WorldWideScience

Sample records for hydraulic plan relance

  1. A boost to the French hydraulic plan

    2008-01-01

    A plan for boosting the hydroelectric power generation in France is presented, the first step of an energy policy based on the conclusions of the Grenelle Environnement Forum which targets a 23 percent objective for the renewable energies in France by 2020. Hydroelectricity represents nowadays 12 percent of total electric power generation. The plan is composed of three parts: attribution of concessions will be opened to competition (concessions of the 400 largest dams will be renewed); investments in dams will be strongly encouraged and assisted by the government in order to increase France's hydraulic power generation capacities and enhance its security of power supply - small and micro hydraulic power generation is to be developed; the quality of river waters will be improved

  2. Thermal-hydraulic research plan for Babcock and Wilcox plants

    Lee, R.Y.

    1988-02-01

    This document presents a plan for thermal-hydraulic research for Babcock and Wilcox designed reactor systems. It describes the technical issues, regulatory needs, and the research necessary to address these needs. The plan also discusses the relationship between current and proposed research, and provides a tentative schedule to complete the required work

  3. Nuclear power plant thermal-hydraulic performance research program plan

    1988-07-01

    The purpose of this program plan is to present a more detailed description of the thermal-hydraulic research program than that provided in the NRC Five-Year Plan so that the research plan and objectives can be better understood and evaluated by the offices concerned. The plan is prepared by the Office of Nuclear Regulatory Research (RES) with input from the Office of Nuclear Reactor Regulation (NRR) and updated periodically. The plan covers the research sponsored by the Reactor and Plant Systems Branch and defines the major issues (related to thermal-hydraulic behavior in nuclear power plants) the NRC is seeking to resolve and provides plans for their resolution; relates the proposed research to these issues; defines the products needed to resolve these issues; provides a context that shows both the historical perspective and the relationship of individual projects to the overall objectives; and defines major interfaces with other disciplines (e.g., structural, risk, human factors, accident management, severe accident) needed for total resolution of some issues. This plan addresses the types of thermal-hydraulic transients that are normally considered in the regulatory process of licensing the current generation of light water reactors. This process is influenced by the regulatory requirements imposed by NRC and the consequent need for technical information that is supplied by RES through its contractors. Thus, most contractor programmatic work is administered by RES. Regulatory requirements involve the normal review of industry analyses of design basis accidents, as well as the understanding of abnormal occurrences in operating reactors. Since such transients often involve complex thermal-hydraulic interactions, a well-planned thermal-hydraulic research plan is needed

  4. A mangrove creek restoration plan utilizing hydraulic modeling.

    Marois, Darryl E; Mitsch, William J

    2017-11-01

    Despite the valuable ecosystem services provided by mangrove ecosystems they remain threatened around the globe. Urban development has been a primary cause for mangrove destruction and deterioration in south Florida USA for the last several decades. As a result, the restoration of mangrove forests has become an important topic of research. Using field sampling and remote-sensing we assessed the past and present hydrologic conditions of a mangrove creek and its connected mangrove forest and brackish marsh systems located on the coast of Naples Bay in southwest Florida. We concluded that the hydrology of these connected systems had been significantly altered from its natural state due to urban development. We propose here a mangrove creek restoration plan that would extend the existing creek channel 1.1 km inland through the adjacent mangrove forest and up to an adjacent brackish marsh. We then tested the hydrologic implications using a hydraulic model of the mangrove creek calibrated with tidal data from Naples Bay and water levels measured within the creek. The calibrated model was then used to simulate the resulting hydrology of our proposed restoration plan. Simulation results showed that the proposed creek extension would restore a twice-daily flooding regime to a majority of the adjacent mangrove forest and that there would still be minimal tidal influence on the brackish marsh area, keeping its salinity at an acceptable level. This study demonstrates the utility of combining field data and hydraulic modeling to aid in the design of mangrove restoration plans.

  5. Research on Trajectory Planning and Autodig of Hydraulic Excavator

    Bin Zhang

    2017-01-01

    Full Text Available As the advances in computer control technology keep emerging, robotic hydraulic excavator becomes imperative. It can improve excavation accuracy and greatly reduce the operator’s labor intensity. The 12-ton backhoe bucket excavator has been utilized in this research work where this type of excavator is commonly used in engineering work. The kinematics model of operation device (boom, arm, bucket, and swing in excavator is established in both Denavit-Hartenberg coordinates for easy programming and geometric space for avoiding blind spot. The control approach is based on trajectory tracing method with displacements and velocities feedbacks. The trajectory planning and autodig program is written by Visual C++. By setting the bucket teeth’s trajectory, the program can automatically plan the velocity and acceleration of each hydraulic cylinder and motor. The results are displayed through a 3D entity simulation environment which can present real-time movements of excavator kinematics. Object-Oriented Graphics Rendering Engine and skeletal animation are used to give accurate parametric control and feedback. The simulation result shows that a stable linear autodig can be achieved. The errors between trajectory planning command and simulation model are analyzed.

  6. Test plan: Hydraulic fracturing and hydrologic tests in Marker Beds 139 and 140

    Wawersik, W.R.; Beauheim, R.L.

    1991-03-01

    Combined hydraulic fracturing and hydrological measurements in this test plan are designed to evaluate the potential influence of fracture formation in anhydrite Marker Beds 139 and 140 on gas pressure in and gas flow from the disposal rooms in the Waste Isolation Pilot Plant with time. The tests have the further purpose of providing comparisons of permeabilities of anhydrite interbeds in an undisturbed (virgin) state and after fracture development and/or opening and dilation of preexisting partially healed fractures. Three sets of combined hydraulic fracturing and hydrological measurements are planned. A set of trial measurements is expected to last four to six weeks. The duration of each subsequent experiment is anticipated to be six to eight weeks

  7. Design of emergency plans due to the failure risk of hydraulic works - Theory and case study

    Ochoa Rivera, Juan Camilo

    2006-01-01

    Dams are built to be highly safe hydraulic works. Nevertheless, they are not exempt from a certain failure risk, which turns in a variable value along the time service of the dam. As the mentioned dam-failure risk can be a significant hazard, analysis on dam-break is becoming important, as same as the assessment of its consequences. This type of studies are intended to reduce the costs linked to dam-failure, which are mainly due to the losses of human beings and material goods. A suitable way to minimize such losses consists of designing emergency plans, which permit to prepare and implant appropriate protection measures. A methodological framework to carry out this kind of emergency plans is introduced in this paper, accompanied by a case study corresponding to an emergency plan of a Spanish dam

  8. Hydraulic structures

    Chen, Sheng-Hong

    2015-01-01

    This book discusses in detail the planning, design, construction and management of hydraulic structures, covering dams, spillways, tunnels, cut slopes, sluices, water intake and measuring works, ship locks and lifts, as well as fish ways. Particular attention is paid to considerations concerning the environment, hydrology, geology and materials etc. in the planning and design of hydraulic projects. It also considers the type selection, profile configuration, stress/stability calibration and engineering countermeasures, flood releasing arrangements and scouring protection, operation and maintenance etc. for a variety of specific hydraulic structures. The book is primarily intended for engineers, undergraduate and graduate students in the field of civil and hydraulic engineering who are faced with the challenges of extending our understanding of hydraulic structures ranging from traditional to groundbreaking, as well as designing, constructing and managing safe, durable hydraulic structures that are economical ...

  9. Municipal hydraulic planning for energy saving; Planeacion hidraulica municipal para el ahorro de energia

    Garcia Garcia, Enrique [PTF S.C. Consultores, Leon, Gto. (Mexico)

    1999-07-01

    The efficient handling of the economic and natural resources of the municipalities, is nowadays so much complex, that it requires a formal planning. In the public service of potable water supply, two fundamental approaches are conjugated to consider: the rational use of the water resource and the efficient use of the electrical energy, for its extraction from the underground deep reservoirs. In the paper that is presented, the individual features of the previous matters are described and the positive results in a municipality of the Guanajuato's Low Lands (Bajio ), where already the dual objectives are obtained and that with a more professional municipal hydraulic planning, these will be permanent, with the inherent benefit towards the population. [Spanish] El manejo eficiente de los recursos economicos y naturales de los municipios, es hoy en dia cada vez mas complejo, que requiere una planeacion formal. En el servicio publico de abastecimiento de agua potable, se conjugan dos enfoques primordiales a considerar: el uso racional del recurso agua y la utilizacion eficiente de la energia electrica, para su extraccion de los acuiferos subterraneos profundos. En el trabajo que se presenta, se describen las particularidades de lo anterior y los resultados positivos en un municipio del Bajio guanajuatense, donde ya se logran los objetivos duales y que con una planeacion hidraulica municipal mas profesional, estos seran permanentes, con el beneficio inherente hacia la poblacion.

  10. Hydraulic testing plan for the Bear Creek Valley Treatability Study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    1997-09-01

    The Bear Creek Valley (BCV) Treatability Study is intended to provide site-specific data defining potential treatability technologies applicable to contaminated groundwater and surface water. The ultimate goal of this effort is to install a treatment system that will remove uranium, technetium, nitrate, and several metals from groundwater before it reaches Bear Creek. This project directly supports the BCV Feasibility Study. Part of the Treatability Study, Phase II Hydraulic Performance Testing, will produce hydraulic and treatment performance data required to design a long-term treatment system. This effort consists of the installation and testing of two groundwater collection systems: a trench in the vicinity of GW-835 and an angled pumping well adjacent to NT-1. Pumping tests and evaluations of gradients under ambient conditions will provide data for full-scale design of treatment systems. In addition to hydraulic performance, in situ treatment chemistry data will be obtained from monitoring wells installed in the reactive media section of the trench. The in situ treatment work is not part of this test plan. This Hydraulic Testing Plan describes the location and installation of the trench and NT-1 wells, the locations and purpose of the monitoring wells, and the procedures for the pumping tests of the trench and NT-1 wells

  11. Nupec thermal hydraulic test to evaluate post-DNB characteristics for PWR fuel assemblies (1. general test plan and results)

    Norio, Kono; Kenji, Murai; Kaichiro, Misima; Takayuki, Suemura; Yoshiei, Akiyama; Keiichi, Hori

    2001-01-01

    In the present thermal hydraulic design of Pressurized Water Reactor (PWR), a departure from nucleate boiling (DNB) under anticipated transient conditions is not allowed. However, it is recognized that the DNB dose not cause a fuel rod failure immediately, and a suitable reactor trip can prevent the core from severe damages. If the fuel rod temperature under the post-DNB conditions can be accurately evaluated, the potentially existing margin in the present design method will be quantitatively assessed. To establish the heat transfer evaluation method on post-DNB event for PWR thermal hydraulic design, Nuclear Power Engineering Corporation (NUPEC) started a program, NUPEC Thermal Hydraulic Test to Evaluate Post-DNB Characteristics for PWR Fuel Assemblies (NUPEC-TH-P), in 1995 (hereinafter the year means fiscal year) under the sponsorship of Ministry of Economy, Trade and industry (METI). This program is now under going until 2001. This paper is to show the overall plan and the status of NUPEC-TH-P. (authors)

  12. A plan for the modification and assessment of TRAC-PF1/MOD2 for use in analyzing CANDU 3 transient thermal-hydraulic phenomena

    Siebe, D.A.; Boyack, B.E.; Giguere, P.T.

    1994-11-01

    This report presents the results of the review and planning done for the United States Nuclear Regulatory Commission to identify the thermal-hydraulic phenomena that could occur in the CANDU 3 reactor design during transient conditions, plan modifications to the TRAC-PF1/MOD2 (TRAC) computer code needed to adequately predict CANDU 3 transient thermal-hydraulic phenomena, and identify an assessment program to verify the ability of TRAC, when modified, to predict these phenomena. This work builds on analyses and recommendations produced by the Idaho National Engineering Laboratory (INEL). To identify the thermal-hydraulic phenomena, a large-break loss-of-coolant accident simulation, performed as part of earlier work by INEL with an Atomic Energy of Canada, Limited (AECL) thermal-hydraulic computer code (CATHENA), was analyzed in detail. Other accident scenarios were examined for additional phenomena. A group of Los Alamos National Laboratory reactor thermal-hydraulics experts ranked the phenomena to produce a preliminary phenomena identification and ranking table (PIRT). The preliminary nature of the PIRT was a result of a lack of direct expertise with the unique processes and phenomena of the CANDU 3. Nonetheless, this PIRT provided an adequate foundation for planning a program of code modifications. We believe that this PIRT captured the most important phenomena and that refinements to the PIRT will mainly produce clarification of the relative importance (ranking) of phenomena. A plan for code modifications was developed based on this PIRT and on information about the modeling methodologies for CANDU-specific phenomena used in AECL codes. AECL thermal-hydraulic test facilities and programs were reviewed and the information used in developing an assessment plan to ensure that TRAC-PF1/MOD2, when modified, will adequately predict CANDU 3 phenomena

  13. Hydraulic Arm Modeling via Matlab SimHydraulics

    Věchet, Stanislav; Krejsa, Jiří

    2009-01-01

    Roč. 16, č. 4 (2009), s. 287-296 ISSN 1802-1484 Institutional research plan: CEZ:AV0Z20760514 Keywords : simulatin modeling * hydraulics * SimHydraulics Subject RIV: JD - Computer Applications, Robotics

  14. Development of Design Technology on Thermal-Hydraulic Performance in Tight-Lattice Rod Bundles: I-Master Plan and Executive Summary

    Ohnuki, Akira; Kureta, Masatoshi; Yoshida, Hiroyuki; Tamai, Hidesada; Liu, Wei; Misawa, Takeharu; Takase, Kazuyuki; Akimoto, Hajime

    R&D project to investigate thermal-hydraulic performance in tight-lattice rod bundles for Innovative Water Reactor for Flexible Fuel Cycle has been progressed at Japan Atomic Energy Agency in collaboration with power utilities, reactor vendors and universities since 2002. In this series-study, we will summarize the R&D achievements using large-scale test facility (37-rod bundle with full-height and full-pressure), model experiments and advanced numerical simulation technology. This first paper described the master plan for the development of design technology and showed an executive summary for this project up to FY2005. The thermal-hydraulic characteristics in the tight-lattice configuration were investigated and the feasibility was confirmed based on the experiments. We have developed the design technology including 3-D numerical simulation one to evaluate the effects of geometry/scale on the thermal-hydraulic behaviors.

  15. Evaluation of Hydraulic Potentiality for Small Scale Hydroelectric Power Systems. Base for formulation of plans for the municipal development

    Torres Q, E.

    1997-01-01

    Colombia has been recognized as the fourth country in the world with high hydraulic resources, the best way to exploit this potential is by talking use of as a main hydroelectric alternative on isolated areas of the country. At the beginnings there was an study the Potential Hydraulic Assessment was performed at the Chicamocha Deep Valley, due to this area count with a good hydrologic and meteorological network enough, to investigate the hydro climate behavior

  16. Planning model for hydraulic and thermic generation systems expansion under uncertainly conditions and financial restrictions; Modelo de planejamento da expansao de sistemas hidrotermicos sob incertezas e restricoes financeiras

    Gorenstin, B.G.; Costa, J.P. da [CEPEL, Rio de Janeiro, RJ (Brazil); Pereira, M.V.F.; Campodonico, N.M.

    1993-12-31

    This issue presents a methodology for planning the systems expansion of hydraulic and thermic power generation associated considering several uncertainly factors, such as: demand growing, fuel costs, delays on the work construction, financial restrictions, etc. The solution focus is based on stock optimize techniques, decision analysis. This work is being developed by the Brazilian Electrical Centre (ELETROBRAS) and rely on the Energy Latin-American Organization (OLADE), Development Inter-American Bank (BID), World Bank (BIRD) and International Energy Agency (IAEA) support. An example case with Costa Rica system is also discussed 19 refs., 4 figs., 2 tabs.

  17. Hydraulic turbines

    Meluk O, G.

    1998-01-01

    The hydraulic turbines are defined according to the specific speed, in impulse turbines and in reaction turbines. Currently, the Pelton turbines (of impulse) and the Francis and Kaplan turbines (of reaction), they are the most important machines in the hydroelectric generation. The hydraulic turbines are capable of generating in short times, large powers, from its loads zero until the total load and reject the load instantly without producing damages in the operation. When the hydraulic resources are important, the hydraulic turbines are converted in the axle of the electric system. Its combination with thermoelectric generation systems, it allow the continuing supply of the variations in demand of energy system. The available hydraulic resource in Colombia is of 93085 MW, of which solely 9% is exploited, become 79% of all the electrical country generation, 21% remaining is provided by means of the thermoelectric generation

  18. Data management implementation plan for the Bear Creek Valley treatability study phase 2 hydraulic performance testing, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    1997-12-01

    The overall objective of the Bear Creek Valley treatability study is to provide site-specific data defining potential treatment technologies applicable to contaminated groundwater and surface water. The ultimate goal of this effort is to install a treatment system that will remove uranium, technetium, nitrate, and several metals from groundwater before it reaches Bear Creek. This project, the Bear Creek Valley treatability study Phase 2 hydraulic performance testing, directly supports the Bear Creek Valley Feasibility Study. Specific project objectives include (1) installing monitoring and extraction wells, (2) installing a groundwater extraction trench, (3) performing pumping tests of the extraction wells and trench, (4) determining hydraulic gradients, and (5) collecting water quality parameters. The primary purpose of environmental data management is to provide a system for generating and maintaining technically defensible data. To meet current regulatory requirements for the Environmental Restoration Program, complete documentation of the information flow must be established. To do so, each step in the data management process (collection, management, storage, and analysis) must be adequately planned and documented. This document will serve to identify data management procedures, expected data types and flow, and roles and responsibilities for all data management activities associated with this project

  19. Basic hydraulics

    Smith, P D

    1982-01-01

    BASIC Hydraulics aims to help students both to become proficient in the BASIC programming language by actually using the language in an important field of engineering and to use computing as a means of mastering the subject of hydraulics. The book begins with a summary of the technique of computing in BASIC together with comments and listing of the main commands and statements. Subsequent chapters introduce the fundamental concepts and appropriate governing equations. Topics covered include principles of fluid mechanics; flow in pipes, pipe networks and open channels; hydraulic machinery;

  20. Hydraulic Structures

    Department of Homeland Security — This table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the FIRM, channels containing the...

  1. Pequena angular : Almada em relance

    Celina Silva

    2015-01-01

    Full Text Available Reading of the literary work of Almada Negreiros concerning its constantly changing procedures, and focusing the major examples of its writing in order to underline the fundamental unity of its creative nucleus which lies in an experimental practice. This author’s writings show the main literary practice created around Orpheu (1915, portuguese vanguard movement, by activating the linguistic and literary codes in order to renew the paradigms. Later Almada’s work adopts a quite different record on which modernity and tradition dialogue in a critical and original way. This particular attitude and style was called by Almada Naivety.

  2. Survey on hydraulic power resources. Survey plan (draft) (For clean energy of the future generations); Chikyu kibo suiryoku shigen chosa chosa keikakusho (an). Mirai no sedai ni clean energy wo

    NONE

    1990-03-01

    Promotion of development of hydraulic power and others as fossil fuel alternative energy sources is one of the most important measures for solving the global environmental problems. This draft plan proposes, first of all, to conduct surveys on hydraulic power resources on a global scale, to collect the basic data for development of the energy sources. It is estimated that developed hydraulic power resources account for approximately 14% of the total developable resources, the remainder being left untouched. By region, these percentages rise to approximately 55 and 45% in North America and Europe, respectively. These percentages in Asia, Africa, Latin America and FSU are significantly lower, and their undeveloped resources are estimated to total approximately 6 times as large as those already developed worldwide. It is expected that the hydraulic power resources are surveyed on a 10-year plan (1991 to 2000) with a total budget of 30 billion yen, to collect the data and establish the databases in cooperation with international organizations, e.g., UN organizations, regional organizations (e.g., ASEAN organizations) and newly founded organizations. (NEDO)

  3. Hydraulic manipulator

    Sinha, A.K.; Srikrishnamurty, G.

    1990-01-01

    Successful operation of nuclear plant is largely dependent on safe handling of radio-active material. In order to reduce this handling problem and minimise the exposure of radiation, various handling equipment and manipulators have been developed according to the requirements. Manufacture of nuclear fuel, which is the most important part of the nuclear industry, involves handling of uranium ingots weighing approximately 250 kg. This paper describes a specially designed hydraulic manipulator for handling of the ingots in a limited space. It was designed to grab and handle the ingots in any position. This has following drive motions: (1)gripping and releasing, (2)lifting and lowering (z-motion), (3)rotation about the horizontal axis (azimuth drive), (4)rotation about the job axis, and (5)rotation about the vertical axis. For horizontal motion (X and Y axis motion) this equipment is mounted on a motorised trolley, so that it can move inside the workshop. For all drives except the rotation about the job axis, hydraulic cylinders have been used with a battery operated power pack. Trolley drive is also given power from same battery. This paper describes the design aspects of this manipulator. (author). 4 figs

  4. Brake hydraulics simulation with real-time capability. From hydraulics plan to implementation: the Bosch ESP 5.7 as an example; Echtzeitfaehige Bremshydrauliksimulation. Vom Hydraulikplan zur Implementierung am Beispiel des Bosch ESP 5.7

    Marc, E.; Oliver, P.; Thies, W. [Tesis Dynaware (Germany)

    2001-11-01

    For the development and testing of ABS/ESP control units, both the detailed simulation of the vehicle and drive train dynamics as well as the dynamic behaviour of the hydraulic system are important. The signals coming from the control unit that control the valves in the brake hydraulic system cause pressure changes in the brake system and thus affect the braking torque. In turn, the changes in the speed of the wheels are fed back to the control unit via sensors. The objective of an ABS control strategy is to prevent the wheels from locking during braking in order to ensure and maintain the steerability of the vehicle, while the ESP action also attempts to achieve a stabilization of the yawing motion by means of active braking. (orig.) [German] Fuer die Entwicklung und den Test von ABS/ESP-Steuergeraeten ist neben der detaillierten Simulation von Fahr- und Antriebsstrangdynamik auch das dynamische Verhalten des hydraulischen Systems wichtig. Die vom Steuergeraet kommenden Signale zur Ansteuerung der Ventile in der Bremshydraulik bewirken Druckaenderungen im Bremssystem und somit der Bremsmomente. Die Aenderungen der Raddrehzahlen werden wiederum ueber Sensoren dem Steuergeraet zurueckgemeldet. Ziel einer ABS-Regelstrategie ist das Verhindern des Blockierens der Raeder beim Bremsen, um die Lenkbarkeit des Fahrzeugs zu erhalten, waehrend bei einem ESP-Eingriff durch aktives Bremsen zusaetzlich eine Stabilisierung der Gierbewegung erfolgen soll, wie der folgende Beitrag von Tesis Dynaware zeigt. (orig.)

  5. GCFR thermal-hydraulic experiments

    Schlueter, G.; Baxi, C.B.; Dalle Donne, M.; Gat, U.; Fenech, H.; Hanson, D.; Hudina, M.

    1980-01-01

    The thermal-hydraulic experimental studies performed and planned for the Gas-Cooled Fast Reactor (GCFR) core assemblies are described. The experiments consist of basic studies performed to obtain correlations, and bundle experiments which provide input for code validation and design verification. These studies have been performed and are planned at European laboratories, US national laboratories, Universities in the US, and at General Atomic Company

  6. Hydraulic Hybrid Vehicles

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  7. Étude qualitative sur les perceptions à propos de la capacité des organisations à promouvoir l’activité physique au Canada et à propos de l’influence de ParticipACTION cinq ans après sa relance

    Subha Ramanathan

    2018-01-01

    Full Text Available Introduction. ParticipACTION est un organisme canadien de communication et de marketing social faisant la promotion de l’activité physique qui a été relancé en 2007. Notre étude visait à évaluer de manière qualitative le pouvoir d’action des organisations canadiennes en matière de promotion de l’activité physique ainsi que l’influence de ParticipACTION sur ce pouvoir cinq ans après sa relance. Méthodologie. Des entrevues téléphoniques semi-structurées ont été réalisées auprès de 44 informateurs clés sélectionnés par échantillonnage dirigé. Les informateurs étaient représentatifs d’organismes nationaux, provinciaux et locaux ayant un mandat en matière de promotion de l’activité physique. Les données tirées des entrevues ont été analysées par thèmes. Résultats. Depuis la relance de ParticipACTION, le pouvoir d’action en matière de partenariats et de collaborations ainsi que le climat général dans le domaine de la promotion de l’activité physique se sont améliorés. Bien que diverses contraintes financières aient réduit la capacité des organisations à remplir leur mandat, leur impact a été atténué par des facteurs internes comme la présence d’employés compétents et les partenariats ainsi que par des facteurs externes comme les progrès technologiques dans les communications et les échanges d’information. Les avis étaient mitigés en ce qui concerne la contribution de ParticipACTION à l’amélioration de ce pouvoir d’action. Bien que ParticipACTION ait attiré l’attention sur l’inactivité, sa contribution a surtout été perçue comme complémentaire aux activités déjà en place. Certains organismes ont considéré que la relance de ParticipACTION avait accru la compétition pour le financement et l’accès aux médias populaires, tandis que d’autres étaient d’avis qu’il s’agissait d’une opportunité d’établir des partenariats officiels pour des

  8. Thermally Actuated Hydraulic Pumps

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  9. Digital switched hydraulics

    Pan, Min; Plummer, Andrew

    2018-06-01

    This paper reviews recent developments in digital switched hydraulics particularly the switched inertance hydraulic systems (SIHSs). The performance of SIHSs is presented in brief with a discussion of several possible configurations and control strategies. The soft switching technology and high-speed switching valve design techniques are discussed. Challenges and recommendations are given based on the current research achievements.

  10. Hydraulic Structures : Caissons

    Voorendt, M.Z.; Molenaar, W.F.; Bezuyen, K.G.

    These lecture notes on caissons are part of the study material belonging to the course 'Hydraulic Structures 1' (code CTB3355), part of the Bachelor of Science education and the Hydraulic Engineering track of the Master of Science education for civil engineering students at Delft University of

  11. Vibration of hydraulic machinery

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  12. Relance du Gemini News Service | IDRC - International ...

    Agence de presse basée à Londres, le Gemini News Service achetait des reportages de correspondants dans des pays en développement et les distribuait aux médias d'information partout dans le monde. La fermeture de l'agence en 2002 après trente ans d'activité s'explique en partie par les frais d'exploitation élevés ...

  13. Handbook of hydraulic fluid technology

    Totten, George E

    2011-01-01

    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  14. Hydraulic Shearing and Hydraulic Jacking Observed during Hydraulic Stimulations in Fractured Geothermal Reservoir in Pohang, Korea

    Min, K. B.; Park, S.; Xie, L.; Kim, K. I.; Yoo, H.; Kim, K. Y.; Choi, J.; Yoon, K. S.; Yoon, W. S.; Lee, T. J.; Song, Y.

    2017-12-01

    Enhanced Geothermal System (EGS) relies on sufficient and irreversible enhancement of reservoir permeability through hydraulic stimulation and possibility of such desirable change of permeability is an open question that can undermine the universality of EGS concept. We report results of first hydraulic stimulation campaign conducted in two deep boreholes in fractured granodiorite geothermal reservoir in Pohang, Korea. Borehole PX-1, located at 4.22 km, was subjected to the injection of 3,907 m3 with flow rate of up to 18 kg/s followed by bleeding off of 1,207 m3. The borehole PX-2, located at 4.35 km, was subjected to the injection of 1,970 m3 with flow rate of up to 46 kg/sIn PX-1, a sharp distinct decline of wellhead pressure was observed at around 16 MPa of wellhead pressure which was similar to the predicted injection pressure to induce hydraulic shearing. Injectivity interpretation before and after the hydraulic shearing indicates that permanent increase of permeability was achieved by a factor of a few. In PX-2, however, injectivity was very small and hydraulic shearing was not observed due possibly to the near wellbore damage made by the remedying process of lost circulation such as using lost circulation material during drilling. Flow rate of larger than 40 kg/s was achieved at very high well head pressure of nearly 90 MPa. Hydraulic jacking, that is reversible opening and closure of fracture with change of injection pressure, was clearly observed. Although sharp increase of permeability due to fracture opening was achieved with elevated injection pressure, the increased permeability was reversed with decreased injection pressure.Two contrasting response observed in the same reservoir at two different boreholes which is apart only 600 m apart provide important implication that can be used for the stimulation strategy for EGS.This work was supported by the New and Renewable Energy Technology Development Program of the Korea Institute of Energy Technology

  15. QAPP for Hydraulic Fracturing (HF) Surface Spills Data Analysis

    This QAPP provides information concerning the analysis of spills associated with hydraulic fracturing. This project is relevant to both the chemical mixing and flowback and produced water stages of the HF water cycle as found in the HF Study Plan.

  16. Hydraulic Yaw System

    Stubkier, Søren; Pedersen, Henrik C.; Mørkholt, M.

    a hydraulic soft yaw system, which is able to reduce the loads on the wind turbine significantly. A full scale hydraulic yaw test rig is available for experiments and tests. The test rig is presented as well as the system schematics of the hydraulic yaw system....... the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized to reduce loading in critical components. Results shows that a significant reduction in fatigue and extreme loads to the yaw...... system and rotor shaft when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. Based on the extrapolated loads, the duty cycles show that it is possible to construct...

  17. Water Hydraulic Systems

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  18. Hydraulic hoisting and backfilling

    Sauermann, H. B.

    In a country such as South Africa, with its large deep level mining industry, improvements in mining and hoisting techniques could result in substantial savings. Hoisting techniques, for example, may be improved by the introduction of hydraulic hoisting. The following are some of the advantages of hydraulic hoisting as against conventional skip hoisting: (1) smaller shafts are required because the pipes to hoist the same quantity of ore hydraulically require less space in the shaft than does skip hoisting equipment; (2) the hoisting capacity of a mine can easily be increased without the necessity of sinking new shafts. Large savings in capital costs can thus be made; (3) fully automatic control is possible with hydraulic hoisting and therefore less manpower is required; and (4) health and safety conditions will be improved.

  19. The hydraulic wheel

    Alvarez Cardona, A.

    1985-01-01

    The present article this dedicated to recover a technology that key in disuse for the appearance of other techniques. It is the hydraulic wheel with their multiple possibilities to use their energy mechanical rotational in direct form or to generate electricity directly in the fields in the place and to avoid the high cost of transport and transformation. The basic theory is described that consists in: the power of the currents of water and the hydraulic receivers. The power of the currents is determined knowing the flow and east knowing the section of the flow and its speed; they are given you formulate to know these and direct mensuration methods by means of floodgates, drains and jumps of water. The hydraulic receivers or properly this hydraulic wheels that are the machines in those that the water acts like main force and they are designed to transmit the biggest proportion possible of absolute work of the water, the hydraulic wheels of horizontal axis are the common and they are divided in: you rotate with water for under, you rotate with side water and wheels with water for above. It is analyzed each one of them, their components are described; the conditions that should complete to produce a certain power and formulate them to calculate it. There are 25 descriptive figures of the different hydraulic wheels

  20. ParticipACTION, cinq ans après sa relance : enquête quantitative sur son rayonnement et sur le pouvoir d'action des organisations au Canada en matière d’initiatives consacrées à l’activité physique

    Guy Faulkner

    2018-01-01

    Full Text Available Introduction. ParticipACTION est un organisme canadien relancé en 2007 dédié à la communication et au marketing social en matière d’activité physique. Cette étude porte sur le pouvoir d'action des organismes canadiens dans l'adoption, la mise en oeuvre et la promotion des initiatives en ce domaine. Nos objectifs étaient de comparer les résultats de base (2008 avec les résultats de suivi (2013 en ce qui concerne (1 la connaissance de ParticipACTION, (2 la capacité d'un organisme à adopter, à mettre en oeuvre et à promouvoir des initiatives d’activité physique et (3 les différences potentielles en matière de pouvoir d'action d'une organisation en fonction de sa taille, de son secteur et de son mandat ainsi que (4 d’évaluer la perception de ParticipACTION cinq ans après sa relance. Méthodologie. Dans le cadre de cette étude transversale, des représentants d’organismes locaux, provinciaux, territoriaux et nationaux ont rempli un questionnaire en ligne visant à évaluer la capacité de leur organisme à adopter, à mettre en oeuvre et à promouvoir des initiatives d’activité physique. Nous avons utilisé des méthodes de statistique descriptive et des analyses de variance à un facteur pour répondre à nos objectifs. Résultats. Le taux de réponse correspondant aux personnes ayant ouvert le courriel d’invitation à répondre au sondage et ayant consenti à y participer était de 40,6 % (685/1 688. Au total, 540 questionnaires de sondage ont été remplis. Le taux de connaissance de ParticipACTION, qui se chiffrait à 54,6 % lors de l’étude initiale, avait atteint 93,9 % au moment du suivi (objectif 1. Tant les résultats initiaux que les résultats de suivi ont fait état d’un pouvoir d'action important des organismes dans l'adoption, la mise en oeuvre et la promotion d'initiatives d’activité physique (objectif 2, avec cependant de légères variations en fonction du secteur et du mandat de chaque

  1. Cavitation in Hydraulic Machinery

    Kjeldsen, M.

    1996-11-01

    The main purpose of this doctoral thesis on cavitation in hydraulic machinery is to change focus towards the coupling of non-stationary flow phenomena and cavitation. It is argued that, in addition to turbulence, superimposed sound pressure fluctuations can have a major impact on cavitation and lead to particularly severe erosion. For the design of hydraulic devices this finding may indicate how to further limit the cavitation problems. Chapter 1 reviews cavitation in general in the context of hydraulic machinery, emphasizing the initial cavitation event and the role of the water quality. Chapter 2 discusses the existence of pressure fluctuations for situations common in such machinery. Chapter 3 on cavitation dynamics presents an algorithm for calculating the nucleation of a cavity cluster. Chapter 4 describes the equipment used in this work. 53 refs., 55 figs.,10 tabs.

  2. Hydraulics and pneumatics

    Parr, Andrew

    2006-01-01

    Nearly all industrial processes require objects to be moved, manipulated or subjected to some sort of force. This is frequently accomplished by means of electrical equipment (such as motors or solenoids), or via devices driven by air (pneumatics) or liquids (hydraulics).This book has been written by a process control engineer as a guide to the operation of hydraulic and pneumatic systems for all engineers and technicians who wish to have an insight into the components and operation of such a system.This second edition has been fully updated to include all recent developments su

  3. HYDRAULIC SERVO CONTROL MECHANISM

    Hussey, R.B.; Gottsche, M.J. Jr.

    1963-09-17

    A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)

  4. Mine drivage in hydraulic mines

    Ehkber, B Ya

    1983-09-01

    From 20 to 25% of labor cost in hydraulic coal mines falls on mine drivage. Range of mine drivage is high due to the large number of shortwalls mined by hydraulic monitors. Reducing mining cost in hydraulic mines depends on lowering drivage cost by use of new drivage systems or by increasing efficiency of drivage systems used at present. The following drivage methods used in hydraulic mines are compared: heading machines with hydraulic haulage of cut rocks and coal, hydraulic monitors with hydraulic haulage, drilling and blasting with hydraulic haulage of blasted rocks. Mining and geologic conditions which influence selection of the optimum mine drivage system are analyzed. Standardized cross sections of mine roadways driven by the 3 methods are shown in schemes. Support systems used in mine roadways are compared: timber supports, roof bolts, roof bolts with steel elements, and roadways driven in rocks without a support system. Heading machines (K-56MG, GPKG, 4PU, PK-3M) and hydraulic monitors (GMDTs-3M, 12GD-2) used for mine drivage are described. Data on mine drivage in hydraulic coal mines in the Kuzbass are discussed. From 40 to 46% of roadways are driven by heading machines with hydraulic haulage and from 12 to 15% by hydraulic monitors with hydraulic haulage.

  5. Hydraulic shock absorbers

    Thatcher, G.; Davidson, D. F.

    1984-01-01

    A hydraulic shock absorber of the dash pot kind for use with electrically conducting liquid such as sodium, has magnet means for electro magnetically braking a stream of liquid discharged from the cylinder. The shock absorber finds use in a liquid metal cooled nuclear reactor for arresting control rods

  6. Preparation of hydraulic cement

    1921-08-28

    A process for the preparation of hydraulic cement by the use of oil-shale residues is characterized in that the oil-shale refuse is mixed with granular basic blast-furnace slag and a small amount of portland cement and ground together.

  7. Small hydraulic turbine drives

    Rostafinski, W. A.

    1970-01-01

    Turbine, driven by the fluid being pumped, requires no external controls, is completely integrated into the flow system, and has bearings which utilize the main fluid for lubrication and cooling. Torque capabilities compare favorably with those developed by positive displacement hydraulic motors.

  8. Modelling of Hydraulic Robot

    Madsen, Henrik; Zhou, Jianjun; Hansen, Lars Henrik

    1997-01-01

    This paper describes a case study of identifying the physical model (or the grey box model) of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application...

  9. Manual Hydraulic Structures

    Molenaar, W.F.; Voorendt, M.Z.

    This manual is the result of group work and origins in Dutch lecture notes that have been used since long time. Amongst the employees of the Hydraulic Engineering Department that contributed to this work are dr.ir. S. van Baars, ir.K.G.Bezuijen, ir.G.P.Bourguignon, prof.ir.A.Glerum,

  10. Water Treatment Technology - Hydraulics.

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on hydraulics provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: head loss in pipes in series, function loss in…

  11. Cradle modification for hydraulic ram

    Koons, B.M.

    1995-01-01

    The analysis of the cradle hydraulic system considers stress, weld strength, and hydraulic forces required to lift and support the cradle/pump assembly. The stress and weld strength of the cradle modifications is evaluated to ensure that they meet the requirements of the American Institute for Steel Construction (AISC 1989). The hydraulic forces are evaluated to ensure that the hydraulic system is capable of rotating the cradle and pump assembly to the vertical position (between 70 degrees and 90 degrees)

  12. Thermal-Hydraulic Experiment Facility (THEF)

    Martinell, J.S.

    1982-01-01

    This paper provides an overview of the Thermal-Hydraulic Experiment Facility (THEF) at the Idaho National Engineering Laboratory (INEL). The overview describes the major test systems, measurements, and data acquisition system, and presents objectives, facility configuration, and results for major experimental projects recently conducted at the THEF. Plans for future projects are also discussed. The THEF is located in the Water Reactor Research Test Facility (WRRTF) area at the INEL

  13. Hydraulic turbines and auxiliary equipment

    Luo Gaorong [Organization of the United Nations, Beijing (China). International Centre of Small Hydroelectric Power Plants

    1995-07-01

    This document presents a general overview on hydraulic turbines and auxiliary equipment, emphasizing the turbine classification, in accordance with the different types of turbines, standard turbine series in China, turbine selection based on the basic data required for the preliminary design, general hill model curves, chart of turbine series and the arrangement of application for hydraulic turbines, hydraulic turbine testing, and speed regulating device.

  14. Hydraulic Hybrid Vehicle Publications | Transportation Research | NREL

    Hydraulic Hybrid Vehicle Publications Hydraulic Hybrid Vehicle Publications The following technical papers and fact sheets provide information about NREL's hydraulic hybrid fleet vehicle evaluations . Refuse Trucks Project Startup: Evaluating the Performance of Hydraulic Hybrid Refuse Vehicles. Bob

  15. Acceptance Test Report for 241-SY Pump Cradle Hydraulic System

    Koons, B.M.

    1995-01-01

    The purpose of this ATP is to verify that hydraulic system/cylinder procured to replace the cable/winch system on the 101-SY Mitigation Pump cradle assembly fulfills its functional requirements for raising and lowering the cradle assembly between 70 and 90 degrees, both with and without pump. A system design review was performed on the 101-SY Cradle Hydraulic System by the vendor before shipping (See WHC-SD-WM-DRR-045, 241-SY-101 Cradle Hydraulic System Design Review). The scope of this plan focuses on verification of the systems ability to rotate the cradle assembly and any load through the required range of motion

  16. Hydraulic manipulator research at ORNL

    Kress, R.L.; Jansen, J.F.; Love, L.J.

    1997-01-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL's flexible/prismatic test stand

  17. Hydraulic manipulator research at ORNL

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States); Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States)

    1997-03-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.

  18. Mechanics of Hydraulic Fractures

    Detournay, Emmanuel

    2016-01-01

    Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.

  19. Hydraulically actuated artificial muscles

    Meller, M. A.; Tiwari, R.; Wajcs, K. B.; Moses, C.; Reveles, I.; Garcia, E.

    2012-04-01

    Hydraulic Artificial Muscles (HAMs) consisting of a polymer tube constrained by a nylon mesh are presented in this paper. Despite the actuation mechanism being similar to its popular counterpart, which are pneumatically actuated (PAM), HAMs have not been studied in depth. HAMs offer the advantage of compliance, large force to weight ratio, low maintenance, and low cost over traditional hydraulic cylinders. Muscle characterization for isometric and isobaric tests are discussed and compared to PAMs. A model incorporating the effect of mesh angle and friction have also been developed. In addition, differential swelling of the muscle on actuation has also been included in the model. An application of lab fabricated HAMs for a meso-scale robotic system is also presented.

  20. Undular Hydraulic Jump

    Oscar Castro-Orgaz

    2015-04-01

    Full Text Available The transition from subcritical to supercritical flow when the inflow Froude number Fo is close to unity appears in the form of steady state waves called undular hydraulic jump. The characterization of the undular hydraulic jump is complex due to the existence of a non-hydrostatic pressure distribution that invalidates the gradually-varied flow theory, and supercritical shock waves. The objective of this work is to present a mathematical model for the undular hydraulic jump obtained from an approximate integration of the Reynolds equations for turbulent flow assuming that the Reynolds number R is high. Simple analytical solutions are presented to reveal the physics of the theory, and a numerical model is used to integrate the complete equations. The limit of application of the theory is discussed using a wave breaking condition for the inception of a surface roller. The validity of the mathematical predictions is critically assessed using physical data, thereby revealing aspects on which more research is needed

  1. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Ye HUANG

    2014-09-01

    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  2. Method of Relating Grain Size Distribution to Hydraulic Conductivity in Dune Sands to Assist in Assessing Managed Aquifer Recharge Projects: Wadi Khulays Dune Field, Western Saudi Arabia

    Lopez Valencia, Oliver Miguel; Jadoon, Khan; Missimer, Thomas

    2015-01-01

    Planning for use of a dune field aquifer for managed aquifer recharge (MAR) requires that hydraulic properties need to be estimated over a large geographic area. Saturated hydraulic conductivity of dune sands is commonly estimated from grain size

  3. Hydraulic Stability of Accropode Armour

    Jensen, T.; Burcharth, H. F.; Frigaard, Peter

    The present report describes the hydraulic model tests of Accropode armour layers carried out at the Hydraulics Laboratory at Aalborg University from November 1995 through March 1996. The objective of the model tests was to investigate the hydraulic stability of Accropode armour layers...... with permeable core (crushed granite with a gradation of 5-8 mm). The outcome of this study is described in "Hydraulic Stability of Single-Layer Dolos and Accropode Armour Layers" by Christensen & Burcharth (1995). In January/February 1996, Research Assistant Thomas Jensen carried out a similar study...

  4. Hydraulic fracturing proppants

    V. P. P. de Campos

    Full Text Available Abstract Hydrocarbon reservoirs can be classified as unconventional or conventional depending on the oil and gas extraction difficulty, such as the need for high-cost technology and techniques. The hydrocarbon extraction from bituminous shale, commonly known as shale gas/oil, is performed by using the hydraulic fracturing technique in unconventional reservoirs where 95% water, 0.5% of additives and 4.5% of proppants are used. Environmental problems related to hydraulic fracturing technique and better performance/development of proppants are the current challenge faced by companies, researchers, regulatory agencies, environmentalists, governments and society. Shale gas is expected to increase USA fuel production, which triggers the development of new proppants and technologies of exploration. This paper presents a review of the definition of proppants, their types, characteristics and situation in the world market and information about manufacturers. The production of nanoscale materials such as anticorrosive and intelligent proppants besides proppants with carbon nanotubes is already carried out on a scale of tonnes per year in Belgium, Germany and Asia countries.

  5. Hydraulic jett mixing

    Ackerman, J.R.

    1989-01-01

    Efficient mixing of reactants into a waste stream has always been a problem in that there has been no mixer capable of combining all the elements of enhanced mixing into a single piece of equipment. Through the development of a mixing system for the mining industry to treat acid mine water containing heavy metals, a versatile new hydraulic jetting static mixer has been developed that has no moving parts and a clean bore with no internal components. This paper reports that the main goal of the development of the hydraulic jett mixer was to reduce the size of the tankage required for an acid mine drainage (AMD) treatment plant through development of a static mixing device that could coincidentally aerate the treatment flow. This process equipment being developed would simultaneously adjust the pH and oxidize the metals allowing formation of the hydroxide sludges required for sedimentation and removal of the metals from the treatment stream. In effect, the device eliminates two reaction tanks, the neutralization/mixing tank and the aeration tank

  6. Applied hydraulic transients

    Chaudhry, M Hanif

    2014-01-01

    This book covers hydraulic transients in a comprehensive and systematic manner from introduction to advanced level and presents various methods of analysis for computer solution. The field of application of the book is very broad and diverse and covers areas such as hydroelectric projects, pumped storage schemes, water-supply systems, cooling-water systems, oil pipelines and industrial piping systems. Strong emphasis is given to practical applications, including several case studies, problems of applied nature, and design criteria. This will help design engineers and introduce students to real-life projects. This book also: ·         Presents modern methods of analysis suitable for computer analysis, such as the method of characteristics, explicit and implicit finite-difference methods and matrix methods ·         Includes case studies of actual projects ·         Provides extensive and complete treatment of governed hydraulic turbines ·         Presents design charts, desi...

  7. Process of preparing hydraulic cement

    1919-12-11

    A process of preparing hydraulic cement from oil shale or shale coke is characterized in that the oil shale or shale coke after the distillation is burned long and hot to liberate the usual amount of carbonic acid and then is fine ground to obtain a slow hardening hydraulic cement.

  8. Control rod drive hydraulic device

    Takekawa, Toru.

    1994-01-01

    The device of the present invention can reliably prevent a possible erroneous withdrawal of control rod driving mechanism when the pressure of a coolant line is increased by isolation operation of hydraulic control units upon periodical inspection for a BWR type reactor. That is, a coolant line is connected to the downstream of a hydraulic supply device. The coolant line is connected to a hydraulic control unit. A coolant hydraulic detection device and a pressure setting device are disposed to the coolant line. A closing signal line and a returning signal line are disposed, which connect the hydraulic supply device and a flow rate control valve for the hydraulic setting device. In the device of the present invention, even if pressure of supplied coolants is elevated due to isolation of hydraulic control units, the elevation of the hydraulic pressure can be prevented. Accordingly, reliability upon periodical reactor inspection can be improved. Further, the facility is simplified and the installation to an existent facility is easy. (I.S.)

  9. Legal aspects of the hydraulic fracturing method

    Marta Duraj

    2011-12-01

    Full Text Available In recent months the possibility of extracting shale gas by way of the hydraulic fracturing method in Poland as well as across EU territory has been widely discussed. The European Parliament is to decide whether to ban this method. There are various legal, ecological and economical aspects influencing European legislators. It is hard not to notice how strongly the anti- and pro- hydraulic fracturing lobbies are connected with business. At the moment there are no specific regulations that relate directly to this extraction method, neither in the EU as a whole nor in Poland. However, in Poland a new Geological and Mining Act is supposed to come into force on 1st January 2012, which will regulate natural gas extraction with a view to ensure proper extraction of shale gas in the near future. This article is aimed at showing Polish regulations, both planned and currently in force, as well as the relevant EU law in respect of shale gas extraction. The author would like to emphasize the need to create one coherent legislative regime which would enable entrepreneurs to commence extraction by way of hydraulic fracturing without creating a danger for the environment.

  10. Hydraulically centered control rod

    Horlacher, W.R.; Sampson, W.T.; Schukei, G.E.

    1981-01-01

    A control rod suspended to reciprocate in a guide tube of a nuclear fuel assembly has a hydraulic bearing formed at its lower tip. The bearing includes a plurality of discrete pockets on its outer surface into which a flow of liquid is continuously provided. In one embodiment the flow is induced by the pressure head in a downward facing chamber at the end of the bearing. In another embodiment the flow originates outside the guide tube. In both embodiments the flow into the pockets produces pressure differences across the bearing which counteract forces tending to drive the rod against the guide tube wall. Thus contact of the rod against the guide tube is avoided

  11. Equipment for hydraulic testing

    Jacobsson, L.; Norlander, H.

    1981-07-01

    Hydraulic testing in boreholes is one major task of the hydrogeological program in the Stripa Project. A new testing equipment for this purpose was constructed. It consists of a downhole part and a surface part. The downhole part consists of two packers enclosing two test-sections when inflated; one between the packers and one between the bottom packer and the bottom of the borehole. A probe for downhole electronics is also included in the downhole equipment together with electrical cable and nylon tubing. In order to perform shut-in and pulse tests with high accuracy a surface controlled downhole valve was constructed. The surface equipment consists of the data acquisition system, transducer amplifier and surface gauges. In the report detailed descriptions of each component in the whole testing equipment are given. (Auth.)

  12. In-place testing of hydraulic snubbers

    Raymont, J.M. Jr.

    1986-01-01

    Over the last few years, an increasing number of utilities have implemented periodic in-service inspection (ISI) programs of their hydraulic snubbers. This thrust has caused the nuclear power industry to seek cost-effective means of testing hydraulic snubbers. This paper reviews the following aspects of in-place testing and develops a technical justification for its use as a viable alternative to test bench testing. (1) A detailed examination of how in-place testing works is provided. Discussed are the hydraulic principles, fluid flow paths, and snubber test setup. (2) A comparison of the test bench and in-place test machines is provided. The discussion reviews the similarities and differences between the two test methods as well as the test results. (3) The need for correlation of in-place test results back to test bench data with a snubber footprint is discussed. (4) The issue of partial load testing with extrapolation to full load testing is discussed and compared with full load testing. The hydraulic principles as well as the costs and benefits of partial load versus full load testing are compared. (5) In-place test machine technology is reviewed. The operating principles, accuracies, and limitations are presented. (6) Actual test data are provided and reviewed on a test-by-test basis. (7) Lessons learned from actual in-place test jobs are reviewed. (8) In-place test procedures and calibration practices are outlined to illustrate the nature of the required planning on the part of the utility

  13. Experience in small hydropower indigenous manufacture of mini hydraulic turbines

    Luo Gao Rong [Organization of the United Nations, Beijing (China). International Centre of Small Hydropowers

    1995-07-01

    This document reports the China experience with fabrication of mini hydraulic turbines for small hydroelectric power plants. The document presents the necessity of indigenous manufacture for MHP equipment, the standardized and serialized production, the planning of the series of turbines, the manufacturing of turbine runners, and as a case study the basic conditions for manufacturing MHP turbines.

