WorldWideScience

Sample records for hydraulic model tests

  1. Hydraulic Model Tests on Modified Wave Dragon

    DEFF Research Database (Denmark)

    Hald, Tue; Lynggaard, Jakob

    A floating model of the Wave Dragon (WD) was built in autumn 1998 by the Danish Maritime Institute in scale 1:50, see Sørensen and Friis-Madsen (1999) for reference. This model was subjected to a series of model tests and subsequent modifications at Aalborg University and in the following...... are found in Hald and Lynggaard (2001). Model tests and reconstruction are carried out during the phase 3 project: ”Wave Dragon. Reconstruction of an existing model in scale 1:50 and sequentiel tests of changes to the model geometry and mass distribution parameters” sponsored by the Danish Energy Agency...

  2. MODEL TESTING OF LOW PRESSURE HYDRAULIC TURBINE WITH HIGHER EFFICIENCY

    Directory of Open Access Journals (Sweden)

    V. K. Nedbalsky

    2007-01-01

    Full Text Available A design of low pressure turbine has been developed and it is covered by an invention patent and a useful model patent. Testing of the hydraulic turbine model has been carried out when it was installed on a vertical shaft. The efficiency was equal to 76–78 % that exceeds efficiency of the known low pressure blade turbines. 

  3. Design, test and model of a hybrid magnetostrictive hydraulic actuator

    International Nuclear Information System (INIS)

    Chaudhuri, Anirban; Yoo, Jin-Hyeong; Wereley, Norman M

    2009-01-01

    The basic operation of hybrid hydraulic actuators involves high frequency bi-directional operation of an active material that is converted to uni-directional motion of hydraulic fluid using valves. A hybrid actuator was developed using magnetostrictive material Terfenol-D as the driving element and hydraulic oil as the working fluid. Two different lengths of Terfenol-D rod, 51 and 102 mm, with the same diameter, 12.7 mm, were used. Tests with no load and with load were carried out to measure the performance for uni-directional motion of the output piston at different pumping frequencies. The maximum no-load flow rates were 24.8 cm 3 s −1 and 22.7 cm 3 s −1 with the 51 mm and 102 mm long rods respectively, and the peaks were noted around 325 Hz pumping frequency. The blocked force of the actuator was close to 89 N in both cases. A key observation was that, at these high pumping frequencies, the inertial effects of the fluid mass dominate over the viscous effects and the problem becomes unsteady in nature. In this study, we also develop a mathematical model of the hydraulic hybrid actuator in the time domain to show the basic operational principle under varying conditions and to capture phenomena affecting system performance. Governing equations for the pumping piston and output shaft were obtained from force equilibrium considerations, while compressibility of the working fluid was taken into account by incorporating the bulk modulus. Fluid inertia was represented by a lumped parameter approach to the transmission line model, giving rise to strongly coupled ordinary differential equations. The model was then used to calculate the no-load velocities of the actuator at different pumping frequencies and simulation results were compared with experimental data for model validation

  4. Modelling of Hydraulic Robot

    DEFF Research Database (Denmark)

    Madsen, Henrik; Zhou, Jianjun; Hansen, Lars Henrik

    1997-01-01

    This paper describes a case study of identifying the physical model (or the grey box model) of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application...

  5. Development of realistic thermal-hydraulic system analysis codes ; development of thermal hydraulic test requirements for multidimensional flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Yull; Yoon, Sang Hyuk; Noh, Sang Woo; Lee, Il Suk [Seoul National University, Seoul (Korea)

    2002-03-01

    This study is concerned with developing a multidimensional flow model required for the system analysis code MARS to more mechanistically simulate a variety of thermal hydraulic phenomena in the nuclear stem supply system. The capability of the MARS code as a thermal hydraulic analysis tool for optimized system design can be expanded by improving the current calculational methods and adding new models. In this study the relevant literature was surveyed on the multidimensional flow models that may potentially be applied to the multidimensional analysis code. Research items were critically reviewed and suggested to better predict the multidimensional thermal hydraulic behavior and to identify test requirements. A small-scale preliminary test was performed in the downcomer formed by two vertical plates to analyze multidimensional flow pattern in a simple geometry. The experimental result may be applied to the code for analysis of the fluid impingement to the reactor downcomer wall. Also, data were collected to find out the controlling parameters for the one-dimensional and multidimensional flow behavior. 22 refs., 40 figs., 7 tabs. (Author)

  6. Hydraulic model tests of an innovative dike crest design

    NARCIS (Netherlands)

    Verhagen, H.J.; Kortenhaus, A.; Bollinger, K.; Dassayanake, D.

    2007-01-01

    Report on laboratory tests on a crest drainage dike; investigation if a channel in the crest of the dike is able to decrease the amount of overtopping over the dike. Chapter 2 provides details about findings from previous studies and the relevance of those findings to this research project.

  7. Analysis and interpretation of borehole hydraulic tests in deep boreholes: principles, model development, and applications

    International Nuclear Information System (INIS)

    Pickens, J.F.; Grisak, G.E.; Avis, J.D.; Belanger, D.W.

    1987-01-01

    A review of the literature on hydraulic testing and interpretive methods, particularly in low-permeability media, indicates a need for a comprehensive hydraulic testing interpretive capability. Physical limitations on boreholes, such as caving and erosion during continued drilling, as well as the high costs associated with deep-hole rigs and testing equipment, often necessitate testing under nonideal conditions with respect to antecedent pressures and temperatures. In these situations, which are common in the high-level nuclear waste programs throughout the world, the interpretive requirements include the ability to quantitatively account for thermally induced pressure responses and borehole pressure history (resulting in a time-dependent pressure profile around the borehole) as well as equipment compliance effects in low-permeability intervals. A numerical model was developed to provide the capability to handle these antecedent conditions. Sensitivity studies and practical applications are provided to illustrate the importance of thermal effects and antecedent pressure history. It is demonstrated theoretically and with examples from the Swiss (National Genossenschaft fuer die Lagerung radioaktiver Abfaelle) regional hydrogeologic characterization program that pressure changes (expressed as hydraulic head) of the order of tens to hundreds of meters can results from 1 0 to 2 0 C temperature variations during shut-in (packer isolated) tests in low-permeability formations. Misinterpreted formation pressures and hydraulic conductivity can also result from inaccurate antecedent pressure history. Interpretation of representative formation properties and pressures requires that antecedent pressure information and test period temperature data be included as an integral part of the hydraulic test analyses

  8. Equipment for hydraulic testing

    International Nuclear Information System (INIS)

    Jacobsson, L.; Norlander, H.

    1981-07-01

    Hydraulic testing in boreholes is one major task of the hydrogeological program in the Stripa Project. A new testing equipment for this purpose was constructed. It consists of a downhole part and a surface part. The downhole part consists of two packers enclosing two test-sections when inflated; one between the packers and one between the bottom packer and the bottom of the borehole. A probe for downhole electronics is also included in the downhole equipment together with electrical cable and nylon tubing. In order to perform shut-in and pulse tests with high accuracy a surface controlled downhole valve was constructed. The surface equipment consists of the data acquisition system, transducer amplifier and surface gauges. In the report detailed descriptions of each component in the whole testing equipment are given. (Auth.)

  9. Modeling and Experimental Tests on the Hydraulically Driven Control Rod option for IRIS Reactor

    International Nuclear Information System (INIS)

    Cammi, Antonio; Ricotti, Marco E.; Vitulo, Alessia

    2004-01-01

    The adoption of Internal Control Rod Drive Mechanisms (ICRDMs) represents a valuable alternative to classical, external CRDMs based on electro-magnetic devices, as adopted in current PWRs. The advantages on the safety features of the reactor are apparent: inherent elimination of the Rod Ejection accidents and of possible concerns about the vessel head penetrations. A further positive feedback on the design is the reduction of the primary system overall dimensions. Within the frame of the ICRDM concepts, the Hydraulically Driven Control Rod solution is investigated as a possible option for the IRIS integral reactor. After a brief comparison of the solutions currently proposed for integral reactors, the configuration of the Hydraulic Control Rod device for IRIS, made up by an external movable piston and an internal fixed cylinder, is described. A description of the whole control system is reported as well. Particular attention is devoted to the Control Rod profile characterization, performed by means of a Computational Fluid Dynamics (CFD) analysis. The investigation of the system behavior has been carried out, including the dynamic equilibrium and its stability properties, the withdrawal and insertion step movement and the sensitivity study on command time periods. A suitable dynamic model has been set up for the mentioned purposes: the models corresponding to the various Control Rod system devices have been written in an Object-Oriented language (Modelica), thus allowing an easy implementation of such a system into the simulator for the whole reactor. Finally, a preliminary low pressure, low temperature, reduced length experimental facility has been built. Tests on HDCR stability and operational transients have been performed. The results are compared with the dynamic system model and CFD simulation model, showing good agreement between simulations and experimental data. During these preliminary tests, the control system performed correctly, allowing stable dynamic

  10. Hydraulic testing in crystalline rock

    International Nuclear Information System (INIS)

    Almen, K.E.; Andersson, J.E.; Carlsson, L.; Hansson, K.; Larsson, N.A.

    1986-12-01

    Swedish Geolocical Company (SGAB) conducted and carried out single-hole hydraulic testing in borehole Fi 6 in the Finnsjoen area of central Sweden. The purpose was to make a comprehensive evaluation of different methods applicable in crystalline rocks and to recommend methods for use in current and scheduled investigations in a range of low hydraulic conductivity rocks. A total of eight different methods of testing were compared using the same equipment. This equipment was thoroughly tested as regards the elasticity of the packers and change in volume of the test section. The use of a hydraulically operated down-hole valve enabled all the tests to be conducted. Twelve different 3-m long sections were tested. The hydraulic conductivity calculated ranged from about 5x10 -14 m/s to 1x10 -6 m/s. The methods used were water injection under constant head and then at a constant rate-of-flow, each of which was followed by a pressure fall-off period. Water loss, pressure pulse, slug and drill stem tests were also performed. Interpretation was carried out using standard transient evaluation methods for flow in porous media. The methods used showed themselves to be best suited to specific conductivity ranges. Among the less time-consuming methods, water loss, slug and drill stem tests usually gave somewhat higher hydraulic conductivity values but still comparable to those obtained using the more time-consuming tests. These latter tests, however, provided supplementary information on hydraulic and physical properties and flow conditions, together with hydraulic conductivity values representing a larger volume of rock. (orig./HP)

  11. Evaluation of Hydraulic Loads on the Runner Blades of a Kaplan Turbine using CFD Simulation and Model Test

    Directory of Open Access Journals (Sweden)

    Zoltan-Iosif Korka

    2016-10-01

    Full Text Available CFD (Computational Fluid Dynamic is today a standard procedure for analyzing and simulating the flow through several hydraulic machines. In this process, the fluid flow domain is divided into small volumes where the governing equations are converted into algebraic ones, which are numerically solved. Computational results strongly depend on the applied mathematical model and on the numerical methods used for converting the governing equations into the algebraic ones. The goal of the paper is to evaluate, by numerical simulation, the hydraulic loads (forces and torques on the runner blades of an existent Kaplan turbine and to compare them with the experimental results obtained from model test.

  12. Estimating Hydraulic Conductivities in a Fractured Shale Formation from Pressure Pulse Testing and 3d Modeling

    Science.gov (United States)

    Courbet, C.; DICK, P.; Lefevre, M.; Wittebroodt, C.; Matray, J.; Barnichon, J.

    2013-12-01

    In the framework of its research on the deep disposal of radioactive waste in shale formations, the French Institute for Radiological Protection and Nuclear Safety (IRSN) has developed a large array of in situ programs concerning the confining properties of shales in their underground research laboratory at Tournemire (SW France). One of its aims is to evaluate the occurrence and processes controlling radionuclide migration through the host rock, from the disposal system to the biosphere. Past research programs carried out at Tournemire covered mechanical, hydro-mechanical and physico-chemical properties of the Tournemire shale as well as water chemistry and long-term behaviour of the host rock. Studies show that fluid circulations in the undisturbed matrix are very slow (hydraulic conductivity of 10-14 to 10-15 m.s-1). However, recent work related to the occurrence of small scale fractures and clay-rich fault gouges indicate that fluid circulations may have been significantly modified in the vicinity of such features. To assess the transport properties associated with such faults, IRSN designed a series of in situ and laboratory experiments to evaluate the contribution of both diffusive and advective process on water and solute flux through a clay-rich fault zone (fault core and damaged zone) and in an undisturbed shale formation. As part of these studies, Modular Mini-Packer System (MMPS) hydraulic testing was conducted in multiple boreholes to characterize hydraulic conductivities within the formation. Pressure data collected during the hydraulic tests were analyzed using the nSIGHTS (n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator) code to estimate hydraulic conductivity and formation pressures of the tested intervals. Preliminary results indicate hydraulic conductivities of 5.10-12 m.s-1 in the fault core and damaged zone and 10-14 m.s-1 in the adjacent undisturbed shale. Furthermore, when compared with neutron porosity data from borehole

  13. Gas Test Loop Booster Fuel Hydraulic Testing

    International Nuclear Information System (INIS)

    Gas Test Loop Hydraulic Testing Staff

    2006-01-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3

  14. Gas Test Loop Booster Fuel Hydraulic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  15. Validation of the Thermal-Hydraulic Model in the SACAP Code with the ISP Tests

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soon-Ho; Kim, Dong-Min; Park, Chang-Hwan [FNC Technology Co., Yongin (Korea, Republic of)

    2016-10-15

    In safety viewpoint, the pressure of the containment is the important parameter, of course, the local hydrogen concentration is also the parameter of the major concern because of its flammability and the risk of the detonation. In Korea, there have been an extensive efforts to develop the computer code which can analyze the severe accident behavior of the pressurized water reactor. The development has been done in a modularized manner and SACAP(Severe Accident Containment Analysis Package) code is now under final stage of development. SACAP code adopts LP(Lumped Parameter) model and is applicable to analyze the synthetic behavior of the containment during severe accident occurred by thermal-hydraulic transient, combustible gas burn, direct containment heating by high pressure melt ejection, steam explosion and molten core-concrete interaction. The analyses of a number of ISP(International Standard Problem) experiments were done as a part of the SACAP code V and V(verification and validation). In this paper, the SACAP analysis results for ISP-35 NUPEC and ISP-47 TOSQAN are presented including comparison with other existing NPP simulation codes. In this paper, we selected and analyzed ISP-35 NUPEC, ISP-47 TOSQAN in order to confirm the computational performance of SACAP code currently under development. Now the multi-node analysis for the ISP-47 is under process. As a result of simulation, SACAP predicts well the thermal-hydraulic variables such as temperature, pressure, etc. Also, we verify that SACAP code is properly equipped to analyze the gas distribution and condensation.

  16. 3-D Hydraulic Model Testing of the New Roundhead in Suape, Brazil

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Burcharth, Hans F.; Sipavicius, A.

    This report deals with a three-dimensional model test study of the extension of the breakwater in Suape, Brazil. The roundhead was tested for stability in various sea conditions. The length scale used for the model tests was 1:35. Unless otherwise specified all values given in this report...

  17. Several new thermo-hydraulic test facilities in NPIC

    International Nuclear Information System (INIS)

    Ye Shurong; Sun Yufa; Ji Fuyun; Zong Guifang; Guo Zhongchuan

    1997-01-01

    Several new thermo-hydraulic test facilities are under construction in Nuclear Power Institute of Chinese (NPIC) at Chengdu. These facilities include: 1. Nuclear Power Component Comprehensive Test Facility. 2. Reactor Hydraulic Modeling Test Facility. 3. Control Rod Drive Line Hydraulic Test Facility. 4. Large Scale Thermo-Hydraulic Test Facility. The construction of these facilities will make huge progress in the research and development capability of nuclear power technology in CHINA. The author will present a brief description of the design parameters flowchart and test program of these facilities

  18. Hydraulic Arm Modeling via Matlab SimHydraulics

    Czech Academy of Sciences Publication Activity Database

    Věchet, Stanislav; Krejsa, Jiří

    2009-01-01

    Roč. 16, č. 4 (2009), s. 287-296 ISSN 1802-1484 Institutional research plan: CEZ:AV0Z20760514 Keywords : simulatin modeling * hydraulics * SimHydraulics Subject RIV: JD - Computer Applications, Robotics

  19. Development and qualification of a thermal-hydraulic nodalization for modeling station blackout accident in PSB-VVER test facility

    Energy Technology Data Exchange (ETDEWEB)

    Saghafi, Mahdi [Department of Energy Engineering, Sharif University of Technology, Azadi Avenue, Tehran (Iran, Islamic Republic of); Ghofrani, Mohammad Bagher, E-mail: ghofrani@sharif.edu [Department of Energy Engineering, Sharif University of Technology, Azadi Avenue, Tehran (Iran, Islamic Republic of); D’Auria, Francesco [San Piero a Grado Nuclear Research Group (GRNSPG), University of Pisa, Via Livornese 1291, San Piero a Grado, Pisa (Italy)

    2016-07-15

    Highlights: • A thermal-hydraulic nodalization for PSB-VVER test facility has been developed. • Station blackout accident is modeled with the developed nodalization in MELCOR code. • The developed nodalization is qualified at both steady state and transient levels. • MELCOR predictions are qualitatively and quantitatively in acceptable range. • Fast Fourier Transform Base Method is used to quantify accuracy of code predictions. - Abstract: This paper deals with the development of a qualified thermal-hydraulic nodalization for modeling Station Black-Out (SBO) accident in PSB-VVER Integral Test Facility (ITF). This study has been performed in the framework of a research project, aiming to develop an appropriate accident management support tool for Bushehr nuclear power plant. In this regard, a nodalization has been developed for thermal-hydraulic modeling of the PSB-VVER ITF by MELCOR integrated code. The nodalization is qualitatively and quantitatively qualified at both steady-state and transient levels. The accuracy of the MELCOR predictions is quantified in the transient level using the Fast Fourier Transform Base Method (FFTBM). FFTBM provides an integral representation for quantification of the code accuracy in the frequency domain. It was observed that MELCOR predictions are qualitatively and quantitatively in the acceptable range. In addition, the influence of different nodalizations on MELCOR predictions was evaluated and quantified using FFTBM by developing 8 sensitivity cases with different numbers of control volumes and heat structures in the core region and steam generator U-tubes. The most appropriate case, which provided results with minimum deviations from the experimental data, was then considered as the qualified nodalization for analysis of SBO accident in the PSB-VVER ITF. This qualified nodalization can be used for modeling of VVER-1000 nuclear power plants when performing SBO accident analysis by MELCOR code.

  20. Assessment of TRAC-PD2 reflood core thermo-hydraulic model by CCTF Test C1-16

    International Nuclear Information System (INIS)

    Sugimoto, Jun

    1982-11-01

    The TRAC-PD2 reflood core thermo-hydraulic model was assessed by CCTF Test C1-16. The measured data were utilized as core boundary conditions in the TRAC calculations. The results indicate that the core inlet liquid temperature and the core heater rod temperatures are in reasonable agreement with data, but the pressure distribution in the core and water pool formation in the upper plenum are not in good agreement. The parametric effects of the droplet critical Weber number, the material properties of the heater rod, the noding of the upper plenum, and the minimum stable film boiling temperature are also discussed. (author)

  1. Pilot testing of a hydraulic bridge exciter

    Directory of Open Access Journals (Sweden)

    Andersson Andreas

    2015-01-01

    Full Text Available This paper describes the development of a hydraulic bridge exciter and its first pilot testing on a full scale railway bridge in service. The exciter is based on a hydraulic load cylinder with a capacity of 50 kN and is intended for controlled dynamic loading up to at least 50 Hz. The load is applied from underneath the bridge, enabling testing while the railway line is in service. The system is shown to produce constant load amplitude even at resonance. The exciter is used to experimentally determine frequency response functions at all sensor locations, which serve as valuable input for model updating and verification. An FE-model of the case study bridge has been developed that is in good agreement with the experimental results.

  2. Virtual Winch Prototyping-Design, Modeling, Simulation and Testing of A Marine Hydraulic Winch System with Active Heave Compensation.

    OpenAIRE

    He, Dahai

    2016-01-01

    This thesis is to develop a standard virtual prototyping system for hydraulic winch system including developing a library of standard sub-models of hydraulic system, mechanical system and control system (AHC), and visualizing the simulation and operation of the virtual winch prototyping system. To be more specific: Chapter 1. Motivation and background of winch prototyping is introduced so as to break down the problems and formulate the objectives of this projects. Chapter 2. Theoretical...

  3. Uncertainty in hydraulic tests in fractured rock

    International Nuclear Information System (INIS)

    Ji, Sung-Hoon; Koh, Yong-Kwon

    2014-01-01

    Interpretation of hydraulic tests in fractured rock has uncertainty because of the different hydraulic properties of a fractured rock to a porous medium. In this study, we reviewed several interesting phenomena which show uncertainty in a hydraulic test at a fractured rock and discussed their origins and the how they should be considered during site characterisation. Our results show that the estimated hydraulic parameters of a fractured rock from a hydraulic test are associated with uncertainty due to the changed aperture and non-linear groundwater flow during the test. Although the magnitude of these two uncertainties is site-dependent, the results suggest that it is recommended to conduct a hydraulic test with a little disturbance from the natural groundwater flow to consider their uncertainty. Other effects reported from laboratory and numerical experiments such as the trapping zone effect (Boutt, 2006) and the slip condition effect (Lee, 2014) can also introduce uncertainty to a hydraulic test, which should be evaluated in a field test. It is necessary to consider the way how to evaluate the uncertainty in the hydraulic property during the site characterisation and how to apply it to the safety assessment of a subsurface repository. (authors)

  4. Modern challenges for flow investigations in model hydraulic turbines on classical test rig

    International Nuclear Information System (INIS)

    Deschênes, C; Houde, S; Aeschlimann, V; Fraser, R; Ciocan, G D

    2014-01-01

    The BulbT project involved several investigations of flow phenomena in different parts of a model bulb turbine installed on the test rig of Laval University Laboratory. The aim is to create a comprehensive data base in order to increase the knowledge of the flow phenomena in this type of turbines and to validate or improve numerical flow simulation strategies. This validation being based on a kinematic comparison between experimental and numerical data, the project had to overcome challenges to facilitate the use of the experimental data for that purpose. Many parameters were checked, such as the test bench repeatability, the intrusiveness of a priori non-intrusive methods, the geometry of the runner and draft tube. This paper illustrates how some of those problematic were solved

  5. The model of the thermal and hydraulic behaviour of a out-of-pile test loop; Model thermohidraulickog ponasanja vanreaktorskog exksperimentalnog cirkulacionog kola

    Energy Technology Data Exchange (ETDEWEB)

    Vehauc, A; Stosic, Z [Institut za nuklearne nauke Boris Kidric, Voinca, Belgrade (Yugoslavia)

    1988-07-01

    A complex circulation loop was modeled and a simulation program developed for the determination of the pressure, temperature, velocity and flow rate distribution in legs of the loop. The model was used to study the thermal and hydraulic behaviour of an out-of-pile test loop at IBK-ITE. For a given set of conditions in the test section, the model yields data on all the operating modes possible with the existing control system and in consequence on the optimum operating conditions for the loop as a whole. (author)

  6. Characteristic Length Scales in Fracture Networks: Hydraulic Connectivity through Periodic Hydraulic Tests

    Science.gov (United States)

    Becker, M.; Bour, O.; Le Borgne, T.; Longuevergne, L.; Lavenant, N.; Cole, M. C.; Guiheneuf, N.

    2017-12-01

    Determining hydraulic and transport connectivity in fractured bedrock has long been an important objective in contaminant hydrogeology, petroleum engineering, and geothermal operations. A persistent obstacle to making this determination is that the characteristic length scale is nearly impossible to determine in sparsely fractured networks. Both flow and transport occur through an unknown structure of interconnected fracture and/or fracture zones making the actual length that water or solutes travel undetermined. This poses difficulties for flow and transport models. For, example, hydraulic equations require a separation distance between pumping and observation well to determine hydraulic parameters. When wells pairs are close, the structure of the network can influence the interpretation of well separation and the flow dimension of the tested system. This issue is explored using hydraulic tests conducted in a shallow fractured crystalline rock. Periodic (oscillatory) slug tests were performed at the Ploemeur fractured rock test site located in Brittany, France. Hydraulic connectivity was examined between three zones in one well and four zones in another, located 6 m apart in map view. The wells are sufficiently close, however, that the tangential distance between the tested zones ranges between 6 and 30 m. Using standard periodic formulations of radial flow, estimates of storativity scale inversely with the square of the separation distance and hydraulic diffusivity directly with the square of the separation distance. Uncertainty in the connection paths between the two wells leads to an order of magnitude uncertainty in estimates of storativity and hydraulic diffusivity, although estimates of transmissivity are unaffected. The assumed flow dimension results in alternative estimates of hydraulic parameters. In general, one is faced with the prospect of assuming the hydraulic parameter and inverting the separation distance, or vice versa. Similar uncertainties exist

  7. Hydraulic modelling of the CARA Fuel element

    International Nuclear Information System (INIS)

    Brasnarof, Daniel O.; Juanico, Luis; Giorgi, M.; Ghiselli, Alberto M.; Zampach, Ruben; Fiori, Jose M.; Yedros, Pablo A.

    2004-01-01

    The CARA fuel element is been developing by the National Atomic Energy Commission for both Argentinean PHWRs. In order to keep the hydraulic restriction in their fuel channels, one of CARA's goals is to keep its similarity with both present fuel elements. In this paper is presented pressure drop test performed at a low-pressure facility (Reynolds numbers between 5x10 4 and 1,5x10 5 ) and rational base models for their spacer grid and rod assembly. Using these models, we could estimate the CARA hydraulic performance in reactor conditions that have shown to be satisfactory. (author) [es

  8. Model for polygonal hydraulic jumps

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Watanabe, Shinya; Bohr, Tomas

    2012-01-01

    We propose a phenomenological model for the polygonal hydraulic jumps discovered by Ellegaard and co-workers [Nature (London) 392, 767 (1998); Nonlinearity 12, 1 (1999); Physica B 228, 1 (1996)], based on the known flow structure for the type-II hydraulic jumps with a "roller" (separation eddy...... nonhydrostatic pressure contributions from surface tension in light of recent observations by Bush and co-workers [J. Fluid Mech. 558, 33 (2006); Phys. Fluids 16, S4 (2004)]. The model can be analyzed by linearization around the circular state, resulting in a parameter relationship for nearly circular polygonal...... states. A truncated but fully nonlinear version of the model can be solved analytically. This simpler model gives rise to polygonal shapes that are very similar to those observed in experiments, even though surface tension is neglected, and the condition for the existence of a polygon with N corners...

  9. Thermal hydraulic test for reactor safety system - Critical heat flux experiment and development of prediction models

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Baek, Won Pil; Yang, Soo Hyung; No, Chang Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    2000-04-01

    To acquire CHF data through the experiments and develop prediction models, research was conducted. Final objectives of research are as follows: 1) Production of tube CHF data for low and middle pressure and mass flux and Flow Boiling Visualization. 2) Modification and suggestion of tube CHF prediction models. 3) Development of fuel bundle CHF prediction methodology base on tube CHF prediction models. The major results of research are as follows: 1) Production of the CHF data for low and middle pressure and mass flux. - Acquisition of CHF data (764) for low and middle pressure and flow conditions - Analysis of CHF trends based on the CHF data - Assessment of existing CHF prediction methods with the CHF data 2) Modification and suggestion of tube CHF prediction models. - Development of a unified CHF model applicable for a wide parametric range - Development of a threshold length correlation - Improvement of CHF look-up table using the threshold length correlation 3) Development of fuel bundle CHF prediction methodology base on tube CHF prediction models. - Development of bundle CHF prediction methodology using correction factor. 11 refs., 134 figs., 25 tabs. (Author)

  10. BWR 9 X 9 Fuel Assembly Thermal-Hydraulic Tests (2): Hydraulic Vibration Test

    International Nuclear Information System (INIS)

    Yoshiaki Tsukuda; Katsuichiro Kamimura; Toshiitsu Hattori; Akira Tanabe; Noboru Saito; Masahiko Warashina; Yuji Nishino

    2002-01-01

    Nuclear Power Engineering Corporation (NUPEC) conducted thermal-hydraulic projects for verification of thermal-hydraulic design reliability for BWR high-burnup 8 x 8 and 9 x 9 fuel assemblies, entrusted by the Ministry of Economy, Trade and Industry (METI). As a part of the NUPEC thermal-hydraulic projects, hydraulic vibration tests using full-scale test assemblies simulating 9 x 9 fuel assemblies were carried out to evaluate BWR fuel integrity. The test data were applied to development of a new correlation for the estimation of fuel rod vibration amplitude. (authors)

  11. Periodic Hydraulic Testing for Discerning Fracture Network Connections

    Science.gov (United States)

    Becker, M.; Le Borgne, T.; Bour, O.; Guihéneuf, N.; Cole, M.

    2015-12-01

    Discrete fracture network (DFN) models often predict highly variable hydraulic connections between injection and pumping wells used for enhanced oil recovery, geothermal energy extraction, and groundwater remediation. Such connections can be difficult to verify in fractured rock systems because standard pumping or pulse interference tests interrogate too large a volume to pinpoint specific connections. Three field examples are presented in which periodic hydraulic tests were used to obtain information about hydraulic connectivity in fractured bedrock. The first site, a sandstone in New York State, involves only a single fracture at a scale of about 10 m. The second site, a granite in Brittany, France, involves a fracture network at about the same scale. The third site, a granite/schist in the U.S. State of New Hampshire, involves a complex network at scale of 30-60 m. In each case periodic testing provided an enhanced view of hydraulic connectivity over previous constant rate tests. Periodic testing is particularly adept at measuring hydraulic diffusivity, which is a more effective parameter than permeability for identify the complexity of flow pathways between measurement locations. Periodic tests were also conducted at multiple frequencies which provides a range in the radius of hydraulic penetration away from the oscillating well. By varying the radius of penetration, we attempt to interrogate the structure of the fracture network. Periodic tests, therefore, may be uniquely suited for verifying and/or calibrating DFN models.

  12. Thermal Hydraulic Tests for Reactor Core Safety

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S. K.; Baek, W. P.; Chun, S. Y. (and others)

    2007-06-15

    The main objectives of the present project are to resolve the current issues of reactor core thermal hydraulics, to develop an advanced measurement and analytical techniques, and to perform reactor core safety verification tests. 6x6 reflood experiments, various heat transfer experiments using Freon, and experiments on the spacer grids effects on the post-dryout are carried out using spacer grids developed in Korea in order to resolve the current issues of the reactor core thermal hydraulics. In order to develop a reflood heat transfer model, the detailed reflood phenomena are visualized and measured using round tube and 2x2 rod bundle. A detailed turbulent mixing phenomenon for subchannels is measured using advanced measurement techniques such as LDV and PIV. MARS and MATRA codes developed in Korea are assessed, verified and improved using the obtained experimental data. Finally, a systematic quality assurance program and experimental data generation system has been constructed in order to increase the reliability of the experimental data.

  13. In-place testing of hydraulic snubbers

    International Nuclear Information System (INIS)

    Raymont, J.M. Jr.

    1986-01-01

    Over the last few years, an increasing number of utilities have implemented periodic in-service inspection (ISI) programs of their hydraulic snubbers. This thrust has caused the nuclear power industry to seek cost-effective means of testing hydraulic snubbers. This paper reviews the following aspects of in-place testing and develops a technical justification for its use as a viable alternative to test bench testing. (1) A detailed examination of how in-place testing works is provided. Discussed are the hydraulic principles, fluid flow paths, and snubber test setup. (2) A comparison of the test bench and in-place test machines is provided. The discussion reviews the similarities and differences between the two test methods as well as the test results. (3) The need for correlation of in-place test results back to test bench data with a snubber footprint is discussed. (4) The issue of partial load testing with extrapolation to full load testing is discussed and compared with full load testing. The hydraulic principles as well as the costs and benefits of partial load versus full load testing are compared. (5) In-place test machine technology is reviewed. The operating principles, accuracies, and limitations are presented. (6) Actual test data are provided and reviewed on a test-by-test basis. (7) Lessons learned from actual in-place test jobs are reviewed. (8) In-place test procedures and calibration practices are outlined to illustrate the nature of the required planning on the part of the utility

  14. Testing a hydraulic trait based model of stomatal control: results from a controlled drought experiment on aspen (Populus tremuloides, Michx.) and ponderosa pine (Pinus ponderosa, Douglas)

    Science.gov (United States)

    Love, D. M.; Venturas, M.; Sperry, J.; Wang, Y.; Anderegg, W.

    2017-12-01

    Modeling approaches for tree stomatal control often rely on empirical fitting to provide accurate estimates of whole tree transpiration (E) and assimilation (A), which are limited in their predictive power by the data envelope used to calibrate model parameters. Optimization based models hold promise as a means to predict stomatal behavior under novel climate conditions. We designed an experiment to test a hydraulic trait based optimization model, which predicts stomatal conductance from a gain/risk approach. Optimal stomatal conductance is expected to maximize the potential carbon gain by photosynthesis, and minimize the risk to hydraulic transport imposed by cavitation. The modeled risk to the hydraulic network is assessed from cavitation vulnerability curves, a commonly measured physiological trait in woody plant species. Over a growing season garden grown plots of aspen (Populus tremuloides, Michx.) and ponderosa pine (Pinus ponderosa, Douglas) were subjected to three distinct drought treatments (moderate, severe, severe with rehydration) relative to a control plot to test model predictions. Model outputs of predicted E, A, and xylem pressure can be directly compared to both continuous data (whole tree sapflux, soil moisture) and point measurements (leaf level E, A, xylem pressure). The model also predicts levels of whole tree hydraulic impairment expected to increase mortality risk. This threshold is used to estimate survivorship in the drought treatment plots. The model can be run at two scales, either entirely from climate (meteorological inputs, irrigation) or using the physiological measurements as a starting point. These data will be used to study model performance and utility, and aid in developing the model for larger scale applications.

  15. Thermal hydraulic model validation for HOR mixed core fuel management

    International Nuclear Information System (INIS)

    Gibcus, H.P.M.; Vries, J.W. de; Leege, P.F.A. de

    1997-01-01

    A thermal-hydraulic core management model has been developed for the Hoger Onderwijsreactor (HOR), a 2 MW pool-type university research reactor. The model was adopted for safety analysis purposes in the framework of HEU/LEU core conversion studies. It is applied in the thermal-hydraulic computer code SHORT (Steady-state HOR Thermal-hydraulics) which is presently in use in designing core configurations and for in-core fuel management. An elaborate measurement program was performed for establishing the core hydraulic characteristics for a variety of conditions. The hydraulic data were obtained with a dummy fuel element with special equipment allowing a.o. direct measurement of the true core flow rate. Using these data the thermal-hydraulic model was validated experimentally. The model, experimental tests, and model validation are discussed. (author)

  16. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    International Nuclear Information System (INIS)

    Kerschberger, P; Gehrer, A

    2010-01-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  17. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    Science.gov (United States)

    Kerschberger, P.; Gehrer, A.

