation properties of small aqueous species (CO2, HO2, and O2) are quantified and rationalized by first-principles molecular dynamics and thermodynamic integration. Vertical electron attachment, or electron affinity, and detachment energies (VEA and VDE) are strongly affected by NQEs, decreasing in absolute value by 0.3 eV going from a classical to a quantum description of the nuclei. The effect is attributed to NQEs that lessen the solvent response upon oxidation/reduction. The reduction of solvent reorganization energy is expected to be general for small solutes in water. In the thermodynamic integral that yields the free energy of oxidation/reduction, these large changes enter with opposite sign, and only a small net effect (0.1 eV) remains. This is not obvious for CO2, where the integrand is strongly influenced by NQEs due to the onset of interaction of the reduced orbital with the conduction band of the liquid during thermodynamic integration. We conclude that NQEs might not have to be included in the computation of redox potentials, unless high accuracy is needed, but are important for VEA and VDE calculations.

  16. Optical properties of Dirac electrons in a parabolic well.

    Science.gov (United States)

    Kim, S C; Lee, J W; Yang, S-R Eric

    2013-09-01

    A single electron transitor may be fabricated using qunatum dots. A good model for the confinement potential of a quantum dot is a parabolic well. Here we consider such a parabolic dot made of graphene. Recently, we found counter intuitively that resonant quasi-boundstates of both positive and negative energies exist in the energy spectrum. The presence of resonant quasi-boundstates of negative energies is a unique property of massless Dirac fermions. As magnetic field B gets smaller the energy width of these states become broader and for sufficiently weak value of B resonant quasi-bound states disappear into a quasi-continuum. In the limit of small B resonant and nonresonant states transform into discrete anomalous states with a narrow probability density peak inside the well and another broad peak under the potential barrier. In this paper we compute the optical strength between resonant quasi-bound states as a function of B, and investigate how the signature of resonant quasi-bound states of Dirac electrons may appear in optical measurements.

  17. Electronic and magnetic properties of small rhodium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Soon, Yee Yeen; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    We report a theoretical study of the electronic and magnetic properties of rhodium-atomic clusters. The lowest energy structures at the semi-empirical level of rhodium clusters are first obtained from a novel global-minimum search algorithm, known as PTMBHGA, where Gupta potential is used to describe the atomic interaction among the rhodium atoms. The structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof generalized gradient approximation. For the purpose of calculating the magnetic moment of a given cluster, we calculate the optimized structure as a function of the spin multiplicity within the DFT framework. The resultant magnetic moments with the lowest energies so obtained allow us to work out the magnetic moment as a function of cluster size. Rhodium atomic clusters are found to display a unique variation in the magnetic moment as the cluster size varies. However, Rh{sub 4} and Rh{sub 6} are found to be nonmagnetic. Electronic structures of the magnetic ground-state structures are also investigated within the DFT framework. The results are compared against those based on different theoretical approaches available in the literature.

  18. Change in hydraulic properties and leaf traits of a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics

    Directory of Open Access Journals (Sweden)

    B. Schuldt

    2010-11-01

    Full Text Available In a throughfall displacement experiment on Sulawesi, Indonesia, three 0.16 ha stands of a premontane perhumid rainforest were exposed to a two-year soil desiccation period that reduced the soil moisture in the upper soil layers beyond the conventional wilting point. About 25 variables, including leaf morphological and chemical traits, stem diameter growth and hydraulic properties of the xylem in the trunk and terminal twigs, were investigated in trees of the tall-growing tree species Castanopsis acuminatissima (Fagaceae by comparing desiccated roof plots with nearby control plots. We tested the hypotheses that this tall and productive species is particularly sensitive to drought, and the exposed upper sun canopy is more affected than the shade canopy. Hydraulic conductivity in the xylem of terminal twigs normalised to vessel lumen area was reduced by 25%, leaf area-specific conductivity by 10–33% during the desiccation treatment. Surprisingly, the leaves present at the end of the drought treatment were significantly larger, but not smaller in the roof plots, though reduced in number (about 30% less leaves per unit of twig sapwood area, which points to a drought effect on the leaf bud formation while the remaining leaves may have profited from a surplus of water. Mean vessel diameter and axial conductivity in the outermost xylem of the trunk were significantly reduced and wood density increased, while annual stem diameter increment decreased by 26%. In contradiction to our hypotheses, (i we found no signs of major damage to the C. acuminatissima trees nor to any other drought sensitivity of tall trees, and (ii the exposed upper canopy was not more drought susceptible than the shade canopy.

  19. Geometric, magnetic and electronic properties of folded graphene nanoribbons

    CERN Document Server

    Chang, Shen-Lin; Yang, Po-Hua; Lin, Ming-Fa

    2015-01-01

    Geometric and electronic properties of folded graphene nanoribbons (FGNRs) are investigated by first-principles calculations. These properties are mainly dominated by the competition or cooperation among stacking, curvature and edge effects. For the zigzag FGNRs, the more stable structures are revealed to be AB stackings, while for the armchair types, AA" stackings are more stable. The interlayer interactions and hybridization of four orbitals lead to smaller energy gaps, anti-crossing bands, and more band-edge states. Specifically, the broken mirror symmetry in the odd-AB stacked zigzag FGNRs is responsible for the spin-up and spin-down splitting subbands. All FGNRs are direct-gap semiconductors except that the edge-edge interactions cause the even-AA stacked zigzag FGNRs to exhibit a pair of metallic linear bands. The width-dependent energy gaps in the armchair FGNRs can be classified into six groups. Furthermore, there exist rich features in density of states, including the form, number, intensity and ener...

  20. Magnetic and electronic properties of porphyrin-based molecular nanowires

    Directory of Open Access Journals (Sweden)

    Jia-Jia Zheng

    2016-01-01

    Full Text Available Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn. Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  1. Magnetic and electronic properties of porphyrin-based molecular nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jia-Jia; Li, Qiao-Zhi; Dang, Jing-Shuang; Zhao, Xiang, E-mail: xzhao@mail.xjtu.edu.cn [Institute for Chemical Physics & Department of Chemistry, MOE Key Laboratory for Non-equilibrium Condensed Matter and Quantum Engineering, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Wei-Wei [Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan)

    2016-01-15

    Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn). Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  2. Electronic properties of the layer III-VI semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Depeursinge, Y. (Ecole Polytechnique Federale, Lausanne (Switzerland). Lab. de Physique Appliquee)

    1981-07-11

    We have studied the electronic properties of the family of layer compounds InSe, GaSe and GaS by the emprical pseudopotential method. Both atomic positions, which are not accurately known from experiment, and atomic pseudopotentials are adjusted to fit the main optical and photoemission data with the further constraint that the same Se potential should be valid for InSe and GaSe, and the same Ga potential for GaS and GaSe. The charge densities have also been calculated and show that the ionicity of InSe is greater than that of GaS and GaSe, in good agreement with the Phillips electronegativity scale which predicts that InSe is 1.2 and 1.3 times more ionic than GaS and GaSe, respectively. The calculated band structures and charge densities allow a detailed discussion of the integrated and angle-resolved photoemission data as well as of the optical properties of these compounds.

  3. Structural and electronic properties of hybrid silicon-germanium nanosheets

    Directory of Open Access Journals (Sweden)

    F. L. Pérez Sánchez

    2014-12-01

    Full Text Available Using first principles molecular calculations, based on the Density Functional Theory (DFT, structural and electronic properties of hybrid graphene—like silicon—germanium circular nanosheets of hexagonal symmetry are investigated. The exchange—correlation functional of Perdew—Wang (PW in the local spin density approximation (LSDA based on the pseudopotentials of Dolg—Bergnre is applied. The finite extension nanosheets are represented by the CnHm—like cluster model with mono—hydrogenated armchair edges. Changes of the physicochemical properties were analyzed to learn on the chemical composition. We have obtained that the corrugation of the hybrid nanosheets is maintained (with respect to the pristine nanosheets of Ge and Si and is more pronounced when there is a high percentage of germanium. Moreover, hybrid nanosheets have ionic bonds (polarity in the interval from 0.18 to 0.77 D and exhibit a semimetal behavior. Three types of chemical compositions are considered: 1 the one—one relationship, 2 formation of Ge dimers and 3 formation of Ge hexagons. In each case it is observed an increase in the chemical reactivity. Finally, analyzing the work function we conclude that in cases 1 and 2 the chemical compositions improve the efficiency of the field emission and thereby they could expand the scope of nanotechnology applications.

  4. Electron transport properties of carbon-based nanostructures

    Science.gov (United States)

    Diaz Pinto, Carlos A.

    Grapheme and graphene-related systems have been the focus of intensive research due to their exceptional electronic behavior. Their properties have been studied for decades, from the unique band structure predicted for a single layer of graphite, to the unexpected linear magnetoresistance observed in its bulk form. Since its experimental isolation in 2004, studies on graphene monolayer, bilayer, and few-layer systems garnered an overwhelming amount of attention from the scientific community, with studies focusing on multilayers with nanometer thicknesses paling in comparison. The main motivation of this study is to further the understanding of systems consisting of multilayer graphene and ultrathin graphite (graphitic multilayers) through electron transport experiments. Uniquely designed and fabricated devices based on carbon nanostructures were used to study the transport of charge carriers under high electric and magnetic fields. For short-channel suspended graphitic multilayer devices, the two-terminal differential conductance dI/dV as a function of drain-source bias Vd displays a pronounced dip pinned at Vd=0, explained by the hot electron effect. The dip is attenuated under high magnetic fields, likely due to intra-Landau level cyclotron phonon scattering. Also, distinct high-energy dI/dV anomalies have been observed and shown to be related to intrinsic phonon-emission processes in graphite. The evolution of such dI/dV anomalies under magnetic fields is understood as a consequence of the inter-Landau level cyclotron-phonon resonance scattering. The magnetoresistance (MR) of this system shows Shubnikov-de Haas oscillations on top of a strong positive nearly-linear background. Upon the introduction of a significant amount of short-range disorders through ion implantation, the positive MR transforms into a negative MR. The results for the MR of pure and implanted graphitic multilayers can be understood by considering a recent magneto-transport theory for two

  5. Hydraulic properties comparison in the calibration of CropSyst, SWAP and MACRO models in simulating soil water content for 3 years

    Science.gov (United States)

    Bonfante, A.; Fragnito, F.; Manna, P.; Orefice, N.; Pastori, M.; Perego, A.