  14. Current and anticipated uses of thermal hydraulic codes in Korea

    Kim, Kyung-Doo; Chang, Won-Pyo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    In Korea, the current uses of thermal hydraulic codes are categorized into 3 areas. The first application is in designing both nuclear fuel and NSSS. The codes have usually been introduced based on the technology transfer programs agreed between KAERI and the foreign vendors. Another area is in the supporting of the plant operations and licensing by the utility. The third category is research purposes. In this area assessments and some applications to the safety issue resolutions are major activities using the best estimate thermal hydraulic codes such as RELAP5/MOD3 and CATHARE2. Recently KEPCO plans to couple thermal hydraulic codes with a neutronics code for the design of the evolutionary type reactor by 2004. KAERI also plans to develop its own best estimate thermal hydraulic code, however, application range is different from KEPCO developing code. Considering these activities, it is anticipated that use of the best estimate hydraulic analysis code developed in Korea may be possible in the area of safety evaluation within 10 years.

  15. Hydraulic Actuators with Autonomous Hydraulic Supply for the Mainline Aircrafts

    I. S. Shumilov

    2014-01-01

    Full Text Available Applied in the aircraft control systems, hydraulic servo actuators with autonomous hydraulic supply, so-called, hydraulic actuators of integrated configuration, i.e. combination of a source of hydraulic power and its load in the single unit, are aimed at increasing control system reliability both owing to elimination of the pipelines connecting the actuator to the hydraulic supply source, and owing to avoidance of influence of other loads failure on the actuator operability. Their purpose is also to raise control system survivability by eliminating the long pipeline communications and their replacing for the electro-conductive power supply system, thus reducing the vulnerability of systems. The main reason for a delayed application of the hydraulic actuators in the cutting-edge aircrafts was that such aircrafts require hydraulic actuators of considerably higher power with considerable heat releases, which caused an unacceptable overheat of the hydraulic actuators. Positive and negative sides of the hydraulic actuators, their alternative options of increased reliability and survivability, local hydraulic systems as an advanced alternative to independent hydraulic actuators are considered.Now to use hydraulic actuators in mainline aircrafts is inexpedient since there are the unfairly large number of the problems reducing, first and last, safety of flights, with no essential weight and operational advantages. Still works to create competitive hydraulic actuators ought to be continued.Application of local hydraulic systems (LHS will allow us to reduce length of pressure head and drain pipelines and mass of pipelines, as well as to raise their general fail-safety and survivability. Application of the LHS principle will allow us to use a majority of steering drive advantages. It is necessary to allocate especially the following:- ease of meeting requirements for the non-local spread of the engine weight;- essentially reducing length and weight of

  16. Hydraulic design of Three Gorges right bank powerhouse turbine for improvement of hydraulic stability

    Shi, Q

    2010-01-01

    This paper presents the hydraulic design of Three Gorges Right Bank Powerhouse turbine for improvement of hydraulic stability. The technical challenges faced in the hydraulic design of the turbine are given. The method of hydraulic design for improving the hydraulic stability and particularly for eliminating the upper part load pressure pulsations is clarified. The final hydraulic design results of Three Gorges Right Bank Powerhouse turbine based on modern hydraulic design techniques are presented.

  17. Hydraulic design of Three Gorges right bank powerhouse turbine for improvement of hydraulic stability

    Shi, Q, E-mail: qhshi@dfem.com.c [Dong Fang Electrical Machinery Co., Ltd., DEC 188, Huanghe West Road, Deyang, 618000 (China)

    2010-08-15

    This paper presents the hydraulic design of Three Gorges Right Bank Powerhouse turbine for improvement of hydraulic stability. The technical challenges faced in the hydraulic design of the turbine are given. The method of hydraulic design for improving the hydraulic stability and particularly for eliminating the upper part load pressure pulsations is clarified. The final hydraulic design results of Three Gorges Right Bank Powerhouse turbine based on modern hydraulic design techniques are presented.

  18. Hydraulic release oil tool

    Mims, M.G.; Mueller, M.D.; Ehlinger, J.C.

    1992-01-01

    This patent describes a hydraulic release tool. It comprises a setting assembly; a coupling member for coupling to drill string or petroleum production components, the coupling member being a plurality of sockets for receiving the dogs in the extended position and attaching the coupling member the setting assembly; whereby the setting assembly couples to the coupling member by engagement of the dogs in the sockets of releases from and disengages the coupling member in movement of the piston from its setting to its reposition in response to a pressure in the body in exceeding the predetermined pressure; and a relief port from outside the body into its bore and means to prevent communication between the relief port and the bore of the body axially of the piston when the piston is in the setting position and to establish such communication upon movement of the piston from the setting position to the release position and reduce the pressure in the body bore axially of the piston, whereby the reduction of the pressure signals that the tool has released the coupling member

  19. Stirling/hydraulic artificial heart power source

    Johnston, R.P.; Bennett, A.; Emigh, S.G.; Griffith, W.R.; Noble, J.E.; Perrone, R.E.; White, M.A.; Martini, W.R.; Alexander, J.E.

    1977-01-01

    The REL power source combines the high efficiency of Stirling engines with the reliability, efficiency, and flexibility of hydraulic power transfer and control to ensure long system life and physiological effectiveness. Extended life testing has been achieved with an engine (2.6 years) and hydraulic actuator/controller (1.6 years). Peak power source efficiency is 15.5 percent on 5 to 10 watts delivered to the blood pump push plate with 33 watts steady thermal input. Planned incorporation of power source output control is expected to reduce daily average thermal input to 18 watts. Animal in-vivo tests with an assist heart have consistently demonstrated required performance by biological synchronization and effective ventricle relief. Volume and weight are 0.93 liter and 2.4 kg (excluding blood pump) with an additional 0.4 liter of low temperature foam insulation required to preclude tissue thermal damage. Carefully planned development of System 7 is expected to produce major reductions in size

  20. HYDRAULICS, SHELBY COUNTY, KENTUCKY, USA

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  1. HYDRAULICS, MEADE COUNTY, KENTUCKY, USA

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  2. The Process of Hydraulic Fracturing

    Hydraulic fracturing, know as fracking or hydrofracking, produces fractures in a rock formation by pumping fluids (water, proppant, and chemical additives) at high pressure down a wellbore. These fractures stimulate the flow of natural gas or oil.

  3. Steam generator thermal-hydraulics

    Inch, W.W.; Scott, D.A.; Carver, M.B.

    1980-01-01

    This paper discusses a code for detailed numerical modelling of steam generator thermal-hydraulics, and describes related experimental programs designed to promote in-depth understanding of three-dimensional two-phase flow. (auth)

  4. Advanced Performance Hydraulic Wind Energy

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  5. Robust Prediction of Hydraulic Roughness

    2011-03-01

    Manning’s n were required as input for further hydraulic analyses with HEC - RAS . HYDROCAL was applied to compare different estimates of resistance... River Restoration Science Synthesis (NRRSS) demonstrated that, in 2007, river and stream restoration projects and funding were at an all time high...behavior makes this parameter very difficult to quan- tify repeatedly and accurately. A fundamental concept of hydraulic theory in the context of river

  6. Hydraulic testing in crystalline rock

    Almen, K.E.; Andersson, J.E.; Carlsson, L.; Hansson, K.; Larsson, N.A.

    1986-12-01

    Swedish Geolocical Company (SGAB) conducted and carried out single-hole hydraulic testing in borehole Fi 6 in the Finnsjoen area of central Sweden. The purpose was to make a comprehensive evaluation of different methods applicable in crystalline rocks and to recommend methods for use in current and scheduled investigations in a range of low hydraulic conductivity rocks. A total of eight different methods of testing were compared using the same equipment. This equipment was thoroughly tested as regards the elasticity of the packers and change in volume of the test section. The use of a hydraulically operated down-hole valve enabled all the tests to be conducted. Twelve different 3-m long sections were tested. The hydraulic conductivity calculated ranged from about 5x10 -14 m/s to 1x10 -6 m/s. The methods used were water injection under constant head and then at a constant rate-of-flow, each of which was followed by a pressure fall-off period. Water loss, pressure pulse, slug and drill stem tests were also performed. Interpretation was carried out using standard transient evaluation methods for flow in porous media. The methods used showed themselves to be best suited to specific conductivity ranges. Among the less time-consuming methods, water loss, slug and drill stem tests usually gave somewhat higher hydraulic conductivity values but still comparable to those obtained using the more time-consuming tests. These latter tests, however, provided supplementary information on hydraulic and physical properties and flow conditions, together with hydraulic conductivity values representing a larger volume of rock. (orig./HP)

  7. Re-launching the production of green electricity in the United States: Prometheus meets Keynes;la relance de la production d'electricite verte aux Etats-Unis: une rencontre entre Promethee... et Keynes

    Magaud, M. [Ambassade de France aux Etats-Unis, Mission pour la Science et la Technologie (United States); Ochoa, D. [Ecole Nationale Superieure des Mines, Dir. de l' Innovation et du Developpement 42 - Saint-Etienne (France)

    2009-11-15

    During his campaign, Barack Obama insisted on the close tie between the recession, climate change and national security in matters of energy, given the country's excessive dependence on oil imports. He outlined the development of a low-carbon economy that would, in 2050, emit only 20% as much greenhouse gas as in 1990. He pledged to devote, over a ten-year period, 150 billion dollars to research and development on renewable energy, either through direct funding (grants, loan guarantees, purchases by the federal government, etc.) or tax incentives. He also spoke about the potential creation of five million jobs in environmental-friendly technology. Given his first official declarations on climate change and the importance of the theme of energy in the first measures taken by his administration, the new president has reflected the same level of concern as the candidate. Since his election, Obama has pursued the same policy line by orienting his massive economic stimulus plan (787 billion dollars) toward creating 'green jobs', especially in energy (85 billion dollars). In the stimulus package, research and development for new sources of low-carbon energy - stocking CO{sub 2} underground, solar and geothermal energy, wind power, second-generation bio-fuels, etc. - are among the top priorities. (authors)

  8. Hydraulic gradients in rock aquifers

    Dahlblom, P.

    1992-05-01

    This report deals with fractured rock as a host for deposits of hazardous waste. In this context the rock, with its fractures containing moving groundwater, is called the geological barrier. The desired properties of the geological barrier are low permeability to water, low hydraulic gradients and ability to retain matter dissolved in the water. The hydraulic gradient together with the permeability and the porosity determines the migration velocity. Mathematical modelling of the migration involves calculation of the water flow and the hydrodynamic dispersion of the contaminant. The porous medium approach can be used to calculate mean flow velocities and hydrodynamic dispersion of a large number of fractures are connected, which means that a large volume have to be considered. It is assumed that the porous medium approach can be applied, and a number of idealized examples are shown. It is assumed that the groundwater table is replenished by percolation at a constant rate. One-dimensional analytical calculations show that zero hydraulic gradients may exist at relatively large distance from the coast. Two-dimensional numerical calculations show that it may be possible to find areas with low hydraulic gradients and flow velocities within blocks surrounded by areas with high hydraulic conductivity. (au)

  9. Inherent Limitations of Hydraulic Tomography

    Bohling, Geoffrey C.; Butler, J.J.

    2010-01-01

    We offer a cautionary note in response to an increasing level of enthusiasm regarding high-resolution aquifer characterization with hydraulic tomography. We use synthetic examples based on two recent field experiments to demonstrate that a high degree of nonuniqueness remains in estimates of hydraulic parameter fields even when those estimates are based on simultaneous analysis of a number of carefully controlled hydraulic tests. We must, therefore, be careful not to oversell the technique to the community of practicing hydrogeologists, promising a degree of accuracy and resolution that, in many settings, will remain unattainable, regardless of the amount of effort invested in the field investigation. No practically feasible amount of hydraulic tomography data will ever remove the need to regularize or bias the inverse problem in some fashion in order to obtain a unique solution. Thus, along with improving the resolution of hydraulic tomography techniques, we must also strive to couple those techniques with procedures for experimental design and uncertainty assessment and with other more cost-effective field methods, such as geophysical surveying and, in unconsolidated formations, direct-push profiling, in order to develop methods for subsurface characterization with the resolution and accuracy needed for practical field applications. Copyright ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  10. Selective perceptions of hydraulic fracturing.

    Sarge, Melanie A; VanDyke, Matthew S; King, Andy J; White, Shawna R

    2015-01-01

    Hydraulic fracturing (HF) is a focal topic in discussions about domestic energy production, yet the American public is largely unfamiliar and undecided about the practice. This study sheds light on how individuals may come to understand hydraulic fracturing as this unconventional production technology becomes more prominent in the United States. For the study, a thorough search of HF photographs was performed, and a systematic evaluation of 40 images using an online experimental design involving N = 250 participants was conducted. Key indicators of hydraulic fracturing support and beliefs were identified. Participants showed diversity in their support for the practice, with 47 percent expressing low support, 22 percent high support, and 31 percent undecided. Support for HF was positively associated with beliefs that hydraulic fracturing is primarily an economic issue and negatively associated with beliefs that it is an environmental issue. Level of support was also investigated as a perceptual filter that facilitates biased issue perceptions and affective evaluations of economic benefit and environmental cost frames presented in visual content of hydraulic fracturing. Results suggested an interactive relationship between visual framing and level of support, pointing to a substantial barrier to common understanding about the issue that strategic communicators should consider.

  11. Birth of a hydraulic jump

    Duchesne, Alexis; Bohr, Tomas; Andersen, Anders

    2017-11-01

    The hydraulic jump, i.e., the sharp transition between a supercritical and a subcritical free-surface flow, has been extensively studied in the past centuries. However, ever since Leonardo da Vinci asked it for the first time, an important question has been left unanswered: How does a hydraulic jump form? We present an experimental and theoretical study of the formation of stationary hydraulic jumps in centimeter wide channels. Two starting situations are considered: The channel is, respectively, empty or filled with liquid, the liquid level being fixed by the wetting properties and the boundary conditions. We then change the flow-rate abruptly from zero to a constant value. In an empty channel, we observe the formation of a stationary hydraulic jump in a two-stage process: First, the channel fills by the advancing liquid front, which undergoes a transition from supercritical to subcritical at some position in the channel. Later the influence of the downstream boundary conditions makes the jump move slowly upstream to its final position. In the pre-filled channel, the hydraulic jump forms at the injector edge and then moves downstream to its final position.

  12. Hydraulic resistance of biofilms

    Dreszer, C.

    2013-02-01

    Biofilms may interfere with membrane performance in at least three ways: (i) increase of the transmembrane pressure drop, (ii) increase of feed channel (feed-concentrate) pressure drop, and (iii) increase of transmembrane passage. Given the relevance of biofouling, it is surprising how few data exist about the hydraulic resistance of biofilms that may affect the transmembrane pressure drop and membrane passage. In this study, biofilms were generated in a lab scale cross flow microfiltration system at two fluxes (20 and 100Lm-2h-1) and constant cross flow (0.1ms-1). As a nutrient source, acetate was added (1.0mgL-1 acetate C) besides a control without nutrient supply. A microfiltration (MF) membrane was chosen because the MF membrane resistance is very low compared to the expected biofilm resistance and, thus, biofilm resistance can be determined accurately. Transmembrane pressure drop was monitored. As biofilm parameters, thickness, total cell number, TOC, and extracellular polymeric substances (EPS) were determined, it was demonstrated that no internal membrane fouling occurred and that the fouling layer actually consisted of a grown biofilm and was not a filter cake of accumulated bacterial cells. At 20Lm-2h-1 flux with a nutrient dosage of 1mgL-1 acetate C, the resistance after 4 days reached a value of 6×1012m-1. At 100Lm-2h-1 flux under the same conditions, the resistance was 5×1013m-1. No correlation of biofilm resistance to biofilm thickness was found; Biofilms with similar thickness could have different resistance depending on the applied flux. The cell number in biofilms was between 4×107 and 5×108 cellscm-2. At this number, bacterial cells make up less than a half percent of the overall biofilm volume and therefore did not hamper the water flow through the biofilm significantly. A flux of 100Lm-2h-1 with nutrient supply caused higher cell numbers, more biomass, and higher biofilm resistance than a flux of 20Lm-2h-1. However, the biofilm thickness

  13. Advantages of Oscillatory Hydraulic Tomography

    Kitanidis, P. K.; Bakhos, T.; Cardiff, M. A.; Barrash, W.

    2012-12-01

    Characterizing the subsurface is significant for most hydrogeologic studies, such as those involving site remediation and groundwater resource explo¬ration. A variety of hydraulic and geophysical methods have been developed to estimate hydraulic conductivity and specific storage. Hydraulic methods based on the analysis of conventional pumping tests allow the estimation of conductivity and storage without need for approximate petrophysical relations, which is an advantage over most geophysical methods that first estimate other properties and then infer values of hydraulic parameters. However, hydraulic methods have the disadvantage that the head-change signal decays with distance from the pumping well and thus becomes difficult to separate from noise except in close proximity to the source. Oscillatory hydraulic tomography (OHT) is an emerging technology to im¬age the subsurface. This method utilizes the idea of imposing sinusoidally varying pressure or discharge signals at several points, collecting head observations at several other points, and then processing these data in a tomographic fashion to estimate conductivity and storage coefficients. After an overview of the methodology, including a description of the most important potential advantages and challenges associated with this approach, two key promising features of the approach will be discussed. First, the signal at an observation point is orthogonal to and thus can be separated from nuisance inputs like head fluctuation from production wells, evapotranspiration, irrigation, and changes in the level of adjacent streams. Second, although the signal amplitude may be weak, one can extract the phase and amplitude of the os¬cillatory signal by collecting measurements over a longer time, thus compensating for the effect of large distance through longer sampling period.

  14. Water hydraulic applications in hazardous environments

    Siuko, M.; Koskinen, K.T.; Vilenius, M.J.

    1996-01-01

    Water hydraulic technology provides several advantages for devices operating in critical environment. Though water hydraulics has traditionally been used in very rough applications, gives recent strong development of components possibility to build more sophisticated applications and devices with similar capacity and control properties than those of oil hydraulics without the disadvantages of oil hydraulic systems. In this paper, the basic principles, possibilities and advantages of water hydraulics are highlighted, some of the most important design considerations are presented and recent developments of water hydraulic technology are presented. Also one interesting application area, ITER fusion reactor remote handling devices, are discussed. (Author)

  15. Hydraulic lifter for an underwater drilling rig

    Garan' ko, Yu L

    1981-01-15

    A hydraulic lifter is suggested for an underwater drilling rig. It includes a base, hydraulic cylinders for lifting the drilling pipes connected to the clamp holder and hydraulic distributor. In order to simplify the design of the device, the base is made with a hollow chamber connected to the rod cavities and through the hydraulic distributor to the cavities of the hydraulic cylinders for lifting the drilling pipes. The hydraulic distributor is connected to the hydrosphere through the supply valve with control in time or by remote control. The base is equipped with reverse valves whose outlets are on the support surface of the base.

  16. Hydraulic lifter of a drilling unit

    Velikovskiy, L S; Demin, A V; Shadchinov, L M

    1979-01-08

    The invention refers to drilling equipment, in particular, devices for lowering and lifting operations during drilling. A hydraulic lifter of the drilling unit is suggested which contains a hydraulic cylinder, pressure line and hollow plunger whose cavities are hydraulically connected. In order to improve the reliability of the hydraulic lifter by balancing the forces of compression in the plunger of the hydraulic cylinder, a closed vessel is installed inside the plunger and rigidly connected to its ends. Its cavity is hydraulically connected to the pressure line.

  17. Controls of Hydraulic Wind Turbine

    Zhang Yin

    2016-01-01

    Full Text Available In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system can connect grid to generate electric and enhance reliability. The control system demonstrates a high performance speed regulation and effectiveness. The results are great significant to design a new type hydraulic wind turbine system.

  18. Design of hydraulic recuperation unit

    Jandourek Pavel

    2016-01-01

    Full Text Available This article deals with design and measurement of hydraulic recuperation unit. Recuperation unit consist of radial turbine and axial pump, which are coupled on the same shaft. Speed of shaft with impellers are 6000 1/min. For economic reasons, is design of recuperation unit performed using commercially manufactured propellers.

  19. Tree Hydraulics: How Sap Rises

    Denny, Mark

    2012-01-01

    Trees transport water from roots to crown--a height that can exceed 100 m. The physics of tree hydraulics can be conveyed with simple fluid dynamics based upon the Hagen-Poiseuille equation and Murray's law. Here the conduit structure is modelled as conical pipes and as branching pipes. The force required to lift sap is generated mostly by…

  20. Tubing Cutter is Activated Hydraulically

    Mcsmith, D. G.; Richardson, J. I.

    1983-01-01

    Hydraulically-actuated tubing cutter severs tubing when operator squeezes handle grip. "Gooseneck" extension enables cutter to be used in areas where accessiblity is limited. Cutter has potential as flight-line tool and is useful in automobile and fire rescue work.

  1. Hydraulics calculation in drilling simulator

    Malyugin, Aleksey A.; Kazunin, Dmitry V.

    2018-05-01

    The modeling of drilling hydraulics in the simulator system is discussed. This model is based on the previously developed quasi-steady model of an incompressible fluid flow. The model simulates the operation of all parts of the hydraulic drilling system. Based on the principles of creating a common hydraulic model, a set of new elements for well hydraulics was developed. It includes elements that correspond to the in-drillstring and annular space. There are elements controlling the inflow from the reservoir into the well and simulating the lift of gas along the annulus. New elements of the hydrosystem take into account the changing geometry of the well, loss in the bit, characteristics of the fluids including viscoplasticity. There is an opportunity specify the complications, the main one of which is gas, oil and water inflow. Correct work of models in cases of complications makes it possible to work out various methods for their elimination. The coefficients of the model are adjusted on the basis of incomplete experimental data provided by operators of drilling platforms. At the end of the article the results of modeling the elimination of gas inflow by a continuous method are presented. The values displayed in the simulator (drill pipe pressure, annulus pressure, input and output flow rates) are in good agreement with the experimental data. This exercise took one hour, which is less than the time on a real rig with the same configuration of equipment and well.

  2. Hydraulics submission for Middlesex County, NJ

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data include spatial datasets and data tables necessary for documenting the hydraulic procedures for estimating base flood elevation for a flood insurance...

  3. DCS Hydraulics Submittal, Bullock County, Alabama, USA

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data includes spatial datasets and data tables necessary for documenting the hydraulic procedures for computing flood elevations for a flood insurance...

  4. DCS Hydraulics Submittal, Butler County, Alabama, USA

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data includes spatial datasets and data tables necessary for documenting the hydraulic procedures for computing flood elevations for a flood insurance...

  5. DCS Hydraulics Submittal, Covington County, Alabama, USA

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data includes spatial datasets and data tables necessary for documenting the hydraulic procedures for computing flood elevations for a flood insurance...

  6. CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES

    WITTEKIND WD

    2007-01-01

    This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% 239 Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: (sm b ullet)bare, (sm b ullet)1 inch of hydraulic fluid, or (sm b ullet)12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection

  7. Hydraulics submission for Gloucester County, NJ

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data include spatial datasets and data tables necessary for documenting the hydraulic procedures for estimating base flood elevation for a flood insurance...

  8. Hydraulic characterization of " Furcraea andina

    Rivera-Velasquez, M. F.; Fallico, C.; Molinari, A.; Santillan, P.; Salazar, M.

    2012-04-01

    The present level of pollution, increasingly involving groundwaters, constitutes a serious risk for environment and human health. Therefore the remediation of saturated and unsaturated soils, removing pollutant materials through innovative and economic bio-remediation techniques is more frequently required. Recent studies on natural fiber development have shown the effectiveness of these fibers for removal of some heavy metals, due to the lignin content in the natural fibers which plays an important role in the adsorption of metal cations (Lee et al., 2004; Troisi et al., 2008; C. Fallico, 2010). In the context of remediation techniques for unsaturated and/or saturated zone, an experimental approach for the hydraulic characterization of the "Furcraea andina" (i.e., Cabuya Blanca) fiber was carried out. This fiber is native to Andean regions and grows easily in wild or cultivated form in the valleys and hillsides of Colombia, Ecuador, and Peru. Fibers of "Furcraea andina" were characterized by experimental tests to determine their hydraulic conductivity or permeability and porosity in order to use this medium for bioremediation of contaminated aquifer exploiting the physical, chemical and microbial capacity of natural fiber in heavy metal adsorption. To evaluate empirically the hydraulic conductivity, laboratory tests were carried out at constant head specifically on the fibers manually extracted. For these tests we used a flow cell (used as permeameter), containing the "Furcraea andina" fibers to be characterized, suitably connected by a tygon pipe to a Marriott's bottle, which had a plastic tube that allow the adjustment of the hydraulic head for different tests to a constant value. By this experiment it was also possible to identify relationships that enable the estimation of permeability as a function of density, i.e. of the compaction degree of the fibers. Our study was carried out for three values of hydraulic head (H), namely 10, 18, and 25 cm and for each

  9. Hydraulic conductivity of rock fractures

    Zimmerman, R.W.; Bodvarsson, G.S.

    1994-10-01

    Yucca Mountain, Nevada contains numerous geological units that are highly fractured. A clear understanding of the hydraulic conductivity of fractures has been identified as an important scientific problem that must be addressed during the site characterization process. The problem of the flow of a single-phase fluid through a rough-walled rock fracture is discussed within the context of rigorous fluid mechanics. The derivation of the cubic law is given as the solution to the Navier-Stokes equations for flow between smooth, parallel plates, the only fracture geometry that is amenable to exact treatment. The various geometric and kinetic conditions that are necessary in order for the Navier-Stokes equations to be replaced by the more tractable lubrication or Hele-Shaw equations are studied and quantified. Various analytical and numerical results are reviewed pertaining to the problem of relating the effective hydraulic aperture to the statistics of the aperture distribution. These studies all lead to the conclusion that the effective hydraulic aperture is always less than the mean aperture, by a factor that depends on the ratio of the mean value of the aperture to its standard deviation. The tortuosity effect caused by regions where the rock walls are in contact with each other is studied using the Hele-Shaw equations, leading to a simple correction factor that depends on the area fraction occupied by the contact regions. Finally, the predicted hydraulic apertures are compared to measured values for eight data sets from the literature for which aperture and conductivity data were available on the same fracture. It is found that reasonably accurate predictions of hydraulic conductivity can be made based solely on the first two moments of the aperture distribution function, and the proportion of contact area. 68 refs

  10. Subsea Hydraulic Leakage Detection and Diagnosis

    Stavenes, Thomas

    2010-01-01

    The motivation for this thesis is reduction of hydraulic emissions, minimizing of process emergency shutdowns, exploitation of intervention capacity, and reduction of costs. Today, monitoring of hydraulic leakages is scarce and the main way to detect leakage is the constant need for filling of hydraulic fluid to the Hydraulic Power Unit (HPU). Leakage detection and diagnosis has potential, which would be adressed in this thesis. A strategy towards leakage detection and diagnosis is given....

  11. Stakeholder Engagement Road Map and Peer Review Overview for EPA's Study of the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

    This roadmap outlines EPA’s plans to build upon the Agency’s commitment to transparency & stakeholder engagement coordinated during the development of the Hydraulic Fracturing (HF) Study Plan & will help inform the 2014 HF study draft assessment report.

  12. Numerical Simulation of Hydraulic Fracture Propagation Guided by Single Radial Boreholes

    Tiankui Guo

    2017-10-01

    Full Text Available Conventional hydraulic fracturing is not effective in target oil development zones with available wellbores located in the azimuth of the non-maximum horizontal in-situ stress. To some extent, we think that the radial hydraulic jet drilling has the function of guiding hydraulic fracture propagation direction and promoting deep penetration, but this notion currently lacks an effective theoretical support for fracture propagation. In order to verify the technology, a 3D extended finite element numerical model of hydraulic fracturing promoted by the single radial borehole was established, and the influences of nine factors on propagation of hydraulic fracture guided by the single radial borehole were comprehensively analyzed. Moreover, the term ‘Guidance factor (Gf’ was introduced for the first time to effectively quantify the radial borehole guidance. The guidance of nine factors was evaluated through gray correlation analysis. The experimental results were consistent with the numerical simulation results to a certain extent. The study provides theoretical evidence for the artificial control technology of directional propagation of hydraulic fracture promoted by the single radial borehole, and it predicts the guidance effect of a single radial borehole on hydraulic fracture to a certain extent, which is helpful for planning well-completion and fracturing operation parameters in radial borehole-promoted hydraulic fracturing technology.

  13. Variabilidade espacial de classes de textura, salinidade e condutividade hidráulica de solos em planície aluvial Spatial variability of textural classes, salinity and hydraulic conductivity of soil in an alluvial plain

    Abelardo A. A. Montenegro

    2006-03-01

    , 320, and 520 m, respectively. It has been verified that the indicator geostatistics preserved the spatial correlation between texture and hydraulic conductivity, and between texture and electrical conductivity. Thus, the main soil classes can be adopted to represent different leaching and salinisation risk patterns. The discussed methodology has a potential for spatial variability investigations on soil physical properties in alluvial areas where contrasting soil classes prevail.

  14. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    Akimoto, Hajime; Kukita; Ohnuki, Akira

    1997-01-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission's research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment

  15. Experience curve for natural gas production by hydraulic fracturing

    Fukui, Rokuhei; Greenfield, Carl; Pogue, Katie; Zwaan, Bob van der

    2017-01-01

    From 2007 to 2012 shale gas production in the US expanded at an astounding average growth rate of over 50%/yr, and thereby increased nearly tenfold over this short time period alone. Hydraulic fracturing technology, or “fracking”, as well as new directional drilling techniques, played key roles in this shale gas revolution, by allowing for extraction of natural gas from previously unviable shale resources. Although hydraulic fracturing technology had been around for decades, it only recently became commercially attractive for large-scale implementation. As the production of shale gas rapidly increased in the US over the past decade, the wellhead price of natural gas dropped substantially. In this paper we express the relationship between wellhead price and cumulative natural gas output in terms of an experience curve, and obtain a learning rate of 13% for the industry using hydraulic fracturing technology. This learning rate represents a measure for the know-how and skills accumulated thus far by the US shale gas industry. The use of experience curves for renewable energy options such as solar and wind power has allowed analysts, practitioners, and policy makers to assess potential price reductions, and underlying cost decreases, for these technologies in the future. The reasons for price reductions of hydraulic fracturing are fundamentally different from those behind renewable energy technologies – hence they cannot be directly compared – and hydraulic fracturing may soon reach, or maybe has already attained, a lower bound for further price reductions, for instance as a result of its water requirements or environmental footprint. Yet, understanding learning-by-doing phenomena as expressed by an industry-wide experience curve for shale gas production can be useful for strategic planning in the gas sector, as well as assist environmental policy design, and serve more broadly as input for projections of energy system developments. - Highlights: • Hydraulic

  16. Hydraulic design development of Xiluodu Francis turbine

    Wang, Y L; Li, G Y; Shi, Q H; Wang, Z N

    2012-01-01

    Hydraulic optimization design with CFD (Computational Fluid Dynamics) method, hydraulic optimization measures and model test results in the hydraulic development of Xiluodu hydropower station by DFEM (Dongfang Electric Machinery) of DEC (Dongfang Electric Corporation) of China were analyzed in this paper. The hydraulic development conditions of turbine, selection of design parameter, comparison of geometric parameters and optimization measure of turbine flow components were expatiated. And the measures of improving turbine hydraulic performance and the results of model turbine acceptance experiment were discussed in details.

  17. Relance de l'aquaculture au Sri Lanka | IDRC - International ...

    29 avr. 2016 ... Aquaculture au Sri Lanka. L'adoption de l'ostréiculture dans deux collectivités côtières du Sri Lanka a donné lieu aux premières exportations d'huîtres du pays. Au Sri Lanka, le gouvernement a pour objectif de doubler la consommation de poisson par personne, de 11 kilos à 22 kilos par année, d'ici à la fin ...

  18. Relance de l'aquaculture au Sri Lanka

    cas de risque et de mettre au point des systèmes de dépuration (c'est-à-dire de purification au moyen d'eau de mer stérilisée). Un élément primordial du projet de recherche consiste à protéger la population contre les contaminants (aussi bien naturels que d'origine anthropique). Pour que les collectivités puissent exploiter ...

  19. Current Development and Trends in Thermal-Hydraulics

    Toth, I.

    2008-01-01

    A review of CSNI activities during the last two decades in the field of thermal-hydraulics and related topics has been extensively presented in sessions 2. to 9. New activities are in progress or planned partly based on recommendations of the CSNI Operating Plan and the CSNI SESAR SFEAR report, but also on requests coming from the member states. These activities are performed in the frame of the CSNI Working Group on the Analysis and Management of Accidents (GAMA) or in the frame of CSNI Projects. These actions are summarized in this paper.

  20. Advanced energy saving hydraulic elevator

    Garrido, A.; Sevilleja, J.; Servia, A.

    1993-08-24

    An hydraulic elevator is described comprising: a counterweighted elevator comprising a car, a counterweight, and a rope connecting the car and the counterweight; a ram having a first reaction surface for driving one of the car or the counterweight upwardly and a second reaction surface for driving one of the car or the counterweight downwardly; multiplier means for moving the car a distance greater than a stroke of the ram, the multiplier means connecting the ram to the counterweighted elevator, the multiplier means comprising: a first pulley; a second pulley; means for rigidly connecting the first and second pulley, the means having a length corresponding to a rise of the hydraulic elevator, the means attaching to the ram; and a pulley rope which: has a first end attaching to a first fixed point, extends about the first pulley, extends about the second pulley, and has a second end attaching to a second fixed point.

  1. Model for polygonal hydraulic jumps

    Martens, Erik Andreas; Watanabe, Shinya; Bohr, Tomas

    2012-01-01

    We propose a phenomenological model for the polygonal hydraulic jumps discovered by Ellegaard and co-workers [Nature (London) 392, 767 (1998); Nonlinearity 12, 1 (1999); Physica B 228, 1 (1996)], based on the known flow structure for the type-II hydraulic jumps with a "roller" (separation eddy...... nonhydrostatic pressure contributions from surface tension in light of recent observations by Bush and co-workers [J. Fluid Mech. 558, 33 (2006); Phys. Fluids 16, S4 (2004)]. The model can be analyzed by linearization around the circular state, resulting in a parameter relationship for nearly circular polygonal...... states. A truncated but fully nonlinear version of the model can be solved analytically. This simpler model gives rise to polygonal shapes that are very similar to those observed in experiments, even though surface tension is neglected, and the condition for the existence of a polygon with N corners...

  2. Hysteresis phenomena in hydraulic measurement

    Ran, H J; Farhat, M; Luo, X W; Chen, Y L; Xu, H Y

    2012-01-01

    Hysteresis phenomena demonstrate the lag between the generation and the removal of some physical phenomena. This paper studies the hysteresis phenomena of the head-drop in a scaled model pump turbine using experiment test and CFD methods. These lag is induced by complicated flow patterns, which influenced the reliability of rotating machine. Keeping the same measurement procedure is concluded for the hydraulic machine measurement.

  3. Computing in Hydraulic Engineering Education

    Duan, J. G.

    2011-12-01

    Civil engineers, pioneers of our civilization, are rarely perceived as leaders and innovators in modern society because of retardations in technology innovation. This crisis has resulted in the decline of the prestige of civil engineering profession, reduction of federal funding on deteriorating infrastructures, and problems with attracting the most talented high-school students. Infusion of cutting-edge computer technology and stimulating creativity and innovation therefore are the critical challenge to civil engineering education. To better prepare our graduates to innovate, this paper discussed the adaption of problem-based collaborative learning technique and integration of civil engineering computing into a traditional civil engineering curriculum. Three interconnected courses: Open Channel Flow, Computational Hydraulics, and Sedimentation Engineering, were developed with emphasis on computational simulations. In Open Channel flow, the focuses are principles of free surface flow and the application of computational models. This prepares students to the 2nd course, Computational Hydraulics, that introduce the fundamental principles of computational hydraulics, including finite difference and finite element methods. This course complements the Open Channel Flow class to provide students with in-depth understandings of computational methods. The 3rd course, Sedimentation Engineering, covers the fundamentals of sediment transport and river engineering, so students can apply the knowledge and programming skills gained from previous courses to develop computational models for simulating sediment transport. These courses effectively equipped students with important skills and knowledge to complete thesis and dissertation research.

  4. Control rod driving hydraulic device

    Sugano, Hiroshi.

    1993-01-01

    In a control rod driving hydraulic device for an improved BWR type reactor, a bypass pipeline is disposed being branched from a scram pipeline, and a control orifice and a throttle valve are interposed to the bypass pipeline for restricting pressure. Upon occurrence of scram, about 1/2 of water quantity flowing from an accumulator of a hydraulic control unit to the lower surface of a piston of control rod drives by way of a scram pipeline is controlled by the restricting orifice and the throttle valve, by which the water is discharged to a pump suction pipeline or other pipelines by way of the bypass pipeline. With such procedures, a function capable of simultaneously conducting scram for two control rod drives can be attained by one hydraulic control unit. Further, an excessive peak pressure generated by a water hammer phenomenon in the scram pipeline or the control rod drives upon occurrence of scram can be reduced. Deformation and failure due to the excessive peak pressure can be prevented, as well as vibrations and degradation of performance of relevant portions can be prevented. (N.H.)

  5. Combined hydraulic and regenerative braking system

    Venkataperumal, R.R.; Mericle, G.E.

    1979-08-09

    A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  6. Agua Para Todos: A New Regionalist Hydraulic Paradigm in Spain

    Elena Lopez-Gunn

    2009-10-01

    Full Text Available This paper reviews the hydraulic paradigm in Spain and its evolution over the last 100 years to the current decentralisation process of "agua para todos", i.e. where different regional governments vie for control over 'scarce' water resources and defining the concept of hydro-solidarity between regions. Recent events seem to point to a new hydraulic bureaucracy at the sub-national level due to the political devolution currently taking place in Spain, where water has an increased political value in electoral terms. Water has strategic importance in single-issue politics and territorial identity, as compared to traditional left/right ideological politics for both national and regional parties in the Spanish multilevel electoral system. This refers to an important aspect of water politics – openly discussed in Spain but rarely analysed – namely the 'political returns' on water (or 'political rent-seeking'. This also points to spatial dimensions of the definition of state, identity, and access to resources in a semiarid country. This historical process of decentralisation of water is highlighted with particular reference to key events in recent Spanish history, including the Hydraulic Plan of the 1930s, its reappearance in the 1993 National Hydrological Plan, a revised version in the year 2001, and a final change in paradigm in 2005 at the national level. This suggests that the hydraulic paradigm is re-enacted at the regional government level. It is argued that a multi-scalar analysis of Spanish water decentralisation is essential in order to understand change and stasis in public policy paradigms related to water.

  7. Optimization of hydraulic turbine diffuser

    Moravec Prokop

    2016-01-01

    Full Text Available Hydraulic turbine diffuser recovers pressure energy from residual kinetic energy on turbine runner outlet. Efficiency of this process is especially important for high specific speed turbines, where almost 50% of available head is utilized within diffuser. Magnitude of the coefficient of pressure recovery can be significantly influenced by designing its proper shape. Present paper focuses on mathematical shape optimization method coupled with CFD. First method is based on direct search Nelder-Mead algorithm, while the second method employs adjoint solver and morphing. Results obtained with both methods are discussed and their advantages/disadvantages summarized.

  8. A HISTORICAL PERSPECTIVE OF NUCLEAR THERMAL HYDRAULICS

    D’Auria, F; Rohatgi, Upendra S.

    2017-01-12

    The nuclear thermal-hydraulics discipline was developed following the needs for nuclear power plants (NPPs) and, to a more limited extent, research reactors (RR) design and safety. As in all other fields where analytical methods are involved, nuclear thermal-hydraulics took benefit of the development of computers. Thermodynamics, rather than fluid dynamics, is at the basis of the development of nuclear thermal-hydraulics together with the experiments in complex two-phase situations, namely, geometry, high thermal density, and pressure.

  9. Calculation of saturated hydraulic conductivity of bentonite

    He Jun

    2006-01-01

    Hydraulic conductivity test has some defects such as weak repeatability, time-consuming. Taking bentonite as dual porous media, the calculation formula of the distance, d 2 , between montmorillonite in intraparticle pores is deduced. Improved calculated method of hydraulic conductivity is obtained using d 2 and Poiseuille law. The method is valid through the comparison with results of test and other methods. The method is very convenient to calculate hydraulic conductivity of bentonite of certain montmorillonite content and void ratio. (authors)

  10. Reactor Thermal Hydraulic Numerical Calculation And Modeling

    Duong Ngoc Hai; Dang The Ba

    2008-01-01

    In the paper the results of analysis of thermal hydraulic state models using the numerical codes such as COOLOD, EUREKA and RELAP5 for simulation of the reactor thermal hydraulic states are presented. The calculations, analyses of reactor thermal hydraulic state and safety were implemented using different codes. The received numerical results, which were compared each to other, to experiment measurement of Dalat (Vietnam) research reactor and published results, show their appropriateness and capacity for analyses of different appropriate cases. (author)

  11. Hydraulic nuts (hydranuts) for critical bolted joints

    Greenwell, S.

    2008-01-01

    HydraNuts replace the original nut and torquing equipment, combining the two functions into one system. Designed for simple installation and operation, HydraNuts are fitted to the stud bolts. Once all HydraNuts are fitted to the application, flexible hydraulic hoses are connected, forming a closed loop hydraulic harness, allowing simultaneous pressurization of all HydraNuts. Hydraulic pressure is obtained by the use of a pumping unit and the resultant load generated is transferred to the studs and flange closure is obtained. Locking rings are rotated into place, supporting the tensioned load mechanically after hydraulic pressure is released. The hose harness is removed. (author)

  12. Modeling and stability of electro-hydraulic servo of hydraulic excavator

    Jia, Wenhua; Yin, Chenbo; Li, Guo; Sun, Menghui

    2017-11-01

    The condition of the hydraulic excavator is complicated and the working environment is bad. The safety and stability of the control system is influenced by the external factors. This paper selects hydraulic excavator electro-hydraulic servo system as the research object. A mathematical model and simulation model using AMESIM of servo system is established. Then the pressure and flow characteristics are analyzed. The design and optimization of electro-hydraulic servo system and its application in engineering machinery is provided.

  13. Liquid metal thermal-hydraulics

    Kottowski-Duemenil, H.M.

    1994-01-01

    This textbook is a report of the 26 years activity of the Liquid Metal Boiling Working Group (LMBWG). It summarizes the state of the art of liquid metal thermo-hydraulics achieved through the collaboration of scientists concerned with the development of the Fast Breeder Reactor. The first chapter entitled ''Liquid Metal Boiling Behaviour'', presents the background and boiling mechanisms. This section gives the reader a brief but thorough survey on the superheat phenomena in liquid metals. The second chapter of the text, ''A Review of Single and Two-Phase Flow Pressure Drop Studies and Application to Flow Stability Analysis of Boiling Liquid Metal Systems'' summarizes the difficulty of pressure drop simulation of boiling sodium in core bundles. The third chapter ''Liquid Metal Dry-Out Data for Flow in Tubes and Bundles'' describes the conditions of critical heat flux which limits the coolability of the reactor core. The fourth chapter dealing with the LMFBR specific topic of ''Natural Convection Cooling of Liquid Metal Systems''. This chapter gives a review of both plant experiments and out-of-pile experiments and shows the advances in the development of computing power over the past decade of mathematical modelling ''Subassembly Blockages Suties'' are discussed in chapter five. Chapter six is entitled ''A Review of the Methods and Codes Available for the Calculation on Thermal-Hydraulics in Rod-Cluster and other Geometries, Steady state and Transient Boiling Flow Regimes, and the Validation achieves''. Codes available for the calculation of thermal-hydraulics in rod-clusters and other geometries are reviewed. Chapter seven, ''Comparative Studies of Thermohydraulic Computer Code Simulations of Sodium Boiling under Loss of Flow Conditions'', represents one of the key activities of the LMBWG. Several benchmark exercises were performed with the aim of transient sodium boiling simulation in single channels and bundle blockages under steady state conditions and loss of

  14. Design of Pumps for Water Hydraulic Systems

    Klit, Peder; Olsen, Stefan; Bech, Thomas Nørgaard

    1999-01-01

    This paper considers the development of two pumps for water hydraulic applications. The pumps are based on two different working principles: The Vane-type pump and the Gear-type pump. Emphasis is put on the considerations that should be made to account for water as the hydraulic fluid.......KEYWORDS: water, pump, design, vane, gear....

  15. Uncertainty in hydraulic tests in fractured rock

    Ji, Sung-Hoon; Koh, Yong-Kwon

    2014-01-01

    Interpretation of hydraulic tests in fractured rock has uncertainty because of the different hydraulic properties of a fractured rock to a porous medium. In this study, we reviewed several interesting phenomena which show uncertainty in a hydraulic test at a fractured rock and discussed their origins and the how they should be considered during site characterisation. Our results show that the estimated hydraulic parameters of a fractured rock from a hydraulic test are associated with uncertainty due to the changed aperture and non-linear groundwater flow during the test. Although the magnitude of these two uncertainties is site-dependent, the results suggest that it is recommended to conduct a hydraulic test with a little disturbance from the natural groundwater flow to consider their uncertainty. Other effects reported from laboratory and numerical experiments such as the trapping zone effect (Boutt, 2006) and the slip condition effect (Lee, 2014) can also introduce uncertainty to a hydraulic test, which should be evaluated in a field test. It is necessary to consider the way how to evaluate the uncertainty in the hydraulic property during the site characterisation and how to apply it to the safety assessment of a subsurface repository. (authors)

  16. Hydraulically powered dissimilar teleoperated system controller design

    Jansen, J.F.; Kress, R.L.

    1996-01-01

    This paper will address two issues associated with the implementation of a hydraulically powered dissimilar master-slave teleoperated system. These issues are the overall system control architecture and the design of robust hydraulic servo controllers for the position control problem. Finally, a discussion of overall system performance on an actual teleoperated system will be presented

  17. Characteristics of Air Entrainment in Hydraulic Jump

    Albarkani, M. S. S.; Tan, L. W.; Al-Gheethi, A.

    2018-04-01

    The characteristics of hydraulic jump, especially the air entrainment within jump is still not properly understood. Therefore, the current work aimed to determine the size and number of air entrainment formed in hydraulic jump at three different Froude numbers and to obtain the relationship between Froude number with the size and number of air entrainment in hydraulic jump. Experiments of hydraulic jump were conducted in a 10 m long and 0.3 m wide Armfield S6MKII glass-sided tilting flume. Hydraulic jumps were produced by flow under sluice gate with varying Froude number. The air entrainment of the hydraulic jump was captured with a Canon Power Shot SX40 HS digital camera in video format at 24 frames per second. Three discharges have been considered, i.e. 0.010 m3/s, 0.011 m3/s, and 0.013 m3/s. For hydraulic jump formed in each discharge, 32 frames were selected for the purpose of analysing the size and number of air entrainment in hydraulic jump. The results revealed that that there is a tendency to have greater range in sizes of air bubbles as Fr1 increases. Experiments with Fr1 = 7.547. 7.707, and 7.924 shown that the number of air bubbles increases exponentially with Fr1 at a relationship of N = 1.3814 e 0.9795Fr1.

  18. Primary system thermal hydraulics of future Indian fast reactors

    Velusamy, K., E-mail: kvelu@igcar.gov.in [Thermal Hydraulics Section, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Natesan, K.; Maity, Ram Kumar; Asokkumar, M.; Baskar, R. Arul; Rajendrakumar, M.; Sarathy, U. Partha; Selvaraj, P.; Chellapandi, P. [Thermal Hydraulics Section, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Kumar, G. Senthil; Jebaraj, C. [AU-FRG Centre for CAD/CAM, Anna University, Chennai 600 025 (India)

    2015-12-01

    Highlights: • We present innovative design options proposed for future Indian fast reactor. • These options have been validated by extensive CFD simulations. • Hotspot factors in fuel subassembly are predicted by parallel CFD simulations. • Significant safety improvement in the thermal hydraulic design is quantified. - Abstract: As a follow-up to PFBR (Indian prototype fast breeder reactor), many FBRs of 500 MWe capacity are planned. The focus of these future FBRs is improved economy and enhanced safety. They are envisaged to have a twin-unit concept. Design and construction experiences gained from PFBR project have provided motivation to achieve an optimized design for future FBRs with significant design changes for many critical components. Some of the design changes include, (i) provision of four primary pipes per primary sodium pump, (ii) inner vessel with single torus lower part, (iii) dome shape roof slab supported on reactor vault, (iv) machined thick plate rotating plugs, (v) reduced main vessel diameter with narrow-gap cooling baffles and (vi) safety vessel integrated with reactor vault. This paper covers thermal hydraulic design validation of the chosen options with respect to hot and cold pool thermal hydraulics, flow requirement for main vessel cooling, inner vessel temperature distribution, safety analysis of primary pipe rupture event, adequacy of decay heat removal capacity by natural convection cooling, cold pool transient thermal loads and thermal management of top shield and reactor vault.

  19. Hydraulic loop: practices using open control systems

    Carrasco, J.A.; Alonso, L.; Sanchez, F.

    1998-01-01

    The Tecnatom Hydraulic Loop is a dynamic training platform. It has been designed with the purpose of improving the work in teams. With this system, the student can obtain a full scope vision of a system. The hydraulic Loop is a part of the Tecnatom Maintenance Centre. The first objective of the hydraulic Loop is the instruction in components, process and process control using open control system. All the personal of an electric power plant can be trained in the Hydraulic Loop with specific courses. The development of a dynamic tool for tests previous to plant installations has been an additional objective of the Hydraulic Loop. The use of this platform is complementary to the use of full-scope simulators in order to debug and to analyse advanced control strategies. (Author)

  20. Hydraulic jumps in a channel

    Bonn, D.; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    We present a study of hydraulic jumps with flow predominantly in one direction, created either by confining the flow to a narrow channel with parallel walls or by providing an inflow in the form of a narrow sheet. In the channel flow, we find a linear height profile upstream of the jump as expected......'s mixing-length theory with a mixing length that is proportional to the height of the fluid layer. Using averaged boundary-layer equations, taking into account the friction with the channel walls and the eddy viscosity, the flow both upstream and downstream of the jump can be understood. For the downstream...... subcritical flow, we assume that the critical height is attained close to the channel outlet. We use mass and momentum conservation to determine the position of the jump and obtain an estimate which is in rough agreement with our experiment. We show that the averaging method with a varying velocity profile...

  1. On hydraulics of capillary tubes

    N.G. Aloyan

    2016-03-01

    Full Text Available The article considers the laws of motion of water in the capillary tubes, taken as a model for flowing well, on the analogical net count device. For capillary tube the lower limit value of flow rate is empirically determined above which the total hydraulic resistance of the capillary is practically constant. The specificity of the phenomenon is that the regime of motion, by a Reynolds number, for a given flow rate still remains laminar. This circumstance can perplex the specialists, so the author invites them to the scientific debate on the subject of study. Obviously, to identify the resulting puzzle it is necessary to conduct a series of experiments using capillaries of different lengths and diameters and with different values of overpressure. The article states that in tubes with very small diameter the preliminary magnitude of capillary rise of water in the presence of flow plays no role and can be neglected.