    2010-08-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  18. Hydraulic Apparatus for Mechanical Testing of Nuts

    Science.gov (United States)

    Hinkel, Todd J.; Dean, Richard J.; Hacker, Scott C.; Harrington, Douglas W.; Salazar, Frank

    2004-01-01

    The figure depicts an apparatus for mechanical testing of nuts. In the original application for which the apparatus was developed, the nuts are of a frangible type designed for use with pyrotechnic devices in spacecraft applications in which there are requirements for rapid, one-time separations of structures that are bolted together. The apparatus can also be used to test nonfrangible nuts engaged without pyrotechnic devices. This apparatus was developed to replace prior testing systems that were extremely heavy and immobile and characterized by long setup times (of the order of an hour for each nut to be tested). This apparatus is mobile, and the setup for each test can now be completed in about five minutes. The apparatus can load a nut under test with a static axial force of as much as 6.8 x 10(exp 5) lb (3.0 MN) and a static moment of as much as 8.5 x 10(exp 4) lb in. (9.6 x 10(exp 3) N(raised dot)m) for a predetermined amount of time. In the case of a test of a frangible nut, the pyrotechnic devices can be exploded to break the nut while the load is applied, in which case the breakage of the nut relieves the load. The apparatus can be operated remotely for safety during an explosive test. The load-generating portion of the apparatus is driven by low-pressure compressed air; the remainder of the apparatus is driven by 110-Vac electricity. From its source, the compressed air is fed to the apparatus through a regulator and a manually operated valve. The regulated compressed air is fed to a pneumatically driven hydraulic pump, which pressurizes oil in a hydraulic cylinder, thereby causing a load to be applied via a hydraulic nut (not to be confused with the nut under test). During operation, the hydraulic pressure is correlated with the applied axial load, which is verified by use of a load cell. Prior to operation, one end of a test stud (which could be an ordinary threaded rod or bolt) is installed in the hydraulic nut. The other end of the test stud passes

  19. Testing the skill of numerical hydraulic modeling to simulate spatiotemporal flooding patterns in the Logone floodplain, Cameroon

    Science.gov (United States)

    Fernández, Alfonso; Najafi, Mohammad Reza; Durand, Michael; Mark, Bryan G.; Moritz, Mark; Jung, Hahn Chul; Neal, Jeffrey; Shastry, Apoorva; Laborde, Sarah; Phang, Sui Chian; Hamilton, Ian M.; Xiao, Ningchuan

    2016-08-01

    Recent innovations in hydraulic modeling have enabled global simulation of rivers, including simulation of their coupled wetlands and floodplains. Accurate simulations of floodplains using these approaches may imply tremendous advances in global hydrologic studies and in biogeochemical cycling. One such innovation is to explicitly treat sub-grid channels within two-dimensional models, given only remotely sensed data in areas with limited data availability. However, predicting inundated area in floodplains using a sub-grid model has not been rigorously validated. In this study, we applied the LISFLOOD-FP hydraulic model using a sub-grid channel parameterization to simulate inundation dynamics on the Logone River floodplain, in northern Cameroon, from 2001 to 2007. Our goal was to determine whether floodplain dynamics could be simulated with sufficient accuracy to understand human and natural contributions to current and future inundation patterns. Model inputs in this data-sparse region include in situ river discharge, satellite-derived rainfall, and the shuttle radar topography mission (SRTM) floodplain elevation. We found that the model accurately simulated total floodplain inundation, with a Pearson correlation coefficient greater than 0.9, and RMSE less than 700 km2, compared to peak inundation greater than 6000 km2. Predicted discharge downstream of the floodplain matched measurements (Nash-Sutcliffe efficiency of 0.81), and indicated that net flow from the channel to the floodplain was modeled accurately. However, the spatial pattern of inundation was not well simulated, apparently due to uncertainties in SRTM elevations. We evaluated model results at 250, 500 and 1000-m spatial resolutions, and found that results are insensitive to spatial resolution. We also compared the model output against results from a run of LISFLOOD-FP in which the sub-grid channel parameterization was disabled, finding that the sub-grid parameterization simulated more realistic

  20. Reactor Thermal Hydraulic Numerical Calculation And Modeling

    International Nuclear Information System (INIS)

    Duong Ngoc Hai; Dang The Ba

    2008-01-01

    In the paper the results of analysis of thermal hydraulic state models using the numerical codes such as COOLOD, EUREKA and RELAP5 for simulation of the reactor thermal hydraulic states are presented. The calculations, analyses of reactor thermal hydraulic state and safety were implemented using different codes. The received numerical results, which were compared each to other, to experiment measurement of Dalat (Vietnam) research reactor and published results, show their appropriateness and capacity for analyses of different appropriate cases. (author)

  1. Kuala Kemaman hydraulic model study

    International Nuclear Information System (INIS)

    Abdul Kadir Ishak

    2005-01-01

    There The problems facing the area of Kuala Kemaman are siltation and erosion at shoreline. The objectives of study are to assess the best alignment of the groyne alignment, to ascertain the most stable shoreline regime and to investigate structural measures to overcome the erosion. The scope of study are data collection, wave analysis, hydrodynamic simulation and sediment transport simulation. Numerical models MIKE 21 are used - MIKE 21 NSW, for wind-wave model, which describes the growth, decay and transformation of wind-generated waves and swell in nearshore areas. The study takes into account effects of refraction and shoaling due to varying depth, energy dissipation due to bottom friction and wave breaking, MIKE 21 HD - modelling system for 2D free-surface flow which to stimulate the hydraulics phenomena in estuaries, coastal areas and seas. Predicted tidal elevation and waves (radiation stresses) are considered into study while wind is not considered. MIKE 21 ST - the system that calculates the rates of non-cohesive (sand) sediment transport for both pure content and combined waves and current situation

  2. A Combined Hydrological and Hydraulic Model for Flood Prediction in Vietnam Applied to the Huong River Basin as a Test Case Study

    Directory of Open Access Journals (Sweden)

    Dang Thanh Mai

    2017-11-01

    Full Text Available A combined hydrological and hydraulic model is presented for flood prediction in Vietnam. This model is applied to the Huong river basin as a test case study. Observed flood flows and water surface levels of the 2002–2005 flood seasons are used for model calibration, and those of the 2006–2007 flood seasons are used for validation of the model. The physically based distributed hydrologic model WetSpa is used for predicting the generation and propagation of flood flows in the mountainous upper sub-basins, and proves to predict flood flows accurately. The Hydrologic Engineering Center River Analysis System (HEC-RAS hydraulic model is applied to simulate flood flows and inundation levels in the downstream floodplain, and also proves to predict water levels accurately. The predicted water profiles are used for mapping of inundations in the floodplain. The model may be useful in developing flood forecasting and early warning systems to mitigate losses due to flooding in Vietnam.

  3. Experimental-based Modelling and Simulation of Water Hydraulic Mechatronics Test Facilities for Motion Control and Operation in Environmental Sensitive Applications` Areas

    DEFF Research Database (Denmark)

    Conrad, Finn; Pobedza, J.; Sobczyk, A.

    2003-01-01

    The paper presents experimental-based modelling, simulation, analysis and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. The contributions includes results from on-going research projects on fluid power and mechatronics based on tap water hydraulic...

  4. Analysis of in-R12 CHF data: influence of hydraulic diameter and heating length; test of Weisman boiling crisis model

    International Nuclear Information System (INIS)

    Czop, V.; Herer, C.; Souyri, A.; Garnier, J.

    1993-09-01

    In order to progress on the comprehensive modelling of the boiling crisis phenomenon, Electricite de France (EDF), Commissariat a l'Energie Atomique (CEA) and FRAMATOME have set up experimental programs involving in-R12 tests: the EDF APHRODITE program and the CEA-EDF-FRAMATOME DEBORA program. The first phase in these programs aims to acquire critical heat flux (CHF) data banks, within large thermal-hydraulic parameter ranges, both in cylindrical and annular configurations, and with different hydraulic diameters and heating lengths. Actually, three data banks have been considered in the analysis, all of them concerning in-R12 round tube tests: - the APHRODITE data bank, obtained at EDF with a 13 mn inside diameter, - the DEBORA data bank, obtained at CEA with a 19.2 mm inside diameter, - the KRISTA data bank, obtained at KfK with a 8 mm inside diameter. The analysis was conducted using CHF correlations and with the help of an advanced mathematical tool using pseudo-cubic thin plate type Spline functions. Two conclusions were drawn: -no influence of the heating length on our CHF results, - the influence of the diameter on the CHF cannot be simply expressed by an exponential function of this parameter, as thermal-hydraulic parameters also have an influence. Some calculations with Weisman and Pei theoretical boiling crisis model have been compared to experimental values: fairly good agreement was obtained, but further study must focus on improving the modelling of the influence of pressure and mass velocity. (authors). 12 figs., 4 tabs., 21 refs

  5. Analysis of slug tests in formations of high hydraulic conductivity.

    Science.gov (United States)

    Butler, James J; Garnett, Elizabeth J; Healey, John M

    2003-01-01

    A new procedure is presented for the analysis of slug tests performed in partially penetrating wells in formations of high hydraulic conductivity. This approach is a simple, spreadsheet-based implementation of existing models that can be used for analysis of tests from confined or unconfined aquifers. Field examples of tests exhibiting oscillatory and nonoscillatory behavior are used to illustrate the procedure and to compare results with estimates obtained using alternative approaches. The procedure is considerably simpler than recently proposed methods for this hydrogeologic setting. Although the simplifications required by the approach can introduce error into hydraulic-conductivity estimates, this additional error becomes negligible when appropriate measures are taken in the field. These measures are summarized in a set of practical field guidelines for slug tests in highly permeable aquifers.

  6. Lower Monumental Spillway Hydraulic Model Study

    National Research Council Canada - National Science Library

    Wilhelms, Steven

    2003-01-01

    A 1:40 Froudian Scale model was used to investigate the hydraulic performance of the Lower Monumental Dam spillway, stilling basin, and tailrace for dissolved gas reduction and stilling basin apron scour...

  7. Fabrication and testing of an energy-harvesting hydraulic damper

    International Nuclear Information System (INIS)

    Li, Chuan; Tse, Peter W

    2013-01-01

    Hydraulic dampers are widely used to dissipate energy during vibration damping. In this paper, an energy-harvesting hydraulic damper is proposed for collecting energy while simultaneously damping vibration. Under vibratory excitation, the flow of hydraulic oil inside the cylinder of the damper is converted into amplified rotation via a hydraulic motor, whose output shaft is connected to an electromagnetic generator capable of harvesting a large amount of energy. In this way, the vibration is damped by both oil viscosity and the operation of an electrical mechanism. An electromechanical model is presented to illustrate both the electrical and mechanical responses of the system. A three-stage identification approach is introduced to facilitate the model parameter identification using cycle-loading experiments. A prototype device is developed and characterized in a test rig. The maximum power harvested during the experiments was 435.1 W (m s −1 ) −1 , using a predefined harmonic excitation with an amplitude of 0.02 m, a frequency of 0.8 Hz, and an optimal resistance of 2 Ω. Comparison of the experimental and computational results confirmed the effectiveness of both the electromechanical model and the three-stage identification approach in realizing the proposed design. (paper)

  8. Review of computational thermal-hydraulic modeling

    International Nuclear Information System (INIS)

    Keefer, R.H.; Keeton, L.W.

    1995-01-01

    Corrosion of heat transfer tubing in nuclear steam generators has been a persistent problem in the power generation industry, assuming many different forms over the years depending on chemistry and operating conditions. Whatever the corrosion mechanism, a fundamental understanding of the process is essential to establish effective management strategies. To gain this fundamental understanding requires an integrated investigative approach that merges technology from many diverse scientific disciplines. An important aspect of an integrated approach is characterization of the corrosive environment at high temperature. This begins with a thorough understanding of local thermal-hydraulic conditions, since they affect deposit formation, chemical concentration, and ultimately corrosion. Computational Fluid Dynamics (CFD) can and should play an important role in characterizing the thermal-hydraulic environment and in predicting the consequences of that environment,. The evolution of CFD technology now allows accurate calculation of steam generator thermal-hydraulic conditions and the resulting sludge deposit profiles. Similar calculations are also possible for model boilers, so that tests can be designed to be prototypic of the heat exchanger environment they are supposed to simulate. This paper illustrates the utility of CFD technology by way of examples in each of these two areas. This technology can be further extended to produce more detailed local calculations of the chemical environment in support plate crevices, beneath thick deposits on tubes, and deep in tubesheet sludge piles. Knowledge of this local chemical environment will provide the foundation for development of mechanistic corrosion models, which can be used to optimize inspection and cleaning schedules and focus the search for a viable fix

  9. Origin of honeycombs: Testing the hydraulic and case hardening hypotheses

    Science.gov (United States)

    Bruthans, Jiří; Filippi, Michal; Slavík, Martin; Svobodová, Eliška

    2018-02-01

    Cavernous weathering (cavernous rock decay) is a global phenomenon, which occurs in porous rocks around the world. Although honeycombs and tafoni are considered to be the most common products of this complex process, their origin and evolution are as yet not fully understood. The two commonly assumed formation hypotheses - hydraulic and case hardening - were tested to elucidate the origin of honeycombs on sandstone outcrops in a humid climate. Mechanical and hydraulic properties of the lips (walls between adjacent pits) and backwalls (bottoms of pits) of the honeycombs were determined via a set of established and novel approaches. While the case hardening hypothesis was not supported by the determinations of either tensile strength, drilling resistance or porosity, the hydraulic hypothesis was clearly supported by field measurements and laboratory tests. Fluorescein dye visualization of capillary zone, vapor zone, and evaporation front upon their contact, demonstrated that the evaporation front reaches the honeycomb backwalls under low water flow rate, while the honeycomb lips remain dry. During occasional excessive water flow events, however, the evaporation front may shift to the lips, while the backwalls become moist as a part of the capillary zone. As the zone of evaporation corresponds to the zone of potential salt weathering, it is the spatial distribution of the capillary and vapor zones which dictates whether honeycombs are created or the rock surface is smoothed. A hierarchical model of factors related to the hydraulic field was introduced to obtain better insights into the process of cavernous weathering.

  10. Modeling and stability of electro-hydraulic servo of hydraulic excavator

    Science.gov (United States)

    Jia, Wenhua; Yin, Chenbo; Li, Guo; Sun, Menghui

    2017-11-01

    The condition of the hydraulic excavator is complicated and the working environment is bad. The safety and stability of the control system is influenced by the external factors. This paper selects hydraulic excavator electro-hydraulic servo system as the research object. A mathematical model and simulation model using AMESIM of servo system is established. Then the pressure and flow characteristics are analyzed. The design and optimization of electro-hydraulic servo system and its application in engineering machinery is provided.

  11. Verification Test of Hydraulic Performance for Reactor Coolant Pump

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Jun; Kim, Jae Shin; Ryu, In Wan; Ko, Bok Seong; Song, Keun Myung [Samjin Ind. Co., Seoul (Korea, Republic of)

    2010-01-15

    According to this project, basic design for prototype pump and model pump of reactor coolant pump and test facilities has been completed. Basic design for prototype pump to establish structure, dimension and hydraulic performance has been completed and through primary flow analysis by computational fluid dynamics(CFD), flow characteristics and hydraulic performance have been established. This pump was designed with mixed flow pump having the following design requirements; specific velocity(Ns); 1080.9(rpm{center_dot}m{sup 3}/m{center_dot}m), capacity; 3115m{sup 3}/h, total head ; 26.3m, pump speed; 1710rpm, pump efficiency; 77.0%, Impeller out-diameter; 349mm, motor output; 360kw, design pressure; 17MPaG. The features of the pump are leakage free due to no mechanical seal on the pump shaft which insures reactor's safety and law noise level and low vibration due to no cooling fan on the motor which makes eco-friendly product. Model pump size was reduced to 44% of prototype pump for the verification test for hydraulic performance of reactor coolant pump and was designed with mixed flow pump and canned motor having the following design requirements; specific speed(NS); 1060.9(rpm{center_dot}m{sup 3}/m{center_dot}m), capacity; 539.4m{sup 3}/h, total head; 21.0m, pump speed; 3476rpm, pump efficiency; 72.9%, Impeller out-diameter; 154mm, motor output; 55kw, design pressure; 1.0MPaG. The test facilities were designed for verification test of hydraulic performance suitable for pump performance test, homologous test, NPSH test(cavitation), cost down test and pressure pulsation test of inlet and outlet ports. Test tank was designed with testing capacity enabling up to 2000m{sup 3}/h and design pressure 1.0MPaG. Auxiliary pump was designed with centrifugal pump having capacity; 1100m{sup 3}/h, total head; 42.0m, motor output; 190kw

  12. INFORMATION-MEASURING TEST SYSTEM OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSIONS

    Directory of Open Access Journals (Sweden)

    I. V. Zhukovytskyy

    2015-08-01

    Full Text Available Purpose. The article describes the process of developing the information-measuring test system of diesel locomotives hydraulic transmission, which gives the possibility to obtain baseline data to conduct further studies for the determination of the technical condition of diesel locomotives hydraulic transmission. The improvement of factory technology of post-repair tests of hydraulic transmissions by automating the existing hydraulic transmission test stands according to the specifications of the diesel locomotive repair enterprises was analyzed. It is achieved based on a detailed review of existing foreign information-measuring test systems for hydraulic transmission of diesel locomotives, BelAZ earthmover, aircraft tug, slag car, truck, BelAZ wheel dozer, some brands of tractors, etc. The problem for creation the information-measuring test systems for diesel locomotive hydraulic transmission is being solved, starting in the first place from the possibility of automation of the existing test stand of diesel locomotives hydraulic transmission at Dnipropetrovsk Diesel Locomotive Repair Plant "Promteplovoz". Methodology. In the work the researchers proposed the method to create a microprocessor automated system of diesel locomotives hydraulic transmission stand testing in the locomotive plant conditions. It acts by justifying the selection of the necessary sensors, as well as the application of the necessary hardware and software for information-measuring systems. Findings. Based on the conducted analysis there was grounded the necessity of improvement the plant hydraulic transmission stand testing by creating a microprocessor testing system, supported by the experience of developing such systems abroad. Further research should be aimed to improve the accuracy and frequency of data collection by adopting the more modern and reliable sensors in tandem with the use of filtering software for electromagnetic and other interference. Originality. The

  13. Implications of the "observer effect" on modelling a long-term pumping test with hydraulically conductive boreholes in a discrete fracture network system.

    Science.gov (United States)

    Holton, D.; Frampton, A.; Cvetkovic, V.

    2006-12-01

    The Onkalo underground research facility for rock characterisation for nuclear waste disposal is located at Olkiluoto island, just off the Finnish coast in the Baltic Sea. Prior to the start of the excavation of the Onkalo facility, an extensive amount of hydraulic data has been collected during various pumping experiments from a large number of boreholes placed throughout an area of approximately 10 km2, reaching depths of 1000 meters below sea level. In particular, the hydraulic borehole data includes classical measurements of pressure, but also new measurements of flow rate and flow direction in boreholes (so called flow-logging). These measurements indicate large variations in heterogeneity and are a clear reflection of the discrete nature of the system. Here we present results from an ongoing project which aims to explore and asses the implications of these new flow-logging measurements to site descriptive modelling and modelling at performance assessment scales. The main challange of the first phase of this project is to obtain a greater understanding of a strongly heterogenious and anisotropic groundwater system in which open boreholes are located; that is, a system in which the observation boreholes themselves create new hydraulic conductive features of the groundwater system. The results presented are from recent hydraulic flow modelling simulations with a combined continuous porous media and discrete fracture network approach using a commercial finite-element software. An advantage of this approach is we may adapt a continuum mesh on the regional scale, were only a few conductive features are known, together with a local scale discrete fracture network approach, where detailed site-investigation has revealed a large amount of conductive features. Current findings indicate the system is sensitive to certain combinations of hydraulic features, and we quantify the significance of including these variations in terms of their implications for reduction of

  14. Critical review of hydraulic modeling on atmospheric heat dissipation

    International Nuclear Information System (INIS)

    Onishi, Y.; Brown, S.M.

    1977-01-01

    Objectives of this study were: to define the useful roles of hydraulic modeling in understanding the predicting atmospheric effects of heat dissipation systems; to assess the state-of-the-art of hydraulic modeling of atmospheric phenomena; to inventory potentially useful existing hydraulic modeling facilities both in the United States and abroad; and to scope hydraulic model studies to assist the assessment of atmospheric effects of nuclear energy centers

  15. Thermal-hydraulic posttest analysis for the ANL/MCTF 3600 model heat-exchanger water test under mixed convection

    International Nuclear Information System (INIS)

    Yang, C.I.; Sha, W.T.; Kasza, K.E.

    1982-01-01

    As a result of the uncertainties in the understanding of the influence of thermal-buoyancy effects on the flow and heat transfer in Liquid Metal Fast Breeder Reactor heat exchangers and steam generators under off-normal operating conditions, an extensive experimental program is being conducted at Argonne National Laboratory to eliminate these uncertainties. Concurrently, a parallel analytical effort is also being pursued to develop a three-dimensional transient computer code (COMMIX-IHX) to study and predict heat exchanger performance under mixed, forced, and free convection conditions. This paper presents computational results from a heat exchanger simulation and compares them with the results from a test case exhibiting strong thermal buoyancy effects. Favorable agreement between experiment and code prediction is obtained

  16. System Design and Performance Test of Hydraulic Intensifier

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Eui; Lee, Gi Chun [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Kim, Jae Hoon [Chungnam National University, Daejeon (Korea, Republic of)

    2010-07-15

    Components such as pressure vessel, hydraulic hose assembly, accumulator, hydraulic cylinder, hydraulic valve, pipe, etc., are tested under the impulse-pressure conditions prescribed in ISO and SAE standards. The impulse pressure test machine needs to have a high pressure, a precise control system and a long life. It should satisfy the requirements for fabrication of the impulse tester to generate ultra high pressure in the hydraulic system. In the impulse tester, a servo-valve control system is adopted; although the control application is convenient, it is expensive owing to the cost of developing the system. The type of the control system determines the pressure wave, which affects the components that are tested. In this study, the manufacturing process and the intensifier system design related to the flow, pressure, and the increasing rate of pressure are investigated. The results indicate the ultra high pressure waves in the system.

  17. Evolution of thermal-hydraulics testing in EBR-II

    International Nuclear Information System (INIS)

    Golden, G.H.; Planchon, H.P.; Sackett, J.I.; Singer, R.M.

    1987-01-01

    A thermal-hydraulics testing and modeling program has been underway at the Experimental Breeder Reactor-II (EBR-II) for 12 years. This work culminated in two tests of historical importance to commercial nuclear power, a loss of flow without scram and a loss of heat sink wihout scram, both from 100% initial power. These tests showed that natural processes will shut EBR-II down and maintain cooling without automatic control rod action or operator intervention. Supporting analyses indicate that these results are characteristic of a range of sizes of liquid metal cooled reactors (LMRs), if these reactors use metal driver fuel. This type of fuel is being developed as part of the Integral Fast Reactor Program at Argonne National Laboratory. Work is now underway at EBR-II to exploit the inherent safety of metal-fueled LMRs with regard to development of improved plant control strategies. (orig.)

  18. Design of The Test Stand for Hydraulic Active Heave Compensation System

    Directory of Open Access Journals (Sweden)

    Jakubowski Arkadiusz

    2017-01-01

    Full Text Available The article presented here described the design of a test stand for hydraulic active heave compensation system. The simulation of sea waves is realized by the use of hydraulic cylinder. A hydraulic motor is used for sea waves compensation. The hydraulic cylinder and the hydraulic motor are controlled by electrohydraulic servo valves. For the measurements Authors used displacement sensor and incremental encoder. Control algorithm is implemented on the PLC. The performed tests included hydraulic actuator and hydraulic motor step responses.

  19. Modeling multidomain hydraulic properties of shrink-swell soils

    Science.gov (United States)

    Stewart, Ryan D.; Abou Najm, Majdi R.; Rupp, David E.; Selker, John S.

    2016-10-01

    Shrink-swell soils crack and become compacted as they dry, changing properties such as bulk density and hydraulic conductivity. Multidomain models divide soil into independent realms that allow soil cracks to be incorporated into classical flow and transport models. Incongruously, most applications of multidomain models assume that the porosity distributions, bulk density, and effective saturated hydraulic conductivity of the soil are constant. This study builds on a recently derived soil shrinkage model to develop a new multidomain, dual-permeability model that can accurately predict variations in soil hydraulic properties due to dynamic changes in crack size and connectivity. The model only requires estimates of soil gravimetric water content and a minimal set of parameters, all of which can be determined using laboratory and/or field measurements. We apply the model to eight clayey soils, and demonstrate its ability to quantify variations in volumetric water content (as can be determined during measurement of a soil water characteristic curve) and transient saturated hydraulic conductivity, Ks (as can be measured using infiltration tests). The proposed model is able to capture observed variations in Ks of one to more than two orders of magnitude. In contrast, other dual-permeability models assume that Ks is constant, resulting in the potential for large error when predicting water movement through shrink-swell soils. Overall, the multidomain model presented here successfully quantifies fluctuations in the hydraulic properties of shrink-swell soil matrices, and are suitable for use in physical flow and transport models based on Darcy's Law, the Richards Equation, and the advection-dispersion equation.

  20. Determination of hydraulic properties of unsaturated soil via inverse modeling

    International Nuclear Information System (INIS)

    Kodesova, R.

    2004-01-01

    The method for determining the hydraulic properties of unsaturated soil with inverse modeling is presented. A modified cone penetrometer has been designed to inject water into the soil through a screen, and measure the progress of the wetting front with two tensiometer rings positioned above the screen. Cumulative inflow and pressure head readings are analyzed to obtain estimates of the hydraulic parameters describing K(h) and θ(h). Optimization results for tests at one side are used to demonstrate the possibility to evaluate either the wetting branches of the soil hydraulic properties, or the wetting and drying curves simultaneously, via analysis of different parts of the experiment. The optimization results are compared to the results of standard laboratory and field methods. (author)

  1. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Baek, Won Pil; Song, C. H.; Kim, Y. S.

    2007-02-01

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform the tests for design, operation, and safety regulation of pressurized water reactors. In the first phase of this project (1997.8∼2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished. In the second phase (2002.4∼2005.2), an optimized design of the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) was established and the construction of the facility was almost completed. In the third phase (2005.3∼2007.2), the construction and commission tests of the ATLAS are to be completed and some first-phase tests are to be conducted

  2. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baek, W. P.; Song, C. H.; Kim, Y. S. and others

    2005-02-15

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8{approx}2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4{approx}2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure.

  3. Factory Acceptance Test Procedure Westinghouse 100 ton Hydraulic Trailer

    International Nuclear Information System (INIS)

    Aftanas, B.L.

    1994-01-01

    This Factory Acceptance Test Procedure (FAT) is for the Westinghouse 100 Ton Hydraulic Trailer. The trailer will be used for the removal of the 101-SY pump. This procedure includes: safety check and safety procedures; pre-operation check out; startup; leveling trailer; functional/proofload test; proofload testing; and rolling load test

  4. Laboratory tests of hydraulic fracturing and swell healing

    DEFF Research Database (Denmark)

    Thunbo, Christensen Claes; Foged, Christensen Helle; Foged, Niels

    1998-01-01

    New laboratory test set-ups and test procedures are described - for testing the formation of hydraulically induced fractures as well as the potential for subsequent fracture closurefrom the relase of a swelling potential. The main purpose with the tests is to provide information on fracturing str...

  5. Engineered Barrier System Thermal-Hydraulic-Chemical Column Test Report

    International Nuclear Information System (INIS)

    W.E. Lowry

    2001-01-01

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M and O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01

  6. A Computational Model of Hydraulic Volume Displacement Drive

    Directory of Open Access Journals (Sweden)

    V. N. Pil'gunov

    2014-01-01

    Full Text Available The paper offers a computational model of industrial-purpose hydraulic drive with two hydraulic volume adjustable working chamber machines (pump and motor. Adjustable pump equipped with the pressure control unit can be run together with several adjustable hydraulic motors on the principle of three-phase hydraulic socket-outlet with high-pressure lines, drain, and drainage system. The paper considers the pressure-controlled hydrostatic transmission with hydraulic motor as an output link. It shows a possibility to create a saving hydraulic drive using a functional tie between the adjusting parameters of the pump and hydraulic motor through the pressure difference, torque, and angular rate of the hydraulic motor shaft rotation. The programmable logic controller can implement such tie. The Coulomb and viscous frictions are taken into consideration when developing a computational model of the hydraulic volume displacement drive. Discharge balance considers external and internal leakages in equivalent clearances of hydraulic machines, as well as compression loss volume caused by hydraulic fluid compressibility and deformation of pipe walls. To correct dynamic properties of hydraulic drive, the paper offers that in discharge balance are included the additional regulated external leakages in the open circuit of hydraulic drive and regulated internal leakages in the closed-loop circuit. Generalized differential equations having functional multipliers and multilinked nature have been obtained to describe the operation of hydraulic positioning and speed drive with two hydraulic volume adjustable working chamber machines. It is shown that a proposed computational model of hydraulic drive can be taken into consideration in development of LS («Load-Sensing» drives, in which the pumping pressure is tuned to the value required for the most loaded slave motor to overcome the load. Results attained can be used both in designing the industrial-purpose heavy

  7. Multiphase flow models for hydraulic fracturing technology

    Science.gov (United States)

    Osiptsov, Andrei A.

    2017-10-01

    The technology of hydraulic fracturing of a hydrocarbon-bearing formation is based on pumping a fluid with particles into a well to create fractures in porous medium. After the end of pumping, the fractures filled with closely packed proppant particles create highly conductive channels for hydrocarbon flow from far-field reservoir to the well to surface. The design of the hydraulic fracturing treatment is carried out with a simulator. Those simulators are based on mathematical models, which need to be accurate and close to physical reality. The entire process of fracture placement and flowback/cleanup can be conventionally split into the following four stages: (i) quasi-steady state effectively single-phase suspension flow down the wellbore, (ii) particle transport in an open vertical fracture, (iii) displacement of fracturing fluid by hydrocarbons from the closed fracture filled with a random close pack of proppant particles, and, finally, (iv) highly transient gas-liquid flow in a well during cleanup. The stage (i) is relatively well described by the existing hydralics models, while the models for the other three stages of the process need revisiting and considerable improvement, which was the focus of the author’s research presented in this review paper. For stage (ii), we consider the derivation of a multi-fluid model for suspension flow in a narrow vertical hydraulic fracture at moderate Re on the scale of fracture height and length and also the migration of particles across the flow on the scale of fracture width. At the stage of fracture cleanaup (iii), a novel multi-continua model for suspension filtration is developed. To provide closure relationships for permeability of proppant packings to be used in this model, a 3D direct numerical simulation of single phase flow is carried out using the lattice-Boltzmann method. For wellbore cleanup (iv), we present a combined 1D model for highly-transient gas-liquid flow based on the combination of multi-fluid and

  8. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Jean-Baptiste [Calstart Incorporated, Pasadena, CA (United States)

    2014-03-07

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulic hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: -Performance, -Fleet deployment, -Maintenance, -Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles throughout the

  9. Thermo-Hydraulic Modelling of Buffer and Backfill

    International Nuclear Information System (INIS)

    Pintado, X.; Rautioaho, E.

    2013-09-01

    The temporal evolution of saturation, liquid pressure and temperature in the components of the engineered barrier system was studied using numerical methods. A set of laboratory tests was conducted to calibrate the parameters employed in the models. The modelling consisted of thermal, hydraulic and thermo-hydraulic analysis in which the significant thermo-hydraulic processes, parameters and features were identified. CODE B RIGHT was used for the finite element modelling and supplementary calculations were conducted with analytical methods. The main objective in this report is to improve understanding of the thermo-hydraulic processes and material properties that affect buffer behaviour in the Olkiluoto repository and to determine the parametric requirements of models for the accurate prediction of this behaviour. The analyses consisted of evaluating the influence of initial canister temperature and gaps in the buffer, and the role played by fractures and the rock mass located between fractures in supplying water for buffer and backfill saturation. In the thermo-hydraulic analysis, the primary processes examined were the effects of buffer drying near the canister on temperature evolution and the manner in which heat flow affects the buffer saturation process. Uncertainties in parameters and variations in the boundary conditions, modelling geometry and thermo-hydraulic phenomena were assessed with a sensitivity analysis. The material parameters, constitutive models, and assumptions made were carefully selected for all the modelling cases. The reference parameters selected for the simulations were compared and evaluated against laboratory measurements. The modelling results highlight the importance of understanding groundwater flow through the rock mass and from fractures in the rock in order to achieve reliable predictions regarding buffer saturation, since saturation times could range from a few years to tens of thousands of years depending on the hydrogeological

  10. Sensitivity study on hydraulic well testing inversion using simulated annealing

    International Nuclear Information System (INIS)

    Nakao, Shinsuke; Najita, J.; Karasaki, Kenzi

    1997-11-01

    For environmental remediation, management of nuclear waste disposal, or geothermal reservoir engineering, it is very important to evaluate the permeabilities, spacing, and sizes of the subsurface fractures which control ground water flow. Cluster variable aperture (CVA) simulated annealing has been used as an inversion technique to construct fluid flow models of fractured formations based on transient pressure data from hydraulic tests. A two-dimensional fracture network system is represented as a filled regular lattice of fracture elements. The algorithm iteratively changes an aperture of cluster of fracture elements, which are chosen randomly from a list of discrete apertures, to improve the match to observed pressure transients. The size of the clusters is held constant throughout the iterations. Sensitivity studies using simple fracture models with eight wells show that, in general, it is necessary to conduct interference tests using at least three different wells as pumping well in order to reconstruct the fracture network with a transmissivity contrast of one order of magnitude, particularly when the cluster size is not known a priori. Because hydraulic inversion is inherently non-unique, it is important to utilize additional information. The authors investigated the relationship between the scale of heterogeneity and the optimum cluster size (and its shape) to enhance the reliability and convergence of the inversion. It appears that the cluster size corresponding to about 20--40 % of the practical range of the spatial correlation is optimal. Inversion results of the Raymond test site data are also presented and the practical range of spatial correlation is evaluated to be about 5--10 m from the optimal cluster size in the inversion

  11. Sensitivity study on hydraulic well testing inversion using simulated annealing

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Shinsuke; Najita, J.; Karasaki, Kenzi

    1997-11-01

    For environmental remediation, management of nuclear waste disposal, or geothermal reservoir engineering, it is very important to evaluate the permeabilities, spacing, and sizes of the subsurface fractures which control ground water flow. Cluster variable aperture (CVA) simulated annealing has been used as an inversion technique to construct fluid flow models of fractured formations based on transient pressure data from hydraulic tests. A two-dimensional fracture network system is represented as a filled regular lattice of fracture elements. The algorithm iteratively changes an aperture of cluster of fracture elements, which are chosen randomly from a list of discrete apertures, to improve the match to observed pressure transients. The size of the clusters is held constant throughout the iterations. Sensitivity studies using simple fracture models with eight wells show that, in general, it is necessary to conduct interference tests using at least three different wells as pumping well in order to reconstruct the fracture network with a transmissivity contrast of one order of magnitude, particularly when the cluster size is not known a priori. Because hydraulic inversion is inherently non-unique, it is important to utilize additional information. The authors investigated the relationship between the scale of heterogeneity and the optimum cluster size (and its shape) to enhance the reliability and convergence of the inversion. It appears that the cluster size corresponding to about 20--40 % of the practical range of the spatial correlation is optimal. Inversion results of the Raymond test site data are also presented and the practical range of spatial correlation is evaluated to be about 5--10 m from the optimal cluster size in the inversion.

  12. Endurance Pump Test with MIL-PRF-83282 Hydraulic Fluid, Purified with Malabar Purifier

    National Research Council Canada - National Science Library

    Sharma, Shashi

    2004-01-01

    .... Endurance aircraft hydraulic pump tests under carefully controlled conditions were previously conducted using hydraulic fluid purified with a rotating-disk and vacuum type purifier, the portable...

  13. Acceptance test report for the Westinghouse 100 ton hydraulic trailer

    International Nuclear Information System (INIS)

    Barrett, R.A.

    1995-01-01

    The SY-101 Equipment Removal System 100 Ton Hydraulic Trailer was designed and built by KAMP Systems, Inc. Performance of the Acceptance Test Procedure at KAMP's facility in Ontario, California (termed Phase 1 in this report) was interrupted by discrepancies noted with the main hydraulic cylinder. The main cylinder was removed and sent to REMCO for repair while the trailer was sent to Lampson's facility in Pasco, Washington. The Acceptance Test Procedure was modified and performance resumed at Lampson (termed Phase 2 in this report) after receipt of the repaired cylinder. At the successful conclusion of Phase 2 testing the trailer was accepted as meeting all the performance criteria specified

  14. Hydraulic testing in granite using the sinusoidal variation of pressure

    International Nuclear Information System (INIS)

    Black, J.H.; Holmes, D.C.; Noy, D.J.

    1982-09-01

    Access to two boreholes at the Carwynnen test site in Cornwall enabled the trial of a number of innovative approaches to the hydrogeology of fractured crystalline rock. These methods ranged from the use of seisviewer data to measure the orientation of fractures to the use of the sinusoidal pressure technique to measure directional hydraulic diffusivity. The testing began with a short programme of site investigation consisting of borehole caliper and seisviewer logging followed by some single borehole hydraulic tests. The single borehole hydraulic testing was designed to assess whether the available boreholes and adjacent rock were suitable for testing using the sinusoidal method. The main testing methods were slug and pulse tests and were analysed using the fissured porous medium analysis proposed in Barker and Black (1983). Derived hydraulic conductivity (K) ranged from 2 x 10 -12 m/sec to 5 x 10 -7 m/sec with one near-surface zone of high K being perceived in both boreholes. The results were of the form which is typical of fractured rock and indicated a combination of high fracture frequency and permeable granite matrix. The results are described and discussed. (author)

  15. Overview of the ANL advanced LMR system thermal-hydraulic test program supporting both GE/PRISM and RI/SAFR

    International Nuclear Information System (INIS)

    Oras, J.J.; Kuzay, T.M.; Kasza, K.E.