    2009-04-01

    The quantification of the water balance components within soil-crop-climate system is strictly required to derive proper management conditions for plant growth and environmental protection. Numerical models are currently accepted as helpful tools to gain into the processes occurring in the soil-crop-climate system and to extrapolate data. A large number of available models solves, at field scale, the water balance components by the well known Richard's equation. Despite their common basis of the representation of water flow in the unsaturated zone, it is possible that with the same pedological, climatic and agronomic management conditions, apparently similar hydrological models give different answers. Therefore, to test the capability of a model to represent reality, model simulation must be compared with experimental data and with simulations by other models. The objective of the present study was to evaluate and compare the performances of three well known models (SWAP, MACRO and CropSyst based on the solution of the Richard's equation). Main attention was focussed on the effects of the calibration of the three models on the soil hydraulic properties parameterization. The performance of SWAP, MACRO and CropSyst is compared using field data collected from a structured fine soil (Vertic Calciustepts located in Cerese, Mantova, Italy) cropped to maize. The models are tested and compared on the basis of their ability to predict in situ the measured soil water content at different depths during the years 2002-2004. Water contents was measured with a TDR equipment at 5 depth, where possible with daily frequency. All three models produce acceptable predictions, as evidence by an average root mean square error (RMSE) within ± 0.031 and an average coefficient of residual mass (CRM) within ± 0.66. The SWAP and CropSyst models produces the better performance, but in absolute none of the models is consistently more accurate than the others. In any case the different

  6. Electron-electron interactions, topological phase, and optical properties of a charged artificial benzene ring

    Science.gov (United States)

    Ozfidan, Isil; Vladisavljevic, Milos; Korkusinski, Marek; Hawrylak, Pawel

    2015-12-01

    We present a theory of the electronic and optical properties of a charged artificial benzene ring (ABR). The ABR is described by the extended Hubbard model solved using exact diagonalization methods in both real and Fourier space as a function of the tunneling matrix element t , Hubbard on-site repulsion U , and interdot interaction V . In the strongly interacting case, we discuss exact analytical results for the spectrum of the hole in a half-filled ABR dressed by the spin excitations of the remaining electrons. The spectrum is interpreted in terms of the appearance of a topological phase associated with an effective gauge field piercing through the ring. We show that the maximally spin-polarized (S =5 /2 ) and maximally spin-depolarized (S =1 /2 ) states are the lowest energy, orbitally nondegenerate, states. We discuss the evolution of the phase diagram and level crossings as interactions are switched off and the ground state becomes spin nondegenerate but orbitally degenerate S =1 /2 . We present a theory of optical absorption spectra and show that the evolution of the ground and excited states, level crossings, and presence of artificial gauge can be detected optically.

  7. The signature of bankfull hydraulic conditions reflected by properties of the channel bank: a case study from the Selenga River delta, Lake Baikal, Russia

    Science.gov (United States)

    Dong, T. Y.; Nittrouer, J. A.; Czapiga, M. J.; Ma, H.; McElroy, B. J.; Il'icheva, E.; Pavlov, M.; Parker, G.

    2016-12-01

    A recent model developed to describe variable river channel Shields number proposed that the bankfull shear velocity value is nearly independent of bed material grain size, and instead is dependent on the kinematic viscosity of water. This fluid property has an important influence on the settling velocity of washload sediment, which is material generally not found on the channel bed, but is deposited on the adjacent levees during overbank flow. It is therefore hypothesized that bankfull shear velocity values for a lowland fluvial channel can be estimated based on the grain size properties of the bank sediment, after considering the vegetated state of the bank. This hypothesis is tested using a variety of data collected during two field expeditions (2014, 2016) to the Selenga River Delta, Lake Baikal, Russia, because this system demonstrates significant changes in bank material and flow hydraulic conditions across the distributary channel network. The data include: 1) channel geometry measurements, 2) bank and floodplain sediment samples, 3) water samples to measure washload concentration and grain size, 4) flow velocity measurements, and 5) bank vegetation type, to estimate sediment trapping efficiency. Analyses of the data document a downstream fining of bank sediment grain size, with medium sand present near the delta apex, to mud at the delta margin. Bankfull channel depth decreases downstream, from meter-scale near the apex, to decimeter-scale at the delta margin, where the channel banks transition from subaerial to subaqueous expression. Flow velocity - decreasing downstream - is used to calculate shear velocity. An analytical framework is developed to explore the physical connections between grain size of the bank material, bankfull depth, and shear velocity. This analysis is the first to establish a connection between bankfull geometry, bank material properties, and Shields number, and therefore provides insights regarding fluvial-deltaic morphodynamics.

  8. Hemostatic properties of the free-electron laser

    Science.gov (United States)

    Cram, Gary P., Jr.; Copeland, Michael L.

    1998-09-01

    We have investigated the hemostatic properties of the free-electron laser (FEL) and compared these properties to the most commonly used commercial lasers in neurosurgery, CO 2 and Nd:YAG, using an acute canine model. Arterial and venous vessels, of varying diameters from 0.1 to 1.0 mm, were divided with all three lasers. Analysis of five wavelengths of the FEL (3.0, 4.5, 6.1, 6.45, and 7.7 microns) resulted in bleeding without evidence of significant coagulation, regardless of whether the vessel was an artery or vein. Hemorrhage from vessels less than 0.4 mm diameter was subsequently easily controlled with Gelfoam® (topical hemostatic agent) alone, whereas larger vessels required bipolar electrocautery. No significant charring, or contraction of the surrounding parenchyma was noted with any of the wavelengths chosen from FEL source. The CO 2 laser, in continuous mode, easily coagulated vessels with diameters of 4 mm and less, while larger vessels displayed significant bleeding requiring bipolar electrocautery for control. Tissue charring was noted with application of the CO 2 laser. In super pulse mode, the CO 2 laser exhibited similar properties, including significant charring of the surrounding parenchyma. The Nd:YAG coagulated all vessels tested up to 1.4 mm, which was the largest diameter cortical artery found, however this laser displayed significant and extensive contraction and retraction of the surrounding parenchyma. In conclusion, the FEL appears to be a poor hemostatic agent. Our results did not show any benefit of the FEL over current conventional means of achieving hemostasis. However, control of hemorrhage was easily achieved with currently used methods of hemostasis, namely Gelfoam® or bipolar electrocuatery. Although only cortical vessels in dogs were tested, we feel this data can be applied to all animals, including humans, and the peripheral, as well as central, vasculature, as our data on the CO 2 and Nd:YAG appear to closely support previous

  9. Electronic and magnetic properties of DUT-8(Ni).

    Science.gov (United States)

    Trepte, Kai; Schwalbe, Sebastian; Seifert, Gotthard

    2015-07-14

    First principles calculations using density functional theory (DFT) have been performed to investigate the electronic and magnetic properties of DUT-8(Ni) (DUT - Dresden University of Technology). This flexible metal-organic framework (MOF) exists in two crystalline forms: DUT-8(Ni)open and DUT-8(Ni)closed. To identify the energetically favoured magnetic ordering, the density of states (DOS) and the energy difference between a low-spin (LS) and a high-spin (HS) coupling ΔELS-HS for those crystalline structures have been computed. Calculations on supercells have been carried out to include a variety of different magnetic couplings beyond a single unit cell. Several molecular model systems have been employed to further investigate the magnetic behaviour by introducing a diversity of chemical environments to the magnetic centers. The magnetic ground state of both crystalline structures has been found to be the low-spin state (S = 0). This low-spin ordering can be seen in the DOS as well as from ΔELS-HS calculations. Additionally, the calculations on the supercells confirm that the local character of the ordering (i.e. within the Ni dimers) is the most favoured one. However, the model systems indicate a change from the low-spin (S = 0) to a high-spin (S ≠ 0) ordering by introducing certain alterations into the chemical environment. Such alterations could be incorporated into the crystalline systems which should lead to similar results.

  10. Magnetostructural, mechanical and electronic properties of manganese tetraboride

    Science.gov (United States)

    Liang, Yongcheng; Wu, Zhaobing; Wang, Shiming

    2015-11-01

    Magnetostructural stabilities, mechanical behaviors and electronic structures of various phases of manganese tetraboride (MnB4) have been investigated systematically by density functional theory (DFT) based first-principles methods. It is found that MnB4 undergoes temperature-induced phase transitions from the nonmagnetic (NM) monoclinic mP20 structure to the ferromagnetic (FM) orthorhombic oP10 structure at 438 K, then to the antiferromagnetic (AFM) orthorhombic oP10 structure at 824 K. We reveal that the NM insulating mP20 phase stabilizes by the Peierls distortion breaking the structural degeneracy, while the FM and AFM metallic oP10 phases stabilize by the Stoner magnetism lifting the spin degeneracy. Furthermore, the calculated mechanical properties show that the NM mP20, FM oP10, and AFM oP10 phases exhibit low compressibility and high hardness, which originate from their three-dimensional covalent boron networks. Therefore, this unique temperature-assisted insulator-metal transition, strong stiffness and high hardness suggest that MnB4 may find promising technological applications as thermoelectric switches and field effect transistors at the extreme conditions.

  11. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    López-Oyama, A. B.; Silva-Molina, R. A.; Ruíz-García, J.; Guirado-López, R. A., E-mail: guirado@ifisica.uaslp.mx [Instituto de Física “Manuel Sandoval Vallarta,” Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí (Mexico); Gámez-Corrales, R. [Departamento de Física, Universidad de Sonora, Apartado Postal 5-088, 83190, Hermosillo, Sonora (Mexico)

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH–MWCNT). Our MWCNTs have average diameters of ∼2 nm, lengths of approximately 100–300 nm, and a hydroxyl surface coverage θ∼0.1. When deposited on the air/water interface the OH–MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO–LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH–MWCNTs might have promising applications.

  12. Magnetostructural, mechanical and electronic properties of manganese tetraboride

    Directory of Open Access Journals (Sweden)

    Yongcheng Liang

    2015-11-01

    Full Text Available Magnetostructural stabilities, mechanical behaviors and electronic structures of various phases of manganese tetraboride (MnB4 have been investigated systematically by density functional theory (DFT based first-principles methods. It is found that MnB4 undergoes temperature-induced phase transitions from the nonmagnetic (NM monoclinic mP20 structure to the ferromagnetic (FM orthorhombic oP10 structure at 438 K, then to the antiferromagnetic (AFM orthorhombic oP10 structure at 824 K. We reveal that the NM insulating mP20 phase stabilizes by the Peierls distortion breaking the structural degeneracy, while the FM and AFM metallic oP10 phases stabilize by the Stoner magnetism lifting the spin degeneracy. Furthermore, the calculated mechanical properties show that the NM mP20, FM oP10, and AFM oP10 phases exhibit low compressibility and high hardness, which originate from their three-dimensional covalent boron networks. Therefore, this unique temperature-assisted insulator-metal transition, strong stiffness and high hardness suggest that MnB4 may find promising technological applications as thermoelectric switches and field effect transistors at the extreme conditions.

  13. Structural, electronic and magnetic properties of MnB2

    Indian Academy of Sciences (India)

    R Masrour; E K Hlil; M Hamedoun; A Benyoussef; O Mounkachi; H El Moussaoui

    2015-08-01

    The self-consistent ab-initio calculations, based on density functional theory approach and using the full potential linear augmented plane wave method, are performed to investigate both electronic and magnetic properties of the MnB2 compounds. Polarized spin and spin–orbit coupling are included in calculations within the framework of the ferromagnetic state between two adjacent Mn atoms. Magnetic moment considered to lie along the (001) axes are computed. The antiferromagnetic and ferromagnetic energies of MnB2 systems are obtained. Obtained data from ab-initio calculations are used as input for the high-temperature series expansions (HTSEs) calculations to compute other magnetic parameters. The exchange interactions between the magnetic atoms Mn–Mn in MnB2 are established by using the mean field theory. The HTSEs of the magnetic susceptibility with the magnetic moments in MnB2 (Mn) through Ising model is given. The critical temperature C (K) is obtained by HTSEs applied to the magnetic susceptibility series combined with the Padé approximant method. The critical exponent associated with the magnetic susceptibility is deduced as well.