  2. HANARO thermal hydraulic accident analysis

    Park, Chul; Kim, Heon Il; Lee, Bo Yook; Lee, Sang Yong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    For the safety assessment of HANARO, accident analyses for the anticipated operational transients, accident scenarios and limiting accident scenarios were conducted. To do this, the commercial nuclear reactor system code. RELAP5/MOD2 was modified to RELAP5/KMRR; the thermal hydraulic correlations and the heat exchanger model was changed to incorporate HANARO characteristics. This report summarizes the RELAP/KMRR calculation results and the subchannel analyses results based on the RELAP/KMRR results. During the calculation, major concern was placed on the integrity of the fuel. For all the scenarios, the important accident analysis parameters, i.e., fuel centerline temperatures and the minimum critical heat flux ratio(MCHFR), satisfied safe design limits. It was verified, therefore, that the HANARO was safely designed. 21 tabs., 89 figs., 39 refs. (Author) .new.

  3. Hydraulically amplified PZT mems actuator

    Miles, Robin R.

    2004-11-02

    A hydraulically amplified microelectromechanical systems actuator. A piece of piezoelectric material or stacked piezo bimorph is bonded or deposited as a thin film. The piece is operatively connected to a primary membrane. A reservoir is operatively connected to the primary membrane. The reservoir contains a fluid. A membrane is operatively connected to the reservoir. In operation, energizing the piezoelectric material causing the piezoelectric material to bow. Bowing of the piezoelectric material causes movement of the primary membrane. Movement of the primary membrane results in a force in being transmitted to the liquid in the reservoir. The force in the liquid causes movement of the membrane. Movement of the membrane results in an operating actuator.

  4. Dolomitic lime containing hydraulic additive

    Lagzdina, S.; Sedmalis, U.; Bidermanis, L.; Liepins, J.; Grosvalds, I.

    1997-01-01

    To obtain qualitative dolomitic lime the optimum calcination temperature of dolomite containing about 9 % of clayey substances is 900 deg C. The mechanical strength of dolomitic lime containing 30 % of brick waste additive after 6-9 months of hardening is 1.4-1.5 times higher than that of samples without hydraulic additive, for calcium lime - 2.2-2.6 times higher. Generally the mechanical strength of dolomitic lime is higher than that one of calcium lime. It can be explained by the active role of MgO in the hydration and hardening processes of dolomitic lime. Xray diffraction phase analysis was performed by X-ray diffractometer DPON-3M with Cu-K α emission filter

  5. effective hydraulic conductivity for a soil of variable pore size

    eobe

    Keywords: hydraulic conductivity, soil, infiltration, permeability, water. 1. INTRODUCTION. INTRODUCTION. INTRODUCTION. Accurate determination of hydraulic conductivity is very crucial for infiltration and runoff estimation. Factors which affect water infiltration in the soil include hydraulic conductivity, wetting front and soil.

  6. Inserting the hydraulic works in the urban scenery

    Schiaffonati, F.; Mussinelli, E.

    1999-01-01

    In the latest planning situation, the theme of water is becoming a basic factor of environmental quality. The laws and rules, particularly in Italy, are both evolving towards an active protection of landscape and the development of new approaches in environmental design. The European cases here analysed demonstrate a richness of projects and realizations on different scales that show a useful reference also for those contexts, like the Italian one, that are starting to consider the fitting of hydraulics works in urban landscape [it

  7. VHTR core modeling: coupling between neutronic and thermal-hydraulics

    Limaiem, I.; Damian, F.; Raepsaet, X.; Studer, E.

    2005-01-01

    Following the present interest in the next generation nuclear power plan (NGNP), Cea is deploying special effort to develop new models and qualify its research tools for this next generation reactors core. In this framework, the Very High Temperature Reactor concept (VHTR) has an increasing place in the actual research program. In such type of core, a strong interaction exists between neutronic and thermal-hydraulics. Consequently, the global core modelling requires accounting for the temperature feedback in the neutronic models. The purpose of this paper is to present the new neutronic and thermal-hydraulics coupling model dedicated to the High Temperature Reactors (HTR). The coupling model integrates a new version of the neutronic scheme calculation developed in collaboration between Cea and Framatome-ANP. The neutronic calculations are performed using a specific calculation processes based on the APOLLO2 transport code and CRONOS2 diffusion code which are part of the French reactor physics code system SAPHYR. The thermal-hydraulics model is characterised by an equivalent porous media and 1-D fluid/3-D thermal model implemented in the CAST3M/ARCTURUS code. The porous media approach involves the definition of both homogenous and heterogeneous models to ensure a correct temperature feedback. This study highlights the sensitivity of the coupling system's parameters (radial/axial meshing and data exchange strategy between neutronic and thermal-hydraulics code). The parameters sensitivity study leads to the definition of an optimal coupling system specification for the VHTR. Besides, this work presents the first physical analysis of the VHTR core in steady-state condition. The analysis gives information about the 3-D power peaking and the temperature coefficient. Indeed, it covers different core configurations with different helium distribution in the core bypass. (authors)

  8. Proceedings of the fourth international topical meeting on nuclear thermal hydraulics, operations and safety. Vol. 1

    NONE

    2004-07-01

    More than 100 papers were presented. The meeting was divided in 56 sessions and covered the following topics: Plant Operation, Retrofitting and Maintenance Experience; Steam Generator Operation and Maintenance; Artificial Intelligence and Expert Systems; Seismic Technologies for Plant Design and Operations; Aging Management and Life Extension; Two-Phase Flow Modeling and Applications; Severe Accidents and Degraded Core Thermal Hydraulics; Plant Simulators, Analyzers, and Workstations; Advanced Nuclear Fuel Challenges; Recent Nuclear Power Station Decommissioning Experiences in the USA; Application of Probabilistic risk assessment/Probabilistic safety assessment (PRA/PSA) in Design and Modification; Numerical Modeling in Thermal Hydraulics; General Thermal Hydraulics; Severe Accident Management; Licensing and Regulatory Requirements; Advanced Light Water Reactor Designs to Support Reduced Emergency Planning; Best Estimate loss-of-coolant (LOCA) Methodologies; Plant Instrumentation and Control; LWR Fuel Designs for Improved Thermal Hydraulic Performance; Performance Assessment of Radioactive Waste Disposal; Thermal Hydraulics in Passive Reactor Systems; Advances in Man-Machine Interface Design and the Related Human Factors Engineering; Advances in Measurements and Instrumentation; Computer Aided Technology for non-destructive evaluation (NDE) and Plant Maintenance Plant Uprating; Flow-Accelerated Corrosion in Nuclear Power Plants; Advances in Radiological Measurement and Analysis Risk Management and Assessment; Stability in Thermal Hydraulic Systems; Critical heat flux (CHF) and Post Dryout Heat Transfer; Plant Transient and Accident Modeling.

  9. Proceedings of the fourth international topical meeting on nuclear thermal hydraulics, operations and safety. Vol. 1

    2004-01-01

    More than 100 papers were presented. The meeting was divided in 56 sessions and covered the following topics: Plant Operation, Retrofitting and Maintenance Experience; Steam Generator Operation and Maintenance; Artificial Intelligence and Expert Systems; Seismic Technologies for Plant Design and Operations; Aging Management and Life Extension; Two-Phase Flow Modeling and Applications; Severe Accidents and Degraded Core Thermal Hydraulics; Plant Simulators, Analyzers, and Workstations; Advanced Nuclear Fuel Challenges; Recent Nuclear Power Station Decommissioning Experiences in the USA; Application of Probabilistic risk assessment/Probabilistic safety assessment (PRA/PSA) in Design and Modification; Numerical Modeling in Thermal Hydraulics; General Thermal Hydraulics; Severe Accident Management; Licensing and Regulatory Requirements; Advanced Light Water Reactor Designs to Support Reduced Emergency Planning; Best Estimate loss-of-coolant (LOCA) Methodologies; Plant Instrumentation and Control; LWR Fuel Designs for Improved Thermal Hydraulic Performance; Performance Assessment of Radioactive Waste Disposal; Thermal Hydraulics in Passive Reactor Systems; Advances in Man-Machine Interface Design and the Related Human Factors Engineering; Advances in Measurements and Instrumentation; Computer Aided Technology for non-destructive evaluation (NDE) and Plant Maintenance Plant Uprating; Flow-Accelerated Corrosion in Nuclear Power Plants; Advances in Radiological Measurement and Analysis Risk Management and Assessment; Stability in Thermal Hydraulic Systems; Critical heat flux (CHF) and Post Dryout Heat Transfer; Plant Transient and Accident Modeling

  10. Proceedings of the fourth international topical meeting on nuclear thermal hydraulics, operations and safety. Vol. 2

    NONE

    2004-07-01

    More than 100 papers presented at the meeting were divided in 56 sessions and covered the following topics: Plant Operation, Retrofitting and Maintenance Experience; Steam Generator Operation and Maintenance; Artificial Intelligence and Expert Systems; Seismic Technologies for Plant Design and Operations; Aging Management and Life Extension; Two-Phase Flow Modeling and Applications; Severe Accidents and Degraded Core Thermal Hydraulics; Plant Simulators, Analyzers, and Workstations; Advanced Nuclear Fuel Challenges; Recent Nuclear Power Station Decommissioning Experiences in the USA; Application of Probabilistic risk assessment/Probabilistic safety assessment (PRA/PSA) in Design and Modification; Numerical Modeling in Thermal Hydraulics; General Thermal Hydraulics; Severe Accident Management; Licensing and Regulatory Requirements; Advanced Light Water Reactor Designs to Support Reduced Emergency Planning; Best Estimate loss-of-coolant (LOCA) Methodologies; Plant Instrumentation and Control; LWR Fuel Designs for Improved Thermal Hydraulic Performance; Performance Assessment of Radioactive Waste Disposal; Thermal Hydraulics in Passive Reactor Systems; Advances in Man-Machine Interface Design and the Related Human Factors Engineering; Advances in Measurements and Instrumentation; Computer Aided Technology for non-destructive evaluation (NDE) and Plant Maintenance Plant Uprating; Flow-Accelerated Corrosion in Nuclear Power Plants; Advances in Radiological Measurement and Analysis Risk Management and Assessment; Stability in Thermal Hydraulic Systems; Critical heat flux (CHF) and Post Dryout Heat Transfer; Plant Transient and Accident Modeling.

  11. Proceedings of the fourth international topical meeting on nuclear thermal hydraulics, operations and safety. Vol. 2

    2004-01-01

    More than 100 papers presented at the meeting were divided in 56 sessions and covered the following topics: Plant Operation, Retrofitting and Maintenance Experience; Steam Generator Operation and Maintenance; Artificial Intelligence and Expert Systems; Seismic Technologies for Plant Design and Operations; Aging Management and Life Extension; Two-Phase Flow Modeling and Applications; Severe Accidents and Degraded Core Thermal Hydraulics; Plant Simulators, Analyzers, and Workstations; Advanced Nuclear Fuel Challenges; Recent Nuclear Power Station Decommissioning Experiences in the USA; Application of Probabilistic risk assessment/Probabilistic safety assessment (PRA/PSA) in Design and Modification; Numerical Modeling in Thermal Hydraulics; General Thermal Hydraulics; Severe Accident Management; Licensing and Regulatory Requirements; Advanced Light Water Reactor Designs to Support Reduced Emergency Planning; Best Estimate loss-of-coolant (LOCA) Methodologies; Plant Instrumentation and Control; LWR Fuel Designs for Improved Thermal Hydraulic Performance; Performance Assessment of Radioactive Waste Disposal; Thermal Hydraulics in Passive Reactor Systems; Advances in Man-Machine Interface Design and the Related Human Factors Engineering; Advances in Measurements and Instrumentation; Computer Aided Technology for non-destructive evaluation (NDE) and Plant Maintenance Plant Uprating; Flow-Accelerated Corrosion in Nuclear Power Plants; Advances in Radiological Measurement and Analysis Risk Management and Assessment; Stability in Thermal Hydraulic Systems; Critical heat flux (CHF) and Post Dryout Heat Transfer; Plant Transient and Accident Modeling

  12. Information and dialogue process on safety and environmental effects of the hydraulic fracturing technology; Der Informations- und Dialogprozess zur Sicherheit und Umweltvertraeglichkeit der Fracking-Technologie

    Borchardt, Dietrich; Richter, Sandra [Helmholtz-Zentrum fuer Umweltforschung - UFZ, Magdeburg (Germany); Ewen, Christoph [team ewen, Darmstadt (Germany); Hammerbacher, Ruth [hammerbacher gmbh - beratung und projekte, Osnabrueck (Germany)

    2012-10-15

    After the big success of hydraulic fracturing in the USA, natural gas utilities are now planning natural gas production from nonconventional deposits (shale gas, coal seam gas) by hydraulic fracturing also in Germany. In order to calm public fears, an 'information and dialogue process on safety and environmental effects of the hydraulic fracturing technology' was initiated. A risk study carried out by a team of neutral experts gives recommendations for a well-founded, careful and realistic discussion of the environmental compatibility of hydraulic fracturing.

  13. Information and dialogue process on safety and environmental effects of the hydraulic fracturing technology; Der Informations- und Dialogprozess zur Sicherheit und Umweltvertraeglichkeit der Fracking-Technologie

    Borchardt, Dietrich; Richter, Sandra [Helmholtz-Zentrum fuer Umweltforschung - UFZ, Magdeburg (Germany); Ewen, Christoph [team ewen, Darmstadt (Germany); Hammerbacher, Ruth [hammerbacher gmbh - beratung und projekte, Osnabrueck (Germany)

    2012-10-15

    After the big success of hydraulic fracturing in the USA, natural gas utilities are now planning natural gas production from nonconventional deposits (shale gas, coal seam gas) by hydraulic fracturing also in Germany. In order to calm public fears, an 'information and dialogue process on safety and environmental effects of the hydraulic fracturing technology' was initiated. A risk study carried out by a team of neutral experts gives recommendations for a well-founded, careful and realistic discussion of the environmental compatibility of hydraulic fracturing.

  14. A mangrove creek restoration plan utilizing hydraulic modeling

    Despite the valuable ecosystem services provided by mangrove ecosystems they remain threatened around the globe. As a result, the restoration of mangrove forests has become an important topic of research. Urban development has been a primary cause for mangrove destruction and d...

  15. Microseismic signatures of hydraulic fracture growth in sediment formations: Observations and modeling

    Fischer, Tomáš; Hainzl, S.; Eisner, L.; Shapiro, S. A.; Le Calvez, J. H.

    2008-01-01

    Roč. 113, č. B2 (2008), B02307/1-B02307/12 ISSN 0148-0227 Grant - others:EC(XE) MTKI-CT-2004-517242 Institutional research plan: CEZ:AV0Z30120515 Keywords : microseismic data * hydraulic fracture simulation * Texas Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 3.147, year: 2008

  16. Impact of land management on soil structure and soil hydraulic properties

    Kodešová, R.; Jirků, V.; Nikodem, A.; Mühlhanselová, M.; Žigová, Anna

    2010-01-01

    Roč. 12, - (2010) ISSN 1029-7006. [European Geosciences Union General Assembly 2010. 02.05.2010-07.05.2010, Wienna] R&D Projects: GA ČR GA526/08/0434 Institutional research plan: CEZ:AV0Z30130516 Keywords : land management * soil structure * soil hydraulic properties * micromorphology Subject RIV: DF - Soil Science

  17. Hydrologic and hydraulic modelling of the Nyl River floodplain Part 3 ...

    The ecological functioning of the Nyl River floodplain in the Limpopo Province of South Africa depends on water supplied by catchments which are experiencing continuing water resource development. Hydrological and hydraulic models have been produced to assist in future planning by simulating the effects of ...

  18. Thermal-hydraulic unreliability of passive systems

    Tzanos, C.P.; Saltos, N.T.

    1995-01-01

    Advanced light water reactor designs like AP600 and the simplified boiling water reactor (SBWR) use passive safety systems for accident prevention and mitigation. Because these systems rely on natural forces for their operation, their unavailability due to hardware failures and human error is significantly smaller than that of active systems. However, the coolant flows predicted to be delivered by these systems can be subject to significant uncertainties, which in turn can lead to a significant uncertainty in the predicted thermal-hydraulic performance of the plant under accident conditions. Because of these uncertainties, there is a probability that an accident sequence for which a best estimate thermal-hydraulic analysis predicts no core damage (success sequence) may actually lead to core damage. For brevity, this probability will be called thermal-hydraulic unreliability. The assessment of this unreliability for all the success sequences requires very expensive computations. Moreover, the computational cost increases drastically as the required thermal-hydraulic reliability increases. The required computational effort can be greatly reduced if a bounding approach can be used that either eliminates the need to compute thermal-hydraulic unreliabilities, or it leads to the analysis of a few bounding sequences for which the required thermal-hydraulic reliability is relatively small. The objective of this paper is to present such an approach and determine the order of magnitude of the thermal-hydraulic unreliabilities that may have to be computed

  19. Virtual prototype simulation of hydraulic shovel kinematics for spatial characterization in surface mining operations

    S. Frimpong; Y. Li [University of Missouri-Rolla, Rolla, MO (United States). Department of Mining and Nuclear Engineering

    2005-12-15

    Hydraulic shovels are large-capacity equipment for excavating and loading dump trucks in constrained surface mining environments. Kinematics simulation of such equipment allows mine planning engineers to plan, design and control their spatial environments to achieve operating safety and efficiency. In this study, a hydraulic shovel was modelled as a mechanical manipulator with five degrees of freedom comprising the crawler, upper, boom, stick, bucket and bucket door components. The model was captured in a schematic diagram consisting of a six-bar linkage using the symbolic notation of Denavit and Hartenberg (Ho and Sriwattanathmma 1989). Homogeneous transformation matrices were used to capture the spatial configuration between adjacent links. The forward kinematics method was used to formulate the kinematics equations by attaching Cartesian coordinates to the schematic shovel diagram. Based on the kinematics model, a 3D virtual prototype of the hydraulic shovel was built in the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) environment to simulate the motions of the hydraulic shovel with selected time steps. The simulator was validated using real-world data with animation and numerical analysis of the digging, swinging and dumping motions of the shovel machinery. The superimposed display of the deployment of the hydraulic shovel in three phases allows a detailed motion examination of the system. The numerical results of linear and angular displacements of the bucket tip and bucket door can be used to analyse the kinematics motion of the hydraulic shovel for its optimization. This simulator provides a solid foundation for further dynamics modelling and dynamic hydraulic shovel performance studies.

  20. Hydraulic Fracturing and the Environment

    Ayatollahy Tafti, T.; Aminzadeh, F.; Jafarpour, B.; de Barros, F.

    2013-12-01

    In this presentation, we highlight two key environmental concerns of hydraulic fracturing (HF), namely induced seismicity and groundwater contamination (GC). We examine the induced seismicity (IS) associated with different subsurface fluid injection and production (SFIP) operations and the key operational parameters of SFIP impacting it. In addition we review the key potential sources for possible water contamination. Both in the case of IS and GC we propose modeling and data analysis methods to quantify the risk factors to be used for monitoring and risk reduction. SFIP include presents a risk in hydraulic fracturing, waste water injection, enhanced oil recovery as well as geothermal energy operations. Although a recent report (NRC 2012) documents that HF is not responsible for most of the induced seismicities, we primarily focus on HF here. We look into vaious operational parameters such as volume and rate of water injection, the direction of the well versus the natural fracture network, the depth of the target and the local stress field and fault system, as well as other geological features. The latter would determine the potential for triggering tectonic related events by small induced seismicity events. We provide the building blocks for IS risk assessment and monitoring. The system we propose will involve adequate layers of complexity based on mapped seismic attributes as well as results from ANN and probabilistic predictive modeling workflows. This leads to a set of guidelines which further defines 'safe operating conditions' and 'safe operating zones' which will be a valuable reference for future SFIP operations. We also illustrate how HF can lead to groundwater aquifer contamination. The source of aquifer contamination can be the hydrocarbon gas or the chemicals used in the injected liquid in the formation. We explore possible pathways of contamination within and discuss the likelihood of contamination from each source. Many of the chemical compounds used

  1. Hydraulic fracturing of rock-fill dam

    Jun-Jie WANG

    2016-02-01

    Full Text Available The condition in which hydraulic fracturing in core of earth-rock fill dam maybe induced, the mechanism by which the reason of hydraulic fracturing canbe explained, and the failure criterion by which the occurrence of hydraulicfracturing can be determined, were investigated. The condition dependson material properties such as, cracks in the core and low permeability ofcore soil, and “water wedging” action in cracks. An unsaturated core soiland fast impounding are the prerequisites for the formation of “waterwedging” action. The mechanism of hydraulic fracturing can be explainedby fracture mechanics. The crack propagation induced by water pressuremay follow any of mode I, mode II and mixed mode I-II. Based on testingresults of a core soil, a new criterion for hydraulic fracturing was suggested,from which mechanisms of hydraulic fracturing in the core of rock-fill damwere discussed. The results indicated that factors such as angle betweencrack surface and direction of principal stress, local stress state at thecrack, and fracture toughness KIC of core soil may largely affect theinduction of hydraulic fracturing and the mode of the propagation of thecrack.The condition in which hydraulic fracturing in core of earth-rock fill dam maybe induced, the mechanism by which the reason of hydraulic fracturing canbe explained, and the failure criterion by which the occurrence of hydraulicfracturing can be determined, were investigated. The condition dependson material properties such as, cracks in the core and low permeability ofcore soil, and “water wedging” action in cracks. An unsaturated core soiland fast impounding are the prerequisites for the formation of “waterwedging” action. The mechanism of hydraulic fracturing can be explainedby fracture mechanics. The crack propagation induced by water pressuremay follow any of mode I, mode II and mixed mode I-II. Based on testingresults of a core soil, a new criterion for hydraulic fracturing

  2. DESIGN AND CONSTRUCTION OF A HYDRAULIC PISTON

    Santos De la Cruz, Eulogio; Rojas Lazo, Oswaldo; Yenque Dedios, Julio; Lavado Soto, Aurelio

    2014-01-01

    A hydraulic system project includes the design, materials selection and construction of the hydraulic piston, hydraulic circuit and the joint with the pump and its accesories. This equiment will be driven by the force of moving fluid, whose application is in the devices of machines, tools, printing, perforation, packing and others. El proyecto de un sistema hidráulico, comprende el diseño, selección de materiales y construcción del pistón hidráulico, circuito hidráulico y el ensamble con l...

  3. Experimental thermal hydraulics in support of FBR

    Padmakumar, G.; Anand Babu, C.; Kalyanasundaram, P.; Vaidyanathan, G.

    2009-01-01

    The thermal hydraulic design plays a crucial role for the safe and economical deployment of Liquid Metal Cooled Fast Breeder Reactor (LMFBR). Robust experimental programmes are required in support of LMFBR thermal hydraulics design. The philosophy of testing has been to construct small scale models to understand the physical behaviour and to build larger scale models to optimize the component design. The experiments are conducted either in sodium or using a simulant like water/air. The paper gives a brief account of the various thermal hydraulic experiments carried out in support of the design of Prototype Fast Breeder Reactor (PFBR). (author)

  4. Parker Hybrid Hydraulic Drivetrain Demonstration

    Collett, Raymond [Parker-Hannifin Corporation, Cleveland, OH (United States); Howland, James [Parker-Hannifin Corporation, Cleveland, OH (United States); Venkiteswaran, Prasad [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2014-03-31

    This report examines the benefits of Parker Hannifin hydraulic hybrid brake energy recovery systems used in commercial applications for vocational purposes. A detailed background on the problem statement being addressed as well as the solution set specific for parcel delivery will be provided. Objectives of the demonstration performed in high start & stop applications included opportunities in fuel usage reduction, emissions reduction, vehicle productivity, and vehicle maintenance. Completed findings during the demonstration period and parallel investigations with NREL, CALSTART, along with a literature review will be provided herein on this research area. Lastly, results identified in the study by third parties validated the savings potential in fuel reduction of on average of 19% to 52% over the baseline in terms of mpg (Lammert, 2014, p11), Parker data for parcel delivery vehicles in the field parallels this at a range of 35% - 50%, emissions reduction of 17.4% lower CO2 per mile and 30.4% lower NOx per mile (Gallo, 2014, p15), with maintenance improvement in the areas of brake and starter replacement, while leaving room for further study in the area of productivity in terms of specific metrics that can be applied and studied.

  5. Cavitation instabilities in hydraulic machines

    Tsujimoto, Y

    2013-01-01

    Cavitation instabilities in hydraulic machines, hydro turbines and turbopump inducers, are reviewed focusing on the cause of instabilities. One-dimensional model of hydro turbine system shows that the overload surge is caused by the diffuser effect of the draft tube. Experiments show that this effect also causes the surge mode oscillations at part load. One dimensional model of a cavitating turbopump inducer shows that the mass flow gain factor, representing the cavity volume increase caused by the incidence angle increase is the cause of cavitation surge and rotating cavitation. Two dimensional model of a cavitating turbopump inducer shows that various modes of cavitation instabilities start to occur when the cavity length becomes about 65% of the blade spacing. This is caused by the interaction of the local flow near the cavity trailing edge with the leading edge of the next blade. It was shown by a 3D CFD that this is true also for real cases with tip cavitation. In all cases, it was shown that cavitation instabilities are caused by the fundamental characteristics of cavities that the cavity volume increases with the decrease of ambient pressure or the increase of the incidence angle

  6. Kuala Kemaman hydraulic model study

    Abdul Kadir Ishak

    2005-01-01

    There The problems facing the area of Kuala Kemaman are siltation and erosion at shoreline. The objectives of study are to assess the best alignment of the groyne alignment, to ascertain the most stable shoreline regime and to investigate structural measures to overcome the erosion. The scope of study are data collection, wave analysis, hydrodynamic simulation and sediment transport simulation. Numerical models MIKE 21 are used - MIKE 21 NSW, for wind-wave model, which describes the growth, decay and transformation of wind-generated waves and swell in nearshore areas. The study takes into account effects of refraction and shoaling due to varying depth, energy dissipation due to bottom friction and wave breaking, MIKE 21 HD - modelling system for 2D free-surface flow which to stimulate the hydraulics phenomena in estuaries, coastal areas and seas. Predicted tidal elevation and waves (radiation stresses) are considered into study while wind is not considered. MIKE 21 ST - the system that calculates the rates of non-cohesive (sand) sediment transport for both pure content and combined waves and current situation

  7. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    Kim, Hyo-gon; Han, Changsoo; Lee, Jong-won; Park, Sangdeok

    2015-01-01

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program

  8. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    Kim, Hyo-gon; Han, Changsoo [Hanyang University, Seoul (Korea, Republic of); Lee, Jong-won [Korea University of Science and Technology, Seoul (Korea, Republic of); Park, Sangdeok [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2015-02-15

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program.

  9. Advanced Hydraulic Studies on Enhancing Particle Removal

    He, Cheng

    clarifier. The inlet zone of an existing rectangular storm water clarifier was redesigned to improve the fluid flow conditions and reduce the hydraulic head loss in order to remove the lamellar plates and adapt the clarifier to the needs of high-rate clarification of storm water with flocculant addition...... excessive local head losses and helped to select structural changes to reduce such losses. The analysis of the facility showed that with respect to hydraulic operation, the facility is a complex, highly non-linear hydraulic system. Within the existing constraints, a few structural changes examined......The removal of suspended solids and attached pollutants is one of the main treatment processes in wastewater treatment. This thesis presents studies on the hydraulic conditions of various particle removal facilities for possible ways to increase their treatment capacity and performance by utilizing...

  10. Lower Monumental Spillway Hydraulic Model Study

    Wilhelms, Steven

    2003-01-01

    A 1:40 Froudian Scale model was used to investigate the hydraulic performance of the Lower Monumental Dam spillway, stilling basin, and tailrace for dissolved gas reduction and stilling basin apron scour...

  11. Toxicity Assessment for EPA's Hydraulic Fracturing Study

    U.S. Environmental Protection Agency — This dataset contains data used to develop multiple manuscripts on the toxicity of chemicals associated with the hydraulic fracturing industry. These manuscripts...

  12. Hydraulic fracturing chemicals and fluids technology

    Fink, Johannes

    2013-01-01

    When classifying fracturing fluids and their additives, it is important that production, operation, and completion engineers understand which chemical should be utilized in different well environments. A user's guide to the many chemicals and chemical additives used in hydraulic fracturing operations, Hydraulic Fracturing Chemicals and Fluids Technology provides an easy-to-use manual to create fluid formulations that will meet project-specific needs while protecting the environment and the life of the well. Fink creates a concise and comprehensive reference that enables the engineer to logically select and use the appropriate chemicals on any hydraulic fracturing job. The first book devoted entirely to hydraulic fracturing chemicals, Fink eliminates the guesswork so the engineer can select the best chemicals needed on the job while providing the best protection for the well, workers and environment. Pinpoints the specific compounds used in any given fracturing operation Provides a systematic approach to class...

  13. Pneumatic and hydraulic microactuators: a review

    De Volder, Michaël; Reynaerts, Dominiek

    2010-01-01

    The development of MEMS actuators is rapidly evolving and continuously new progress in terms of efficiency, power and force output is reported. Pneumatic and hydraulic are an interesting class of microactuators that are easily overlooked. Despite the 20 years of research, and hundreds of publications on this topic, these actuators are only popular in microfluidic systems. In other MEMS applications, pneumatic and hydraulic actuators are rare in comparison with electrostatic, thermal or piezo-electric actuators. However, several studies have shown that hydraulic and pneumatic actuators deliver among the highest force and power densities at microscale. It is believed that this asset is particularly important in modern industrial and medical microsystems, and therefore, pneumatic and hydraulic actuators could start playing an increasingly important role. This paper shows an in-depth overview of the developments in this field ranging from the classic inflatable membrane actuators to more complex piston–cylinder and drag-based microdevices. (topical review)

  14. National Laboratory of Hydraulics. 1996 progress report

    1996-01-01

    This progress report of the National Laboratory of Hydraulics (LNH) of Electricite de France (EdF) summarizes, first, the research and development studies carried out in 1996 for the development of research tools for industrial fluid mechanics and environmental hydraulics and for the development of computer tools (computer codes and softwares for fluid mechanics modeling, modeling of reactive, compressible, two-phase and turbulent flows and of complex chemical kinetics using finite elements and finite volume methods). A second parts describes the research studies performed for other services of EdF, concerning: the functioning of nuclear reactors (thermohydraulic studies of the reactor vessel and of the primary coolant circuit, gas flows following severe accidents, fluid-structure thermal coupling etc...), fossil fuel power plants, the equipment and operation of thermal power plants and hydraulic power plants, the use of electric power. A third part summarizes the river and marine hydraulic studies carried out for other companies. (J.S.)

  15. Transputer Control of Hydraulic Actuators and Robots

    Conrad, Finn

    1996-01-01

    Results from a Danish mechatronics research program entitled IMCIA - Intelligent Control and Intelligent Actuators. The objective is development of intelligent actuators for intelligent motion control. A mechatronics test facility with a transputer controlled hydraulic robot suiteable for real...

  16. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    Akimoto, Hajime; Kukita; Ohnuki, Akira [Japan Atomic Energy Research Institute, Ibaraki (Japan)

    1997-07-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission`s research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment.

  17. Hydraulic concrete composition and properties control system

    PSHINKO O.M.; KRASNYUK A.V.; HROMOVA O.V.

    2015-01-01

    Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings) based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic–viscous–plastic bodies. The system of canon...

  18. Multimodel Robust Control for Hydraulic Turbine

    Osuský, Jakub; Števo, Stanislav

    2014-01-01

    The paper deals with the multimodel and robust control system design and their combination based on M-Δ structure. Controller design will be done in the frequency domain with nominal performance specified by phase margin. Hydraulic turbine model is analyzed as system with unstructured uncertainty, and robust stability condition is included in controller design. Multimodel and robust control approaches are presented in detail on hydraulic turbine model. Control design approaches are compared a...

  19. Data Analytics of Hydraulic Fracturing Data

    Zhang, Jovan Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Viswanathan, Hari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffery [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Middleton, Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-11

    These are a set of slides on the data analytics of hydraulic fracturing data. The conclusions from this research are the following: they proposed a permeability evolution as a new mechanism to explain hydraulic fracturing trends; they created a model to include this mechanism and it showed promising results; the paper from this research is ready for submission; they devised a way to identify and sort refractures in order to study their effects, and this paper is currently being written.

  20. FEEDBACK LINEARISATION APPLIED ON A HYDRAULIC

    Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik C.

    2005-01-01

    is on developing and applying several different feedback linearisation (FL) controllers to the individual servo actuators in a hydraulically driven servo robot to evaluate and compare their possiblities and limitations. This is done based on both simulation and experimental results.......Generally most hydraulic systems are intrensically non-linear, why applying linear control techniques typically results in conservatively dimensioned controllers to obtain stable performance. Non-linear control techniques have the potential of overcoming these problems, and in this paper the focus...

  1. Thermal hydraulics and mechanics core design programs

    Heinecke, J.

    1992-10-01

    The report documents the work performed within the Research and Development Task T hermal hydraulics and mechanics core design programs , funded by the German government. It contains the development of new codes, the extension of existing codes, the qualification and verification of codes and the development of a code library. The overall goal of this work was to adapt the system of thermal hydraulics and mechanics codes to the permanently growing requirements of the status of science and technology

  2. BWR 9 X 9 Fuel Assembly Thermal-Hydraulic Tests (2): Hydraulic Vibration Test

    Yoshiaki Tsukuda; Katsuichiro Kamimura; Toshiitsu Hattori; Akira Tanabe; Noboru Saito; Masahiko Warashina; Yuji Nishino

    2002-01-01

    Nuclear Power Engineering Corporation (NUPEC) conducted thermal-hydraulic projects for verification of thermal-hydraulic design reliability for BWR high-burnup 8 x 8 and 9 x 9 fuel assemblies, entrusted by the Ministry of Economy, Trade and Industry (METI). As a part of the NUPEC thermal-hydraulic projects, hydraulic vibration tests using full-scale test assemblies simulating 9 x 9 fuel assemblies were carried out to evaluate BWR fuel integrity. The test data were applied to development of a new correlation for the estimation of fuel rod vibration amplitude. (authors)

  3. Hydraulic Hybrid Fleet Vehicle Testing | Transportation Research | NREL

    Hydraulic Hybrid Fleet Vehicle Evaluations Hydraulic Hybrid Fleet Vehicle Evaluations How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would -pressure reservoir to a high-pressure accumulator. When the vehicle accelerates, fluid in the high-pressure

  4. 46 CFR 112.50-3 - Hydraulic starting.

    2010-10-01

    ... POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-3 Hydraulic starting. A hydraulic starting system must meet the following: (a) The hydraulic starting system must be a... 46 Shipping 4 2010-10-01 2010-10-01 false Hydraulic starting. 112.50-3 Section 112.50-3 Shipping...

  5. A low order adaptive control scheme for hydraulic servo systems

    Andersen, Torben Ole; Pedersen, Henrik Clemmensen; Bech, Michael Møller

    2015-01-01

    This paper deals with high-performance position control of hydraulics servo systems in general. The hydraulic servo system used is a two link robotic manipulator actuated by two hydraulic servo cylinders. A non-linear model of the hydraulic system and a Newton-Euler based model of the mechanical...

  6. Proceedings of the 1991 national conference on hydraulic engineering

    Shane, R.M.

    1991-01-01

    This book contains the proceedings of the 1991 National Conference of Hydraulic Engineering. The conference was held in conjunction with the International Symposium on Ground Water and a Software Exchange that facilitated exchange of information on recent software developments of interest to hydraulic engineers. Also included in the program were three mini-symposia on the Exclusive Economic Zone, Data Acquisition, and Appropriate Technology. Topics include sedimentation; appropriate technology; exclusive economic zone hydraulics; hydraulic data acquisition and display; innovative hydraulic structures and water quality applications of hydraulic research, including the hydraulics of aerating turbines; wetlands; hydraulic and hydrologic extremes; highway drainage; overtopping protection of dams; spillway design; coastal and estuarine hydraulics; scale models; computation hydraulics; GIS and expert system applications; watershed response to rainfall; probabilistic approaches; and flood control investigations

  7. Thermal hydraulic considerations in liquid-metal-cooled components of tokamak fusion reactors

    Picologlou, B.F.; Reed, C.B.; Hua, T.Q.

    1989-01-01

    The basic considerations of MHD thermal hydraulics for liquid-metal-cooled blankets and first walls of tokamak fusion reactors are discussed. The liquid-metal MHD program of Argonne National Laboratory (ANL) dedicated to analytical and experimental investigations of reactor relevant MHD flows and development of relevant thermal hydraulic design tools is presented. The status of the experimental program and examples of local velocity measurements are given. An account of the MHD codes developed to date at ANL is also presented as is an example of a 3-D thermal hydraulic analysis carried out with such codes. Finally, near term plans for experimental investigations and code development are outlined. 20 refs., 8 figs., 1 tab

  8. Water hydraulic manipulator for fail safe and fault tolerant remote handling operations at ITER

    Nieminen, Peetu; Esque, Salvador; Muhammad, Ali; Mattila, Jouni; Vaeyrynen, Jukka; Siuko, Mikko; Vilenius, Matti

    2009-01-01

    Department of Intelligent Hydraulics and Automation (IHA) of Tampere University of Technology has been involved in the European Fusion program since 1994 within the ITER reactor maintenance activities. In this paper we discuss the design and development of a six degrees of freedom water hydraulic manipulator with a force feedback for teleoperation tasks. The manipulator is planned to be delivered to Divertor Test Platform 2 (DTP2) during year 2008. The paper also discusses the possibility to improve the fail safe and redundant operation of the manipulator. During the design of the water hydraulic manipulator, special provisions have been made in order to meet the safety requirements such as servo valve block for redundant operation and safety vane brakes for fail safe operation.

  9. A new bladeless hydraulic turbine

    Beran, V.; Sedláček, M.; Maršík, František

    2013-01-01

    Roč. 104, APR 2013 (2013), s. 978-983 ISSN 0306-2619 R&D Projects: GA ČR GAP201/10/0357 Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : rolling turbine * low head hydro power * stability of flow Subject RIV: BK - Fluid Dynamics Impact factor: 5.261, year: 2013 http://dx.doi.org/10.1016/j.apenergy.2012.12.016

  10. Hydraulic Yaw System for Wind Turbines with New Compact Hydraulic Motor Principle

    Sørensen, Rasmus Mørk; Hansen, Michael Rygaard; Mouritsen, Ole Ø.

    2011-01-01

    This paper presents a new hydraulic yaw system for wind turbines. The basic component is a new type of hydraulic motor characterized by an extraordinary high specific displacement yielding high output torque in a compact form. The focus in the paper is the volumetric efficiency of the motor, which...

  11. Comparative study of methods to estimate hydraulic parameters in the hydraulically undisturbed Opalinus Clay (Switzerland)

    Yu, C.; Matray, J.-M. [Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, (France); Yu, C.; Gonçalvès, J. [Aix Marseille Université UMR 6635 CEREGE Technopôle Environnement Arbois-Méditerranée Aix-en-Provence, Cedex 4 (France); and others

    2017-04-15

    The deep borehole (DB) experiment gave the opportunity to acquire hydraulic parameters in a hydraulically undisturbed zone of the Opalinus Clay at the Mont Terri rock laboratory (Switzerland). Three methods were used to estimate hydraulic conductivity and specific storage values of the Opalinus Clay formation and its bounding formations through the 248 m deep borehole BDB-1: application of a Poiseuille-type law involving petrophysical measurements, spectral analysis of pressure time series and in situ hydraulic tests. The hydraulic conductivity range in the Opalinus Clay given by the first method is 2 × 10{sup -14}-6 × 10{sup -13} m s{sup -1} for a cementation factor ranging between 2 and 3. These results show low vertical variability whereas in situ hydraulic tests suggest higher values up to 7 × 10{sup -12} m s{sup -1}. Core analysis provides economical estimates of the homogeneous matrix hydraulic properties but do not account for heterogeneities at larger scale such as potential tectonic conductive features. Specific storage values obtained by spectral analysis are consistent and in the order of 10{sup -6} m{sup -1}, while formulations using phase shift and gain between pore pressure signals were found to be inappropriate to evaluate hydraulic conductivity in the Opalinus Clay. The values obtained are globally in good agreement with the ones obtained previously at the rock laboratory. (authors)

  12. Internet plan and planning

    Kahriman Emina

    2008-01-01

    Full Text Available Paper discuss specific features of internet plan as well as planning as management process in general in the contemporary environment. No need to stress out that marketing plan and marketing planning is core activity in approaching to market. At the same time, there are a lot specific c request in preparing marketing plan comparing to business planning due to marketing plan is an essential part. The importance of internet plan and planning rely on specific features of the internet network but as a part of general corporate as well as marketing strategy.

  13. Method of Relating Grain Size Distribution to Hydraulic Conductivity in Dune Sands to Assist in Assessing Managed Aquifer Recharge Projects: Wadi Khulays Dune Field, Western Saudi Arabia

    Oliver M. Lopez

    2015-11-01

    Full Text Available Planning for use of a dune field aquifer for managed aquifer recharge (MAR requires that hydraulic properties need to be estimated over a large geographic area. Saturated hydraulic conductivity of dune sands is commonly estimated from grain size distribution data by employing some type of empirical equation. Over 50 samples from the Wadi Khulays dune field in Western Saudi Arabia were collected and the grain size distribution, porosity, and hydraulic conductivity were measured. An evaluation of 20 existing empirical equations showed a generally high degree of error in the predicted compared to the measured hydraulic conductivity values of these samples. Statistical analyses comparing estimated versus measured hydraulic conductivity demonstrated that there is a significant relationship between hydraulic conductivity and mud percentage (and skewness. The modified Beyer equation, which showed a generally low prediction error, was modified by adding a second term fitting parameter related to the mud concentration based on 25 of the 50 samples analyzed. An inverse optimization process was conducted to quantify the fitting parameter and a new empirical equation was developed. This equation was tested against the remaining 25 samples analyzed and produced an estimated saturated hydraulic conductivity with the lowest error of any empirical equation. This methodology can be used for large dune field hydraulic conductivity estimation and reduce planning costs for MAR systems.

  14. Method of Relating Grain Size Distribution to Hydraulic Conductivity in Dune Sands to Assist in Assessing Managed Aquifer Recharge Projects: Wadi Khulays Dune Field, Western Saudi Arabia

    Lopez Valencia, Oliver Miguel

    2015-11-12

    Planning for use of a dune field aquifer for managed aquifer recharge (MAR) requires that hydraulic properties need to be estimated over a large geographic area. Saturated hydraulic conductivity of dune sands is commonly estimated from grain size distribution data by employing some type of empirical equation. Over 50 samples from the Wadi Khulays dune field in Western Saudi Arabia were collected and the grain size distribution, porosity, and hydraulic conductivity were measured. An evaluation of 20 existing empirical equations showed a generally high degree of error in the predicted compared to the measured hydraulic conductivity values of these samples. Statistical analyses comparing estimated versus measured hydraulic conductivity demonstrated that there is a significant relationship between hydraulic conductivity and mud percentage (and skewness). The modified Beyer equation, which showed a generally low prediction error, was modified by adding a second term fitting parameter related to the mud concentration based on 25 of the 50 samples analyzed. An inverse optimization process was conducted to quantify the fitting parameter and a new empirical equation was developed. This equation was tested against the remaining 25 samples analyzed and produced an estimated saturated hydraulic conductivity with the lowest error of any empirical equation. This methodology can be used for large dune field hydraulic conductivity estimation and reduce planning costs for MAR systems.

  15. Experimental evaluation of the hydraulic resistance of compacted bentonite/boom clay interface

    Tang, Anh-Minh; Cui, Yu-Jun; Delage, Pierre; Munoz, Juan Jorge; Li, Xiang-Ling

    2008-01-01

    In the framework of the in-situ PRACLAY Heater experiment to be performed in the HADES URF in Mol (Belgium), the feasibility of a hydraulic cut-off of the Excavation Damaged Zone (EDZ) and the Repository Components (RC) of the disposal galleries by using a horizontal seal will be examined. It has been planned to install an annular seal composed of compacted bentonite between the heated zone and the access gallery (PRACLAY seal test), so that to avoid any hydraulic shortcut towards the access gallery. According to numerical scoping calculations, heating until 80 deg C will induce a pore pressure of the order of 3.0 MPa. In order to verify the effects of this water pressure on the performance of the annular seal system and more specifically on the hydraulic resistance of the interface between the compacted bentonite and the host rock (Boom clay), laboratory percolation tests at 20 and 80 deg C were performed. The results confirm the performance of the compacted bentonite seal to avoid the hydraulic shortcut to the access gallery under the foreseen hydraulic and thermal conditions. (author)

  16. Power Management in Mobile Hydraulic Applications - An Approach for Designing Hydraulic Power Supply Systems

    Pedersen, Henrik Clemmensen

    2004-01-01

    Throughout the last three decades energy consumption has become one of the primary design aspects in hydraulic systems, especially for mobile hydraulic systems, as power and cooling capacity here is at limited disposal. Considering the energy usage, this is dependent on component efficiency, but ...... the hydraulic power supply in the most energy efficient way, when considering a number of load situations. Finally an example of the approach is shown to prove its validity.}......Throughout the last three decades energy consumption has become one of the primary design aspects in hydraulic systems, especially for mobile hydraulic systems, as power and cooling capacity here is at limited disposal. Considering the energy usage, this is dependent on component efficiency...

  17. Establishment of International Cooperative Network and Cooperative Research Strategy Between Korea and USA on Nuclear Thermal Hydraulics

    Baek, Won Pil; Song, Chul Hwa; Jeong, Jae Jun; Choi, Ki Yong; Kang, Kyoung Ho

    2004-07-01

    1. Scope and Objectives of the Project - Successful holding of the NURETH-10 - Analysis of the international trends in technology development and applications for nuclear thermal-hydraulics - Establishment of the international cooperative network and cooperative research strategy between Korea and USA on nuclear thermal-hydraulics 2. Research Results - Successful holding of the NURETH-10 - Analysis of the international trends in technology development and applications for nuclear thermal-hydraulics: - Establishment of international cooperative network and cooperative research strategy focused between Korea and USA on nuclear thermal-hydraulics: 3. Application Plan of the Research Results - Utilization as the basic data/information in establishing the domestic R and D directions and the international cooperative research strategy, - Application of the relevant experiences and data bases of NURETH-10 for holding future international conferences, - Promote more effective and productive research cooperation between Korea and USA

  18. The hydraulic capacity of deteriorating sewer systems.

    Pollert, J; Ugarelli, R; Saegrov, S; Schilling, W; Di Federico, V

    2005-01-01

    Sewer and wastewater systems suffer from insufficient capacity, construction flaws and pipe deterioration. Consequences are structural failures, local floods, surface erosion and pollution of receiving waters bodies. European cities spend in the order of five billion Euro per year for wastewater network rehabilitation. This amount is estimated to increase due to network ageing. The project CARE-S (Computer Aided RE-habilitation of Sewer Networks) deals with sewer and storm water networks. The final project goal is to develop integrated software, which provides the most cost-efficient system of maintenance, repair and rehabilitation of sewer networks. Decisions on investments in rehabilitation often have to be made with uncertain information about the structural condition and the hydraulic performance of a sewer system. Because of this, decision-making involves considerable risks. This paper presents the results of research focused on the study of hydraulic effects caused by failures due to temporal decline of sewer systems. Hydraulic simulations are usually carried out by running commercial models that apply, as input, default values of parameters that strongly influence results. Using CCTV inspections information as dataset to catalogue principal types of failures affecting pipes, a 3D model was used to evaluate their hydraulic consequences. The translation of failures effects in parameters values producing the same hydraulic conditions caused by failures was carried out through the comparison of laboratory experiences and 3D simulations results. Those parameters could be the input of 1D commercial models instead of the default values commonly inserted.

  19. Vibration Isolation for Parallel Hydraulic Hybrid Vehicles

    The M. Nguyen

    2008-01-01

    Full Text Available In recent decades, several types of hybrid vehicles have been developed in order to improve the fuel economy and to reduce the pollution. Hybrid electric vehicles (HEV have shown a significant improvement in fuel efficiency for small and medium-sized passenger vehicles and SUVs. HEV has several limitations when applied to heavy vehicles; one is that larger vehicles demand more power, which requires significantly larger battery capacities. As an alternative solution, hydraulic hybrid technology has been found effective for heavy duty vehicle because of its high power density. The mechanical batteries used in hydraulic hybrid vehicles (HHV can be charged and discharged remarkably faster than chemical batteries. This feature is essential for heavy vehicle hybridization. One of the main problems that should be solved for the successful commercialization of HHV is the excessive noise and vibration involving with the hydraulic systems. This study focuses on using magnetorheological (MR technology to reduce the noise and vibration transmissibility from the hydraulic system to the vehicle body. In order to study the noise and vibration of HHV, a hydraulic hybrid subsystem in parallel design is analyzed. This research shows that the MR elements play an important role in reducing the transmitted noise and vibration to the vehicle body. Additionally, locations and orientations of the isolation system also affect the efficiency of the noise and vibration mitigation. In simulations, a skyhook control algorithm is used to achieve the highest possible effectiveness of the MR isolation system.

  20. A Computational Model of Hydraulic Volume Displacement Drive

    V. N. Pil'gunov

    2014-01-01

    Full Text Available The paper offers a computational model of industrial-purpose hydraulic drive with two hydraulic volume adjustable working chamber machines (pump and motor. Adjustable pump equipped with the pressure control unit can be run together with several adjustable hydraulic motors on the principle of three-phase hydraulic socket-outlet with high-pressure lines, drain, and drainage system. The paper considers the pressure-controlled hydrostatic transmission with hydraulic motor as an output link. It shows a possibility to create a saving hydraulic drive using a functional tie between the adjusting parameters of the pump and hydraulic motor through the pressure difference, torque, and angular rate of the hydraulic motor shaft rotation. The programmable logic controller can implement such tie. The Coulomb and viscous frictions are taken into consideration when developing a computational model of the hydraulic volume displacement drive. Discharge balance considers external and internal leakages in equivalent clearances of hydraulic machines, as well as compression loss volume caused by hydraulic fluid compressibility and deformation of pipe walls. To correct dynamic properties of hydraulic drive, the paper offers that in discharge balance are included the additional regulated external leakages in the open circuit of hydraulic drive and regulated internal leakages in the closed-loop circuit. Generalized differential equations having functional multipliers and multilinked nature have been obtained to describe the operation of hydraulic positioning and speed drive with two hydraulic volume adjustable working chamber machines. It is shown that a proposed computational model of hydraulic drive can be taken into consideration in development of LS («Load-Sensing» drives, in which the pumping pressure is tuned to the value required for the most loaded slave motor to overcome the load. Results attained can be used both in designing the industrial-purpose heavy

  1. Effect of Subsoil Compaction on Hydraulic Parameters

    Iversen, Bo Vangsø; Berisso, Feto Esimo; Schjønning, Per

    Soil compaction is a major threat to sustainable soil quality and is increasing since agricultural machinery is becoming heavier and is used more intensively. Compaction not only reduces pore volume, but also modifies the pore connectivity. The inter-Nordic research project POSEIDON (Persistent...... effects of subsoil compaction on soil ecological services and functions) put forward the hypothesis that due to a decrease in the hydraulic conductivity in the soil matrix, compaction increases the frequency of preferential flow events in macropores and therefore increases the leaching of otherwise....... In the field the near-saturated hydraulic conductivity was measured with a tension infiltrometer in the same treatments at a depth of 30 cm. In the laboratory saturated and near-saturated hydraulic conductivity and the bulk density were measured as well. Also, macropores in the large soil cores were made...