    1988-01-01

    Descriptions of the ANL thermal-hydraulic water models of both the PRISM and SAFR reactors are presented, together with results from Phases I and II of the thermal-hydraulic test program. Phenomena discovered during these tests and modeling results are presented. Overall, these efforts demonstrate the acceptable thermal-hydraulic performance of both the PRISM and SAFR concepts

  16. Thermal-Hydraulic Tests for Reactor Core Safety

    International Nuclear Information System (INIS)

    Chun, Se Young; Chung, Moon Ki; Baek, Won Pil and others

    2005-04-01

    The reflood experiments for single rod annulus geometry have been performed to investigate the effect of spacer grid on thermal-hydraulics under reflood conditions. The reflood experimental loop for 6x6 rod bundle with a spacer grid developed in Korea has been provided. About 8000 data points for Post-CHF heat transfer have been obtained from the experiments About 1400 CHF data points for 3x3 Water and 5x5 Freon rod bundles have been obtained. The existing evaluation methodology for core safety under return-to-power conditions has been investigated using KAERI low flow CHF database. The hydraulic tests for turbulence mixing characteristics in subchannel of 5x5 rod bundle have been carried out using advanced measurement technique, LVD and the database for various spacer grids have been provided. In order to measure the turbulence mixing characteristics in details, the hydraulic loop with a magnified 5x5 rod bundle has been prepared. The database which was constructed through a systematic thermal hydraulic tests for the reflood phenomenon, CHF, Post-CHF is surely to be useful to the industry field, the regulation body and the development of thermal-hydraulic analysis code

  17. Development and industrial tests of the first LNG hydraulic turbine system in China

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2016-10-01

    Full Text Available The cryogenic hydraulic turbine can be used to replace the conventional J–T valve for LNG or mixed refrigerant throttling and depressurization in a natural gas liquefaction plant. This advanced technology is not only to enhance the efficiency of the liquefaction plant, but to usher a new trend in the development of global liquefaction technologies. China has over 136 liquefaction plants, but the cryogenic hydraulic turbines have not been deployed in industrial utilization. In addition, these turbines cannot be manufactured domestically. In this circumstance, through working on the key technologies for LNG hydraulic turbine process & control system development, hydraulic model optimization design, structure design and manufacturing, the first domestic cryogenic hydraulic turbine with a flow rate of 40 m3/h was developed to recover the pressure energy from the LNG of cold box. The turbine was installed in the CNOOC Zhuhai Natural Gas Liquefaction Plant for industrial tests under multiple working conditions, including start-stop, variable flow rates and variable rotation speeds. Test results show that the domestic LNG cryogenic hydraulic turbine has satisfactory mechanical and operational performances at low temperatures as specified in design. In addition, the process & control system and frequency-conversion power-generation system of the turbine system are designed properly to automatically and smoothly replace the existing LNG J–T valve. As a result, the domestic LNG cryogenic hydraulic turbine system can improve LNG production by an average of 2% and generate power of 8.3 kW.

  18. Use of Hydraulic Model for Water Loss Reduction

    OpenAIRE

    Mindaugas Rimeika; Anželika Jurkienė

    2016-01-01

    Hydraulic modeling is the modern way to apply world water engineering experience in every day practice. Hydraulic model is an effective tool in order to perform analysis of water supply system, optimization of its operation, assessment of system efficiency potential, evaluation of water network development, fire flow capabilities, energy saving opportunities and water loss reduction and ect. Hydraulic model shall include all possible engineering elements and devices allocated in a real water ...

  19. Modeling, Optimization & Control of Hydraulic Networks

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat

    2014-01-01

    . The nonlinear network model is derived based on the circuit theory. A suitable projection is used to reduce the state vector and to express the model in standard state-space form. Then, the controllability of nonlinear nonaffine hydraulic networks is studied. The Lie algebra-based controllability matrix is used......Water supply systems consist of a number of pumping stations, which deliver water to the customers via pipeline networks and elevated reservoirs. A huge amount of drinking water is lost before it reaches to end-users due to the leakage in pipe networks. A cost effective solution to reduce leakage...... in water network is pressure management. By reducing the pressure in the water network, the leakage can be reduced significantly. Also it reduces the amount of energy consumption in water networks. The primary purpose of this work is to develop control algorithms for pressure control in water supply...

  20. Hydraulic properties from pumping tests data of aquifers in Azare ...

    African Journals Online (AJOL)

    Pumping test data from twelve boreholes in Azare area were analysed to determine the hydraulic properties of the aquifers, and the availability of water to meet the conjugate demands of the increasing population. The values of the aquifer constants obtained from the Cooper-Jacob's non-equilibrium graphical method were ...

  1. Reactor numerical simulation and hydraulic test research

    International Nuclear Information System (INIS)

    Yang, L. S.

    2009-01-01

    In recent years, the computer hardware was improved on the numerical simulation on flow field in the reactor. In our laboratory, we usually use the Pro/e or UG commercial software. After completed topology geometry, ICEM-CFD is used to get mesh for computation. Exact geometrical similarity is maintained between the main flow paths of the model and the prototype, with the exception of the core simulation design of the fuel assemblies. The drive line system is composed of drive mechanism, guide bush assembly, fuel assembly and control rod assembly, and fitted with the rod level indicator and drive mechanism power device

  2. Hydraulic modelling at the Piedra del Aguila dam

    Energy Technology Data Exchange (ETDEWEB)

    Bruschin, J

    1985-01-01

    Piedra del Aguila is a major hydroelectric scheme in Argentina. Extensive tests, aimed to help and check the design of the main hydraulic structures, were run for more than two years on five models at scales from 1:20 to 1:130. High priority problems were identified as: the river diversion and closure; spillway capacity, chute flows, hydraulic jump sweepout, jet impact location and flow aeration; bottom outlet free surface flows, aeration, jet impact location and discharge capacity at various impact location and discharge capacity at various reservoir levels during impoundment; erosion-deposition pattern of alluvium and weathered rocks at jet impact locations, back-water effects and their prevention and/or elimination; and, vibration risks of the very large spillway crest taintergates, specifically suppression of air entraining vortices. Much attention is given to the prevention of cavitation. 12 references, 7 figures, 1 table.

  3. Comparison of empirical models and laboratory saturated hydraulic ...

    African Journals Online (AJOL)

    Numerous methods for estimating soil saturated hydraulic conductivity exist, which range from direct measurement in the laboratory to models that use only basic soil properties. A study was conducted to compare laboratory saturated hydraulic conductivity (Ksat) measurement and that estimated from empirical models.

  4. Thermal-hydraulic tests for reactor safety system

    International Nuclear Information System (INIS)

    Chun, Se Young; Chung, Moon Ki; Baek, Won Pil

    2002-05-01

    Tests for the safety depressurization system, Sparger adopted for the Korean next generation reactor, APR1400 are carried out for several geometries with the B and C (Blowdown and Condensation) facility in the condition of high temperature and pressure and with a small test facility in the condition of atmospheric temperature and pressure. Tests for the critical heat flux are performed with the RCS(Reactor Coolant System) facility as well as with the Freon CHF Loop in the condition of high temperature and pressure. The atmospheric temperature and pressure facility is utilized for development of the high standard thermal hydraulic measurement technology. The optical method is developed to measure the local thermal-hydraulic behavior for the single and two-phase boiling phenomena

  5. Acceptance test report for the Westinghouse 100 ton hydraulic trailer

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, R.A.

    1995-03-06

    The SY-101 Equipment Removal System 100 Ton Hydraulic Trailer was designed and built by KAMP Systems, Inc. Performance of the Acceptance Test Procedure at KAMP`s facility in Ontario, California (termed Phase 1 in this report) was interrupted by discrepancies noted with the main hydraulic cylinder. The main cylinder was removed and sent to REMCO for repair while the trailer was sent to Lampson`s facility in Pasco, Washington. The Acceptance Test Procedure was modified and performance resumed at Lampson (termed Phase 2 in this report) after receipt of the repaired cylinder. At the successful conclusion of Phase 2 testing the trailer was accepted as meeting all the performance criteria specified.

  6. Views on the future of thermal hydraulic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, M. [Purdue Univ., West Lafayette, IN (United States)

    1997-07-01

    It is essential for the U.S. NRC to sustain the highest level of the thermal-hydraulics and reactor safety research expertise and continuously improve their accident analysis capability. Such expertise should span over four different areas which are strongly related to each other. These are: (1) Reactor Safety Code Development, (2) Two-phase Flow Modeling, (3) Instrumentation and Fundamental Experimental Research, and (4) Separate Effect and Integral Test. The NRC is already considering a new effort in the area of advanced thermal-hydraulics effort. Its success largely depends on the availability of a significantly improved two-phase flow formulation and constitutive relations supported by detailed experimental data. Therefore, it is recommended that the NRC start significant research efforts in the areas of two-phase flow modeling, instrumentation, basic and separate effect experiments which should be pursued systematically and with clearly defined objectives. It is desirable that some international program is developed in this area. This paper is concentrated on those items in the thermal-hydraulic area which eventually determine the quality of future accident analysis codes.

  7. Views on the future of thermal hydraulic modeling

    International Nuclear Information System (INIS)

    Ishii, M.

    1997-01-01

    It is essential for the U.S. NRC to sustain the highest level of the thermal-hydraulics and reactor safety research expertise and continuously improve their accident analysis capability. Such expertise should span over four different areas which are strongly related to each other. These are: (1) Reactor Safety Code Development, (2) Two-phase Flow Modeling, (3) Instrumentation and Fundamental Experimental Research, and (4) Separate Effect and Integral Test. The NRC is already considering a new effort in the area of advanced thermal-hydraulics effort. Its success largely depends on the availability of a significantly improved two-phase flow formulation and constitutive relations supported by detailed experimental data. Therefore, it is recommended that the NRC start significant research efforts in the areas of two-phase flow modeling, instrumentation, basic and separate effect experiments which should be pursued systematically and with clearly defined objectives. It is desirable that some international program is developed in this area. This paper is concentrated on those items in the thermal-hydraulic area which eventually determine the quality of future accident analysis codes

  8. Thermal-hydraulic analysis of PWR small assembly for irradiation test of CARR

    International Nuclear Information System (INIS)

    Yin Hao; Zou Yao; Liu Xingmin

    2015-01-01

    The thermal-hydraulic behaviors of the PWR 4 × 4 small assembly tested in the high temperature and high pressure loop of China Advanced Research Reactor were analyzed. The CFD method was used to carry out 3D simulation of the model, thus detailed thermal-hydraulic parameters were obtained. Firstly, the simplified model was simulated to give the 3D temperature and velocity distributions and analyze the heat transfer process. Then the whole scale small assembly model was simulated and the simulation results were compared with those of simplified rod bundle model. Its flow behavior was studied and flow mixing characteristics of the grids were analyzed, and the mixing factor of the grid was calculated and can be used for further thermal-hydraulic study. It is shown that the highest temperature of the fuel rod meets the design limit and the mixing effect of the grid is obvious. (authors)

  9. Exploratory use of periodic pumping tests for hydraulic characterization of faults

    Science.gov (United States)

    Cheng, Yan; Renner, Joerg

    2018-01-01

    Periodic pumping tests were conducted using a double-packer probe placed at four different depth levels in borehole GDP-1 at Grimselpass, Central Swiss Alps, penetrating a hydrothermally active fault. The tests had the general objective to explore the potential of periodic testing for hydraulic characterization of faults, representing inherently complex heterogeneous hydraulic features that pose problems for conventional approaches. Site selection reflects the specific question regarding the value of this test type for quality control of hydraulic stimulations of potential geothermal reservoirs. The performed evaluation of amplitude ratio and phase shift between pressure and flow rate in the pumping interval employed analytical solutions for various flow regimes. In addition to the previously presented 1-D and radial-flow models, we extended the one for radial flow in a system of concentric shells with varying hydraulic properties and newly developed one for bilinear flow. In addition to these injectivity analyses, we pursued a vertical-interference analysis resting on observed amplitude ratio and phase shift between the periodic pressure signals above or below packers and in the interval by numerical modeling of the non-radial-flow situation. When relying on the same model the order of magnitude of transmissivity values derived from the analyses of periodic tests agrees with that gained from conventional hydraulic tests. The field campaign confirmed several advantages of the periodic testing, for example, reduced constraints on testing time relative to conventional tests since a periodic signal can easily be separated from changing background pressure by detrending and Fourier transformation. The discrepancies between aspects of the results from the periodic tests and the predictions of the considered simplified models indicate a hydraulically complex subsurface at the drill site that exhibits also hydromechanical features in accord with structural information

  10. Hydraulic root water uptake models: old concerns and new insights

    Science.gov (United States)

    Couvreur, V.; Carminati, A.; Rothfuss, Y.; Meunier, F.; Vanderborght, J.; Javaux, M.

    2014-12-01

    Root water uptake (RWU) affects underground water dynamics, with consequences on plant water availability and groundwater recharge. Even though hydrological and climate models are sensitive to RWU parameters, no consensus exists on the modelling of this process. Back in the 1940ies, Van Den Honert's catenary approach was the first to investigate the use of connected hydraulic resistances to describe water flow in whole plants. However concerns such as the necessary computing when architectures get complex made this approach premature. Now that computing power increased dramatically, hydraulic RWU models are gaining popularity, notably because they naturally produce observed processes like compensatory RWU and hydraulic redistribution. Yet major concerns remain. Some are more fundamental: according to hydraulic principles, plant water potential should equilibrate with soil water potential when the plant does not transpire, which is not a general observation when using current definitions of bulk or average soil water potential. Other concerns regard the validation process: water uptake distribution is not directly measurable, which makes it hard to demonstrate whether or not hydraulic models are more accurate than other models. Eventually parameterization concerns exist: root hydraulic properties are not easily measurable, and would even fluctuate on an hourly basis due to processes like aquaporin gating. While offering opportunities to validate hydraulic RWU models, newly developed observation techniques also make us realize the increasing complexity of processes involved in soil-plant hydrodynamics, such as the change of rhizosphere hydraulic properties with soil drying. Surprisingly, once implemented into hydraulic models, these processes do not necessarily translate into more complex emerging behavior at plant scale, and might justify the use of simplified representations of the soil-plant hydraulic system.

  11. Aespoe Hard Rock Laboratory. Backfill and Plug test. Hydraulic testing of core drilled boreholes in the ZEDEX drift

    Energy Technology Data Exchange (ETDEWEB)

    Ludvigson, Jan-Erik; Nordqvist, Rune; Ekman, Lennart; Hansson, Kent (GEOSIGMA AB, Uppsala (Sweden))

    2009-07-01

    The present report documents the performance and results of hydraulic testing in selected core boreholes in the Zedex drift. The holes will be used as rock instrumentation boreholes during the Backfill and Plug Test at Aespoe HRL. The testing involves both 1 m long boreholes with 56 mm diameter as well as longer boreholes c. 5 m, 8 m and 25 m long with 56 mm or 76 mm diameter. Only single-hole tests were performed. The tests were carried out as short-time constant head injection tests since all boreholes tested (except one) were non-flowing before tests. The injection phase was followed by a pressure recovery phase. Furthermore, the tests were carried out as single-packer tests. A specially designed test system was used for the tests. The main evaluation of the tests was performed on data from the recovery phase by a new approach based on a non-linear regression technique combined with a flow simulation model (SUTRA). The tests in the 1 m-holes (testing the interval c. 0.3-0.7 m in the rock perpendicular to the tunnel face) show that the hydraulic conductivity of the superficial rock around the Zedex drift in general is low. However, during testing in some boreholes, visible leakage in the rock occurred through superficial fractures into the tunnel. These fractures were mainly located in the floor of the Zedex drift and are probably blast-induced. These fractures have a high hydraulic conductivity. The tests in the longer boreholes show that the hydraulic conductivity further into the rock in general is below c. 1x10-10 m/s. Increased hydraulic conductivity (c.1.5x10-8 m/s) was only observed in the flowing borehole KXZSD8HL.

  12. Spatial variability of hydraulic conductivity of an unconfined sandy aquifer determined by a mini slug test

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Hinsby, Klaus; Christensen, Thomas Højlund

    1992-01-01

    The spatial variability of the hydraulic conductivity in a sandy aquifer has been determined by a mini slug test method. The hydraulic conductivity (K) of the aquifer has a geometric mean of 5.05 × 10−4 m s−1, and an overall variance of 1n K equal to 0.37 which corresponds quite well to the results...... obtained by two large scale tracer experiments performed in the aquifer. A geological model of the aquifer based on 31 sediment cores, proposed three hydrogeological layers in the aquifer concurrent with the vertical variations observed with respect to hydraulic conductivity. The horizontal correlation......, to be in the range of 0.3–0.5 m compared with a value of 0.42 m obtained in one of the tracer tests performed....

  13. Characterizing hydraulic fractures in shale gas reservoirs using transient pressure tests

    Directory of Open Access Journals (Sweden)

    Cong Wang

    2015-06-01

    This work presents an unconventional gas reservoir simulator and its application to quantify hydraulic fractures in shale gas reservoirs using transient pressure data. The numerical model incorporates most known physical processes for gas production from unconventional reservoirs, including two-phase flow of liquid and gas, Klinkenberg effect, non-Darcy flow, and nonlinear adsorption. In addition, the model is able to handle various types and scales of fractures or heterogeneity using continuum, discrete or hybrid modeling approaches under different well production conditions of varying rate or pressure. Our modeling studies indicate that the most sensitive parameter of hydraulic fractures to early transient gas flow through extremely low permeability rock is actually the fracture-matrix contacting area, generated by fracturing stimulation. Based on this observation, it is possible to use transient pressure testing data to estimate the area of fractures generated from fracturing operations. We will conduct a series of modeling studies and present a methodology using typical transient pressure responses, simulated by the numerical model, to estimate fracture areas created or to quantity hydraulic fractures with traditional well testing technology. The type curves of pressure transients from this study can be used to quantify hydraulic fractures in field application.

  14. Hydraulic Hybrid Fleet Vehicle Testing | Transportation Research | NREL

    Science.gov (United States)

    Hydraulic Hybrid Fleet Vehicle Evaluations Hydraulic Hybrid Fleet Vehicle Evaluations How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would -pressure reservoir to a high-pressure accumulator. When the vehicle accelerates, fluid in the high-pressure

  15. Soil hydraulic properties near saturation, an improved conductivity model

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Jacobsen, Ole Hørbye; Hansen, Søren

    2006-01-01

    of commonly used hydraulic conductivity models and give suggestions for improved models. Water retention and near saturated and saturated hydraulic conductivity were measured for a variety of 81 top and subsoils. The hydraulic conductivity models by van Genuchten [van Genuchten, 1980. A closed-form equation...... for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898.] (vGM) and Brooks and Corey, modified by Jarvis [Jarvis, 1991. MACRO—A Model of Water Movement and Solute Transport in Macroporous Soils. Swedish University of Agricultural Sciences. Department of Soil Sciences....... Optimising a matching factor (k0) improved the fit considerably whereas optimising the l-parameter in the vGM model improved the fit only slightly. The vGM was improved with an empirical scaling function to account for the rapid increase in conductivity near saturation. Using the improved models...

  16. Thermal hydraulic tests for reactor safety system -Research on the improvement of nuclear safety-

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Park, Chun Kyeong; Yang, Seon Kyu; Chung, Chang Hwan; Chun, Shee Yeong; Song, Cheol Hwa; Chun, Hyeong Gil; Chang, Seok Kyu; Chung, Heung Joon; Won, Soon Yeon; Cho, Yeong Ro; Kim, Bok Deuk; Min, Kyeong Ho

    1994-07-01

    The present research aims at the development of the thermal hydraulic verification test technology for the reactor safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. (Author)

  17. Endurance Pump Tests With Fresh and Purified MIL-PRF-83282 Hydraulic Fluid

    National Research Council Canada - National Science Library

    Sharma, Shashi

    1999-01-01

    .... Two endurance pump tests were conducted with F-16 aircraft hydraulic pumps, using both fresh and purified MIL-PRF-83282 hydraulic fluid, to determine if fluid purification had any adverse effect on pump life...

  18. Stochastic joint inversion of hydrogeophysical data for salt tracer test monitoring and hydraulic conductivity imaging

    Science.gov (United States)

    Jardani, A.; Revil, A.; Dupont, J. P.

    2013-02-01

    The assessment of hydraulic conductivity of heterogeneous aquifers is a difficult task using traditional hydrogeological methods (e.g., steady state or transient pumping tests) due to their low spatial resolution. Geophysical measurements performed at the ground surface and in boreholes provide additional information for increasing the resolution and accuracy of the inverted hydraulic conductivity field. We used a stochastic joint inversion of Direct Current (DC) resistivity and self-potential (SP) data plus in situ measurement of the salinity in a downstream well during a synthetic salt tracer experiment to reconstruct the hydraulic conductivity field between two wells. The pilot point parameterization was used to avoid over-parameterization of the inverse problem. Bounds on the model parameters were used to promote a consistent Markov chain Monte Carlo sampling of the model parameters. To evaluate the effectiveness of the joint inversion process, we compared eight cases in which the geophysical data are coupled or not to the in situ sampling of the salinity to map the hydraulic conductivity. We first tested the effectiveness of the inversion of each type of data alone (concentration sampling, self-potential, and DC resistivity), and then we combined the data two by two. We finally combined all the data together to show the value of each type of geophysical data in the joint inversion process because of their different sensitivity map. We also investigated a case in which the data were contaminated with noise and the variogram unknown and inverted stochastically. The results of the inversion revealed that incorporating the self-potential data improves the estimate of hydraulic conductivity field especially when the self-potential data were combined to the salt concentration measurement in the second well or to the time-lapse cross-well electrical resistivity data. Various tests were also performed to quantify the uncertainty in the inverted hydraulic conductivity

  19. Fundamental test results of a hydraulic free piston internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Hibi, A.; Ito, T. [Toyohashi University of Technology (Japan). Dept. of Mechanical Engineering

    2004-10-01

    The hydraulic free piston internal combustion engine pump that has been constructed and tested in this work is the opposed piston, two-stroke cycle, uniflow scavenging, direct fuel injection, and compression ignition type. The opposed engine pistons reciprocate the hydraulic pump pistons directly and the hydraulic power to be used in the hydraulic motors is generated. The hydraulic pressure generated is substantially constant. The opposed free pistons rest after every gas cycle and hydraulic power is continuously supplied by a hydraulic accumulator during the free pistons' rest. The smaller the hydraulic flow output, the longer the duration of the rest. Every gas cycle is performed under a fixed working condition independent of hydraulic power output. The test results in this work indicate that the number of gas cycles per second of the free piston engine pump is directly proportional to hydraulic flow output. The opposed free pistons operate every 53.2 s when hydraulic flow output is 1.02 cm{sup 3}/s; at that time hydraulic power output is 0.0124 kW. Hydraulic thermal efficiency, the ratio of hydraulic energy produced to fuel energy consumed, has been measured in the range 0.0124 kW to 4.88 kW of hydraulic power output and it has become clear that hydraulic thermal efficiency in this range is constant. The measured value of hydraulic thermal efficiency is 31 per cent. It has been demonstrated that hydraulic thermal efficiency is kept constant even if hydraulic power output is very small. (author)

  20. A mangrove creek restoration plan utilizing hydraulic modeling.

    Science.gov (United States)

    Marois, Darryl E; Mitsch, William J

    2017-11-01

    Despite the valuable ecosystem services provided by mangrove ecosystems they remain threatened around the globe. Urban development has been a primary cause for mangrove destruction and deterioration in south Florida USA for the last several decades. As a result, the restoration of mangrove forests has become an important topic of research. Using field sampling and remote-sensing we assessed the past and present hydrologic conditions of a mangrove creek and its connected mangrove forest and brackish marsh systems located on the coast of Naples Bay in southwest Florida. We concluded that the hydrology of these connected systems had been significantly altered from its natural state due to urban development. We propose here a mangrove creek restoration plan that would extend the existing creek channel 1.1 km inland through the adjacent mangrove forest and up to an adjacent brackish marsh. We then tested the hydrologic implications using a hydraulic model of the mangrove creek calibrated with tidal data from Naples Bay and water levels measured within the creek. The calibrated model was then used to simulate the resulting hydrology of our proposed restoration plan. Simulation results showed that the proposed creek extension would restore a twice-daily flooding regime to a majority of the adjacent mangrove forest and that there would still be minimal tidal influence on the brackish marsh area, keeping its salinity at an acceptable level. This study demonstrates the utility of combining field data and hydraulic modeling to aid in the design of mangrove restoration plans.

  1. Dynamic thermo-hydraulic model of district cooling networks

    International Nuclear Information System (INIS)

    Oppelt, Thomas; Urbaneck, Thorsten; Gross, Ulrich; Platzer, Bernd

    2016-01-01

    Highlights: • A dynamic thermo-hydraulic model for district cooling networks is presented. • The thermal modelling is based on water segment tracking (Lagrangian approach). • Thus, numerical errors and balance inaccuracies are avoided. • Verification and validation studies proved the reliability of the model. - Abstract: In the present paper, the dynamic thermo-hydraulic model ISENA is presented which can be applied for answering different questions occurring in design and operation of district cooling networks—e.g. related to economic and energy efficiency. The network model consists of a quasistatic hydraulic model and a transient thermal model based on tracking water segments through the whole network (Lagrangian method). Applying this approach, numerical errors and balance inaccuracies can be avoided which leads to a higher quality of results compared to other network models. Verification and validation calculations are presented in order to show that ISENA provides reliable results and is suitable for practical application.

  2. Preliminary Test on Hydraulic Rotation Device for Neutron Transmutation Doping

    International Nuclear Information System (INIS)

    Park, Ki-Jung; Kang, Han-Ok; Kim, Seong Hoon; Park, Cheol

    2014-01-01

    The Korea Atomic Energy Research Institute (KAERI) is developing a new Research Reactor (KJRR) which will be located at KIJANG in the south-eastern province of Korea. The KJRR will be mainly utilized for isotope production, NTD production, and the related research activities. During the NTD process, the irradiation rig containing the silicon ingot rotates at the constant speed to ensure precisely defined homogeneity of the irradiation. A new NTD Hydraulic Rotation Device (NTDHRD) is being developed to rotate the irradiation rigs at the required speed. In this study, the preliminary test and the analysis for the rotation characteristic of the NTDHRD, which is developed through the conceptual design, are described. A new NTD hydraulic rotation device is being developed for the purpose of application to the KIJANG research reactor (KJRR). The preliminary test and analysis for the rotation characteristic of the NTDHRD, which is developed through the conceptual design, are conducted in experimental apparatus. The film thickness by the thrust bearing is measured and the minimum required mass flow rate for stable rotation is determined

  3. Measurement of residual CO2 saturation at a geological storage site using hydraulic tests

    Science.gov (United States)

    Rötting, T. S.; Martinez-Landa, L.; Carrera, J.; Russian, A.; Dentz, M.; Cubillo, B.

    2012-12-01

    Estimating long term capillary trapping of CO2 in aquifers remains a key challenge for CO2 storage. Zhang et al. (2011) proposed a combination of thermal, tracer, and hydraulic experiments to estimate the amount of CO2 trapped in the formation after a CO2 push and pull test. Of these three types of experiments, hydraulic tests are the simplest to perform and possibly the most informative. However, their potential has not yet been fully exploited. Here, a methodology is presented to interpret these tests and analyze which parameters can be estimated. Numerical and analytical solutions are used to simulate a continuous injection in a porous medium where residual CO2 has caused a reduction in hydraulic conductivity and an increase in storativity over a finite thickness (a few meters) skin around the injection well. The model results are interpreted using conventional pressure build-up and diagnostic plots (a plot of the drawdown s and the logarithmic derivative d s / d ln t of the drawdown as a function of time). The methodology is applied using the hydraulic parameters estimated for the Hontomin site (Northern Spain) where a Technology Demonstration Plant (TDP) for geological CO2 storage is planned to be set up. The reduction of hydraulic conductivity causes an increase in observed drawdowns, the increased storativity in the CO2 zone causes a delay in the drawdown curve with respect to the reference curve measured before CO2 injection. The duration (characteristic time) of these effects can be used to estimate the radius of the CO2 zone. The effects of reduced permeability and increased storativity are well separated from wellbore storage and natural formation responses, even if the CO2-brine interface is inclined (i.e. the CO2 forms a cone around the well). We find that both skin hydraulic conductivity and storativity (and thus residual CO2 saturation) can be obtained from the water injection test provided that water flow rate is carefully controlled and head build

  4. Comparison of EPRI safety valve test data with analytically determined hydraulic results

    International Nuclear Information System (INIS)

    Smith, L.C.; Howe, K.S.

    1983-01-01

    NUREG-0737 (November 1980) and all subsequent U.S. NRC generic follow-up letters require that all operating plant licensees and applicants verify the acceptability of plant specific pressurizer safety valve piping systems for valve operation transients by testing. To aid in this verification process, the Electric Power Research Institute (EPRI) conducted an extensive testing program at the Combustion Engineering Test Facility. Pertinent tests simulating dynamic opening of the safety valves for representative upstream environments were carried out. Different models and sizes of safety valves were tested at the simulated operating conditions. Transducers placed at key points in the system monitored a variety of thermal, hydraulic and structural parameters. From this data, a more complete description of the transient can be made. The EPRI test configuration was analytically modeled using a one-dimensional thermal hydraulic computer program that uses the method of characteristics approach to generate key fluid parameters as a function of space and time. The conservative equations are solved by applying both the implicit and explicit characteristic methods. Unbalanced or wave forces were determined for each straight run of pipe bounded on each side by a turn or elbow. Blowdown forces were included, where appropriate. Several parameters were varied to determine the effects on the pressure, hydraulic forces and timings of events. By comparing these quantities with the experimentally obtained data, an approximate picture of the flow dynamics is arrived at. Two cases in particular are presented. These are the hot and cold loop seal discharge tests made with the Crosby 6M6 spring-loaded safety valve. Included in the paper is a description of the hydraulic code, modeling techniques and assumptions, a comparison of the numerical results with experimental data and a qualitative description of the factors which govern pipe support loading. (orig.)

  5. Joint inversion of hydraulic head and self-potential data associated with harmonic pumping tests

    Science.gov (United States)

    Soueid Ahmed, A.; Jardani, A.; Revil, A.; Dupont, J. P.

    2016-09-01

    Harmonic pumping tests consist in stimulating an aquifer by the means of hydraulic stimulations at some discrete frequencies. The inverse problem consisting in retrieving the hydraulic properties is inherently ill posed and is usually underdetermined when considering the number of well head data available in field conditions. To better constrain this inverse problem, we add self-potential data recorded at the ground surface to the head data. The self-potential method is a passive geophysical method. Its signals are generated by the groundwater flow through an electrokinetic coupling. We showed using a 3-D saturated unconfined synthetic aquifer that the self-potential method significantly improves the results of the harmonic hydraulic tomography. The hydroelectric forward problem is obtained by solving first the Richards equation, describing the groundwater flow, and then using the result in an electrical Poisson equation describing the self-potential problem. The joint inversion problem is solved using a reduction model based on the principal component geostatistical approach. In this method, the large prior covariance matrix is truncated and replaced by its low-rank approximation, allowing thus for notable computational time and storage savings. Three test cases are studied, to assess the validity of our approach. In the first test, we show that when the number of harmonic stimulations is low, combining the harmonic hydraulic and self-potential data does not improve the inversion results. In the second test where enough harmonic stimulations are performed, a significant improvement of the hydraulic parameters is observed. In the last synthetic test, we show that the electrical conductivity field required to invert the self-potential data can be determined with enough accuracy using an electrical resistivity tomography survey using the same electrodes configuration as used for the self-potential investigation.

  6. Test Rig Design and Presentation for a Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    The design and development of a hydraulic yaw system for multi MWturbines is presented and the concept explained. As part of the development of the new concept a full scale test rig for a 5 MW wind turbine has been designed and constructed. The test rig is presented along with its unique design...... features. The design process is outlined to give insight in the design criteria driving the design. Loads and yaw demands are based on the IEC 61400-1 standard for wind turbine design, and the loads for this examination are extrapolated from the FAST aero elastic design software. The concepts are based...... on a 5 MW offshore turbine. After the system presentation, measurement results are presented to verify the behavior of the system. The loads to the system are applied by torque controlled electrical servo drives, which can add a load of up to 3 MNm to the system. This gives an exact picture of the system...

  7. Evaluation of some infiltration models and hydraulic parameters

    International Nuclear Information System (INIS)

    Haghighi, F.; Gorji, M.; Shorafa, M.; Sarmadian, F.; Mohammadi, M. H.

    2010-01-01

    The evaluation of infiltration characteristics and some parameters of infiltration models such as sorptivity and final steady infiltration rate in soils are important in agriculture. The aim of this study was to evaluate some of the most common models used to estimate final soil infiltration rate. The equality of final infiltration rate with saturated hydraulic conductivity (Ks) was also tested. Moreover, values of the estimated sorptivity from the Philips model were compared to estimates by selected pedotransfer functions (PTFs). The infiltration experiments used the doublering method on soils with two different land uses in the Taleghan watershed of Tehran province, Iran, from September to October, 2007. The infiltration models of Kostiakov-Lewis, Philip two-term and Horton were fitted to observed infiltration data. Some parameters of the models and the coefficient of determination goodness of fit were estimated using MATLAB software. The results showed that, based on comparing measured and model-estimated infiltration rate using root mean squared error (RMSE), Hortons model gave the best prediction of final infiltration rate in the experimental area. Laboratory measured Ks values gave significant differences and higher values than estimated final infiltration rates from the selected models. The estimated final infiltration rate was not equal to laboratory measured Ks values in the study area. Moreover, the estimated sorptivity factor by Philips model was significantly different to those estimated by selected PTFs. It is suggested that the applicability of PTFs is limited to specific, similar conditions. (Author) 37 refs.

  8. An XFEM Model for Hydraulic Fracturing in Partially Saturated Rocks

    Directory of Open Access Journals (Sweden)

    Salimzadeh Saeed

    2016-01-01

    Full Text Available Hydraulic fracturing is a complex multi-physics phenomenon. Numerous analytical and numerical models of hydraulic fracturing processes have been proposed. Analytical solutions commonly are able to model the growth of a single hydraulic fracture into an initially intact, homogeneous rock mass. Numerical models are able to analyse complex problems such as multiple hydraulic fractures and fracturing in heterogeneous media. However, majority of available models are restricted to single-phase flow through fracture and permeable porous rock. This is not compatible with actual field conditions where the injected fluid does not have similar properties as the host fluid. In this study we present a fully coupled hydro-poroelastic model which incorporates two fluids i.e. fracturing fluid and host fluid. Flow through fracture is defined based on lubrication assumption, while flow through matrix is defined as Darcy flow. The fracture discontinuity in the mechanical model is captured using eXtended Finite Element Method (XFEM while the fracture propagation criterion is defined through cohesive fracture model. The discontinuous matrix fluid velocity across fracture is modelled using leak-off loading which couples fracture flow and matrix flow. The proposed model has been discretised using standard Galerkin method, implemented in Matlab and verified against several published solutions. Multiple hydraulic fracturing simulations are performed to show the model robustness and to illustrate how problem parameters such as injection rate and rock permeability affect the hydraulic fracturing variables i.e. injection pressure, fracture aperture and fracture length. The results show the impact of partial saturation on leak-off and the fact that single-phase models may underestimate the leak-off.

  9. Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis.