  14. Mechanical properties of hydrogenated electron-irradiated graphene

    Science.gov (United States)

    Weerasinghe, Asanka; Muniz, Andre R.; Ramasubramaniam, Ashwin; Maroudas, Dimitrios

    2016-09-01

    We report a systematic analysis on the effects of hydrogenation on the mechanical behavior of irradiated single-layer graphene sheets, including irradiation-induced amorphous graphene, based on molecular-dynamics simulations of uniaxial tensile straining tests and using an experimentally validated model of electron-irradiated graphene. We find that hydrogenation has a significant effect on the tensile strength of the irradiated sheets only if it changes the hybridization of the hydrogenated carbon atoms to sp3, causing a reduction in the strength of irradiation-induced amorphous graphene by ˜10 GPa. Hydrogenation also causes a substantial decrease in the failure strain of the defective sheets, regardless of the hybridization of the hydrogenated carbon atoms, and in their fracture toughness, which decreases with increasing hydrogenation for a given irradiation dose. We characterize in detail the fracture mechanisms of the hydrogenated irradiated graphene sheets and elucidate the role of hydrogen and the extent of hydrogenation in the deformation and fracture processes. Our study sets the stage for designing hydrogenation and other chemical functionalization strategies toward tailoring the properties of defect-engineered ductile graphene.

  15. Electronic, elastic, and optical properties of monolayer BC2N

    Science.gov (United States)

    Jiao, Lina; Hu, Meng; Peng, Yusi; Luo, Yanting; Li, Chunmei; Chen, Zhiqian

    2016-12-01

    The structural stability, electronic structure, elasticity, and optical properties of four types of monolayer BC2N have been investigated from first principles using calculation based on density functional theory. The results show that the structural stability of BC2N increases with the number of C-C and B-N bonds. By calculating the two-dimensional Young's modulus, shear modulus, Poisson's ratio, and shear anisotropic factors in different directions, four structures present various anisotropies and the most stable structure is almost isotropic. For C-type BC2N, the values of two-dimensional Young's modulus, shear modulus, and bulk modulus (309, 128, 195 GPa m-1), are smaller than those of graphene (343, 151, 208) but bigger than those of h-BN (286, 185, 116). Furthermore, the dielectric function, refractive index, reflectivity, absorption coefficient, and energy loss spectrum are also calculated to investigate the mechanism underpinning the optical transitions in BC2N, revealing monolayer BC2N as a candidate window material.

  16. Electronic properties of interfaces produced by silicon wafer hydrophilic bonding

    Energy Technology Data Exchange (ETDEWEB)

    Trushin, Maxim

    2011-07-15

    The thesis presents the results of the investigations of electronic properties and defect states of dislocation networks (DNs) in silicon produced by wafers direct bonding technique. A new insight into the understanding of their very attractive properties was succeeded due to the usage of a new, recently developed silicon wafer direct bonding technique, allowing to create regular dislocation networks with predefined dislocation types and densities. Samples for the investigations were prepared by hydrophilic bonding of p-type Si (100) wafers with same small misorientation tilt angle ({proportional_to}0.5 ), but with four different twist misorientation angles Atw (being of < , 3 , 6 and 30 , respectively), thus giving rise to the different DN microstructure on every particular sample. The main experimental approach of this work was the measurements of current and capacitance of Schottky diodes prepared on the samples which contained the dislocation network at a depth that allowed one to realize all capabilities of different methods of space charge region spectroscopy (such as CV/IV, DLTS, ITS, etc.). The key tasks for the investigations were specified as the exploration of the DN-related gap states, their variations with gradually increasing twist angle Atw, investigation of the electrical field impact on the carrier emission from the dislocation-related states, as well as the establishing of the correlation between the electrical (DLTS), optical (photoluminescence PL) and structural (TEM) properties of DNs. The most important conclusions drawn from the experimental investigations and theoretical calculations can be formulated as follows: - DLTS measurements have revealed a great difference in the electronic structure of small-angle (SA) and large-angle (LA) bonded interfaces: dominating shallow level and a set of 6-7 deep levels were found in SA-samples with Atw of 1 and 3 , whereas the prevalent deep levels - in LA-samples with Atw of 6 and 30 . The critical twist

  17. Measurement of Sedimentary Interbed Hydraulic Properties and Their Hydrologic Influence near the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory

    Science.gov (United States)

    Perkins, Kim S.

    2003-01-01

    Disposal of wastewater to unlined infiltration ponds near the Idaho Nuclear Technology and Engineering Center (INTEC), formerly known as the Idaho Chemical Processing Plant, at the Idaho National Engineering and Environmental Laboratory (INEEL) has resulted in the formation of perched water bodies in the unsaturated zone (Cecil and others, 1991). The unsaturated zone at INEEL comprises numerous basalt flows interbedded with thinner layers of coarse- to fine-grained sediments and perched ground-water zones exist at various depths associated with massive basalts, basalt-flow contacts, sedimentary interbeds, and sediment-basalt contacts. Perched ground water is believed to result from large infiltration events such as seasonal flow in the Big Lost River and wastewater discharge to infiltration ponds. Evidence from a large-scale tracer experiment conducted in 1999 near the Radioactive Waste Management Complex (RWMC), approximately 13 km from the INTEC, indicates that rapid lateral flow of perched water in the unsaturated zone may be an important factor in contaminant transport at the INEEL (Nimmo and others, 2002b). Because sedimentary interbeds, and possibly baked-zone alterations at sediment-basalt contacts (Cecil and other, 1991) play an important role in the generation of perched water it is important to assess the hydraulic properties of these units.

  18. HYDRAULICS, LOUISA COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydraulic analysis for estimating flood stages for a flood insurance study. It...

  19. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  20. A Computational Model of Hydraulic Volume Displacement Drive

    Directory of Open Access Journals (Sweden)

    V. N. Pil'gunov

    2014-01-01

    Full Text Available The paper offers a computational model of industrial-purpose hydraulic drive with two hydraulic volume adjustable working chamber machines (pump and motor. Adjustable pump equipped with the pressure control unit can be run together with several adjustable hydraulic motors on the principle of three-phase hydraulic socket-outlet with high-pressure lines, drain, and drainage system. The paper considers the pressure-controlled hydrostatic transmission with hydraulic motor as an output link. It shows a possibility to create a saving hydraulic drive using a functional tie between the adjusting parameters of the pump and hydraulic motor through the pressure difference, torque, and angular rate of the hydraulic motor shaft rotation. The programmable logic controller can implement such tie. The Coulomb and viscous frictions are taken into consideration when developing a computational model of the hydraulic volume displacement drive. Discharge balance considers external and internal leakages in equivalent clearances of hydraulic machines, as well as compression loss volume caused by hydraulic fluid compressibility and deformation of pipe walls. To correct dynamic properties of hydraulic drive, the paper offers that in discharge balance are included the additional regulated external leakages in the open circuit of hydraulic drive and regulated internal leakages in the closed-loop circuit. Generalized differential equations having functional multipliers and multilinked nature have been obtained to describe the operation of hydraulic positioning and speed drive with two hydraulic volume adjustable working chamber machines. It is shown that a proposed computational model of hydraulic drive can be taken into consideration in development of LS («Load-Sensing» drives, in which the pumping pressure is tuned to the value required for the most loaded slave motor to overcome the load. Results attained can be used both in designing the industrial-purpose heavy

  1. Synthesis, electronic and optical properties of Si nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L.N.

    1996-09-01

    Silicon and silicon oxide nanostructures have been deposited on solid substrates, in an ultra high vacuum (UHV) chamber, by laser ablation or thermal vaporization. Laser ablation followed by substrate post annealing produced Si clusters with average size of a few nanometers, on highly oriented pyrolytic graphite (HOPG) surfaces. This technique, which is based on surface diffusion, is limited to the production of less than one layer of clusters on a given surface. The low coverage of Si clusters and the possibility of nonradiative decay of excitation in the Si cores to the HOPG substrates in these samples rendered them unsuitable for many optical measurements. Thermal vaporization of Si in an Ar buffer gas, on the contrary, yielded multilayer coverage of Si nanoclusters with a fairly narrow size distribution of about 2 nm, full width at half maximum (FWHM). As a result, further study was performed only on Si nanoclusters synthesized by thermal vaporization in a buffer gas. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) revealed that these nanoclusters were crystalline. However, during synthesis, if oxygen was the buffer gas, a network of amorphous Si oxide nanostructures (an-SiO{sub x}) with occasional embedded Si dots was formed. All samples showed strong infrared and/or visible photoluminescence (PL) with varying decay times from nanoseconds to microseconds depending on synthesis conditions. There were differences in PL spectra for hydrogen and oxygen passivated nc-Si, while many common PL properties between oxygen passivated nc-Si and an SiO{sub x} were observed. The observed experimental results can be best explained by a model involving absorption between quantum confined states in the Si cores and emission for which the decay times are very sensitive to surface and/or interface states.

  2. Electronic Structure and Optical Properties Of EuIn2P2

    KAUST Repository

    Singh, Nirpendra

    2011-10-25

    The electronic structures and, optical and magneto‐optical properties of a newly found Zintl compound EuIn2P2 have been investigated within the density‐functional theory using the highly precise full‐potential linear‐augmented‐plane‐wave method. Results of detailed investigation of the electronic structure and related properties are reported.

  3. Modeling and simulation of electronic control full hydraulic steering system for grain combine harvester%谷物联合收割机电控全液压转向系统建模与仿真

    Institute of Scientific and Technical Information of China (English)

    张成涛; 谭彧; 吴刚; 王书茂

    2013-01-01

    In recent years, combine harvester navigation system based on machine vision had important significance in improving the harvesting efficiency of combine harvester, reducing the labor intensity of the driver and so on. In order to realize the automatic steering control of the combine operation path, it is necessary to reconstruct the original hydraulic steering system of combine harvester. To analyze the steering performance of the modified electronically controlled hydraulic steering system for combine harvester in visual navigation system, mathematical models of the electronically controlled hydraulic steering system were established after introducing the structure of combine harvester visual navigation system. The system was mainly composed of combine harvester body, full hydraulic steering, steering transmission mechanism and hybrid stepping motor. In this paper, the mathematical models of the parts were established respectively. The steering model of combine harvester was firstly simplified to linear 2-DOF rear wheel steering vehicle model, and the basic handling dynamics model of combine harvester was established. Then, the dynamic mathematical model of simplified hydraulic steering system was given in the analysis of the fully hydraulic steering work principle for combine harvester. And then, the static model of the steering transmission mechanism was established according to its geometrical structures. Finally, the stepping motor model was simplified as an inertial system according to the step response performance, and its transfer function was given. The electronically controlled hydraulic steering system was simulated through the joint simulation method of each mathematical model by Simulink software. In order to verify the correctness of simulation models, the dynamic response characteristics of steering system was tested with the steering wheel angle step input of 90° on Xinjiang 2A combine harvester. In the real vehicle test, vehicle yaw rate was

  4. Smart magnetic markers use in hydraulic fracturing.

    Science.gov (United States)

    Zawadzki, Jarosław; Bogacki, Jan

    2016-11-01

    One of the main challenges and unknowns during shale gas exploration is to assess the range and efficiency of hydraulic fracturing. It is also essential to assess the distribution of proppant, which keeps the fracture pathways open. Solving these problems may considerably increase the efficiency of the shale gas extraction. Because of that, the idea of smart magnetic marker, which can be detected when added to fracturing fluid, has been considered for a long time. This study provides overview of the possibilities of magnetic marker application for shale gas extraction. The imaging methods using electromagnetic markers, are considered or developed in two directions. The first possibility is the markers' electromagnetic activity throughout the whole volume of the fracturing fluid. Thus, it can be assumed that the whole fracturing fluid is the marker. Among these type of hydraulic fracturing solutions, ferrofluid could be considered. The second possibility is marker, which is just one of many components of the fracturing fluid. In this case feedstock magnetic materials, ferrites and nanomaterials could be considered. Magnetic properties of magnetite could be too low and ferrofluids' or nanomaterials' price is unacceptably high. Because of that, ferrites, especially ZnMn ferrites seems to be the best material for magnetic marker. Because of the numerous applications in electronics, it is cheap and easily available, although the price is higher, then that of magnetite. The disadvantage of using ferrite, could be too small mechanical strength. It creates an essential need for combining magnetic marker with proppant into magnetic-ceramic composite.