  2. Hydraulic characterization of hydrothermally altered Nopal tuff

    Green, R.T.; Meyer-James, K.A. [Southwest Research Institute, San Antonio, TX (United States); Rice, G. [George Rice and Associates, San Antonio, TX (United States)

    1995-07-01

    Understanding the mechanics of variably saturated flow in fractured-porous media is of fundamental importance to evaluating the isolation performance of the proposed high-level radioactive waste repository for the Yucca Mountain site. Developing that understanding must be founded on the analysis and interpretation of laboratory and field data. This report presents an analysis of the unsaturated hydraulic properties of tuff cores from the Pena Blanca natural analog site in Mexico. The basic intent of the analysis was to examine possible trends and relationships between the hydraulic properties and the degree of hydrothermal alteration exhibited by the tuff samples. These data were used in flow simulations to evaluate the significance of a particular conceptual (composite) model and of distinct hydraulic properties on the rate and nature of water flow.

  3. Horizontal steam generator thermal-hydraulics

    Ubra, O. [SKODA Praha Company, Prague (Czechoslovakia); Doubek, M. [Czech Technical Univ., Prague (Czechoslovakia)

    1995-09-01

    Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. The 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.

  4. Design of a hydraulic ash transport system

    Mirgorodskii, V.G.; Mova, M.E.; Korenev, V.E.; Grechikhin, Yu.A. (Donetskii Politekhnicheskii Institut (USSR))

    1990-04-01

    Discusses general design of a hydraulic ash removal system to be employed at the reconstructed six 225 MW blocks of the Mironov State Regional Power Plant in the USSR. The blocks burn low-grade solid fuel with an ash content of up to 40.5%. Large quantities of ash have to be moved from the plant (total ash production 60 t/h, using 570 t/h of water for cooling and moistening). An optimum hydraulic ash transportation system would include a two-section airlift pumping system, shown in a diagram. Technological advantages of using this airlift system are enumerated, including short pipes, reduction in required water quantity and the possibility of siting hydraulic pumps at zero level.

  5. Hydraulic characterization of hydrothermally altered Nopal tuff

    Green, R.T.; Meyer-James, K.A.; Rice, G.

    1995-07-01

    Understanding the mechanics of variably saturated flow in fractured-porous media is of fundamental importance to evaluating the isolation performance of the proposed high-level radioactive waste repository for the Yucca Mountain site. Developing that understanding must be founded on the analysis and interpretation of laboratory and field data. This report presents an analysis of the unsaturated hydraulic properties of tuff cores from the Pena Blanca natural analog site in Mexico. The basic intent of the analysis was to examine possible trends and relationships between the hydraulic properties and the degree of hydrothermal alteration exhibited by the tuff samples. These data were used in flow simulations to evaluate the significance of a particular conceptual (composite) model and of distinct hydraulic properties on the rate and nature of water flow

  6. Self-potential observations during hydraulic fracturing

    Moore, Jeffrey R.; Glaser, Steven D.

    2007-09-13

    The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

  7. Hydraulic Properties related to Stream Reaeration

    Tsivoglou, E. C.; Wallace, J. R. [School of Civil Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    1970-09-15

    The paper reports the results of recent and current field tracer experiments designed to investigate the relationships between the reaeration capacity of a flowing stream and the stream's hydraulic properties. The purpose of the studies is to develop models for the accurate prediction of stream reaeration capacity on the basis of observation of the associated hydraulic properties. The ability of a flowing stream to absorb oxygen from the overlying atmosphere is the principal process by which the stream is able to recover its dissolved oxygen resources once they have been depleted by bacterial degradation of organic wastes. Accurate knowledge of stream reaeration capacity is therefore a necessity in determining the required degree of waste treatment, and the associated costs, in any specific case. Oxygen absorption can only occur at the air-water interface, hence reaeration is a direct function of the rate of surface water replacement due to turbulent mixing. The latter is not directly observable, and so reaeration capacity has not been observable before the quite recent development of a gaseous radiotracer technique for field measurement of reaeration. This procedure involves the simultaneous use of three tracers, namely a fluorescent dye for time of flow, tritiated water for accurate dispersion measurement, and dissolved krypton-85 for measurement of gas transfer. Field results obtained by this technique are highly reproducible. Field tracer studies of the reaeration capacities of three medium-sized streams have been conducted over a total of about fifty river miles. Associated hydraulic properties such as stream flow, cross-sectional area, depth, velocity, hydraulic gradient and dispersion have also been measured. Features such as waterfalls, rapids and pools are included, and more than eighty observations of the reaeration capacities of individual stream reaches have been made. The paper reports the observed relationships between stream reaeration capacity and

  8. Hydraulic properties related to stream reaeration

    Tsivoglou, E C; Wallace, J R [School of Civil Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    1970-09-15

    The paper reports the results of recent and current field tracer experiments designed to investigate the relationships between the reaeration capacity of a flowing stream and the stream's hydraulic properties. The purpose of the studies is to develop models for the accurate prediction of stream reaeration capacity on the basis of observation of the associated hydraulic properties. The ability of a flowing stream to absorb oxygen from the overlying atmosphere is the principal process by which the stream is able to recover its dissolved oxygen resources once they have been depleted by bacterial degradation of organic wastes. Accurate knowledge of stream reaeration capacity is therefore a necessity in determining the required degree of waste treatment, and the associated costs, in any specific case. Oxygen absorption can only occur at the air-water interface, hence reaeration is a direct function of the rate of surface water replacement due to turbulent mixing. The latter is not directly observable, and so reaeration capacity has not been observable before the quite recent development of a gaseous radiotracer technique for field measurement of reaeration. This procedure involves the simultaneous use of three tracers, namely a fluorescent dye for time of flow, tritiated water for accurate dispersion measurement, and dissolved krypton-85 for measurement of gas transfer. Field results obtained by this technique are highly reproducible. Field tracer studies of the reaeration capacities of three medium-sized streams have been conducted over a total of about fifty river miles. Associated hydraulic properties such as stream flow, cross-sectional area, depth, velocity, hydraulic gradient and dispersion have also been measured. Features such as waterfalls, rapids and pools are included, and more than eighty observations of the reaeration capacities of individual stream reaches have been made. The paper reports the observed relationships between stream reaeration capacity and

  9. Promoting water hydraulics in Malaysia: A green educational approach

    Yusof, Ahmad Anas; Zaili, Zarin Syukri; Hassan, Siti Nor Habibah; Tuan, Tee Boon; Saadun, Mohd Noor Asril; Ibrahim, Mohd Qadafie

    2014-10-01

    In promoting water hydraulics in Malaysia, this paper presents research development of water hydraulics educational training system for secondary and tertiary levels in Malaysia. Water hydraulics trainer with robotic attachment has been studied in order to promote the usefulness of such educational tools in promoting sustainability and green technology in the country. The trainer is being developed in order to allow constructive curriculum development and continuous marketing research for the effectiveness and usefulness of using water in hydraulic power trainer. The research on water-based hydraulic trainer is now possible with the current development in water hydraulics technology.

  10. Hydraulic modelling of the CARA Fuel element

    Brasnarof, Daniel O.; Juanico, Luis; Giorgi, M.; Ghiselli, Alberto M.; Zampach, Ruben; Fiori, Jose M.; Yedros, Pablo A.

    2004-01-01

    The CARA fuel element is been developing by the National Atomic Energy Commission for both Argentinean PHWRs. In order to keep the hydraulic restriction in their fuel channels, one of CARA's goals is to keep its similarity with both present fuel elements. In this paper is presented pressure drop test performed at a low-pressure facility (Reynolds numbers between 5x10 4 and 1,5x10 5 ) and rational base models for their spacer grid and rod assembly. Using these models, we could estimate the CARA hydraulic performance in reactor conditions that have shown to be satisfactory. (author) [es

  11. Plug & Play Control of Hydraulic Networks

    Jensen, Tom Nørgaard

    2012-01-01

    Process Control research program, which the work presented here is a part of. An industrial case study involving a large-scale hydraulic network with non-linear dynamics is studied. The hydraulic network underlies a district heating system, which provides heating water to a number of end-users in a city...... district. The case study considers a novel approach to the design of district heating systems in which the diameter of the pipes used in the system is reduced in order to reduce the heat losses in the system, thereby making it profitable to provide district heating to areas with low energy demands. The new...

  12. Mineral resource of the month: hydraulic cement

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  13. Hydraulic efficiency of a Rushton turbine impeller

    Chara, Z.; Kysela, B.; Fort, I.

    2017-07-01

    Based on CFD simulations hydraulic efficiency of a standard Rushton turbine impeller in a baffled tank was determined at a Reynolds number of ReM=33330. Instantaneous values of pressure and velocity components were used to draw up the macroscopic balance of the mechanical energy. It was shown that the hydraulic efficiency of the Rushton turbine impeller (energy dissipated in a bulk volume) is about 57%. Using this result we estimated a length scale in a non-dimensional equation of kinetic energy dissipation rate in the bulk volume as L=D/2.62.

  14. The hydraulics of the pressurized water reactors

    Bouchter, J.C.; Barbier, D.; Caruso, A.

    1999-01-01

    The SFEN organized, the 10 june 1999 at Paris, a meeting in the domain of the PWR hydraulics and in particular the hydraulic phenomena concerning the vessel and the vapor generators. The papers presented showed the importance of the industrial stakes with their associated phenomena: cores performance and safety with the more homogenous cooling system, the rods and the control rods wear, the temperature control, the fluid-structure interactions. A great part was also devoted to the progresses in the domain of the numerical simulation and the models and algorithms qualification. (A.L.B.)

  15. Hydraulic regenerative system for a light vehicle

    Orpella Aceret, Jordi; Guinart Trayter, Xavier

    2009-01-01

    The thesis is based in a constructed light vehicle that must be improved by adding a hydraulic energy recovery system. This vehicle named as TrecoLiTH, participated in the Formula Electric and Hybrid competition (Formula EHI) 2009 in Italy -Rome- and won several awards. This system consists in two hydraulic motors hub mounted which are used to store fluid at high pressure in an accumulator when braking. Through a valve the pressure will flow from the high pressure accumulator to the low press...

  16. A hydraulic device for unloading coke

    Kretinin, M.V.; Abizgildin, U.M.; Kirillov, T.S.; Makarov, M.I.; Prokopov, O.I.; Solov' ev, A.M.

    1979-07-15

    A hydraulic device for unloading petroleum coke from slow carbonization chambers is characterized by an arrangement whereby in order to increase the output of large size coke by controlling the increment of the cutting line of the coke, the mechanism used to move the rod in the hydraulic cutter is built in the form of a rod rotation rotor; a gear wheel is mounted on the immobile section of this rotor, and on the mobile section a multi-stage regulator is installed. The drive gear of the regulator is engaged with the gear wheel, while the driven gear is connected to the rack, which is fastened to the rod.

  17. Characteristic Length Scales in Fracture Networks: Hydraulic Connectivity through Periodic Hydraulic Tests

    Becker, M.; Bour, O.; Le Borgne, T.; Longuevergne, L.; Lavenant, N.; Cole, M. C.; Guiheneuf, N.

    2017-12-01

    Determining hydraulic and transport connectivity in fractured bedrock has long been an important objective in contaminant hydrogeology, petroleum engineering, and geothermal operations. A persistent obstacle to making this determination is that the characteristic length scale is nearly impossible to determine in sparsely fractured networks. Both flow and transport occur through an unknown structure of interconnected fracture and/or fracture zones making the actual length that water or solutes travel undetermined. This poses difficulties for flow and transport models. For, example, hydraulic equations require a separation distance between pumping and observation well to determine hydraulic parameters. When wells pairs are close, the structure of the network can influence the interpretation of well separation and the flow dimension of the tested system. This issue is explored using hydraulic tests conducted in a shallow fractured crystalline rock. Periodic (oscillatory) slug tests were performed at the Ploemeur fractured rock test site located in Brittany, France. Hydraulic connectivity was examined between three zones in one well and four zones in another, located 6 m apart in map view. The wells are sufficiently close, however, that the tangential distance between the tested zones ranges between 6 and 30 m. Using standard periodic formulations of radial flow, estimates of storativity scale inversely with the square of the separation distance and hydraulic diffusivity directly with the square of the separation distance. Uncertainty in the connection paths between the two wells leads to an order of magnitude uncertainty in estimates of storativity and hydraulic diffusivity, although estimates of transmissivity are unaffected. The assumed flow dimension results in alternative estimates of hydraulic parameters. In general, one is faced with the prospect of assuming the hydraulic parameter and inverting the separation distance, or vice versa. Similar uncertainties exist

  18. Hydraulic pitch control system for wind turbines: Advanced modeling and verification of an hydraulic accumulator

    Irizar, Victor; Andreasen, Casper Schousboe

    2017-01-01

    Hydraulic pitch systems provide robust and reliable control of power and speed of modern wind turbines. During emergency stops, where the pitch of the blades has to be taken to a full stop position to avoid over speed situations, hydraulic accumulators play a crucial role. Their efficiency...... and capability of providing enough energy to rotate the blades is affected by thermal processes due to the compression and decompression of the gas chamber. This paper presents an in depth study of the thermodynamical processes involved in an hydraulic accumulator during operation, and how they affect the energy...

  19. Report on the behalf of the Sustainable Development and Land Planning Commission on the bill project aiming at forbidding the exploration and exploitation of liquid or gaseous hydrocarbon mines by hydraulic fracturing, and abrogating exclusive search permits including projects using this technique

    Havard, M.; Chanteguet, J.P.

    2011-01-01

    In a first part, this report presents the exploitation of liquid and gaseous hydrocarbons as a new gold rush, notably in Canada and in the USA where this exploitation started at the beginning of the 2000's. The authors recall that this resource has been well known for many years, present the technology applied to extract these products: a combination of vertical and horizontal drilling followed by hydraulic fracturing. Then, they outline health and environmental risks associated with hydraulic fracturing, at any stage of the process (important water supply, ground water pollution, used water treatment, use of chemical additives, impact on landscape, greenhouse gas emission). In the second part, the authors notice that France is among the most attractive countries in Europe for the projects of gas and oil companies, and outline the need to reinforce the mining and environmental legal framework. A last part reports the discussions about the bill project articles

  20. ATLAS program for advanced thermal-hydraulic safety research

    Song, Chul-Hwa; Choi, Ki-Yong; Kang, Kyoung-Ho

    2015-01-01

    Highlights: • Major achievements of the ATLAS program are highlighted in conjunction with both developing advanced light water reactor technologies and enhancing the nuclear safety. • The ATLAS data was shown to be useful for the development and licensing of new reactors and safety analysis codes, and also for nuclear safety enhancement through domestic and international cooperative programs. • A future plan for the ATLAS testing is introduced, covering recently emerging safety issues and some generic thermal-hydraulic concerns. - Abstract: This paper highlights the major achievements of the ATLAS program, which is an integral effect test program for both developing advanced light water reactor technologies and contributing to enhancing nuclear safety. The ATLAS program is closely related with the development of the APR1400 and APR"+ reactors, and the SPACE code, which is a best-estimate system-scale code for a safety analysis of nuclear reactors. The multiple roles of ATLAS testing are emphasized in very close conjunction with the development, licensing, and commercial deployment of these reactors and their safety analysis codes. The role of ATLAS for nuclear safety enhancement is also introduced by taking some examples of its contributions to voluntarily lead to multi-body cooperative programs such as domestic and international standard problems. Finally, a future plan for the utilization of ATLAS testing is introduced, which aims at tackling recently emerging safety issues such as a prolonged station blackout accident and medium-size break LOCA, and some generic thermal-hydraulic concerns as to how to figure out multi-dimensional phenomena and the scaling issue.

  1. Current status and future prospects for thermal-hydraulics and safety research

    Park, G.C.

    2000-01-01

    The present paper is to outline the current activities in Korea for the thermal-hydraulics and safety researches, and furthermore illuminate the future aspect of those field under the umbrella of worldwide nuclear prospect. In Korea, a long-term nuclear research plan has been established since 1992, which was recently funded with a fixed monetary rate of Korean won 1.20 per kWh of electricity produced with nuclear power. 11.5% of the fund is assigned for nuclear safety research in 6 areas. Under this program, 3 axes of research body (KAERI, KINS, University) has been operated with close cooperation. Their role, current activities and long-term plan of each body are introduced in the point of thermal-hydraulics' view. (author)

  2. Rock Springs Site 12 hydraulic/explosive true in situ oil shale fracturing experiment

    Parrish, R.L.; Boade, R.R.; Stevens, A.L.; Long, A. Jr.; Turner, T.F.

    1980-06-01

    The experiment plan involved the creation and characterization of three horizontal hydraulic fractures, followed by the insertion and simultaneous detonation of slurry explosive in the two lower fractures. Core analyses, wellbore logging, and airflow and /sup 85/Kr tracer tests were used for site characterization and assessment of the hydraulic and explosive fracturing. Tiltmeters, wellhead pressure and flow gages, and in-formation pressure, flow and crack-opening sensors were used to monitor hydrofracture creation and explosive insertion. Explosive detonation diagnostic data were taken with stress and time-of-arrival gages and surface and in-formation accelerometers. The post-fracturing assessments indicated that: (1) hydrofracture creation and explosive insertion and detonation were accomplished essentially as planned; (2) induced fractures were randomly distributed through the shale with no extensively fractured regions or dislocation of shale; and (3) enhancement of permeability was limited to enlargement of the explosive-filled fractures.

  3. Hydraulic Modular Dosaging Systems for Machine Drives

    A. J. Kotlobai

    2005-01-01

    Full Text Available The justified principle of making modular dosaging systems for positive-displacement multimotor hydraulic drives used in running gear and technological equipment of mobile construction, road and agricultural machines makes it possible to synchronize motion of running parts. The examples of the realization of modular dosaging systems and an algorithm of their operation are given in the paper.

  4. Effect of Poroelasticity on Hydraulic Fracture Interactions

    Usui, Tomoya; Salimzadeh, Saeed; Paluszny, Adriana

    2017-01-01

    This study investigates, by performing finite element-based simulations, the influence of fluid leak-off and poroelasticity on growth of multiple hydraulic fractures that initiate from a single horizontal well. In this research, poroelastic deformation of the matrix is coupled with fluid flow in ...

  5. Control rod driving hydraulic pressure device

    Ishida, Kazuo.

    1990-01-01

    Discharged water after actuating control rod drives in a BWR type reactor is once discharged to a discharging header, then returned to a master control unit and, subsequently, discharged to a reactor by way of a cooling water header. The radioactive level in the discharging header and the master control unit is increased by the reactor water to increase the operator's exposure. In view of the above, a riser is disposed for connecting a hydraulic pressure control unit incorporating a directional control valve and the cooling water head. When a certain control rod is inserted, the pressurized driving water is supplied through a hydraulic pressure control unit to the control rod drives. The discharged water from the control rod drives is entered by way of the hydraulic pressure control unit into the cooling water header and then returned to the reactor by way of other hydraulic pressure control unit and the control rod drives. Thus, the reactor water is no more recycled to the master control unit to reduce the radioactive exposure. (N.H.)

  6. Elevator and hydraulics; Elevator to yuatsu

    Nakamura, I. [Hitachi, Ltd., Tokyo (Japan)

    1994-07-15

    A hydraulic type elevator is installed in relatively lower buildings as compared with a rope type elevator, but the ratio in the number of installation of the former elevator is increasing. This paper explains from its construction and features to especially various control systems for the riding comfort and safety. A direct push-up system with hydraulic jacks arranged beneath a car, and an indirect push-up system that has hydraulic jacks arranged on flank of a car and transmits the movement of a plunger via a rope are available. The latter system eliminates the need of large holes to embed hydraulic jacks. While the speed is controlled by controlling flow rates of high-pressure oil, the speed, position, acceleration and even time differential calculus of the acceleration must be controlled severely. The system uses two-step control for the through-speed and the landing speed. Different systems that have been realized may include compensation for temperatures in flow rate control valves, load pressures, and oil viscosity, from learning control to fuzzy control for psychological effects, or control of inverters in motors. 13 refs., 12 figs., 1 tab.

  7. Operation of a hydraulic elevator system

    Lazarev, G.A.; Li, Yu.V.; Bezuglov, N.N.

    1983-03-01

    The paper describes the hydraulic elevator system in the im. 50-letiya Oktyabr'skoi Revolutsii mine in the Karaganda basin. The system removes water and coal from the sump of a skip mine shaft. Water influx rate per day to the sump does not exceed 120 m/sup 3/, weight of coal falling from the skip is about 5,000 kg per day. The sump, 85 m deep, is closed by a screen. The elevator system consists of two pumps (one is used as a reserve pump) with a capacity of 300 m/sup 3/h. When water level exceeds the maximum permissive limit the pump is activated by an automatic control system. The coal and water mixture pumped from the sump bottom is directed to a screen which separates coal from water. Coal is fed to a coal hopper and water is pumped to a water tank. The hydraulic elevator has a capacity of 80 m/sup 3/ of mixture per hour. The slurry is tranported by a pipe of 175 mm diameter. Specifications of the pumps and pipelines are given. A scheme of the hydraulic elevator system is also shown. Economic aspects of hydraulic elevator use for removal of water and coal from deep sumps of skip shafts in the Karaganda basin also are discussed.

  8. Hydraulic brake-system for a bicycle

    Van Frankenhuyzen, J.

    2007-01-01

    The invention relates to a hydraulic brake system for a bicycle which may or may not be provided with an auxiliary motor, comprising a brake disc and brake claws cooperating with the brake disc, as well as fluid-containing channels (4,6) that extend between an operating organ (1) and the brake

  9. Analyses of hydraulic performance of velocity caps

    Christensen, Erik Damgaard; Degn Eskesen, Mark Chr.; Buhrkall, Jeppe

    2014-01-01

    The hydraulic performance of a velocity cap has been investigated. Velocity caps are often used in connection with offshore intakes. CFD (computational fluid dynamics) examined the flow through the cap openings and further down into the intake pipes. This was combined with dimension analyses...

  10. Hydraulic urethral dilatation after optical internal urethrotomy ...

    Objectives: To determine the rate of early recurrence of urethral stricture in the first six months in patients who perform hydraulic urethral dilatation(HUD) after optical internal urethrotomy (OIU) and compare the early recurrence Fate in patients who perform HUD after OIU with the recurrence rates in patients reported in the ...

  11. Separation and pattern formation in hydraulic jumps

    Bohr, Tomas; Ellegaard, C.; Hansen, A. Espe

    1998-01-01

    We present theory and experiments on the circular hydraulic jump in the stationary regime. The theory can handle the situation in which the fluid flows over an edge far away from the jump. In the experiments the external height is controlled, and a series of transitions in the flow structure appe...

  12. Towards Autonomous Control of Hydraulic Actuator Systems

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of new developed control algorithms to increase autonomy and intelligence of hydraulic control systems. A refinement of relaytuning method is used to determine the control parameters of a lag/lead controller and a poleplacement controller. Further, a fail-safe function is developed...

  13. Highly reliable electro-hydraulic control system

    Mande, Morima; Hiyama, Hiroshi; Takahashi, Makoto

    1984-01-01

    The unscheduled shutdown of nuclear power stations disturbs power system, and exerts large influence on power generation cost due to the lowering of capacity ratio; therefore, high reliability is required for the control system of nuclear power stations. Toshiba Corp. has exerted effort to improve the reliability of the control system of power stations, and in this report, the electro-hydraulic control system for the turbines of nuclear power stations is described. The main functions of the electro-hydraulic control system are the control of main steam pressure with steam regulation valves and turbine bypass valves, the control of turbine speed and load, the prevention of turbine overspeed, the protection of turbines and so on. The system is composed of pressure sensors and a speed sensor, the control board containing the electronic circuits for control computation and protective sequence, the oil cylinders, servo valves and opening detectors of the valves for control, a high pressure oil hydraulic machine and piping, the operating panel and so on. The main features are the adoption of tripling intermediate value selection method, the multiplying of protection sensors and the adoption of 2 out of 3 trip logic, the multiplying of power sources, the improvement of the reliability of electronic circuit hardware and oil hydraulic system. (Kako, I.)

  14. Spiral groove seal. [for hydraulic rotating shaft

    Ludwig, L. P. (Inventor)

    1973-01-01

    Mating flat surfaces inhibit leakage of a fluid around a stationary shaft. A spiral groove pattern produces a pumping action toward the fluid when the shaft rotates which prevents leakage while a generated hydraulic lifting force separates the mating surfaces to minimize wear.

  15. Hydraulic and hydrochemical characteristics of the phreatic ...

    Hydraulic and hydrochemical characteristics of the phreatic basement aquifers in parts of southwestern Nigeria. OA Idowu, O Martins, AM Gbadebo. Abstract. No Abstract. Journal of Mining and Geology Vol. 43 (1) 2007: pp. 71-78. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD ...

  16. Energy harvesting from hydraulic pressure fluctuations

    Cunefare, K A; Skow, E A; Erturk, A; Savor, J; Verma, N; Cacan, M R

    2013-01-01

    State-of-the-art hydraulic hose and piping systems employ integral sensor nodes for structural health monitoring to avoid catastrophic failures. Energy harvesting in hydraulic systems could enable self-powered wireless sensor nodes for applications such as energy-autonomous structural health monitoring and prognosis. Hydraulic systems inherently have a high energy intensity associated with the mean pressure and flow. Accompanying the mean pressure is the dynamic pressure ripple, which is caused by the action of pumps and actuators. Pressure ripple is a deterministic source with a periodic time-domain behavior conducive to energy harvesting. An energy harvester prototype was designed for generating low-power electricity from pressure ripples. The prototype employed an axially-poled off-the-shelf piezoelectric stack. A housing isolated the stack from the hydraulic fluid while maintaining a mechanical coupling allowing for dynamic-pressure-induced deflection of the stack. The prototype exhibited an off-resonance energy harvesting problem since the fundamental resonance of the piezoelectric stack was much higher than the frequency content of the pressure ripple. The prototype was designed to provide a suitable power output for powering sensors with a maximum output of 1.2 mW. This work also presents electromechanical model simulations and experimental characterization of the piezoelectric power output from the pressure ripple in terms of the force transmitted into the harvester. (paper)

  17. Sustainable hydraulic engineering through building with nature

    de Vriend, Huib J.; van Koningsveld, M.; Aarninkhof, S.G.J.; de Vries, Mindert; Baptist, M.J.

    2015-01-01

    Hydraulic engineering infrastructures are of concern to many people and are likely to interfere with the environment. Moreover, they are supposed to keep on functioning for many years. In times of rapid societal and environmental change this implies that sustainability and adaptability are important

  18. Power management in hydraulically actuated mobile equipment

    Pedersen, Henrik Clemmensen; Andersen, Torben Ole; Hansen, Michael Rygaard

    2008-01-01

    The focus of the current paper is on the control of hydraulic systems when utilizing the advances that electronic control may bring with regard to power management, prioritized flow sharing and anti-stall, arising from being able to control both pump, valves and engine electronically. A simple mo...

  19. Hydraulic fracturing in anisotropic and heterogeneous rocks

    Valliappan, V.; Remmers, J.J.C.; Barnhoorn, A.; Smeulders, D.M.J.

    2017-01-01

    In this paper, we present a two dimensional model for modelling the hydraulic fracture process in anisotropic and heterogeneous rocks. The model is formulated using extended finite elements (XFEM) in combination with Newton-Raphson method for spatial and Euler's implicit scheme for time. The

  20. Hydraulic adjustment of Scots pine across Europe

    Martínez-Vilalta, J.; Cochard, H.; Mencuccini, M.; Sterck, F.J.; Herrero, A.; Korhonen, J.F.J.; Llorens, P.; Nikinmaa, E.; Nolè, A.; Poyatos, R.; Ripullone, F.; Sass-Klaassen, U.; Zweifel, R.

    2009-01-01

    The variability of branch-level hydraulic properties was assessed across 12 Scots pine populations covering a wide range of environmental conditions, including some of the southernmost populations of the species. The aims were to relate this variability to differences in climate, and to study the

  1. Massive hydraulic fracturing gas stimulation project

    Appledorn, C.R.; Mann, R.L.

    1977-01-01

    The Rio Blanco Massive Hydraulic Fracturing Project was fielded in 1974 as a joint Industry/ERDA demonstration to test the relative formations that were stimulated by the Rio Blanco Nuclear fracturing experiment. The project is a companion effort to and a continuation of the preceding nuclear stimulation project, which took place in May 1973. 8 figures

  2. Proceedings of the third nuclear thermal hydraulics meeting

    Anon.

    1987-01-01

    This book contains the proceedings of the Thermal Hydraulics Division of the American Nuclear Society. The papers presented include: Simulator qualification using engineering codes and Development of thermal hydraulic analysis capabilities for Oyster Creek

  3. Chapter 12. Pure Tap Water Hydraulic Systems and Applications

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications.......Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications....

  4. DCS Hydraulics Submittal, Otero County, New Mexico, USA

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data includes spatial datasets and data tables necessary for documenting the hydraulic procedures for computing flood elevations for a flood insurance...

  5. Analysis of INDOT current hydraulic policies : [technical summary].

    2011-01-01

    Hydraulic design often tends to be on a conservative side for safety reasons. Hydraulic structures are typically oversized with the goal being reduced future maintenance costs, and to reduce the risk of property owner complaints. This approach leads ...

  6. Applicability estimation of flowmeter logging for detecting hydraulic pass

    Miyakawa, Kimio; Tanaka, Yasuji; Tanaka, Kazuhiro

    1997-01-01

    Estimation of the hydraulic pass governing hydrogeological structure contributes significantly to the siting HLW repository. Flowmeter logging can detect hydraulic passes by measuring vertical flow velocity of groundwater in the borehole. We reviewed application of this logging in situ. The hydraulic pass was detected with combination of ambient flow logging, with pumping and/or injecting induced flow logging. This application showed that the flowmeter logging detected hydraulic passes conveniently and accurately compared with other hydraulic tests. Hydraulic conductivity by using flowmeter logging was assessed above 10 -6 m/sec and within one order from comparison with injection packer tests. We suggest that appropriate application of the flowmeter logging for the siting is conducted before hydraulic tests because test sections and monitoring sections are decided rationally for procurement of quantitative hydraulic data. (author)

  7. The advantages of hydraulic packing extraction

    Baker, R.S.

    1991-01-01

    Today's competitive environment, coupled with industry's desire to improve the efficiency of plant maintenance and operations, has management continually seeking ways to save time, money, and, at nuclear plants, radiation exposure. One area where a tremendous improvement in efficiency can be realized is valve packing removal. For example, industry experience indicates that up to 70% of the time it takes to repack a valve can be spent just removing the old packing. In some case, the bonnets of small valves are removed to facilitate packing removal and prevent stem and stuffing box damage that can occur when using packing removal picks. In other cases, small valves are simply removed and discarded because it costs less to replace the valves than to remove the packing using conventional methods. Hydraulic packing extraction greatly reduces packing removal time and will not damage the stem nor stuffing box, thus eliminating the need for bonnet removal or valve replacement. This paper will review some of the more common problems associated with manual packing extraction techniques. It will explain how hydraulic packing extraction eliminates or greatly reduces the impact of each of the problem areas. A discussion will be provided of some actual industry operating experiences related to success stories using hydraulic packing extraction. The paper will also briefly describe the operating parameters associated with hydraulic packing extraction tools. Throughout the paper, actual operating experiences from the nuclear power, fossil power, petrochemical, and refinery industries will be used to support the conclusion that hydraulic packing extraction is an alternative that can save time, money, and exposure

  8. Understanding, Classifying, and Selecting Environmentally Acceptable Hydraulic Fluids

    2016-08-01

    traditional mineral oil; therefore, the life cycle costs over time may be reduced . REPLACEMENT OF EXISTING HYDRAULIC FLUIDS: Hydraulic fluids in existing...properly maintaining the fluid can extend the time interval between fluid changes, thus reducing the overall operating cost of the EA hydraulic fluid. It...Environmentally Acceptable Hydraulic Fluids by Timothy J. Keyser, Robert N. Samuel, and Timothy L. Welp INTRODUCTION: On a daily basis, the United States Army

  9. Review of fluid and control technology of hydraulic wind turbines

    Cai, Maolin; Wang, Yixuan; Jiao, Zongxia; Shi, Yan

    2017-09-01

    This study examines the development of the fluid and control technology of hydraulic wind turbines. The current state of hydraulic wind turbines as a new technology is described, and its basic fluid model and typical control method are expounded by comparing various study results. Finally, the advantages of hydraulic wind turbines are enumerated. Hydraulic wind turbines are expected to become the main development direction of wind turbines.

  10. Review of fluid and control technology of hydraulic wind turbines

    Maolin CAI; Yixuan WANG; Zongxia JIAO; Yan SHI

    2017-01-01

    This study examines the development of the fluid and control technology of hydraulic wind turbines.The current state of hydraulic wind turbines as a new technology is described,and its basic fluid model and typical control method are expounded by comparing various study results.Finally,the advantages of hydraulic wind turbines are enumerated.Hydraulic wind turbines are expected to become the main development direction of wind turbines.

  11. Critical review of hydraulic modeling on atmospheric heat dissipation

    Onishi, Y.; Brown, S.M.

    1977-01-01

    Objectives of this study were: to define the useful roles of hydraulic modeling in understanding the predicting atmospheric effects of heat dissipation systems; to assess the state-of-the-art of hydraulic modeling of atmospheric phenomena; to inventory potentially useful existing hydraulic modeling facilities both in the United States and abroad; and to scope hydraulic model studies to assist the assessment of atmospheric effects of nuclear energy centers

  12. Complementary factors of nuclear and hydraulic energy in western Europe: the role of pumping stations

    Chabert, L [Universite Lyon II (FR)

    1981-12-01

    The nuclear choice results from the determination to be politically independent and a calculation of competitivity, which in France's case are emphasized by the chronological concord between the 1973-74 oil crisis and the Messmer Plan. Hydraulic equipment is not the result of an authentic choice, it is linked to the existence of the availability of water power. Our article deals with the role of pumping stations, the evolution of the role of pumping and its geography.

  13. Importance of borehole deviation surveys for monitoring of hydraulic fracturing treatments

    Bulant, P.; Eisner, L.; Pšenčík, Ivan; Le Calvez, J. H.

    2007-01-01

    Roč. 55, č. 6 (2007), s. 891-899 ISSN 0016-8025 Grant - others:GA ČR(CZ) GA205/07/0032; EC(XE) MTKI-CT-2004-517242 Institutional research plan: CEZ:AV0Z30120515 Source of funding: R - rámcový projekt EK Keywords : hydraulic fracture * borehole deviation * seismic rays Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.731, year: 2007

  14. Non–double-couple mechanisms of microearthquakes induced by hydraulic fracturing

    Šílený, Jan; Hill, D. P.; Eisner, L.; Cornet, F. H.

    2009-01-01

    Roč. 114, B8 (2009), B08307/1-B08307/15 ISSN 0148-0227 R&D Projects: GA AV ČR IAA300120502; GA ČR GA205/09/0724 Grant - others:EC(XE) MTKI-CT-2004-517242 Institutional research plan: CEZ:AV0Z30120515 Keywords : microearthquakes * source mechanisms * hydraulic fracturing Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 3.082, year: 2009

  15. Regulatory requirements to the thermal-hydraulic and thermal-mechanical computer codes

    Vitkova, M.; Kalchev, B.; Stefanova, S.

    2006-01-01

    The paper presents an overview of the regulatory requirements to the thermal-hydraulic and thermal-mechanical computer codes, which are used for safety assessment of the fuel design and the fuel utilization. Some requirements to the model development, verification and validation of the codes and analysis of code uncertainties are also define. Questions concerning Quality Assurance during development and implementation of the codes as well as preparation of a detailed verification and validation plan are briefly discussed

  16. Hydrogeological characteristics and hydraulic discharge forecast of Uranium Deposit No.320

    Hao Fulin.

    1987-01-01

    The water and heat sources of Uranium Deposit No.320 have been discussed according to the water-controlling specific features of the regional strata and geological structures(including water transmitting and bearing structures), which provide evidence for the forecasting of hydraulic discharge. On the basis of the hydrogeological study of the deposit, the author draws up a plan for combining the mine drainage with the urban water supply and making comprehensively use of the thermal water resource

  17. 14 CFR 33.72 - Hydraulic actuating systems.

    2010-01-01

    ... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic actuating systems. Each hydraulic actuating system must function properly under all conditions in which the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic actuating systems. 33.72 Section...

  18. Report: Enhanced EPA Oversight and Action Can Further Protect Water Resources From the Potential Impacts of Hydraulic Fracturing

    Report #15-P-0204, July 16, 2015. Enhanced EPA oversight of the permitting process for diesel fuel use during hydraulic fracturing can further EPA efforts to protect water resources, and establishment of a plan for determining whether to propose a chemical

  19. Steady-state thermal-hydraulic design analysis of the Advanced Neutron Source reactor

    Yoder, G.L. Jr.; Dixon, J.R.; Elkassabgi, Y.; Felde, D.K.; Giles, G.E.; Harrington, R.M.; Morris, D.G.; Nelson, W.R.; Ruggles, A.E.; Siman-Tov, M.; Stovall, T.K.

    1994-05-01

    The Advanced Neutron Source (ANS) is a research reactor that is planned for construction at Oak Ridge National Laboratory. This reactor will be a user facility with the major objective of providing the highest continuous neutron beam intensities of any reactor in the world. Additional objectives for the facility include providing materials irradiation facilities and isotope production facilities as good as, or better than, those in the High Flux Isotope Reactor. To achieve these objectives, the reactor design uses highly subcooled heavy water as both coolant and moderator. Two separate core halves of 67.6-L total volume operate at an average power density of 4.5 MW(t)/L, and the coolant flows upward through the core at 25 m/s. Operating pressure is 3.1 MPa at the core inlet with a 1.4-MPa pressure drop through the core region. Finally, in order to make the resources available for experimentation, the fuel is designed to provide a 17-d fuel cycle with an additional 4 d planned in each cycle for the refueling process. This report examines the codes and models used to develop the thermal-hydraulic design for ANS, as well as the correlations and physical data; evaluates thermal-hydraulic uncertainties; reports on thermal-hydraulic design and safety analysis; describes experimentation in support of the ANS reactor design and safety analysis; and provides an overview of the experimental plan

  20. Determination of hydraulic conductivity coefficient in NSD site, Serpong, based on in-situ permeability test method

    Heri Syaeful; Sucipta

    2013-01-01

    In line with the increase of amount of radioactive waste, PTLR-BATAN plans to build the Near Surface Disposal (NSD) facility, especially in the preliminary stages is the Demo Plant of NSD facility. NSD is a low to medium level radioactive waste storage concept. Most important aspect in the site study for planning NSD is hydrogeological aspect especially related to the migration of radionuclides to the environment. In the study of radionuclide migration, a preliminary parameter which is required to know is the hydraulic conductivity in order to deliver the soil and rock hydraulic conductivity values in the site then conducted the in-situ permeability test. Based on the test, obtained soil and rock hydraulic conductivity values ranging from 10 -6 to 10 -2 cm/sec. The greatest hydraulic conductivity value located in the gravelly silt soil units which is in the site, constitute as aquifer, with depth ranging from 8 - 24 m, with hydraulic conductivity value reached 10 -2 cm/sec. (author)

  1. Assimilation of temperature and hydraulic gradients for quantifying the spatial variability of streambed hydraulics

    Huang, Xiang; Andrews, Charles B.; Liu, Jie; Yao, Yingying; Liu, Chuankun; Tyler, Scott W.; Selker, John S.; Zheng, Chunmiao

    2016-08-01

    Understanding the spatial and temporal characteristics of water flux into or out of shallow aquifers is imperative for water resources management and eco-environmental conservation. In this study, the spatial variability in the vertical specific fluxes and hydraulic conductivities in a streambed were evaluated by integrating distributed temperature sensing (DTS) data and vertical hydraulic gradients into an ensemble Kalman filter (EnKF) and smoother (EnKS) and an empirical thermal-mixing model. The formulation of the EnKF/EnKS assimilation scheme is based on a discretized 1D advection-conduction equation of heat transfer in the streambed. We first systematically tested a synthetic case and performed quantitative and statistical analyses to evaluate the performance of the assimilation schemes. Then a real-world case was evaluated to calculate assimilated specific flux. An initial estimate of the spatial distributions of the vertical hydraulic gradients was obtained from an empirical thermal-mixing model under steady-state conditions using a constant vertical hydraulic conductivity. Then, this initial estimate was updated by repeatedly dividing the assimilated specific flux by estimates of the vertical hydraulic gradients to obtain a refined spatial distribution of vertical hydraulic gradients and vertical hydraulic conductivities. Our results indicate that optimal parameters can be derived with fewer iterations but greater simulation effort using the EnKS compared with the EnKF. For the field application in a stream segment of the Heihe River Basin in northwest China, the average vertical hydraulic conductivities in the streambed varied over three orders of magnitude (5 × 10-1 to 5 × 102 m/d). The specific fluxes ranged from near zero (qz < ±0.05 m/d) to ±1.0 m/d, while the vertical hydraulic gradients were within the range of -0.2 to 0.15 m/m. The highest and most variable fluxes occurred adjacent to a debris-dam and bridge pier. This phenomenon is very likely

  2. Synthesis of Servo Pneumatic/Hydraulic Drive

    K D. Efremova

    2017-01-01

    Full Text Available Servo pneumatic and / or hydraulic drives are widely used in modern engineering and process control. The efficiency of using pneumatic / hydraulic drives depends on their parameters and characteristics. To select the optimal drive parameters, various methods are used, based on finding the minimum of the target (target or criteria function.The objective of this paper was to apply one crucial criterion (target function that provides determination of optimal parameters of the pneumatic / hydraulic drive with the translational motion of the end-effector as well as its use in the synthesis of the servo pneumatic cylinder. The article shows the form of the target function representing a set of drive parameters that do not have direct relationships with each other in a dimensionless form for the pneumatic / hydraulic drive with the translational motion of the end-effector. To calculate the parameters of the servo drive close to the optimal ones, a two-criteria LPτ search was used. As criteria, were used the decisive criterion - the proposed target function, and the power developed by the actuator of the pneumatic / hydraulic drive, which were presented in a dimensionless form. It is shown that the criterion for solution optimality is the minimum distance of the selected point in the space of the normalized criteria from the origin. This point was determined. In addition to the proposed criteria, non-formalised requirements were taken into account: actual and mass-produced components of drive, in terms of which its parameters close to the optimal ones were determined, and the maximum relative error of the obtained useful power value of the servo pneumatic drive was estimated. The paper presents design features of two types of the servo pneumatic drive created, taking into account the proposed target function, implemented according to the schemes "hidden" and "spaced apart". The experimental static characteristic of the servo pneumatic drive is

  3. Hydraulic Limits on Maximum Plant Transpiration

    Manzoni, S.; Vico, G.; Katul, G. G.; Palmroth, S.; Jackson, R. B.; Porporato, A. M.

    2011-12-01

    Photosynthesis occurs at the expense of water losses through transpiration. As a consequence of this basic carbon-water interaction at the leaf level, plant growth and ecosystem carbon exchanges are tightly coupled to transpiration. In this contribution, the hydraulic constraints that limit transpiration rates under well-watered conditions are examined across plant functional types and climates. The potential water flow through plants is proportional to both xylem hydraulic conductivity (which depends on plant carbon economy) and the difference in water potential between the soil and the atmosphere (the driving force that pulls water from the soil). Differently from previous works, we study how this potential flux changes with the amplitude of the driving force (i.e., we focus on xylem properties and not on stomatal regulation). Xylem hydraulic conductivity decreases as the driving force increases due to cavitation of the tissues. As a result of this negative feedback, more negative leaf (and xylem) water potentials would provide a stronger driving force for water transport, while at the same time limiting xylem hydraulic conductivity due to cavitation. Here, the leaf water potential value that allows an optimum balance between driving force and xylem conductivity is quantified, thus defining the maximum transpiration rate that can be sustained by the soil-to-leaf hydraulic system. To apply the proposed framework at the global scale, a novel database of xylem conductivity and cavitation vulnerability across plant types and biomes is developed. Conductivity and water potential at 50% cavitation are shown to be complementary (in particular between angiosperms and conifers), suggesting a tradeoff between transport efficiency and hydraulic safety. Plants from warmer and drier biomes tend to achieve larger maximum transpiration than plants growing in environments with lower atmospheric water demand. The predicted maximum transpiration and the corresponding leaf water

  4. Hydraulics and pneumatics a technician's and engineer's guide

    Parr, Andrew

    1991-01-01

    Hydraulics and Pneumatics: A Technician's and Engineer's Guide provides an introduction to the components and operation of a hydraulic or pneumatic system. This book discusses the main advantages and disadvantages of pneumatic or hydraulic systems.Organized into eight chapters, this book begins with an overview of industrial prime movers. This text then examines the three different types of positive displacement pump used in hydraulic systems, namely, gear pumps, vane pumps, and piston pumps. Other chapters consider the pressure in a hydraulic system, which can be quickly and easily controlled

  5. Proceedings of the OECD/CSNI workshop on transient thermal-hydraulic and neutronic codes requirements

    Ebert, D.

    1997-07-01

    This is a report on the CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements held at Annapolis, Maryland, USA November 5-8, 1996. This experts' meeting consisted of 140 participants from 21 countries; 65 invited papers were presented. The meeting was divided into five areas: (1) current and prospective plans of thermal hydraulic codes development; (2) current and anticipated uses of thermal-hydraulic codes; (3) advances in modeling of thermal-hydraulic phenomena and associated additional experimental needs; (4) numerical methods in multi-phase flows; and (5) programming language, code architectures and user interfaces. The workshop consensus identified the following important action items to be addressed by the international community in order to maintain and improve the calculational capability: (a) preserve current code expertise and institutional memory, (b) preserve the ability to use the existing investment in plant transient analysis codes, (c) maintain essential experimental capabilities, (d) develop advanced measurement capabilities to support future code validation work, (e) integrate existing analytical capabilities so as to improve performance and reduce operating costs, (f) exploit the proven advances in code architecture, numerics, graphical user interfaces, and modularization in order to improve code performance and scrutibility, and (g) more effectively utilize user experience in modifying and improving the codes

  6. Proceedings of the OECD/CSNI workshop on transient thermal-hydraulic and neutronic codes requirements

    Ebert, D.

    1997-07-01

    This is a report on the CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements held at Annapolis, Maryland, USA November 5-8, 1996. This experts` meeting consisted of 140 participants from 21 countries; 65 invited papers were presented. The meeting was divided into five areas: (1) current and prospective plans of thermal hydraulic codes development; (2) current and anticipated uses of thermal-hydraulic codes; (3) advances in modeling of thermal-hydraulic phenomena and associated additional experimental needs; (4) numerical methods in multi-phase flows; and (5) programming language, code architectures and user interfaces. The workshop consensus identified the following important action items to be addressed by the international community in order to maintain and improve the calculational capability: (a) preserve current code expertise and institutional memory, (b) preserve the ability to use the existing investment in plant transient analysis codes, (c) maintain essential experimental capabilities, (d) develop advanced measurement capabilities to support future code validation work, (e) integrate existing analytical capabilities so as to improve performance and reduce operating costs, (f) exploit the proven advances in code architecture, numerics, graphical user interfaces, and modularization in order to improve code performance and scrutibility, and (g) more effectively utilize user experience in modifying and improving the codes.

  7. Trend analysis of troubles caused by thermal-hydraulic phenomena at nuclear power plants

    Komatsu, Teruo

    2010-01-01

    The Institute of Nuclear Safety System (INSS) is promoting researches to improve the safety and reliability of nuclear power plants. In the present study, our attention was focused on troubles attributed to thermal-hydraulic phenomena in particular, trend analysis were carried out to learn lessons from these troubles and to prevent their recurrence. Through our survey, we found the following two points. First, many thermal-hydraulics related troubles can be attributed to design faults, since we found some events in foreign countries took place after inadequate facility renovation. To ensure appropriate design verification, it is important to take account of state-of-the-art science and technology and at the same time to pay attention to the compatibility with the initial design concept. Second point, thermal-hydraulic related troubles are common and recurrent to nuclear power plants worldwide. Japanese utilities are planning to introduce some of overseas experiences to their plants, such as power uprate and renovations of aged facilities. It is important to learn lessons from experiences paying close attention continuously to overseas trouble events, including thermal-hydraulics related events, and to use them to improve safety and reliability of nuclear power plants. (author)

  8. Probabilistic flood inundation mapping at ungauged streams due to roughness coefficient uncertainty in hydraulic modelling

    Papaioannou, George; Vasiliades, Lampros; Loukas, Athanasios; Aronica, Giuseppe T.

    2017-04-01

    Probabilistic flood inundation mapping is performed and analysed at the ungauged Xerias stream reach, Volos, Greece. The study evaluates the uncertainty introduced by the roughness coefficient values on hydraulic models in flood inundation modelling and mapping. The well-established one-dimensional (1-D) hydraulic model, HEC-RAS is selected and linked to Monte-Carlo simulations of hydraulic roughness. Terrestrial Laser Scanner data have been used to produce a high quality DEM for input data uncertainty minimisation and to improve determination accuracy on stream channel topography required by the hydraulic model. Initial Manning's n roughness coefficient values are based on pebble count field surveys and empirical formulas. Various theoretical probability distributions are fitted and evaluated on their accuracy to represent the estimated roughness values. Finally, Latin Hypercube Sampling has been used for generation of different sets of Manning roughness values and flood inundation probability maps have been created with the use of Monte Carlo simulations. Historical flood extent data, from an extreme historical flash flood event, are used for validation of the method. The calibration process is based on a binary wet-dry reasoning with the use of Median Absolute Percentage Error evaluation metric. The results show that the proposed procedure supports probabilistic flood hazard mapping at ungauged rivers and provides water resources managers with valuable information for planning and implementing flood risk mitigation strategies.

  9. TG 220 MW hydraulic control system diagnostics

    Svabcik, A.