    Science.gov (United States)

    Pivovaroff, Alexandria L; Sack, Lawren; Santiago, Louis S

    2014-08-01

    Coordination of water movement among plant organs is important for understanding plant water use strategies. The hydraulic segmentation hypothesis (HSH) proposes that hydraulic conductance in shorter lived, 'expendable' organs such as leaves and longer lived, more 'expensive' organs such as stems may be decoupled, with resistance in leaves acting as a bottleneck or 'safety valve'. We tested the HSH in woody species from a Mediterranean-type ecosystem by measuring leaf hydraulic conductance (Kleaf) and stem hydraulic conductivity (KS). We also investigated whether leaves function as safety valves by relating Kleaf and the hydraulic safety margin (stem water potential minus the water potential at which 50% of conductivity is lost (Ψstem-Ψ50)). We also examined related plant traits including the operating range of water potentials, wood density, leaf mass per area, and leaf area to sapwood area ratio to provide insight into whole-plant water use strategies. For hydrated shoots, Kleaf was negatively correlated with KS , supporting the HSH. Additionally, Kleaf was positively correlated with the hydraulic safety margin and negatively correlated with the leaf area to sapwood area ratio. Consistent with the HSH, our data indicate that leaves may act as control valves for species with high KS , or a low safety margin. This critical role of leaves appears to contribute importantly to plant ecological specialization in a drought-prone environment. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  10. Coupled 3D neutronics/thermal hydraulics modeling of the SAFARI-1 MTR

    International Nuclear Information System (INIS)

    Rosenkrantz, Adam; Avramova, Maria; Ivanov, Kostadin; Prinsloo, Rian; Botes, Danniëll; Elsakhawy, Khalid

    2014-01-01

    Highlights: • Development of 3D coupled neutronics/thermal–hydraulic model of SAFARI-1. • Verification of 3D steady-state NEM based neutronics model for SAFARI-1. • Verification of 3D COBRA-TF based thermal–hydraulic model of SAFARI-1. • Quantification of the effect of correct modeling of thermal–hydraulic feedback. - Abstract: The purpose of this study was to develop a coupled accurate multi-physics model of the SAFARI-1 Material Testing Reactor (MTR), a facility that is used for both research and the production of medical isotopes. The model was developed as part of the SAFARI-1 benchmarking project as a cooperative effort between the Pennsylvania State University (PSU) and the South African Nuclear Energy Corporation (Necsa). It was created using a multi-physics coupling of state of the art nuclear reactor simulation tools, consisting of a neutronics code and a thermal hydraulics code. The neutronics tool used was the PSU code NEM, and the results from this component were verified using the Necsa neutronics code OSCAR-4, which is utilized for SAFARI-1 core design and fuel management. On average, the multiplication factors of the neutronics models agreed to within 5 pcm and the radial assembly-averaged powers agreed to within 0.2%. The thermal hydraulics tool used was the PSU version of COBRA-TF (CTF) sub-channel code, and the results of this component were verified against another thermal hydraulics code, the RELAP5-3D system code, used at Necsa for thermal–hydraulics analysis of SAFARI-1. Although only assembly-averaged results from RELAP5-3D were available, they fell within the range of values for the corresponding assemblies in the comprehensive CTF solution. This comparison allows for the first time to perform a quantification of steady-state errors for a low-powered MTR with an advanced thermal–hydraulic code such as CTF on a per-channel basis as compared to simpler and coarser-mesh RELAP5-3D modeling. Additionally, a new cross section

  11. Capacity of textile filters for wastewater Treatment at changeable wastewater level – a hydraulic model

    Directory of Open Access Journals (Sweden)

    Marcin Spychała

    2016-12-01

    Full Text Available The aim of the study was to describe in a mathematical manner the hydraulic capacity of textile filters for wastewater treatment at changeable wastewater levels during a period between consecutive doses, taking into consideration the decisive factors for flow-conditions of filtering media. Highly changeable and slightly changeable flow-conditions tests were performed on reactors equipped with non-woven geo-textile filters. Hydraulic conductivity of filter material coupons was determined. The dry mass covering the surface and contained in internal space of filtering material was then indicated and a mathematical model was elaborated. Flow characteristics during the highly changeable flow-condition test were sensitivity to differentiated values of hydraulic conductivity in horizontal zones of filtering layer. During the slightly changeable flow-conditions experiment the differences in permeability and hydraulic conductivity of different filter (horizontal zones height regions were much smaller. The proposed modelling approach in spite of its simplicity provides a satisfactory agreement with empirical data and therefore enables to simulate the hydraulic capacity of vertically oriented textile filters. The mathematical model reflects the significant impact of the filter characteristics (textile permeability at different filter height and operational conditions (dosing frequency on the textile filters hydraulic capacity.

  12. submitter Thermal, Hydraulic, and Electromagnetic Modeling of Superconducting Magnet Systems

    CERN Document Server

    Bottura, L

    2016-01-01

    Modeling techniques and tailored computational tools are becoming increasingly relevant to the design and analysis of large-scale superconducting magnet systems. Efficient and reliable tools are useful to provide an optimal forecast of the envelope of operating conditions and margins, which are difficult to test even when a prototype is available. This knowledge can be used to considerably reduce the design margins of the system, and thus the overall cost, or increase reliability during operation. An integrated analysis of a superconducting magnet system is, however, a complex matter, governed by very diverse physics. This paper reviews the wide spectrum of phenomena and provides an estimate of the time scales of thermal, hydraulic, and electromagnetic mechanisms affecting the performance of superconducting magnet systems. The analysis is useful to provide guidelines on how to divide the complex problem into building blocks that can be integrated in a design and analysis framework for a consistent multiphysic...

  13. the Modeling of Hydraulic Jump Generated Partially on Sloping Apron

    Directory of Open Access Journals (Sweden)

    Shaker Abdulatif Jalil

    2017-12-01

    Full Text Available Modeling aims to characterize system behavior and achieve simulation close as possible of the reality. The rapid energy exchange in supercritical flow to generate quiet or subcritical flow in hydraulic jump phenomenon is important in design of hydraulic structures. Experimental and numerical modeling is done on type B hydraulic jump which starts first on sloping bed and its end on horizontal bed.  Four different apron slopes are used, for each one of these slopes the jump is generated on different locations by controlling the tail water depth.  Modelling validation is based on 120 experimental runs which they show that there is reliability. The air volume fraction which creates in through hydraulic jump varied between 0.18 and 0.28. While the energy exchanges process take place within 6.6, 6.1, 5.8, 5.5 of the average relative jump height for apron slopes of 0.18, 0.14, 0.10, 0.07 respectively. Within the limitations of this study, mathematical prediction model for relative hydraulic jump height is suggested.The model having an acceptable coefficient of determination.

  14. Hierarchic modeling of heat exchanger thermal hydraulics

    International Nuclear Information System (INIS)

    Horvat, A.; Koncar, B.

    2002-01-01

    Volume Averaging Technique (VAT) is employed in order to model the heat exchanger cross-flow as a porous media flow. As the averaging of the transport equations lead to a closure problem, separate relations are introduced to model interphase momentum and heat transfer between fluid flow and the solid structure. The hierarchic modeling is used to calculate the local drag coefficient C d as a function of Reynolds number Re h . For that purpose a separate model of REV is built and DNS of flow through REV is performed. The local values of heat transfer coefficient h are obtained from available literature. The geometry of the simulation domain and boundary conditions follow the geometry of the experimental test section used at U.C.L.A. The calculated temperature fields reveal that the geometry with denser pin-fins arrangement (HX1) heats fluid flow faster. The temperature field in the HX2 exhibits the formation of thermal boundary layer between pin-fins, which has a significant role in overall thermal performance of the heat exchanger. Although presented discrepancies of the whole-section drag coefficient C d are large, we believe that hierarchic modeling is an appropriate strategy for calculation of complex transport phenomena in heat exchanger geometries.(author)

  15. A practical view of the insights from scaling thermal-hydraulic tests

    Energy Technology Data Exchange (ETDEWEB)

    Levin, A.E.; McPherson, G.D.

    1995-09-01

    The authors review the broad concept of scaling of thermal-hydraulic test facilities designed to acquire data for application to modeling the behavior of nuclear power plants, especially as applied to the design certification of passive advanced light water reactors. Distortions and uncertainties in the scaling process are described, and the possible impact of these effects on the test data are discussed. A practical approach to the use of data from the facilities is proposed, with emphasis on the insights to be gained from the test results rather than direct application of test results to behavior of a large plant.

  16. Design of a single-borehole hydraulic test programme allowing for interpretation-based errors

    International Nuclear Information System (INIS)

    Black, J.H.

    1987-07-01

    Hydraulic testing using packers in single boreholes is one of the most important sources of data to safety assessment modelling in connection with the disposal of radioactive waste. It is also one of the most time-consuming and expensive. It is important that the results are as reliable as possible and as accurate as necessary for the use that is made of them. There are many causes of possible error and inaccuracy ranging from poor field practice to inappropriate interpretation procedure. The report examines and attempts to quantify the size of error arising from the accidental use of an inappropriate or inadequate interpretation procedure. In doing so, it can be seen which interpretation procedure or combination of procedures results in least error. Lastly, the report attempts to use the previous conclusions from interpretation to propose forms of field test procedure where interpretation-based errors will be minimised. Hydraulic tests (sometimes known as packer tests) come in three basic forms: slug/pulse, constant flow and constant head. They have different characteristics, some measuring a variable volume of rock (dependent on hydraulic conductivity) and some having a variable duration (dependent on hydraulic conductivity). A combination of different tests in the same interval is seen as desirable. For the purposes of assessing interpretation-based errors, slug and pulse tests are considered together as are constant flow and constant head tests. The same method is used in each case to assess errors. The method assumes that the simplest analysis procedure (cylindrical flow in homogeneous isotropic porous rock) will be used on each set of field data. The error is assessed by calculating synthetic data for alternative configurations (e.g. fissured rock, anisotropic rock, inhomogeneous rock - i.e. skin - etc.) and then analyzing this data using the simplest analysis procedure. 28 refs., 26 figs

  17. Hydraulic Testing of Silurian and Ordovician Strata at the Bruce Site

    Science.gov (United States)

    Beauheim, R. L.; Avis, J. D.; Chace, D. A.; Roberts, R. M.; Toll, N. J.

    2009-05-01

    Ontario Power Generation is proposing a Deep Geologic Repository (DGR) for the long-term management of its Low and Intermediate Level Radioactive Waste (L&ILW) within a Paleozoic-age sedimentary sequence beneath the Bruce Site near Tiverton, Ontario, Canada. The concept envisions that the DGR would be excavated at a depth of approximately 680 m within the Ordovician Cobourg Formation, a massive, dense, argillaceous limestone. A key attribute of the Bruce site is the extremely low permeabilities associated with the thick Ordovician carbonate and argillaceous bedrock formations that will host and enclose the DGR. Such rock mass permeabilities are thought sufficiently low to contribute toward or govern a diffusion-dominated transport regime. To support this concept, hydraulic testing was performed in 2008 and 2009 in two deep boreholes at the proposed repository site, DGR-3 and DGR-4. The hydraulic testing was performed using a straddle-packer tool with a 30.74-m test interval. Sequential tests were performed over the entire open lengths of the boreholes from the F Unit of the Silurian Salina Formation into the Ordovician Gull River Formation, a distance of approximately 635 m. The tests consisted primarily of pressure-pulse tests, with a few slug tests performed in several of the higher permeability Silurian units. The tests are analyzed using the nSIGHTS code, which allows the entire pressure history a test interval has experienced since it was penetrated by the drill bit to be included in the test simulation. nSIGHTS also allows the model fit to the test data to be optimized over an n-dimensional parameter space to ensure that the final solution represents a true global minimum rather than simply a local minimum. The test results show that the Ordovician-age strata above the Coboconk Formation (70+ m below the Cobourg) have average horizontal hydraulic conductivities of 1E-13 m/s or less. Coboconk and Gull River hydraulic conductivities are as high as 1E-11 m

  18. Hydraulic tests for the Excavation Disturbed Zone in NATM drift of North Extension

    International Nuclear Information System (INIS)

    Matsuoka, Eiken

    1997-03-01

    Investigation for characterization of rock properties of the Excavation Disturbed Zone (EDZ) were carried out in NATM drift of North Extension in the Tono Mine. As a part of this investigation, hydraulic tests were performed by means of the hydraulic measuring instrument, which had been developed by PNC Tono Geoscience Center. The purpose of this tests is to characterize the change in hydraulic properties of the EDZ caused by drift excavation using machine (boom header). The hydraulic tests were performed in the burials MH-1,2,3, in which hydraulic tests had been performed before the drift excavation in 1994. The test results indicate that the measured values of pore water pressure have decreased after excavation of the drift. The values ranged from -0.037 kgf/cm 2 to 0.039 kgf/cm 2 . The measured hydraulic conductivities ranged from 2.2*10 -11 cm/s to 9.1*10 -11 cm/s for mud stone and from 2.8*10 -9 cm/s to 2.4*10 -7 cm/s for conglomerate. The measured hydraulic conductivities for mud stone are below the lower limit of the instrument, and the change in the hydraulic conductivities for conglomerate is little. The hydraulic conductivities for conglomerate and mad stone (reference values) are interpreted. The change in hydraulic conductivities measured before and after excavation of the drift is insignificant. (author)

  19. Analysis of in-R12 CHF data: influence of hydraulic diameter and heating length; test of Weisman boiling crisis model; Analyse de donnees de flux critique en R12: influence du diametre hydraulique et de la longueur chauffante; test du modele de Weisman

    Energy Technology Data Exchange (ETDEWEB)

    Czop, V; Herer, C; Souyri, A; Garnier, J

    1993-09-01

    In order to progress on the comprehensive modelling of the boiling crisis phenomenon, Electricite de France (EDF), Commissariat a l`Energie Atomique (CEA) and FRAMATOME have set up experimental programs involving in-R12 tests: the EDF APHRODITE program and the CEA-EDF-FRAMATOME DEBORA program. The first phase in these programs aims to acquire critical heat flux (CHF) data banks, within large thermal-hydraulic parameter ranges, both in cylindrical and annular configurations, and with different hydraulic diameters and heating lengths. Actually, three data banks have been considered in the analysis, all of them concerning in-R12 round tube tests: - the APHRODITE data bank, obtained at EDF with a 13 mn inside diameter, - the DEBORA data bank, obtained at CEA with a 19.2 mm inside diameter, - the KRISTA data bank, obtained at KfK with a 8 mm inside diameter. The analysis was conducted using CHF correlations and with the help of an advanced mathematical tool using pseudo-cubic thin plate type Spline functions. Two conclusions were drawn: -no influence of the heating length on our CHF results, - the influence of the diameter on the CHF cannot be simply expressed by an exponential function of this parameter, as thermal-hydraulic parameters also have an influence. Some calculations with Weisman and Pei theoretical boiling crisis model have been compared to experimental values: fairly good agreement was obtained, but further study must focus on improving the modelling of the influence of pressure and mass velocity. (authors). 12 figs., 4 tabs., 21 refs.

  20. Results of single borehole hydraulic testing in the Mizunami Underground Research Laboratory project. Phase 2

    International Nuclear Information System (INIS)

    Daimaru, Shuji; Takeuchi, Ryuji; Onoe, Hironori; Saegusa, Hiromitsu

    2012-09-01

    This report summarize the results of the single borehole hydraulic tests of 79 sections conducted as part of the Construction phase (Phase 2) in the Mizunami Underground Research Laboratory (MIU) Project. The details of each test (test interval depth, geology, etc.) as well as the interpreted hydraulic parameters and analytical method used are presented in this report. (author)

  1. Effects of model layer simplification using composite hydraulic properties

    Science.gov (United States)

    Kuniansky, Eve L.; Sepulveda, Nicasio; Elango, Lakshmanan

    2011-01-01

    Groundwater provides much of the fresh drinking water to more than 1.5 billion people in the world (Clarke et al., 1996) and in the United States more that 50 percent of citizens rely on groundwater for drinking water (Solley et al., 1998). As aquifer systems are developed for water supply, the hydrologic system is changed. Water pumped from the aquifer system initially can come from some combination of inducing more recharge, water permanently removed from storage, and decreased groundwater discharge. Once a new equilibrium is achieved, all of the pumpage must come from induced recharge and decreased discharge (Alley et al., 1999). Further development of groundwater resources may result in reductions of surface water runoff and base flows. Competing demands for groundwater resources require good management. Adequate data to characterize the aquifers and confining units of the system, like hydrologic boundaries, groundwater levels, streamflow, and groundwater pumping and climatic data for recharge estimation are to be collected in order to quantify the effects of groundwater withdrawals on wetlands, streams, and lakes. Once collected, three-dimensional (3D) groundwater flow models can be developed and calibrated and used as a tool for groundwater management. The main hydraulic parameters that comprise a regional or subregional model of an aquifer system are the hydraulic conductivity and storage properties of the aquifers and confining units (hydrogeologic units) that confine the system. Many 3D groundwater flow models used to help assess groundwater/surface-water interactions require calculating ?effective? or composite hydraulic properties of multilayered lithologic units within a hydrogeologic unit. The calculation of composite hydraulic properties stems from the need to characterize groundwater flow using coarse model layering in order to reduce simulation times while still representing the flow through the system accurately. The accuracy of flow models with

  2. Theoretical Modeling of Rock Breakage by Hydraulic and Mechanical Tool

    Directory of Open Access Journals (Sweden)

    Hongxiang Jiang

    2014-01-01

    Full Text Available Rock breakage by coupled mechanical and hydraulic action has been developed over the past several decades, but theoretical study on rock fragmentation by mechanical tool with water pressure assistance was still lacking. The theoretical model of rock breakage by mechanical tool was developed based on the rock fracture mechanics and the solution of Boussinesq’s problem, and it could explain the process of rock fragmentation as well as predicating the peak reacting force. The theoretical model of rock breakage by coupled mechanical and hydraulic action was developed according to the superposition principle of intensity factors at the crack tip, and the reacting force of mechanical tool assisted by hydraulic action could be reduced obviously if the crack with a critical length could be produced by mechanical or hydraulic impact. The experimental results indicated that the peak reacting force could be reduced about 15% assisted by medium water pressure, and quick reduction of reacting force after peak value decreased the specific energy consumption of rock fragmentation by mechanical tool. The crack formation by mechanical or hydraulic impact was the prerequisite to improvement of the ability of combined breakage.

  3. Empirical flow parameters : a tool for hydraulic model validity

    Science.gov (United States)

    Asquith, William H.; Burley, Thomas E.; Cleveland, Theodore G.

    2013-01-01

    The objectives of this project were (1) To determine and present from existing data in Texas, relations between observed stream flow, topographic slope, mean section velocity, and other hydraulic factors, to produce charts such as Figure 1 and to produce empirical distributions of the various flow parameters to provide a methodology to "check if model results are way off!"; (2) To produce a statistical regional tool to estimate mean velocity or other selected parameters for storm flows or other conditional discharges at ungauged locations (most bridge crossings) in Texas to provide a secondary way to compare such values to a conventional hydraulic modeling approach. (3.) To present ancillary values such as Froude number, stream power, Rosgen channel classification, sinuosity, and other selected characteristics (readily determinable from existing data) to provide additional information to engineers concerned with the hydraulic-soil-foundation component of transportation infrastructure.

  4. ENERGY EFFICIENCY OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSION TESTS AT LOCOMOTIVE REPAIR PLANT

    Directory of Open Access Journals (Sweden)

    B. E. Bodnar

    2015-10-01

    Full Text Available Purpose. In difficult economic conditions, cost reduction of electricity consumption for the needs of production is an urgent task for the country’s industrial enterprises. Technical specifications of enterprises, which repair diesel locomotive hydraulic transmission, recommend conducting a certain amount of evaluation and regulatory tests to monitor their condition after repair. Experience shows that a significant portion of hydraulic transmission defects is revealed by bench tests. The advantages of bench tests include the ability to detect defects after repair, ease of maintenance of the hydraulic transmission and relatively low labour intensity for eliminating defects. The quality of these tests results in the transmission resource and its efficiency. Improvement of the technology of plant post-repairs hydraulic tests in order to reduce electricity consumption while testing. Methodology. The possible options for hydraulic transmission test bench improvement were analysed. There was proposed an energy efficiency method for diesel locomotive hydraulic transmission testing in locomotive repair plant environment. This is achieved by installing additional drive motor which receives power from the load generator. Findings. Based on the conducted analysis the necessity of improving the plant stand testing of hydraulic transmission was proved. The variants of the stand modernization were examined. The test stand modernization analysis was conducted. Originality. The possibility of using electric power load generator to power the stand electric drive motor or the additional drive motor was theoretically substantiated. Practical value. A variant of hydraulic transmission test stand based on the mutual load method was proposed. Using this method increases the hydraulic transmission load range and power consumption by stand remains unchanged. The additional drive motor will increase the speed of the input shaft that in its turn wil allow testing in

  5. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    International Nuclear Information System (INIS)

    Corradin, Michael; Dominguez, A.; Tokuhiro, Akira; Hamman, K.

    2014-01-01

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

  6. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Corradin, Michael [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Anderson, M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Muci, M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Hassan, Yassin [Texas A & M Univ., College Station, TX (United States); Dominguez, A. [Texas A & M Univ., College Station, TX (United States); Tokuhiro, Akira [Univ. of Idaho, Moscow, ID (United States); Hamman, K. [Univ. of Idaho, Moscow, ID (United States)

    2014-10-15

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

  7. Modelling Subduction Zone Magmatism Due to Hydraulic Fracture

    Science.gov (United States)

    Lawton, R.; Davies, J. H.

    2014-12-01

    The aim of this project is to test the hypothesis that subduction zone magmatism involves hydraulic fractures propagating from the oceanic crust to the mantle wedge source region (Davies, 1999). We aim to test this hypothesis by developing a numerical model of the process, and then comparing model outputs with observations. The hypothesis proposes that the water interconnects in the slab following an earthquake. If sufficient pressure develops a hydrofracture occurs. The hydrofracture will expand in the direction of the least compressive stress and propagate in the direction of the most compressive stress, which is out into the wedge. Therefore we can calculate the hydrofracture path and end-point, given the start location on the slab and the propagation distance. We can therefore predict where water is added to the mantle wedge. To take this further we have developed a thermal model of a subduction zone. The model uses a finite difference, marker-in-cell method to solve the heat equation (Gerya, 2010). The velocity field was prescribed using the analytical expression of cornerflow (Batchelor, 1967). The markers contained within the fixed grid are used to track the different compositions and their properties. The subduction zone thermal model was benchmarked (Van Keken, 2008). We used the hydrous melting parameterization of Katz et.al., (2003) to calculate the degree of melting caused by the addition of water to the wedge. We investigate models where the hydrofractures, with properties constrained by estimated water fluxes, have random end points. The model predicts degree of melting, magma productivity, temperature of the melt and water content in the melt for different initial water fluxes. Future models will also include the buoyancy effect of the melt and residue. Batchelor, Cambridge UP, 1967. Davies, Nature, 398: 142-145, 1999. Gerya, Cambridge UP, 2010. Katz, Geochem. Geophys. Geosy, 4(9), 2003 Van Keken et.al. Phys. Earth. Planet. In., 171:187-197, 2008.

  8. Evaluation of Regression and Neuro_Fuzzy Models in Estimating Saturated Hydraulic Conductivity

    Directory of Open Access Journals (Sweden)

    J. Behmanesh

    2015-06-01

    Full Text Available Study of soil hydraulic properties such as saturated and unsaturated hydraulic conductivity is required in the environmental investigations. Despite numerous research, measuring saturated hydraulic conductivity using by direct methods are still costly, time consuming and professional. Therefore estimating saturated hydraulic conductivity using rapid and low cost methods such as pedo-transfer functions with acceptable accuracy was developed. The purpose of this research was to compare and evaluate 11 pedo-transfer functions and Adaptive Neuro-Fuzzy Inference System (ANFIS to estimate saturated hydraulic conductivity of soil. In this direct, saturated hydraulic conductivity and physical properties in 40 points of Urmia were calculated. The soil excavated was used in the lab to determine its easily accessible parameters. The results showed that among existing models, Aimrun et al model had the best estimation for soil saturated hydraulic conductivity. For mentioned model, the Root Mean Square Error and Mean Absolute Error parameters were 0.174 and 0.028 m/day respectively. The results of the present research, emphasises the importance of effective porosity application as an important accessible parameter in accuracy of pedo-transfer functions. sand and silt percent, bulk density and soil particle density were selected to apply in 561 ANFIS models. In training phase of best ANFIS model, the R2 and RMSE were calculated 1 and 1.2×10-7 respectively. These amounts in the test phase were 0.98 and 0.0006 respectively. Comparison of regression and ANFIS models showed that the ANFIS model had better results than regression functions. Also Nuro-Fuzzy Inference System had capability to estimatae with high accuracy in various soil textures.

  9. Estimating biozone hydraulic conductivity in wastewater soil-infiltration systems using inverse numerical modeling.

    Science.gov (United States)

    Bumgarner, Johnathan R; McCray, John E

    2007-06-01

    During operation of an onsite wastewater treatment system, a low-permeability biozone develops at the infiltrative surface (IS) during application of wastewater to soil. Inverse numerical-model simulations were used to estimate the biozone saturated hydraulic conductivity (K(biozone)) under variably saturated conditions for 29 wastewater infiltration test cells installed in a sandy loam field soil. Test cells employed two loading rates (4 and 8cm/day) and 3 IS designs: open chamber, gravel, and synthetic bundles. The ratio of K(biozone) to the saturated hydraulic conductivity of the natural soil (K(s)) was used to quantify the reductions in the IS hydraulic conductivity. A smaller value of K(biozone)/K(s,) reflects a greater reduction in hydraulic conductivity. The IS hydraulic conductivity was reduced by 1-3 orders of magnitude. The reduction in IS hydraulic conductivity was primarily influenced by wastewater loading rate and IS type and not by the K(s) of the native soil. The higher loading rate yielded greater reductions in IS hydraulic conductivity than the lower loading rate for bundle and gravel cells, but the difference was not statistically significant for chamber cells. Bundle and gravel cells exhibited a greater reduction in IS hydraulic conductivity than chamber cells at the higher loading rates, while the difference between gravel and bundle systems was not statistically significant. At the lower rate, bundle cells exhibited generally lower K(biozone)/K(s) values, but not at a statistically significant level, while gravel and chamber cells were statistically similar. Gravel cells exhibited the greatest variability in measured values, which may complicate design efforts based on K(biozone) evaluations for these systems. These results suggest that chamber systems may provide for a more robust design, particularly for high or variable wastewater infiltration rates.

  10. Hydraulically driven control rod concept for integral reactors: fluid dynamic simulation and preliminary test

    International Nuclear Information System (INIS)

    Ricotti, M.E.; Cammi, A.; Lombardi, C.; Passoni, M.; Rizzo, C.; Carelli, M.; Colombo, E.

    2003-01-01

    The paper deals with the preliminary study of the Hydraulically Driven Control Rod concept, tailored for PWR control rods (spider type) with hydraulic drive mechanism completely immersed in the primary water. A specific solution suitable for advanced versions of the IRIS integral reactor is under investigation. The configuration of the Hydraulic Control Rod device, made up by an external movable piston and an internal fixed cylinder, is described. After a brief description of the whole control system, particular attention is devoted to the Control Rod characterization via Computational Fluid Dynamics (CFD) analysis. The investigation of the system behavior, including dynamic equilibrium and stability properties, has been carried out. Finally, preliminary tests were performed in a low pressure, low temperature, reduced length experimental facility. The results are compared with the dynamic control model and CFD simulation model, showing good agreement between simulations and experimental data. During these preliminary tests, the control system performs correctly, allowing stable dynamic equilibrium positions for the Control Rod and stable behavior during withdrawal and insertion steps. (author)

  11. Acceptance Test Report for 241-SY Pump Cradle Hydraulic System

    International Nuclear Information System (INIS)

    Koons, B.M.

    1995-01-01

    The purpose of this ATP is to verify that hydraulic system/cylinder procured to replace the cable/winch system on the 101-SY Mitigation Pump cradle assembly fulfills its functional requirements for raising and lowering the cradle assembly between 70 and 90 degrees, both with and without pump. A system design review was performed on the 101-SY Cradle Hydraulic System by the vendor before shipping (See WHC-SD-WM-DRR-045, 241-SY-101 Cradle Hydraulic System Design Review). The scope of this plan focuses on verification of the systems ability to rotate the cradle assembly and any load through the required range of motion

  12. Nonlinear Model-Based Fault Detection for a Hydraulic Actuator

    NARCIS (Netherlands)

    Van Eykeren, L.; Chu, Q.P.

    2011-01-01

    This paper presents a model-based fault detection algorithm for a specific fault scenario of the ADDSAFE project. The fault considered is the disconnection of a control surface from its hydraulic actuator. Detecting this type of fault as fast as possible helps to operate an aircraft more cost

  13. Thermal hydraulic model descrition of TASS/SMR

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Han Young; Kim, H. C.; Chung, Y. J.; Lim, H. S.; Yang, S. H

    2001-04-01

    The TASS/SMR code has been developed for the safety analysis of SMART. The governing equations were applied only to the primary coolant system in TASS which had been developed at KAERI. In TASS/SMR, the solution method is improved so that the primary and secondary coolant systems are solved simultaneously. Besides the solution method, thermal-hydraulic models are incorporated, in TASS/SMR, such as non-condensible gas model, helical steam generator heat transfer model, and passive residual heat removal system (PRHRS) heat transfer model for the application to SMART. The governing equtions of TASS/SMR are based on the drift-flux model so that the accidents and transients accompaning with two-phase flow can be analized. This report describes the governing equations and solution methods used in TASS/SMR and also includes the description for the thermal hydraulic models for SMART design.

  14. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    International Nuclear Information System (INIS)

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available

  15. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    Energy Technology Data Exchange (ETDEWEB)

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available.

  16. Influence of Hydraulic Design on Stability and on Pressure Pulsations in Francis Turbines at Overload, Part Load and Deep Part Load based on Numerical Simulations and Experimental Model Test Results

    International Nuclear Information System (INIS)

    Magnoli, M V; Maiwald, M

    2014-01-01

    Francis turbines have been running more and more frequently in part load conditions, in order to satisfy the new market requirements for more dynamic and flexible energy generation, ancillary services and grid regulation. The turbines should be able to be operated for longer durations with flows below the optimum point, going from part load to deep part load and even speed-no-load. These operating conditions are characterised by important unsteady flow phenomena taking place at the draft tube cone and in the runner channels, in the respective cases of part load and deep part load. The current expectations are that new Francis turbines present appropriate hydraulic stability and moderate pressure pulsations at overload, part load, deep part load and speed-no-load with high efficiency levels at normal operating range. This study presents series of investigations performed by Voith Hydro with the objective to improve the hydraulic stability of Francis turbines at overload, part load and deep part load, reduce pressure pulsations and enlarge the know-how about the transient fluid flow through the turbine at these challenging conditions. Model test measurements showed that distinct runner designs were able to influence the pressure pulsation level in the machine. Extensive experimental investigations focused on the runner deflector geometry, on runner features and how they could reduce the pressure oscillation level. The impact of design variants and machine configurations on the vortex rope at the draft tube cone at overload and part load and on the runner channel vortex at deep part load were experimentally observed and evaluated based on the measured pressure pulsation amplitudes. Numerical investigations were employed for improving the understanding of such dynamic fluid flow effects. As example for the design and experimental investigations, model test observations and pressure pulsation curves for Francis machines in mid specific speed range, around n qopt = 50

  17. IT-Tools Concept for Simulation and Design of Water Hydraulic Mechatronic Test Facilities for Motion Control and Operation in Environmentally Sensitive Application Areas

    DEFF Research Database (Denmark)

    Conrad, Finn; Pobedza, J.; Sobczyk, A.

    2004-01-01

    This paper presents a proposed IT-Tools concept for modeling, simulation, analysis and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. The designed test rigs have tap water hydraulic components of the Danfoss Nessie® product family and equipped...... with a measurement and data acquisition system. Results of the mathematical modeling, simulation and design of the motion control test rigs are presented. Furthermore, the paper presents selected experimental and identifying test results for the water hydraulic test rigs....

  18. Thermo-hydraulic analysis of the cool-down of the EDIPO test facility

    Science.gov (United States)

    Lewandowska, Monika; Bagnasco, Maurizio

    2011-09-01

    The first cool-down of the EDIPO (European DIPOle) test facility is foreseen to take place in 2011 by means of the existing 1.2 kW cryoplant at EPFL-CRPP Villigen. In this work, the thermo-hydraulic analysis of the EDIPO cool-down is performed in order both to assess the its duration and to optimize the procedure. The cool-down is driven by the helium flowing in both the outer cooling channel and in the windings connected hydraulically in parallel. We take into account limitations due to the pressure drop in the cooling circuit and the refrigerator capacity as well as heat conduction in the iron yoke. Two schemes of the hydraulic cooling circuit in the EDIPO windings are studied (coils connected in series and coils connected in parallel). The analysis is performed by means of an analytical model complemented by and numerical model. The results indicate that the cool-down to 5 K can be achieved in about 12 days.

  19. VHTR core modeling: coupling between neutronic and thermal-hydraulics

    International Nuclear Information System (INIS)

    Limaiem, I.; Damian, F.; Raepsaet, X.; Studer, E.

    2005-01-01

    Following the present interest in the next generation nuclear power plan (NGNP), Cea is deploying special effort to develop new models and qualify its research tools for this next generation reactors core. In this framework, the Very High Temperature Reactor concept (VHTR) has an increasing place in the actual research program. In such type of core, a strong interaction exists between neutronic and thermal-hydraulics. Consequently, the global core modelling requires accounting for the temperature feedback in the neutronic models. The purpose of this paper is to present the new neutronic and thermal-hydraulics coupling model dedicated to the High Temperature Reactors (HTR). The coupling model integrates a new version of the neutronic scheme calculation developed in collaboration between Cea and Framatome-ANP. The neutronic calculations are performed using a specific calculation processes based on the APOLLO2 transport code and CRONOS2 diffusion code which are part of the French reactor physics code system SAPHYR. The thermal-hydraulics model is characterised by an equivalent porous media and 1-D fluid/3-D thermal model implemented in the CAST3M/ARCTURUS code. The porous media approach involves the definition of both homogenous and heterogeneous models to ensure a correct temperature feedback. This study highlights the sensitivity of the coupling system's parameters (radial/axial meshing and data exchange strategy between neutronic and thermal-hydraulics code). The parameters sensitivity study leads to the definition of an optimal coupling system specification for the VHTR. Besides, this work presents the first physical analysis of the VHTR core in steady-state condition. The analysis gives information about the 3-D power peaking and the temperature coefficient. Indeed, it covers different core configurations with different helium distribution in the core bypass. (authors)

  20. A Low-Cost Automated Test Column to Estimate Soil Hydraulic Characteristics in Unsaturated Porous Media

    Directory of Open Access Journals (Sweden)

    J. Salas-García

    2017-01-01

    Full Text Available The estimation of soil hydraulic properties in the vadose zone has some issues, such as accuracy, acquisition time, and cost. In this study, an inexpensive automated test column (ATC was developed to characterize water flow in a homogeneous unsaturated porous medium by the simultaneous estimation of three hydraulic state variables: water content, matric potential, and water flow rates. The ATC includes five electrical resistance probes, two minitensiometers, and a drop counter, which were tested with infiltration tests using the Hydrus-1D model. The results show that calibrations of electrical resistance probes reasonably match with similar studies, and the maximum error of calibration of the tensiometers was 4.6% with respect to the full range. Data measured by the drop counter installed in the ATC exhibited a high consistency with the electrical resistance probes, which provides an independent verification of the model and indicates an evaluation of the water mass balance. The study results show good performance of the model against the infiltration tests, which suggests a robustness of the methodology developed in this study. An extension to the applicability of this system could be successfully used in low-budget projects in large-scale field experiments, which may be correlated with resistivity changes.

  1. Habitat hydraulic models - a tool for Danish stream quality assessment?

    DEFF Research Database (Denmark)

    Olsen, Martin

    and hydromorphological and chemical characteristics has to be enlightened (EUROPA, 2005). This study links catchment hydrology, stream discharge and physical habitat in a small Danish stream, the stream Ledreborg, and discusses the utility of habitat hydraulic models in relation to the present criteria and methods used......).  Hydromorphological conditions in the stream are measured through field study, using a habitat mapping approach and modelled using a habitat hydraulic model (RHYHABSIM). Using RHYHABSIM and both "site-specific" and general HSI's, Weighted Usable Area (WUA) for the trout population at different discharges is assessed...... and differences between simulated WUA using "site-specific" and general habitat preferences are discussed. In RHYHABSIM it is possible to use two different approaches to investigate the hydromorphological conditions in a river, the habitat mapping approach used in this project and the representative reach...