  5. Deducing Electron Properties from Hard X-ray Observations

    Science.gov (United States)

    Kontar, E. P.; Brown, J. C.; Emslie, A. G.; Hajdas, W.; Holman, G. D.; Hurford, G. J.; Kašparová, J.; Mallik, P. C. V.; Massone, A. M.; McConnell, M. L.; Piana, M.; Prato, M.; Schmahl, E. J.; Suarez-Garcia, E.

    2011-09-01

    X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager ( RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.

  6. Electronic properties of Mn-phthalocyanine–C{sub 60} bulk heterojunctions: Combining photoemission and electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Friedrich [Center for Free-Electron Laser Science/DESY, Notkestraße 85, D-22607 Hamburg (Germany); Herzig, Melanie; Knupfer, Martin [FW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Lupulescu, Cosmin [Institute of Optics and Atomic Physics, TU Berlin, Straße des 17. Juni 135, D-10623 Berlin (Germany); Darlatt, Erik; Gottwald, Alexander [Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, D-10587 Berlin (Germany); Eberhardt, Wolfgang [Center for Free-Electron Laser Science/DESY, Notkestraße 85, D-22607 Hamburg (Germany); Institute of Optics and Atomic Physics, TU Berlin, Straße des 17. Juni 135, D-10623 Berlin (Germany)

    2015-11-14

    The electronic properties of co-evaporated mixtures (blends) of manganese phthalocyanine and the fullerene C{sub 60} (MnPc:C{sub 60}) have been studied as a function of the concentration of the two constituents using two supplementary electron spectroscopic methods, photoemission spectroscopy (PES) and electron energy-loss spectroscopy (EELS) in transmission. Our PES measurements provide a detailed picture of the electronic structure measured with different excitation energies as well as different mixing ratios between MnPc and C{sub 60}. Besides a relative energy shift, the occupied electronic states of the two materials remain essentially unchanged. The observed energy level alignment is different compared to that of the related CuPc:C{sub 60} bulk heterojunction. Moreover, the results from our EELS investigations show that, despite the rather small interface interaction, the MnPc related electronic excitation spectrum changes significantly by admixing C{sub 60} to MnPc thin films.

  7. Electronic properties of Mn-phthalocyanine-C60 bulk heterojunctions: Combining photoemission and electron energy-loss spectroscopy

    Science.gov (United States)

    Roth, Friedrich; Herzig, Melanie; Lupulescu, Cosmin; Darlatt, Erik; Gottwald, Alexander; Knupfer, Martin; Eberhardt, Wolfgang

    2015-11-01

    The electronic properties of co-evaporated mixtures (blends) of manganese phthalocyanine and the fullerene C60 (MnPc:C60) have been studied as a function of the concentration of the two constituents using two supplementary electron spectroscopic methods, photoemission spectroscopy (PES) and electron energy-loss spectroscopy (EELS) in transmission. Our PES measurements provide a detailed picture of the electronic structure measured with different excitation energies as well as different mixing ratios between MnPc and C60. Besides a relative energy shift, the occupied electronic states of the two materials remain essentially unchanged. The observed energy level alignment is different compared to that of the related CuPc:C60 bulk heterojunction. Moreover, the results from our EELS investigations show that, despite the rather small interface interaction, the MnPc related electronic excitation spectrum changes significantly by admixing C60 to MnPc thin films.

  8. Electronic and magnetic properties of UPdSn: the itinerant 5f electrons approach

    CERN Document Server

    Sandratskii, L M

    1997-01-01

    Density functional theory, modified to include spin-orbit coupling and an effective orbital field to simulate Hound's second rule, is applied to investigate the magnetic structure and electronic properties of the compound Upends. Our theoretical results are in overall good agreement with experiment. Thus both theory and experiment find the magnetic structure of Upends to be non collinear, the calculated magnetic U-moments being in very good agreement with the measurements. Also, the calculated density of states is found to simulate closely the photoemission spectrum and the very low experimental value of 5 mJ mol sup - sup 1 K sup - sup 2 for the specific heat gamma is reproduced reasonably well by the calculated value of 7.5 mJ mol sup - sup 1 K sup - sup 2. Furthermore, the interconnection of the magnetic structure with the crystal structure is investigated. Here theory and experiment agree concerning the planar non collinear antiferromagnetic configuration in the orthorhombic crystal structure and for the ...

  9. Calculation of molecular response properties with the second-order coupled perturbed electron propagator

    Energy Technology Data Exchange (ETDEWEB)

    Deleuze, M.S.; Pickup, B.T.; Wilton, D.J.

    2000-04-05

    The authors present the theory of the electron propagator perturbed by an external electric field and show how it can be used to calculate a variety of one-electron linear response properties that are accurate through second order in electron correlation. Some illustrative calculations are discussed.

  10. Transport Properties of III-N Hot Electron Transistors

    Science.gov (United States)

    Suntrup, Donald J., III

    Unipolar hot electron transistors (HETs) represent a tantalizing alternative to established bipolar transistor technologies. During device operation electrons are injected over a large emitter barrier into the base where they travel along the device axis with very high velocity. Upon arrival at the collector barrier, high-energy electrons pass over the barrier and contribute to collector current while low-energy electrons are quantum mechanically reflected back into the base. Designing the base with thickness equal to or less than the hot electron mean free path serves to minimize scattering events and thus enable quasi-ballistic operation. Large current gain is achieved by increasing the ratio of transmitted to reflected electrons. Although III-N HETs have undergone substantial development in recent years, there remain ample opportunities to improve key device metrics. In order to engineer improved device performance, a deeper understanding of the operative transport physics is needed. Fortunately, the HET provides fertile ground for studying several prominent electron transport phenomena. In this thesis we present results from several studies that use the III-N HET as both emitter and analyzer of hot electron momentum states. The first provides a measurement of the hot electron mean free path and the momentum relaxation rate in GaN; the second relies on a new technique called electron injection spectroscopy to investigate the effects of barrier height inhomogeneity in the emitter. To supplement our analysis we develop a comprehensive theory of coherent electron transport that allows us to model the transfer characteristics of complex heterojunctions. Such a model provides a theoretical touchstone with which to compare our experimental results. While these studies are of potential interest in their own right, we interpret the results with an eye toward improving next-generation device performance.

  11. Microscopic Electronic and Mechanical Properties of Ultra-Thin Layered Materials

    Science.gov (United States)

    2016-07-25

    AFRL-AFOSR-VA-TR-2016-0264 MICROSCOPIC ELECTRONIC AND MECHANICAL PROPERTIES OF ULTRA-THIN LAYERED MATERIALS Abhay Pasupathy THE TRUSTEES OF COLUMBIA...SUBTITLE 2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 01 Apr 2011 to 31 Mar 2016 5a. CONTRACT NUMBER MICROSCOPIC ELECTRONIC AND...0264 13. SUPPLEMENTARY NOTES 14. ABSTRACT The research goals of this project were to characterize the microscopic electronic and structural properties

  12. On the Convergence of the Electronic Structure Properties of the FCC Americium (001) Surface

    OpenAIRE

    Gao, Da; Ray, Asok K.

    2006-01-01

    Electronic and magnetic properties of the fcc Americium (001) surface have been investigated via full-potential all-electron density-functional electronic structure calculations at both scalar and fully relativistic levels. Effects of various theoretical approximations on the fcc Am (001) surface properties have been thoroughly examined. The ground state of fcc Am (001) surface is found to be anti-ferromagnetic with spin-orbit coupling included (AFM-SO). At the ground state, the magnetic mome...

  13. Search for new optical, structural and electronic properties: From photons to electrons

    Science.gov (United States)

    Zhang, Feng

    With the development of modern computers, scientific computation has been an important facet in designing materials with desired properties. This thesis is devoted to predicting novel optical, structural and electronic properties from first-principles computation, by solving the fundamental governing Maxwell equations for photons and Schrodinger equation for electrons. In Chapter 1, we introduce a method of gradient-based optimization that continuously deforms a periodic dielectric distribution to generate photonic structures that possess any desired figure of merit expressible in terms of the electromagnetic eigenmodes and eigen-frequencies. The gradient is readily available from a perturbation theory that describes the change of eigenmodes and eigen-frequencies to small changes in dielectric pattern. As an example, we generate 2D forbidden regions between specified bands at very low dielectric contrast and very large gaps at a fixed dielectric contrast corresponding to a real material GaAs. In Chapter 2, we demonstrate that well-defined pi bonds can also be formed in two prototypical crystalline Si structures: Schwarzite Si-168 and dilated diamond. The sp2-bonded Si-168 is thermodynamically preferred over diamond silicon at a modest negative pressure of -2.5 GPa. Ab-initio molecular dynamics simulations of Si-168 at 1000 K reveal significant thermal stability. Si-168 is metallic in density functional theory, but with distinct pi-like and pi*-like valence and conduction band complexes just above and below the Fermi energy. A bandgap buried in the valence band but close to the Fermi level can be accessed via hole doping in semiconducting Si144B24. A less-stable crystalline system with a silicon-silicon triple bond is also examined: a rare-gas intercalated open framework on a dilated diamond lattice. In Chapter 3, we propose that microstructured optical fibers could be an attractive candidate for the imposition of negative pressure on materials deposited inside them

  14. Electronic structure and equilibrium properties of hcp titanium and zirconium

    Indian Academy of Sciences (India)

    B P Panda

    2012-08-01

    The electronic structures of hexagonal-close-packed divalent titanium (3-d) and zirconium (4-d) transition metals are studied by using a non-local model potential method. From the present calculation of energy bands, Fermi energy, density of states and the electronic heat capacity of these two metals are determined and compared with the existing results in the literature.