    1996-01-01

    The TG power output control system comprises a hydraulic and an electronic part. TG speed, power output or the main steam header pressure (HPK) depend on the steam flow at the turbine inlet. The steam admission into the turbine is controlled by four control valves and one by-pass valve in case of the HP part and by four capture flap valves in case of the LP part. The task of the SKODA K-220 MW turbine protection and control systems is to provide both the turbine speed and power output control to the setpoint value. Diagnostic measurements were aimed at getting an overview of both technical and functional states of all power output control elements. Principally, it can be stated that some deficiencies of a design nature originating from the manufacturer's factory were revealed and some other deficiencies related to hydraulic control elements functionality were identified more closely by the new method. 5 figs

  10. TG 220 MW hydraulic control system diagnostics

    Svabcik, A [Atomova Elektraren Bohunice, Jaslovske Bohunice (Slovakia)

    1997-12-31

    The TG power output control system comprises a hydraulic and an electronic part. TG speed, power output or the main steam header pressure (HPK) depend on the steam flow at the turbine inlet. The steam admission into the turbine is controlled by four control valves and one by-pass valve in case of the HP part and by four capture flap valves in case of the LP part. The task of the SKODA K-220 MW turbine protection and control systems is to provide both the turbine speed and power output control to the setpoint value. Diagnostic measurements were aimed at getting an overview of both technical and functional states of all power output control elements. Principally, it can be stated that some deficiencies of a design nature originating from the manufacturer`s factory were revealed and some other deficiencies related to hydraulic control elements functionality were identified more closely by the new method. 5 figs.

  11. Pilot testing of a hydraulic bridge exciter

    Andersson Andreas

    2015-01-01

    Full Text Available This paper describes the development of a hydraulic bridge exciter and its first pilot testing on a full scale railway bridge in service. The exciter is based on a hydraulic load cylinder with a capacity of 50 kN and is intended for controlled dynamic loading up to at least 50 Hz. The load is applied from underneath the bridge, enabling testing while the railway line is in service. The system is shown to produce constant load amplitude even at resonance. The exciter is used to experimentally determine frequency response functions at all sensor locations, which serve as valuable input for model updating and verification. An FE-model of the case study bridge has been developed that is in good agreement with the experimental results.

  12. Hydraulic and Wave Aspects of Novorossiysk Bora

    Shestakova, Anna A.; Moiseenko, Konstantin B.; Toropov, Pavel A.

    2018-02-01

    Bora in Novorossiysk (seaport on the Black Sea coast of the Caucasus) is one of the strongest and most prominent downslope windstorms on the territory of Russia. In this paper, we evaluate the applicability of the hydraulic and wave hypotheses, which are widely used for downslope winds around the world, to Novorossiysk bora on the basis of observational data, reanalysis, and mesoscale numerical modeling with WRF-ARW. It is shown that mechanism of formation of Novorossiysk bora is essentially mixed, which is expressed in the simultaneous presence of gravity waves breaking and a hydraulic jump, as well as in the significant variability of the contribution of wave processes to the windstorm dynamics. Effectiveness of each mechanism depends on the elevated inversion intensity and mean state critical level height. Most favorable conditions for both mechanisms working together are moderate or weak inversion and high or absent critical level.

  13. Concept Evaluation for Hydraulic Yaw System

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    The yaw system is the subsystem on a wind turbine which ensures that the rotor plane of the turbine always is facing the wind direction. Studies from [1] show that a soft yaw system may be utilized to dampen the loads in the wind turbine structure. The soft yaw system operates much like...... investigation. Loads and yaw demands are based on the IEC 61400-1 standard for wind turbine design, and the loads for this examination are extrapolated from the HAWC2 aeroelastic design code. The concepts are based on a 5 MW off-shore turbine....... a suspension system on a car, leading the loads away from the turbine structure. However, to realize a soft hydraulic yaw system a new design concept must be found. As a part of the development of the new concept a preliminary concept evaluation has been conducted, evaluating seven different hydraulic yaw...

  14. Trends in Design of Water Hydraulics

    Conrad, Finn

    2005-01-01

    ordinary tap water and the range of application areas are illustrated with examples, in particular within the food processing industry, humidification operations, water mist systems for fire fighting, high water pressure cleaners, water moisturising systems for wood processing, lumber drying process...... operate with pure water from the tap without additives of any kind. Hence water hydraulics takes the benefit of pure water as fluid being environmentally friendly, easy to clean sanitary design, non-toxic, non-flammable, inexpensive, readily available and easily disposable. The low-pressure tap water...... and accessories running with sea-water as fluid are available. A unique solution is to use reverse osmosis to generate drinking water from sea-water, and furthermore for several off-shore applications. Furthermore, tap water hydraulic components of the Nessie® family and examples of measured performance...

  15. Thermal Hydraulic Design of PWT Accelerating Structures

    Yu, David; Chen Ping; Lundquist, Martin; Luo, Yan

    2005-01-01

    Microwave power losses on the surfaces of accelerating structures will transform to heat which will deform the structures if it is not removed in time. Thermal hydraulic design of the disk and cooling rods of a Plane Wave Transformer (PWT) structure is presented. Experiments to measure the hydraulic (pressure vs flow rate) and cooling (heat removed vs flow rate) properties of the PWT disk are performed, and results compared with simulations using Mathcad models and the COSMOSM code. Both experimental and simulation results showed that the heat deposited on the structure could be removed effectively using specially designed water-cooling circuits and the temperature of the structure could be controlled within the range required.

  16. Soil hydraulic properties of Cuban soils

    Ruiz, M.E.; Medina, H.

    2004-01-01

    Because soil hydraulic properties are indispensable for determining soil water retention and soil water movement, their input for deterministic crop simulation models is essential. From these models is possible to access the effect of the weather changes, soil type or different irrigation schedules on crop yields. With these models, possibilities are provided to answer questions regarding virtual 'what happen if' experiments with a minimum of fieldwork. Nevertheless, determining soil hydraulic properties can be very difficult owing to unavailability of necessary equipment or the lack of personal with the proper knowledge for those tasks. These deficiencies are a real problem in developing countries, and even more so when there is not enough financial possibilities for research work. This paper briefly presents the way these properties have been accessed for Cuban soils, which methods have been used and the work now in progress. (author)

  17. Analysis of uncertainties of thermal hydraulic calculations

    Macek, J.; Vavrin, J.

    2002-12-01

    In 1993-1997 it was proposed, within OECD projects, that a common program should be set up for uncertainty analysis by a probabilistic method based on a non-parametric statistical approach for system computer codes such as RELAP, ATHLET and CATHARE and that a method should be developed for statistical analysis of experimental databases for the preparation of the input deck and statistical analysis of the output calculation results. Software for such statistical analyses would then have to be processed as individual tools independent of the computer codes used for the thermal hydraulic analysis and programs for uncertainty analysis. In this context, a method for estimation of a thermal hydraulic calculation is outlined and selected methods of statistical analysis of uncertainties are described, including methods for prediction accuracy assessment based on the discrete Fourier transformation principle. (author)

  18. Thermal hydraulics in undergraduate nuclear engineering education

    Theofanous, T.G.

    1986-01-01

    The intense safety-related research efforts of the seventies in reactor thermal hydraulics have brought about the recognition of the subject as one of the cornerstones of nuclear engineering. Many nuclear engineering departments responded by building up research programs in this area, and mostly as a consequence, educational programs, too. Whether thermal hydraulics has fully permeated the conscience of nuclear engineering, however, remains yet to be seen. The lean years that lie immediately ahead will provide the test. The purpose of this presentation is to discuss the author's own educational activity in undergraduate nuclear engineering education over the past 10 yr or so. All this activity took place at Purdue's School of Nuclear Engineering. He was well satisfied with the results and expects to implement something similar at the University of California in Santa Barbara in the near future

  19. Thermal-hydraulic analysis of nuclear reactors

    Zohuri, Bahman

    2015-01-01

    This text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play.  Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors. This book also: Provides extensive coverage of thermal hydraulics with thermodynamics in nuclear reactors, beginning with fundamental ...

  20. New parameters influencing hydraulic runner lifetime

    Sabourin, M; Bouffard, D A; Thibault, D; Levesque, M

    2010-01-01

    Traditionally, hydraulic runner mechanical design is based on calculation of static stresses. Today, validation of hydraulic runner design in terms of reliability requires taking into account the fatigue effect of dynamics loads. A damage tolerant approach based on fracture mechanics is the method chosen by Alstom and Hydro-Quebec to study fatigue damage in runners. This requires a careful examination of all factors influencing material fatigue behavior. Such material behavior depends mainly on the chemical composition, microstructure and thermal history of the component, and on the resulting residual stresses. Measurement of fracture mechanics properties of various steels have demonstrated that runner lifetime can be significantly altered by differences in the manufacturing process, although remaining in accordance with agreed practices and standards such as ASTM. Carbon content and heat treatment are suspected to influence fatigue lifetime. This will have to be investigated by continuing the current research.

  1. New parameters influencing hydraulic runner lifetime

    Sabourin, M; Bouffard, D A [Alstom Hydro Canada Inc, Hydraulic Engineering, 1350 chemin St-Roch, Sorel-Tracy (Quebec), J3P 5P9 (Canada); Thibault, D [Hydro-Quebec, Institut de Recherche d' Hydro-Quebec 1800 boul. Lionel-Boulet, Varennes (Quebec), J3X 1S1 (Canada); Levesque, M, E-mail: michel.sabourin@power.alstom.co [Ecole Polytechnique de Montreal, Departement de genie mecanique C.P.6079, succ. Centre-ville, Montreal (Quebec), H3C 3A7 (Canada)

    2010-08-15

    Traditionally, hydraulic runner mechanical design is based on calculation of static stresses. Today, validation of hydraulic runner design in terms of reliability requires taking into account the fatigue effect of dynamics loads. A damage tolerant approach based on fracture mechanics is the method chosen by Alstom and Hydro-Quebec to study fatigue damage in runners. This requires a careful examination of all factors influencing material fatigue behavior. Such material behavior depends mainly on the chemical composition, microstructure and thermal history of the component, and on the resulting residual stresses. Measurement of fracture mechanics properties of various steels have demonstrated that runner lifetime can be significantly altered by differences in the manufacturing process, although remaining in accordance with agreed practices and standards such as ASTM. Carbon content and heat treatment are suspected to influence fatigue lifetime. This will have to be investigated by continuing the current research.

  2. Analysis of buffering process of control rod hydraulic absorber

    Bao Jishi; Qin Benke; Bo Hanliang

    2011-01-01

    Control Rod Hydraulic Drive Mechanism(CRHDM) is a newly invented build-in control rod drive mechanism. Hydraulic absorber is the key part of this mechanism, and is used to cushion the control rod when the rod scrams. Thus, it prevents the control rod from being deformed and damaged. In this paper dynamics program ANSYS CFX is used to calculate all kinds of flow conditions in hydraulic absorber to obtain its hydraulic characteristics. Based on the flow resistance coefficients obtained from the simulation results, fluid mass and momentum equations were developed to get the trend of pressure change in the hydraulic cylinder and the displacement of the piston rod during the buffering process of the control rod. The results obtained in this paper indicate that the hydraulic absorber meets the design requirement. The work in this paper will be helpful for the design and optimization of the control rod hydraulic absorber. (author)

  3. The micro hydraulic power, a sure value

    Anon.

    2003-01-01

    The micro hydroelectricity is a proven technology which has now reached maturity. Ideal for electrification of remote sites, it also serves a complement to national electric production. A recent study carried out by the ESHA estimates the potential which still available in terms of micro hydraulic power plants at 5939 MW. The small hydro power capacity (>10 MW) installed in European union and the available potential of small hydro power are presented. (A.L.B.)

  4. Hydraulic Study For Kuala Sungai Kemaman

    Siti Aishah Hashim

    2006-01-01

    Hydraulic study for Kuala Sungai Kemaman is carried out to determine the cause of sedimentation at the river mouth and erosion of the shoreline south of the Kuala Sungai Kemaman. Computer model MIKE 21 is used in this study. The modeling work consist of setting up the model area, calibration and verification of the model, sedimentation study and review several alternatives and chose the most suitable one to solve the sedimentation and erosion problem. (Author)

  5. Virginia Power thermal-hydraulics methods

    Anderson, R.C.; Basehore, K.L.; Harrell, J.R.

    1987-01-01

    Virginia Power's nuclear safety analysis group is responsible for the safety analysis of reload cores for the Surry and North Anna power stations, including the area of core thermal-hydraulics. Postulated accidents are evaluated for potential departure from nucleate boiling violations. In support of these tasks, Virginia Power has employed the COBRA code and the W-3 and WRB-1 DNB correlations. A statistical DNBR methodology has also been developed. The code, correlations and statistical methodology are discussed

  6. Estimation of ground water hydraulic parameters

    Hvilshoej, Soeren

    1998-11-01

    The main objective was to assess field methods to determine ground water hydraulic parameters and to develop and apply new analysis methods to selected field techniques. A field site in Vejen, Denmark, which previously has been intensively investigated on the basis of a large amount of mini slug tests and tracer tests, was chosen for experimental application and evaluation. Particular interest was in analysing partially penetrating pumping tests and a recently proposed single-well dipole test. Three wells were constructed in which partially penetrating pumping tests and multi-level single-well dipole tests were performed. In addition, multi-level slug tests, flow meter tests, gamma-logs, and geologic characterisation of soil samples were carried out. In addition to the three Vejen analyses, data from previously published partially penetrating pumping tests were analysed assuming homogeneous anisotropic aquifer conditions. In the present study methods were developed to analyse partially penetrating pumping tests and multi-level single-well dipole tests based on an inverse numerical model. The obtained horizontal hydraulic conductivities from the partially penetrating pumping tests were in accordance with measurements obtained from multi-level slug tests and mini slug tests. Accordance was also achieved between the anisotropy ratios determined from partially penetrating pumping tests and multi-level single-well dipole tests. It was demonstrated that the partially penetrating pumping test analysed by and inverse numerical model is a very valuable technique that may provide hydraulic information on the storage terms and the vertical distribution of the horizontal and vertical hydraulic conductivity under both confined and unconfined aquifer conditions. (EG) 138 refs.

  7. Two phase flow arising in hydraulics

    Straškraba, Ivan

    2015-01-01

    Roč. 60, č. 1 (2015), s. 21-33 ISSN 0862-7940 R&D Projects: GA ČR GA201/08/0012 Institutional support: RVO:67985840 Keywords : compressible fluid * Navier-Stokes equations * hydraulic systems Subject RIV: BA - General Mathematics Impact factor: 0.507, year: 2015 http://link.springer.com/article/10.1007/s10492-015-0083-9

  8. Hydraulic oil control system for transformer stations

    Truong, P.

    2002-01-01

    'Full text:' Electrical oil control systems are commonly used to contain large volumes of spilled oil in transformer stations. Specially calibrated floats, some of which are designed to float only in oil and others only in water, are used in combination with a pump to contain oil at the catch basin below a transformer station.This electrical control system requires frequent maintenance and inspections to ensure the electrical system is not affected by any electrical surges. Also the floats need to be inspected and cleaned frequently to prevent oil or grit build up that may affect the systems' ability to contain oil.Recognizing the limitations of electrical oil control systems, Hydro One is investigating alternative control systems. A hydraulic oil control system is being investigated as an alternative which can backup oil in a containment area while allowing any water entering the containment area to pass through. Figure 1 shows a schematic of a bench-top model tested at Ryerson University. Oil and water separation occurs within the double-piped column. Oil and water are allowed to enter the external pipe column but only water is allowed to exit the internal pipe column. The internal pipe column is designed to generate enough hydrostatic pressure to ensure the oil is contained in the external pipe column.The hydraulic oil control system provides a reliable control mechanism and requires less maintenance compared to that of the electrical control system. Since the hydraulic oil control system has no moving parts, nor would any parts that require electricity, it is not affected by electrical surges such as lightening.The maintenance requirements of the hydraulic oil control system are: the removal of any oil and grit from the catch basin, and the occasional visual inspection for any crack or clogs in the system. (author)

  9. Hydraulic upright of a mine support

    Solomakhin, A N; Il' in, V A; Ponomarenko, Yu F; Shakhmeyster, Yu L

    1979-04-30

    The hydraulic upright of a mine support, which includes a housing, piston with compacting element and dirt collector, rod and guide sleeve, is described. In order to improve protection of the piston element from abrasive particles and to reduce the pressure differential the piston of the upright is also equipped with a compaction ring, whose lateral surface has a groove beneath the compacting element. The surface on the side of the working fluid supply is made conical in order to remove dirt.

  10. Hydraulic Aspects of Vegetation Maintanence in Streams

    Larsen, Torben; Vestergaard, Kristian

    1991-01-01

    This paper describes the importance of the underwater vegetation on Danish streams and some of the consequences of vegetation maintenance. the influence of the weed on the hydraulic conditions is studied through experiments in a smaller stream and the effect of cutting channels through the weed...... is measured. A method for predicting the Manning's n as a function of the discharge conditions is suggested, and also a working hypothesis for predictions of the effect of channel cutting is presented....

  11. Thermal-hydraulics of actinide burner reactors

    Takizuka, Takakazu; Mukaiyama, Takehiko; Takano, Hideki; Ogawa, Toru; Osakabe, Masahiro.

    1989-07-01

    As a part of conceptual study of actinide burner reactors, core thermal-hydraulic analyses were conducted for two types of reactor concepts, namely (1) sodium-cooled actinide alloy fuel reactor, and (2) helium-cooled particle-bed reactor, to examine the feasibility of high power-density cores for efficient transmutation of actinides within the maximum allowable temperature limits of fuel and cladding. In addition, calculations were made on cooling of actinide fuel assembly. (author)

  12. Scaling the viscous circular hydraulic jump

    Argentina, Mederic; Cerda, Enrique; Duchesne, Alexis; Limat, Laurent

    2017-11-01

    The formation mechanism of hydraulic jumps has been proposed by Belanger in 1828 and rationalised by Lord Rayleigh in 1914. As the Froude number becomes higher than one, the flow super criticality induces an instability which yields the emergence of a steep structure at the fluid surface. Strongly deformed liquid-air interface can be observed as a jet of viscous fluid impinges a flat boundary at high enough velocity. In this experimental setup, the location of the jump depends on the viscosity of the liquid, as shown by T. Bohr et al. in 1997. In 2014, A. Duchesne et al. have established the constancy of the Froude number at jump. Hence, it remains a contradiction, in which the radial hydraulic jump location might be explained through inviscid theory, but is also viscosity dependent. We present a model based on the 2011 Rojas et al. PRL, which solves this paradox. The agreement with experimental measurements is excellent not only for the prediction of the position of the hydraulic jump, but also for the determination of the fluid thickness profile. We predict theoretically the critical value of the Froude number, which matches perfectly to that measured by Duchesne et al. We acknowledge the support of the CNRS and the Universit Cte d'Azur, through the IDEX funding.

  13. Hydraulic system for driving control rods

    Okuzumi, Naoaki.

    1982-01-01

    Purpose: To enable safety reactor shut down upon occurrence of an abnormal excess pressure in a hydraulic control unit. Constitution: The actuation pressure for a pressure switch that generates a scram signal is set lower than the release pressure set to a pressure release valve. Thus, if the pressure of nitrogen gas in a nitrogen container increases such as upon exposure of the hydraulic control unit to a high temperature, the pressure switch is actuated at first to generate the scram signal and a scram valve is opened to supply water at high pressure to control rod drives under the driving force of the nitrogen gas at high pressure to rapidly insert the control element into the reactor and shut down it. If the pressure of the nitrogen gas still increases after the scram, the pressure release valve is opened to release the nitrogen gas at high temperature to the atmosphere. Since the scram is attained before the actuation of the pressure release valve, safety reactor shut down can be attained and the hydraulic control unit can be protected. (Sekiya, K.)

  14. Technology and control for hydraulic manipulators

    Measson, Y.; David, O.; Louveau, F.; Friconneau, J.P.

    2003-01-01

    Hydraulic manipulators are candidate for fusion reactor maintenance. Their main advantages are their large payload with respect to volume and mass, their reliability and their robustness. However, due to their force control limitations, they are disqualified for precise manipulation and are dangerous for the environment and themselves in case of unexpected collision. CEA, in collaboration with CYBERNETIX and IFREMER has developed the advanced hydraulic robot MAESTRO. Force and hybrid control has been developed in order to avoid the previous problems. Using 'pressure' control servo-valve instead of the standard 'flow' control servo-valve (standard configuration of the MAESTRO) makes a real simplification of the control loop. No more pressure sensors are needed for monitoring the hydraulic joint in force control mode and using this kind of valves makes big safety improvements. The French company IN-LHC, designed and manufactured a prototype of servo-valve that fits the performances and space constraints of the Maestro arm. A characterisation of this new product was made on a mock-up and a set of these prototypes integrated in the Maestro slave-arm. A comparison between the two actuating technologies was made and showed that the performances of the pressure servo-valves make it applicable to general application

  15. Improving the support characteristics of hydraulic fill

    Corson, D. R.; Dorman, K. R.; Sprute, R. H.

    1980-05-15

    Extensive laboratory and field testing has defined the physical properties of hydraulic fill. Effect of void ratio on percolation rate has been quantified, and tests were developed to estimate waterflow through fill material in a given state underground. Beneficial effect on fill's support capability through addition of cement alone or in conjunction with vibratory compaction has been investigated. Two separate field studies in operating cut-and-fill mines measured vein-wall deformation and loads imposed on backfilled stopes. Technology has been developed that will effectively and efficiently dewater and densify ultra-fine-grained slurries typical of metal mine hydraulic backfill. At least two operators are using this electrokinetic technique to dewater slimes collected in underground sumps or impoundments. This technique opens up the possibility of using the total unclassified tailings product as a hydraulic backfill. Theoretical enhancement of ground support and rock-burst control through improved support capability will be tested in a full-scale mine stope installation. Both a horizontal layer and a vertical column of high modulus fill will be placed in an attempt to reduce stope wall closure, support more ground pressure, and lessen rock-burst occurrence.

  16. Determining the Conditions for the Hydraulic Impacts Emergence at Hydraulic Systems

    Mazurenko A.S.

    2017-08-01

    Full Text Available This research aim is to develop a method for modeling the conditions for the critical hydrau-lic impacts emergence on thermal and nuclear power plants’ pipeline systems pressure pumps depart-ing from the general provisions of the heat and hydrodynamic instability theory. On the developed method basis, the conditions giving rise to the reliability-critical hydraulic impacts emergence on pumps for the thermal and nuclear power plants’ typical pipeline system have been determined. With the flow characteristic minimum allowable (critical sensitivity, the flow velocity fluctuations ampli-tude reaches critical values at which the pumps working elements’ failure occurs. The critical hydrau-lic impacts emergence corresponds to the transition of the vibrational heat-hydrodynamic instability into an aperiodic one. As research revealed, a highly promising approach as to the preventing the criti-cal hydraulic impacts related to the foreground use of pumps having the most sensitive consumption (at supply network performance (while other technical characteristics corresponding to that parame-ter. The research novelty refers to the suggested method elaborated by the authors’ team, which, in contrast to traditional approaches, is efficient in determining the pump hydraulic impact occurrence conditions when the vibrational heat-hydrodynamic instability transition to the aperiodic instability.

  17. Rapid hydraulic recovery in Eucalyptus pauciflora after drought: linkages between stem hydraulics and leaf gas exchange.

    Martorell, Sebastià; Diaz-Espejo, Antonio; Medrano, Hipólito; Ball, Marilyn C; Choat, Brendan

    2014-03-01

    In woody plants, photosynthetic capacity is closely linked to rates at which the plant hydraulic system can supply water to the leaf surface. Drought-induced embolism can cause sharp declines in xylem hydraulic conductivity that coincide with stomatal closure and reduced photosynthesis. Recovery of photosynthetic capacity after drought is dependent on restored xylem function, although few data exist to elucidate this coordination. We examined the dynamics of leaf gas exchange and xylem function in Eucalyptus pauciflora seedlings exposed to a cycle of severe water stress and recovery after re-watering. Stomatal closure and leaf turgor loss occurred at water potentials that delayed the extensive spread of embolism through the stem xylem. Stem hydraulic conductance recovered to control levels within 6 h after re-watering despite a severe drought treatment, suggesting an active mechanism embolism repair. However, stomatal conductance did not recover after 10 d of re-watering, effecting tighter control of transpiration post drought. The dynamics of recovery suggest that a combination of hydraulic and non-hydraulic factors influenced stomatal behaviour post drought. © 2013 John Wiley & Sons Ltd.

  18. A Thermo-Hydraulic Tool for Automatic Virtual Hazop Evaluation

    Pugi L.

    2014-12-01

    Full Text Available Development of complex lubrication systems in the Oil&Gas industry has reached high levels of competitiveness in terms of requested performances and reliability. In particular, the use of HazOp (acronym of Hazard and Operability analysis represents a decisive factor to evaluate safety and reliability of plants. The HazOp analysis is a structured and systematic examination of a planned or existing operation in order to identify and evaluate problems that may represent risks to personnel or equipment. In particular, P&ID schemes (acronym of Piping and Instrument Diagram according to regulation in force ISO 14617 are used to evaluate the design of the plant in order to increase its safety and reliability in different operating conditions. The use of a simulation tool can drastically increase speed, efficiency and reliability of the design process. In this work, a tool, called TTH lib (acronym of Transient Thermal Hydraulic Library for the 1-D simulation of thermal hydraulic plants is presented. The proposed tool is applied to the analysis of safety relevant components of compressor and pumping units, such as lubrication circuits. Opposed to the known commercial products, TTH lib has been customized in order to ease simulation of complex interactions with digital logic components and plant controllers including their sensors and measurement systems. In particular, the proposed tool is optimized for fixed step execution and fast prototyping of Real Time code both for testing and production purposes. TTH lib can be used as a standard SimScape-Simulink library of components optimized and specifically designed in accordance with the P&ID definitions. Finally, an automatic code generation procedure has been developed, so TTH simulation models can be directly assembled from the P&ID schemes and technical documentation including detailed informations of sensor and measurement system.

  19. Hydraulic Apparatus for Mechanical Testing of Nuts

    Hinkel, Todd J.; Dean, Richard J.; Hacker, Scott C.; Harrington, Douglas W.; Salazar, Frank

    2004-01-01

    The figure depicts an apparatus for mechanical testing of nuts. In the original application for which the apparatus was developed, the nuts are of a frangible type designed for use with pyrotechnic devices in spacecraft applications in which there are requirements for rapid, one-time separations of structures that are bolted together. The apparatus can also be used to test nonfrangible nuts engaged without pyrotechnic devices. This apparatus was developed to replace prior testing systems that were extremely heavy and immobile and characterized by long setup times (of the order of an hour for each nut to be tested). This apparatus is mobile, and the setup for each test can now be completed in about five minutes. The apparatus can load a nut under test with a static axial force of as much as 6.8 x 10(exp 5) lb (3.0 MN) and a static moment of as much as 8.5 x 10(exp 4) lb in. (9.6 x 10(exp 3) N(raised dot)m) for a predetermined amount of time. In the case of a test of a frangible nut, the pyrotechnic devices can be exploded to break the nut while the load is applied, in which case the breakage of the nut relieves the load. The apparatus can be operated remotely for safety during an explosive test. The load-generating portion of the apparatus is driven by low-pressure compressed air; the remainder of the apparatus is driven by 110-Vac electricity. From its source, the compressed air is fed to the apparatus through a regulator and a manually operated valve. The regulated compressed air is fed to a pneumatically driven hydraulic pump, which pressurizes oil in a hydraulic cylinder, thereby causing a load to be applied via a hydraulic nut (not to be confused with the nut under test). During operation, the hydraulic pressure is correlated with the applied axial load, which is verified by use of a load cell. Prior to operation, one end of a test stud (which could be an ordinary threaded rod or bolt) is installed in the hydraulic nut. The other end of the test stud passes

  20. Fluid Temperature of Aero Hydraulic Systems

    I. S. Shumilov

    2016-01-01

    Full Text Available In modern supersonic aircrafts due to aerodynamic skin heating a temperature of hydraulics environment significantly exceeds that of permissible for fluids used. The same problem exists for subsonic passenger aircrafts, especially for Airbuses, which have hydraulics of high power where convective heat transfer with the environment is insufficient and there is no required temperature control of fluid. The most significant in terms of heat flow is the flow caused by the loss of power to the pump and when designing the hydraulic system (HS it is necessary to pay very serious attention to it. To use a constant capacity pump is absolutely unacceptable, since HS efficiency in this case is extremely low, and the most appropriate are variable-capacity pumps, cut-off pumps, dual-mode pumps. The HS fluid cooling system should provide high reliability, lightweight, simple design, and a specified heat transfer in all flight modes.A system cooling the fluid by the fuel of feeding lines of the aircraft engines is the most effective, and it is widely used in supersonic aircrafts, where power of cooling system is essential. Subsonic aircrafts widely use convective heat exchangers. In thermal design of the aircraft hydraulics, the focus is generally given to the maximum and minimum temperatures of the HS fluid, the choice of the type of heat exchanger (convective or flow-through, the place of its installation. In calculating the operating temperature of a hydraulic system and its cooling systems it is necessary to determine an increase of the working fluid temperature when throttling it. There are three possible formulas to calculate the fluid temperature in throttling, with the error of a calculated temperature drop from 30% to 4%.The article considers the HS stationary and noon-stationary operating conditions and their calculation, defines temperatures of fluid and methods to control its specified temperature. It also discusses various heat exchanger schemes

  1. Thermal hydraulic test of advanced fuel bundle with spectral shift rod (SSR) for BWR. Effect of thermal hydraulic parameters on steady state characteristics

    Kondo, Takao; Kitou, Kazuaki; Chaki, Masao; Ohga, Yukiharu; Makigami, Takeshi

    2011-01-01

    Japanese national project of next generation light water reactor (LWR) development started in 2008. Under this project, spectral shift rod (SSR) is being developed. SSR, which replaces conventional water rod (WR) of boiling water reactor (BWR) fuel bundle, was invented to enhance the BWR's merit, spectral shift effect for uranium saving. In SSR, water boils by neutron and gamma-ray direct heating and water level is formed as a boundary of the upper steam region and the lower water region. This SSR water level can be controlled by core flow rate, which amplifies the change of average core void fraction, resulting in the amplified spectral shift effect. This paper presents the steady state test results of the base geometry case in SSR thermal hydraulic test, which was conducted under the national project of next generation LWR. In the test, thermal hydraulic parameters, such as flow rate, pressure, inlet subcooling and heater rod power are changed to evaluate these effects on SSR water level and other SSR characteristics. In the test results, SSR water level rose as flow rate rose, which showed controllability of SSR water level by flow rate. The sensitivities of other thermal hydraulic parameters on SSR water level were also evaluated. The obtained data of parameter's sensitivities is various enough for the further analytical evaluation. The fluctuation of SSR water level was also measured to be small enough. As a result, it was confirmed that SSR's steady state performance was as planned and that SSR design concept is feasible. (author)

  2. HIGH ASPECT RATIO ION EXCHANGE RESIN BED - HYDRAULIC RESULTS FOR SPERICAL RESIN BEADS

    Duignan, M; Charles Nash, C; Timothy Punch, T

    2007-01-01

    A principal role of the DOE Savannah River Site is to safely dispose of a large volume of liquid nuclear waste held in many storage tanks. An in-tank ion exchange unit is being considered for cesium removal to accelerate waste processing. This unit is planned to have a relatively high bed height to diameter ratio (10:1). Complicating the design is the need to cool the ion exchange media; therefore, the ion exchange column will have a central cooling core making the flow path annular. To separate cesium from waste the media being considered is made of resorcinol formaldehyde resin deposited on spherical plastic beads and is a substitute for a previously tested resin made of crystalline silicotitanate. This spherical media not only has an advantage of being mechanically robust, but, unlike its predecessor, it is also reusable, that is, loaded cesium can be removed through elution and regeneration. Resin regeneration leads to more efficient operation and less spent resin waste, but its hydraulic performance in the planned ion exchange column was unknown. Moreover, the recycling process of this spherical resorcinol formaldehyde causes its volume to significantly shrink and swell. To determine the spherical media's hydraulic demand a linearly scaled column was designed and tested. The waste simulant used was prototypic of the wastes' viscosity and density. This paper discusses the hydraulic performance of the media that will be used to assist in the design of a full-scale unit

  3. Regional groundwater characteristics and hydraulic conductivity based on geological units in Korean peninsula

    Kim, Y.; Suk, H.

    2011-12-01

    in such a way that areas of same or similar hydrogeological characteristics should be grouped into zones. Keywords: regional groundwater, database, hydraulic conductivity, PEST, Korean peninsular Acknowledgements: This work was supported by the Radioactive Waste Management of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (2011T100200152)

  4. Thermo-hydraulic characteristics of ship propulsion reactor in the conditions of ship motions and safety assessment

    Kobayashi, Michiyuki; Aya, Izuo; Inasaka, Fujio; Murata, Hiroyuki; Odano, Naoteru; Shiozaki, Koki

    1998-01-01

    A research project from 1995-1999 had a plan to make experimental studies on (1) safety of nuclear ship loaded with an integral ship propulsion reactor (2) effects of pulsating flow on the thermo-hydraulic characteristics of ship propulsion reactor and (3) thermo-hydraulic behaviors of the reactor container at the time of accident in a passively safe ship propulsion reactor. Development of a data base for ship propulsion reactor was attempted using previous experimental data on the thermo-hydraulic characteristics of the reactor in the institute in addition to the present results aiming to make general analytical evaluation for the safety of the engineering-simulation system for nuclear ship. A general data base was obtained by integrating the data list and the analytical program for static characteristics. A test equipment which allows to visualize the pulsating flow was produced and visualization experiments have started. (M.N.)

  5. Hydraulic Testing of Salado Formation Evaporites at the Waste Isolation Pilot Plant Site: Final Report

    Beauheim, Richard L.; Domski, Paul S.; Roberts, Randall M.

    1999-07-01

    This report presents interpretations of hydraulic tests conducted in bedded evaporates of the Salado Formation from May 1992 through May 1995 at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. The WIPP is a US Department of Energy research and development facility designed to demonstrate safe disposal of transuranic wastes from the nation's defense programs. The WIPP disposal horizon is located in the lower portion of the Permian Salado Formation. The hydraulic tests discussed in this report were performed in the WIPP underground facility by INTERA inc. (now Duke Engineering and Services, Inc.), Austin, Texas, following the Field Operations Plan and Addendum prepared by Saulnier (1988, 1991 ) under the technical direction of Sandia National Laboratories, Albuquerque, New Mexico.

  6. Hydraulic Testing of Salado Formation Evaporites at the Waste Isolation Pilot Plant Site: Final Report

    Beauheim, Richard L.; Domski, Paul S.; Roberts, Randall M.

    1999-01-01

    This report presents interpretations of hydraulic tests conducted in bedded evaporates of the Salado Formation from May 1992 through May 1995 at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. The WIPP is a US Department of Energy research and development facility designed to demonstrate safe disposal of transuranic wastes from the nation's defense programs. The WIPP disposal horizon is located in the lower portion of the Permian Salado Formation. The hydraulic tests discussed in this report were performed in the WIPP underground facility by INTERA inc. (now Duke Engineering and Services, Inc.), Austin, Texas, following the Field Operations Plan and Addendum prepared by Saulnier (1988, 1991 ) under the technical direction of Sandia National Laboratories, Albuquerque, New Mexico

  7. Measurement of residual CO2 saturation at a geological storage site using hydraulic tests

    Rötting, T. S.; Martinez-Landa, L.; Carrera, J.; Russian, A.; Dentz, M.; Cubillo, B.

    2012-12-01

    Estimating long term capillary trapping of CO2 in aquifers remains a key challenge for CO2 storage. Zhang et al. (2011) proposed a combination of thermal, tracer, and hydraulic experiments to estimate the amount of CO2 trapped in the formation after a CO2 push and pull test. Of these three types of experiments, hydraulic tests are the simplest to perform and possibly the most informative. However, their potential has not yet been fully exploited. Here, a methodology is presented to interpret these tests and analyze which parameters can be estimated. Numerical and analytical solutions are used to simulate a continuous injection in a porous medium where residual CO2 has caused a reduction in hydraulic conductivity and an increase in storativity over a finite thickness (a few meters) skin around the injection well. The model results are interpreted using conventional pressure build-up and diagnostic plots (a plot of the drawdown s and the logarithmic derivative d s / d ln t of the drawdown as a function of time). The methodology is applied using the hydraulic parameters estimated for the Hontomin site (Northern Spain) where a Technology Demonstration Plant (TDP) for geological CO2 storage is planned to be set up. The reduction of hydraulic conductivity causes an increase in observed drawdowns, the increased storativity in the CO2 zone causes a delay in the drawdown curve with respect to the reference curve measured before CO2 injection. The duration (characteristic time) of these effects can be used to estimate the radius of the CO2 zone. The effects of reduced permeability and increased storativity are well separated from wellbore storage and natural formation responses, even if the CO2-brine interface is inclined (i.e. the CO2 forms a cone around the well). We find that both skin hydraulic conductivity and storativity (and thus residual CO2 saturation) can be obtained from the water injection test provided that water flow rate is carefully controlled and head build

  8. Design of The Test Stand for Hydraulic Active Heave Compensation System

    Jakubowski Arkadiusz

    2017-01-01

    Full Text Available The article presented here described the design of a test stand for hydraulic active heave compensation system. The simulation of sea waves is realized by the use of hydraulic cylinder. A hydraulic motor is used for sea waves compensation. The hydraulic cylinder and the hydraulic motor are controlled by electrohydraulic servo valves. For the measurements Authors used displacement sensor and incremental encoder. Control algorithm is implemented on the PLC. The performed tests included hydraulic actuator and hydraulic motor step responses.

  9. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  10. Specific storage and hydraulic conductivity tomography through the joint inversion of hydraulic heads and self-potential data

    Ahmed, A. Soueid; Jardani, A.; Revil, A.; Dupont, J. P.

    2016-03-01

    Transient hydraulic tomography is used to image the heterogeneous hydraulic conductivity and specific storage fields of shallow aquifers using time series of hydraulic head data. Such ill-posed and non-unique inverse problem can be regularized using some spatial geostatistical characteristic of the two fields. In addition to hydraulic heads changes, the flow of water, during pumping tests, generates an electrical field of electrokinetic nature. These electrical field fluctuations can be passively recorded at the ground surface using a network of non-polarizing electrodes connected to a high impedance (> 10 MOhm) and sensitive (0.1 mV) voltmeter, a method known in geophysics as the self-potential method. We perform a joint inversion of the self-potential and hydraulic head data to image the hydraulic conductivity and specific storage fields. We work on a 3D synthetic confined aquifer and we use the adjoint state method to compute the sensitivities of the hydraulic parameters to the hydraulic head and self-potential data in both steady-state and transient conditions. The inverse problem is solved using the geostatistical quasi-linear algorithm framework of Kitanidis. When the number of piezometers is small, the record of the transient self-potential signals provides useful information to characterize the hydraulic conductivity and specific storage fields. These results show that the self-potential method reveals the heterogeneities of some areas of the aquifer, which could not been captured by the tomography based on the hydraulic heads alone. In our analysis, the improvement on the hydraulic conductivity and specific storage estimations were based on perfect knowledge of electrical resistivity field. This implies that electrical resistivity will need to be jointly inverted with the hydraulic parameters in future studies and the impact of its uncertainty assessed with respect to the final tomograms of the hydraulic parameters.

  11. Thermal hydraulic model validation for HOR mixed core fuel management

    Gibcus, H.P.M.; Vries, J.W. de; Leege, P.F.A. de

    1997-01-01

    A thermal-hydraulic core management model has been developed for the Hoger Onderwijsreactor (HOR), a 2 MW pool-type university research reactor. The model was adopted for safety analysis purposes in the framework of HEU/LEU core conversion studies. It is applied in the thermal-hydraulic computer code SHORT (Steady-state HOR Thermal-hydraulics) which is presently in use in designing core configurations and for in-core fuel management. An elaborate measurement program was performed for establishing the core hydraulic characteristics for a variety of conditions. The hydraulic data were obtained with a dummy fuel element with special equipment allowing a.o. direct measurement of the true core flow rate. Using these data the thermal-hydraulic model was validated experimentally. The model, experimental tests, and model validation are discussed. (author)

  12. Hydraulic power take-off for wave energy systems

    Christensen, Georg Kronborg

    2001-01-01

    Investigation and laboratory experiments with a hydraulic power conversion system for converting forces from a 2.5m diamter float to extract energy from seawaves. The test rig consists of a hydraulic wave simulator and a hydraulic point absorber. The absorber converts the incomming forces to a co...... to a continous rotation of an electric generator. The experiments document efficiencies and losses for the conversion process. The experiments are used for verification and update of a computer model.......Investigation and laboratory experiments with a hydraulic power conversion system for converting forces from a 2.5m diamter float to extract energy from seawaves. The test rig consists of a hydraulic wave simulator and a hydraulic point absorber. The absorber converts the incomming forces...

  13. Monitoring hydraulic stimulation using telluric sounding

    Rees, Nigel; Heinson, Graham; Conway, Dennis

    2018-01-01

    The telluric sounding (TS) method is introduced as a potential tool for monitoring hydraulic fracturing at depth. The advantage of this technique is that it requires only the measurement of electric fields, which are cheap and easy when compared with magnetotelluric measurements. Additionally, the transfer function between electric fields from two locations is essentially the identity matrix for a 1D Earth no matter what the vertical structure. Therefore, changes in the earth resulting from the introduction of conductive bodies underneath one of these sites can be associated with deviations away from the identity matrix, with static shift appearing as a galvanic multiplier at all periods. Singular value decomposition and eigenvalue analysis can reduce the complexity of the resulting telluric distortion matrix to simpler parameters that can be visualised in the form of Mohr circles. This technique would be useful in constraining the lateral extent of resistivity changes. We test the viability of utilising the TS method for monitoring on both a synthetic dataset and for a hydraulic stimulation of an enhanced geothermal system case study conducted in Paralana, South Australia. The synthetic data example shows small but consistent changes in the transfer functions associated with hydraulic stimulation, with grids of Mohr circles introduced as a useful diagnostic tool for visualising the extent of fluid movement. The Paralana electric field data were relatively noisy and affected by the dead band making the analysis of transfer functions difficult. However, changes in the order of 5% were observed from 5 s to longer periods. We conclude that deep monitoring using the TS method is marginal at depths in the order of 4 km and that in order to have meaningful interpretations, electric field data need to be of a high quality with low levels of site noise.[Figure not available: see fulltext.

  14. Review of computational thermal-hydraulic modeling

    Keefer, R.H.; Keeton, L.W.

    1995-01-01

    Corrosion of heat transfer tubing in nuclear steam generators has been a persistent problem in the power generation industry, assuming many different forms over the years depending on chemistry and operating conditions. Whatever the corrosion mechanism, a fundamental understanding of the process is essential to establish effective management strategies. To gain this fundamental understanding requires an integrated investigative approach that merges technology from many diverse scientific disciplines. An important aspect of an integrated approach is characterization of the corrosive environment at high temperature. This begins with a thorough understanding of local thermal-hydraulic conditions, since they affect deposit formation, chemical concentration, and ultimately corrosion. Computational Fluid Dynamics (CFD) can and should play an important role in characterizing the thermal-hydraulic environment and in predicting the consequences of that environment,. The evolution of CFD technology now allows accurate calculation of steam generator thermal-hydraulic conditions and the resulting sludge deposit profiles. Similar calculations are also possible for model boilers, so that tests can be designed to be prototypic of the heat exchanger environment they are supposed to simulate. This paper illustrates the utility of CFD technology by way of examples in each of these two areas. This technology can be further extended to produce more detailed local calculations of the chemical environment in support plate crevices, beneath thick deposits on tubes, and deep in tubesheet sludge piles. Knowledge of this local chemical environment will provide the foundation for development of mechanistic corrosion models, which can be used to optimize inspection and cleaning schedules and focus the search for a viable fix

  15. A LiDAR based analysis of hydraulic hazard mapping

    Cazorzi, F.; De Luca, A.; Checchinato, A.; Segna, F.; Dalla Fontana, G.

    2012-04-01

    Mapping hydraulic hazard is a ticklish procedure as it involves technical and socio-economic aspects. On the one hand no dangerous areas should be excluded, on the other hand it is important not to exceed, beyond the necessary, with the surface assigned to some use limitations. The availability of a high resolution topographic survey allows nowadays to face this task with innovative procedures, both in the planning (mapping) and in the map validation phases. The latter is the object of the present work. It should be stressed that the described procedure is proposed purely as a preliminary analysis based on topography only, and therefore does not intend in any way to replace more sophisticated analysis methods requiring based on hydraulic modelling. The reference elevation model is a combination of the digital terrain model and the digital building model (DTM+DBM). The option of using the standard surface model (DSM) is not viable, as the DSM represents the vegetation canopy as a solid volume. This has the consequence of unrealistically considering the vegetation as a geometric obstacle to water flow. In some cases the topographic model construction requires the identification and digitization of the principal breaklines, such as river banks, ditches and similar natural or artificial structures. The geometrical and topological procedure for the validation of the hydraulic hazard maps is made of two steps. In the first step the whole area is subdivided into fluvial segments, with length chosen as a reasonable trade-off between the need to keep the hydrographical unit as complete as possible, and the need to separate sections of the river bed with significantly different morphology. Each of these segments is made of a single elongated polygon, whose shape can be quite complex, especially for meandering river sections, where the flow direction (i.e. the potential energy gradient associated to the talweg) is often inverted. In the second step the segments are analysed

  16. HYDRAULIC CONCRETE COMPOSITION AND PROPERTIES CONTROL SYSTEM

    O. M. Pshinko

    2015-08-01

    Full Text Available Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic–viscous–plastic bodies. The system of canonical equations consists of the equations for concrete strength, absolute volume, concrete mix consistency as well as the equation for optimal concrete saturation with aggregates while minimizing cement content. The joint solution of these four equations related to composition allows determining for the materials the concrete composition of required strength, concrete workability with minimum cement content. The procedure for calculation of hydraulic concrete composition according to the physico-analytical method consists of two parts: 1 physical, which is laboratory testing of concrete mix components in different concrete compositions; 2 analytical, which represents the calculation algorithm for concrete compositions equivalent in concrete strength and workability that comply with the specific conditions of concrete placing. Findings. To solve the problem of designing the concrete composition with the desired properties for railway structures and buildings it was proposed to use the information technology in the form of a developed computer program whose algorithm includes the physico-analytical method for hydraulic concrete composition determination. Originality. The developed concrete composition design method takes into account the basic properties of raw materials, concrete mix and concrete, which are pre-determined. The distinctive feature of physico-analytical method is obtaining of a set of equivalent compositions with a certain concrete mix

  17. Adaptive Sliding Mode Control for Hydraulic Drives

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2013-01-01

    This paper presents a new adaptive sliding mode controller generally applicable for position tracking control of electro-hydraulic valve-cylinder drives (VCD’s). The proposed control scheme requires limited knowledge on system parameters, and employs only piston- and valve spool position feedback...... employing parameter adaption through a recursive algorithm is presented. This is based on a reduced order model approximation of a VCD with unmatched valve flow- and cylinder asymmetries. Bounds on parameters are obtained despite lack of parameter knowledge, and the proposed controller demonstrates improved...

  18. Database for Hydraulically Conductive Fractures. Update 2010

    Tammisto, E.; Palmen, J.

    2011-02-01

    Posiva flow logging (PFL) with 0.5 m test interval and made in 10 cm steps can be used for exact depth determination of hydraulically conductive fractures. Together with drillhole wall images and fracture data from core logging PFL provides possibilities to detect single conductive fractures. In this report, the results of PFL are combined to the fracture data in drillholes OL-KR49 .. OL-KR53, OL-KR50B, OL-KR52B and OLKR53B and pilot holes ONK-PH11 - ONK-PH13. The results are used mainly in development of hydroDFN- models. The conductive fractures were first recognised from the PFL data and digital drillhole images and then the fractures from the core logging corresponding to the ones picked from the digital drillhole images were identified. The conductive fractures were recognised from the images primarily based on openness of fractures or a visible flow in the image. In most of the cases of measured flow, no tails of flow were seen in the image. In these cases, the conductive fractures were recognised from the image based on openness of fractures and a matching depth. According to the results the hydraulically conductive fractures/zones can be distinguished from the drillhole wall images in most cases. An important phase in the work is to calibrate the depth of the image and the flow logging with the sample length. The hydraulic conductivity is clearly higher in the upper part of the bedrock in the depth range 0-150 m below sea level than deeper in the bedrock. The frequency of hydraulically conductive fractures detected in flow logging (T > 10 -10 -10 -9 m 2 /s) in depth range 0-150 m varies from 0.07 to 0.84 fractures/meter of sample length. Deeper in the rock the conductive fractures are less frequent, but occur often in groups of few fractures. In drillholes OL-KR49 .. OL-KR53, OL-KR50B, OL-KR52B and OL-KR53B about 8.5 % of all fractures and 4.4 % of the conductive fractures are within HZ-structures. (orig.)

  19. Researches regarding primary control in hydraulic systems

    Tița Irina; Mardare Irina

    2017-01-01

    The technology in wind turbines has developed very rapidly but there are still a lot that can be improved also regarding new technologies. One example is wind turbine with hydraulic transmission. At the beginning low power wind turbines are in view. First of all the wind energy is meant to be used by isolated users for household and garden equipment or pumping water. Later, if results will be as expected, and wind potential satisfactory, such systems could be connected to electric grid. In ou...

  20. Mercury Thermal Hydraulic Loop (MTHL) Summary Report

    Felde, David K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crye, Jason Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wendel, Mark W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Farquharson, George [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jallouk, Philip A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McFee, Marshall T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pointer, William David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ruggles, Art E. [Univ. of Tennessee, Knoxville, TN (United States); Carbajo, Juan J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    The Spallation Neutron Source (SNS) is a high-power linear accelerator built at Oak Ridge National Laboratory (ORNL) which incorporates the use of a flowing liquid mercury target. The Mercury Thermal Hydraulic Loop (MTHL) was constructed to investigate and verify the heat transfer characteristics of liquid mercury in a rectangular channel. This report provides a compilation of previously reported results from the water-cooled and electrically heated straight and curved test sections that simulate the geometry of the window cooling channel in the target nose region.