  2. Effects from Unsaturated Zone Flow during Oscillatory Hydraulic Testing

    Science.gov (United States)

    Lim, D.; Zhou, Y.; Cardiff, M. A.; Barrash, W.

    2014-12-01

    In analyzing pumping tests on unconfined aquifers, the impact of the unsaturated zone is often neglected. Instead, desaturation at the water table is often treated as a free-surface boundary, which is simple and allows for relatively fast computation. Richards' equation models, which account for unsaturated flow, can be compared with saturated flow models to validate the use of Darcy's Law. In this presentation, we examine the appropriateness of using fast linear steady-periodic models based on linearized water table conditions in order to simulate oscillatory pumping tests in phreatic aquifers. We compare oscillatory pumping test models including: 1) a 2-D radially-symmetric phreatic aquifer model with a partially penetrating well, simulated using both Darcy's Law and Richards' Equation in COMSOL; and 2) a linear phase-domain numerical model developed in MATLAB. Both COMSOL and MATLAB models are calibrated to match oscillatory pumping test data collected in the summer of 2013 at the Boise Hydrogeophysical Research Site (BHRS), and we examine the effect of model type on the associated parameter estimates. The results of this research will aid unconfined aquifer characterization efforts and help to constrain the impact of the simplifying physical assumptions often employed during test analysis.

  3. A model study of bridge hydraulics

    Science.gov (United States)

    2010-08-01

    Most flood studies in the United States use the Army Corps of Engineers HEC-RAS (Hydrologic Engineering : Centers River Analysis System) computer program. This study was carried out to compare results of HEC-RAS : bridge modeling with laboratory e...

  4. Numerical Modeling of Foam Drilling Hydraulics

    Directory of Open Access Journals (Sweden)

    Ozcan Baris

    2007-12-01

    Full Text Available The use of foam as a drilling fluid was developed to meet a special set of conditions under which other common drilling fluids had failed. Foam drilling is defined as the process of making boreholes by utilizing foam as the circulating fluid. When compared with conventional drilling, underbalanced or foam drilling has several advantages. These advantages include: avoidance of lost circulation problems, minimizing damage to pay zones, higher penetration rates and bit life. Foams are usually characterized by the quality, the ratio of the volume of gas, and the total foam volume. Obtaining dependable pressure profiles for aerated (gasified fluids and foam is more difficult than for single phase fluids, since in the former ones the drilling mud contains a gas phase that is entrained within the fluid system. The primary goal of this study is to expand the knowledge-base of the hydrodynamic phenomena that occur in a foam drilling operation. In order to gain a better understanding of foam drilling operations, a hydrodynamic model is developed and run at different operating conditions. For this purpose, the flow of foam through the drilling system is modeled by invoking the basic principles of continuum mechanics and thermodynamics. The model was designed to allow gas and liquid flow at desired volumetric flow rates through the drillstring and annulus. Parametric studies are conducted in order to identify the most influential variables in the hydrodynamic modeling of foam flow.

  5. Test plan: Hydraulic fracturing and hydrologic tests in Marker Beds 139 and 140

    International Nuclear Information System (INIS)

    Wawersik, W.R.; Beauheim, R.L.

    1991-03-01

    Combined hydraulic fracturing and hydrological measurements in this test plan are designed to evaluate the potential influence of fracture formation in anhydrite Marker Beds 139 and 140 on gas pressure in and gas flow from the disposal rooms in the Waste Isolation Pilot Plant with time. The tests have the further purpose of providing comparisons of permeabilities of anhydrite interbeds in an undisturbed (virgin) state and after fracture development and/or opening and dilation of preexisting partially healed fractures. Three sets of combined hydraulic fracturing and hydrological measurements are planned. A set of trial measurements is expected to last four to six weeks. The duration of each subsequent experiment is anticipated to be six to eight weeks

  6. Modeling and control of a hydraulically actuated flexible-prismatic link robot

    International Nuclear Information System (INIS)

    Love, L.; Kress, R.; Jansen, J.

    1996-12-01

    Most of the research related to flexible link manipulators to date has focused on single link, fixed length, single plane of vibration test beds. In addition, actuation has been predominantly based upon electromagnetic motors. Ironically, these elements are rarely found in the existing industrial long reach systems. This manuscript describes a new hydraulically actuated, long reach manipulator with a flexible prismatic link at Oak Ridge National Laboratory (ORNL). Focus is directed towards both modeling and control of hydraulic actuators as well as flexible links that have variable natural frequencies

  7. Using Pneumatics to Perform Laboratory Hydraulic Conductivity Tests on Gravel with Underdamped Responses

    Science.gov (United States)

    Judge, A. I.

    2011-12-01

    A permeameter has been designed and built to perform laboratory hydraulic conductivity tests on various kinds of gravel samples with hydraulic conductivity values ranging from 0.1 to 1 m/s. The tests are commenced by applying 200 Pa of pneumatic pressure to the free surface of the water column in a riser connected above a cylinder that holds large gravel specimens. This setup forms a permeameter specially designed for these tests which is placed in a barrel filled with water, which acts as a reservoir. The applied pressure depresses the free surface in the riser 2 cm until it is instantly released by opening a ball valve. The water then flows through the base of the cylinder and the specimen like a falling head test, but the water level oscillates about the static value. The water pressure and the applied air pressure in the riser are measured with vented pressure transducers at 100 Hz. The change in diameter lowers the damping frequency of the fluctuations of the water level in the riser, which allows for underdamped responses to be observed for all tests. The results of tests without this diameter change would otherwise be a series of critically damped responses with only one or two oscillations that dampen within seconds and cannot be evaluated with equations for the falling head test. The underdamped responses oscillate about the static value at about 1 Hz and are very sensitive to the hydraulic conductivity of all the soils tested. These fluctuations are also very sensitive to the inertia and friction in the permeameter that are calculated considering the geometry of the permeameter and verified experimentally. Several gravel specimens of various shapes and sizes are tested that show distinct differences in water level fluctuations. The friction of the system is determined by calibrating the model with the results of tests performed where the cylinder had no soil in it. The calculation of the inertia in the response of the water column for the typical testing

  8. Thermal-hydraulic tests with out-of-pile test facility for BOCA development

    International Nuclear Information System (INIS)

    Kitagishi, Shigeru; Aoyama, Masashi; Tobita, Masahiro; Inaba, Yoshitomo; Yamaura, Takayuki

    2012-01-01

    The fuel transient test facility was prepared for power ramping tests of light-water-reactor (LWR) fuels in the Japan Materials Testing Reactor (JMTR) under a contract project with the Nuclear Industrial Safety Agent (NISA) of the Ministry of Economy, Trade and Industry (METI). It is necessary to develop high accuracy analysis procedure for power ramping tests after restart of the JMTR. The out-of-pile test facility to simulate thermal-hydraulic conditions of the fuel transient test facility was therefore developed. Applicability of the analysis code ACE-3D was examined for thermal-hydraulic analysis of power ramping tests for 10x10 BWR fuels by the fuel transient test facility. As the results, the calculated temperature was 304°C in comparison with measured value of 304.9-317.4°C in the condition of 600 W/cm. There is a bright prospect of high accuracy power ramping tests by the fuel transient test facility in JMTR. (author)

  9. On-Line Core Thermal-Hydraulic Model Improvement

    International Nuclear Information System (INIS)

    In, Wang Kee; Chun, Tae Hyun; Oh, Dong Seok; Shin, Chang Hwan; Hwang, Dae Hyun; Seo, Kyung Won

    2007-02-01

    The objective of this project is to implement a fast-running 4-channel based code CETOP-D in an advanced reactor core protection calculator system(RCOPS). The part required for the on-line calculation of DNBR were extracted from the source of the CETOP-D code based on analysis of the CETOP-D code. The CETOP-D code was revised to maintain the input and output variables which are the same as in CPC DNBR module. Since the DNBR module performs a complex calculation, it is divided into sub-modules per major calculation step. The functional design requirements for the DNBR module is documented and the values of the database(DB) constants were decided. This project also developed a Fortran module(BEST) of the RCOPS Fortran Simulator and a computer code RCOPS-SDNBR to independently calculate DNBR. A test was also conducted to verify the functional design and DB of thermal-hydraulic model which is necessary to calculate the DNBR on-line in RCOPS. The DNBR margin is expected to increase by 2%-3% once the CETOP-D code is used to calculate the RCOPS DNBR. It should be noted that the final DNBR margin improvement could be determined in the future based on overall uncertainty analysis of the RCOPS

  10. On-Line Core Thermal-Hydraulic Model Improvement

    Energy Technology Data Exchange (ETDEWEB)

    In, Wang Kee; Chun, Tae Hyun; Oh, Dong Seok; Shin, Chang Hwan; Hwang, Dae Hyun; Seo, Kyung Won

    2007-02-15

    The objective of this project is to implement a fast-running 4-channel based code CETOP-D in an advanced reactor core protection calculator system(RCOPS). The part required for the on-line calculation of DNBR were extracted from the source of the CETOP-D code based on analysis of the CETOP-D code. The CETOP-D code was revised to maintain the input and output variables which are the same as in CPC DNBR module. Since the DNBR module performs a complex calculation, it is divided into sub-modules per major calculation step. The functional design requirements for the DNBR module is documented and the values of the database(DB) constants were decided. This project also developed a Fortran module(BEST) of the RCOPS Fortran Simulator and a computer code RCOPS-SDNBR to independently calculate DNBR. A test was also conducted to verify the functional design and DB of thermal-hydraulic model which is necessary to calculate the DNBR on-line in RCOPS. The DNBR margin is expected to increase by 2%-3% once the CETOP-D code is used to calculate the RCOPS DNBR. It should be noted that the final DNBR margin improvement could be determined in the future based on overall uncertainty analysis of the RCOPS.

  11. Nonlinear dynamic modeling for smart material electro-hydraulic actuator development

    Science.gov (United States)

    Larson, John P.; Dapino, Marcelo J.

    2013-03-01

    Smart material electro-hydraulic actuators use hydraulic rectification by one-way check valves to amplify the motion of smart materials, such as magnetostrictives and piezoelectrics, in order to create compact, lightweight actuators. A piston pump driven by a smart material is combined with a hydraulic cylinder to form a self-contained, power-by-wire actuator that can be used in place of a conventional hydraulic system without the need for hydraulic lines and a centralized pump. The performance of an experimental actuator driven by a 12.7 mm diameter, 114 mm length Terfenol-D rod is evaluated over a range of applied input frequencies, loads, and currents. The peak performance achieved is 37 W, moving a 220 N load at a rate of 17 cm/s and producing a blocked pressure of 12.5 MPa. Additional tests are conducted to quantify the dynamic behavior of the one-way reed valves using a scanning laser vibrometer to identify the frequency response of the reeds and the effect of the valve seat and fluid mass loading. A lumped-parameter model is developed for the system that includes valve inertia and fluid response nonlinearities, and the model results are compared with the experimental data.

  12. Thermal-hydraulic analysis of the semiscale Mod-1 blowdown heat transfer test series

    International Nuclear Information System (INIS)

    Cozzuol, J.M.

    1976-06-01

    Selected experimental thermal-hydraulic data from the recent Semiscale Mod-1 blowdown heat transfer test series are analyzed from an experimental viewpoint with emphasis on explaining those phenomena which influence core fluid behavior. Comparisons are made between the trends measured by the system instrumentation and the trends predicted by the RELAP4 computer code to aid in obtaining an understanding of the interactions between phenomena occurring in different parts of the system. The analyses presented in this report are valuable for evaluating the adequacy and improving the predictive capability of analytical models developed to predict the system response of a pressurized water reactor during a postulated loss-of-coolant accident

  13. Hydraulic modelling of drinking water treatment plant operations

    Directory of Open Access Journals (Sweden)

    L. C. Rietveld

    2009-06-01

    Full Text Available The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand filtration and cascade and tower aeration. Using this treatment step library, a hydraulic model was set up, calibrated and validated for the drinking water treatment plant Harderbroek. With the actual valve position and pump speeds, the flows were calculated through the several treatment steps. A case shows the use of the model to calculate the new setpoints for the current frequency converters of the effluent pumps during a filter backwash.

  14. Time-Varying Hydraulic Gradient Model of Paste-Like Tailings in Long-Distance Pipeline Transportation

    Directory of Open Access Journals (Sweden)

    Li Yang

    2017-01-01

    Full Text Available Paste-like tailings slurry (PTLS is always simplified as a Bingham plastic fluid, leading to excessive computational errors in the calculation of the hydraulic gradient. In the case of paste-like tailings in long-distance pipeline transportation, to explore a high-precision and reliable hydraulic gradient formula, the rheological behavior of paste-like tailings slurry was analyzed, a time-varying hydraulic gradient model was constructed, and a series of laboratory shear tests were conducted. The results indicate that the PTLS shows noticeable shear-thinning characteristics in constant shear tests; the calculated hydraulic gradient declined by about 56%, from 4.44 MPa·km−1 to 1.95 MPa·km−1 within 253 s, and remained constant for the next four hours during the pipeline transportation. Comparing with the balance hydraulic gradient obtained in a semi-industrial loop test, the computational errors of those calculated by using the time-varying hydraulic gradient model, Jinchuan formula, and Shanxi formula are 15%, 78%, and 130%, respectively. Therefore, our model is a feasible and high-precision solution for the calculation of the hydraulic gradient of paste-like tailings in long-distance pipeline transportation.

  15. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    International Nuclear Information System (INIS)

    Song, C. H.; Baek, W. P.; Chung, M. K.

    2007-06-01

    The objectives of the project are to study thermal hydraulic characteristics of advanced nuclear reactor system for evaluating key thermal-hydraulic phenomena relevant to new safety concepts. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. The Followings are main research topics: - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation-induced Thermal Mixing in a Pool - Development of Thermal-Hydraulic Models for Two-Phase Flow - Construction of T-H Data Base

  16. The analysis of thermal-hydraulic models in MELCOR code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M H; Hur, C; Kim, D K; Cho, H J [POhang Univ., of Science and TECHnology, Pohang (Korea, Republic of)

    1996-07-15

    The objective of the present work is to verify the prediction and analysis capability of MELCOR code about the progression of severe accidents in light water reactor and also to evaluate appropriateness of thermal-hydraulic models used in MELCOR code. Comparing the results of experiment and calculation with MELCOR code is carried out to achieve the above objective. Specially, the comparison between the CORA-13 experiment and the MELCOR code calculation was performed.

  17. Project W-320 thermal hydraulic model benchmarking and baselining

    International Nuclear Information System (INIS)

    Sathyanarayana, K.

    1998-01-01

    Project W-320 will be retrieving waste from Tank 241-C-106 and transferring the waste to Tank 241-AY-102. Waste in both tanks must be maintained below applicable thermal limits during and following the waste transfer. Thermal hydraulic process control models will be used for process control of the thermal limits. This report documents the process control models and presents a benchmarking of the models with data from Tanks 241-C-106 and 241-AY-102. Revision 1 of this report will provide a baselining of the models in preparation for the initiation of sluicing

  18. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Moon Kee; Park, Choon Kyung; Yang, Sun Kyoo; Chun, Se Yung; Song, Chul Hwa; Jun, Hyung Kil; Jung, Heung Joon; Won, Soon Yun; Cho, Yung Roh; Min, Kyung Hoh; Jung, Jang Hwan; Jang, Suk Kyoo; Kim, Bok Deuk; Kim, Wooi Kyung; Huh, Jin; Kim, Sook Kwan; Moon, Sang Kee; Lee, Sang Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-06-01

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author).

  19. Selected hydraulic test analysis techniques for constant-rate discharge tests

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.

    1993-03-01

    The constant-rate discharge test is the principal field method used in hydrogeologic investigations for characterizing the hydraulic properties of aquifers. To implement this test, the aquifer is stressed by withdrawing ground water from a well, by using a downhole pump. Discharge during the withdrawal period is regulated and maintained at a constant rate. Water-level response within the well is monitored during the active pumping phase (i.e., drawdown) and during the subsequent recovery phase following termination of pumping. The analysis of drawdown and recovery response within the stress well (and any monitored, nearby observation wells) provides a means for estimating the hydraulic properties of the tested aquifer, as well as discerning formational and nonformational flow conditions (e.g., wellbore storage, wellbore damage, presence of boundaries, etc.). Standard analytical methods that are used for constant-rate pumping tests include both log-log type-curve matching and semi-log straight-line methods. This report presents a current ''state of the art'' review of selected transient analysis procedures for constant-rate discharge tests. Specific topics examined include: analytical methods for constant-rate discharge tests conducted within confined and unconfined aquifers; effects of various nonideal formation factors (e.g., anisotropy, hydrologic boundaries) and well construction conditions (e.g., partial penetration, wellbore storage) on constant-rate test response; and the use of pressure derivatives in diagnostic analysis for the identification of specific formation, well construction, and boundary conditions

  20. The Hydraulic Test Procedure for Non-instrumented Irradiation Test Rig of Annular Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Lee, Kang Hee; Shin, Chang Hwan; Park, Chan Kook

    2008-08-15

    This report presents the procedure of pressure drop test, vibration test and endurance test for the non-instrumented rig using the irradiation test in HANARO of advanced PWR annular fuel which were designed and fabricated by KAERI. From the out-pile thermal hydraulic tests, confirm the flow rate at the 200 kPa pressure drop and measure the RMS displacement at this time. And the endurance test is confirmed the wear and the integrity of the non-instrumented rig at the 110% design flow rate. This out-pile test perform the Flow-Induced Vibration and Pressure Drop Experimental Tester(FIVPET) facility. The instruments in FIVPET facility was calibrated in KAERI and the pump and the thermocouple were certified by manufacturer.

  1. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-02-12

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative

  2. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic Conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    Science.gov (United States)

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-01-01

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative

  3. Thermal-hydraulic modeling of porous bed reactors

    International Nuclear Information System (INIS)

    Araj, K.J.; Nourbakhsh, H.P.

    1987-01-01

    Optimum design of nuclear reactor core requires an iterative approach between the thermal-hydraulic, neutronic and operational analysis. This paper concentrates on the thermal-hydraulic behavior of a hydrogen cooled, small particle bed reactor (PBR). The PBR core, modeled here, consists of a hexagonal array of fuel elements embedded in a moderator matrix. The fuel elements are annular packed beds of fuel particles held between two porous cylindrical frits. These particles, 500 to 600 μm in diameter, have a uranium carbide core, which is coated by two layers of graphite and an outer coating of zirconium carbide. Coolant flow, radially inward, from the cold frit through the packed bed and hot frit and axially out the channel, formed by the hot frit, to a common plenum. 5 refs., 1 fig., 2 tabs

  4. Equipping simulators with an advanced thermal hydraulics model EDF's experience

    International Nuclear Information System (INIS)

    Soldermann, R.; Poizat, F.; Sekri, A.; Faydide, B.; Dumas, J.M.

    1997-01-01

    The development of an accelerated version of the advanced CATHARe-1 thermal hydraulics code designed for EDF training simulators (CATHARE-SIMU) was successfully completed as early as 1991. Its successful integration as the principal model of the SIPA Post-Accident Simulator meant that its use could be extended to full-scale simulators as part of the renovation of the stock of existing simulators. In order to further extend the field of application to accidents occurring in shutdown states requiring action and to catch up with developments in respect of the CATHARE code, EDF initiated the SCAR Project designed to adapt CATHARE-2 to simulator requirements (acceleration, parallelization of the computation and extension of the simulation range). In other respects, the installation of SIPA on workstations means that the authors can envisage the application of this remarkable training facility to the understanding of thermal hydraulics accident phenomena

  5. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses

    Science.gov (United States)

    Sevanto, Sanna; Mcdowell, Nate G; Dickman, L Turin; Pangle, Robert; Pockman, William T

    2014-01-01

    Despite decades of research on plant drought tolerance, the physiological mechanisms by which trees succumb to drought are still under debate. We report results from an experiment designed to separate and test the current leading hypotheses of tree mortality. We show that piñon pine (Pinus edulis) trees can die of both hydraulic failure and carbon starvation, and that during drought, the loss of conductivity and carbohydrate reserves can also co-occur. Hydraulic constraints on plant carbohydrate use determined survival time: turgor loss in the phloem limited access to carbohydrate reserves, but hydraulic control of respiration prolonged survival. Our data also demonstrate that hydraulic failure may be associated with loss of adequate tissue carbohydrate content required for osmoregulation, which then promotes failure to maintain hydraulic integrity. PMID:23730972

  6. Mechanical testing of hydraulic fluids II; Mechanische Pruefung von Hydraulikfluessigkeiten II

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, M.; Feldmann, D.G.; Laukart, V.

    2001-09-01

    Since May 1996 the Institute for Mechanical Engineering Design 1 of Technical University of Hamburg-Harburg is working on the topic of ''Mechanical Testing of Hydraulic fluids''. The first project lasting 2 1/2 years was completed in 1999, the results are published as the DGMK report 514. Within these project a testing principle for the ''mechanical testing'' of hydraulic fluids has been derived, a prototype of a test rig was designed and set in operation at the authors' institute. This DGMK-report 514-1 describes the results of the second project, which investigates the operating behaviour of the test-rig more in detail. Several test-runs with a total number of 11 different hydraulic fluids show the dependence of the different lubricating behaviour of the tested fluids and their friction and wear behaviour during the tests in a reproducible way. The aim of the project was to derive a testing principle including the design of a suitable test-rig for the mechanical testing of hydraulic fluids. Based on the described results it can be stated that with the developed test it is possible to test the lubricity of hydraulic fluids reproducible and in correlation to field experiences within a relatively short time, so the target was reached. (orig.)

  7. Extended Analytic Linear Model of Hydraulic Cylinder With Respect Different Piston Areas and Volumes

    Directory of Open Access Journals (Sweden)

    Petr KOŇAŘÍK

    2009-06-01

    Full Text Available Standard analytic linear model of hydraulic cylinder usually comes from assumptions of identical action piston areas on both sides of hydraulic cylinder (double piston rod and suitable operation point, which is usually chosen in the middle of piston. By reason of that volumes inside of cylinder are than same. Moreover for control of that arrangement of hydraulic cylinder, usually controlled by 4/3 servovalve, the same mount of flows comes in and comes out to each of chambers of hydraulic cylinder. Presented paper deal with development of extended form of analytic linear model of single piston rod hydraulic cylinder which respects different action piston areas and volumes inside of chambers of hydraulic cylinder and also two different input flows of hydraulic cylinder. In extended model are also considered possibilities of different dead volumes in hoses and intake parts of hydraulic cylinder. Dead volume has impact on damping of hydraulic cylinder. Because the system of hydraulic cylinder is generally presented as a integrative system with inertia of second order: eq , we can than obtain time constants and damping of hydraulic cylinder for each of analytic form model. The model has arisen for needs of model fractionation on two parts. Part of behaviour of chamber A and part of behaviour of chamber B of cylinder. It was created for the reason of analysis and synthesis of control parameters of regulation circuit of multivalve control concept of hydraulic drive with separately controlled chamber A and B which could be then used for.

  8. Research of the possibility of using neural networks in the tests of locomotive hydraulic transmissions

    OpenAIRE

    КЛЮШНИК, І. А.

    2017-01-01

    The possibility of developing a self-diagnostics system of the diesel locomotives hydraulic transmissions information-measuring test system is researched. The use of neural networks and fuzzy logic for the development of a self-diagnostics system of the diesel locomotives hydraulic transmissions information-measuring tests system is proposed. As the initial stage of developing a diagnostic system using neural networks, a neural network is presented which predicts the rotational speed of the h...

  9. Hydraulic turbines and auxiliary equipment

    Energy Technology Data Exchange (ETDEWEB)

    Luo Gaorong [Organization of the United Nations, Beijing (China). International Centre of Small Hydroelectric Power Plants

    1995-07-01

    This document presents a general overview on hydraulic turbines and auxiliary equipment, emphasizing the turbine classification, in accordance with the different types of turbines, standard turbine series in China, turbine selection based on the basic data required for the preliminary design, general hill model curves, chart of turbine series and the arrangement of application for hydraulic turbines, hydraulic turbine testing, and speed regulating device.

  10. Hydraulic fracture propagation modeling and data-based fracture identification

    Science.gov (United States)

    Zhou, Jing

    Successful shale gas and tight oil production is enabled by the engineering innovation of horizontal drilling and hydraulic fracturing. Hydraulically induced fractures will most likely deviate from the bi-wing planar pattern and generate complex fracture networks due to mechanical interactions and reservoir heterogeneity, both of which render the conventional fracture simulators insufficient to characterize the fractured reservoir. Moreover, in reservoirs with ultra-low permeability, the natural fractures are widely distributed, which will result in hydraulic fractures branching and merging at the interface and consequently lead to the creation of more complex fracture networks. Thus, developing a reliable hydraulic fracturing simulator, including both mechanical interaction and fluid flow, is critical in maximizing hydrocarbon recovery and optimizing fracture/well design and completion strategy in multistage horizontal wells. A novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple nonplanar fractures' propagation in both homogeneous and heterogeneous reservoirs with or without pre-existing natural fractures. Initiation, growth, and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. This physics-based modeling approach leads to realistic fracture patterns without using the empirical rock failure and fracture propagation criteria required in conventional continuum methods. Based on this model, a sensitivity study is performed to investigate the effects of perforation spacing, in-situ stress anisotropy, rock properties (Young's modulus, Poisson's ratio, and compressive strength), fluid properties, and natural fracture properties on hydraulic fracture propagation. In addition, since reservoirs are buried thousands of feet below the surface, the

  11. Thermal hydraulics in the hot pool of Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Padmakumar, G.; Pandey, G.K.; Vaidyanathan, G.

    2009-01-01

    Sodium cooled Fast Breeder Test Reactor (FBTR) of 40 MWt/13 MWe capacity is in operation at Kalpakkam, near Chennai. Presently it is operating with a core of 10.5 MWt. Knowledge of temperatures and flow pattern in the hot pool of FBTR is essential to assess the thermal stresses in the hot pool. While theoretical analysis of the hot pool has been conducted by a three-dimensional code to access the temperature profile, it involves tuning due to complex geometry, thermal stresses and vibration. With this in view, an experimental model was fabricated in 1/4 scale using acrylic material and tests were conducted in water. Initially hydraulic studies were conducted with ambient water maintaining Froude number similarity. After that thermal studies were conducted using hot and cold water maintaining Richardson similitude. In both cases Euler similarity was also maintained. Studies were conducted simulating both low and full power operating conditions. This paper discusses the model simulation, similarity criteria, the various thermal hydraulic studies that were carried out, the results obtained and the comparison with the prototype measurements.

  12. Development of thermal hydraulic models for the reliable regulatory auditing code

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Song, C. H.; Lee, Y. J.; Kwon, T. S.; Lee, S. W. [Korea Automic Energy Research Institute, Taejon (Korea, Republic of)

    2004-02-15

    The objective of this project is to develop thermal hydraulic models for use in improving the reliability of the regulatory auditing codes. The current year fall under the second step of the 3 year project, and the main researches were focused on the development of downcorner boiling model. During the current year, the bubble stream model of downcorner has been developed and installed in he auditing code. The model sensitivity analysis has been performed for APR1400 LBLOCA scenario using the modified code. The preliminary calculation has been performed for the experimental test facility using FLUENT and MARS code. The facility for air bubble experiment has been installed. The thermal hydraulic phenomena for VHTR and super critical reactor have been identified for the future application and model development.

  13. Development of model pump for establishing hydraulic design of primary sodium pumps in PFBR

    International Nuclear Information System (INIS)

    Chougule, R.J.; Sahasrabudhe, H.G.; Rao, A.S.L.K.; Balchander, K.; Kale, R.D.

    1994-01-01

    Indira Gandhi Centre for Atomic Research, Kalpakkam indicated requirement of indigenous development of primary sodium pump, handling liquid sodium as coolant in Fast Breeder Reactor. The primary sodium pump concept selected in its preliminary design is a vertical, single stage, with single suction impeller, suction facing downwards. The pump is having diffuser, discharge casing and discharge collector. The 1/3 rd size model pump is developed to establish the hydraulic performance of the prototype primary sodium pump. The main objectives were to verify the hydraulic design to operate on low net positive suction head available (NPSHA), no evidence of visible cavitation at available NPSHA, the pump should be designed with a diffuser etc. The model pump PSP 250/40 was designed and successfully developed by Research and Development Division of M/s Kirloskar Brothers Ltd., Kirloskarvadi. The performance testing using model pump was successfully carried out on a closed circuit test rig. The performance of a model pump at three different speeds 1900 rpm, 1456 rpm and 975 rpm was established. The values of hydraulic axial thrust with and without balancing holes on impeller at 1900 rpm was measured. Visual cavitation study at 1900 rpm was carried out to establish the NPSH at bubble free operation of the pump. The tested performance of the model pump is converted to the full scale prototype pump. The predicted performance of prototype pump at 700 rpm was found to be meeting fully with the expected duties. (author). 6 figs., 3 tabs

  14. Similarity analysis applied to the design of scaled tests of hydraulic mitigation methods for Tank 241-SY-101

    International Nuclear Information System (INIS)

    Liljegren, L.M.

    1993-02-01

    The episodic gas releases from Tank 241-SY-101 (SY-101) pose a potential safety hazard. It is thought that gas releases occur because gases are generated and trapped in layers of settled solids located at the bottom of the tank. This document focuses on issues associated with testing of hydraulic mitigation technologies proposed for SY-101. The basic assumption underlying the concept of hydraulic mitigation is that mobilization or maintained suspension of the solids settled in the bottom of the tank wig prevent gas accumulation. Engineering of hydraulic technologies will require testing to determine the operating parameters required to mobilize the solids and to maintain these solids in suspension. Because full scale testing is extremely expensive (even when possible), scaled tests are needed to assess the merit of the proposed technologies and to provide data for numerical or analytical modeling. This research is conducted to support testing and evaluation of proposed hydraulic mitigation concepts only. The work here is oriented towards determining the jet velocities, nozzle sizes, and other operating parameters required to mobilize the settled solids in SY- 101 and maintain them in suspension

  15. Modelling and LPV control of an electro-hydraulic servo system

    NARCIS (Netherlands)

    Naus, G.J.L.; Wijnheijmer, F.P.; Post, W.J.A.E.M.; Steinbuch, M.; Teerhuis, A.P.

    2006-01-01

    This paper aims to show the modelling and control of an hydraulic servo system, targeting at frequency domain based controller design and the implementation of a LPV controller. The actual set-up consists of a mass, moved by a hydraulic cylinder and an electro-hydraulic servo valve. A nonlinear

  16. Hydraulic pitch control system for wind turbines: Advanced modeling and verification of an hydraulic accumulator

    DEFF Research Database (Denmark)

    Irizar, Victor; Andreasen, Casper Schousboe

    2017-01-01

    Hydraulic pitch systems provide robust and reliable control of power and speed of modern wind turbines. During emergency stops, where the pitch of the blades has to be taken to a full stop position to avoid over speed situations, hydraulic accumulators play a crucial role. Their efficiency...... and capability of providing enough energy to rotate the blades is affected by thermal processes due to the compression and decompression of the gas chamber. This paper presents an in depth study of the thermodynamical processes involved in an hydraulic accumulator during operation, and how they affect the energy...

  17. Applications for coupled core neutronics and thermal-hydraulic models

    International Nuclear Information System (INIS)

    Eller, J.

    1996-01-01

    The unprecedented increases in computing capacity that have occurred during the last decade have affected our sciences, and thus our lives, to an extent that is difficult to overstate. All indications are that this trend will continue for years to come. Nuclear reactor systems analysis is one of many areas of engineering that has changed dramatically as a result of this evolution. Our ability to model the various mechanical and physical systems in greater and greater detail has allowed significant improvements in operational efficiency in spite of increasing regulatory requirements. Many of these efficiencies result from the use of more complex and geometrically detailed computer modeling, which is used to justify a reduction or elimination of some of the conservatisms required by earlier, less sophisticated analyses. And more recently, as our industries open-quotes downsize,close quotes efforts are being made to find ways to use the ever-increasing computing capacity to design systems that accomplish more work, in less time, and with fewer people. The balance of this paper discusses some of the visions that Duke Power Company feels would most benefit their particular methodologies. One of the concepts receiving a lot of attention involves an automated coupling of a thermal-hydraulic plant systems analysis model to a three-dimensional core neutronics program. The thermal-hydraulic analysis of several postulated system transients incorporates large conservatisms because of limited ability to model complex time-dependent asymmetric heat sources in adequate geometric detail. For these transients, the core behavior is closely coupled with the thermal-hydraulic behavior of the total plant system and vice versa. Steam-line break, uncontrolled rod withdrawal, and rod drop anayses are likely to benefit most from this type of linked process

  18. Hydraulic modeling development and application in water resources engineering

    Science.gov (United States)

    Simoes, Francisco J.; Yang, Chih Ted; Wang, Lawrence K.

    2015-01-01

    The use of modeling has become widespread in water resources engineering and science to study rivers, lakes, estuaries, and coastal regions. For example, computer models are commonly used to forecast anthropogenic effects on the environment, and to help provide advanced mitigation measures against catastrophic events such as natural and dam-break floods. Linking hydraulic models to vegetation and habitat models has expanded their use in multidisciplinary applications to the riparian corridor. Implementation of these models in software packages on personal desktop computers has made them accessible to the general engineering community, and their use has been popularized by the need of minimal training due to intuitive graphical user interface front ends. Models are, however, complex and nontrivial, to the extent that even common terminology is sometimes ambiguous and often applied incorrectly. In fact, many efforts are currently under way in order to standardize terminology and offer guidelines for good practice, but none has yet reached unanimous acceptance. This chapter provides a view of the elements involved in modeling surface flows for the application in environmental water resources engineering. It presents the concepts and steps necessary for rational model development and use by starting with the exploration of the ideas involved in defining a model. Tangible form of those ideas is provided by the development of a mathematical and corresponding numerical hydraulic model, which is given with a substantial amount of detail. The issues of model deployment in a practical and productive work environment are also addressed. The chapter ends by presenting a few model applications highlighting the need for good quality control in model validation.

  19. Extended Analytic Linear Model of Hydraulic Cylinder With Respect Different Piston Areas and Volumes

    OpenAIRE

    Petr KOŇAŘÍK

    2009-01-01

    Standard analytic linear model of hydraulic cylinder usually comes from assumptions of identical action piston areas on both sides of hydraulic cylinder (double piston rod) and suitable operation point, which is usually chosen in the middle of piston. By reason of that volumes inside of cylinder are than same. Moreover for control of that arrangement of hydraulic cylinder, usually controlled by 4/3 servovalve, the same mount of flows comes in and comes out to each of chambers of hydraulic cyl...

  20. FFTF thermal-hydraulic testing results affecting piping and vessel component design in LMFBR's

    International Nuclear Information System (INIS)

    Stover, R.L.; Beaver, T.R.; Chang, S.C.

    1983-01-01

    The Fast Flux Test Facility completed four years of pre-operational testing in April 1982. This paper describes thermal-hydraulic testing results from this period which impact piping and vessel component design in LMFBRs. Data discussed are piping flow oscillations, piping thermal stratification and vessel upper plenum stratification. Results from testing verified that plant design limits were met

  1. Advanced modelling and numerical strategies in nuclear thermal-hydraulics

    International Nuclear Information System (INIS)

    Staedtke, H.

    2001-01-01

    The first part of the lecture gives a brief review of the current status of nuclear thermal hydraulics as it forms the basis of established system codes like TRAC, RELAP5, CATHARE or ATHLET. Specific emphasis is given to the capabilities and limitations of the underlying physical modelling and numerical solution strategies with regard to the description of complex transient two-phase flow and heat transfer conditions as expected to occur in PWR reactors during off-normal and accident conditions. The second part of the lecture focuses on new challenges and future needs in nuclear thermal-hydraulics which might arise with regard to re-licensing of old plants using bestestimate methodologies or the design and safety analysis of Advanced Light Water Reactors relying largely on passive safety systems. In order to meet these new requirements various advanced modelling and numerical techniques will be discussed including extended wellposed (hyperbolic) two-fluid models, explicit modelling of interfacial area transport or higher order numerical schemes allowing a high resolution of local multi-dimensional flow processes.(author)

  2. Simple Predictive Models for Saturated Hydraulic Conductivity of Technosands

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Razzaghi, Fatemeh; Møldrup, Per

    2012-01-01

    Accurate estimation of saturated hydraulic conductivity (Ks) of technosands (gravel-free, coarse sands with negligible organic matter content) is important for irrigation and drainage management of athletic fields and golf courses. In this study, we developed two simple models for predicting Ks......-Rammler particle size distribution (PSD) function. The Ks and PSD data of 14 golf course sands from literature as well as newly measured data for a size fraction of Lunar Regolith Simulant, packed at three different dry bulk densities, were used for model evaluation. The pore network tortuosity......-connectivity parameter (m) obtained for pure coarse sand after fitting to measured Ks data was 1.68 for both models and in good agreement with m values obtained from recent solute and gas diffusion studies. Both the modified K-C and R-C models are easy to use and require limited parameter input, and both models gave...