  15. Deducing Electron Properties From Hard X-Ray Observations

    CERN Document Server

    Kontar, E P; Emslie, A G; Hajdas, W; Holman, G D; Hurford, G J; Kasparova, J; Mallik, P C V; Massone, A M; McConnell, M L; Piana, M; Prato, M; Schmahl, E J; Suarez-Garcia, E

    2011-01-01

    X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the \\textit{Reuven Ramaty High Energy Solar Spectroscopic Imager} ({\\em RHESSI}). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processe...

  16. Modifying the electronic properties of single-walled carbon nanotubes using designed surfactant peptides.

    Science.gov (United States)

    Samarajeewa, Dinushi R; Dieckmann, Gregg R; Nielsen, Steven O; Musselman, Inga H

    2012-08-07

    The electronic properties of carbon nanotubes can be altered significantly by modifying the nanotube surface. In this study, single-walled carbon nanotubes (SWCNTs) were functionalized noncovalently using designed surfactant peptides, and the resultant SWCNT electronic properties were investigated. These peptides have a common amino acid sequence of X(Valine)(5)(Lysine)(2), where X indicates an aromatic amino acid containing either an electron-donating or electron-withdrawing functional group (i.e. p-amino-phenylalanine or p-cyano-phenylalanine). Circular dichroism spectra showed that the surfactant peptides primarily have random coil structures in an aqueous medium, both alone and in the presence of SWCNTs, simplifying analysis of the peptide/SWCNT interaction. The ability of the surfactant peptides to disperse individual SWCNTs in solution was verified using atomic force microscopy and ultraviolet-visible-near-infrared spectroscopy. The electronic properties of the surfactant peptide/SWCNT composites were examined using the observed nanotube Raman tangential band shifts and the observed additional features near the Fermi level in the scanning tunneling spectroscopy dI/dV spectra. The results revealed that SWCNTs functionalized with surfactant peptides containing electron-donor or electron-acceptor functional groups showed n-doped or p-doped altered electronic properties, respectively. This work unveils a facile and versatile approach to modify the intrinsic electronic properties of SWCNTs using a simple peptide structure, which is easily adaptable to obtain peptide/SWCNT composites for the design of tunable nanoscale electronic devices.

  17. Anisotropic and heterogeneous mechanical properties of a stratified shale/limestone sequence at Nash Point, South Wales: A case study for hydraulic fracture propagation through a layered medium

    Science.gov (United States)

    Forbes Inskip, Nathaniel; Meredith, Philip; Gudmundsson, Agust

    2016-04-01

    While considerable effort has been expended on the study of fracture propagation in rocks in recent years, our understanding of how fractures propagate through layered sedimentary rocks with different mechanical and elastic properties remains poorly constrained. Yet this is a key issue controlling the propagation of both natural and anthropogenic hydraulic fractures in layered sequences. Here we report measurements of the contrasting mechanical and elastic properties of the Lower Lias at Nash Point, South Wales, which comprises an interbedded sequence of shale and limestone layers, and how those properties may influence fracture propagation. Elastic properties of both materials have been characterised via ultrasonic wave velocity measurements as a function of azimuth on samples cored both normal and parallel to bedding. The shale is highly anisotropic, with P-wave velocities varying from 2231 to 3890 m s-1, giving an anisotropy of ~55%. By contrast, the limestone is essentially isotropic, with a mean P-wave velocity of 5828 m s-1 and an anisotropy of ~2%. The dynamic Young's modulus of the shale, calculated from P- and S-wave velocity data, is also anisotropic with a value of 36 GPa parallel to bedding and 12 GPa normal to bedding. The modulus of the limestone is again isotropic with a value of 80 GPa. It follows that for a vertical fracture propagating (i.e. normal to bedding) the modulus contrast is 6.6. This is important because the contrast in elastic properties is a key factor in controlling whether fractures arrest, deflect, or propagate across interfaces between layers in a sequence. There are three principal mechanisms by which a fracture may deflect across or along an interface, namely: Cook-Gordon debonding, stress barrier, and elastic mismatch. Preliminary numerical modelling results (using a Finite Element Modelling software) of induced fractures at Nash Point suggest that all three are important. The results demonstrate a rotation of the maximum

  18. Electronic Structure and Electron-transport Properties of Peanut-shaped C_(60) Polymers with a Negative Gauss Curvature

    Institute of Scientific and Technical Information of China (English)

    J.Onoe; Y.Ochiai; T.Ito; S.Kimura; S.Ueda; Y.Noguchi; S.Ishii; K.Ohno; Y.Toda

    2007-01-01

    1 Results When a C60 film was irradiated with electron-beam (EB) with an incident energy of 3 kV, a peanut-shaped C60 polymer with metallic properties was formed[1], as shown in Fig.1. To elucidate the origin of the metallic properties of the peanut-shaped polymer, we examined the valence photoelectron spectra of the polymer using in situ high-resolution photoelectron spectroscopy and found that the electronic states of the polymer came across the Fermi level (EF)[2]. Interestingly, the spectral shape i...

  19. Power management in hydraulically actuated mobile equipment

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben Ole; Hansen, Michael Rygaard

    2008-01-01

    The focus of the current paper is on the control of hydraulic systems when utilizing the advances that electronic control may bring with regard to power management, prioritized flow sharing and anti-stall, arising from being able to control both pump, valves and engine electronically. A simple mo...

  20. Quasirelativism, narrowband properties and forced dynamics of electrons in solids

    CERN Document Server

    Pavlov, B S; Strepetov, A V

    2002-01-01

    The narrow-zone semiconductors, which are applied for creating the quantum networks, characterized by small effective masses of electrons at the Fermi level and consequently by high electron mobility in the lattice. The obviously soluble model, clarifying one of the possible mechanisms for the small effective masses origination, is constructed in the proposed work. The other mathematical model, constructed in this work, describes the possible mechanism for controlling the alternating quantum current by the one-dimensional lattice through a travelling wave

  1. Influence of oxygen impurities on the electronic properties of graphene nanoflakes

    Science.gov (United States)

    Al-Abboodi, Mohammed H.; Ajeel, Fouad N.; Khudhair, Alaa M.

    2017-04-01

    Controlled chemical doping with oxygen impurities is a promising approach for the electronic band engineering of graphene nanoflakes (GNFs). Based on the first-principles of the density functional theory (DFT) calculations, we investigated the effect of various consternations of substitutional impurities from oxygen atoms on the electronic properties of GNFs. Our results show that the electronic properties of GNFs do not only depend on the oxygen impurity concentrations, but also depend on the geometrical pattern of oxygen impurities in the GNFs. Additionally, we also found interesting electronic properties of GNFs structure, which significantly contribute to that oxygen dopants cause a decreased energy gap. So, our results suggest that substitutional impurities are the best viable option for enhancement of desired electronic properties of GNFs.

  2. Opto-Electronic Properties of Conjugated Molecular Wires

    NARCIS (Netherlands)

    Grozema, F.C.

    2003-01-01

    Conjugated polymers are of considerable current interest because of their semi-conducting and light-emitting properties. These properties, combined with their relatively low cost and good processability as compared to inorganic semiconductors, make them attractive candidates for application in plast

  3. Strain Effect on the Electronic and Optical Properties of CdSe Nanowires

    Science.gov (United States)

    Huan, Hao; Chen, Li; Ye, Xiang

    2017-03-01

    First-principles density functional theory (DFT) simulations were carried out to study the strain dependence on the electronic and optical properties of cadmium selenide (CdSe) nanowires (NWs). The band structures, effective masses of electron and holes, dielectric properties, and other optical properties (such as extinction coefficient, optical reflectivity, and absorption coefficient) were calculated under both compressive and tensile uniaxial strains. Size-dependence was also discussed by comparing results among CdSe wires with various diameters. Simulation results show that an interesting band-switch behavior occurs at the valence bands regardless of size. The cause and the consequences of such band-switch behavior were also studied. Further strain dependence on corresponding electronic and optical properties were examined as well. Our results provide insights to possible mechanical tuning via strain on the electronic and optical properties of CdSe NWs.

  4. A SIMPLE INFILTRATION METHOD FOR ESTIMATING SOIL HYDRAULIC PROPERTIES OF UNSATURATED SOILS Ⅱ. EXPERIMENTAL RESULTS%推求土壤水分运动参数的简单入渗法Ⅱ.实验验证

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To predict water flow, knowledge of soil hydraulic properties is required. Horizontal infiltration of water into soil columns can be observed in order to determine hydraulic properties. Required physical and mathematical analysis of the observation is based on an integral solution of Richards′equation. The parameters of the soil water characteristic curve are estimated by the observed characteristic length of wetted zone and sorptivity. Unsaturated hydraulic conductivity is estimated from the parameters determined in the soil water characteristic curve and the measurement of saturated hydraulic conductivity. Three soils ranging from sandy loam to clay loam are included in this research. Soil water charactehstic curves for the three soils estimaed by the infiltration method are in good agreement with measured soil water characteristic curves. Unsaturated hydraulic conductivity, estimated by the infiltration method for the sandy loam, also compares well with measured values. To further check the method, water content of the three soils are calculated through the numeric method and the integral method based on the calculated hydraulic parameters. The calculation results indicate that the method is accurate.%预报土壤中水分流动需要的土壤导水特性可通过观测水平土柱的入渗过程来确定,这一观测过程的分析是基于对Richards方程求积分解。土壤水分特征曲线中的参数由观测的水平土柱的特征湿润长度和吸力来确定,非饱和土壤导水率由已确定的特征曲线中的参数和测定的饱和导水率导出。供试土壤有三种,它们的质地从砂壤到粘壤。由这种方法所确定的这三种土壤的水分特征曲线与实测的特征曲线符合良好,所确定的砂壤的非饱和导水率与实测值的比较令人满意。利用数值法和积分法分别计算了土壤含水量剖面,计算结果吻合良好,说明了这种方法的合理性。

  5. Estimating Hydraulic Properties of the Floridan Aquifer System by Analysis of Earth-Tide, Ocean-Tide, and Barometric Effects, Collier and Hendry Counties, Florida

    Science.gov (United States)

    Merritt, Michael L.

    2004-01-01

    Aquifers are subjected to mechanical stresses from natural, non-anthropogenic, processes such as pressure loading or mechanical forcing of the aquifer by ocean tides, earth tides, and pressure fluctuations in the atmosphere. The resulting head fluctuations are evident even in deep confined aquifers. The present study was conducted for the purpose of reviewing the research that has been done on the use of these phenomena for estimating the values of aquifer properties, and determining which of the analytical techniques might be useful for estimating hydraulic properties in the dissolved-carbonate hydrologic environment of southern Florida. Fifteen techniques are discussed in this report, of which four were applied. An analytical solution for head oscillations in a well near enough to the ocean to be influenced by ocean tides was applied to data from monitor zones in a well near Naples, Florida. The solution assumes a completely non-leaky confining unit of infinite extent. Resulting values of transmissivity are in general agreement with the results of aquifer performance tests performed by the South Florida Water Management District. There seems to be an inconsistency between results of the amplitude ratio analysis and independent estimates of loading efficiency. A more general analytical solution that takes leakage through the confining layer into account yielded estimates that were lower than those obtained using the non-leaky method, and closer to the South Florida Water Management District estimates. A numerical model with a cross-sectional grid design was applied to explore additional aspects of the problem. A relation between specific storage and the head oscillation observed in a well provided estimates of specific storage that were considered reasonable. Porosity estimates based on the specific storage estimates were consistent with values obtained from measurements on core samples. Methods are described for determining aquifer diffusivity by comparing the

  6. Quantum mechanical computation of structural, electronic, and thermoelectric properties of AgSbSe2

    Directory of Open Access Journals (Sweden)

    M Salimi

    2015-07-01

    Full Text Available In this work, density functional calculations and Boltzmann semiclassical theory of transport are used to investigate structural, electronic, and thermoelectric properties of AgSbSe2 crystal. According to the published experimental measurements, five more likely structures of this compound are considered and their structural and electronic properties are calculated and compared together. Then, thermoelectric properties (electrical conductivity, electronic contribution to the thermal conductivity, power factor, and Seebeck coefficient of three more stable structures are investigated in the constant relaxation time approximation. Finally, the calculated temperature dependence of Seebeck coefficient is compared with the corresponding experimental measurements of others.