  1. Hydraulic characteristics of HANARO fuel bundles

    Cho, S.; Chung, H. J.; Chun, S. Y.; Yang, S. K.; Chung, M. K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents the hydraulic characteristics measured by using LDV (Laser Doppler Velocimetry) in subchannels of HANARO, KAERI research reactor, fuel bundle. The fuel bundle consists of 18 axially finned rods with 3 spacer grids, which are arranged in cylindrical configuration. The effects of the spacer grids on the turbulent flow were investigated by the experimental results. Pressure drops for each component of the fuel bundle were measured, and the friction factors of fuel bundle and loss coefficients for the spacer grids were estimated from the measured pressure drops. Implications regarding the turbulent thermal mixing were discussed. Vibration test results measured by using laser vibrometer were presented. 9 refs., 12 figs. (Author)

  2. Hydraulic characteristics of HANARO fuel bundles

    Cho, S; Chung, H J; Chun, S Y; Yang, S K; Chung, M K [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    This paper presents the hydraulic characteristics measured by using LDV (Laser Doppler Velocimetry) in subchannels of HANARO, KAERI research reactor, fuel bundle. The fuel bundle consists of 18 axially finned rods with 3 spacer grids, which are arranged in cylindrical configuration. The effects of the spacer grids on the turbulent flow were investigated by the experimental results. Pressure drops for each component of the fuel bundle were measured, and the friction factors of fuel bundle and loss coefficients for the spacer grids were estimated from the measured pressure drops. Implications regarding the turbulent thermal mixing were discussed. Vibration test results measured by using laser vibrometer were presented. 9 refs., 12 figs. (Author)

  3. Hydraulic Power Plant Machine Dynamic Diagnosis

    Hans Günther Poll

    2006-01-01

    Full Text Available A method how to perform an entire structural and hydraulic diagnosis of prototype Francis power machines is presented and discussed in this report. Machine diagnosis of Francis units consists on a proper evaluation of acquired mechanical, thermal and hydraulic data obtained in different operating conditions of several rotary and non rotary machine components. Many different physical quantities of a Francis machine such as pressure, strains, vibration related data, water flow, air flow, position of regulating devices and displacements are measured in a synchronized way so that a relation of cause an effect can be developed for each operating condition and help one to understand all phenomena that are involved with such kind of machine. This amount of data needs to be adequately post processed in order to allow correct interpretation of the machine dynamics and finally these data must be compared with the expected calculated data not only to fine tuning the calculation methods but also to accomplish fully understanding of the influence of the water passages on such machines. The way how the power plant owner has to operate its Francis machines, many times also determined by a central dispatcher, has a high influence on the fatigue life time of the machine components. The diagnostic method presented in this report helps one to understand the importance of adequate operation to allow a low maintenance cost for the entire power plant. The method how to acquire these quantities is discussed in details together with the importance of correct sensor balancing, calibration and adequate correlation with the physical quantities. Typical results of the dynamic machine behavior, with adequate interpretation, obtained in recent measurement campaigns of some important hydraulic turbines were presented. The paper highlights the investigation focus of the hydraulic machine behavior and how to tailor the measurement strategy to accomplish all goals. Finally some

  4. Applied mathematical methods in nuclear thermal hydraulics

    Ransom, V.H.; Trapp, J.A.

    1983-01-01

    Applied mathematical methods are used extensively in modeling of nuclear reactor thermal-hydraulic behavior. This application has required significant extension to the state-of-the-art. The problems encountered in modeling of two-phase fluid transients and the development of associated numerical solution methods are reviewed and quantified using results from a numerical study of an analogous linear system of differential equations. In particular, some possible approaches for formulating a well-posed numerical problem for an ill-posed differential model are investigated and discussed. The need for closer attention to numerical fidelity is indicated

  5. Percolation Theory and Modern Hydraulic Fracturing

    Norris, J. Q.; Turcotte, D. L.; Rundle, J. B.

    2015-12-01

    During the past few years, we have been developing a percolation model for fracking. This model provides a powerful tool for understanding the growth and properties of the complex fracture networks generated during a modern high volume hydraulic fracture stimulations of tight shale reservoirs. The model can also be used to understand the interaction between the growing fracture network and natural reservoir features such as joint sets and faults. Additionally, the model produces a power-law distribution of bursts which can easily be compared to observed microseismicity.

  6. Multiphase flow models for hydraulic fracturing technology

    Osiptsov, Andrei A.

    2017-10-01

    The technology of hydraulic fracturing of a hydrocarbon-bearing formation is based on pumping a fluid with particles into a well to create fractures in porous medium. After the end of pumping, the fractures filled with closely packed proppant particles create highly conductive channels for hydrocarbon flow from far-field reservoir to the well to surface. The design of the hydraulic fracturing treatment is carried out with a simulator. Those simulators are based on mathematical models, which need to be accurate and close to physical reality. The entire process of fracture placement and flowback/cleanup can be conventionally split into the following four stages: (i) quasi-steady state effectively single-phase suspension flow down the wellbore, (ii) particle transport in an open vertical fracture, (iii) displacement of fracturing fluid by hydrocarbons from the closed fracture filled with a random close pack of proppant particles, and, finally, (iv) highly transient gas-liquid flow in a well during cleanup. The stage (i) is relatively well described by the existing hydralics models, while the models for the other three stages of the process need revisiting and considerable improvement, which was the focus of the author’s research presented in this review paper. For stage (ii), we consider the derivation of a multi-fluid model for suspension flow in a narrow vertical hydraulic fracture at moderate Re on the scale of fracture height and length and also the migration of particles across the flow on the scale of fracture width. At the stage of fracture cleanaup (iii), a novel multi-continua model for suspension filtration is developed. To provide closure relationships for permeability of proppant packings to be used in this model, a 3D direct numerical simulation of single phase flow is carried out using the lattice-Boltzmann method. For wellbore cleanup (iv), we present a combined 1D model for highly-transient gas-liquid flow based on the combination of multi-fluid and

  7. DEVELOPMENT OF VADOSE ZONE HYDRAULIC PARAMETER VALUES

    ROGERS PM

    2008-01-01

    Several approaches have been developed to establish a relation between the soil-moisture retention curve and readily available soil properties. Those relationships are referred to as pedotransfer functions. Described in this paper are the rationale, approach, and corroboration for use of a nonparametric pedotransfer function for the estimation of soil hydraulic-parameter values at the yucca Mountain area in Nevada for simulations of net infiltration. This approach, shown to be applicable for use at Yucca Mountain, is also applicable for use at the Hanford Site where the underlying data were collected

  8. Hydraulics national laboratory; Laboratoire national d`hydraulique

    Chabard, J P

    1996-12-31

    The hydraulics national laboratory is a department of the service of applications of electric power and environment from the direction of studies and researches of Electricite de France. It has to solve the EDF problems concerning the fluids mechanics and hydraulics. Problems in PWR type reactors, fossil fuel power plants, circulating fluidized bed power plants, hydroelectric power plants relative to fluid mechanics and hydraulics studied and solved in 1995 are explained in this report. (N.C.)

  9. Hydraulic Design Criteria for Spacer Grids of Nuclear Fuel Element

    Juanico, Luis; Brasnarof, Daniel

    2000-01-01

    In this paper a hydraulic model for calculating the pressure drop on the CARA spacer grids is extended.This model is validated and feedback from experimental hydraulic test performed in a low pressure loop.The importance of the spacer grid geometric parameter (that is, its thickness and length, the number and kind of their fix spacer), developing hydraulic design criteria for spacer grid on fuel element

  10. Control issues for a hydraulically powered dissimilar teleoperated system

    Jansen, J.F.; Kress, R.L.

    1995-01-01

    This paper will address two issues associated with the implementation of a hydraulically powered dissimilar master-slave teleoperated system. These issues are the overall system control architecture and the design of robust hydraulic servo controllers for the position control problem. Finally, a discussion of overall system performance on an actual teleoperated system will be presented. (Schilling's Titan II hydraulic manipulators are the slave manipulators and the master manipulators are from the Oak Ridge National Laboratory-developed Advanced Servo Manipulator.)

  11. Use of Hydraulic Model for Water Loss Reduction

    Mindaugas Rimeika; Anželika Jurkienė

    2016-01-01

    Hydraulic modeling is the modern way to apply world water engineering experience in every day practice. Hydraulic model is an effective tool in order to perform analysis of water supply system, optimization of its operation, assessment of system efficiency potential, evaluation of water network development, fire flow capabilities, energy saving opportunities and water loss reduction and ect. Hydraulic model shall include all possible engineering elements and devices allocated in a real water ...

  12. Hydraulics national laboratory; Laboratoire national d`hydraulique

    Chabard, J.P.

    1995-12-31

    The hydraulics national laboratory is a department of the service of applications of electric power and environment from the direction of studies and researches of Electricite de France. It has to solve the EDF problems concerning the fluids mechanics and hydraulics. Problems in PWR type reactors, fossil fuel power plants, circulating fluidized bed power plants, hydroelectric power plants relative to fluid mechanics and hydraulics studied and solved in 1995 are explained in this report. (N.C.)

  13. Safety valve including a hydraulic brake and hydraulic brake that could be fitted into a valve

    Chabat-Courrede, Jean.

    1981-01-01

    Making of a safety valve that can be fitted to a containment vessel filled with a non compressible fluid, such as the water system of a nuclear power station. It includes a hydraulic brake located between the valve and the elastic means, close to the valve which completely suppresses the high frequency oscillations of the equipment [fr

  14. Development of A Hydraulic Drive for a novel Diesel-Hydraulic system for Large commercial Vehicles

    Stecki, J. S.; Conrad, Finn; Matheson, P.

    2002-01-01

    The objectives and results of the research project Hybrid Diesel-Hydraulic System for Large commercial vehicles, e.g. urban freight delivery, buses or garbage trucks. The paper presents and discusses the research and development of the system, modelling approach and results from preliminary...... performance tests on a 10 ton vehicle....

  15. Experimental study of the hydraulic jump in a hydraulic jump in a ...

    The hydraulic jump in a sloped rectangular channel is theoretically and experimentally examined. The study aims to determine the effect of the channel's slope on the sequent depth ratio of the jump. A theoretical relation is proposed for the inflow Froude number as function of the sequent depth ratio and the channel slope.

  16. Hydraulic Bureaucracies and the Hydraulic Mission: Flows of Water, Flows of Power

    Molle, F.; Mollinga, P.P.; Wester, P.

    2009-01-01

    Anchored in 19th century scientism and an ideology of the domination of nature, inspired by colonial hydraulic feats, and fuelled by technological improvements in high dam constructions and power generation and transmission, large-scale water resources development has been a defining feature of the

  17. Design of a Novel Electro-hydraulic Drive Downhole Tractor

    Fang, Delei; Shang, Jianzhong; Yang, Junhong; Wang, Zhuo; Wu, Wei

    2018-02-01

    In order to improve the traction ability and the work efficiency of downhole tractor in oil field, a novel electro-hydraulic drive downhole tractor was designed. The tractor’s supporting mechanism and moving mechanism were analyzed based on the tractor mechanical structure. Through the introduction of hydraulic system, the hydraulic drive mechanism and the implementation process were researched. Based on software, analysis of tractor hydraulic drive characteristic and movement performance were simulated, which provide theoretical basis for the development of tractor prototype.

  18. Optimization of hydraulic turbine governor parameters based on WPA

    Gao, Chunyang; Yu, Xiangyang; Zhu, Yong; Feng, Baohao

    2018-01-01

    The parameters of hydraulic turbine governor directly affect the dynamic characteristics of the hydraulic unit, thus affecting the regulation capacity and the power quality of power grid. The governor of conventional hydropower unit is mainly PID governor with three adjustable parameters, which are difficult to set up. In order to optimize the hydraulic turbine governor, this paper proposes wolf pack algorithm (WPA) for intelligent tuning since the good global optimization capability of WPA. Compared with the traditional optimization method and PSO algorithm, the results show that the PID controller designed by WPA achieves a dynamic quality of hydraulic system and inhibits overshoot.

  19. Hydraulic fracture considerations in oil sand overburden dams

    Cameron, R.; Madden, B.; Danku, M. [Syncrude Canada Ltd., Fort McMurray, AB (Canada)

    2008-07-01

    This paper discussed hydraulic fracture potential in the dry-filled temporary dams used in the oil sands industry. Hydraulic fractures can occur when reservoir fluid pressures are greater than the minimum stresses in a dam. Stress and strain conditions are influenced by pore pressures, levels of compaction in adjacent fills as well as by underlying pit floor and abutment conditions. Propagation pressure and crack initiation pressures must also be considered in order to provide improved hydraulic fracture protection to dams. Hydraulic fractures typically result in piping failures. Three cases of hydraulic fracture at oil sands operations in Alberta were presented. The study showed that hydraulic fracture failure modes must be considered in dam designs, particularly when thin compacted lift of dry fill are used to replace wetted clay cores. The risk of hydraulic fractures can be reduced by eliminating in situ bedrock irregularities and abutments. Overpressure heights, abutment sloping, and the sloping of fills above abutments, as well as the dam's width and base conditions must also be considered in relation to potential hydraulic fractures. It was concluded that upstream sand beaches and internal filters can help to prevent hydraulic fractures in dams in compacted control zones. 5 refs., 16 figs.

  20. Hydraulic braking system for loads subjected to impacts and vibrations

    1980-01-01

    This invention concerns a hydraulic braking system for loads subjected to impacts and vibrations. These double acting telescopic type hydraulic braking systems possess significant drawbacks linked to possibly important hydraulic leaks due to (a) the use of many dynamic seals in such appliances and (b) the effects of the environment of the system on these seals, particularly when employed in nuclear power stations where the seals reach significant temperatures and are subjected to radiation. Under this invention a remedy is suggested to such drawbacks by integrating means to offset automatically the leaks and the accumulation of hydraulic fluid expansions, as well as facilities to show if such leaks have occurred [fr

  1. Several new thermo-hydraulic test facilities in NPIC

    Ye Shurong; Sun Yufa; Ji Fuyun; Zong Guifang; Guo Zhongchuan

    1997-01-01

    Several new thermo-hydraulic test facilities are under construction in Nuclear Power Institute of Chinese (NPIC) at Chengdu. These facilities include: 1. Nuclear Power Component Comprehensive Test Facility. 2. Reactor Hydraulic Modeling Test Facility. 3. Control Rod Drive Line Hydraulic Test Facility. 4. Large Scale Thermo-Hydraulic Test Facility. The construction of these facilities will make huge progress in the research and development capability of nuclear power technology in CHINA. The author will present a brief description of the design parameters flowchart and test program of these facilities

  2. HYDRAULIC AND PHYSICAL PROPERTIES OF MCU SALTSTONE

    Dixon, K; Mark Phifer, M

    2008-01-01

    The Saltstone Disposal Facility (SDF), located in the Z-Area of the Savannah River Site (SRS), is used for the disposal of low-level radioactive salt solution. The SDF currently contains two vaults: Vault 1 (6 cells) and Vault 4 (12 cells). Additional disposal cells are currently in the design phase. The individual cells of the saltstone facility are filled with saltstone., Saltstone is produced by mixing the low-level radioactive salt solution, with blast furnace slag, fly ash, and cement or lime to form a dense, micro-porous, monolithic, low-level radioactive waste form. The saltstone is pumped into the disposal cells where it subsequently solidifies. Significant effort has been undertaken to accurately model the movement of water and contaminants through the facility. Key to this effort is an accurate understanding of the hydraulic and physical properties of the solidified saltstone. To date, limited testing has been conducted to characterize the saltstone. The primary focus of this task was to estimate the hydraulic and physical properties of MCU (Modular Caustic Side Solvent Extraction Unit) saltstone relative to two permeating fluids. These fluids included simulated groundwater equilibrated with vault concrete and simulated saltstone pore fluid. Samples of the MCU saltstone were prepared by the Savannah River National Laboratory (SRNL) and allowed to cure for twenty eight days prior to testing. These samples included two three-inch diameter by six inch long mold samples and three one-inch diameter by twelve inch long mold samples

  3. Rio Blanco massive hydraulic fracture: project definition

    1976-01-01

    A recent Federal Power Commission feasibility study assessed the possibility of economically producing gas from three Rocky Mountain basins. These basins have potentially productive horizons 2,000 to 4,000 feet thick containing an estimated total of 600 trillion cubic feet of gas in place. However, the producing sands are of such low permeability and heterogeneity that conventional methods have failed to develop these basins economically. The Natural Gas Technology Task Force, responsible for preparing the referenced feasibility study, determined that, if effective well stimulation methods for these basins can be developed, it might be possible to recover 40 to 50 percent of the gas in place. The Task Force pointed out two possible underground fracturing methods: Nuclear explosive fracturing, and massive hydraulic fracturing. They argued that once technical viability has been demonstrated, and with adequate economic incentives, there should be no reason why one or even both of these approaches could not be employed, thus making a major contribution toward correcting the energy deficiency of the Nation. A joint Government-industry demonstration program has been proposed to test the relative effectiveness of massive hydraulic fracturing of the same formation and producing horizons that were stimulated by the Rio Blanco nuclear project

  4. SBWR core thermal hydraulic analysis during startup

    Lin, J.H.; Huang, R.L.; Sawyer, C.D.

    1993-01-01

    This paper reports on a thermal hydraulic analysis of the SIMPLIFIED BOILING WATER REACTOR (SBWR) during startup. The potential instability during a SBWR startup has drawn the attention of designers, researchers, and engineers. It has not been a concern for a Boiling Water Reactor (BWR) with forced recirculation; however, for SBWR with natural circulation the concern exists. The concern is about the possibility of a geysering mode oscillation during SBWR startup from a cold temperature and a low system pressure with a low natural circulation flow rate. A thermal hydraulic analysis of the SBWR is performed in simulation of the startup using the TRACG computer code. The temperature, pressure, and reactor power profiles of SBWR during the startup are presented. The results are compared with the data of a natural circulation boiling water reactor, the DODEWAARD plant, in which no instabilities have been observed during many startups. It is shown that a SBWR startup which follows proper procedures, geysering and other modes of oscillations can be avoided

  5. Thermal hydraulic design of PFBR core

    Roychowdhury, D.G.; Vinayagam, P.P.; Ravichandar, S.C.

    2000-01-01

    The thermal-hydraulic design of core is important in respecting temperature limits while achieving higher outlet temperature. This paper deals with the analytical process developed and implemented for analysing steady state thermal-hydraulics of PFBR core. A computer code FLONE has been developed for optimisation of flow allocation through the subassemblies (SA). By calibrating β n (ratio between the maximum channel temperature rise and SA average temperature rise) values with SUPERENERGY code and using these values in FLONE code, prediction of average and maximum coolant temperature distribution is found to be reasonably accurate. Hence, FLONE code is very powerful design tool for core design. A computer code SAPD has been developed to calculate the pressure drop of fuel and blanket SA. Selection of spacer wire pitch depends on the pressure drop, flow-induced vibration and the mixing characteristics. A parametric study was made for optimisation of spacer wire pitch for the fuel SA. Experimental programme with 19 pin-bundle has been undertaken to find the flow-induced vibration characteristics of fuel SA. Also, experimental programme has been undertaken on a full-scale model to find the pressure drop characteristics in unorificed SA, orifices and the lifting force on the SA. (author)

  6. Thermal Hydraulic Tests for Reactor Core Safety

    Moon, S. K.; Baek, W. P.; Chun, S. Y. (and others)

    2007-06-15

    The main objectives of the present project are to resolve the current issues of reactor core thermal hydraulics, to develop an advanced measurement and analytical techniques, and to perform reactor core safety verification tests. 6x6 reflood experiments, various heat transfer experiments using Freon, and experiments on the spacer grids effects on the post-dryout are carried out using spacer grids developed in Korea in order to resolve the current issues of the reactor core thermal hydraulics. In order to develop a reflood heat transfer model, the detailed reflood phenomena are visualized and measured using round tube and 2x2 rod bundle. A detailed turbulent mixing phenomenon for subchannels is measured using advanced measurement techniques such as LDV and PIV. MARS and MATRA codes developed in Korea are assessed, verified and improved using the obtained experimental data. Finally, a systematic quality assurance program and experimental data generation system has been constructed in order to increase the reliability of the experimental data.

  7. Hydraulic and hydrochemical characterisation of argillaceous rocks

    1995-01-01

    Throughout the OECD member countries many national programmes on radioactive waste management are considering geological disposal in argillaceous media. In order to determine their suitability for waste disposal, evaluations and understanding of basic physical and chemical processes that govern radionuclides transport through these formations are required. Clay-rich media have a very marked capacity to retard the movement of radionuclides by sorption, filtration and other mechanisms. However, a complicating factor to make quantitative predictions of the performance of clay barriers is our incomplete knowledge of the mechanisms of groundwater and solute transport in compact clays. Application of hydraulic testing and groundwater sampling methods to low and very low permeability rocks, and in particular to argillaceous media, requires modifications in equipment, testing procedures, and interpretation methods. In this context, the NEA Coordinating Group on Site Evaluation and Design of Experiments for Radioactive Waste Disposal (SEDE) established the NEA Working Group on Measurement and Physical Understanding of Groundwater Flow through Argillaceous Media (the Clay Club) to address the many issues associated with this subject. The workshop on hydraulic and hydrochemical characteristics of argillaceous media was hosted by the British Geological Survey in Keyworth, United Kingdom, on 7-9 June 1994

  8. HYDRAULIC AND PHYSICAL PROPERTIES OF MCU SALTSTONE

    Dixon, K; Mark Phifer, M

    2008-03-19

    The Saltstone Disposal Facility (SDF), located in the Z-Area of the Savannah River Site (SRS), is used for the disposal of low-level radioactive salt solution. The SDF currently contains two vaults: Vault 1 (6 cells) and Vault 4 (12 cells). Additional disposal cells are currently in the design phase. The individual cells of the saltstone facility are filled with saltstone., Saltstone is produced by mixing the low-level radioactive salt solution, with blast furnace slag, fly ash, and cement or lime to form a dense, micro-porous, monolithic, low-level radioactive waste form. The saltstone is pumped into the disposal cells where it subsequently solidifies. Significant effort has been undertaken to accurately model the movement of water and contaminants through the facility. Key to this effort is an accurate understanding of the hydraulic and physical properties of the solidified saltstone. To date, limited testing has been conducted to characterize the saltstone. The primary focus of this task was to estimate the hydraulic and physical properties of MCU (Modular Caustic Side Solvent Extraction Unit) saltstone relative to two permeating fluids. These fluids included simulated groundwater equilibrated with vault concrete and simulated saltstone pore fluid. Samples of the MCU saltstone were prepared by the Savannah River National Laboratory (SRNL) and allowed to cure for twenty eight days prior to testing. These samples included two three-inch diameter by six inch long mold samples and three one-inch diameter by twelve inch long mold samples.

  9. Hydraulic conductivity measurements with HTU at Eurajoki, Olkiluoto, drillholes OL-KR28 and OL-KR39 in 2006

    Haemaelaeinen, H.

    2007-05-01

    As a part of the site investigations for the disposal of spent nuclear fuel, hydraulic conductivity measurements were carried out in drillholes OL-KR28 and OL-KR39 at Eurajoki, Olkiluoto. The objective was to investigate the distribution of the hydraulic conductivity in the surrounding bedrock volume. Measurements were carried out during summer 2006. The total length of the borehole OL-KR28 is 656,33 m, 352 m of which was covered by 176 standard tests with 2 m packer separation as specified in the measurement plan. Respectively, OL-KR39 is 502,97 m deep and 101 similar tests were made in it covering 202 m of the hole. The measured sections are around the depths of the planned repository. Double-packer constant-head method was used throughout with nominal 200 kPa overpressure. Injection stage lasted normally 20 minutes and fall-off stage 10 minutes. The tests were often shortened if there were clear indications that the hydraulic conductivity is below the measuring range of the system. The pressure in the test section was let to stabilise at least 5 min before injection. In some test sections the test stage times were extended. Two transient (Horner and 1/Q) interpretations and one stationary-state (Moye) interpretation were made in-situ immediately after the test. The Hydraulic Testing Unit (HTU-system) is owned by Posiva Oy and it was operated by Geopros Oy. (orig.)

  10. Effect of physical property of supporting media and variable hydraulic loading on hydraulic characteristics of advanced onsite wastewater treatment system.

    Sharma, Meena Kumari; Kazmi, Absar Ahmad

    2015-01-01

    A laboratory-scale study was carried out to investigate the effects of physical properties of the supporting media and variable hydraulic shock loads on the hydraulic characteristics of an advanced onsite wastewater treatment system. The system consisted of two upflow anaerobic reactors (a septic tank and an anaerobic filter) accommodated within a single unit. The study was divided into three phases on the basis of three different supporting media (Aqwise carriers, corrugated ring and baked clay) used in the anaerobic filter. Hydraulic loadings were based on peak flow factor (PFF), varying from one to six, to simulate the actual conditions during onsite wastewater treatment. Hydraulic characteristics of the system were identified on the basis of residence time distribution analyses. The system showed a very good hydraulic efficiency, between 0.86 and 0.93, with the media of highest porosity at the hydraulic loading of PFF≤4. At the higher hydraulic loading of PFF 6 also, an appreciable hydraulic efficiency of 0.74 was observed. The system also showed good chemical oxygen demand and total suspended solids removal efficiency of 80.5% and 82.3%, respectively at the higher hydraulic loading of PFF 6. Plug-flow dispersion model was found to be the most appropriate one to describe the mixing pattern of the system, with different supporting media at variable loading, during the tracer study.

  11. Some aspects on hydraulic energy and environment in Turkey

    Salvarli, Huseyin

    2006-01-01

    Turkey is not rich in petroleum and natural gas resources and is dependent on energy. Electricity generation in Turkey from its own domestic resources is, at present, about 40% and is expected to be at 20% by the year 2020. It has been planned that the maximum capacity for hydraulic and other national resources will be reached by the year 2020. This means that the total electricity generated by domestic resources is to be 245 TWh/yr, and the remaining electricity demand of about 302 TWh/yr for the year 2020 must be ensured by imported resources. In Turkey, hydropower projects are part of integrated water resources development. Most new powerplants will be developed as build, operate and transfer (BOT) or build, own and operate (BOO ) projects with the private sector. It is expected that many foreign investors and financiers will also be interested in the Turkish hydropower market. For a sustainable development the next investments should be made for clean technologies such as hydropower. Depending upon the latest technological developments, other economic and political factors will also affect the quality of the environment

  12. Some aspects on hydraulic energy and environment in Turkey

    Huseyin Salvarli [Dokuz Eylul University, Izmir (Turkey). Izmir Vocational School

    2006-12-15

    Turkey is not rich in petroleum and natural gas resources and is dependent on energy. Electricity generation in Turkey from its own domestic resources is, at present, about 40% and is expected to be at 20% by the year 2020. It has been planned that the maximum capacity for hydraulic and other national resources will be reached by the year 2020. This means that the total electricity generated by domestic resources is to be 245 TWh/yr, and the remaining electricity demand of about 302 TWh/yr for the year 2020 must be ensured by imported resources. In Turkey, hydropower projects are part of integrated water resources development. Most new powerplants will be developed as build, operate and transfer (BOT) or build, own and operate (BOO ) projects with the private sector. It is expected that many foreign investors and financiers will also be interested in the Turkish hydropower market. For a sustainable development the next investments should be made for clean technologies such as hydropower. Depending upon the latest technological developments, other economic and political factors will also affect the quality of the environment. (author)

  13. Some aspects on hydraulic energy and environment in Turkey

    Salvarli, Huseyin [Dokuz Eylul University, Izmir Vocational School, 35160 Buca-Izmir (Turkey)]. E-mail: huseyin.salvarli@deu.edu.tr

    2006-12-15

    Turkey is not rich in petroleum and natural gas resources and is dependent on energy. Electricity generation in Turkey from its own domestic resources is, at present, about 40% and is expected to be at 20% by the year 2020. It has been planned that the maximum capacity for hydraulic and other national resources will be reached by the year 2020. This means that the total electricity generated by domestic resources is to be 245 TWh/yr, and the remaining electricity demand of about 302 TWh/yr for the year 2020 must be ensured by imported resources. In Turkey, hydropower projects are part of integrated water resources development. Most new powerplants will be developed as build, operate and transfer (BOT) or build, own and operate (BOO ) projects with the private sector. It is expected that many foreign investors and financiers will also be interested in the Turkish hydropower market. For a sustainable development the next investments should be made for clean technologies such as hydropower. Depending upon the latest technological developments, other economic and political factors will also affect the quality of the environment.

  14. Results of Scientific and Technical Supervision of Hydraulic Fracturing Operations

    I.Kh. Makhmutov

    2017-11-01

    Full Text Available The paper presents actual results of the research conducted as part of a field pilot project which consisted in interpretation of minifrac test data and evaluation of the efficiency of the scientific and technical supervision of fracking operations. The research program involved 11 wells targeting Devonian terrigenous reservoirs. Minifrac tests in one perforation interval were performed only in seven wells, that is approximately in 64% of total well count. A reliable fracture closure estimate was obtained only in six wells (55%, beginning of pseudoradial flow was observed only in one well out of 11 wells (9%. Hence, conventional minifrac tests should be supplemented with other diagnostic injection tests. Analysis of the performance of hydraulic fracturing operations conducted according to this pilot project plan indicates that fracture modelling, and scientific and technical supervision of fracking operations performed by Hydrofrac Research Laboratory of Institute TatNIPIneft Tatneft PJSC have yielded beneficial effects, namely 1.44 times increase in oil production rates.

  15. Stirling engine with hydraulic power output for powering artificial hearts

    Johnston, R.P.; Noble, J.E.; Emigh, S.G.; White, M.A.; Griffith, W.R.; Perrone, R.E.

    1975-01-01

    The DWDL heart power source combines the high efficiency of Stirling engines with the reliability, efficiency, and flexibility of hydraulic power transfer and control to ensure long system life and physiological effectiveness. Extended life testing has already been achieved with an engine module; animal in-vivo tests with an assist heart have consistently demonstrated required performance by biological synchronization and effective ventricle relief. The present System 5 can reliably meet near-term thousand-hour animal in-vivo test goals as far as the durability and efficacy of the power source are concerned. Carefully planned development of System 6 has produced major reductions in size and required input power. Research engine tests have provided the basis for achieving performance goals and the approach for further improvement is well established. The near term goal is 33 W heat input with 16 W input projected for normal physical activity. The goal of reduction of engine module volume to 0.9 liter has been achieved. Demonstrated reliability of 292 d for the engine and 35 d for the full system, as well as effectiveness of the artificial heart power source in short-term in-vivo tests indicate that life-limiting problems are now blood pump reliability and the machine-animal interface

  16. Developing Sensitivity Indicators for Hydraulic Perturbation

    M.M. Heidari

    2016-02-01

    Full Text Available Introduction: Determination the hydraulic performance of an irrigation network requires adequate knowledge about the sensitivities of the network structures. Hydraulic sensitivity concept of structures and channel reaches aid network operators in identifying structures with higher sensitivities which will attract more attention both during network operation and maintenance program. Sluice gates are frequently used as regulator and delivery structures in irrigation networks. Usually discharge coefficient of sluice gate is considered constant in the design and operation stage. Investigation of sensitivity of offtakes and cross-regulators has carried out by various researchers and some hydraulic sensitivity indicators have been developed. In the previous researches, these indexes were developed based on constant coefficient of discharge for free flow sluice gates. However, the coefficient of discharge for free flow sluice gates depend on gate opening and the upstream water depth. So, in this research, some hydraulic sensitivity indicators at structure based on variable coefficient of discharge for free flow sluice gates were developed and they were validated by using observed data. Materials and Methods: An experimental setup was constructed to analyses the performance of the some hydraulic sensitivity. The flume was provided with storage reservoir, pumps, electromagnetic flowmeter, entrance tank, feeder canal, delivery canals, offtakes, cross-regulators, collector reservoir, piezometric boards. The flume is 60.5 m long and the depth of that is 0.25 m, of which only a small part close to offtake and Cross-regulators was needed for these tests. Offtakes and Cross-regulators are free-flowing sluice gates type. Offtakes were located at distances 20 m and 42.5 m downstream from the entrance tank, respectively. and, Cross-regulators were located 2 m downstream from each offtakes. The offtakes are 0.21 m and Cross-regulators are 0.29 m wide. The upstream

  17. Database for hydraulically conductive fractures. Update 2009

    Palmen, J.; Tammisto, E.; Ahokas, H.

    2010-03-01

    Posiva flow logging (PFL) with a 0.5 m test interval and made in 10 cm steps can be used for the determination of the depth of hydraulically conductive fractures. Together with drillhole wall images and fracture data from core logging, PFL provides possibilities to detect individual conductive fractures. In this report, the results of PFL are combined with fracture data on drillholes OL-KR41 - OL-KR48, OL-KR41B - OLKR45B and pilot holes ONK-PH8 - ONK-PH10. In addition, HTU-data measured by 2 m section length and 2 m steps in holes OL-KR39 and OL-KR40 at depths 300-700 m were analyzed and combined with fracture data in a similar way. The conductive fractures were first recognised from PFL data and digital drillhole images and then the fractures from the core logging that correspond to the ones picked from the digital drillhole images were identified. The conductive fractures were primarily recognised in the images based on the openness of fractures or a visible flow in the image. In most of the cases, no tails of flow were seen in the image. In these cases the conductive fractures were recognised in the image based on the openness of fractures and a matching depth. On the basis of the results hydraulically conductive fractures/zones could in most cases be distinguished in the drillhole wall images. An important phase in the work is the calibration of the depth of the image, flow logging and the HTU logging with the sample length. In addition to results of PFL-correlation, Hydraulic Testing Unit (HTU) data measured by 2 m section length and 2 m steps was studied at selected depths for holes OL-KR39, OL-KR40, OL-KR42 and OL-KR45. Due to low HTU section depth accuracy the conducting fractures were successfully correlated with Fracture Data Base (FDB) fractures only in drillholes OL-KR39 and OL-KR40. HTU-data depth matching in these two drillholes was performed using geophysical Single Point Resistance (SPR) data both from geophysical and PFL measurements as a depth

  18. A tensor approach to the estimation of hydraulic conductivities in ...

    Based on the field measurements of the physical properties of fractured rocks, the anisotropic properties of hydraulic conductivity (HC) of the fractured rock aquifer can be assessed and presented using a tensor approach called hydraulic conductivity tensor. Three types of HC values, namely point value, axial value and flow ...

  19. Modified hydraulic braking system limits angular deceleration to safe values

    Briggs, R. S.; Council, M.; Green, P. M.

    1966-01-01

    Conventional spring actuated, hydraulically released, fail-safe disk braking system is modified to control the angular deceleration of a massive antenna. The hydraulic system provides an immediate preset pressure to the spring-loaded brake shoes and holds it at this value to decelerate the antenna at the desired rate.

  20. Design of An Energy Efficient Hydraulic Regenerative circuit

    Ramesh, S.; Ashok, S. Denis; Nagaraj, Shanmukha; Adithyakumar, C. R.; Reddy, M. Lohith Kumar; Naulakha, Niranjan Kumar

    2018-02-01

    Increasing cost and power demand, leads to evaluation of new method to increase through productivity and help to solve the power demands. Many researchers have break through to increase the efficiency of a hydraulic power pack, one of the promising methods is the concept of regenerative. The objective of this research work is to increase the efficiency of a hydraulic circuit by introducing a concept of regenerative circuit. A Regenerative circuit is a system that is used to speed up the extension stroke of the double acting single rod hydraulic cylinder. The output is connected to the input in the directional control value. By this concept, increase in velocity of the piston and decrease the cycle time. For the research, a basic hydraulic circuit and a regenerative circuit are designated and compared both with their results. The analysis was based on their time taken for extension and retraction of the piston. From the detailed analysis of both the hydraulic circuits, it is found that the efficiency by introducing hydraulic regenerative circuit increased by is 5.3%. The obtained results conclude that, implementing hydraulic regenerative circuit in a hydraulic power pack decreases power consumption, reduces cycle time and increases productivity in a longer run.

  1. Notes on Some aspects of unsteady hydraulics of watercourses

    Larsen, Torben

    2018-01-01

    of the notes is to prepare the reader for the use of the advanced commercial computer models available for solving hydraulic problems in watercourses and open channels. It is definitely not the intention to present the complete hydraulic theory behind those computer models. The specific details can be found...

  2. Tap Water Hydraulic Systems for Medium Power Applications

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of new range of developed tap water hydraulic componets and applications for medium power up to 4 kW and 50 bar.......Presentation of new range of developed tap water hydraulic componets and applications for medium power up to 4 kW and 50 bar....

  3. Hydraulic Systems with Tap Water versus Bio-oils

    Conrad, Finn

    1997-01-01

    Deals with the advantages of using pure tap water hydraulics versus bio-oils for suiteable applications. Focus is in particular on food processing industry.......Deals with the advantages of using pure tap water hydraulics versus bio-oils for suiteable applications. Focus is in particular on food processing industry....

  4. Efficiency limit factor analysis for the Francis-99 hydraulic turbine

    Zeng, Y.; Zhang, L. X.; Guo, J. P.; Guo, Y. K.; Pan, Q. L.; Qian, J.

    2017-01-01

    The energy loss in hydraulic turbine is the most direct factor that affects the efficiency of the hydraulic turbine. Based on the analysis theory of inner energy loss of hydraulic turbine, combining the measurement data of the Francis-99, this paper calculates characteristic parameters of inner energy loss of the hydraulic turbine, and establishes the calculation model of the hydraulic turbine power. Taken the start-up test conditions given by Francis-99 as case, characteristics of the inner energy of the hydraulic turbine in transient and transformation law are researched. Further, analyzing mechanical friction in hydraulic turbine, we think that main ingredients of mechanical friction loss is the rotation friction loss between rotating runner and water body, and defined as the inner mechanical friction loss. The calculation method of the inner mechanical friction loss is given roughly. Our purpose is that explore and research the method and way increasing transformation efficiency of water flow by means of analysis energy losses in hydraulic turbine.

  5. An overview on rod-bundle thermal-hydraulic analyses

    Sha, W.T.

    1980-01-01

    Three methods used in rod-bundle thermal-hydraulic analysis are summarized. These methods are: (1) subchannel analysis, (2) porous medium formulation with volume porosity, surface permeability, distributed resistance and distributed heat source (sink) and, (3) bench-mark rod-bundle thermal-hydraulic analysis using a boundary-fitted coordinate system. Basic limitations and merits of each method are delineated. (orig.)

  6. Estimators for initial conditions for optimisation in learning hydraulic systems

    Post, W.J.A.E.M.; Burrows, C.R.; Edge, K.A.

    1998-01-01

    In Learning Hydraulic Systems (LHS1. developed at the Eindhoven University of Technology, a specialised optimisation routine is employed In order to reduce energy losses in hydraulic systems. Typical load situations which can be managed by LHS are variable cyclic loads, as can be observed In many

  7. Trends in hydraulics laboratory research in the Netherlands

    Van de Wel, J.; Prins, J.E.; De Vries, M.; Paape, A.; Abraham, G.; Hoekstra, A.J.; Wijdieks, J.; Diephuis, J.G.H.R.; Reinalda, R.; Bijker, E.W.; Schoemaker, H.J.

    1963-01-01

    Scope and aims in model techniques, instrumental aids for hydraulic model studies,investigations of structures for flow control, river studies, model investigations on local scour, problems connected with flows due to differences in density, from Spaarndam to Veersche Gat, hydraulic refinement of

  8. Hydraulic conductivity of compacted clay frozen and thawed in situ

    Benson, C.H.; Othman, M.A.

    1993-01-01

    A large specimen of compacted clay (diameter = 298 mm; thickness = 914 mm) was subjected to freeze-thaw in the field for 60 days. Afterward, the hydraulic conductivity was measured. The hydraulic conductivity of the entire specimen remained essentially unchanged, but increases in hydraulic conductivity of 1.5-2 orders of magnitude were observed above the freezing plane. The increase in hydraulic conductivity was highest at the top of the specimen and decreased with depth. Changes in hydraulic conductivity also occurred at depths 150 mm below the freezing plane, where desiccation occurred because of water redistribution. Numerous horizontal and vertical cracks formed in the soil mass. Dissection of the sample after permeation revealed that the cracks were laden with water. Cracking was greatest at the surface and became less frequent with depth. For depths greater than 150 mm below the freezing plane, cracking was absent. The frequency of cracks is consistent with principles of mechanistic models of soil freezing. The results of laboratory tests were used to predict the hydraulic conductivity of the large specimen. Tests were conducted on specimens subjected to various freeze-thaw cycles, temperature gradients, and states of stress. It was found that the predicted hydraulic conductivities were lower than those measured on the large specimen, but they closely resembled the trend in hydraulic conductivity with depth

  9. Design, manufacture and performance research of double acting hydraulic press

    Koc, Erdem; Unver, Ertu; Ozturk, Hidayet

    1990-01-01

    This research presents the design and production of a double acting 40 tons capacity hydraulic press. The issues in the design, engineering manufacturing of the hydraulic press are reported specifically on both cylinders generating the same pressure and velocity using a solenoid directional control valve and a flow separating valve. (In Turkish)

  10. Experimental evaluation of control strategies for hydraulic servo robot

    Bech, Michael Møller; Andersen, Torben Ole; Pedersen, Henrik C.

    2013-01-01

    In this paper different linear and non-linear controllers applied to a hydraulically driven servo robot are evaluated and validated. The task is to make the actuators of the manipulator track a position reference with minimum error. Hydraulic systems are intrinsically non-linear and using linear...... in industrial servo drives. The different controllers are compared and evaluated from simulation and experimental results....

  11. Full-automatic Special Drill Hydraulic System and PLC Control

    Tian Xue Jun

    2016-01-01

    Full Text Available A hydraulic-driven and PLC full-automatic special drill is introduced, working principle of the hydraulic system and PLC control system are analyzed and designed, this equipment has the advantages of high efficiency, superior quality and low cost etc.

  12. Comparison of empirical models and laboratory saturated hydraulic ...

    Numerous methods for estimating soil saturated hydraulic conductivity exist, which range from direct measurement in the laboratory to models that use only basic soil properties. A study was conducted to compare laboratory saturated hydraulic conductivity (Ksat) measurement and that estimated from empirical models.

  13. Saturated hydraulic conductivity values of some forest soils of ...

    A simple falling-head method is presented for the laboratory determination of saturated hydraulic conductivity of some forest soils of Ghana. Using the procedure, it was found that saturated hydraulic conductivity was positively and negatively correlated with sand content and clay content, respectively, both at P = 0.05 level.

  14. Controlling a negative loaded hydraulic cylinder using pressure feedback

    Hansen, M.R.; Andersen, T.O.

    2010-01-01

    This paper is concerned with the inherent oscillatory nature of pressure compensated velocity control of a hydraulic cylinder subjected to a negative load and suspended by means of an over-center valve. Initially, a linearized stability analysis of such a hydraulic circuit is carried out clearly ...... in a nonlinear time domain simulation model validating the linear stability analysis....

  15. Design optimization of axial flow hydraulic turbine runner: Part II - multi-objective constrained optimization method

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    This paper is concerned with the design optimization of axial flow hydraulic turbine runner blade geometry. In order to obtain a better design plan with good performance, a new comprehensive performance optimization procedure has been presented by combining a multi-variable multi-objective constrained optimization model with a Q3D inverse computation and a performance prediction procedure. With careful analysis of the inverse design of axial hydraulic turbine runner, the total hydraulic loss and the cavitation coefficient are taken as optimization objectives and a comprehensive objective function is defined using the weight factors. Parameters of a newly proposed blade bound circulation distribution function and parameters describing positions of blade leading and training edges in the meridional flow passage are taken as optimization variables.The optimization procedure has been applied to the design optimization of a Kaplan runner with specific speed of 440 kW. Numerical results show that the performance of designed runner is successfully improved through optimization computation. The optimization model is found to be validated and it has the feature of good convergence. With the multi-objective optimization model, it is possible to control the performance of designed runner by adjusting the value of weight factors defining the comprehensive objective function. Copyright

  16. Staged cost optimization of urban storm drainage systems based on hydraulic performance in a changing environment

    M. Maharjan

    2009-04-01

    Full Text Available Urban flooding causes large economic losses, property damage and loss of lives. The impact of environmental changes, mainly urbanization and climatic change, leads to increased runoff and peak flows which the drainage system must be able to cope with to reduce potential damage and inconvenience. Allowing for detention storage to compliment the conveyance capacity of the drainage system network is one of the approaches to reduce urban floods. Contemporary practice is to design systems against stationary environmental forcings – including design rainfall, landuse, etc. Due to the rapid change in the climate- and the urban environment, this approach is no longer appropriate, and explicit consideration of gradual changes during the life-time of the drainage system is warranted. In this paper, a staged cost optimization tool based on the hydraulic performance of the drainage system is presented. A one dimensional hydraulic model is used for hydraulic evaluation of the network together with a genetic algorithm based optimization tool to determine optimal intervention timings and responses over the analysis period. The model was applied in a case study area in the city of Porto Alegre, Brazil. It was concluded that considerable financial savings and/or additional level of flood-safety can be achieved by approaching the design problem as a staged plan rather than one-off scheme.

  17. A review on hydraulic fracturing of unconventional reservoir

    Quanshu Li

    2015-03-01

    Full Text Available Hydraulic fracturing is widely accepted and applied to improve the gas recovery in unconventional reservoirs. Unconventional reservoirs to be addressed here are with very low permeability, complicated geological settings and in-situ stress field etc. All of these make the hydraulic fracturing process a challenging task. In order to effectively and economically recover gas from such reservoirs, the initiation and propagation of hydraulic fracturing in the heterogeneous fractured/porous media under such complicated conditions should be mastered. In this paper, some issues related to hydraulic fracturing have been reviewed, including the experimental study, field study and numerical simulation. Finally the existing problems that need to be solved on the subject of hydraulic fracturing have been proposed.

  18. Hydraulic Profiling of a Parallel Channel Type Reactor Core

    Seo, Kyong-Won; Hwang, Dae-Hyun; Lee, Chung-Chan

    2006-01-01

    An advanced reactor core which consisted of closed multiple parallel channels was optimized to maximize the thermal margin of the core. The closed multiple parallel channel configurations have different characteristics to the open channels of conventional PWRs. The channels, usually assemblies, are isolated hydraulically from each other and there is no cross flow between channels. The distribution of inlet flow rate between channels is a very important design parameter in the core because distribution of inlet flow is directly proportional to a margin for a certain hydraulic parameter. The thermal hydraulic parameter may be the boiling margin, maximum fuel temperature, and critical heat flux. The inlet flow distribution of the core was optimized for the boiling margins by grouping the inlet orifices by several hydraulic regions. The procedure is called a hydraulic profiling

  19. Automated Hydraulic System Design and Power Management in Mobile Applications

    Pedersen, Henrik Clemmensen

    force, torque and power density. One of these areas is the mobile hydraulic area, which generally comprise all type of off-highway machinery, such as construction equipment, agricultural equipment etc. But where hydraulic systems earlier was designed with primary focus on cost, dynamic performance...... and accuracy, energy consumption is becoming an ever more important design parameter. At the same time as the first oil crisis the first hydraulic load sensing (LS) systems also emerged on the market, which, compared to the other systems of the time, offered significant energy saving potentials and which today...... are found on most medium and high-end mobile hydraulic machinery. Despite the energy saving potentials that these systems posses, compared to the other open-circuit hydraulic system topologies, LS-system may still be subject to very low system efficiencies if not designed correctly. This is typically...

  20. Disclosure of hydraulic fracturing fluid chemical additives: analysis of regulations.

    Maule, Alexis L; Makey, Colleen M; Benson, Eugene B; Burrows, Isaac J; Scammell, Madeleine K

    2013-01-01

    Hydraulic fracturing is used to extract natural gas from shale formations. The process involves injecting into the ground fracturing fluids that contain thousands of gallons of chemical additives. Companies are not mandated by federal regulations to disclose the identities or quantities of chemicals used during hydraulic fracturing operations on private or public lands. States have begun to regulate hydraulic fracturing fluids by mandating chemical disclosure. These laws have shortcomings including nondisclosure of proprietary or "trade secret" mixtures, insufficient penalties for reporting inaccurate or incomplete information, and timelines that allow for after-the-fact reporting. These limitations leave lawmakers, regulators, public safety officers, and the public uninformed and ill-prepared to anticipate and respond to possible environmental and human health hazards associated with hydraulic fracturing fluids. We explore hydraulic fracturing exemptions from federal regulations, as well as current and future efforts to mandate chemical disclosure at the federal and state level.

  1. Modeling, Optimization & Control of Hydraulic Networks

    Tahavori, Maryamsadat

    2014-01-01

    . The nonlinear network model is derived based on the circuit theory. A suitable projection is used to reduce the state vector and to express the model in standard state-space form. Then, the controllability of nonlinear nonaffine hydraulic networks is studied. The Lie algebra-based controllability matrix is used......Water supply systems consist of a number of pumping stations, which deliver water to the customers via pipeline networks and elevated reservoirs. A huge amount of drinking water is lost before it reaches to end-users due to the leakage in pipe networks. A cost effective solution to reduce leakage...... in water network is pressure management. By reducing the pressure in the water network, the leakage can be reduced significantly. Also it reduces the amount of energy consumption in water networks. The primary purpose of this work is to develop control algorithms for pressure control in water supply...

  2. Concrete decontamination by electro-hydraulic scabbling

    Goldfarb, V.; Gannon, R.

    1995-01-01

    Textron Defense Systems (TDS) is developing an electro-hydraulic device that has the potential for faster, safer, and less expensive scabbling of contaminated concrete surfaces. In the device, shock waves and cavitating bubbles are produced in water by the electric pulses, and the direct and reflected shock waves impinging on the concrete surface result in the crushing and cracking of the concrete. Pulse energy, frequency, and traverse speed control the depth of the scabbling action. Performance thus far has demonstrated the capability of a prototype unit to process a swath 24 inches wide, up to 3/4 inches deep at a linear velocity of up to 6 feet per hour, i.e., at a scabbling rate of 12 sq. ft. per hour

  3. Multiphase Flow Dynamics 5 Nuclear Thermal Hydraulics

    Kolev, Nikolay Ivanov

    2012-01-01

    The present Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step...

  4. Multiphase flow dynamics 5 nuclear thermal hydraulics

    Kolev, Nikolay Ivanov

    2015-01-01

    This Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step demons...

  5. Thermal hydraulic reactor safety analyses and experiments

    Holmstroem, H.; Eerikaeinen, L.; Kervinen, T.; Kilpi, K.; Mattila, L.; Miettinen, J.; Yrjoelae, V.

    1989-04-01

    The report introduces the results of the thermal hydraulic reactor safety research performed in the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) during the years 1972-1987. Also practical applications i.e. analyses for the safety authorities and power companies are presented. The emphasis is on description of the state-of-the-art know how. The report describes VTT's most important computer codes, both those of foreign origin and those developed at VTT, and their assessment work, VTT's own experimental research, as well as international experimental projects and other forms of cooperation VTT has participated in. Appendix 8 contains a comprehensive list of the most important publications and technical reports produced. They present the content and results of the research in detail.(orig.)

  6. Concrete decontamination by electro-hydraulic scabbling

    Goldfarb, V.; Gannon, R. [Textron Defense System, Everett, MA (United States)

    1995-10-01

    Textron Defense Systems (TDS) is developing an electro-hydraulic device that has the potential for faster, safer, and less expensive scabbling of contaminated concrete surfaces. In the device, shock waves and cavitating bubbles are produced in water by the electric pulses, and the direct and reflected shock waves impinging on the concrete surface result in the crushing and cracking of the concrete. Pulse energy, frequency, and traverse speed control the depth of the scabbling action. Performance thus far has demonstrated the capability of a prototype unit to process a swath 24 inches wide, up to 3/4 inch deep at a linear velocity of up to 6 feet per hour, i.e., at a scabbling rate of 12 sq. ft. per hour.