  3. Hydraulic modeling of thermal discharges into shallow, tidal affected streams

    International Nuclear Information System (INIS)

    Copp, H.W.; Shashidhara, N.S.

    1981-01-01

    A two-unit nuclear fired power plant is being constructed in western Washington state. Blowdown water from cooling towers will be discharged into the Chehalis River nearby. The location of a diffuser is some 21 miles upriver from Grays Harbor on the Pacific Ocean. Because the Chehalis River is classified as an excellent stream from the standpoint of water quality, State regulatory agencies required demonstration that thermal discharges would maintain water quality standards within fairly strict limits. A hydraulic model investigation used a 1:12 scale, undistorted model of a 1300-foot river reach in the vicinity of the diffuser. The model scale was selected to insure fully turbulent flows both in the stream and from the diffuser (Reynolds similitude). Model operation followed the densimetric Froude similitude. Thermistors were employed to measure temperatures in the model; measurements were taken by computer command and such measurements at some 250 positions were effected in about 2.5 seconds

  4. Simplified hydraulic model of French vertical-flow constructed wetlands.

    Science.gov (United States)

    Arias, Luis; Bertrand-Krajewski, Jean-Luc; Molle, Pascal

    2014-01-01

    Designing vertical-flow constructed wetlands (VFCWs) to treat both rain events and dry weather flow is a complex task due to the stochastic nature of rain events. Dynamic models can help to improve design, but they usually prove difficult to handle for designers. This study focuses on the development of a simplified hydraulic model of French VFCWs using an empirical infiltration coefficient--infiltration capacity parameter (ICP). The model was fitted using 60-second-step data collected on two experimental French VFCW systems and compared with Hydrus 1D software. The model revealed a season-by-season evolution of the ICP that could be explained by the mechanical role of reeds. This simplified model makes it possible to define time-course shifts in ponding time and outlet flows. As ponding time hinders oxygen renewal, thus impacting nitrification and organic matter degradation, ponding time limits can be used to fix a reliable design when treating both dry and rain events.

  5. Modelling and Simulation of Mobile Hydraulic Crane with Telescopic Arm

    DEFF Research Database (Denmark)

    Nielsen, Brian; Pedersen, Henrik Clemmensen; Andersen, Torben Ole

    2005-01-01

    For loader crane applications resolved motion control is assumed to be one of the areas for development in the future. To develop and evaluate different control strategies for a resolved motion control system, information about the dynamic behaviour of these cranes is necessary. In the current...... paper a model of a loader crane with a flexible telescopic arm is presented, which may be used for evaluating control strategies. The telescopic arm is operated by four actuators connected hydraulically by a parallel circuit. The operating sequences of the individual actuators is therefore...

  6. Developed hydraulic simulation model for water pipeline networks

    Directory of Open Access Journals (Sweden)

    A. Ayad

    2013-03-01

    Full Text Available A numerical method that uses linear graph theory is presented for both steady state, and extended period simulation in a pipe network including its hydraulic components (pumps, valves, junctions, etc.. The developed model is based on the Extended Linear Graph Theory (ELGT technique. This technique is modified to include new network components such as flow control valves and tanks. The technique also expanded for extended period simulation (EPS. A newly modified method for the calculation of updated flows improving the convergence rate is being introduced. Both benchmarks, ad Actual networks are analyzed to check the reliability of the proposed method. The results reveal the finer performance of the proposed method.

  7. First wall thermal hydraulic models for fusion blankets

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1980-01-01

    Subject to normal and off-normal reactor conditions, thermal hydraulic models of first walls, e.g., a thermal mass barrier, a tubular shield, and a radiating liner are reviewed. Under normal operation the plasma behaves as expected in a predicted way for transient and steady-state conditions. The most severe thermal loading on the first wall occurs when the plasma becomes unstable and dumps its energy on the wall in a very short period of time (milliseconds). Depending on the plasma dump time and area over which the energy is deposited may result in melting of the first wall surface, and if the temperature is high enough, vaporization

  8. Hydraulic modeling support for conflict analysis: The Manayunk canal revisited

    International Nuclear Information System (INIS)

    Chadderton, R.A.; Traver, R.G.; Rao, J.N.

    1992-01-01

    This paper presents a study which used a standard, hydraulic computer model to generate detailed design information to support conflict analysis of a water resource use issue. As an extension of previous studies, the conflict analysis in this case included several scenarios for stability analysis - all of which reached the conclusion that compromising, shared access to the water resources available would result in the most benefits to society. This expected equilibrium outcome was found to maximize benefit-cost estimates. 17 refs., 1 fig., 2 tabs

  9. Thermal hydraulic studies in steam generator test facility

    International Nuclear Information System (INIS)

    Vinod, V.; Suresh Kumar, V.A.; Noushad, I.B.; Ellappan, T.R.; Rajan, K.K.; Rajan, M.; Vaidyanathan, G.

    2005-01-01

    Full text of publication follows: A 500 MWe fast breeder reactor is being constructed at Kalpakkam, India. This is a sodium cooled reactor with two primary and two secondary sodium loops with total 8 steam generators. The typical advantage of fast breeder plants is the high operating temperature of steam cycles and the high plant efficiency. To produce this high pressure and high temperature steam, once through straight tube vertical sodium heated steam generators are used. The steam is generated from the heat produced in the reactor core and being transported through primary and secondary sodium circuits. The steam generator is a 25 m high middle supported steam generator with expansion bend and 23 m heat transfer length. Steam Generator Test Facility (SGTF) constructed at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam aims at performing various tests on a 5.5 MWt steam generator. This vertically simulated test article is similar in all respects to the proposed 157 MWt steam generator module for the Prototype Fast Breeder Reactor (PFBR), with reduced number of tubes. Heat transfer performance tests are done with this 19 tube steam generator at various load conditions. Sodium circuit for the SGTF is equipped with oil fired heater as heat source and centrifugal sodium pump, to pump sodium at 105 m 3 /hr flow rate. Other typical components like sodium to air heat exchanger, sodium purification system and hydrogen leak detection system is also present in the sodium circuit. High pressure steam produced in the steam generator is dumped in a condenser and recycled. Important tests planned in SGTF are the heat transfer performance test, stability test, endurance test and performance test of steam generator under various transients. The controlled operation of steam generator will be studied with possible control schemes. A steady state simulation of the steam generator is done with a mathematical model. This paper gives the details of heat transfer

  10. Testing of Local Velocity Transducer Used at Sodium Thermal Hydraulic Test Facilities

    International Nuclear Information System (INIS)

    Kim, Tae Joon; Eoh, Jae Hyuk; Hwang, In Koo; Jeong, Ji Young; Kim, Jong Man; Lee, Yong Bum; Kim, Yeong Il

    2012-01-01

    KAERI (Korea Atomic Energy Research Institute) will perform a test for a thermal hydraulic simulation with STELLA-1 for a Component Performance Test Sodium Loop in the year 2012, and subsequently it will construct for STELLA-2 for a Sodium Thermalhydraulic Experimental Facility in the year 2016. The STELLA-2 consists of a scaled reactor vessel with a core of electric heaters, four IHXs, two PHTS pumps, two DHXs, and two AHXs. In STELLA-2, several kinds of flow measurements exists. In this paper, the local velocity transducer as a prototype tested in IPPE (in Russia), was manufactured as a prototype by a shop in KAERI. This local velocity transducer will be used to measure the flow rate in a pool

  11. Alternative method of inservice hydraulic testing of difficult to test pumps

    International Nuclear Information System (INIS)

    Stockton, N.B.; Shangari, S.

    1994-01-01

    The pump test codes require that system resistance be varied until the independent variable (either the pump flow rate or differential pressure) equals its reference value. Variance from this fixed reference value is not specifically allowed. However, the design of many systems makes it impractical to set the independent variable to an exact value. Over a limited range of pump operation about the fixed reference value, linear interpolation between two points of pump operation can be used to accurately determine degradation at the reference value without repeating reference test conditions. This paper presents an overview of possible alternatives for hydraulic testing of pumps and a detailed discussion of the linear interpolation method. The approximation error associated with linear interpolation is analyzed. Methods to quantify and minimize approximation error are presented

  12. Hydraulic head interpolation using ANFIS—model selection and sensitivity analysis

    Science.gov (United States)

    Kurtulus, Bedri; Flipo, Nicolas

    2012-01-01

    The aim of this study is to investigate the efficiency of ANFIS (adaptive neuro fuzzy inference system) for interpolating hydraulic head in a 40-km 2 agricultural watershed of the Seine basin (France). Inputs of ANFIS are Cartesian coordinates and the elevation of the ground. Hydraulic head was measured at 73 locations during a snapshot campaign on September 2009, which characterizes low-water-flow regime in the aquifer unit. The dataset was then split into three subsets using a square-based selection method: a calibration one (55%), a training one (27%), and a test one (18%). First, a method is proposed to select the best ANFIS model, which corresponds to a sensitivity analysis of ANFIS to the type and number of membership functions (MF). Triangular, Gaussian, general bell, and spline-based MF are used with 2, 3, 4, and 5 MF per input node. Performance criteria on the test subset are used to select the 5 best ANFIS models among 16. Then each is used to interpolate the hydraulic head distribution on a (50×50)-m grid, which is compared to the soil elevation. The cells where the hydraulic head is higher than the soil elevation are counted as "error cells." The ANFIS model that exhibits the less "error cells" is selected as the best ANFIS model. The best model selection reveals that ANFIS models are very sensitive to the type and number of MF. Finally, a sensibility analysis of the best ANFIS model with four triangular MF is performed on the interpolation grid, which shows that ANFIS remains stable to error propagation with a higher sensitivity to soil elevation.

  13. Hydraulic pressure pulses with elastic and plastic structural flexibility: test and analysis (LWBR Development Program)

    International Nuclear Information System (INIS)

    Schwirian, R.E.

    1978-03-01

    Pressure pulse tests were conducted with a flexible test section in a test vessel filled with room temperature water. The pressure pulses were generated with a drop hammer and piston pulse generator and were of a sufficient magnitude to cause plastic deformation of the test section. Because of the strong pressure relief effect of the deforming test section, pressure pulse magnitudes were below 265 psig in magnitude and had durations of 50 to 55 msecs. Calculations performed with the FLASH-35 bi-linear hysteresis model of structural deformation show good agreement with experiment. In particular, FLASH 35 adequately predicts the decrease in peak pressure and the increase in pulse duration due to elastic and plastic deformation of the test section. Predictions of flexible member motion are good, but are less satisfactory than the pressure pulse results due to uncertainties in the values of yield point and beyond yield stiffness used to model the various flexible members. Coupled with this is a strong sensitivity of the FLASH 35 predictions to the values of yield point and beyond yield stiffness chosen for the various flexible members. The test data versus calculation comparisons presented here provide preliminary qualification for FLASH 35 calculations of transient hydraulic pressures and pressure differentials in the presence of flexible structural members which deform both elastically and plastically

  14. An improved thermal-hydraulic modeling of the Jules Horowitz Reactor using the CATHARE2 system code

    Energy Technology Data Exchange (ETDEWEB)

    Pegonen, R., E-mail: pegonen@kth.se [KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-10691 Stockholm (Sweden); Bourdon, S.; Gonnier, C. [CEA, DEN, DER, SRJH, CEA Cadarache, 13108 Saint-Paul-lez-Durance Cedex (France); Anglart, H. [KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-10691 Stockholm (Sweden)

    2017-01-15

    Highlights: • An improved thermal-hydraulic modeling of the JHR reactor is described. • Thermal-hydraulics of the JHR is analyzed during loss of flow accident. • The heat exchanger approach gives more realistic and less conservative results. - Abstract: The newest European high performance material testing reactor, the Jules Horowitz Reactor, will support current and future nuclear reactor designs. The reactor is under construction at the CEA Cadarache research center in southern France and is expected to achieve first criticality at the end of this decade. This paper presents an improved thermal-hydraulic modeling of the reactor using solely CATHARE2 system code. Up to now, the CATHARE2 code was simulating the full reactor with a simplified approach for the core and the boundary conditions were transferred into the three-dimensional FLICA4 core simulation. A new more realistic methodology is utilized to analyze the thermal-hydraulic simulation of the reactor during a loss of flow accident.

  15. Calibration of hydrodynamic behavior and biokinetics for TOC removal modeling in biofilm reactors under different hydraulic conditions.

    Science.gov (United States)

    Zeng, Ming; Soric, Audrey; Roche, Nicolas

    2013-09-01

    In this study, total organic carbon (TOC) biodegradation was simulated by GPS-X software in biofilm reactors with carriers of plastic rings and glass beads under different hydraulic conditions. Hydrodynamic model by retention time distribution and biokinetic measurement by in-situ batch test served as two significant parts of model calibration. Experimental results showed that TOC removal efficiency was stable in both media due to the enough height of column, although the actual hydraulic volume changed during the variation of hydraulic condition. Simulated TOC removal efficiencies were close to experimental ones with low theil inequality coefficient values (below 0.15). Compared with glass beads, more TOC was removed in the filter with plastic rings due to the larger actual hydraulic volume and lower half saturation coefficient in spite of its lower maximum specific growth rate of biofilm, which highlighted the importance of calibrating hydrodynamic behavior and biokinetics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Hydraulic testing around Room Q: Evaluation of the effects of mining on the hydraulic properties of Salado Evaporites

    International Nuclear Information System (INIS)

    Domski, P.S.; Upton, D.T.; Beauheim, R.L.

    1996-03-01

    Room Q is a 109-m-long cylindrical excavation in the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site. Fifteen boreholes were drilled and instrumented around Room Q so that tests could be conducted to determine the effects of room excavation on the hydraulic properties of the surrounding evaporate rocks. Pressure-buildup and pressure-pulse tests were conducted in all of the boreholes before Room Q was mined. The data sets from only eight of the boreholes are adequate for parameter estimation, and five of those are of poor quality. Constant-pressure flow tests and pressure-buildup tests were conducted after Room Q was mined, producing eleven interpretable data sets, including two of poor quality. Pre-mining transmissivities interpreted from the three good-quality data sets ranged from 1 x 10 -15 to 5 x 10 -14 m 2 /s (permeability-thickness products of 2 x 10 -22 to 9 x 10 -21 m 3 ) for test intervals ranging in length from 0.85 to 1.37 m. Pre-mining average permeabilities, which can be considered representative of undisturbed, far-field conditions, were 6 x 10 -20 and 8 x 10 -20 m 2 for anhydrite, and 3 x 10 -22 m 2 for halite. Post-mining transmissivities interpreted from the good-quality data sets ranged from 1 x 10 -16 to 3 x 10 -13 m 2 /s (permeability-thickness products of 2 x 10 -23 to 5 x 10 -20 m 3 ). Post-mining average permeabilities for anhydrite ranged from 8 x 10 -20 to 1 x 10 -19 m 2 . The changes in hydraulic properties and pore pressures that were observed can be attributed to one or a combination of three processes: stress reduction, changes in pore connectivity, and flow towards Room Q. The effects of the three processes cannot be individually quantified with the available data

  17. An improved method for interpreting API filter press hydraulic conductivity test results

    International Nuclear Information System (INIS)

    Heslin, G.M.; Baxter, D.Y.; Filz, G.M.; Davidson, R.R.

    1997-01-01

    The American Petroleum Institute (API) filter press is frequently used to measure the hydraulic conductivity of soil-bentonite backfill during the mix design process and as part of construction quality controls. However, interpretation of the test results is complicated by the fact that the seepage-induced consolidation pressure varies from zero at the top of the specimen to a maximum value at the bottom of the specimen. An analytical solution is available which relates the stress, compressibility, and hydraulic conductivity in soil consolidated by seepage forces. This paper presents the results of a laboratory investigation undertaken to support application of this theory to API hydraulic conductivity tests. When the API test results are interpreted using seepage consolidation theory, they are in good agreement with the results of consolidometer permeameter tests. Limitations of the API test are also discussed

  18. Use of tracer tests to evaluate hydraulic properties of constructed wetlands

    International Nuclear Information System (INIS)

    Wachniew, P.; Czuprynski, P.; Maloszewski, P.

    2004-01-01

    Knowledge of hydraulic properties is a perquisite for studies of constructed wetlands functioning. Bromide ions and tritium were used as a tracers to derive RTDs for two constructed wetlands: a reed bed with subsurface flow and a Lemna pond. Quantitative hydraulic characteristics (mean travel time of water, dispersion number) of the wetlands were evaluated from RTDs (Residence Time Distributions) by means of a mathematical model of waste water flow. (author)

  19. FEATURES OF RESOURCE TESTING OF THE HYDRAULIC BRAKE DRIVE ELEMENTS OF VEHICLES EQUIPPED WITH ABS

    Directory of Open Access Journals (Sweden)

    A. Revin

    2011-01-01

    Full Text Available The analysis of the resource testing facilities and methods of automobile brake cylinders in terms of ABS working process adequacy is carried out. A testing stand construction and a method of carrying out the resource testing of hydraulic drive elements of the automobile automated braking sys-tem is offered.

  20. Measuring the initial earth pressure of granite using hydraulic fracturing test; Goseong and Yuseong areas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoung Yoon; Bae, Dae Seok; Kim, Chun Soo; Kim, Kyung Su; Koh, Young Kwon; Won, Kyung Sik [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-02-01

    This report provides the initial earth pressure of granitic rocks obtained from Deep Core Drilling Program which is carried out as part of the assessment of deep geological environmental condition. These data are obtained by hydraulic fracturing test in three boreholes drilled up to 350{approx}500 m depth at the Yuseong and Goseong sites. These sites were selected based on the result of preliminary site evaluation study. The boreholes are NX-size (76 mm) and vertical. The procedure of hydraulic fracturing test is as follows: - Selecting the testing positions by preliminary investigation using BHTV logging. - Performing the hydraulic fracturing test at each selected position with depth.- Estimating the shut-in pressure by the bilinear pressure-decay-rate method. - Estimating the fracture reopening pressure from the pressure-time curves.- Estimating the horizontal principal stresses and the direction of principal stresses. 65 refs., 39 figs., 12 tabs. (Author)

  1. Identification of groundwater flow parameters using reciprocal data from hydraulic interference tests

    Science.gov (United States)

    Marinoni, Marianna; Delay, Frederick; Ackerer, Philippe; Riva, Monica; Guadagnini, Alberto

    2016-08-01

    We investigate the effect of considering reciprocal drawdown curves for the characterization of hydraulic properties of aquifer systems through inverse modeling based on interference well testing. Reciprocity implies that drawdown observed in a well B when pumping takes place from well A should strictly coincide with the drawdown observed in A when pumping in B with the same flow rate as in A. In this context, a critical point related to applications of hydraulic tomography is the assessment of the number of available independent drawdown data and their impact on the solution of the inverse problem. The issue arises when inverse modeling relies upon mathematical formulations of the classical single-continuum approach to flow in porous media grounded on Darcy's law. In these cases, introducing reciprocal drawdown curves in the database of an inverse problem is equivalent to duplicate some information, to a certain extent. We present a theoretical analysis of the way a Least-Square objective function and a Levenberg-Marquardt minimization algorithm are affected by the introduction of reciprocal information in the inverse problem. We also investigate the way these reciprocal data, eventually corrupted by measurement errors, influence model parameter identification in terms of: (a) the convergence of the inverse model, (b) the optimal values of parameter estimates, and (c) the associated estimation uncertainty. Our theoretical findings are exemplified through a suite of computational examples focused on block-heterogeneous systems with increased complexity level. We find that the introduction of noisy reciprocal information in the objective function of the inverse problem has a very limited influence on the optimal parameter estimates. Convergence of the inverse problem improves when adding diverse (nonreciprocal) drawdown series, but does not improve when reciprocal information is added to condition the flow model. The uncertainty on optimal parameter estimates is

  2. Strain measurement in and analysis for hydraulic test of CPR1000 reactor pressure vessel

    International Nuclear Information System (INIS)

    Zhou Dan; Zhuang Dongzhen

    2013-01-01

    The strain measurement in hydraulic test of CPR1000 reactor pressure vessel performed in Dongfang Heavy Machinery Co., Ltd. is introduced. The detail test scheme and method was introduced and the measurement results of strain and stress was given. Meanwhile the finite element analysis was performed for the pressure vessel, which was generally matched with the measurement results. The reliability of strain measurement was verified and the high strength margin of vessel was shown, which would give a good reference value for the follow-up hydraulic tests and strength analysis of reactor pressure vessel. (authors)

  3. Thermal-Hydraulics analysis of pressurized water reactor core by using single heated channel model

    Directory of Open Access Journals (Sweden)

    Reza Akbari

    2017-08-01

    Full Text Available Thermal hydraulics of nuclear reactor as a basis of reactor safety has a very important role in reactor design and control. The thermal-hydraulic analysis provides input data to the reactor-physics analysis, whereas the latter gives information about the distribution of heat sources, which is needed to perform the thermal-hydraulic analysis. In this study single heated channel model as a very fast model for predicting thermal hydraulics behavior of pressurized water reactor core has been developed. For verifying the results of this model, we used RELAP5 code as US nuclear regulatory approved thermal hydraulics code. The results of developed single heated channel model have been checked with RELAP5 results for WWER-1000. This comparison shows the capability of single heated channel model for predicting thermal hydraulics behavior of reactor core.

  4. Thermal-hydraulic modeling of porous bed reactors

    International Nuclear Information System (INIS)

    Araj, K.J.; Nourbakhsh, H.P.

    1987-01-01

    Optimum design of nuclear reactor cores requires an iterative approach between the thermal-hydraulic, neutronic, and operational analysis. This paper will concentrate on the thermal-hydraulic behavior of a hydrogen-cooled small particle bed reactor (PBR). The PBR core modeled here consists of a hexagonal array of fuel elements embedded in a moderator matrix. The fuel elements are annular packed beds of fuel particles held between two porous cylindrical frits. These particles, 500 to 600 μm in diameter, have a uranium carbide core, which is coated by two layers of graphite and an outer coating of zirconium carbide. Coolant flows, radially inward, from the cold frit through the packed bed and hot frit and axially out the channel, formed by the hot frit to a common plenum. A fast running one-dimensional lumped-parameter steady-state code (FTHP) was developed to evaluate the effects of design changes in fuel assembly and power distribution. Another objective for the code was to investigate various methods of coolant control to minimize hot channel effects and maximize outlet temperatures

  5. Intelligent Hydraulic Actuator and Exp-based Modelling of Losses in Pumps and .

    DEFF Research Database (Denmark)

    Zhang, Muzhi

    A intelligent fuzzy logic self-organising PD+I controller for a gearrotor hydraulic motor was developed and evaluated. Furthermore, a experimental-based modelling methods with a new software tool 'Dynamodata' for modelling of losses in hydraulic motors and pumps was developed.......A intelligent fuzzy logic self-organising PD+I controller for a gearrotor hydraulic motor was developed and evaluated. Furthermore, a experimental-based modelling methods with a new software tool 'Dynamodata' for modelling of losses in hydraulic motors and pumps was developed....

  6. Validation of the thermal-hydraulic system code ATHLET based on selected pressure drop and void fraction BFBT tests

    Energy Technology Data Exchange (ETDEWEB)

    Di Marcello, Valentino, E-mail: valentino.marcello@kit.edu; Escalante, Javier Jimenez; Espinoza, Victor Sanchez

    2015-07-15

    Highlights: • Simulation of BFBT-BWR steady-state and transient tests with ATHLET. • Validation of thermal-hydraulic models based on pressure drops and void fraction measurements. • TRACE system code is used for the comparative study. • Predictions result in a good agreement with the experiments. • Discrepancies are smaller or comparable with respect to the measurements uncertainty. - Abstract: Validation and qualification of thermal-hydraulic system codes based on separate effect tests are essential for the reliability of numerical tools when applied to nuclear power plant analyses. To this purpose, the Institute for Neutron Physics and Reactor Technology (INR) at the Karlsruhe Institute of Technology (KIT) is involved in various validation and qualification activities of different CFD, sub-channel and system codes. In this paper, the capabilities of the thermal-hydraulic code ATHLET are assessed based on the experimental results provided within the NUPEC BFBT benchmark related to key Boiling Water Reactors (BWR) phenomena. Void fraction and pressure drops measurements in the BFBT bundle performed under steady-state and transient conditions which are representative for e.g. turbine trip and recirculation pump trip events, are compared with the numerical results of ATHLET. The comparison of code predictions with the BFBT data has shown good agreement given the experimental uncertainty and the results are consistent with the trends obtained with similar thermal-hydraulic codes.

  7. PWR blowdown heat transfer separate-effects program: thermal-hydraulic test facility experimental data report for test 104

    International Nuclear Information System (INIS)

    Leon, D.M.; White, M.D.; Moore, P.A.; Hedrick, R.A.

    1978-01-01

    Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) test 104, which is part of the ORNL Pressurized-Water Reactor (PWR) Blowdown Heat Transfer Separate-Effects Program. The objective of the program is to investigate the thermal-hydraulic phenomenon governing the energy transfer and transport processes that occur during a loss-of-coolant accident in the PWR system. Test 104 was conducted to obtain CHF in bundle 1 under blowdown conditions. The primary purpose of this report is to make the reduced instrument responses during test 104 available

  8. Post-excavation analysis of a revised hydraulic model of the Room 209 fracture, URL, Manitoba, Canada

    International Nuclear Information System (INIS)

    Winberg, A.; Tin Chan; Griffiths, P.; Nakka, B.

    1989-10-01

    An excavation response test was conducted in the Room 209 on the 240 m level of the AECL Underground Research Laboratory. Model predictions prior to excavation were made of the geomechanical response of the rock mass and the hydraulic response of an intercepted fracture. The model results were compared with excavation response data collected in a comprehensive instrument array. The work performed has addressed discrepancies between calculated and in-situ measured hydraulic response as part of a post-test analysis. Already existing hydraulic conceptual models of the fracture were revised and any available information was included in the new model. The model reproduced the pre-excavation hydraulic head distribution and hydraulic test results in terms of normalized flow rate within 5% and 75%, respectively. It was also found that the model reproduced the results of cross-hole hydraulic interference tests at least from a qualitative standpoint. The next stage of the modelling addressed the response of the model to a simulation of the excavated pilot tunnel. The preliminary results suggested the presence of a skin of different permeability in a thin zone around the periphery of the tunnel. By altering the permeability in the floor and along the walls and roof of the periphery, a better correspondence between calculated and measured drawdown was obtained. The same also applied for measured groundwater inflow in quantity, though not for the actual distribution on inflow. As probable causes for the interpreted positive skin in the crown and wall, temporary partial unsaturation and propulsion of debris into the fracture were suggested. The negative skin in the floor was interpreted as an effect of the dense and high energy charges used in the excavation process. (authors)

  9. Comparison of inverse modeling results with measured and interpolated hydraulic head data

    International Nuclear Information System (INIS)

    Jacobson, E.A.

    1986-12-01

    Inverse modeling of aquifers involves identification of effective parameters, such as transmissivities, based on hydraulic head data. The result of inverse modeling is a calibrated ground water flow model that reproduces the measured hydraulic head data as closely as is statistically possible. An inverse method that includes prior information about the parameters (i.e., kriged log transmissivity) was applied to the Avra Valley aquifer of southern Arizona using hydraulic heads obtained in three ways: measured at well locations, estimated at nodes by hand contouring, and estimated at nodes by kriging. Hand contouring yields only estimates of hydraulic head at node points, whereas kriging yields hydraulic head estimates at node points and their corresponding estimation errors. A comparison of the three inverse applications indicates the variations in the ground water flow model caused by the different treatments of the hydraulic head data. Estimates of hydraulic head computed by all three inverse models were more representative of the measured or interpolated hydraulic heads than those computed using the kriged estimates of log transmissivity. The large-scale trends in the estimates of log transmissivity determined by the three inverse models were generally similar except in the southern portion of the study area. The hydraulic head values and gradients produced by the three inverse models were similar in the interior of the study area, while the major differences between the inverse models occurred along the boundaries. 17 refs., 18 figs., 1 tab

  10. Hydraulic testing of Salado Formation evaporites at the Waste Isolation Pilot Plant site: Second interpretive report

    Energy Technology Data Exchange (ETDEWEB)

    Beauheim, R.L. [Sandia National Labs., Albuquerque, NM (United States); Roberts, R.M.; Dale, T.F.; Fort, M.D.; Stensrud, W.A. [INTERA, Inc., Austin, TX (United States)

    1993-12-01

    Pressure-pulse, constant-pressure flow, and pressure-buildup tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Transmissivities have been interpreted from six sequences of tests conducted on five stratigraphic intervals within 15 m of the WIPP underground excavations.

  11. Hydraulic testing of Salado Formation evaporites at the Waste Isolation Pilot Plant site: Second interpretive report

    International Nuclear Information System (INIS)

    Beauheim, R.L.; Roberts, R.M.; Dale, T.F.; Fort, M.D.; Stensrud, W.A.

    1993-12-01

    Pressure-pulse, constant-pressure flow, and pressure-buildup tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Transmissivities have been interpreted from six sequences of tests conducted on five stratigraphic intervals within 15 m of the WIPP underground excavations

  12. Modeling hydraulic regenerative hybrid vehicles using AMESim and Matlab/Simulink

    Science.gov (United States)

    Lynn, Alfred; Smid, Edzko; Eshraghi, Moji; Caldwell, Niall; Woody, Dan

    2005-05-01

    This paper presents the overview of the simulation modeling of a hydraulic system with regenerative braking used to improve vehicle emissions and fuel economy. Two simulation software packages were used together to enhance the simulation capability for fuel economy results and development of vehicle and hybrid control strategy. AMESim, a hydraulic simulation software package modeled the complex hydraulic circuit and component hardware and was interlinked with a Matlab/Simulink model of the vehicle, engine and the control strategy required to operate the vehicle and the hydraulic hybrid system through various North American and European drive cycles.

  13. PWR Blowdown Heat Transfer Separate-Effects Program. Thermal-Hydraulic Test Facility experimental data report for test 166S

    International Nuclear Information System (INIS)

    Clemons, V.D.; White, M.D.; Hedrick, R.A.

    1978-01-01

    Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) test 166S, which is part of the ORNL Pressurized-Water Reactor (PWR) Blowdown Heat Transfer Separate-Effects Program. The objective of the program is to investigate the thermal-hydraulic phenomenon governing the energy transfer and transport processes that occur during a loss-of-coolant accident in a PWR system. Test 166S was conducted to obtain thermal-hydraulic and CHF information in THTF bundle 1 with an intact hot leg. The primary purpose of this report is to make the reduced instrument responses during tests 166S available. These are presented in graphical form in engineering units and have been analyzed only to the extent necessary to ensure reasonableness and consistency

  14. Hydraulic jump and Bernoulli equation in nonlinear shallow water model

    Science.gov (United States)

    Sun, Wen-Yih

    2018-06-01

    A shallow water model was applied to study the hydraulic jump and Bernoulli equation across the jump. On a flat terrain, when a supercritical flow plunges into a subcritical flow, discontinuity develops on velocity and Bernoulli function across the jump. The shock generated by the obstacle may propagate downstream and upstream. The latter reflected from the inflow boundary, moves downstream and leaves the domain. Before the reflected wave reaching the obstacle, the short-term integration (i.e., quasi-steady) simulations agree with Houghton and Kasahara's results, which may have unphysical complex solutions. The quasi-steady flow is quickly disturbed by the reflected wave, finally, flow reaches steady and becomes critical without complex solutions. The results also indicate that Bernoulli function is discontinuous but the potential of mass flux remains constant across the jump. The latter can be used to predict velocity/height in a steady flow.

  15. Variations in hydraulic conductivity with scale of measurement during aquifer tests in heterogeneous, porous carbonate rocks

    Science.gov (United States)

    Schulze-Makuch, Dirk; Cherkauer, Douglas S.

    Previous studies have shown that hydraulic conductivity of an aquifer seems to increase as the portion of the aquifer tested increases. To date, such studies have all relied on different methods to determine hydraulic conductivity at each scale of interest, which raises the possibility that the observed increase in hydraulic conductivity is due to the measurement method, not to the scale. This study analyzes hydraulic conductivity with respect to scale during individual aquifer tests in porous, heterogeneous carbonate rocks in southeastern Wisconsin, USA. Results from this study indicate that hydraulic conductivity generally increases during an individual test as the volume of aquifer impacted increases, and the rate of this increase is the same as the rate of increase determined by using different measurement methods. Thus, scale dependence of hydraulic conductivity during single tests does not depend on the method of measurement. This conclusion is supported by 22 of 26 aquifer tests conducted in porous-flow-dominated carbonate units within the aquifer. Instead, scale dependency is probably caused by heterogeneities within the aquifer, a conclusion supported by digital simulation. All of the observed types of hydraulic-conductivity variations with scale during individual aquifer tests can be explained by a conceptual model of a simple heterogeneous aquifer composed of high-conductivity zones within a low-conductivity matrix. Résumé Certaines études ont montré que la conductivité hydraulique d'un aquifère semble augmenter en même temps que la partie testée de l'aquifère s'étend. Jusqu'à présent, ces études ont toutes reposé sur des méthodes de détermination de la conductivité hydraulique différentes pour chaque niveau d'échelle, ce qui a conduit à penser que l'augmentation observée de la conductivité hydraulique pouvait être due aux méthodes de mesure et non à l'effet d'échelle. Cette étude analyse la conductivité hydraulique par

  16. Hydraulic testing around Room Q: Evaluation of the effects of mining on the hydraulic properties of Salado Evaporites

    Energy Technology Data Exchange (ETDEWEB)

    Domski, P.S.; Upton, D.T. [INTERA, Inc., Albuquerque, NM (United States); Beauheim, R.L. [Sandia National Laboratories, Albuquerque, NM (United States)

    1996-03-01

    Room Q is a 109-m-long cylindrical excavation in the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site. Fifteen boreholes were drilled and instrumented around Room Q so that tests could be conducted to determine the effects of room excavation on the hydraulic properties of the surrounding evaporate rocks. Pressure-buildup and pressure-pulse tests were conducted in all of the boreholes before Room Q was mined. The data sets from only eight of the boreholes are adequate for parameter estimation, and five of those are of poor quality. Constant-pressure flow tests and pressure-buildup tests were conducted after Room Q was mined, producing eleven interpretable data sets, including two of poor quality. Pre-mining transmissivities interpreted from the three good-quality data sets ranged from 1 x 10{sup -15} to 5 x 10{sup -14} m{sup 2}/s (permeability-thickness products of 2 x 10{sup -22} to 9 x 10{sup -21} m{sup 3}) for test intervals ranging in length from 0.85 to 1.37 m. Pre-mining average permeabilities, which can be considered representative of undisturbed, far-field conditions, were 6 x 10{sup -20} and 8 x 10{sup -20} m{sup 2} for anhydrite, and 3 x 10{sup -22} m{sup 2} for halite. Post-mining transmissivities interpreted from the good-quality data sets ranged from 1 x 10{sup -16} to 3 x 10{sup -13} m{sup 2}/s (permeability-thickness products of 2 x 10{sup -23} to 5 x 10{sup -20} m{sup 3}). Post-mining average permeabilities for anhydrite ranged from 8 x 10{sup -20} to 1 x 10{sup -19} m{sup 2}. The changes in hydraulic properties and pore pressures that were observed can be attributed to one or a combination of three processes: stress reduction, changes in pore connectivity, and flow towards Room Q. The effects of the three processes cannot be individually quantified with the available data.