  7. Integrating hydraulic equivalent sections into a hydraulic geometry study

    Science.gov (United States)

    Jia, Yanhong; Yi, Yujun; Li, Zhiwei; Wang, Zhaoyin; Zheng, Xiangmin

    2017-09-01

    Hydraulic geometry (HG) is an important geomorphic concept that has played an indispensable role in hydrological analyses, physical studies of streams, ecosystem and aquatic habitat studies, and sedimentology research. More than 60 years after Leopold and Maddock (1953) first introduced the concept of HG, researchers have still not uncovered the physical principles underlying HG behavior. One impediment is the complexity of the natural river cross section. The current study presents a new way to simplify the cross section, namely, the hydraulic equivalent section, which is generalized from the cross section in the ;gradually varied flow of an alluvial river; (GVFAR) and features hydrodynamic properties and bed-building laws similar to those of the GVFAR. Energy balance was used to derive the stage Z-discharge Q relationship in the GVFAR. The GVFAR in the Songhua River and the Yangtze River were selected as examples. The data, including measured discharge, river width, water stage, water depth, wet area, and cross section, were collected from the hydrological yearbooks of typical hydrological stations on the Songhua River and the Yangtze River from 1955 to 1987. The relationships between stage Z-discharge Q and cross-sectional area A-stage Z at various stations were analyzed, and ;at-a-station hydraulic geometry; (AHG) relationships were obtained in power-law forms. Based on derived results and observational data analysis, the Z-Q and Z-A relationships of AHG were similar to rectangular weir flows, thus the cross section of the GVFAR was generalized as a compound rectangular, hydraulic equivalent cross section. As to bed-building characteristics, the bankfull discharge method and the stage-discharge-relation method were used to calculate the dominant variables of the alluvial river. This hydraulic equivalent section has the same Z-Q relation, Z-A relation, dominant discharge, dominant river width, and dominant water depth as the cross section in the GVFAR. With the

  8. Electronic transport properties of graphene doped by gallium

    Science.gov (United States)

    Mach, J.; Procházka, P.; Bartošík, M.; Nezval, D.; Piastek, J.; Hulva, J.; Švarc, V.; Konečný, M.; Kormoš, L.; Šikola, T.

    2017-10-01

    In this work we present the effect of low dose gallium (Ga) deposition (graphene grown by chemical vapor deposition. In situ graphene transport measurements performed with a graphene field-effect transistor structure show that at low Ga coverages a graphene layer tends to be strongly n-doped with an efficiency of 0.64 electrons per one Ga atom, while the further deposition and Ga cluster formation results in removing electrons from graphene (less n-doping). The experimental results are supported by the density functional theory calculations and explained as a consequence of distinct interaction between graphene and Ga atoms in case of individual atoms, layers, or clusters.

  9. The electronic properties of microbial nanowires: An STM investigation

    Science.gov (United States)

    Veazey, Josh; Steidl, Becky; Reguera, Gemma; Tessmer, Stuart

    2009-03-01

    Geobacter species of bacteria present the prospect of an interesting physical system through the expression of pili that act as electrically conductive nanowires. These nanowires serve the biological role of transporting metabolically generated electrons outside the cell body to electron acceptors in the organism's native environment. We have performed scanning tunneling microscopy and spectroscopy on Geobacter sulferreducens in an effort to elucidate the mechanism of conductivity. Understanding this system may lead to the enhancement in the effectiveness of Geobacter species' roles in microbial fuel cells and the bioremediation of hazardous waste, such as uranium and petroleum.

  10. Electronic and ionic properties of TiO2 nanotubes

    OpenAIRE

    Ghicov, Andrei

    2009-01-01

    More and more, the well studied and understood properties of a bulk material are combined with the new properties obtained from its nanostructured counterpart, which in many cases makes possible improvement in applications and devices performance. A very successful example is titanium dioxide – where, by forming nanostructured films with a relative low costs and a high chemical stability, it was possible to apply it in solar energy conversion, Li-ion storage, liquid/gaseous photo-catalysis an...

  11. Physical characterization of functionalized spider silk: electronic and sensing properties

    OpenAIRE

    Eden Steven, Jin Gyu Park, Anant Paravastu, Elsa Branco Lopes, James S Brooks, Ongi Englander, Theo Siegrist, Papatya Kaner and Rufina G Alamo

    2011-01-01

    This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of β-sheet (crystalline) and amorphous (helical) structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this invest...

  12. Polymers for electricity and electronics materials, properties, and applications

    CERN Document Server

    Drobny, Jiri George

    2011-01-01

    The comprehensive, practical book that explores the principles, properties, and applications of electrical polymers The electrical properties of polymers present almost limitless possibilities for industrial research and development, and this book provides an in-depth look at these remarkable molecules. In addition to traditional applications in insulating materials, wires, and cables, electrical polymers are increasingly being used in a range of emerging technologies. Presenting a comprehensive overview of how electrical polymers function and how they can be applied in the elec

  13. Noncovalent Intermolecular Interactions in Organic Electronic Materials: Implications for the Molecular Packing vs Electronic Properties of Acenes

    KAUST Repository

    Sutton, Christopher

    2015-10-30

    Noncovalent intermolecular interactions, which can be tuned through the toolbox of synthetic chemistry, determine not only the molecular packing but also the resulting electronic, optical, and mechanical properties of materials derived from π-conjugated molecules, oligomers, and polymers. Here, we provide an overview of the theoretical underpinnings of noncovalent intermolecular interactions and briefly discuss the computational chemistry approaches used to understand the magnitude of these interactions. These methodologies are then exploited to illustrate how noncovalent intermolecular interactions impact important electronic properties-such as the electronic coupling between adjacent molecules, a key parameter for charge-carrier transport-through a comparison between the prototype organic semiconductor pentacene with a series of N-substituted heteropentacenes. Incorporating an understanding of these interactions into the design of organic semiconductors can assist in developing novel materials systems from this fascinating molecular class. © 2015 American Chemical Society.

  14. Innovation and development of exhibition electronic-commerce based on the properties of electronic-commerce

    Science.gov (United States)

    Zhang, Jiankang

    2017-06-01

    There are two roadmaps of accomplishing exhibition electronic-commerce innovation and development. The first roadmap is that the exhibition organizers should seek mutual benefit cooperation with professional electronic-commerce platform of correspondent area with exhibition projects, thus help exhibitors realize their market object. The second roadmap is to promote innovation and development of electronic-commerce (Business-to-Customer) between both exhibitors and purchasers. Exhibition electronic-commerce must focus on innovative development in the following functions: market research and information service; advertising and business negotiation; online trading and online payment. With the aid of electronic-commerce, exhibition enterprise could have distinctive strengths such as transactions with virtualization, transparency, high efficiency and low cost, enhancing market link during enterprise research and development, promoting the efficiency of internal team collaboration and the individuation of external service, and optimizing resource allocation.

  15. Electronic and chemical properties of graphene-based structures:

    DEFF Research Database (Denmark)

    Vanin, Marco

    In the present thesis several aspects of graphene-based structures have been investigated using density functional theory calculations to solve the electronic structure problem. A review of the implementation of a localized basis-set within the projector augmented wave method - the way of describ...... are attractive candidates although issues regarding the poisoning of the active site remain to be addressed....

  16. Structural and electronic properties of perylene from first principles calculations.

    Science.gov (United States)

    Fedorov, I A; Zhuravlev, Y N; Berveno, V P

    2013-03-07

    The electronic structure of crystalline perylene has been investigated within the framework of density functional theory including van der Waals interactions. The computations of the lattice parameters and cohesive energy have good agreement with experimental values. We have also calculated the binding distance and energy of perylene dimers, using different schemes, which include van der Waals interactions.

  17. Photophysical Properties on Functional Pi-Electronic Molecular Systems

    Science.gov (United States)

    2012-08-01

    electronic delocalization associated chemical stability and structural distortion. As a rare example, Latos-Grażyński et al. reported a cationic palladium ...porphyrins. Interestingly, the yields of 8 and 9 were temperature dependent; 33 and 17% with the recovery of 7 (45%) in the reaction at 0 °C for 3 h

  18. Ab-initio investigations of the electronic properties of bulk wurtzite Beryllia and its derived nanofilms

    KAUST Repository

    Goumri-Said, Souraya

    2010-08-01

    In this Letter we investigate the electronic properties of the bulk and the nanofilm BeO in wurtzite structure. We performed a first-principles pseudo-potential method within the generalized gradient approximation. We will give more importance to the changes in band structure and density of states between the bulk structure and its derived nanofilms. The bonding characterization will be investigated via the analysis Mulliken population and charge density contours. It is found that the nanofilm retains the same properties as its bulk structure with slight changes in electronic properties and band structure which may offer some unusual transport properties. © 2010 Elsevier B.V. All rights reserved.

  19. Kinetic theory of transport processes in partially ionized reactive plasma, II: Electron transport properties

    Science.gov (United States)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-11-01

    The previously obtained in (Zhdanov and Stepanenko, 2016) general transport equations for partially ionized reactive plasma are employed for analysis of electron transport properties in molecular and atomic plasmas. We account for both elastic and inelastic interaction channels of electrons with atoms and molecules of plasma and also the processes of electron impact ionization of neutral particles and three-body ion-electron recombination. The system of scalar transport equations for electrons is discussed and the expressions for non-equilibrium corrections to electron ionization and recombination rates and the diagonal part of the electron pressure tensor are derived. Special attention is paid to analysis of electron energy relaxation during collisions with plasma particles having internal degrees of freedom and the expression for the electron coefficient of inelastic energy losses is deduced. We also derive the expressions for electron vector and tensorial transport fluxes and the corresponding transport coefficients for partially ionized reactive plasma, which represent a generalization of the well-known results obtained by Devoto (1967). The results of numerical evaluation of contribution from electron inelastic collisions with neutral particles to electron transport properties are presented for a series of molecular and atomic gases.

  20. State-to-state kinetics and transport properties of electronically excited N and O atoms

    Science.gov (United States)

    Istomin, V. A.; Kustova, E. V.