  7. Disposal of waste by hydraulic fracturing

    Tamura, T.; Weeren, H.

    1984-01-01

    Liquid radioactive waste solutions at the Oak Ridge National Laboratory (ORNL) have been disposed of for nearly 20 years by preparing a slurry, injecting it into bedding plane fractures formed in low-permeability shale, and allowing the slurry to set into a solid. Three major considerations are required for this method: a rock formation that forms horizontal or bedding plane fractures and is highly impermeable, a plant facility that can develop sufficient hydraulic pressure to fracture the rock and to inject the slurry, and a slurry that can be pumped into the fracture and that will set, preferably, into a low-leaching solid. The requirements and desirable conditions of the formation, the process and facility as used for radioactive waste disposal, and the mix formulation and slurry properties that were required for injection and solidification are described. The intent of this paper is to stimulate interest in this technique for possible application to nonnuclear wastes

  8. Neutron Imaging Reveals Internal Plant Hydraulic Dynamics

    Warren, Jeffrey [ORNL; Bilheux, Hassina Z [ORNL; Kang, Misun [ORNL; Voisin, Sophie [ORNL; Cheng, Chu-Lin [ORNL; Horita, Jusuke [ORNL; Perfect, Edmund [ORNL

    2013-01-01

    Many terrestrial ecosystem processes are constrained by water availability and transport within the soil. Knowledge of plant water fluxes is thus critical for assessing mechanistic processes linked to biogeochemical cycles, yet resolution of root structure and xylem water transport dynamics has been a particularly daunting task for the ecologist. Through neutron imaging, we demonstrate the ability to non-invasively monitor individual root functionality and water fluxes within Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings growing in a sandy medium. Root structure and growth were readily imaged by neutron radiography and neutron computed tomography. Seedlings were irrigated with water or deuterium oxide and imaged through time as a growth lamp was cycled on to alter leaf demand for water. Sub-millimeter scale resolution reveals timing and magnitudes of root water uptake, redistribution within the roots, and root-shoot hydraulic linkages, relationships not well characterized by other techniques.

  9. The Phebus FP thermal-hydraulic analysis with Melcor

    Akgane, Kikuo; Kiso, Yoshihiro; Fukahori, Takanori; Yoshino, Mamoru

    1995-01-01

    The severe accident analysis code MELCOR, version 1.8.2, has been applied for thermal-hydraulic pre-test analysis of the first test of the Phebus FP program (test FPT-0) to study the best test parameters and the applicability of the code. The Phebus FP program is an in-pile test program which has been planned by the French Commissariate a L'Energie Atomique and the Commission of the European Union. The experiments are being conducted by an international collaboration to study the release and transport of fission products (FPs) under conditions assumed to be the most representative of those that would occur in a severe accident. The Phebus FP test apparatus simulates a test bundle of an in-pile section, the circuit including the steam generator U-tubes and the containment. The FPT-0 test was designed to simulate the heat-up and subsequent fuel bundle degradation after a loss of coolant severe accident, using fresh fuel. Two options for fuel degradation models in MELCOR have been applied to fuel degradation behavior. the first model assumes that fuel debris will be formed immediately after the fuel support fails by cladding relocation due to the candling process. The other is the uncollapsed bare fuel pellets option, in which the fuel pellets remain standing in a columnar shape until the fuel reaches its melting point, even if the cladding has been relocated by candling. The thermal-hydraulic behaviors in the circuit and containment of Phebus FP are discussed herein. Flow velocities in the Phebus FP circuit are high in order to produce turbulent flow in a small diameter test pipe. The MELCOR calculation has shown that the length of the hot leg and steam generator are adequate to attain steam temperatures or 700 degrees C and 150 degrees C in the respective outlets. The containment atmosphere temperature and humidity derived by once through integral system calculation show that objective test conditions would be satisfied in the Phebus FP experiment

  10. The Phebus FP thermal-hydraulic analysis with Melcor

    Akgane, Kikuo; Kiso, Yoshihiro [Nuclear Power Engineering Corporation, Tokyo (Japan); Fukahori, Takanori [Hitachi Engineering Company, Ltd., Hitachi-shi Ibaraki-ken (Japan); Yoshino, Mamoru [Nuclear Engineering Ltd., Tosabori Nishi-ku (Japan)

    1995-09-01

    The severe accident analysis code MELCOR, version 1.8.2, has been applied for thermal-hydraulic pre-test analysis of the first test of the Phebus FP program (test FPT-0) to study the best test parameters and the applicability of the code. The Phebus FP program is an in-pile test program which has been planned by the French Commissariate a L`Energie Atomique and the Commission of the European Union. The experiments are being conducted by an international collaboration to study the release and transport of fission products (FPs) under conditions assumed to be the most representative of those that would occur in a severe accident. The Phebus FP test apparatus simulates a test bundle of an in-pile section, the circuit including the steam generator U-tubes and the containment. The FPT-0 test was designed to simulate the heat-up and subsequent fuel bundle degradation after a loss of coolant severe accident, using fresh fuel. Two options for fuel degradation models in MELCOR have been applied to fuel degradation behavior. the first model assumes that fuel debris will be formed immediately after the fuel support fails by cladding relocation due to the candling process. The other is the uncollapsed bare fuel pellets option, in which the fuel pellets remain standing in a columnar shape until the fuel reaches its melting point, even if the cladding has been relocated by candling. The thermal-hydraulic behaviors in the circuit and containment of Phebus FP are discussed herein. Flow velocities in the Phebus FP circuit are high in order to produce turbulent flow in a small diameter test pipe. The MELCOR calculation has shown that the length of the hot leg and steam generator are adequate to attain steam temperatures or 700{degrees}C and 150{degrees}C in the respective outlets. The containment atmosphere temperature and humidity derived by once through integral system calculation show that objective test conditions would be satisfied in the Phebus FP experiment.

  11. Detection of cavitation in hydraulic turbines

    Escaler, Xavier; Egusquiza, Eduard; Farhat, Mohamed; Avellan, François; Coussirat, Miguel

    2006-05-01

    An experimental investigation has been carried out in order to evaluate the detection of cavitation in actual hydraulic turbines. The methodology is based on the analysis of structural vibrations, acoustic emissions and hydrodynamic pressures measured in the machine. The proposed techniques have been checked in real prototypes suffering from different types of cavitation. In particular, one Kaplan, two Francis and one Pump-Turbine have been investigated in the field. Additionally, one Francis located in a laboratory has also been tested. First, a brief description of the general features of cavitation phenomenon is given as well as of the main types of cavitation occurring in hydraulic turbines. The work presented here is focused on the most important ones which are the leading edge cavitation due to its erosive power, the bubble cavitation because it affects the machine performance and the draft tube swirl that limits the operation stability. Cavitation detection is based on the previous understanding of the cavity dynamics and its location inside the machine. This knowledge has been gained from flow visualisations and measurements in laboratory devices such as a high-speed cavitation tunnel and a reduced scale turbine test rig. The main techniques are the study of the high frequency spectral content of the signals and of their amplitude demodulation for a given frequency band. Moreover, low frequency spectral content can also be used in certain cases. The results obtained for the various types of cavitation found in the selected machines are presented and discussed in detail in the paper. Conclusions are drawn about the best sensor, measuring location, signal processing and analysis for each type of cavitation, which serve to validate and to improve the detection techniques.

  12. Gas Test Loop Booster Fuel Hydraulic Testing

    Gas Test Loop Hydraulic Testing Staff

    2006-01-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3

  13. Gas Test Loop Booster Fuel Hydraulic Testing

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  14. Impact of land-use change on hydraulic properties of wettable and hydrophobic soils

    Lichner, Ľ.; Nagy, V.; Houšková, B.; Šír, Miloslav; Tesař, Miroslav

    2008-01-01

    Roč. 36, Suppl. 5 (2008), s. 1599-1602 ISSN 0133-3720. [Alps Adria Scientific Workshop /7./. Stará Lesná, 28.04.2008-01.05.2008] R&D Projects: GA ČR GA205/06/0375; GA ČR GA205/08/1174; GA MŽP(CZ) SP/1A6/151/07 Grant - others:APVV(XE) SK-CZ-0066-07 Institutional research plan: CEZ:AV0Z20600510 Keywords : wettable soil * hydrophobic soil * hydraulic conductivity * bypassing ratio Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.190, year: 2007

  15. Hydraulic root water uptake models: old concerns and new insights

    Couvreur, V.; Carminati, A.; Rothfuss, Y.; Meunier, F.; Vanderborght, J.; Javaux, M.

    2014-12-01

    Root water uptake (RWU) affects underground water dynamics, with consequences on plant water availability and groundwater recharge. Even though hydrological and climate models are sensitive to RWU parameters, no consensus exists on the modelling of this process. Back in the 1940ies, Van Den Honert's catenary approach was the first to investigate the use of connected hydraulic resistances to describe water flow in whole plants. However concerns such as the necessary computing when architectures get complex made this approach premature. Now that computing power increased dramatically, hydraulic RWU models are gaining popularity, notably because they naturally produce observed processes like compensatory RWU and hydraulic redistribution. Yet major concerns remain. Some are more fundamental: according to hydraulic principles, plant water potential should equilibrate with soil water potential when the plant does not transpire, which is not a general observation when using current definitions of bulk or average soil water potential. Other concerns regard the validation process: water uptake distribution is not directly measurable, which makes it hard to demonstrate whether or not hydraulic models are more accurate than other models. Eventually parameterization concerns exist: root hydraulic properties are not easily measurable, and would even fluctuate on an hourly basis due to processes like aquaporin gating. While offering opportunities to validate hydraulic RWU models, newly developed observation techniques also make us realize the increasing complexity of processes involved in soil-plant hydrodynamics, such as the change of rhizosphere hydraulic properties with soil drying. Surprisingly, once implemented into hydraulic models, these processes do not necessarily translate into more complex emerging behavior at plant scale, and might justify the use of simplified representations of the soil-plant hydraulic system.

  16. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  17. Influence factors of sand-bentonite mixtures on hydraulic conductivity

    Chen Yonggui; Ye Weimin; Chen Bao; Wan Min; Wang Qiong

    2008-01-01

    Buffer material is a very important part of the engineering barrier for geological disposal of high-level radioactive nuclear waste. Compacted bentonite is attracting greater attention as buffer and backfill material because it offer impermeability and swelling properties, but the pure compacted bentonite strength decreases with increasing hydration and these will reduce the buffer capability. To solve this problem, sand is often used to form compacted sand-bentonite mixtures (SBMs) providing high thermal conductivity, excellent compaction capacity, long-time stability, and low engineering cost. As to SBMs, hydraulic conductivity is a important index for evaluation barrier capability. Based on the review of research results, the factors affecting the hydraulic conductivity of SBMs were put forward including bentonite content, grain size distribution, moisture content, dry density, compacting method and energy, and bentonite type. The studies show that the hydraulic conductivity of SBMs is controlled by the hydraulic conductivity of the bentonite, it also decreases as dry density and bentonite content increase, but when the bentonite content reach a critical point, the influence of increasing bentonite to decrease the hydraulic conductivity is limited. A fine and well-graded SBMs is likely to have a lower hydraulic conductivity than a coarse and poorly graded material. The internal erosion or erodibility based on the grain size distribution of the SBMs has a negative effect on the final hydraulic conductivity. The lowest hydraulic conductivity is gained when the mixtures are compacted close to optimum moisture content. Also, the mixtures compacted at moisture contents slightly above optimum values give lower hydraulic conductivity than when compacted at slightly under the optimum moisture content. Finally, discussion was brought to importance of compaction method, compacting energy, and bentonite type to the hydraulic conductivity of SBMs. (authors)

  18. Hydraulic Bureaucracies and the Hydraulic Mission: Flows of Water, Flows of Power

    François Molle

    2009-10-01

    Full Text Available Anchored in 19th century scientism and an ideology of the domination of nature, inspired by colonial hydraulic feats, and fuelled by technological improvements in high dam constructions and power generation and transmission, large-scale water resources development has been a defining feature of the 20th century. Whether out of a need to increase food production, raise rural incomes, or strengthen state building and the legitimacy of the state, governments – North and South, East and West – embraced the 'hydraulic mission' and entrusted it to powerful state water bureaucracies (hydrocracies. Engaged in the pursuit of iconic and symbolic projects, the massive damming of river systems, and the expansion of large-scale public irrigation these hydrocracies have long remained out of reach. While they have enormously contributed to actual welfare, including energy and food generation, flood protection and water supply to urban areas, infrastructural development has often become an end in itself, rather than a means to an end, fuelling rent-seeking and symbolising state power. In many places projects have been challenged on the basis of their economic, social or environmental impacts. Water bureaucracies have been challenged internally (within the state bureaucracies or through political changes and externally (by critiques from civil society and academia, or by reduced funding. They have endeavoured to respond to these challenges by reinventing themselves or deflecting reforms. This paper analyses these transformations, from the emergence of the hydraulic mission and associated water bureaucracies to their adjustment and responses to changing conditions.

  19. Plan well, plan often

    Bill Block

    2013-01-01

    This issue includes an invited paper by Courtney Schultz and her colleagues commenting on the application of the newly adopted U.S. Forest Service Planning Rule (hereafter, the rule) for wildlife. The rule is basically implementing language to interpret the spirit and intent of the National Forest Management Act (NFMA) of 1976. Laws such as NFMA require additional...

  20. Language Planning: Corpus Planning.

    Baldauf, Richard B., Jr.

    1989-01-01

    Focuses on the historical and sociolinguistic studies that illuminate corpus planning processes. These processes are broken down and discussed under two categories: those related to the establishment of norms, referred to as codification, and those related to the extension of the linguistic functions of language, referred to as elaboration. (60…

  1. A physically based criterion for hydraulic hazard mapping

    Milanesi, Luca; Pilotti, Marco; Petrucci, Olga

    2013-04-01

    Hydraulic hazard maps are widely used for land use and emergency planning. Due to their practical consequences, it is important that their meaning is effectively transferred and shared by the stakeholders; to this purpose maps should communicate hazard levels moving from the potential consequences on specified targets. For these reasons flood maps showing only the extension of the inundated areas or flow features as depth and/or velocity may reveal themselves as ineffective instruments. The selection of the specific target to analyse must, in our opinion, be site-specific and reflect land use and/or the hydraulics features of the phenomenon. In case of sudden processes, such as torrential floods or debris flows, hazard levels should be referred to human life, because emergency plans may not mitigate risk; on the contrary, when the time scale of the flood wave propagation is sufficiently larger than the warning system one, the focus might move to the economic value of properties, since human-focused criteria may result in too severe land planning restrictions. This contribution starts exploring, from a theoretical point of view, human hazard levels as drowning, toppling and friction stability limits, which are the main failure mechanisms of human stability in flows. The proposed approach considers the human body, set on a slope and hit by a current of known density, as a combination of cylinders with different dimensions. The drowning threshold is identified through a limiting water depth, while toppling and translation are studied respectively through a moment and momentum balance. The involved forces are the friction at the bottom, the destabilizing drag force exerted by the current, the human weight and buoyancy. Several threshold curves on the velocity-depth plane can be identified as a function of different masses and heights for children and adults. Because of its dependence from the fluid density, this methodology may be applied also to define hazard

  2. Dynamic Response in Transient Stress-Field Behavior Induced by Hydraulic Fracturing

    Jenkins, Andrew

    Hydraulic fracturing is a technique which is used to exploit geologic features and subsurface properties in an effort to increase production in low-permeability formations. The process of hydraulic fracturing provides a greater surface contact area between the producing formation and the wellbore and thus increases the amount of recoverable hydrocarbons from within the reservoir. The use of this stimulation technique has brought on massive applause from the industry due to its widespread success and effectiveness, however the dynamic processes that take part in the development of hydraulic fractures is a relatively new area of research with respect to the massive scale operations that are seen today. The process of hydraulic fracturing relies upon understanding and exploiting the in-situ stress distribution throughout the area of study. These in-situ stress conditions are responsible for directing fracture orientation and propagation paths throughout the period of injection. The relative magnitude of these principle stresses is key in developing a successful stimulation plan. In horizontal well plan development the interpretation of stress within the reservoir is required for determining the azimuth of the horizontal well path. These horizontal laterals are typically oriented in a manner such that the well path lies parallel to the minimum horizontal stress. This allows for vertical fractures to develop transversely to the wellbore, or normal to the least principle stress without the theoretical possibility of fractures overlapping, creating the most efficient use of the fluid energy during injection. The orientation and magnitude of these in-situ stress fields however can be dynamic, controlled by the subsequent fracture propagation and redistribution of the surrounding stresses. That is, that as the fracture propagates throughout the reservoir, the relative stress fields surrounding the fractures may see a shift and deviate from their original direction or

  3. INFORMATION-MEASURING TEST SYSTEM OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSIONS

    I. V. Zhukovytskyy

    2015-08-01

    Full Text Available Purpose. The article describes the process of developing the information-measuring test system of diesel locomotives hydraulic transmission, which gives the possibility to obtain baseline data to conduct further studies for the determination of the technical condition of diesel locomotives hydraulic transmission. The improvement of factory technology of post-repair tests of hydraulic transmissions by automating the existing hydraulic transmission test stands according to the specifications of the diesel locomotive repair enterprises was analyzed. It is achieved based on a detailed review of existing foreign information-measuring test systems for hydraulic transmission of diesel locomotives, BelAZ earthmover, aircraft tug, slag car, truck, BelAZ wheel dozer, some brands of tractors, etc. The problem for creation the information-measuring test systems for diesel locomotive hydraulic transmission is being solved, starting in the first place from the possibility of automation of the existing test stand of diesel locomotives hydraulic transmission at Dnipropetrovsk Diesel Locomotive Repair Plant "Promteplovoz". Methodology. In the work the researchers proposed the method to create a microprocessor automated system of diesel locomotives hydraulic transmission stand testing in the locomotive plant conditions. It acts by justifying the selection of the necessary sensors, as well as the application of the necessary hardware and software for information-measuring systems. Findings. Based on the conducted analysis there was grounded the necessity of improvement the plant hydraulic transmission stand testing by creating a microprocessor testing system, supported by the experience of developing such systems abroad. Further research should be aimed to improve the accuracy and frequency of data collection by adopting the more modern and reliable sensors in tandem with the use of filtering software for electromagnetic and other interference. Originality. The

  4. Endurance Pump Test with MIL-PRF-83282 Hydraulic Fluid, Purified with Malabar Purifier

    Sharma, Shashi

    2004-01-01

    .... Endurance aircraft hydraulic pump tests under carefully controlled conditions were previously conducted using hydraulic fluid purified with a rotating-disk and vacuum type purifier, the portable...

  5. Hydraulic integration and shrub growth form linked across continental aridity gradients.

    H. Jochen Schenk; Susana Espino; Christine M. Goedhart; Marisa Nordenstahl; Hugo I. Martinez Cabrera; Cynthia S. Jones

    2009-01-01

    Both engineered hydraulic systems and plant hydraulic systems are protected against failure by resistance, reparability, and redundancy. A basic rule of reliability engineering is that the level of...

  6. 3D Hydraulic tomography from joint inversion of the hydraulic heads and self-potential data. (Invited)

    Jardani, A.; Soueid Ahmed, A.; Revil, A.; Dupont, J.

    2013-12-01

    Pumping tests are usually employed to predict the hydraulic conductivity filed from the inversion of the head measurements. Nevertheless, the inverse problem is strongly underdetermined and a reliable imaging requires a considerable number of wells. We propose to add more information to the inversion of the heads by adding (non-intrusive) streaming potentials (SP) data. The SP corresponds to perturbations in the local electrical field caused directly by the fow of the ground water. These SP are obtained with a set of the non-polarising electrodes installed at the ground surface. We developed a geostatistical method for the estimation of the hydraulic conductivity field from measurements of hydraulic heads and SP during pumping and injection experiments. We use the adjoint state method and a recent petrophysical formulation of the streaming potential problem in which the streaming coupling coefficient is derived from the hydraulic conductivity allowed reducing of the unknown parameters. The geostatistical inverse framework is applied to three synthetic case studies with different number of the wells and electrodes used to measure the hydraulic heads and the streaming potentials. To evaluate the benefits of the incorporating of the streaming potential to the hydraulic data, we compared the cases in which the data are coupled or not to map the hydraulic conductivity. The results of the inversion revealed that a dense distribution of electrodes can be used to infer the heterogeneities in the hydraulic conductivity field. Incorporating the streaming potential information to the hydraulic head data improves the estimate of hydraulic conductivity field especially when the number of piezometers is limited.

  7. Nonlinear Control of Hydraulic Manipulator for Decommissioning Nuclear Reactor

    Kim, Myoung-Ho; Lee, Sung-Uk; Kim, Chang-Hoi; Choi, Byung-Seon; Moon, Jei-Kwon

    2016-01-01

    Robot technique is need to decommission nuclear reactor because of high radiation environment. Especially, Manipulator systems are useful for dismantling complex structure in a nuclear facility. In addition, Hydraulic system is applied to handle heavy duty object. Since hydraulic system can demonstrate high power. The manipulator with hydraulic power is already developed. To solve this problem, various nonlinear control method includes acceleration control. But, it is difficult because acceleration value is highly noisy. In this paper, the nonlinear control algorithm without acceleration control is studied. To verify, the hydraulic manipulator model had been developed. Furthermore, the numerical simulation is carried out. The nonlinear control without acceleration parameter method is developed for hydraulic manipulator. To verify control algorithm, the manipulator is modeled by MBD and the hydraulic servo system is also derived. In addition, the numerical simulation is also carried out. Especially, PID gain is determined though TDC algorithm. In the result of numerical simulation, tracking performance is good without acceleration control. Thus, the PID though TDC with SMC is good for hydraulic manipulator control

  8. Containment wells to form hydraulic barriers along site boundaries

    Vo, D.; Ramamurthy, A.S.; Qu, J.; Zhao, X.P.

    2008-01-01

    In the field, aquifer remediation methods include pump and treat procedures based on hydraulic control systems. They are used to reduce the level of residual contamination present in the soil and soil pores of aquifers. Often, physical barriers are erected along the boundaries of the target (aquifer) site to reduce the leakage of the released soil contaminant to the surrounding regions. Physical barriers are expensive to build and dismantle. Alternatively, based on simple hydraulic principles, containment wells or image wells injecting clear water can be designed and built to provide hydraulic barriers along the contaminated site boundaries. For brevity, only one pattern of containment well system that is very effective is presented in detail. The study briefly reports about the method of erecting a hydraulic barrier around a contaminated region based on the simple hydraulic principle of images. During the clean-up period, hydraulic barriers can considerably reduce the leakage of the released contaminant from the target site to surrounding pristine regions. Containment wells facilitate the formation of hydraulic barriers. Hence, they control the movement of contaminants away from the site that is being remedied. However, these wells come into play, only when the pumping operation for cleaning up the site is active. After operation, they can be filled with soil to permit the natural ground water movement. They can also be used as monitoring wells

  9. Research of performance prediction to energy on hydraulic turbine

    Quan, H; Li, R N; Li, Q F; Han, W; Su, Q M

    2012-01-01

    Refer to the low specific speed Francis turbine blade design principle and double-suction pump structure. Then, design a horizontal double-channel hydraulic turbine Francis. Through adding different guide vane airfoil and and no guide vane airfoil on the hydraulic conductivity components to predict hydraulic turbine energy and using Fluent software to numerical simulation that the operating conditions and point. The results show that the blade pressure surface and suction surface pressure is low when the hydraulic turbine installation is added standard positive curvature of the guide vane and modified positive curvature of guide vane. Therefore, the efficiency of energy recovery is low. However, the pressure of negative curvature guide vane and symmetric guide vane added on hydraulic turbine installations is larger than that of the former ones, and it is conducive to working of runner. With the decreasing of guide vane opening, increasing of inlet angle, flow state gets significantly worse. Then, others obvious phenomena are that the reflux and horizontal flow appeared in blade pressure surface. At the same time, the vortex was formed in Leaf Road, leading to the loss of energy. Through analyzing the distribution of pressure, velocity, flow lines of over-current flow in the the back hydraulic conductivity components in above programs we can known that the hydraulic turbine installation added guide vane is more reasonable than without guide vanes, it is conducive to improve efficiency of energy conversion.

  10. Nonlinear Control of Hydraulic Manipulator for Decommissioning Nuclear Reactor

    Kim, Myoung-Ho; Lee, Sung-Uk; Kim, Chang-Hoi; Choi, Byung-Seon; Moon, Jei-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Robot technique is need to decommission nuclear reactor because of high radiation environment. Especially, Manipulator systems are useful for dismantling complex structure in a nuclear facility. In addition, Hydraulic system is applied to handle heavy duty object. Since hydraulic system can demonstrate high power. The manipulator with hydraulic power is already developed. To solve this problem, various nonlinear control method includes acceleration control. But, it is difficult because acceleration value is highly noisy. In this paper, the nonlinear control algorithm without acceleration control is studied. To verify, the hydraulic manipulator model had been developed. Furthermore, the numerical simulation is carried out. The nonlinear control without acceleration parameter method is developed for hydraulic manipulator. To verify control algorithm, the manipulator is modeled by MBD and the hydraulic servo system is also derived. In addition, the numerical simulation is also carried out. Especially, PID gain is determined though TDC algorithm. In the result of numerical simulation, tracking performance is good without acceleration control. Thus, the PID though TDC with SMC is good for hydraulic manipulator control.

  11. The hydraulic conductivity of sediments: A pore size perspective

    Ren, X.W.

    2017-12-06

    This article presents an analysis of previously published hydraulic conductivity data for a wide range of sediments. All soils exhibit a prevalent power trend between the hydraulic conductivity and void ratio. Data trends span 12 orders of magnitude in hydraulic conductivity and collapse onto a single narrow trend when the hydraulic conductivity data are plotted versus the mean pore size, estimated using void ratio and specific surface area measurements. The sensitivity of hydraulic conductivity to changes in the void ratio is higher than the theoretical value due to two concurrent phenomena: 1) percolating large pores are responsible for most of the flow, and 2) the larger pores close first during compaction. The prediction of hydraulic conductivity based on macroscale index parameters in this and similar previous studies has reached an asymptote in the range of kmeas/5≤kpredict≤5kmeas. The remaining uncertainty underscores the important role of underlying sediment characteristics such as pore size distribution, shape, and connectivity that are not measured with index properties. Furthermore, the anisotropy in hydraulic conductivity cannot be recovered from scalar parameters such as index properties. Overall, results highlight the robustness of the physics inspired data scrutiny based Hagen–Poiseuille and Kozeny-Carman analyses.

  12. Characterization of unsaturated hydraulic conductivity at the Hanford Site

    Rockhold, M.L.; Fayler, M.J.; Gee, G.W.

    1988-07-01

    This report details some recent field measurements and compares predicted and measured values of hydraulic conductivities for three locations at the Hanford Site. Measurements from small (6-cm-dia) /open quotes/point/close quotes/ and large (2-m by 2-m) /open quotes/plot/close quotes/ areas utilized inflitration and drainage techniques to obtain in situ data for field-saturated and unsaturated hydraulic conductivity. The Guelph permeameter was used for point sampling, and the unsteady drainage-flux method was used on plots for field-saturated and unsaturated hydraulic conductivity measurements. Steady-state techniques were used to measure unsaturated hydraulic conductivities in small columns in the laboratory for one of the three soils tested to provide a comparison with data obtained from the field. Measured unsaturated hydraulic conductivities and those predicted from particle-size distribution and bulk density data agree within one-half to one and one-half orders of magnitude, depending on soil type. To use a particle-size distribution to estimate water retention characteristics and, subsequently, to predict unsaturated hydraulic conductivities, measurements of water-retention characteristics are necessary to determine a parameter value used in one of the models. No single method for measuring or calculating unsaturated hydraulic conductivities was found appropriate for all Hanford Site soils. Ideally, several methods should be used to take advantage of the strengths of each method, considering the data needs and resources available. 45 refs., 24 figs., 19 tabs

  13. Plant hydraulic diversity buffers forest ecosystem responses to drought

    Anderegg, W.; Konings, A. G.; Trugman, A. T.; Pacala, S. W.; Yu, K.; Sulman, B. N.; Sperry, J.; Bowling, D. R.

    2017-12-01

    Drought impacts carbon, water, and energy cycles in forests and may pose a fundamental threat to forests in future climates. Plant hydraulic transport of water is central to tree drought responses, including curtailing of water loss and the risk of mortality during drought. The effect of biodiversity on ecosystem function has typically been examined in grasslands, yet the diversity of plant hydraulic strategies may influence forests' response to drought. In a combined analysis of eddy covariance measurements, remote-sensing data of plant water content variation, model simulations, and plant hydraulic trait data, we test the degree to which plant water stress schemes influence the carbon cycle and how hydraulic diversity within and across ecosystems affects large-scale drought responses. We find that current plant functional types are not well-suited to capture hydraulic variation and that higher hydraulic diversity buffers ecosystem variation during drought. Our results demonstrate that tree functional diversity, particularly hydraulic diversity, may be critical to simulate in plant functional types in current land surface model projections of future vegetation's response to climate extremes.

  14. Hydraulic elements in reduction of vibrations in mechanical systems

    Białas, K.; Buchacz, A.

    2017-08-01

    This work presents non-classical method of design of mechanic systems with subsystem reducing vibrations. The purpose of this paper is also introduces synthesis of mechanic system with reducing vibrations understand as design of this type of systems. The synthesis may be applied to modify the already existing systems in order to achieve a desired result. Elements which reduce vibrations can be constructed with passive, semi-active or active components. These considerations systems have selected active items. A hallmark of active elements it is possible to change the parameters on time of these elements and their power from an external source. The implementation of active elements is very broad. These elements can be implemented through the use of components of electrical, pneumatic, hydraulic, etc. The system was consisted from mechanical and hydraulic elements. Hydraulic elements were used as subsystem reducing unwanted vibration of mechanical system. Hydraulic elements can be realized in the form of hydraulic cylinder. In the case of an active vibration reduction in the form of hydraulic cylinder it is very important to find the corresponding values of hydraulic components. The values of these elements affect the frequency of vibrations of this sub-system which is related to the effective vibration reduction [7,11].

  15. Characterization of unsaturated hydraulic conductivity at the Hanford Site

    Rockhold, M.L.; Fayler, M.J.; Gee, G.W.

    1988-07-01

    This report details some recent field measurements and compares predicted and measured values of hydraulic conductivities for three locations at the Hanford Site. Measurements from small (6-cm-dia) /open quotes/point/close quotes/ and large (2-m by 2-m) /open quotes/plot/close quotes/ areas utilized inflitration and drainage techniques to obtain in situ data for field-saturated and unsaturated hydraulic conductivity. The Guelph permeameter was used for point sampling, and the unsteady drainage-flux method was used on plots for field-saturated and unsaturated hydraulic conductivity measurements. Steady-state techniques were used to measure unsaturated hydraulic conductivities in small columns in the laboratory for one of the three soils tested to provide a comparison with data obtained from the field. Measured unsaturated hydraulic conductivities and those predicted from particle-size distribution and bulk density data agree within one-half to one and one-half orders of magnitude, depending on soil type. To use a particle-size distribution to estimate water retention characteristics and, subsequently, to predict unsaturated hydraulic conductivities, measurements of water-retention characteristics are necessary to determine a parameter value used in one of the models. No single method for measuring or calculating unsaturated hydraulic conductivities was found appropriate for all Hanford Site soils. Ideally, several methods should be used to take advantage of the strengths of each method, considering the data needs and resources available. 45 refs., 24 figs., 19 tabs.

  16. Physico-empirical approach for mapping soil hydraulic behaviour

    G. D'Urso

    1997-01-01

    Full Text Available Abstract: Pedo-transfer functions are largely used in soil hydraulic characterisation of large areas. The use of physico-empirical approaches for the derivation of soil hydraulic parameters from disturbed samples data can be greatly enhanced if a characterisation performed on undisturbed cores of the same type of soil is available. In this study, an experimental procedure for deriving maps of soil hydraulic behaviour is discussed with reference to its application in an irrigation district (30 km2 in southern Italy. The main steps of the proposed procedure are: i the precise identification of soil hydraulic functions from undisturbed sampling of main horizons in representative profiles for each soil map unit; ii the determination of pore-size distribution curves from larger disturbed sampling data sets within the same soil map unit. iii the calibration of physical-empirical methods for retrieving soil hydraulic parameters from particle-size data and undisturbed soil sample analysis; iv the definition of functional hydraulic properties from water balance output; and v the delimitation of soil hydraulic map units based on functional properties.

  17. Aired-time and chamotte hydraulic mortars

    González Cortina, M.

    2002-06-01

    Full Text Available The aim of this research project has been to obtain aired-li me based hydraulic mortars with the addition of chamotte or burnt clay powder obtained from the ceramic industry waste. By doing this, hydraulic properties have been included into lime and hydraulic mortars with a great improvement in mechanical properties. In order to achieve this, different types of chamotte obtained from clay burnt at different temperatures have been tested, changing, at the same time, the proportions of lime, sand, chamotte and water. All the tests have been performed preparing a double set of test pieces to be kept at room temperature or to be immersed in water, determining the Shore C hardness and the mechanical compressive and tensile strengths. Further on, X-ray diffraction analysis have been developed to determine the qualitative composition of the crystalline structure, as well as micro structural analysis, using stereomicroscope and electric microscope scanning, with X-ray microanalysis have been used. As a conclusion, several types of mortars have been created with different proportions, which can be used, due to its characteristics, as keying mortars in brickwork, for restoration works as well as for new constructions.

    El objetivo de éste trabajo es el conseguir morteros hidráulicos, a partir de la cal aérea, con adición de chamota o polvo de arcilla cocida, obtenida de los residuos-desechos de la industria cerámica. De este modo se pretende infundir propiedades hidráulicas a la cal y obtener morteros hidráulicos, con una mejora sustancial de sus propiedades mecánicas. Para ello, se ha experimentado con diversos tipos de chamotas, obtenidas a partir de arcillas cocidas a diferentes temperaturas, y con diversas granulometrías, y se han realizado morteros con distintas dosificaciones, variando las proporciones de cal, arena, chamota y agua. En todos los casos se ha preparado una doble serie de probetas, para conservarlas al aire o

  18. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    Gallo, Jean-Baptiste [Calstart Incorporated, Pasadena, CA (United States)

    2014-03-07

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulic hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: -Performance, -Fleet deployment, -Maintenance, -Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles throughout the

  19. Thermal hydraulic feasibility assessment of the spent nuclear fuel project

    Heard, F.J.

    1996-01-01

    A series of analyses have been completed investigating the thermal-hydraulic performance and feasibility of the Spent Nuclear Fuel Project (SNFP) Integrated Process Strategy (IPS). The goal was to develop a series of thermal-hydraulic models that could respond to all process and safety related issues that may arise pertaining to the SNFP, as well as provide a basis for validation of the results. Results show that there is a reasonable envelope for process conditions and requirements that are thermally and hydraulically acceptable

  20. Non-stationary flow of hydraulic oil in long pipe

    Hružík Lumír

    2014-03-01

    Full Text Available The paper deals with experimental evaluation and numerical simulation of non-stationary flow of hydraulic oil in a long hydraulic line. Non-stationary flow is caused by a quick closing of valves at the beginning and the end of the pipe. Time dependence of pressure is measured by means of pressure sensors at the beginning and the end of the pipe. A mathematical model of a given circuit is created using Matlab SimHydraulics software. The long line is simulated by means of segmented pipe. The simulation is verified by experiment.

  1. Hydraulics and pneumatics a technician's and engineer's guide

    Parr, Andrew

    2011-01-01

    Nearly all industrial processes require objects to be moved, manipulated or subjected to some sort of force. Such movements and manipulations are frequently accomplished by means of devices driven by liquids (hydraulics) or air (pneumatics), the subject of this book. Hydraulics and Pneumatics is written by a practicing process control engineer as a guide to the successful operation of hydraulic and pneumatic systems for all engineers and technicians working with them. Keeping mathematics and theory to a minimum, this practical guide is thorough but accessible to technicians without a

  2. Hydraulic method of working large super-drift pillars

    Rad' ko, B.V.; Syroezhkin, P.V.; Durov, V.S.

    1987-03-01

    Describes the method of hydraulic coal extraction introduced in the Pioneer mine belonging to the Dobropol'eugol' coal association. This method was found to reduce the number of collection and ventilation roadways needed significantly, increase their stability, reduce coal loss and increase safety, particularly when mining pillars up to 80 m high. Large scale diagram of hydraulic mining layout shows: ventilation gate, hydraulic monitors, mine roadway, cross-cut, and collection roadways. A table shows pillar dimensions and depth and economic savings for different seams in the mine.

  3. Estimating Hydraulic Resistance for Floodplain Mapping and Hydraulic Studies from High-Resolution Topography: Physical and Numerical Simulations

    Minear, J. T.

    2017-12-01

    One of the primary unknown variables in hydraulic analyses is hydraulic resistance, values for which are typically set using broad assumptions or calibration, with very few methods available for independent and robust determination. A better understanding of hydraulic resistance would be highly useful for understanding floodplain processes, forecasting floods, advancing sediment transport and hydraulic coupling, and improving higher dimensional flood modeling (2D+), as well as correctly calculating flood discharges for floods that are not directly measured. The relationship of observed features to hydraulic resistance is difficult to objectively quantify in the field, partially because resistance occurs at a variety of scales (i.e. grain, unit and reach) and because individual resistance elements, such as trees, grass and sediment grains, are inherently difficult to measure. Similar to photogrammetric techniques, Terrestrial Laser Scanning (TLS, also known as Ground-based LiDAR) has shown great ability to rapidly collect high-resolution topographic datasets for geomorphic and hydrodynamic studies and could be used to objectively quantify the features that collectively create hydraulic resistance in the field. Because of its speed in data collection and remote sensing ability, TLS can be used both for pre-flood and post-flood studies that require relatively quick response in relatively dangerous settings. Using datasets collected from experimental flume runs and numerical simulations, as well as field studies of several rivers in California and post-flood rivers in Colorado, this study evaluates the use of high-resolution topography to estimate hydraulic resistance, particularly from grain-scale elements. Contrary to conventional practice, experimental laboratory runs with bed grain size held constant but with varying grain-scale protusion create a nearly twenty-fold variation in measured hydraulic resistance. The ideal application of this high-resolution topography

  4. Hydraulic jumps in ''viscous'' accretion disks

    Michel, F.C.

    1984-01-01

    We propose that the dissipative process necessary for rapid accretion disk evolution is driven by hydraulic jump waves on the surface of the disk. These waves are excited by the asymmetric nature of the central rotator (e.g., neutron star magnetosphere) and spiral out into the disk to form a pattern corotating with the central object. Disk matter in turn is slowed slightly at each encounter with the jump and spirals inward. In this process, the disk is heated by true turbulence produced in the jumps. Additional effects, such as a systematic misalignment of the magnetic moment of the neutron star until it is nearly orthogonal, and systematic distortion of the magnetosphere in such a way as to form an even more asymmetric central ''paddle wheel'' may enhance the interaction with inflowing matter. The application to X-ray sources corresponds to the ''slow'' solutions of Ghosh and Lamb, and therefore to rms magnetic fields of about 4 x 10 10 gauss. Analogous phenomena have been proposed to act in the formation of galactic spiral structure

  5. Researches regarding primary control in hydraulic systems

    Tița Irina

    2017-01-01

    Full Text Available The technology in wind turbines has developed very rapidly but there are still a lot that can be improved also regarding new technologies. One example is wind turbine with hydraulic transmission. At the beginning low power wind turbines are in view. First of all the wind energy is meant to be used by isolated users for household and garden equipment or pumping water. Later, if results will be as expected, and wind potential satisfactory, such systems could be connected to electric grid. In our research laboratory we must build an experimental setup. The simulation for wind turbine and fixed displacement pump coupled to it will be realized using a variable displacement piston pump. As the variable wind speed has as a result variations of the pump flow, the variable displacement pump from the test rig may reproduce a similar variation law. In this paper some aspects regarding the variable displacement pump are detailed. This study is necessary for the future development of the research.

  6. Investigation of hydraulic transmission noise sources

    Klop, Richard J.

    Advanced hydrostatic transmissions and hydraulic hybrids show potential in new market segments such as commercial vehicles and passenger cars. Such new applications regard low noise generation as a high priority, thus, demanding new quiet hydrostatic transmission designs. In this thesis, the aim is to investigate noise sources of hydrostatic transmissions to discover strategies for designing compact and quiet solutions. A model has been developed to capture the interaction of a pump and motor working in a hydrostatic transmission and to predict overall noise sources. This model allows a designer to compare noise sources for various configurations and to design compact and inherently quiet solutions. The model describes dynamics of the system by coupling lumped parameter pump and motor models with a one-dimensional unsteady compressible transmission line model. The model has been verified with dynamic pressure measurements in the line over a wide operating range for several system structures. Simulation studies were performed illustrating sensitivities of several design variables and the potential of the model to design transmissions with minimal noise sources. A semi-anechoic chamber has been designed and constructed suitable for sound intensity measurements that can be used to derive sound power. Measurements proved the potential to reduce audible noise by predicting and reducing both noise sources. Sound power measurements were conducted on a series hybrid transmission test bench to validate the model and compare predicted noise sources with sound power.

  7. Hydraulic fracturing in granite under geothermal conditions

    Solberg, P.; Lockner, D.; Byerlee, J.D.

    1980-01-01

    The experimental hydraulic fracturing of granite under geothermal conditions produces tensile fracture at rapid fluid injection rates and shear fracture at slow injection rates and elevated differential stress levels. A sudden burst of acoustic emission activity accompanies tensile fracture formation whereas the acoustic emission rate increases exponentially prior to shear fracture. Temperature does not significantly affect the failure mechanism, and the experimental results have not demonstrated the occurrence of thermal fracturing. A critical result of these experiments is that fluid injection at intermediate rates and elevated differential stress levels increases permeability by more than an order of magnitude without producing macroscopic fractures, and low-level acoustic emission activity occurs simultaneously near the borehole and propagates outward into the specimen with time. Permeability measurements conducted at atmospheric pressure both before and after these experiments show that increased permeability is produced by permanent structural changes in the rock. Although results of this study have not demonstrated the occurrence of thermal fracturing, they suggest that fluid injection at certain rates in situ may markedly increase local permeability. This could prove critical to increasing the efficiency of heat exchange for geothermal energy extraction from hot dry rock. ?? 1980.

  8. Underwater hydraulic shock shovel control system

    Liu, He-Ping; Luo, A.-Ni; Xiao, Hai-Yan

    2008-06-01

    The control system determines the effectiveness of an underwater hydraulic shock shovel. This paper begins by analyzing the working principles of these shovels and explains the importance of their control systems. A new type of control system’s mathematical model was built and analyzed according to those principles. Since the initial control system’s response time could not fulfill the design requirements, a PID controller was added to the control system. System response time was still slower than required, so a neural network was added to nonlinearly regulate the proportional element, integral element and derivative element coefficients of the PID controller. After these improvements to the control system, system parameters fulfilled the design requirements. The working performance of electrically-controlled parts such as the rapidly moving high speed switch valve is largely determined by the control system. Normal control methods generally can’t satisfy a shovel’s requirements, so advanced and normal control methods were combined to improve the control system, bringing good results.

  9. Hydraulic fracturing - an attempt of DEM simulation

    Kosmala, Alicja; Foltyn, Natalia; Klejment, Piotr; Dębski, Wojciech

    2017-04-01

    Hydraulic fracturing is a technique widely used in oil, gas and unconventional reservoirs exploitation in order to enable the oil/gas to flow more easily and enhance the production. It relays on pumping into a rock a special fluid under a high pressure which creates a set of microcracks which enhance porosity of the reservoir rock. In this research, attempt of simulation of such hydrofracturing process using the Discrete Element Method approach is presented. The basic assumption of this approach is that the rock can be represented as an assembly of discrete particles cemented into a rigid sample (Potyondy 2004). An existence of voids among particles simulates then a pore system which can be filled out by fracturing fluid, numerically represented by much smaller particles. Following this microscopic point of view and its numerical representation by DEM method we present primary results of numerical analysis of hydrofracturing phenomena, using the ESyS-Particle Software. In particular, we consider what is happening in distinct vicinity of the border between rock sample and fracking particles, how cracks are creating and evolving by breaking bonds between particles, how acoustic/seismic energy is releasing and so on. D.O. Potyondy, P.A. Cundall. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41 (2004), pp. 1329-1364.

  10. Control rod driving hydraulic pressure device

    Ogawa, Masahide.

    1993-01-01

    The present invention concerns a control rod driving hydraulic device of a BWR type reactor, and provides an improvement for a means for supplying mechanical seal flashing water of a pump. That is, a mechanical seal flashing pipeline is branched at the downstream of a pressure-reducing orifice and connected to a minimum flow pipeline. With such a constitution, the minimum flow pipeline is connected to a minimum flow pipeline of an auxiliary pump at the downstream of the pressure-reducing orifice and returned to a suction pipeline of the pump. Pressure at the downstream of the pressure-reducing orifice is set, in the orifice, to a pressure required for mechanical seal flashing. Accordingly, the mechanical seal flashing pipeline is connected and a part of minimum flow rate is utilized, thereby enabling to cool mechanical seals. As a result, flow rate of the mechanical flashing water which has been flown out can be saved. The exhaustion amount from the pump can be reduced, to decrease the shaft power and reduce the capacity of the motor. (I.S.)

  11. Hydraulic Rod Drives for the CAREM Reactor

    Mazzi, R.O

    2000-01-01

    CAREM belongs to those considered innovative reactors and their main design goal is obtain a significant improvement in safety.Requirements for the design of the first shutdown systems (FSS) is one of the mayor challenges from functional and reliability point of view, among most of the system of a nuclear reactor.Thus, the design of First Shutdown System must be in accordance with both, the system and the specific design criteria of the CAREM concept.In order to choose the best option for the control rod drive device, three different alternatives have been analysed in the frame of the Project.This paper discusses the advantages and disadvantages of each option and presents the main reasons to select the hydraulic type as the most promising one.The principles and main characteristics of the selected system are explained and the main goals to be obtained during development activities, in order to obtain a reliable design to successfully comply with operating requirements for reactor service are also presented

  12. First successful multistage hydraulic fracture monitoring for a horizontal well in Mexico

    Gutierrez, Guillermo; Rios, Austreberto; Riano, Juan M. [PEMEX, Mexico, DF (Mexico); Sanchez, Adrian; Bustos, Tomas [Schlumberger, Mexico DF (Mexico)

    2008-07-01

    In their constant effort to increase the production from Chicontepec, PEMEX drilled a multilateral well with three horizontal lateral sections; the intention was to increase the production in comparison with vertical wells. In the second arm of this well four intervals were identified to be fractured, this was a new approach since it was the first occasion that multiple fractures were planned in a horizontal well. An important part of the project was the evaluation of the effectiveness of the hydraulic fracturing. This evaluation was performed by micro seismic monitoring during the treatment. This technology allows the detection of events generated during the fluid injection in the reservoir, with receivers located in a nearby monitoring well. The interpretation of this data allows the identification in 3 D space of the fracture locations. This information is valuable for optimization of subsequent treatments and for planning the field development. The data is recorded in real time and can be used to make decisions during the fracturing operation. In this paper we describe the results of the hydraulic fracturing monitoring performed in four intervals in a horizontal well showing the geometry and direction of each one of the fractures. (author)

  13. A pan-Arctic Assessment of Hydraulic Geometry

    Chen, H. Z. D.; Gleason, C. J.

    2016-12-01

    Arctic Rivers are a crucial part of the global hydrologic cycle, especially as our climate system alters toward an uncertain future. These rivers have many ecological and societal functions, such as funneling meltwater to the ocean and act as critical winter transport for arctic communities. Despite this importance, their fluvial geomorphology, in particular their hydraulic geometry (HG) is not fully understood due to their often remote locations. HG, including at-a-station (AHG), downstream (DHG), and the recently discovered At-many-stations (AMHG), provides the empirical basis between gauging measurements and how rivers respond to varying flow conditions, serving as an indicator to the critical functions mentioned above. Hence, a systematic cataloging of the AHG, DHG, and AMHG, of Arctic rivers is needed for a pan-Arctic view of fluvial geomorphic behavior. This study will document the width-based AHG, DHG, and AMHG for rivers wider than 120m with an Arctic Ocean drainage and gauge data with satellite records. First, we will make time-series width measurements from classified imagery at locations along all such rivers from Landsat archive since 1984, accessed within the Google Earth Engine cloud computing environment. Second, we will run available gauge data for width-based AHG, DHG, and AMHG over large river reaches. Lastly, we will assess these empirical relationships, seek regional trends, and changes in HG over time as climate change has on the Arctic system. This is part of an ongoing process in the larger scope of data calibration/validation for the Surface Water and Ocean Topography (SWOT) satellite planned for 2020, and HG mapping will aid the selection of field validation sites. The work showcase an unprecedented opportunity to process and retrieve scientifically significant HG data in the often inaccessible Arctic via Google Earth Engine. This unique platform makes such broad scale study possible, providing a blueprint for future large-area HG research.

  14. Development of semi-active hydraulic damper as active interaction ...

    Semi-auto controller; displacement semi-active hydraulic damper; ... 2000), and Magnetorheological Damper (Dyke et al 1998) were widely discussed or used. ... driving force provided by electrical motor causes the subordinate structure to ...

  15. Multipurpose Educational Modules to Teach Hydraulic Hybrid Vehicle Technologies

    2007-09-01

    The goal of the overall project is to develop a software simulation for a hydraulic hybrid vehicle. The simulation will enable students to compare various hybrid configurations with conventional IC engine performance.

  16. Preparing hydraulic cement from oil-shale residue

    1921-08-28

    A process for preparation of hydraulic cement from oil-shale residue is characterized in that, as flux is used, rich-in-lime poor-in-sulfur portland-cement clinker, by which the usual gypsum addition, is avoided.

  17. Project Clinker, Hydraulic Carriage for Airship Installation of Optical Equipment

    Daly, P; Rosenberg, T

    1954-01-01

    .... One answer to this problem was a carriage having a top deck pivoted at one end. The movable deck was raised to the required angle by a motor driven hydraulic hoist of the type used commercially for dump trucks...

  18. The Criteria for the Selection of Wells for Hydraulic Fracturing

    O.V. Salimov

    2017-12-01

    Full Text Available Various methods of selection of wells for hydraulic fracturing are analyzed. It is established that all methods can be divided into three large groups: criteria in the table form of boundary values of parameters, statistical methods of pattern recognition, methods of engineering calculation. The complication or use of additional parameters only leads to a reduction in the number of wells at which hydraulic fracturing is possible. It is shown that the use of reservoir properties of rocks, which are already used by hydraulic fracturing simulators, is not practicable as selection criteria. It is required to include in the selection criteria only those additional factors on which the effectiveness of hydraulic fracturing depends directly.