  17. Real time thermal hydraulic model for high temperature gas-cooled reactor core

    International Nuclear Information System (INIS)

    Sui Zhe; Sun Jun; Ma Yuanle; Zhang Ruipeng

    2013-01-01

    A real-time thermal hydraulic model of the reactor core was described and integrated into the simulation system for the high temperature gas-cooled pebble bed reactor nuclear power plant, which was developed in the vPower platform, a new simulation environment for nuclear and fossil power plants. In the thermal hydraulic model, the helium flow paths were established by the flow network tools in order to obtain the flow rates and pressure distributions. Meanwhile, the heat structures, representing all the solid heat transfer elements in the pebble bed, graphite reflectors and carbon bricks, were connected by the heat transfer network in order to solve the temperature distributions in the reactor core. The flow network and heat transfer network were coupled and calculated in real time. Two steady states (100% and 50% full power) and two transients (inlet temperature step and flow step) were tested that the quantitative comparisons of the steady results with design data and qualitative analysis of the transients showed the good applicability of the present thermal hydraulic model. (authors)

  18. Hydrogeological study of single water conducting fracture using a crosshole hydraulic test apparatus

    International Nuclear Information System (INIS)

    Yamamoto, Hajime; Shimo, Michito; Yamamoto, Takuya

    1998-03-01

    The Crosshole Injection Test Apparatus has been constructed to evaluate the hydraulic properties and conditions, such as hydraulic conductivity and its anisotropy, storage coefficient, pore pressure etc. within a rock near a drift. The construction started in FY93 and completed on August FY96 as a set of equipments for the use of crosshole hydraulic test, which is composed of one injection borehole instrument, one observation borehole instrument and a set of on-ground instrument. In FY96, in-situ feasibility test was conducted at a 550 m level drift in Kamaishi In Situ Test Site which has been operated by PNC, and the performance of the equipment and its applicability to various types of injection method were confirmed. In this year, a hydrogeological investigation on the single water conducting fracture was conducted at a 250 m level drift in Kamaishi In Situ Test Site, using two boreholes, KCH-3 and KCH-4, both of which are 30 m depth and inclined by 45 degrees from the surface. Pressure responses at the KCH-3 borehole during the drilling of KCH-4 borehole, the results of Borehole TV logging and core observation indicated that a major conductive single-fracture was successfully isolated by the packers. As a result of a series of the single-hole and the crosshole tests (sinusoidal and constant flowrate test), the hydraulic parameters of the single-fracture (such as hydraulic conductivity and storage coefficient) were determined. This report shows all the test result, analysed data, and also describes the hydro-geological structure near the drift. (author)

  19. Optimizing a gap conductance model applicable to VVER-1000 thermal–hydraulic model

    International Nuclear Information System (INIS)

    Rahgoshay, M.; Hashemi-Tilehnoee, M.

    2012-01-01

    Highlights: ► Two known conductance models for application in VVER-1000 thermal–hydraulic code are examined. ► An optimized gap conductance model is developed which can predict the gap conductance in good agreement with FSAR data. ► The licensed thermal–hydraulic code is coupled with the gap conductance model predictor externally. -- Abstract: The modeling of gap conductance for application in VVER-1000 thermal–hydraulic codes is addressed. Two known models, namely CALZA-BINI and RELAP5 gap conductance models, are examined. By externally linking of gap conductance models and COBRA-EN thermal hydraulic code, the acceptable range of each model is specified. The result of each gap conductance model versus linear heat rate has been compared with FSAR data. A linear heat rate of about 9 kW/m is the boundary for optimization process. Since each gap conductance model has its advantages and limitation, the optimized gap conductance model can predict the gap conductance better than each of the two other models individually.

  20. Digital Measuring Devices Used for Injector Hydraulic Test

    Directory of Open Access Journals (Sweden)

    S. N. Leontiev

    2015-01-01

    Full Text Available To ensure a high specific impulse of the LRE (liquid-propellant engine chamber it is necessary to have optimally organized combustion of the fuel components. This can be ensured by choosing the optimum geometry of gas-dynamic contour of the LRE combustor, as well as by improving the sputtering processes and mixing the fuel components, for example, by selection of the optimum type, characteristics, and location of injectors on the mixing unit of the chamber.These particular reasons arise the interest in the injector characteristics in terms of science, and technological aspects determine the need for control of underlying design parameters in their manufacture.The objective of this work is to give an experimental justification on used digital measurement instrumentation and research the hydraulic characteristics of injectors.To determine injector parameters most widely were used the units with sectional collectors. A technique to control injector parameters using the sectional collectors involves spraying the liquid by injector at a given pressure drop on it for a certain time (the longer, the higher the accuracy and reliability of the results and then determining the amount of liquid in each section to calculate the required parameters of injector.In this work the liquid flow through the injector was determined by high-precision flowmeters FLONET FN2024.1 of electromagnetic type, which have very high metrological characteristics, in particular a flow rate error does not exceed 0.5% in a range of water flow from Qmin= 0.0028 l/s to Qmax Qmax = 0.28 l/s. To determine the coefficient of uneven spray were used differential pressure sensors DMD 331-ASLX of company "DB Sensors RUS", which have an error of 0.075% with a range of differential pressure 0 ... 5 kPa. Measuring complex MIC-200 of company "NPP Measure" and WinPos software for processing array information provided entry, recording, and processing of all the data of the experiment.In this

  1. Hydraulic testing of Type Q septifoils including modifications

    International Nuclear Information System (INIS)

    Steimke, J.L.; Fowley, M.D.; Guerrero, H.N.

    1992-09-01

    On May 25, 1992 a leak of moderator was detected as K Reactor was approaching initial criticality. The partial length control rods were being withdrawn when the leak detectors in the Process Room alarmed. The apparent location of the moderator leak was the top of the guide tubes which are positioned over the new Type Q septifoils. The reactor was shut down immediately. In response, a testing program was begun at the Heat Transfer Laboratory (HTL). The goals of the program were to determine the cause of the septifoil leak and to test methods for preventing future leaks. These tests are described in this report

  2. Modeling and experiments on the drive characteristics of high-strength water hydraulic artificial muscles

    Science.gov (United States)

    Zhang, Zengmeng; Hou, Jiaoyi; Ning, Dayong; Gong, Xiaofeng; Gong, Yongjun

    2017-05-01

    Fluidic artificial muscles are popular in robotics and function as biomimetic actuators. Their pneumatic version has been widely investigated. A novel water hydraulic artificial muscle (WHAM) with high strength is developed in this study. WHAMs can be applied to underwater manipulators widely used in ocean development because of their environment-friendly characteristics, high force-to-weight ratio, and good bio-imitability. Therefore, the strength of WHAMs has been improved to fit the requirements of underwater environments and the work pressure of water hydraulic components. However, understanding the mechanical behaviors of WHAMs is necessary because WHAMs use work media and pressure control that are different from those used by pneumatic artificial muscles. This paper presents the static and dynamic characteristics of the WHAM system, including the water hydraulic pressure control circuit. A test system is designed and built to analyze the drive characteristics of the developed WHAM. The theoretical relationships among the amount of contraction, pressure, and output drawing force of the WHAM are tested and verified. A linearized transfer function is proposed, and the dynamic characteristics of the WHAM are investigated through simulation and inertia load experiments. Simulation results agree with the experimental results and show that the proposed model can be applied to the control of WHAM actuators.

  3. Modeling and simulation of hydrostatic transmission system with energy regeneration using hydraulic accumulator

    International Nuclear Information System (INIS)

    Ho, Triet Hung; Ahn, Kyoung Kwan

    2010-01-01

    A new hydraulic closed-loop hydrostatic transmission (HST) energy-saving system is proposed in this paper. The system improves the efficiency of the primary power source. Furthermore, the system is energy regenerative, highly efficient even under partial load conditions. It can work in either a flow or pressure coupling configuration, allowing it to avoid the disadvantages of each configuration. A hydraulic accumulator, the key component of the energy regenerative modality, can be decoupled from or coupled to the HST circuit to improve the efficiency of the system in low-speed, high-torque situations. The accumulator is used in a novel way to recover the kinetic energy without reversion of fluid flow. Both variable displacement hydraulic pump /motors are used when the system operates in the flow coupling configuration so as to enable it to meet the difficult requirements of some industrial and mobile applications. Modeling and a simulation were undertaken with regard to testing the primary energy sources in the two configurations and recovering the energy potential of the system. The results indicated that the low efficiency of traditional HSTs under partial load conditions can be improved by utilizing the pressure coupling configuration. The round-trip efficiency of the system in the energy recovery testing varied from 32% to 66% when the losses of the load were taken into account

  4. Mechanical model for cavitating flow in hydraulic pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Assumpcao, Alexandre Hastenreiter; Rachid, Felipe Bastos de Freitas; Saboya, Francisco Eduardo Mourao [Laboratory of Gas and Liquid Transport. Dept. of Mechanical Engineering. Graduate Program in Mechanical Engineering. TEM/PGMEC, Universidade Federal Fluminense, Niteroi, RJ (Brazil)], e-mail: rachid@vm.uff.br

    2010-07-01

    The purpose of this work is to present a mechanical model to describe the cavitating flow in hydraulic pipelines. Although the model is capable to describe the cavitation phenomenon in unsteady as well as steady states, the applications presented in this work are restricted to slack flow, which take place in steady states. The flow is assumed to be homogeneous and isothermal. The fluid is treated as a pseudo-mixture, comprising the liquid and the vapor phases. Both phases are assumed to be compressible and to coexist at every material point and time instant. The balance equations of mass for each of the phases are considered in the model, along with one balance equation of momentum for the mixture as a whole, within an one dimensional context. The phase change transformation is properly accounted for as an irreversible process. The main dimensionless groups are identified and their influence on the slack flow phenomenon quantified by means of numerical simulations. The obtained results show that model is capable to mimic coherently both the opening as well as the closure of the vapor cavity. (author)

  5. Full scale mock-up tests for rod bundle thermal-hydraulics in Japan

    International Nuclear Information System (INIS)

    Sugawara, S.

    1995-01-01

    This poster describes tests aimed at development and validation of principal design methodology of rod bundle thermal-hydraulics correlations. The works are based on domestic data base using the full-scale mock-up test facilities. The scope of the tests comprises DNB heat flux, transient DNB heat flux, post DNB heat transfer, pressure drop and void distribution. The works have been performed under collaboration among electric facilities, NPP vendors, universities, governmental corporations. 1 tab., 14 figs

  6. Stability analysis for a delay differential equations model of a hydraulic turbine speed governor

    Science.gov (United States)

    Halanay, Andrei; Safta, Carmen A.; Dragoi, Constantin; Piraianu, Vlad F.

    2017-01-01

    The paper aims to study the dynamic behavior of a speed governor for a hydraulic turbine using a mathematical model. The nonlinear mathematical model proposed consists in a system of delay differential equations (DDE) to be compared with already established mathematical models of ordinary differential equations (ODE). A new kind of nonlinearity is introduced as a time delay. The delays can characterize different running conditions of the speed governor. For example, it is considered that spool displacement of hydraulic amplifier might be blocked due to oil impurities in the oil supply system and so the hydraulic amplifier has a time delay in comparison to the time control. Numerical simulations are presented in a comparative manner. A stability analysis of the hydraulic control system is performed, too. Conclusions of the dynamic behavior using the DDE model of a hydraulic turbine speed governor are useful in modeling and controlling hydropower plants.

  7. The oil pressure test of the hydraulic impeller blade

    Science.gov (United States)

    Ye, Wen-bo; Jia, Li-tao

    2017-12-01

    This article introduced the structure of the Kaplan runner in hydropower station and the operating process of the oil pressure test has been described. What’s more, the whole process, including filling oil to the runner hub, the movement of the runner blade, the oil circuit, have been presented in detail.Since the manipulation of the oil circuit which controlled by three Valve groups consisting of six valves was complicated, the author is planning to replace them with 3-position 3-way electromagnetic valves, so we can simplify the operation procedure.The author hopes this article can provide technical reference for the oil pressure test.

  8. Test results of the new NSSS thermal-hydraulics program of the KNPEC-2 simulator

    International Nuclear Information System (INIS)

    Jeong, J. Z.; Kim, K. D.; Lee, M. S.; Hong, J. H.; Lee, Y. K.; Seo, J. S.; Kweon, K. J.; Lee, S. W.

    2001-01-01

    As a part of the KNPEC-2 Simulator Upgrade Project, KEPRI and KAERI have developed a new NSSS thermal-hydraulics program, which is based on the best-estimate system code, RETRAN. The RETRAN code was originally developed for realistic simulation of thermal-hydraulic transient in power plant systems. The capability of 'real-time simulation' and robustness' should be first developed before being implemented in full-scope simulators. For this purpose, we have modified the RETRAN code by (i) eliminating the correlations' discontinuities between flow regime maps, (ii) simplifying physical correlations, (iii) correcting errors in the original program, and (iv) others. This paper briefly presents the test results fo the new NSSS thermal-hydraulics program

  9. Hydraulic Characterization of Overpressured Tuffs in Central Yucca Flat, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K.J. Halford; R.J. Laczniak; D.L. Galloway

    2005-10-07

    A sequence of buried, bedded, air-fall tuffs has been used extensively as a host medium for underground nuclear tests detonated in the central part of Yucca Flat at the Nevada Test Site. Water levels within these bedded tuffs have been elevated hundreds of meters in areas where underground nuclear tests were detonated below the water table. Changes in the ground-water levels within these tuffs and changes in the rate and distribution of land-surface subsidence above these tuffs indicate that pore-fluid pressures have been slowly depressurizing since the cessation of nuclear testing in 1992. Declines in ground-water levels concurrent with regional land subsidence are explained by poroelastic deformation accompanying ground-water flow as fluids pressurized by underground nuclear detonations drain from the host tuffs into the overlying water table and underlying regional carbonate aquifer. A hydraulic conductivity of about 3 x 10-6 m/d and a specific storage of 9 x 10-6 m-1 are estimated using ground-water flow models. Cross-sectional and three-dimensional ground-water flow models were calibrated to measured water levels and to land-subsidence rates measured using Interferometric Synthetic Aperture Radar. Model results are consistent and indicate that about 2 million m3 of ground water flowed from the tuffs to the carbonate rock as a result of pressurization caused by underground nuclear testing. The annual rate of inflow into the carbonate rock averaged about 0.008 m/yr between 1962 and 2005, and declined from 0.005 m/yr in 2005 to 0.0005 m/yr by 2300.

  10. Thermal hydraulics model for Sandia's annular core research reactor

    International Nuclear Information System (INIS)

    Rao, Dasari V.; El-Genk, Mohamed S.; Rubio, Reuben A.; Bryson, James W.; Foushee, Fabian C.

    1988-01-01

    A thermal hydraulics model was developed for the Annular Core Research Reactor (ACRR) at Sandia National Laboratories. The coupled mass, momentum and energy equations for the core were solved simultaneously using an explicit forward marching numerical technique. The model predictions of the temperature rise across the central channel of the ACRR core were within ± 10 percent agreement with the in-core temperature measurements. The model was then used to estimate the coolant mass flow rate and the axial distribution of the cladding surface temperature in the central and average channels as functions of the operating power and the water inlet subcooling. Results indicated that subcooled boiling occurs at the cladding surface in the central channels of the ACRR at power levels in excess of 0.5 MW. However, the high heat transfer coefficient due to subcooled boiling causes the cladding temperature along most of the active fuel rod region to be quite uniform and to increase very little with the reactor power. (author)

  11. Non Linear Modelling and Control of Hydraulic Actuators

    Directory of Open Access Journals (Sweden)

    B. Šulc

    2002-01-01

    Full Text Available This paper deals with non-linear modelling and control of a differential hydraulic actuator. The nonlinear state space equations are derived from basic physical laws. They are more powerful than the transfer function in the case of linear models, and they allow the application of an object oriented approach in simulation programs. The effects of all friction forces (static, Coulomb and viscous have been modelled, and many phenomena that are usually neglected are taken into account, e.g., the static term of friction, the leakage between the two chambers and external space. Proportional Differential (PD and Fuzzy Logic Controllers (FLC have been applied in order to make a comparison by means of simulation. Simulation is performed using Matlab/Simulink, and some of the results are compared graphically. FLC is tuned in a such way that it produces a constant control signal close to its maximum (or minimum, where possible. In the case of PD control the occurrence of peaks cannot be avoided. These peaks produce a very high velocity that oversteps the allowed values.

  12. Hydraulic Simulation of In-vessel Downstream Effect Test Using MARS-KS Code

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Seok; Lee, Joon Soo; Ryu, Seung Hoon [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-05-15

    In-vessel downstream effect test (IDET) has been required to evaluate the effect of debris on long term core cooling following a loss of coolant accident (LOCA) in support of resolution of Generic Safety Issue (GSI) 191. Head loss induced by debris (fiber and particle) accumulated on prototypical fuel assembly (FA) should be compared with the available driving head to the core for the various combinations of LOCA and Emergency Core Cooling System (ECCS) injection. The actual simulation was conducted using MARS-KS code. Also the influence of small difference in gap size which was found in the actual experiment is evaluated using the present model. A simple model to determine the form loss factors of FA and gap in clean state and the debris laden state is discussed based on basic fluid mechanics. Those form loss factors were applied to the hydraulic simulation of a selected IDET using MARS-KS code. The result indicated that the present model can be applied to IDET simulation. The pressure drop influenced by small difference in gap size can be evaluated by the present model with practical assumption.

  13. Hydraulic Stability of Accropode Armour

    DEFF Research Database (Denmark)

    Jensen, T.; Burcharth, H. F.; Frigaard, Peter

    The present report describes the hydraulic model tests of Accropode armour layers carried out at the Hydraulics Laboratory at Aalborg University from November 1995 through March 1996. The objective of the model tests was to investigate the hydraulic stability of Accropode armour layers...... with permeable core (crushed granite with a gradation of 5-8 mm). The outcome of this study is described in "Hydraulic Stability of Single-Layer Dolos and Accropode Armour Layers" by Christensen & Burcharth (1995). In January/February 1996, Research Assistant Thomas Jensen carried out a similar study...

  14. Hydraulic and hydrodynamic tests for design evaluation of research reactors fuel elements

    International Nuclear Information System (INIS)

    Kulichevsky, R.; Martin Ghiselli, A.; Fiori, J.; Yedros, P.

    2002-01-01

    During the design steps of research reactors fuel elements some tests are usually necessary to verify its design, i.e.: its hydraulic characteristics, dynamical response and structural integrity. The hydraulic tests are developed in order to know the pressure drops characteristics of different parts or elements of the prototype and of the whole fuel element. Also, some tests are carried out to obtain the velocity distribution of the coolant water across different prototype's sections. The hydrodynamic tests scopes are the assessment of the dynamical characteristics of the fuel elements and their components and its dynamical response considering the forces generated by the coolant flowing water at different flow rate conditions. Endurance tests are also necessary to qualify the structural design of the FE prototypes and their corresponding clamp tools, verifying the whole system structural integrity and wear processes influences. To carry out these tests a special test facility is needed to obtain a proper representation of the hydraulic and geometric boundary conditions of the fuel element. In some cases changes on the fuel element prototype or dummy are necessary to assure that the data results are representative of the case under study. Different kind of sensors are mounted on the test section and also on the fuel element itself when necessary. Some examples of the instrumentation used are strain gauges, displacement transducers, absolute and differential pressure transducers, pitot tubes, etc. The obtained data are, for example, plates' vibration amplitudes and frequencies, whole bundle displacement characterization, pressure drops and flow velocity measurements. The Experimental Low Pressure Loop is a hydraulic loop located at CNEA's Constituyentes Atomic Center and is the test facility where different kind of tests are performed in order to support and evaluate the design of research reactor fuel elements. A brief description of the facility, and examples of

  15. Bayesian Model Averaging of Artificial Intelligence Models for Hydraulic Conductivity Estimation

    Science.gov (United States)

    Nadiri, A.; Chitsazan, N.; Tsai, F. T.; Asghari Moghaddam, A.

    2012-12-01

    This research presents a Bayesian artificial intelligence model averaging (BAIMA) method that incorporates multiple artificial intelligence (AI) models to estimate hydraulic conductivity and evaluate estimation uncertainties. Uncertainty in the AI model outputs stems from error in model input as well as non-uniqueness in selecting different AI methods. Using one single AI model tends to bias the estimation and underestimate uncertainty. BAIMA employs Bayesian model averaging (BMA) technique to address the issue of using one single AI model for estimation. BAIMA estimates hydraulic conductivity by averaging the outputs of AI models according to their model weights. In this study, the model weights were determined using the Bayesian information criterion (BIC) that follows the parsimony principle. BAIMA calculates the within-model variances to account for uncertainty propagation from input data to AI model output. Between-model variances are evaluated to account for uncertainty due to model non-uniqueness. We employed Takagi-Sugeno fuzzy logic (TS-FL), artificial neural network (ANN) and neurofuzzy (NF) to estimate hydraulic conductivity for the Tasuj plain aquifer, Iran. BAIMA combined three AI models and produced better fitting than individual models. While NF was expected to be the best AI model owing to its utilization of both TS-FL and ANN models, the NF model is nearly discarded by the parsimony principle. The TS-FL model and the ANN model showed equal importance although their hydraulic conductivity estimates were quite different. This resulted in significant between-model variances that are normally ignored by using one AI model.

  16. Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods

    Science.gov (United States)

    Ali, A. Md; Solomatine, D. P.; Di Baldassarre, G.

    2015-01-01

    Topographic data, such as digital elevation models (DEMs), are essential input in flood inundation modelling. DEMs can be derived from several sources either through remote sensing techniques (spaceborne or airborne imagery) or from traditional methods (ground survey). The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the Shuttle Radar Topography Mission (SRTM), the light detection and ranging (lidar), and topographic contour maps are some of the most commonly used sources of data for DEMs. These DEMs are characterized by different precision and accuracy. On the one hand, the spatial resolution of low-cost DEMs from satellite imagery, such as ASTER and SRTM, is rather coarse (around 30 to 90 m). On the other hand, the lidar technique is able to produce high-resolution DEMs (at around 1 m), but at a much higher cost. Lastly, contour mapping based on ground survey is time consuming, particularly for higher scales, and may not be possible for some remote areas. The use of these different sources of DEM obviously affects the results of flood inundation models. This paper shows and compares a number of 1-D hydraulic models developed using HEC-RAS as model code and the aforementioned sources of DEM as geometric input. To test model selection, the outcomes of the 1-D models were also compared, in terms of flood water levels, to the results of 2-D models (LISFLOOD-FP). The study was carried out on a reach of the Johor River, in Malaysia. The effect of the different sources of DEMs (and different resolutions) was investigated by considering the performance of the hydraulic models in simulating flood water levels as well as inundation maps. The outcomes of our study show that the use of different DEMs has serious implications to the results of hydraulic models. The outcomes also indicate that the loss of model accuracy due to re-sampling the highest resolution DEM (i.e. lidar 1 m) to lower resolution is much less than the loss of model accuracy due

  17. Thermal-hydraulic tests on net divertor targets using swirl tubes

    International Nuclear Information System (INIS)

    Schlosser, J.; Chappuis, P.; Deschamps, P.; Massmann, P.; Falter, H.D.; Deschamps, G.H.

    1991-01-01

    Thermal-hydraulic tests have been carried out in collaboration between NET, CEA Cadarache and JET in order to find a cooling method capable of removing the high heat fluxes expected for the NET/ITER divertor. The goal was to evaluate by experiments the critical heat flux (CHF) and heat transfer in the subcooled boiling regime using twisted tapes as turbulence promoters and testing them under relevant thermal-hydraulic conditions. The CEA 200 kW Electron Beam (EB) facility and the 10 MW JET Neutral Beam (NB) test bed have been used to heat up the NET relevant test sections (TS) consisting of rectangular copper elements with circular internal channels. The TS have been exposed to the electron or ion beams under normal incidence. This paper reports the results of the experiments and of thermal analyses performed in support of the tests. The experimental CHF values have been benchmarked with the Tong-75 correlation

  18. Evaluation of stationary and non-stationary geostatistical models for inferring hydraulic conductivity values at Aespoe

    International Nuclear Information System (INIS)

    La Pointe, P.R.

    1994-11-01

    This report describes the comparison of stationary and non-stationary geostatistical models for the purpose of inferring block-scale hydraulic conductivity values from packer tests at Aespoe. The comparison between models is made through the evaluation of cross-validation statistics for three experimental designs. The first experiment consisted of a 'Delete-1' test previously used at Finnsjoen. The second test consisted of 'Delete-10%' and the third test was a 'Delete-50%' test. Preliminary data analysis showed that the 3 m and 30 m packer test data can be treated as a sample from a single population for the purposes of geostatistical analyses. Analysis of the 3 m data does not indicate that there are any systematic statistical changes with depth, rock type, fracture zone vs non-fracture zone or other mappable factor. Directional variograms are ambiguous to interpret due to the clustered nature of the data, but do not show any obvious anisotropy that should be accounted for in geostatistical analysis. Stationary analysis suggested that there exists a sizeable spatially uncorrelated component ('Nugget Effect') in the 3 m data, on the order of 60% of the observed variance for the various models fitted. Four different nested models were automatically fit to the data. Results for all models in terms of cross-validation statistics were very similar for the first set of validation tests. Non-stationary analysis established that both the order of drift and the order of the intrinsic random functions is low. This study also suggests that conventional cross-validation studies and automatic variogram fitting are not necessarily evaluating how well a model will infer block scale hydraulic conductivity values. 20 refs, 20 figs, 14 tabs

  19. Test case specifications for coupled neutronics-thermal hydraulics calculation of Gas-cooled Fast Reactor

    Science.gov (United States)

    Osuský, F.; Bahdanovich, R.; Farkas, G.; Haščík, J.; Tikhomirov, G. V.

    2017-01-01

    The paper is focused on development of the coupled neutronics-thermal hydraulics model for the Gas-cooled Fast Reactor. It is necessary to carefully investigate coupled calculations of new concepts to avoid recriticality scenarios, as it is not possible to ensure sub-critical state for a fast reactor core under core disruptive accident conditions. Above mentioned calculations are also very suitable for development of new passive or inherent safety systems that can mitigate the occurrence of the recriticality scenarios. In the paper, the most promising fuel material compositions together with a geometry model are described for the Gas-cooled fast reactor. Seven fuel pin and fuel assembly geometry is proposed as a test case for coupled calculation with three different enrichments of fissile material in the form of Pu-UC. The reflective boundary condition is used in radial directions of the test case and vacuum boundary condition is used in axial directions. During these condition, the nuclear system is in super-critical state and to achieve a stable state (which is numerical representation of operational conditions) it is necessary to decrease the reactivity of the system. The iteration scheme is proposed, where SCALE code system is used for collapsing of a macroscopic cross-section into few group representation as input for coupled code NESTLE.

  20. Hydraulic lift in a neotropical savanna: experimental manipulation and model simulations

    Science.gov (United States)

    Fabian G. Scholz; Sandra J. Bucci; William A. Hoffmann; Frederick C. Meinzer; Guillermo Goldstein

    2010-01-01

    The objective of this study was to assess the magnitude of hydraulic lift in Brazilian savannas (Cerrado) and to test the hypothesis that hydraulic lift by herbaceous plants contributes substantially to slowing the decline of water potential and water storage in the upper soil layers during the dry season. To this effect, field observations of soil water content and...

  1. Hydraulic laboratory testing of Sontek-IQ Plus

    Science.gov (United States)

    Fulford, Janice M.; Kimball, Scott

    2015-11-10

    The SonTek-IQ Plus (IQ Plus) is a bottom-mounted Doppler instrument used for the measurement of water depth and velocity. Evaluation testing of the IQ Plus was performed to assess the accuracy of water depth, discharge, and velocity measurements. The IQ Plus met the manufacturer’s specifications and the U.S. Geological Survey (USGS) standard for depth accuracy measurement when the unit was installed, according to the manufacturer’s instructions, at 0 degrees pitch and roll. However, because of the limited depth testing conducted, the depth measurement is not recommended as a primary stage measurement. The IQ Plus was tested in a large indoor tilting flume in a 5-foot (ft) wide, approximately 2.3-ft deep section with mean velocities of 0.5, 1, 2, and 3 ft per second. Four IQ Plus instruments using firmware 1.52 tested for water-discharge accuracy using SonTek’s “theoretical” discharge method had a negative bias of -2.4 to -11.6 percent when compared with discharge measured with a SonTek FlowTracker and the midsection discharge method. The IQ Pluses with firmware 1.52 did not meet the manufacturer’s specification of +/-1 percent for measuring velocity. Three IQ Pluses using firmware 1.60 and SonTek’s “theoretical” method had a difference of -1.6 to -7.9 percent when compared with discharge measured with a SonTek FlowTracker and the midsection method. Mean-velocity measurements with firmware 1.60 met the manufacturer’s specification and Price Type AA meter accuracy requirements when compared with FlowTracker measurements. Because of the instrument’s velocity accuracy, the SonTek-IQ Plus with firmware 1.60 is considered acceptable for use as an index velocity instrument for the USGS. The discharge computed by the SonTek-IQ Plus during the tests had a substantial negative bias and will not be as accurate as a discharge computed with the index velocity method. The USGS does not recommend the use of undocumented computation methods, such as Son

  2. CSNI Integral Test Facility Matrices for Validation of Best-Estimate Thermal-Hydraulic Computer Codes

    International Nuclear Information System (INIS)

    Glaeser, H.

    2008-01-01

    Internationally agreed Integral Test Facility (ITF) matrices for validation of realistic thermal hydraulic system computer codes were established. ITF development is mainly for Pressurised Water Reactors (PWRs) and Boiling Water Reactors (BWRs). A separate activity was for Russian Pressurised Water-cooled and Water-moderated Energy Reactors (WWER). Firstly, the main physical phenomena that occur during considered accidents are identified, test types are specified, and test facilities suitable for reproducing these aspects are selected. Secondly, a list of selected experiments carried out in these facilities has been set down. The criteria to achieve the objectives are outlined. In this paper some specific examples from the ITF matrices will also be provided. The matrices will be a guide for code validation, will be a basis for comparisons of code predictions performed with different system codes, and will contribute to the quantification of the uncertainty range of code model predictions. In addition to this objective, the construction of such a matrix is an attempt to record information which has been generated around the world over the last years, so that it is more accessible to present and future workers in that field than would otherwise be the case.

  3. Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Mørkholt, M.

    a hydraulic soft yaw system, which is able to reduce the loads on the wind turbine significantly. A full scale hydraulic yaw test rig is available for experiments and tests. The test rig is presented as well as the system schematics of the hydraulic yaw system....... the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized to reduce loading in critical components. Results shows that a significant reduction in fatigue and extreme loads to the yaw...... system and rotor shaft when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. Based on the extrapolated loads, the duty cycles show that it is possible to construct...

  4. The hydraulic properties of fracture zones and tracer tests with non-reactive elements in Studsvik

    International Nuclear Information System (INIS)

    Klockars, C.-E.; Persson, O.; Landstroem, O.

    1982-04-01

    Tracer technique was applied in a rock formation within the Studsvik Energiteknik area in order to study hydrodynamic properties of discrete fracture zones between boreholes. The two hole method was applied in these studies; a nonreactive tracer is injected in one hole into a fracture zone which is in hydraulic contact with a central pump hole (observation hole). Hydraulic tests and TV inspection were carried out in the fracture zones. Chemical composition of the groundwater was determined. In summary, the following hydraulic properties were found for the fracture zones between the boreholes B1N-B6N and B5N-B6N respectively, under the prevailing conditions: 1) The fracture zones studied consists of a number of transport pathways with different mean transit times, varying from 100 to 1200 hours. 2) The fracture zone between boreholes B1N and B6N has a mean hydraulic conductivity of 6-7 x 10 -5 m/s and the fracture zone between boreholes B5N and B6N, 2 x 10 -4 m/s. 3) The kinematic porosity of the fracture zones studied, calculated as the ratio between the hydraulic conductivity of the rock mass and that of the fracture zone, is 2 x 10 -3 and 5 x 10 -3 , respectively. 4) The roughness factor β, which expresses the ratio between measured and theoretically calculated (plane-parallel) fracture conductivity for the fracture zones studied, is approximately 0.04 and 0.06, respectively. 5) Dispersivity for the flow channels within the fracture zones is of the order of 0.3-0.8 m. 6) The groundwater encountered is a nearly neutral, probably reducing, Na-Ca-HCO 3 water. The results of the tracer tests reveal the following: I-131 is a suitable nonreactive tracer for the test area. A test with simultaneous injection of I-131 and T (tritium) gave comparable breakthrough curves. (Author)

  5. Information content of slug tests for estimating hydraulic properties in realistic, high-conductivity aquifer scenarios

    Science.gov (United States)

    Cardiff, Michael; Barrash, Warren; Thoma, Michael; Malama, Bwalya

    2011-06-01

    SummaryA recently developed unified model for partially-penetrating slug tests in unconfined aquifers ( Malama et al., in press) provides a semi-analytical solution for aquifer response at the wellbore in the presence of inertial effects and wellbore skin, and is able to model the full range of responses from overdamped/monotonic to underdamped/oscillatory. While the model provides a unifying framework for realistically analyzing slug tests in aquifers (with the ultimate goal of determining aquifer properties such as hydraulic conductivity K and specific storage Ss), it is currently unclear whether parameters of this model can be well-identified without significant prior information and, thus, what degree of information content can be expected from such slug tests. In this paper, we examine the information content of slug tests in realistic field scenarios with respect to estimating aquifer properties, through analysis of both numerical experiments and field datasets. First, through numerical experiments using Markov Chain Monte Carlo methods for gauging parameter uncertainty and identifiability, we find that: (1) as noted by previous researchers, estimation of aquifer storage parameters using slug test data is highly unreliable and subject to significant uncertainty; (2) joint estimation of aquifer and skin parameters contributes to significant uncertainty in both unless prior knowledge is available; and (3) similarly, without prior information joint estimation of both aquifer radial and vertical conductivity may be unreliable. These results have significant implications for the types of information that must be collected prior to slug test analysis in order to obtain reliable aquifer parameter estimates. For example, plausible estimates of aquifer anisotropy ratios and bounds on wellbore skin K should be obtained, if possible, a priori. Secondly, through analysis of field data - consisting of over 2500 records from partially-penetrating slug tests in a

  6. Model predictive control-based dynamic coordinate strategy for hydraulic hub-motor auxiliary system of a heavy commercial vehicle

    Science.gov (United States)

    Zeng, Xiaohua; Li, Guanghan; Yin, Guodong; Song, Dafeng; Li, Sheng; Yang, Nannan

    2018-02-01

    Equipping a hydraulic hub-motor auxiliary system (HHMAS), which mainly consists of a hydraulic variable pump, a hydraulic hub-motor, a hydraulic valve block and hydraulic accumulators, with part-time all-wheel-drive functions improves the power performance and fuel economy of heavy commercial vehicles. The coordinated control problem that occurs when HHMAS operates in the auxiliary drive mode is addressed in this paper; the solution to this problem is the key to the maximization of HHMAS. To achieve a reasonable distribution of the engine power between mechanical and hydraulic paths, a nonlinear control scheme based on model predictive control (MPC) is investigated. First, a nonlinear model of HHMAS with vehicle dynamics and tire slip characteristics is built, and a controller-design-oriented model is simplified. Then, a steady-state feedforward + dynamic MPC feedback controller (FMPC) is designed to calculate the control input sequence of engine torque and hydraulic variable pump displacement. Finally, the controller is tested in the MATLAB/Simulink and AMESim co-simulation platform and the hardware-in-the-loop experiment platform, and its performance is compared with that of the existing proportional-integral-derivative controller and the feedforward controller under the same conditions. Simulation results show that the designed FMPC has the best performance, and control performance can be guaranteed in a real-time environment. Compared with the tracking control error of the feedforward controller, that of the designed FMPC is decreased by 85% and the traction efficiency performance is improved by 23% under a low-friction-surface condition. Moreover, under common road conditions for heavy commercial vehicles, the traction force can increase up to 13.4-15.6%.

  7. Modeling Innovative Power Take-Off Based on Double-Acting Hydraulic Cylinders Array for Wave Energy Conversion

    Directory of Open Access Journals (Sweden)

    Juan Carlos Antolín-Urbaneja

    2015-03-01

    Full Text Available One of the key systems of a Wave Energy Converter for extraction of wave energy is the Power Take-Off (PTO device. This device transforms the mechanical energy of a moving body into electrical energy. This paper describes the model of an innovative PTO based on independently activated double-acting hydraulic cylinders array. The model has been developed using a simulation tool, based on a port-based approach to model hydraulics systems. The components and subsystems used in the model have been parameterized as real components and their values experimentally obtained from an existing prototype. In fact, the model takes into account most of the hydraulic losses of each component. The simulations show the flexibility to apply different restraining torques to the input movement depending on the geometrical configuration and the hydraulic cylinders on duty, easily modified by a control law. The combination of these two actions allows suitable flexibility to adapt the device to different sea states whilst optimizing the energy extraction. The model has been validated using a real test bench showing good correlations between simulation and experimental tests.