    2016-11-01

    A theoretical model of transport properties in electronically excited atomic gases in the state-to-state approach is developed. Different models for the collision diameters of atoms in excited states are discussed, and it is shown that the Slater-like models can be applied for the state-resolved transport coefficient calculations. The influence of collision diameters of N and O atoms with electronic degrees of freedom on the transport properties is evaluated. Different distributions on the electronic energy are considered for the calculation of transport coefficients. For the Boltzmann-like distributions at temperatures greater than 15000 K, an important effect of electronic excitation on the thermal conductivity and viscosity coefficients is found; the coefficients decrease significantly when many electronic states are taken into account. It is shown that under hypersonic reentry conditions the impact of collision diameters on the transport properties is not really important since the populations of high levels behind the shock waves are low.

  1. Electronic properties of amino acid side chains: quantum mechanics calculation of substituent effects

    Directory of Open Access Journals (Sweden)

    Dwyer Donard S

    2005-08-01

    Full Text Available Abstract Background Electronic properties of amino acid side chains such as inductive and field effects have not been characterized in any detail. Quantum mechanics (QM calculations and fundamental equations that account for substituent effects may provide insight into these important properties. PM3 analysis of electron distribution and polarizability was used to derive quantitative scales that describe steric factors, inductive effects, resonance effects, and field effects of amino acid side chains. Results These studies revealed that: (1 different semiempirical QM methods yield similar results for the electronic effects of side chain groups, (2 polarizability, which reflects molecular deformability, represents steric factors in electronic terms, and (3 inductive effects contribute to the propensity of an amino acid for α-helices. Conclusion The data provide initial characterization of the substituent effects of amino acid side chains and suggest that these properties affect electron density along the peptide backbone.

  2. Electron transport properties in InAs four-terminal ballistic junctions under weak magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, M.; Fujiwara, K.; Amano, N.; Maemoto, T.; Sasa, S.; Inoue, M. [Nanomaterials Microdevices Research Center, Osaka Institute of Technology (JP)u, Osaka 535-8585 (Japan)

    2009-06-15

    We report on the electron transport properties based on ballistic electrons under magnetic fields in four-terminal ballistic junctions fabricated on an InAs/AlGaSb heterostructure. The four-terminal junction structure is composed of two longitudinal stems with two narrow wires slanted with 30 degree from the perpendicular axis. The electron focusing peak was obtained with the bend resistance measurement. Then it was investigated the nonlinear electron transport property of potential difference between longitudinal stems due to ballistic electrons with applying direct current from narrow wires. Observed nonlinearity showed clear rectification effects which have negative polarity regardless of input voltage polarity. Although this nonlinearity was qualitatively changed due to the Lorentz force under magnetic fields, the degradation of ballistic effects on nonlinear properties were observed when the current increased to higher strength. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Silicon-germanium (Sige) nanostructures production, properties and applications in electronics

    CERN Document Server

    Usami, N

    2011-01-01

    Nanostructured silicon-germanium (SiGe) provides the prospect of novel and enhanced electronic device performance. This book reviews the materials science and technology of SiGe nanostructures, including crystal growth, fabrication of nanostructures, material properties and applications in electronics.$bNanostructured silicon-germanium (SiGe) opens up the prospects of novel and enhanced electronic device performance, especially for semiconductor devices. Silicon-germanium (SiGe) nanostructures reviews the materials science of nanostructures and their properties and applications in different electronic devices. The introductory part one covers the structural properties of SiGe nanostructures, with a further chapter discussing electronic band structures of SiGe alloys. Part two concentrates on the formation of SiGe nanostructures, with chapters on different methods of crystal growth such as molecular beam epitaxy and chemical vapour deposition. This part also includes chapters covering strain engineering and mo...

  4. Surface electronic and structural properties of nanostructured titanium oxide grown by pulsed laser deposition

    NARCIS (Netherlands)

    Fusi, M.; Maccallini, E.; Caruso, T.; Casari, C. S.; Bassi, A. Li; Bottani, C. E.; Rudolf, P.; Prince, K. C.; Agostino, R. G.

    2011-01-01

    Titanium oxide nanostructured thin films synthesized by pulsed laser deposition (PLD) were here characterized with a multi-technique approach to investigate the relation between surface electronic, structural and morphological properties. Depending on the growth parameters, these films present chara

  5. Unusual structural and electronic properties of porous silicene and germanene: insights from first-principles calculations

    National Research Council Canada - National Science Library

    Ding, Yi; Wang, Yanli

    2015-01-01

    Using first-principles calculations, we investigate the geometric structures and electronic properties of porous silicene and germanene nanosheets, which are the Si and Ge analogues of α−graphyne...

  6. Proton disorder in cubic ice: Effect on the electronic and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Garbuio, Viviana; Pulci, Olivia [MIFP, ETSF, Physics Department of Tor Vergata University, Via della Ricerca Scientifica 1, I-00133 Rome (Italy); Cascella, Michele [Department of Chemistry and Centre for Theoretical and Computational Chemistry (CTCC), University of Oslo, Postboks 1033, Blindern, N-0315 Oslo (Norway); Kupchak, Igor [MIFP, V. Lashkarev Institute of Semiconductor Physics of National Academy of Sciences of Ukraine, pr. Nauki 45, UA-03680 Kiev (Ukraine); Seitsonen, Ari Paavo [Institut für Chemie, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Département de Chimie, École Normale Supérieure, 24 rue Lhomond, F-75005 Paris (France)

    2015-08-28

    The proton disorder in ice has a key role in several properties such as the growth mode, thermodynamical properties, and ferroelectricity. While structural phase transitions from proton disordered to proton ordered ices have been extensively studied, much less is known about their electronic and optical properties. Here, we present ab initio many body perturbation theory-based calculations of the electronic and optical properties of cubic ice at different levels of proton disorder. We compare our results with those from liquid water, that acts as an example of a fully (proton- and oxygen-)disordered system. We find that by increasing the proton disorder, a shrinking of the electronic gap occurs in ice, and it is smallest in the liquid water. Simultaneously, the excitonic binding energy decreases, so that the final optical gaps result to be almost independent on the degree of proton disorder. We explain these findings as an interplay between the local dipolar disorder and the electronic correlation.

  7. Electron transport and electrocatalytic properties of MWCNT/nickel nanocomposites: hydrazine and diethylaminoethanethiol as analytical probes

    CSIR Research Space (South Africa)

    Adekunle, AS

    2010-06-01

    Full Text Available This work describes the electron transport and electrocatalytic properties of chemically-synthesized nickel (Ni) and nickel oxide (NiO) nanoparticles supported on multi-walled carbon nanotubes (MWCNT) platforms. Successful modification...

  8. Electronic, mechanical and optical properties of atomically thin tow-dimensional crystals

    Directory of Open Access Journals (Sweden)

    A. Castellanos-Gómez

    2012-03-01

    Full Text Available This work is devoted to the study of electronic and mechanical properties of crystalline atomically thin two-dimensional sheets, such as graphene, MoS2, NbSe2 and mica by scanning probe microscopy.

  9. Electronic and magnetic properties of Fe and Mn doped two dimensional hexagonal germanium sheets

    Energy Technology Data Exchange (ETDEWEB)

    Soni, Himadri R., E-mail: himadri.soni@gmail.com; Jha, Prafulla K., E-mail: himadri.soni@gmail.com [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar-364001 (India)

    2014-04-24

    Using first principles density functional theory calculations, the present paper reports systematic total energy calculations of the electronic properties such as density of states and magnetic moment of pristine and iron and manganese doped two dimensional hexagonal germanium sheets.

  10. THE ROLE OF ELECTRON CONFIGURATION ON PROPERTIES IN DILUTE SOLID SOLUTION ALLOYS

    Science.gov (United States)

    THE ROLE OF ELECTRON CONFIGURATION ON THE PROPERTIES OF DILUTE SOLID SOLUTION ALLOYS IS DISCUSSED IN TERMS OF THE EFFECT OF DILUTE IMPURITIES ON THE RECRYSTALLIZATION CHARACTERISTICS OF PURE METALLIC ELEMENTS.

  11. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  12. Determination of electronic properties of nanostructures using reflection electron energy loss spectroscopy: Nano-metalized polymer as case study

    Energy Technology Data Exchange (ETDEWEB)

    Deris, Jamileh [Department of Physics, Yasouj University, Yasouj 75918-74831 (Iran, Islamic Republic of); Hajati, Shaaker, E-mail: Hajati@mail.yu.ac.ir [Department of Physics, Yasouj University, Yasouj 75918-74831 (Iran, Islamic Republic of); Tougaard, Sven [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M (Denmark); Zaporojtchenko, Vladimir [Lehrstuhl fur Materialverbunde, Technische Fakultat der CAU, Kaiserstr 2, D-24143 Kiel (Germany)

    2016-07-30

    Highlights: • Application of reflection electron energy loss spectroscopy. • Determination of electron inelastic cross section of Nano-metalized Polymer. • Determination of energy loss function of Nano-metalized Polymer. • Determination of electron inelastic mean free path of Nano-metalized Polymer. • Determination of surface excitation parameters of Nano-metalized Polymer. - Abstract: In this work, Au was deposited with nominal effective thickness of 0.8 nm on polystyrene (PS) at room temperature. According to previous study, using XPS peak shape analysis [S. Hajati, V. Zaporojtchenko, F. Faupel, S. Tougaard, Surf. Sci. 601 (2007) 3261–3267], Au nanoparticles (Au-NPs) of sizes 5.5 nm were formed corresponding to such effective thickness (0.8 nm). Then the sample was annealed to 200 °C, which is far above the glass transition of PS. At this temperature, the Au-NPs were diffused within the depth 0.5 nm–6.5 nm as found using nondestructive XPS peak shape analysis. Electrons with primary energy 500 eV were used because the electronic properties will then be probed in utmost surface (∼1 IMFP range of depths that is 1.8 nm for PS). By using QUEELS software, theoretical and experimental electron inelastic cross section, energy loss function, electron inelastic mean free path and surface excitation parameters were obtained for the sample. The information obtained here, does not rely on any previously known information on the sample. This means that the method, applied here, is suitable for the determination of the electronic properties of new and unknown composite nanostructures.

  13. Structural, energetic and electronic properties of intercalated boron–nitride nanotubes

    Indian Academy of Sciences (India)

    S Rada; M Rada; E Culea

    2013-04-01

    The effects of chirality and the intercalation of transitional metal atoms inside single walled BN nanotubes on structural, energetic and electronic properties have been considered in this paper. The thermodynamic stability of BN nanotubes can be improved by the intercalation of cobalt or nickel. BN nanotubes can behave like an ideal non-interacting hosts for these one-dimensional chains of metal atoms. Their electronic properties are insignificantly modified.

  14. Effect of Carbon Doping on the Electronic Structure and Elastic Properties of Boron Suboxide

    Science.gov (United States)

    2015-06-01

    of Boron Suboxide by Amol B Rahane, Jennifer S Dunn, and Vijay Kumar Approved for public release; distribution unlimited...Laboratory Effect of Carbon Doping on the Electronic Structure and Elastic Properties of Boron Suboxide by Amol B Rahane and Vijay Kumar Dr...SUBTITLE Effect of Carbon Doping on the Electronic Structure and Elastic Properties of Boron Suboxide 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  15. A comparative computational study of the electronic properties of planar and buckled silicene

    OpenAIRE

    Behera, Harihar; Mukhopadhyay, Gautam

    2012-01-01

    Using full potential density functional calculations within local density approximation (LDA), we report our investigation of the structural electronic properties of silicene (the graphene analogue of silicon), the strips of which has been synthesized recently on Ag(110) and Ag(100) surfaces. An assumed planar and an optimized buckled two dimensional (2D) hexagonal structures have been considered for comparisons of their electronic properties. Planar silicene shows a gapless band structure an...