  19. Development of NTD Hydraulic Rotation System for Kijang Research Reactor

    Kang, Hanok; Park, Kijung; Park, Yongsoo; Kim, Seong Hoon; Park, Cheol

    2014-01-01

    The KJRR will be mainly utilized for isotope production, NTD (Neutron Transmutation Doping) production, and related research activities. During irradiation for the NTD process, the irradiation rigs containing the silicon ingot rotate at a constant speed to ensure precisely defined homogeneity of the irradiation. The NTDHRS requires only hydraulic piping conveniently routed to the rotating devices inside the reactor pool. The resulting layout leaves the pool area clear of obstructions which might obscure vision and hinder target handling for operators. Pump banks and control valves are located remotely in a dedicated plant room allowing easy access and online maintenance. The necessities and major characteristic of NTD hydraulic rotation system are described in this study. A new NTD hydraulic rotation system are being developed to rotate the irradiation rigs at a constant speed and supply cooling flow for the irradiation rigs and reflector assembly. The configuration of the NTD hydraulic rotation device is discussed and practical methods to improve the rotational performance are suggested

  20. EPA Published Research Related to the Hydraulic Fracturing Study

    A list of publications that will support the draft assessment report on the potential impacts of hydraulic fracturing on drinking water resources. These publications have undergone peer review through the journal where the paper has been published.

  1. Design of a Hydraulic Motor System Driven by Compressed Air

    Jyun-Jhe Yu

    2013-06-01

    Full Text Available This paper presents the design of a highly efficient pneumatic motor system. The air engine is currently the most generally used device to convert potential energy of compressed air into mechanical energy. However, the efficiency of the air engines is too low to provide sufficient operating range for the vehicle. In this study, the energy contained in compressed air/pressurized hydraulic oil is transformed by a hydraulic motor to mechanical energy to enhance the efficiency of using air power. To evaluate the theoretical efficiency, the principle of balance of energy is applied. The theoretical efficiency of converting air into hydraulic energy is found to be a function of pressure; thus, the maximum converting efficiency can be determined. To confirm the theoretical evaluation, a prototype of the pneumatic hydraulic system is built. The experiment verifies that the theoretical evaluation of the system efficiency is reasonable, and that the layout of the system is determined by the results of theoretical evaluation.

  2. Borehole depth and regolith aquifer hydraulic characteristics of ...

    EJIRO

    composition tend to exhibit similar hydraulic characteristics. But the poor performance of ... mum borehole depth in the regolith aquifer for the area and also reveals that ..... most important end products of chemical weathering of rocks of granitic ...

  3. Thermal-hydraulic design of the 200 MW NHR

    Li Jincai; Gao Zuying; Xu Baocheng; He Junxiao

    1997-01-01

    The thermal hydraulic design of the 200-MW Nuclear Heating Reactor (NHR), design criteria, design methods, important characteristics and some development results are presented in this paper. (author). 5 refs, 8 figs, 2 tabs

  4. Relations between soil hydraulic properties and burn severity

    Moody, J.A.; Ebel, B.A.; Stoof, C.R.; Nyman, P.; Martin, D.A.; McKinley, R.

    2016-01-01

    Wildfire can affect soil hydraulic properties, often resulting in reduced infiltration. The magnitude of change in infiltration varies depending on the burn severity. Quantitative approaches to link burn severity with changes in infiltration are lacking. This study uses controlled laboratory

  5. Hydraulic Soft Yaw System for Multi MW Wind Turbines

    Stubkier, Søren

    energy and an increase in the loading of the wind turbine structure and components. This dissertation examines the hypothesis that there are advantages of basing a yaw system on hydraulic components instead of normal electrical components. This is done through a state of the art analysis followed...... in the wind turbine yaw system along with minor reductions in the blades and main shaft. Optimization of the damping and stiffness of the hydraulic soft yaw system have been conducted and an optimum found for load reduction. Linear control algorithms for control of damping pressure peaks have been developed...... the full turbine code in FAST, and the mathematical model of the hydraulic yaw system in Matlab/Simulink and Amesim is developed in order to analyze a full scale model of the hydraulic yaw system in combination with the implemented friction model for the yaw system. These results are also promising...

  6. Development of NTD Hydraulic Rotation System for Kijang Research Reactor

    Kang, Hanok; Park, Kijung; Park, Yongsoo; Kim, Seong Hoon; Park, Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The KJRR will be mainly utilized for isotope production, NTD (Neutron Transmutation Doping) production, and related research activities. During irradiation for the NTD process, the irradiation rigs containing the silicon ingot rotate at a constant speed to ensure precisely defined homogeneity of the irradiation. The NTDHRS requires only hydraulic piping conveniently routed to the rotating devices inside the reactor pool. The resulting layout leaves the pool area clear of obstructions which might obscure vision and hinder target handling for operators. Pump banks and control valves are located remotely in a dedicated plant room allowing easy access and online maintenance. The necessities and major characteristic of NTD hydraulic rotation system are described in this study. A new NTD hydraulic rotation system are being developed to rotate the irradiation rigs at a constant speed and supply cooling flow for the irradiation rigs and reflector assembly. The configuration of the NTD hydraulic rotation device is discussed and practical methods to improve the rotational performance are suggested.

  7. REVIEW OF ENERGY-SAVING TECHNOLOGIES IN MODERN HYDRAULIC DRIVES

    Mykola Karpenko

    2017-12-01

    Full Text Available This paper focuses on review of modern energy­saving technologies in hydraulic drives. Described main areas of energy conservation in hydraulic drive (which in turn are divided into many under the directions and was established the popularity of them. Reviewed the comparative analysis of efficiency application of various strategies for energy saving in a hydraulic drive. Based on the review for further research a combined method of real­time control systems with energy­saving algorithms and regeneration unit – selected for maxing efficiency in hydraulic drive. Scientific papers (40 papers, what introduced in review, is not older than 15 years in the databases “Sciencedirect” and “Scopus”.

  8. Characterisation of hydraulically-active fractures in a fractured ...

    2015-01-07

    Jan 7, 2015 ... injection and recovery tests were conducted for verification of the ... Keywords: self-potential method, hydraulically-conductive fractures, constant pressure injection and recovery ...... porous media 1: theory of the zeta potential.

  9. TOPICAL REVIEW: Pneumatic and hydraulic microactuators: a review

    De Volder, Michaël; Reynaerts, Dominiek

    2010-04-01

    The development of MEMS actuators is rapidly evolving and continuously new progress in terms of efficiency, power and force output is reported. Pneumatic and hydraulic are an interesting class of microactuators that are easily overlooked. Despite the 20 years of research, and hundreds of publications on this topic, these actuators are only popular in microfluidic systems. In other MEMS applications, pneumatic and hydraulic actuators are rare in comparison with electrostatic, thermal or piezo-electric actuators. However, several studies have shown that hydraulic and pneumatic actuators deliver among the highest force and power densities at microscale. It is believed that this asset is particularly important in modern industrial and medical microsystems, and therefore, pneumatic and hydraulic actuators could start playing an increasingly important role. This paper shows an in-depth overview of the developments in this field ranging from the classic inflatable membrane actuators to more complex piston-cylinder and drag-based microdevices.

  10. Hydraulic Geometry Analysis of the Lower Mississippi River

    Soar, Philip J; Thorne, Colin R; Harmar, Oliver P

    2005-01-01

    The hydraulic geometry of the Lower Mississippi River is primarily the product of the action of natural flows acting on the floodplain materials over centuries and millennia to form an alluvial forming a channel...

  11. System Design and Performance Test of Hydraulic Intensifier

    Kim, Hyoung Eui; Lee, Gi Chun [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Kim, Jae Hoon [Chungnam National University, Daejeon (Korea, Republic of)

    2010-07-15

    Components such as pressure vessel, hydraulic hose assembly, accumulator, hydraulic cylinder, hydraulic valve, pipe, etc., are tested under the impulse-pressure conditions prescribed in ISO and SAE standards. The impulse pressure test machine needs to have a high pressure, a precise control system and a long life. It should satisfy the requirements for fabrication of the impulse tester to generate ultra high pressure in the hydraulic system. In the impulse tester, a servo-valve control system is adopted; although the control application is convenient, it is expensive owing to the cost of developing the system. The type of the control system determines the pressure wave, which affects the components that are tested. In this study, the manufacturing process and the intensifier system design related to the flow, pressure, and the increasing rate of pressure are investigated. The results indicate the ultra high pressure waves in the system.

  12. LOOP-3, Hydraulic Stability in Heated Parallel Channels

    Davies, A L [AEEW, Dorset (United Kingdom)

    1968-02-01

    1 - Nature of physical problem solved: Hydraulic stability in parallel channels. 2 - Method of solution: Calculation of transfer functions developed in reference (10 below). 3 - Restrictions on the complexity of the problem: Only due to assumptions in analysis (see ref.)

  13. Soil hydraulic properties near saturation, an improved conductivity model

    Børgesen, Christen Duus; Jacobsen, Ole Hørbye; Hansen, Søren

    2006-01-01

    of commonly used hydraulic conductivity models and give suggestions for improved models. Water retention and near saturated and saturated hydraulic conductivity were measured for a variety of 81 top and subsoils. The hydraulic conductivity models by van Genuchten [van Genuchten, 1980. A closed-form equation...... for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898.] (vGM) and Brooks and Corey, modified by Jarvis [Jarvis, 1991. MACRO—A Model of Water Movement and Solute Transport in Macroporous Soils. Swedish University of Agricultural Sciences. Department of Soil Sciences....... Optimising a matching factor (k0) improved the fit considerably whereas optimising the l-parameter in the vGM model improved the fit only slightly. The vGM was improved with an empirical scaling function to account for the rapid increase in conductivity near saturation. Using the improved models...

  14. Hydraulic ram analysis = Analyse du bélier hydraulique

    Verspuy, C.; Tijsseling, A.S.

    1993-01-01

    A simple mathematical model describing the operation of a hydraulic ram is presented. Predictions of the model are compared with measurements done in an earlier stage of the project. The model is used to perform a parameter variation study.

  15. Executive Summary, Hydraulic Fracturing Study - Draft Assessment 2015

    In this Executive Summary of the HF Draft report, EPA highlights the reviews of scientific literature to assess the potential for hydraulic fracturing for oil and gas to change the quality or quantity of drinking water resources.

  16. Thermal-hydraulic design of the 200 MW NHR

    Jincai, Li; Zuying, Gao; Baocheng, Xu; Junxiao, He [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    The thermal hydraulic design of the 200-MW Nuclear Heating Reactor (NHR), design criteria, design methods, important characteristics and some development results are presented in this paper. (author). 5 refs, 8 figs, 2 tabs.

  17. Compressed air piping, 241-SY-101 hydraulic pump retrieval trailer

    Wilson, T.R.

    1994-01-01

    The following Design Analysis was prepared by the Westinghouse Hanford Company to determine pressure losses in the compressed air piping installed on the hydraulic trailer for the 241-SY-101 pump retrieval mission

  18. Analysis of hydraulic bearing effect for vertical-shaft pump

    Narabayashi, Tadashi; Mawatari, Katsuhiko; Uchida, Ken; Iikura, Takahiko; Hayakawa, Kiyoshi

    1999-01-01

    In inner-rotating non coaxial cylinders, axial flow causes a hydraulic being effect by which the inner cylinder is put at the center of the axis of the outer cylinder, because of the pressure distribution along the surface of the inner cylinder. When the rotating speed becomes higher, whirl force is generated by the pressure distribution in the narrow gap side. Therefore, pocket-type hydraulic being was added between the rotor and the wearing, based on an experiment and flow analysis. The pockets suck a part of discharged water of a pump and pressurize a water along the rotational direction in the pocket. The pressurized water enhance the hydraulic being effect. The analysis results showed good agreement with the experiments, and the analysis method for the hydraulic being for vertical-shaft pump was established. (author)

  19. Problems with hydraulic projects in Hunan examined

    1985-01-20

    The use of computers in China's water conservancy and hydropower construction began in the 1960s for exploration surveys, planning, design, construction, operation, and scientific research. Despite the positive results, and the formation of a 1000-person computer computation contingent, computer development among different professions is not balanced. The weaknesses and disparities in computer applications includes an overall low level of application relative to the rest of the world, which is partly due to inadequate hardware and programs. The report suggests five ways to improve applications and popularize microcomputers which emphasize leadership and planning.

  20. Analysis of hydraulic instability of ANS involute fuel plates

    Sartory, W.K.

    1991-11-01

    Curved shell equations for the involute Advanced Neutron Source (ANS) fuel plates are coupled to two-dimensional hydraulic channel flow equations that include fluid friction. A complete set of fluid and plate boundary conditions is applied at the entrance and exit and along the sides of the plate and the channel. The coupled system is linearized and solved to assess the hydraulic instability of the plates

  1. Dynamics three-tier hydraulic crane-manipulators

    Lagerev I.A.; Lagerev A.V.

    2018-01-01

    The methods and generalized recommendations for modeling dynamic loading of load-bearing elements of steel structures of three-tier hydraulic cranes-manipulators are considered. Mathematical models have been developed to study the dynamics of moving elements of the crane-manipulator, the movement of the load-lifting machine on a stochastic uneven surface with a suspended load. The presented approaches can be used to calculate other types of jib cranes equipped with hydraulic drive.

  2. The Influence of Hydraulic Fracturing on Carbon Storage Performance

    Fu, Pengcheng; Settgast, Randolph R.; Hao, Yue; Morris, Joseph P.; Ryerson, Frederick J.

    2017-12-01

    Conventional principles of the design and operation of geologic carbon storage (GCS) require injecting CO2 below the caprock fracturing pressure to ensure the integrity of the storage complex. In nonideal storage reservoirs with relatively low permeability, pressure buildup can lead to hydraulic fracturing of the reservoir and caprock. While the GCS community has generally viewed hydraulic fractures as a key risk to storage integrity, a carefully designed stimulation treatment under appropriate geologic conditions could provide improved injectivity while maintaining overall seal integrity. A vertically contained hydraulic fracture, either in the reservoir rock or extending a limited height into the caprock, provides an effective means to access reservoir volume far from the injection well. Employing a fully coupled numerical model of hydraulic fracturing, solid deformation, and matrix fluid flow, we study the enabling conditions, processes, and mechanisms of hydraulic fracturing during CO2 injection. A hydraulic fracture's pressure-limiting behavior dictates that the near-well fluid pressure is only slightly higher than the fracturing pressure of the rock and is insensitive to injection rate and mechanical properties of the formation. Although a fracture contained solely within the reservoir rock with no caprock penetration, would be an ideal scenario, poroelastic principles dictate that sustaining such a fracture could lead to continuously increasing pressure until the caprock fractures. We also investigate the propagation pattern and injection pressure responses of a hydraulic fracture propagating in a caprock subjected to heterogeneous in situ stress. The results have important implications for the use of hydraulic fracturing as a tool for managing storage performance.

  3. Design of a Hydraulic Motor System Driven by Compressed Air

    Shaw, Dein; Yu, Jyun-Jhe; Chieh, Cheng

    2013-01-01

    This paper presents the design of a highly efficient pneumatic motor system. The air engine is currently the most generally used device to convert potential energy of compressed air into mechanical energy. However, the efficiency of the air engines is too low to provide sufficient operating range for the vehicle. In this study, the energy contained in compressed air/pressurized hydraulic oil is transformed by a hydraulic motor to mechanical energy to enhance the efficiency of using air power....

  4. A Distributed Algorithm for Energy Optimization in Hydraulic Networks

    Kallesøe, Carsten; Wisniewski, Rafal; Jensen, Tom Nørgaard

    2014-01-01

    An industrial case study in the form of a large-scale hydraulic network underlying a district heating system is considered. A distributed control is developed that minimizes the aggregated electrical energy consumption of the pumps in the network without violating the control demands. The algorithm...... a Plug & Play control system as most commissioning can be done during the manufacture of the pumps. Only information on the graph-structure of the hydraulic network is needed during installation....

  5. ESRC guide vanes of hydraulic turbine for Three Gorges project

    Rui CHEN

    2005-05-01

    Full Text Available The mechanical properties and internal quality of low carbon martensite Electroslag Remelting Casting (ESRCstainless steel castings are superior to that of sand casting ones. The key technologies for the equipments and ESRC processes have been resolved during the experimental research period of guide vanes of hydraulic turbines for Three Gorges project. And ESRC guide vanes of hydraulic turbines for Three Gorges project have been produced successfully.

  6. Servoarm: a water hydraulic master-slave manipulator

    Wilson, K.B.

    1975-01-01

    A water-hydraulic-powered servomanipulator that minimizes inertia, weighs only 17 lb/arm, has a 22-lb capacity, provides a compact package, and is available at a relatively low cost has been developed. Because of the water hydraulic system and miniature sizes required, all components have been specially designed and developed. Programming is easily added, because a microcomputer and A/D conversion hardware are used for counterbalancing

  7. Thermal-hydraulic characteristic of the PGV-1000 steam generator

    Ubra, O.; Doubek, M.

    1995-01-01

    Horizontal steam generators are typical parts of nuclear power plants with pressure water reactor type VVER. By means of this computer program, a detailed thermal-hydraulic study of the horizontal steam generator PGV-1000 has been carried out and a special attention has been paid to the thermal-hydraulics of the secondary side. A set of important steam generator characteristics has been obtained and analyzed. Some of the interesting results of the analysis are presented in the paper. (author)

  8. Adaptive Non-linear Control of Hydraulic Actuator Systems

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF).......Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF)....

  9. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of

  10. Addresing environmental challenges to shale gas and hydraulic fracturing

    Vadillo Fernandez, L.; Rodriguez Gomez, V.; Fernadez Naranjo, F.J.

    2016-07-01

    This article reviews the main issues of unconventional gas extracted by hydraulic fracturing techniques. Topics such as technology, fracturing stages, flowback characterization and alternatives of disposal and reuse, water consumption, physicochemical features of the geological formations, development of the fractures performed by hydraulic fracturing, well flow decline, land use and occupation and induced seismicity are presented, as well as the scientific debate: the potential steps of methane gas and groundwater contamination. (Author)

  11. Assessing the monitoring performance using a synthetic microseismic catalogue for hydraulic fracturing

    Ángel López Comino, José; Kriegerowski, Marius; Cesca, Simone; Dahm, Torsten; Mirek, Janusz; Lasocki, Stanislaw

    2016-04-01

    Hydraulic fracturing is considered among the human operations which could induce or trigger seismicity or microseismic activity. The influence of hydraulic fracturing operations is typically expected in terms of weak magnitude events. However, the sensitivity of the rock mass to trigger seismicity varies significantly for different sites and cannot be easily predicted prior to operations. In order to assess the sensitivity of microseismity to hydraulic fracturing operations, we perform a seismic monitoring at a shale gas exploration/exploitation site in the central-western part of the Peribaltic synclise at Pomerania (Poland). The monitoring will be continued before, during and after the termination of hydraulic fracturing operations. The fracking operations are planned in April 2016 at a depth 4000 m. A specific network setup has been installed since summer 2015, including a distributed network of broadband stations and three small-scale arrays. The network covers a region of 60 km2. The aperture of small scale arrays is between 450 and 950 m. So far no fracturing operations have been performed, but seismic data can already be used to assess the seismic noise and background microseismicity, and to investigate and assess the detection performance of our monitoring setup. Here we adopt a recently developed tool to generate a synthetic catalogue and waveform dataset, which realistically account for the expected microseismicity. Synthetic waveforms are generated for a local crustal model, considering a realistic distribution of hypocenters, magnitudes, moment tensors, and source durations. Noise free synthetic seismograms are superposed to real noise traces, to reproduce true monitoring conditions at the different station locations. We estimate the detection probability for different magnitudes, source-receiver distances, and noise conditions. This information is used to estimate the magnitude of completeness at the depth of the hydraulic fracturing horizontal wells

  12. TRACKING CONTROL FOR A HYDRAULIC DRIVE WITH A PRESSURE COMPENSATOR

    S. V. Aranovskiy

    2015-07-01

    Full Text Available A problem of tracking control is considered for a hydraulic drive with a pressure compensator that is widespread in the equipment of heavy-duty machines. Method. The control problem is solved by means of a switching sliding-mode controller coupled with static nonlinear compensation and desired velocity feedforward. Main Results. Mathematical model of a hydraulic drive is given in view of the pressure compensator presence. Traditional model of a hydraulic drive is formulated for a system with a spool valve; purpose and principles of operation of the pressure compensator in hydraulic systems are described, and the extended model is presented illustrating compensator contribution to overall system dynamics. It is shown that the obtained model has an input static nonlinearity; the nonlinearity cancellation method is proposed giving the possibility for injection of a desired velocity feedforward term. The control law is chosen as a switching one and two chattering attenuation methods are studied: equivalent control estimation via filtering and sign function integration. Experimental studies are performed at a forestry hydraulic crane prototype and illustrate high tracking accuracy achieved for typical crane motions. Practical Significance. The results are suitable for heavy-duty hydraulic machines automation in construction, road building and forestry.

  13. Environmental deterioration of ancient and modern hydraulic mortars (EDAMM)

    Van Balen, K.; Toumbakari, E.E.; Blanco-Varela, M.T. (and others) (eds.)

    2002-07-01

    Environmental damage to ancient and modern mortars (EDAMM) is a European Commission funded project in which three European research institutes from Belgium, Spain and Italy have been collaborating. The project has provided a better understanding of the role of environmental pollution on the deterioration of ancient and modern hydraulic mortars. Recent monuments built in the 19th and 20th century, were constructed using these types of hydraulic mortars. Increasing numbers of these monuments need restoration all over Europe. Similar hydraulic mortars have been widely used in treatments carried out during last and the present century. Tests have been carried out on the identification of historic hydraulic mortars, on the evaluation of damage on samples taken from historic buildings and on the laboratory simulations carried out to investigate damage mechanisms. Among pollutants, SO{sub 2} is the main component of pollution causing damage to hydraulic mortars. Hydraulic mortars have been identified as the most sensitive building materials because of the formation of primary and secondary damage products, such as ettringite and thaumasite. Although the important implications of these results are for the development of conservation strategies for monuments and historic buildings, they are also of great relevance to the development of sustainable construction methods as the building industry still uses these materials today.

  14. Process management using component thermal-hydraulic function classes

    Morman, J.A.; Wei, T.Y.C.; Reifman, J.

    1999-07-27

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced. 5 figs.

  15. Periodic Hydraulic Testing for Discerning Fracture Network Connections

    Becker, M.; Le Borgne, T.; Bour, O.; Guihéneuf, N.; Cole, M.

    2015-12-01

    Discrete fracture network (DFN) models often predict highly variable hydraulic connections between injection and pumping wells used for enhanced oil recovery, geothermal energy extraction, and groundwater remediation. Such connections can be difficult to verify in fractured rock systems because standard pumping or pulse interference tests interrogate too large a volume to pinpoint specific connections. Three field examples are presented in which periodic hydraulic tests were used to obtain information about hydraulic connectivity in fractured bedrock. The first site, a sandstone in New York State, involves only a single fracture at a scale of about 10 m. The second site, a granite in Brittany, France, involves a fracture network at about the same scale. The third site, a granite/schist in the U.S. State of New Hampshire, involves a complex network at scale of 30-60 m. In each case periodic testing provided an enhanced view of hydraulic connectivity over previous constant rate tests. Periodic testing is particularly adept at measuring hydraulic diffusivity, which is a more effective parameter than permeability for identify the complexity of flow pathways between measurement locations. Periodic tests were also conducted at multiple frequencies which provides a range in the radius of hydraulic penetration away from the oscillating well. By varying the radius of penetration, we attempt to interrogate the structure of the fracture network. Periodic tests, therefore, may be uniquely suited for verifying and/or calibrating DFN models.

  16. FOREWORD: 26th IAHR Symposium on Hydraulic Machinery and Systems

    Wu, Yulin; Wang, Zhengwei; Liu, Shuhong; Yuan, Shouqi; Luo, Xingqi; Wang, Fujun

    2012-11-01

    The 26th IAHR Symposium on Hydraulic Machinery and Systems, will be held in Beijing, China, 19-23 August 2012. It is jointly organized by Tsinghua University, State Key Laboratory of Hydro Science and Hydraulic Engineering, China, Jiangsu University, Xi'an University of Technology, China Agricultural University, National Engineering Research Center of Hydropower Equipment and Dongfang Electric Machinery Co., Ltd. It is the second time that China hosts such a symposium. By the end of 2011, the China electrical power system had a total of 1 050 GW installed power, out of which 220 GW was in hydropower plants. The energy produced in hydropower facilities was 662.6 TWh from a total of 4,720 TWh electrical energy production in 2011. Moreover, in 2020, new hydropower capacities are going to be developed, with a total of 180 GW installed power and an estimated 708 TWh/year energy production. And in 2011, the installed power of pumped storage stations was about 25GW. In 2020, the data will be 70GW. At the same time, the number of pumps used in China is increasing rapidly. China produces about 29,000,000 pumps with more than 220 series per year. By the end of 2011, the Chinese pumping system has a total of 950 GW installed power. The energy consumed in pumping facilities was 530 TWh in 2011. The pump energy consumption accounted for about 12% of the national electrical energy production. Therefore, there is a large market in the field of hydraulic machinery including water turbines, pump turbines and a variety of pumps in China. There are also many research projects in this field. For example, we have conducted National Key Research Projects on 1000 MW hydraulic turbine, and on the pump turbines with high head, as well as on the large capacity pumps for water supply. Tsinghua University of Beijing is proud to host the 26th IAHR Symposium on Hydraulic Machinery and Systems. Tsinghua University was established in 1911, after the founding of the People's Republic of China. It

  17. Economic and hydraulic divergences underpin ecological differentiation in the Bromeliaceae.

    Males, Jamie; Griffiths, Howard

    2018-01-01

    Leaf economic and hydraulic theories have rarely been applied to the ecological differentiation of speciose herbaceous plant radiations. The role of character trait divergences and network reorganization in the differentiation of the functional types in the megadiverse Neotropical Bromeliaceae was explored by quantifying a range of leaf economic and hydraulic traits in 50 diverse species. Functional types, which are defined by combinations of C 3 or Crassulacean acid metabolism (CAM) photosynthesis, terrestrial or epiphytic habits, and non-specialized, tank-forming or atmospheric morphologies, segregated clearly in trait space. Most classical leaf economic relationships were supported, but they were weakened by the presence of succulence. Functional types differed in trait-network architecture, suggesting that rewiring of trait-networks caused by innovations in habit and photosynthetic pathway is an important aspect of ecological differentiation. The hydraulic data supported the coupling of leaf hydraulics and gas exchange, but not the hydraulic safety versus efficiency hypothesis, and hinted at an important role for the extra-xylary compartment in the control of bromeliad leaf hydraulics. Overall, our findings highlight the fundamental importance of structure-function relationships in the generation and maintenance of ecological diversity. © 2017 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  18. Process management using component thermal-hydraulic function classes

    Morman, James A.; Wei, Thomas Y. C.; Reifman, Jaques

    1999-01-01

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

  19. Hydraulic Fracturing: Paving the Way for a Sustainable Future?

    Jiangang Chen

    2014-01-01

    Full Text Available With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment.

  20. Hydraulic fracturing: paving the way for a sustainable future?

    Chen, Jiangang; Al-Wadei, Mohammed H; Kennedy, Rebekah C M; Terry, Paul D

    2014-01-01

    With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC) requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment.

  1. Revisiting hydraulic hysteresis based on long-term monitoring of hydraulic states in lysimeters

    Hannes, M.; Wollschläger, U.; Wöhling, T.; Vogel, H.-J.

    2016-05-01

    Hysteretic processes have been recognized for decades as an important characteristic of soil hydraulic behavior. Several studies confirmed that wetting and drying periods cannot be described by a simple functional relationship, and that some nonequilibrium of the water retention characteristics has to be taken into account. A large number of models describing the hysteresis of the soil water retention characteristic were successfully tested on soil cores under controlled laboratory conditions. However, its relevance under field conditions under natural forcings has rarely been investigated. In practice, the modeling of field soils usually neglects the hysteretic nature of soil hydraulic properties. In this study, long-term observations of water content and matric potential in lysimeters of the lysimeter network TERENO-SoilCan are presented, clearly demonstrating the hysteretic behavior of field soils. We propose a classification into three categories related to different time scales. Based on synthetic and long-term monitoring data, three different models of hysteresis were applied to data sets showing different degrees of hysteresis. We found no single model to be superior to the others. The model ranking depended on the degree of hysteresis. All models were able to reflect the general structure of hysteresis in most cases but failed to reproduce the detailed trajectories of state variables especially under highly transient conditions. As an important result we found that the temporal dynamics of wetting and drying significantly affects these trajectories which should be accounted for in future model concepts.

  2. Hydraulics of embankment-dam breaching

    Walder, J. S.; Iverson, R. M.; Logan, M.; Godt, J. W.; Solovitz, S.

    2012-12-01

    Constructed or natural earthen dams can pose hazards to downstream communities. Experiments to date on earthen-dam breaching have focused on dam geometries relevant to engineering practice. We have begun experiments with dam geometries more like those of natural dams. Water was impounded behind dams constructed at the downstream end of the USGS debris-flow flume. Dams were made of compacted, well-sorted, moist beach sand (D50=0.21 mm), 3.5 m from toe to toe, but varying in height from 0.5 to 1 m; the lower the dam, the smaller the reservoir volume and the broader the initially flat crest. Breaching was started by cutting a slot 30-40 mm wide and deep in the dam crest after filling the reservoir. Water level and pore pressure within the dam were monitored. Experiments were also recorded by an array of still- and video cameras above the flume and a submerged video camera pointed at the upstream dam face. Photogrammetric software was used to create DEMs from stereo pairs, and particle-image velocimetry was used to compute the surface-velocity field from the motion of tracers scattered on the water surface. As noted by others, breaching involves formation and migration of a knickpoint (or several). Once the knickpoint reaches the upstream dam face, it takes on an arcuate form whose continued migration we determined by measuring the onset of motion of colored markers on the dam face. The arcuate feature, which can be considered the head of the "breach channel", is nearly coincident with the transition from subcritical to supercritical flow; that is, it acts as a weir that hydraulically controls reservoir emptying. Photogenic slope failures farther downstream, although the morphologically dominant process at work, play no role at all in hydraulic control aside from rare instances in which they extend upstream so far as to perturb the weir, where the flow cross section is nearly self-similar through time. The domain downstream of the critical-flow section does influence

  3. Stuctures in hydraulic engineering : Port Infrastructure

    de Gijt, J.G.

    2007-01-01

    Lecture notes on the planning and design of port infrastructure, like quay walls as gravity structures, sheet-piles, jetties and ro-ro facilties; anchoring of walls. Discussion of the loads on quay walls, jetties and dolphins. Construction of quay walls. Risk analysis, fender design. Scour problems

  4. Comparative analysis of hydraulic crane-manipulating installations transport and technological machines and industrial robots hydraulic manipulators

    Lagerev I.A.

    2016-09-01

    Full Text Available The article presents results of comparative analysis of hydraulic crane-manipulator installations of mobile transport and technological machines and hydraulic manipulators of industrial robots. The comparative analysis is based on consid-eration of a wide range of types and sizes indicated technical devices of both domestic and foreign production: 1580 structures of cranes and more than 450 structures of industrial robots. It was performed in the following areas: func-tional purpose and basic technical characteristics; a design; the loading conditions of the model and failures in operation process; approaches to the design, calculation methods and mathematical modeling. The conclusions about the degree of similarity and the degree of difference hydraulic crane-manipulator installations of transport and technological ma-chines and hydraulic industrial robot manipulators from the standpoint of their design and modeling occurring in them during operation of dynamic and structural processes.

  5. The OECD/NEA/NSC PBMR400 MW coupled neutronics thermal hydraulics transient benchmark - Steady-state results and status

    Reitsma, F.; Han, J.; Ivanov, K.; Sartori, E.

    2008-01-01

    The PBMR is a High-Temperature Gas-cooled Reactor (HTGR) concept developed to be built in South Africa. The analysis tools used for core neutronic design and core safety analysis need to be verified and validated. Since only a few pebble-bed HTR experimental facilities or plant data are available the use of code-to-code comparisons are an essential part of the V and V plans. As part of this plan the PBMR 400 MW design and a representative set of transient cases is defined as an OECD benchmark. The scope of the benchmark is to establish a series of well-defined multi-dimensional computational benchmark problems with a common given set of cross-sections, to compare methods and tools in coupled neutronics and thermal hydraulics analysis with a specific focus on transient events. The OECD benchmark includes steady-state and transients cases. Although the focus of the benchmark is on the modelling of the transient behaviour of the PBMR core, it was also necessary to define some steady-state cases to ensure consistency between the different approaches before results of transient cases could be compared. This paper describes the status of the benchmark project and shows the results for the three steady state exercises defined as a standalone neutronics calculation, a standalone thermal-hydraulic core calculation, and a coupled neutronics/thermal-hydraulic simulation. (authors)

  6. Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis.

    Pivovaroff, Alexandria L; Sack, Lawren; Santiago, Louis S

    2014-08-01

    Coordination of water movement among plant organs is important for understanding plant water use strategies. The hydraulic segmentation hypothesis (HSH) proposes that hydraulic conductance in shorter lived, 'expendable' organs such as leaves and longer lived, more 'expensive' organs such as stems may be decoupled, with resistance in leaves acting as a bottleneck or 'safety valve'. We tested the HSH in woody species from a Mediterranean-type ecosystem by measuring leaf hydraulic conductance (Kleaf) and stem hydraulic conductivity (KS). We also investigated whether leaves function as safety valves by relating Kleaf and the hydraulic safety margin (stem water potential minus the water potential at which 50% of conductivity is lost (Ψstem-Ψ50)). We also examined related plant traits including the operating range of water potentials, wood density, leaf mass per area, and leaf area to sapwood area ratio to provide insight into whole-plant water use strategies. For hydrated shoots, Kleaf was negatively correlated with KS , supporting the HSH. Additionally, Kleaf was positively correlated with the hydraulic safety margin and negatively correlated with the leaf area to sapwood area ratio. Consistent with the HSH, our data indicate that leaves may act as control valves for species with high KS , or a low safety margin. This critical role of leaves appears to contribute importantly to plant ecological specialization in a drought-prone environment. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  7. Nuclear energy: exit or revival? International aspects; Energie nucleaire: sortie ou relance? Aspects internationaux

    NONE

    2001-11-01

    This colloquium took place less than 1 year after the decision of the US of revival of their nuclear program. Thus the international context has changed, even if nuclear contestation remains as strong as in the past. Among governments, some positions preach the banishment of nuclear energy while others consider the nuclear option as the only solution to meet the growing up energy demand and the future environmental and economical stakes. This report makes a synthesis of the different talks given by the participants during the 3 round tables of the colloquium on the future of nuclear energy: the ecological stake, the democratic stake, and the energy policy stake. Four talks of French government representatives open and conclude the debates of the different round tables. (J.S.)

  8. Appui à la relance du ROCARÉ-CI en situation de crise post ...

    De son indépendance acquise en 1960 jusqu'en 1999, la Côte d'Ivoire était l'un des pays les plus stables d'Afrique et connaissait un essor économique continu grâce à ses nombreuses richesses naturelles, agricoles en particulier. À partir de 1999, le pays s'est installé dans une longue période de crise politique dont le ...

  9. Hydraulic characterisation of iron-oxide-coated sand and gravel based on nuclear magnetic resonance relaxation mode analyses

    S. Costabel

    2018-03-01

    Full Text Available The capability of nuclear magnetic resonance (NMR relaxometry to characterise hydraulic properties of iron-oxide-coated sand and gravel was evaluated in a laboratory study. Past studies have shown that the presence of paramagnetic iron oxides and large pores in coarse sand and gravel disturbs the otherwise linear relationship between relaxation time and pore size. Consequently, the commonly applied empirical approaches fail when deriving hydraulic quantities from NMR parameters. Recent research demonstrates that higher relaxation modes must be taken into account to relate the size of a large pore to its NMR relaxation behaviour in the presence of significant paramagnetic impurities at its pore wall. We performed NMR relaxation experiments with water-saturated natural and reworked sands and gravels, coated with natural and synthetic ferric oxides (goethite, ferrihydrite, and show that the impact of the higher relaxation modes increases significantly with increasing iron content. Since the investigated materials exhibit narrow pore size distributions, and can thus be described by a virtual bundle of capillaries with identical apparent pore radius, recently presented inversion approaches allow for estimation of a unique solution yielding the apparent capillary radius from the NMR data. We found the NMR-based apparent radii to correspond well to the effective hydraulic radii estimated from the grain size distributions of the samples for the entire range of observed iron contents. Consequently, they can be used to estimate the hydraulic conductivity using the well-known Kozeny–Carman equation without any calibration that is otherwise necessary when predicting hydraulic conductivities from NMR data. Our future research will focus on the development of relaxation time models that consider pore size distributions. Furthermore, we plan to establish a measurement system based on borehole NMR for localising iron clogging and controlling its remediation

  10. Hydraulic characterisation of iron-oxide-coated sand and gravel based on nuclear magnetic resonance relaxation mode analyses

    Costabel, Stephan; Weidner, Christoph; Müller-Petke, Mike; Houben, Georg

    2018-03-01

    The capability of nuclear magnetic resonance (NMR) relaxometry to characterise hydraulic properties of iron-oxide-coated sand and gravel was evaluated in a laboratory study. Past studies have shown that the presence of paramagnetic iron oxides and large pores in coarse sand and gravel disturbs the otherwise linear relationship between relaxation time and pore size. Consequently, the commonly applied empirical approaches fail when deriving hydraulic quantities from NMR parameters. Recent research demonstrates that higher relaxation modes must be taken into account to relate the size of a large pore to its NMR relaxation behaviour in the presence of significant paramagnetic impurities at its pore wall. We performed NMR relaxation experiments with water-saturated natural and reworked sands and gravels, coated with natural and synthetic ferric oxides (goethite, ferrihydrite), and show that the impact of the higher relaxation modes increases significantly with increasing iron content. Since the investigated materials exhibit narrow pore size distributions, and can thus be described by a virtual bundle of capillaries with identical apparent pore radius, recently presented inversion approaches allow for estimation of a unique solution yielding the apparent capillary radius from the NMR data. We found the NMR-based apparent radii to correspond well to the effective hydraulic radii estimated from the grain size distributions of the samples for the entire range of observed iron contents. Consequently, they can be used to estimate the hydraulic conductivity using the well-known Kozeny-Carman equation without any calibration that is otherwise necessary when predicting hydraulic conductivities from NMR data. Our future research will focus on the development of relaxation time models that consider pore size distributions. Furthermore, we plan to establish a measurement system based on borehole NMR for localising iron clogging and controlling its remediation in the gravel pack of

  11. Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (Final Report)

    This final report provides a review and synthesis of available scientific information concerning the relationship between hydraulic fracturing activities and drinking water resources in the United States. The report is organized around activities in the hydraulic...

  12. Overview of the use of ATHENA for thermal-hydraulic analysis of systems with lead-bismuth coolant

    Davis, C.B.; Shieh, A. S.

    2000-01-01

    The INEEL and MIT are investigating the suitability of lead-bismuth cooled fast reactor for producing low-cost electricity as well as for actinide burning. This paper is concerned with the general area of thermal-hydraulics of lead-bismuth cooled reactors. The ATHENA code is being used in the thermal-hydraulic design and analysis of lead-bismuth cooled reactors. The ATHENA code was reviewed to determine its applicability for simulating lead-bismuth cooled reactors. Two modifications were made to the code as a result of this review. Specifically, a correlation to represent heat transfer from rod bundles to a liquid metal and a void correlation based on data taken in a mixture of lead-bismuth and steam were added the code. The paper also summarizes the analytical work that is being performed with the code and plans for future analytical work

  13. Overview of the Use of ATHENA for Thermal-Hydraulic Analysis of Systems with Lead-Bismuth Coolant

    Davis, Cliff Bybee; Shieh, Arthur Shan Luk

    2000-04-01

    The INEEL and MIT are investigating the suitability of lead-bismuth cooled fast reactor for producing low-cost electricity as well as for actinide burning. This paper is concerned with the general area of thermal-hydraulics of lead-bismuth cooled reactors. The ATHENA code is being used in the thermal-hydraulic design and analysis of lead-bismuth cooled reactors. The ATHENA code was reviewed to determine its applicability for simulating lead-bismuth cooled reactors. Two modifications were made to the code as a result of this review. Specifically, a correlation to represent heat transfer from rod bundles to a liquid metal and a void correlation based on data taken in a mixture of lead-bismuth and steam were added the code. The paper also summarizes the analytical work that is being performed with the code and plans for future analytical work.

  14. Hydraulic nuts (HydraNuts) for reactor vessel tensioning

    Greenwell, Steve

    2008-01-01

    The paper will present how the introduction of hydraulic nuts - HydraNuts, has reduced critical path times, dose exposure for workers and improved working safety conditions around the reactor vessel during tensioning or de-tensioning operations. It will focus upon detailing the advantages realized by utilities that have introduced the technology and providing examples of the improvements made to the process as well as discussing the engineering design change packages required to make the conversion to the new system. HydraNuts replace the traditional mechanical nut/stud tensioning equipment, combining the two functions into a single system, designed for easy installation and operation by one individual. The primary components of the HydraNut can be assembled without the need for external crane or hoist support and are designed so that each sub assembly can be fitted separately. Once all HydraNuts are fitted to the Rx vessel studs and are sitting on the main Rx vessel head flange, then a system of flexible hydraulic hoses is connected to them, forming a closed loop hydraulic harness, which will allow for simultaneous pressurization of all HydraNuts. Hydraulic pressure is obtained by the use of a hydraulic pumping unit and the resultant load generated in each HydraNut is transferred to the stud and main flange closure is obtained. While maintaining hydraulic pressure, a locking ring is rotated into place on the HydraNut assembly that will support the tensioned load mechanically when the hydraulic pressure is released from the hose harness assembly. The hose harness is removed and the HydraNut is now functioning as a mechanical nut retaining the tensioned load. The HydraNut system for Rx vessel applications was first introduced into a plant in the U.S. in October 2006 and based upon the benefits realized subsequent projects are under way within the Asian and U.S. operating fleet. (author)

  15. Hydraulic Conductivity of Residual Soil-Cement Mix

    Govindasamy, P.; Taha, M. R.

    2016-07-01

    In Malaysia, although there are several researches on engineering properties of residual soils, however study on the hydraulic conductivity properties of metasedimentary residual soils is still lacking. Construction of containment walls like slurry wall techniques can be achieved with hydraulic conductivity of approximately 5 x 10-7cm/sec. The objectives of the study were to determine the physical properties of metasedimentary residual soils and to determine the influence of 1%, 3%, 5% and 10% of cement on hydraulic conductivity parameters. The coefficient of hydraulic conductivity of the soil naturally and soil-cement mixtures were determined by using the falling head test. According to the test, the hydraulic conductivity of the original soil was 4.16 x 10-8 m/s. The value decreases to 3.89 x 10-8 m/s, 2.78 x 10-8 m/s then 6.83 x 10-9 m/s with the addition of 1%, 3% and 5% of cement additives, respectively. During the hydration process, cement hydrates is formed followed by the increase in pH value and Ca(OH)2 which will alter the modification of pores size and distribution. When the quantity of cement increases, the pores size decrease. But, the addition of 10% cement gives an increased hydraulic conductivity value to 2.78 x 10-8 m/s. With 10%, the pore size increase might due to flocculation and agglomeration reaction. The generated hydraulic conductivity values will indirectly become a guide in the preliminary soil cement stabilization to modify the properties of the soil to become more like the properties of a soft rock.1. Introduction

  16. Method to Estimate the Dissolved Air Content in Hydraulic Fluid

    Hauser, Daniel M.

    2011-01-01

    In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated

  17. Structural Integrity Assessment for SSDM Hydraulic Cylinder of JRTR

    Kim, Sanghaun; Lee, Jin Haeng; Cho, Yeonggarp; Yoo, Yeonsik

    2014-01-01

    In HANARO, there are four Control Rod Drive Mechanisms (CRDMs) with an individual step motor and four Shutoff (SO) Units with an individual hydraulic system located at the top of reactor pool. The absorber rods in SO units are poised at the top of the core by the hydraulic force during normal operation. The rods of SO units drop by gravity as the first reactor showdown mechanism when a trip is commended by the reactor protection system (RPS). The CRDMs act as the first reactor shutdown mechanism and reactor regulating as well. The top-mounted SSDM driven by the hydraulic system for the JRTR is under design in KAERI. The SSDM provides an alternate and independent means of reactor shutdown. The second shutdown rods (SSRs) of the SSDM are poised at the top of the core by the hydraulic system during the normal operation and drop by gravity for the reactor trip. Based on the proven technology of the design, operation and maintenance for HANARO, the SSDM for the JRTR has been optimized by the design improvement from the experience and test. This paper aims for the structural integrity assessment for SSDM hydraulic cylinder which is designed on the basis of the SO unit of HANARO but optimized with the new core environment (i. e., geometrical, physical, etc.) of JRTR. A stress analysis of the hydraulic cylinder for the SSDM used in JRTR has been performed through the conservative approach with the uncertainties in the system design step. The crank's pinch load with no slip between the bearing (stiffener) plate of hydraulic cylinder and base plate of mount bracket during SSE has been calculated by considering the design and seismic load combination. The stress by the load combination satisfies the Class 3 criteria given Table NG-3325 of Section III of the ASME Code. The maximum stresses are at the clamp contact region in the cylinder

  18. Geothermal heat from solid rock - increased energy extraction through hydraulic pressurizing of drill wells

    Ramstad, Randi Kalskin; Hilmo, Bernt Olav; Skarphagen, Helge

    2005-01-01

    more suited in this study than continued measurements for documenting the alterations in the drill hole capacities and current patterns. Drill hole inspection give valuable information about cracking conditions, possible water conducting faults, ground water quality, water temperature and currents but changes in the drill hole walls as a consequence of hydraulic pressurizing is difficult to determine. The efficacy test of the ground water plant at Bryn did show that the infiltration capacity at the central drill hole is too low compared to the stipulated project conditions but the plant at EAB may be operated as planned. Compared to more conventional ground water plants with collectors the plant at EAB would be profitable. At the present economic and geologic conditions the plant costs may be reduced with more than 50 % by choosing a plant based on pumping up ground water at the EAB where the energy extraction from water is higher than 105 MWh/year. A yearly energy consumption of 195 MWh is based on a current velocity of 14 m3/hour, an average temperature extraction of 2.1 deg C and 3000 operation hours. The profitability would be improved further if the plant would be used both for heating and cooling purposes. The ground water quality at all the test sites was satisfactory

  19. Intermediate-Scale Hydraulic Fracturing in a Deep Mine - kISMET Project Summary 2016

    Oldenburg, C. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dobson, P. F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wu, Y. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cook, P. J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kneafsey, T. J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nakagawa, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ulrich, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Siler, D. L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Guglielmi, Y. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ajo-Franklin, J. B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Daley, T. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, J. T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wang, H. F. [Univ. of Wisconsin, Madison, WI (United States); Lord, N. E. [Univ. of Wisconsin, Madison, WI (United States); Haimson, B. C. [Univ. of Wisconsin, Madison, WI (United States); Sone, H. [Univ. of Wisconsin, Madison, WI (United States); Vigilante, P. [Univ. of Wisconsin, Madison, WI (United States); Roggenthen, W. M. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Doe, T. W. [Golder Associates Inc., Toronto, ON (Canada); Lee, M. Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ingraham, M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Huang, H. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mattson, E. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhou, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Johnson, T. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Morris, J. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Johnson, P. A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Coblentz, D. D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Heise, J. [Stanford Underground Research Facility, Lead, SD (United States); Zoback, M. D. [Stanford Univ., CA (United States)

    2016-11-04

    In support of the U.S. DOE SubTER Crosscut initiative, we established a field test facility in a deep mine and designed and carried out in situ hydraulic fracturing experiments in the crystalline rock at the site to characterize the stress field, understand the effects of rock fabric on fracturing, and gain experience in monitoring using geophysical methods. The project also included pre- and post-fracturing simulation and analysis, laboratory measurements and experiments, and we conducted an extended analysis of the local stress state using previously collected data. Some of these activities are still ongoing. The kISMET (permeability (k) and Induced Seismicity Management for Energy Technologies) experiments meet objectives in SubTER’s “stress” pillar and the “new subsurface signals” pillar. The kISMET site was established in the West Access Drift of SURF 4850 ft (1478 m) below ground (on the 4850L) in phyllite of the Precambrian Poorman Formation. We drilled and cored five near-vertical boreholes in a line on 3 m spacing, deviating the two outermost boreholes slightly to create a five-spot pattern around the test borehole centered in the test volume at ~1528 m (5013 ft). Laboratory measurements of core from the center test borehole showed P-wave velocity heterogeneity along each core indicating strong, fine-scale (~1 cm or smaller) changes in the mechanical properties of the rock. The load-displacement record on the core suggests that the elastic stiffness is anisotropic. Tensile strength ranges between 3-7.5 MPa and 5-12 MPa. Permeability measurements are planned, as are two types of laboratory miniature hydraulic fracturing experiments to investigate the importance of rock fabric (anisotropy and heterogeneity) on near-borehole hydraulic fracture generation. Pre-fracturing numerical simulations with INL’s FALCON discrete element code predicted a fracture radius of 1.2 m for a corresponding injection volume of 1.2 L for the planned fractures, and

  20. CFD based draft tube hydraulic design optimization

    McNabb, J; Murry, N; Mullins, B F; Devals, C; Kyriacou, S A

    2014-01-01

    The draft tube design of a hydraulic turbine, particularly in low to medium head applications, plays an important role in determining the efficiency and power characteristics of the overall machine, since an important proportion of the available energy, being in kinetic form leaving the runner, needs to be recovered by the draft tube into static head. For large units, these efficiency and power characteristics can equate to large sums of money when considering the anticipated selling price of the energy produced over the machine's life-cycle. This same draft tube design is also a key factor in determining the overall civil costs of the powerhouse, primarily in excavation and concreting, which can amount to similar orders of magnitude as the price of the energy produced. Therefore, there is a need to find the optimum compromise between these two conflicting requirements. In this paper, an elaborate approach is described for dealing with this optimization problem. First, the draft tube's detailed geometry is defined as a function of a comprehensive set of design parameters (about 20 of which a subset is allowed to vary during the optimization process) and are then used in a non-uniform rational B-spline based geometric modeller to fully define the wetted surfaces geometry. Since the performance of the draft tube is largely governed by 3D viscous effects, such as boundary layer separation from the walls and swirling flow characteristics, which in turn governs the portion of the available kinetic energy which will be converted into pressure, a full 3D meshing and Navier-Stokes analysis is performed for each design. What makes this even more challenging is the fact that the inlet velocity distribution to the draft tube is governed by the runner at each of the various operating conditions that are of interest for the exploitation of the powerhouse. In order to determine these inlet conditions, a combined steady-state runner and an initial draft tube analysis