  16. Electronic Unit Pump Test Bench Development and Pump Properties Research

    Institute of Scientific and Technical Information of China (English)

    LIU Bo-lan; HUANG Ying; ZHANG Fu-jun; ZHAO Chang-lu

    2006-01-01

    A unit pump test bench is developed on an in-line pump test platform. The bench is composed of pump adapting assembly, fuel supply subsystem, lubricating subsystem and a control unit. A crank angle domain injection control method is given out and the control accuracy can be 0.1° crank degree. The bench can test bot h mechanical unit pump and electronic unit pump. A test model-PLD12 electronic unit pump is tested. Full pump delivery map and some influence factors test is d one. Experimental results show that the injection quantity is linear with the de livery angle. The quantity change rate is 15% when fuel temperature increases 30℃. The delivery quantity per cycle increases 30mg at 28V drive voltage. T he average delivery difference for two same type pumps is 5%. Test results show that the bench can be used for unit pump verification.

  17. High pressure phase determination and electronic properties of lithiumamidoborane

    Science.gov (United States)

    Ramzan, M.; Hussain, T.; Ahuja, R.

    2012-09-01

    In this study we report on the high pressure phase of the promising hydrogen storage material lithiumamidoborane (LiNH2BH3), on the basis of density functional theory calculations with generalized gradient approximation. We take the five possible candidate structures, Pbca, Pbcn, Pcca, Pnma, and Pnnm for the high pressure study of LiNH2BH3. The corresponding structures are relaxed with respect to fractional atomic coordinates and cell parameters, with the use of fully self-consistent ab initio electronic structure calculations to get the equilibrium parameters and total energies. Then we compare the energies of these phases and find that Pbcn is the most favorable phase at ≈100 GPa. Then we calculate the structural parameters of this phase. Finally, we calculate the density of states, Bader charge analysis, and corresponding electron density of this phase.

  18. Electronic and Magnetic Properties of Ultrathin Au/Pt Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Teng, X.; Feygenson, M; Wang, Q; He, J; Du, W; Frenkel, A; Han, W; Aronson, M

    2009-01-01

    We have reported the synthesis of Au25Pt75 and Au48Pt52 alloyed ultrathin nanowires with average widths of less than 3 nm via a wet chemistry approach at room temperature. Using a combination of techniques, including scanning transmission electron microscopy equipped with X-ray energy dispersive spectroscopy, ultraviolet-visible spectroscopy, and X-ray absorption near-edge structure and extended X-ray absorption fine structure spectroscopies, we identified the stoichiometry-dependent heterogeneous crystalline structures, as well as electronic structures with respect to the charge transfer between Pt and Au within both nanowires. In particular, we observed d-charge depletion at the Au site and the d-charge gain at the Pt site in Au48Pt52 nanowires, which accounted for its ferromagnetic magnetic behavior, in contrast to the paramagnetism and diamagnetism appearing respectively in bulk Pt and Au.

  19. Electronic and magnetic properties of ultrathin Au/Pt nanowires.

    Science.gov (United States)

    Teng, Xiaowei; Feygenson, Mikhail; Wang, Qi; He, Jiaqing; Du, Wenxin; Frenkel, Anatoly I; Han, Weiqiang; Aronson, Meigan

    2009-09-01

    We have reported the synthesis of Au(25)Pt(75) and Au(48)Pt(52) alloyed ultrathin nanowires with average widths of less than 3 nm via a wet chemistry approach at room temperature. Using a combination of techniques, including scanning transmission electron microscopy equipped with X-ray energy dispersive spectroscopy, ultraviolet-visible spectroscopy, and X-ray absorption near-edge structure and extended X-ray absorption fine structure spectroscopies, we identified the stoichiometry-dependent heterogeneous crystalline structures, as well as electronic structures with respect to the charge transfer between Pt and Au within both nanowires. In particular, we observed d-charge depletion at the Au site and the d-charge gain at the Pt site in Au(48)Pt(52) nanowires, which accounted for its ferromagnetic magnetic behavior, in contrast to the paramagnetism and diamagnetism appearing respectively in bulk Pt and Au.

  20. Interplay of electronic and geometry shell effects in properties of neutral and charged Sr clusters

    DEFF Research Database (Denmark)

    Lyalin, Andrey; Solov'yov, Ilia; Solov'yov, Andrey V.

    2007-01-01

    that the size evolution of structural and electronic properties of strontium clusters is governed by an interplay of the electronic and geometry shell closures. Influence of the electronic shell effects on structural rearrangements can lead to violation of the icosahedral growth motif of strontium clusters......The optimized structure and electronic properties of neutral, singly, and doubly charged strontium clusters have been investigated using ab initio theoretical methods based on density-functional theory. We have systematically calculated the optimized geometries of neutral, singly, and doubly...... charged strontium clusters consisting of up to 14 atoms, average bonding distances, electronic shell closures, binding energies per atom, the gap between the highest occupied and the lowest unoccupied molecular orbitals, and spectra of the density of electronic states (DOS). It is demonstrated...

  1. Nonclassical properties of electronic states of aperiodic chains in a homogeneous electric field

    Science.gov (United States)

    Spisak, B. J.; Wołoszyn, M.

    2009-07-01

    The electronic energy levels of one-dimensional aperiodic systems driven by a homogeneous electric field are studied by means of a phase-space description based on the Wigner distribution function. The formulation provides physical insight into the quantum nature of the electronic states for the aperiodic systems generated by the Fibonacci and Thue-Morse sequences. The nonclassical parameter for electronic states is studied as a function of the magnitude of homogeneous electric field to achieve the main result of this work, which is to prove that the nonclassical properties of the electronic states in the aperiodic systems determine the transition probability between electronic states in the region of anticrossings. The localization properties of electronic states and the uncertainty product of momentum and position variables are also calculated as functions of the electric field.

  2. Vibrational properties of water under confinement: Electronic effects

    Energy Technology Data Exchange (ETDEWEB)

    Donadio, D; Cicero, G; Schwegler, E; Sharma, M; Galli, G

    2008-10-17

    We compare calculations of infrared (IR) spectra of water confined between non polar surfaces, carried out using ab initio and classical simulations. Ab-initio results show important differences between IR spectra and vibrational density of state, unlike classical simulations. These differences originate from electronic charge fluctuations at the interface, whose signature is present in IR spectra but not in the density of states. The implications of our findings for the interpretation of experimental data are discussed.

  3. Local electronic properties of graphene flakes on noble metal surfaces

    OpenAIRE

    Leicht, Philipp

    2015-01-01

    This thesis examines possible routes for the preparation of graphene nanostructures on metal substrates and performs structural and electronic characterizations using scanning tunneling microcopy and spectroscopy. Investigations of graphene nanostructures necessitate the use of a suitable graphene-substrate combination, which allows for a controlled in situ preparation of small and well-shaped graphene nanostructures. The choice of a graphene-substrate combination with weak interaction in or...

  4. Beaming Properties of Energetic Electrons and Photons Inside Thunderstorms

    Science.gov (United States)

    Cramer, Eric; Briggs, Michael

    2017-01-01

    It has been well established that thunderstorm environments allow relativistic runaway electron avalanches (RREAs) to develop under the influence of strong electric fields. This process can be seeded by external sources, such as cosmic-ray secondary electrons. The resulting bremsstrahlung x-rays and gamma rays that are emitted, propagate through the atmosphere and into space where they are detected by orbiting spacecraft, e.g. NASA Fermi. These high energy radiation blasts are known as Terrestrial Gamma-ray Flashes (TGFs). Using a Monte Carlo particle simulation, we show beaming characteristics of these electrons and photons such as the angular distribution, energy spectra, and the radial distribution from the thunderstorm source to the observation point of orbiting spacecraft. These features are related to the thunderstorm electric field, Earth's geomagnetic field, and the potential inside the thundercloud region. Observations of TGFs made by the Gamma-ray Burst Monitor (GBM) will also be discussed, as well as a future multipoint CubeSat mission targeted to measure the beaming geometry of the gamma rays. This material is based upon work supported by the National Science Foundation under Grant Number 1524533.

  5. Modifying the electronic properties of single-walled carbon nanotubes using designed surfactant peptides

    Science.gov (United States)

    Samarajeewa, Dinushi R.; Dieckmann, Gregg R.; Nielsen, Steven O.; Musselman, Inga H.

    2012-07-01

    The electronic properties of carbon nanotubes can be altered significantly by modifying the nanotube surface. In this study, single-walled carbon nanotubes (SWCNTs) were functionalized noncovalently using designed surfactant peptides, and the resultant SWCNT electronic properties were investigated. These peptides have a common amino acid sequence of X(Valine)5(Lysine)2, where X indicates an aromatic amino acid containing either an electron-donating or electron-withdrawing functional group (i.e. p-amino-phenylalanine or p-cyano-phenylalanine). Circular dichroism spectra showed that the surfactant peptides primarily have random coil structures in an aqueous medium, both alone and in the presence of SWCNTs, simplifying analysis of the peptide/SWCNT interaction. The ability of the surfactant peptides to disperse individual SWCNTs in solution was verified using atomic force microscopy and ultraviolet-visible-near-infrared spectroscopy. The electronic properties of the surfactant peptide/SWCNT composites were examined using the observed nanotube Raman tangential band shifts and the observed additional features near the Fermi level in the scanning tunneling spectroscopy dI/dV spectra. The results revealed that SWCNTs functionalized with surfactant peptides containing electron-donor or electron-acceptor functional groups showed n-doped or p-doped altered electronic properties, respectively. This work unveils a facile and versatile approach to modify the intrinsic electronic properties of SWCNTs using a simple peptide structure, which is easily adaptable to obtain peptide/SWCNT composites for the design of tunable nanoscale electronic devices.The electronic properties of carbon nanotubes can be altered significantly by modifying the nanotube surface. In this study, single-walled carbon nanotubes (SWCNTs) were functionalized noncovalently using designed surfactant peptides, and the resultant SWCNT electronic properties were investigated. These peptides have a common amino

  6. Electronic properties of ion-implanted yttria-stabilized zirconia

    NARCIS (Netherlands)

    Vohrer, U.; Wiemhöfer, H.-D.; Göpel, W.; Hassel, van B.A.; Burggraaf, A.J.

    1993-01-01

    Ion implantation of iron and titanium has been applied to modify the surface properties of polycrystalline yttria-stabilized zirconia ((ZrO2)0.87(YO1.5)0.13 (YSZ)) discs in an attempt to prepare surfaces with a mixed conductivity and by this an enhanced surface oxygen exchange kinetics. Surface-sen

  7. Electronic properties and orbital-filling mechanism in Rb-intercalated copper phthalocyanine

    NARCIS (Netherlands)

    Evangelista, F.; Gotter, R.; Mahne, N.; Nannarone, S.; Ruocco, A.; Rudolf, P.

    200