  8. Soil Systems for Upscaling Saturated Hydraulic Conductivity (Ksat) for Hydrological Modeling in the Critical Zone

    Science.gov (United States)

    Successful hydrological model predictions depend on appropriate framing of scale and the spatial-temporal accuracy of input parameters describing soil hydraulic properties. Saturated soil hydraulic conductivity (Ksat) is one of the most important properties influencing water movement through soil un...

  9. Applicability of slug interference testing of hydraulic characterization of contaminated aquifer sites

    International Nuclear Information System (INIS)

    Spane, F.A.; Swanson, L.C.

    1993-10-01

    Aquifer test methods available for characterizing hazardous waste sites are sometimes restricted because of problems with disposal of contaminated groundwater. These problems, in part, have made slug tests a more desirable method of determining hydraulic properties at such sites. However, in higher permeability formations (i.e., transmissivities ≥ 1 x 10 -3 m 2 /s), slug test results often cannot be analyzed and give, at best, only a lower limit for transmissivity. A need clearly exists to develop test methods that can be used to characterize higher permeability aquifers without removing large amounts of contaminated groundwater. One hydrologic test method that appears to hold promise for characterizing such sites is the slug interference test. To assess the applicability of this test method for use in shallow alluvial aquifer systems, slug interference tests have been conducted, along with more traditional aquifer testing methods, at several Hanford multiple-well sites. Transmissivity values estimated from the slug interference tests were comparable (within a factor of 2 to 3) to values calculated using traditional testing methods, and made it possible to calculate the storativity or specific yield for the intervening test formation. The corroboration of test results indicates that slug interference testing is a viable hydraulic characterization method in transmissive alluvial aquifers, and may represent one of the few test methods that can be used in sensitive areas where groundwater is contaminated

  10. Hydraulic manipulator research at ORNL

    International Nuclear Information System (INIS)

    Kress, R.L.; Jansen, J.F.; Love, L.J.

    1997-01-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL's flexible/prismatic test stand

  11. Hydraulic manipulator research at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States); Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States)

    1997-03-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.

  12. Hydraulic characterization of volcanic rocks in Pahute Mesa using an integrated analysis of 16 multiple-well aquifer tests, Nevada National Security Site, 2009–14

    Science.gov (United States)

    Garcia, C. Amanda; Jackson, Tracie R.; Halford, Keith J.; Sweetkind, Donald S.; Damar, Nancy A.; Fenelon, Joseph M.; Reiner, Steven R.

    2017-01-20

    An improved understanding of groundwater flow and radionuclide migration downgradient from underground nuclear-testing areas at Pahute Mesa, Nevada National Security Site, requires accurate subsurface hydraulic characterization. To improve conceptual models of flow and transport in the complex hydrogeologic system beneath Pahute Mesa, the U.S. Geological Survey characterized bulk hydraulic properties of volcanic rocks using an integrated analysis of 16 multiple-well aquifer tests. Single-well aquifer-test analyses provided transmissivity estimates at pumped wells. Transmissivity estimates ranged from less than 1 to about 100,000 square feet per day in Pahute Mesa and the vicinity. Drawdown from multiple-well aquifer testing was estimated and distinguished from natural fluctuations in more than 200 pumping and observation wells using analytical water-level models. Drawdown was detected at distances greater than 3 miles from pumping wells and propagated across hydrostratigraphic units and major structures, indicating that neither faults nor structural blocks noticeably impede or divert groundwater flow in the study area.Consistent hydraulic properties were estimated by simultaneously interpreting drawdown from the 16 multiple-well aquifer tests with an integrated groundwater-flow model composed of 11 well-site models—1 for each aquifer test site. Hydraulic properties were distributed across volcanic rocks with the Phase II Pahute Mesa-Oasis Valley Hydrostratigraphic Framework Model. Estimated hydraulic-conductivity distributions spanned more than two orders of magnitude in hydrostratigraphic units. Overlapping hydraulic conductivity ranges among units indicated that most Phase II Hydrostratigraphic Framework Model units were not hydraulically distinct. Simulated total transmissivity ranged from 1,600 to 68,000 square feet per day for all pumping wells analyzed. High-transmissivity zones exceeding 10,000 square feet per day exist near caldera margins and extend

  13. Pen Branch Delta and Savannah River Swamp Hydraulic Model

    International Nuclear Information System (INIS)

    Chen, K.F.

    1999-01-01

    The proposed Savannah River Site (SRS) Wetlands Restoration Project area is located in Barnwell County, South Carolina on the southwestern boundary of the SRS Reservation. The swamp covers about 40.5 km2 and is bounded to the west and south by the Savannah River and to the north and east by low bluffs at the edge of the Savannah River floodplain. Water levels within the swamp are determined by stage along the Savannah River, local drainage, groundwater seepage, and inflows from four tributaries, Beaver Dam Creek, Fourmile Branch, Pen Branch, and Steel Creek. Historic discharges of heated process water into these tributaries scoured the streambed, created deltas in the adjacent wetland, and killed native vegetation in the vicinity of the delta deposits. Future releases from these tributaries will be substantially smaller and closer to ambient temperatures. One component of the proposed restoration project will be to reestablish indigenous wetland vegetation on the Pen Branch delta that covers about 1.0 km2. Long-term predictions of water levels within the swamp are required to determine the characteristics of suitable plants. The objective of the study was to predict water levels at various locations within the proposed SRS Wetlands Restoration Project area for a range of Savannah River flows and regulated releases from Pen Branch. TABS-MD, a United States Army Corps of Engineer developed two-dimensional finite element open channel hydraulic computer code, was used to model the SRS swamp area for various flow conditions

  14. Stochastic Modelling of the Hydraulic Anisotropy of Ash Impoundment Sediment

    Science.gov (United States)

    Slávik, Ivan

    2017-12-01

    In the case reported here the impoundments of a 400 MW coal heated power plant with an annual production of about 1.5 million tons of fuel ash are of the cross-valley type, operated by the simple and cheap „upstream method”. The aim of the research was to determine overall and local values of the permeability in horizontal as well as in vertical direction and the anisotropy of the thin-layered sedimented ash. The coal ashes are hydraulically transported through pipelines in form of a slurry and periodically floated on the beach of the impoundment. The ashes are deposited in the form of a thin-layered sediment, with random alternation of layers with a coarser or finer granularity. The ash impoundment sediment is anthropogenic sediment with horizontally laminated texture. Therefore, the sediment is anisotropic from the viewpoint of water seepage. The knowledge of the permeability and the seepage anisotropy of the sediment is a basic requirement for the design of an appropriate dewatering system. The seepage anisotropy of the ash sediment has been checked by means of stochastic modelling, based on the correlation between the effective grain diameter and the coefficient of permeability of the ash: the effective grain diameter and the thickness of individual layers have been proposed to be random events.

  15. Data report of BWR post-CHF tests. Transient core thermal-hydraulic test program. Contract research

    International Nuclear Information System (INIS)

    Iguchi, Tadashi; Itoh, Hideo; Kiuchi, Toshio; Watanabe, Hironori; Kimura, Mamoru; Anoda, Yoshinari

    2001-03-01

    JAERI has been performing transient core thermal-hydraulic test program. In the program, authors performed BWR/ABWR DBE simulation tests with a test facility, which can simulate BWR/ABWR transients. The test facility has a 4 x 4 bundle core simulator with 15-rod heaters and one non-heated rod. Through the tests, authors quantified the thermal safety margin for core cooling. In order to quantify the thermal safety margin, authors collected experimental data on post-CHF. The data are essential for the evaluation of clad temperature transient when core heat-up occurs during DBEs. In comparison with previous post-CHF tests, present experiments were performed in much wider experimental condition, covering high clad temperature, low to high pressure and low to high mass flux. Further, data at wider elevation (lower to higher elevation of core) were obtained in the present experiments, which make possible to discuss the effect of axial position on thermal-hydraulics, while previous works usually discuss the thermal-hydraulics at the position where the first heat-up occurs. This data report describes test procedure, test condition and major experimental data of post-CHF tests. (author)

  16. PWR blowdown heat transfer separate-effects program: Thermal-Hydraulic Test Facility experimental data report for test 100

    International Nuclear Information System (INIS)

    White, M.D.; Hedrick, R.A.

    1977-01-01

    Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) test 100, which is part of the ORNL Pressurized-Water-Reactor (PWR) Blowdown Heat Transfer Separate-Effects Program. The objective of the program is to investigate the thermal-hydraulic phenomenon governing the energy transfer and transport processes that occur during a loss-of-coolant accident in a PWR system. Test 100 was conducted to investigate the response of heater rod bundle 1 and instrumented spool pieces with flow homogenizing screens to a double-ended rupture with equal break areas at the test section inlet and outlet. The primary purpose of this report is to make the reduced instrument responses during test 100 available. The responses are presented in graphical form in engineering units and have been analyzed only to the extent necessary to assure reasonableness and consistency

  17. Test procedure for the Master-Lee and the modified Champion four inch hydraulic cutters

    International Nuclear Information System (INIS)

    Crystal, J.B.

    1995-01-01

    The Master-Lee and the modified Champion 4 Inch hydraulic cutters are being retested to gather and document information related to the following: determine if the Master-Lee cutters will cut the trunnions of an Aluminum fuel canister and a Stainless Steel fuel canister; determine if the Master-Lee cutters will cut 1 1/2 inch diameter fire hose; determine if the modified Champion 4 inch blade will cut sections of piping; and determine the effectiveness of the centering device for the Champion 4 Inch cutters. Determining the limitations of the hydraulic cutter will aid in the process of debris removal in the K-Basin. Based on a previous test, the cutters were returned to the manufacturer for modifications. The modifications to the Champion 4 Inch Cutter and further testing of the Master-Lee Cutter are the subjects of these feature tests

  18. Thyc, a 3D thermal-hydraulic code for rod bundles. Recent developments and validation tests

    International Nuclear Information System (INIS)

    Caremoli, C.; Rascle, P.; Aubry, S.; Olive, J.

    1993-09-01

    PWR or LMFBR cores or fuel assemblies, PWR steam generators, condensers, tubular heat exchangers, are basic components of a nuclear power plant involving two-phase flows in tube or rod bundles. A deep knowledge of the detailed flow patterns on the shell side is necessary to evaluate DNB margins in reactor cores, singularity effects (grids, wire spacers, support plates, baffles), corrosion on steam generator tube sheet, bypass effects and vibration risks. For that purpose, Electricite de France has developed, since 1986, a general purpose code named THYC (Thermal HYdraulic Code) designed to study three-dimensional single and two phase flows in rod or tube bundles (pressurized water reactor cores, steam generators, condensers, heat exchangers). It considers the three-dimensional domain to contain two kinds of components: fluid and solids. The THYC model is obtained by space-time averaging of the instantaneous equations (mass, momentum and energy) of each phase over control volumes including fluid and solids. This paper briefly presents the physical model and the numerical method used in THYC. Then, validation tests (comparison with experiments) and applications (coupling with three-dimensional neutronics code and DNB predictions) are presented. They emphasize the last developments and new capabilities of the code. (authors). 10 figs., 3 tabs., 21 refs

  19. Real-time dynamic hydraulic model for water distribution networks: steady state modelling

    CSIR Research Space (South Africa)

    Osman, Mohammad S

    2016-09-01

    Full Text Available equipment (pipes, reservoirs, pumps, valves, etc.) was used as a pilot WDN. Further information of the various other DHM components has been published [1]. The steady-state hydraulic model calculates the network hydraulic variables at a particular... from the abstraction point to the two low-level concrete reservoirs. On this pipeline there is a 2” tie-off to an alternate consumer as well as another 2” tie-off (5 m length) to the pump station sump. Water from the pump station is pumped to two...

  20. Development of thermal hydraulic models for the reliable regulatory auditing code

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Song, C. H.; Lee, Y. J.; Kwon, T. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2003-04-15

    The objective of this project is to develop thermal hydraulic models for use in improving the reliability of the regulatory auditing codes. The current year fall under the first step of the 3 year project, and the main researches were focused on identifying the candidate thermal hydraulic models for improvement and to develop prototypical model development. During the current year, the verification calculations submitted for the APR 1400 design certification have been reviewed, the experimental data from the MIDAS DVI experiment facility in KAERI have been analyzed and evaluated, candidate thermal hydraulic models for improvement have been identified, prototypical models for the improved thermal hydraulic models have been developed, items for experiment in connection with the model development have been identified, and preliminary design of the experiment has been carried out.

  1. Development of thermal hydraulic models for the reliable regulatory auditing code

    International Nuclear Information System (INIS)

    Chung, B. D.; Song, C. H.; Lee, Y. J.; Kwon, T. S.

    2003-04-01

    The objective of this project is to develop thermal hydraulic models for use in improving the reliability of the regulatory auditing codes. The current year fall under the first step of the 3 year project, and the main researches were focused on identifying the candidate thermal hydraulic models for improvement and to develop prototypical model development. During the current year, the verification calculations submitted for the APR 1400 design certification have been reviewed, the experimental data from the MIDAS DVI experiment facility in KAERI have been analyzed and evaluated, candidate thermal hydraulic models for improvement have been identified, prototypical models for the improved thermal hydraulic models have been developed, items for experiment in connection with the model development have been identified, and preliminary design of the experiment has been carried out

  2. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    International Nuclear Information System (INIS)

    Song, C. H.; Chung, M. K.; Park, C. K. and others

    2005-04-01

    The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved

  3. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Song, C. H.; Chung, M. K.; Park, C. K. and others

    2005-04-15

    The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved.

  4. Improvement of auditing technology of safety analysis through thermal-hydraulic separate effect tests

    Energy Technology Data Exchange (ETDEWEB)

    No, Hee Cheon; Moon, Young Min; Lee, Dong Won; Lee, Sang Ik; Kim, Eung Soo; Yeom, Keum Soo [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2002-03-15

    The objective of the present research is to perform the separate effect tests and to assess the RELAP5/MOD3.2 code for the analysis of thermal-hydraulic behavior in the reactor coolant system and the improvement of the auditing technology of safety analysis. Three Separate Effect Tests (SETs) are the reflux condensation in the U-tube, the direct contact condensation in the hot-leg and the mixture level buildup in the pressurizer. The experimental data and the empirical correlations are obtained through SETs. On the ases of the three SET works, models in RELAP5 are modified and improved, which are compared with the data. The Korea Standard Nuclear Power Plant (KSNP) are assessed using the modified RELAP5. In the reflux condensation test, the data of heat transfer coefficients and flooding are obtained and the condensation models are modified using the non-iterative model, as results, modified code better predicts the data. In the direct contact condensation test, the data of heat transfer coefficients are obtained for the cocurrent and countercurrent flow between the mixture gas and the water in condition of horizontal stratified flow. Several condensation and friction models are modified, which well predict the present data. In the mixture level test, the data for the mixture level and the onset of water draining into the surge line are obtained. The standard RELAP5 over-predicts the mixture level and the void fraction in the pressurizer. Simple modification of model related to the pool void fraction is suggested. The KSNP is assessed using the standard and the modified RELAP5 resulting from the experimental and code works for the SETs. In case of the pressurizer manway opening with available secondary side of the steam generators, the modified code predicts that the collapsed level in the pressurizer is little accumulated. The presence and location of the opening and the secondary condition of the steam generators have an effect on the coolant inventory. The

  5. Thermal-hydraulic tests of steam-generator tube-support-plate crevices. Volume 2. Appendixes I through S. Final report

    International Nuclear Information System (INIS)

    Cassell, D.S.; Vroom, D.W.

    1983-01-01

    A test program was conducted to determine for selected steam generator tube supports the thermal/hydraulic conditions at the inception of dryout as indicated by a tube wall temperature excursion, to determine the pressure drop across the supports, and to obtain photographic documentation of the flow upstream and downstream of the supports. A multi-tube steam generator model was used and testing performed over the range of typcal PWR steam generator operating conditions. These appendices contain information on instrumentation calibration, test model and loop calibration, error analysis, test model thermal-hydraulic analyses, index of lab materials and log sheets, index of two-phase flow still photographs, index of high speed movies and video, test data printouts, test model and loop fabrication drawings, procedure for silver brazing tubewall thermocouples, and procedure for esablishing tube-tube support line contact

  6. Thermal-Hydraulic Integral Effect Test with the ATLS for Investigation on CEDM Penetration Nozzle Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyoungho; Seokcho; Park, Hyunsik; Choi, Namhyun; Park, Yusun; Kim, Jongrok; Bae, Byounguhn; Kim, Yeonsik; Choi, Kiyong; Song, Chulhwa [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    In this study, thermal-hydraulic integral effect test with the ATLAS (Advanced Thermal-Hydraulic Test Loop for Accident Simulation) was performed for simulating a failure of CEDM penetration nozzle. The main objectives of the present test were not only to provide physical insight into the system response during a failure of CEDM penetration nozzle but also to establish an integral effect test database for the validation of the safety analysis codes. Furthermore, present experimental data were utilized to resolve the safety issue raised by the PWSCC at the CEDM penetration nozzle of the YGN-3. Thermal-hydraulic integral effect test with the ATLAS was performed for simulating a failure of CEDM penetration nozzle. Failure of two penetration nozzles of the CEDM in the APR1400 was simulated. Initial and boundary conditions were determined with respect to the reference conditions of the APR1400. However, with an aim of corresponding to the YGN-3 situation, the safety injection water was supplied via CLI mode. Compared to the cold leg break SBLOCA, the consequences of the event were milder in terms of a loop seal clearance, break flow rate, collapsed water level, and PCT. This could be mainly attributed to the small break flow rate in case of the failure in the RPV upper head. Present experimental data were utilized to resolve the safety issue raised by the PWSCC at the CEDM penetration nozzle of the YGN-3.

  7. Development of the Real-time Core and Thermal-Hydraulic Models for Kori-1 Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin Hyuk; Lee, Myeong Soo; Hwang, Do Hyun; Byon, Soo Jin [KEPRI, Daejeon (Korea, Republic of)

    2010-10-15

    The operation of the Kori-Unit 1 (1723.5MWt) is expanded to additional 10 years with upgrades of the Main Control Room (MCR). Therefore, the revision of the procedures, performance tests and works related with the exchange of the Main Control Board (MCB) are currently carried out. And as a part of it, the fullscope simulator for the Kori-1 is being developed for the purpose of the pre-operation and emergence response capability for the operators. The purpose of this paper is to report on the performance of the developed neutronics and thermal-hydraulic (TH) models of Kori Unit 1 simulator. The neutronics model is based on the NESTLE code and TH model based on the RELAP5/MOD3 thermal-hydraulics analysis code which was funded as FY-93 LDRD Project 7201 and is running on the commercial simulator environment tool (the 3KeyMaster{sup TM} of the WSC). As some examples for the verification of the developed neutronics and TH models, some figures are provided. The outputs of the developed neutronics and TH models are in accord with the Nuclear Design Report (NDR) and Final Safety Analysis Report (FSAR) of the reference plant

  8. A review of the current thermal-hydraulic modeling of the Jules Horowitz Reactor: A loss of flow accident analysis

    International Nuclear Information System (INIS)

    Pegonen, R.; Bourdon, S.; Gonnier, C.; Anglart, H.

    2014-01-01

    Highlights: • CEA methodology for thermal-hydraulic calculations in the JHR reactor is described. • Thermal-hydraulics of the JHR is analyzed during LOFA using CATHARE and FLICA4. • Safety criteria, important modeling parameters and correlations are presented. • Possible improvements of the current methodology are discussed and proposed. - Abstract: The newest European high performance material testing reactor, the Jules Horowitz Reactor, will support existing and future nuclear reactor designs. The reactor is under construction at CEA Cadarache research center in France and is expected to start operation at the end of this decade. R and D and analytical works have already been performed to set-up the methodology for thermal-hydraulic calculations of the reactor. This paper presents the off-line coupled thermal-hydraulic modeling of the reactor using the CATHARE system code and the FLICA4 core analysis code. The main objective of the present work is to analyze the thermal-hydraulic calculations of the reactor during the loss of flow accident using CEA methodology. Possible improvements of the current methodology are shortly discussed and suggested

  9. Evaluation of Fish Passage at Whitewater Parks Using 2D and 3D Hydraulic Modeling

    Science.gov (United States)

    Hardee, T.; Nelson, P. A.; Kondratieff, M.; Bledsoe, B. P.

    2016-12-01

    In-stream whitewater parks (WWPs) are increasingly popular recreational amenities that typically create waves by constricting flow through a chute to increase velocities and form a hydraulic jump. However, the hydraulic conditions these structures create can limit longitudinal habitat connectivity and potentially inhibit upstream fish migration, especially of native fishes. An improved understanding of the fundamental hydraulic processes and potential environmental effects of whitewater parks is needed to inform management decisions about Recreational In-Channel Diversions (RICDs). Here, we use hydraulic models to compute a continuous and spatially explicit description of velocity and depth along potential fish swimming paths in the flow field, and the ensemble of potential paths are compared to fish swimming performance data to predict fish passage via logistic regression analysis. While 3d models have been shown to accurately predict trout movement through WWP structures, 2d methods can provide a more cost-effective and manager-friendly approach to assessing the effects of similar hydraulic structures on fish passage when 3d analysis in not feasible. Here, we use 2d models to examine the hydraulics in several WWP structures on the North Fork of the St. Vrain River at Lyons, Colorado, and we compare these model results to fish passage predictions from a 3d model. Our analysis establishes a foundation for a practical, transferable and physically-rigorous 2d modeling approach for mechanistically evaluating the effects of hydraulic structures on fish passage.

  10. Sediment processes modelling below hydraulic mining: towards environmental impact mitigation

    Science.gov (United States)

    Chalov, Sergey R.

    2010-05-01

    their nearness determines the water mass increase inside mining site. The predictive models were suggested to assess each of the mane-made processes contribution into the total sediment budget of the rivers below mining sites. The empirical data and theoretical and laboratory-derived correlations were used to obtain the predictive models for each processes of sediment supply. It was challenging to estimate specific erosion rate of washed exposed hillsides, channel incision, water supply conditions. Climatic and anthropogenic changes of water runoff also were simulated to decrease uncertainty of the proposed model. Application of the given approach to the hydraulic platinum-mining located in the Kamchatka peninsula (Koryak plateau, tributaries of the Vivenka River) gave the sediment budget of the placer-mined rivers and the total sediment yield supplied into the ocean from river basin. Polluted placer-mined rivers contribute about 30 % of the whole sediment yield of the Vivenka River. At the same time the catchment area of these rivers is less than 0,03 % from the whole Vivenka catchment area. Based on the sediment transport modeling the decision making system for controlling water pollution and stream community preservation was developed. Due to exposed hillside erosion prevention and settling pond system optimization the total decrease of sediment yield was up to 75 %.

  11. Parametric model of servo-hydraulic actuator coupled with a nonlinear system: Experimental validation

    Science.gov (United States)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-05-01

    Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.

  12. Results of single borehole hydraulic tests in the Mizunami Underground Research Laboratory project. FY 2012 - FY 2015

    International Nuclear Information System (INIS)

    Onoe, Hironori; Takeuchi, Ryuji

    2016-11-01

    This report summarize the results of the single borehole hydraulic tests of 151 sections carried out at the -300 m Stage and the -500 m Stage of the Mizunami Underground Research Laboratory from FY 2012 to FY 2015. The details of each test (test interval depth, geology, etc.) as well as the interpreted hydraulic parameters and analytical methods used are presented in this report. Furthermore, the previous results of the single borehole hydraulic tests carried out in the Regional Hydrogeological Study Project and the Mizunami Underground Research Laboratory Project before FY 2012 are also summarized in this report. (author)

  13. The Benefits and Limitations of Hydraulic Modeling for Ordinary High Water Mark Delineation

    Science.gov (United States)

    2016-02-01

    between two cross sections, the HEC-RAS model will not show it. If there is a sudden drop in the channel, such as a waterfall or steep rapids, the...ER D C/ CR RE L TR -1 6- 1 Wetland Regulatory Assistance Program (WRAP) The Benefits and Limitations of Hydraulic Modeling for Ordinary...client/default. Wetland Regulatory Assistance Program (WRAP) ERDC/CRREL TR-16-1 February 2016 The Benefits and Limitations of Hydraulic Modeling

  14. Mathematical model of nonstationary hydraulic processes in gas centrifuge cascade for separation of multicomponent isotope mixtures

    OpenAIRE

    Orlov, Aleksey Alekseevich; Ushakov, Anton; Sovach, Victor

    2017-01-01

    The article presents results of development of a mathematical model of nonstationary hydraulic processes in gas centrifuge cascade for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of silicon isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary hydraulic processes in gas centrifuge cascades for separation...

  15. Hydraulic Testing of Salado Formation Evaporites at the Waste Isolation Pilot Plant Site: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Beauheim, Richard L.; Domski, Paul S.; Roberts, Randall M.

    1999-07-01

    This report presents interpretations of hydraulic tests conducted in bedded evaporates of the Salado Formation from May 1992 through May 1995 at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. The WIPP is a US Department of Energy research and development facility designed to demonstrate safe disposal of transuranic wastes from the nation's defense programs. The WIPP disposal horizon is located in the lower portion of the Permian Salado Formation. The hydraulic tests discussed in this report were performed in the WIPP underground facility by INTERA inc. (now Duke Engineering and Services, Inc.), Austin, Texas, following the Field Operations Plan and Addendum prepared by Saulnier (1988, 1991 ) under the technical direction of Sandia National Laboratories, Albuquerque, New Mexico.

  16. Hydraulic Testing of Salado Formation Evaporites at the Waste Isolation Pilot Plant Site: Final Report

    International Nuclear Information System (INIS)

    Beauheim, Richard L.; Domski, Paul S.; Roberts, Randall M.

    1999-01-01

    This report presents interpretations of hydraulic tests conducted in bedded evaporates of the Salado Formation from May 1992 through May 1995 at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. The WIPP is a US Department of Energy research and development facility designed to demonstrate safe disposal of transuranic wastes from the nation's defense programs. The WIPP disposal horizon is located in the lower portion of the Permian Salado Formation. The hydraulic tests discussed in this report were performed in the WIPP underground facility by INTERA inc. (now Duke Engineering and Services, Inc.), Austin, Texas, following the Field Operations Plan and Addendum prepared by Saulnier (1988, 1991 ) under the technical direction of Sandia National Laboratories, Albuquerque, New Mexico

  17. Development of thermal-hydraulic models for the safety evaluation of CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Young; Jung, Yun Sik; Hwang, Gi Suk; Kim, Nam Seok [Handong Univ., Pohang (Korea, Republic of); No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2004-02-15

    The objective of the present research is to evaluate the safety analysis for CANDU and to improve the Horizontal Stratification Entrainment Model (HSEM) of RELAP5/MOD3.3. This report includes two items the one is the experimental study of entrainment at horizontal pipe with {+-} 36 .deg. C , {+-} 72 .deg. C branch pies, the other is the model improvement of the moderator heat sink in the Calandria. The off-take experiments on onset of entrainment and branch quality were investigated by using water and air as working fluid, and the experimental data were compared by the previous correlations. The previous correlations could not expect experimental results, thus the weak points of the previous correlations were investigated. The improvement of the previous model continues as the next year research. The thermal hydraulic scaling analysis of SPEL, STERN and ideal linear scaling analysis have been studied. As a result, a new scaling method were needed to design a new experimental facility (HGU). A new scaling method with 1/8 length scale was applied. From these results, the thermal hydraulic model for CFD code simulation was designed and test apparatus has been made. The moderator temperature distribution experiments and CFD code simulation will be continued in next year.

  18. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  19. Loss-of-Fluid Test findings in pressurized water reactor core's thermal-hydraulic behavior

    International Nuclear Information System (INIS)

    Russell, M.

    1983-01-01

    This paper summarizes the pressurized water reactor (PWR) core's thermal-hydraulic behavior findings from experiments performed at the Loss-of-Fluid Test (LOFT) Facility at the Idaho National Engineering Laboratory. The potential impact of these findings on the safety and economics of PWR's generation of electricity is also discussed. Reviews of eight important findings in the core's physical behavior and in experimental methods are presented with supporting evidence

  20. Characterisation of the hydraulic properties within the EDZ around drifts at level -490 m of the Meuse/Haute-Marne URL: A methodology for consistent interpretation of hydraulic tests

    Science.gov (United States)

    Baechler, S.; Lavanchy, J. M.; Armand, G.; Cruchaudet, M.

    In order to investigate potential changes of the hydraulic properties of the EDZ over time in the Meuse/Haute-Marne underground research laboratory (URL), several hydraulic tests campaigns have been carried out between 2005 and 2008 in dedicated boreholes. After several test series, inconsistencies were noticed in the results, indicating, in particular cases, erratic, inexplicable property changes over time and spatial contrasts. It was therefore difficult to determine reliably potential trends of the EDZ hydraulic properties. It appeared necessary to re-evaluate both the interpretation concepts and assumptions applied to the numerical analyses of test data on the EDZ, trying to better constrain the flow model and the parameter variables. In order to improve the understanding of the geometrical, geomechanical and hydraulic properties of the EDZ, independent information from other investigation methods has been used to critically revise the conceptual model and formation parameters. In particular, results from a diffusion experiment and ultrasonic measurements allowed constraining the extent of the mechanical damaged zone around the borehole (BDZ). Storativity parameters were fitted due to their expected variability. Indeed, high storativity values can be presumed under the unsaturated conditions of the EDZ. The results of the reanalyses, performed with the numerical borehole simulator MULTISIM, demonstrated the good quality and consistency of the revised conceptual model with constrained BDZ and variable storativity. Overall the new simulation results obtained from selected test series are now very consistent. The revised conceptual model demonstrated its capacity to better represent the evolution and extension of the EDZ around a drift in Meuse/Haute-Marne URL. Further consistency checks are proposed to confirm the new model assumptions and the estimates of the single phase flow model in the EDZ.

  1. Characterisation of the hydraulic properties within the EDZ around drifts at level -490 m of the Meuse/Haute-Marne URL: A methodology for consistent interpretation of hydraulic tests

    International Nuclear Information System (INIS)

    Baechler, S.; Lavanchy, J. M.; Armand, G.; Cruchaudet, M.

    2011-01-01

    In order to investigate potential changes of the hydraulic properties of the EDZ over time in the Meuse/Haute-Marne underground research laboratory (URL), several hydraulic tests campaigns have been carried out between 2005 and 2008 in dedicated boreholes. After several test series, inconsistencies were noticed in the results, indicating, in particular cases, erratic, inexplicable property changes over time and spatial contrasts. It was therefore difficult to determine reliably potential trends of the EDZ hydraulic properties. It appeared necessary to re-evaluate both the interpretation concepts and assumptions applied to the numerical analyses of test data on the EDZ, trying to better constrain the flow model and the parameter variables. In order to improve the understanding of the geometrical, geomechanical and hydraulic properties of the EDZ, independent information from other investigation methods has been used to critically revise the conceptual model and formation parameters. In particular, results from a diffusion experiment and ultrasonic measurements allowed constraining the extent of the mechanical damaged zone around the borehole (BDZ). Storativity parameters were fitted due to their expected variability. Indeed, high storativity values can be presumed under the unsaturated conditions of the EDZ. The results of the reanalyses, performed with the numerical borehole simulator MULTISIM, demonstrated the good quality and consistency of the revised conceptual model with constrained BDZ and variable storativity. Overall the new simulation results obtained from selected test series are now very consistent. The revised conceptual model demonstrated its capacity to better represent the evolution and extension of the EDZ around a drift in Meuse/Haute-Marne URL. Further consistency checks are proposed to confirm the new model assumptions and the estimates of the single phase flow model in the EDZ. (authors)

  2. Combining periodic hydraulic tests and surface tilt measurements to explore in situ fracture hydromechanics

    Science.gov (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Guihéneuf, Nicolas; Becker, Matthew W.; Cole, Matthew; Burbey, Thomas J.; Lavenant, Nicolas; Boudin, Frédéric

    2017-08-01

    Fractured bedrock reservoirs are of socio-economical importance, as they may be used for storage or retrieval of fluids and energy. In particular, the hydromechanical behavior of fractures needs to be understood as it has implications on flow and governs stability issues (e.g., microseismicity). Laboratory, numerical, or field experiments have brought considerable insights to this topic. Nevertheless, in situ hydromechanical experiments are relatively uncommon, mainly because of technical and instrumental limitations. Here we present the early stage development and validation of a novel approach aiming at capturing the integrated hydromechanical behavior of natural fractures. It combines the use of surface tiltmeters to monitor the deformation associated with the periodic pressurization of fractures at depth in crystalline rocks. Periodic injection and withdrawal advantageously avoids mobilizing or extracting significant amounts of fluid, and it hinders any risk of reservoir failure. The oscillatory perturbation is intended to (1) facilitate the recognition of its signature in tilt measurements and (2) vary the hydraulic penetration depth in order to sample different volumes of the fractured bedrock around the inlet and thereby assess scale effects typical of fractured systems. By stacking tilt signals, we managed to recover small tilt amplitudes associated with pressure-derived fracture deformation. Therewith, we distinguish differences in mechanical properties between the three tested fractures, but we show that tilt amplitudes are weakly dependent on pressure penetration depth. Using an elastic model, we obtain fracture stiffness estimates that are consistent with published data. Our results should encourage further improvement of the method.

  3. Recent Developments in Multiscale and Multiphase Modelling of the Hydraulic Fracturing Process

    Directory of Open Access Journals (Sweden)

    Yong Sheng

    2015-01-01

    Full Text Available Recently hydraulic fracturing of rocks has received much attention not only for its economic importance but also for its potential environmental impact. The hydraulically fracturing technique has been widely used in the oil (EOR and gas (EGR industries, especially in the USA, to extract more oil/gas through the deep rock formations. Also there have been increasing interests in utilising the hydraulic fracturing technique in geological storage of CO2 in recent years. In all cases, the design and implementation of the hydraulic fracturing process play a central role, highlighting the significance of research and development of this technique. However, the uncertainty behind the fracking mechanism has triggered public debates regarding the possible effect of this technique on human health and the environment. This has presented new challenges in the study of the hydraulic fracturing process. This paper describes the hydraulic fracturing mechanism and provides an overview of past and recent developments of the research performed towards better understandings of the hydraulic fracturing and its potential impacts, with particular emphasis on the development of modelling techniques and their implementation on the hydraulic fracturing.

  4. Lead coolant test facility systems design, thermal hydraulic analysis and cost estimate

    Energy Technology Data Exchange (ETDEWEB)

    Khericha, Soli, E-mail: slk2@inel.gov [Battelle Energy Alliance, LLC, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Harvego, Edwin; Svoboda, John; Evans, Robert [Battelle Energy Alliance, LLC, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Dalling, Ryan [ExxonMobil Gas and Power Marketing, Houston, TX 77069 (United States)

    2012-01-15

    The Idaho National Laboratory prepared a preliminary technical and functional requirements (T and FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed below: Bullet Develop and demonstrate feasibility of submerged heat exchanger. Bullet Develop and demonstrate open-lattice flow in electrically heated core. Bullet Develop and demonstrate chemistry control. Bullet Demonstrate safe operation. Bullet Provision for future testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimated. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 Degree-Sign C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.

  5. Hydraulic fracturing tests in anhydrite interbeds in the WIPP, Marker Beds 139 and 140

    Energy Technology Data Exchange (ETDEWEB)

    Howard, C L [RE/SPEC Inc., Albuquerque, NM (United States); Wawersik, W. R.; Carlson, L. V.; Henfling, J. A.; Borns, D. J.; Beauheim, R. L.; Roberts, R. M.

    1997-05-01

    Hydraulic fracturing tests were integrated with hydrologic tests to estimate the conditions under which gas pressure in the disposal rooms in the Waste Isolation Pilot Plant, Carlsbad, NM (WIPP) will initiate and advance fracturing in nearby anhydrite interbeds. The measurements were made in two marker beds in the Salado formation, MB139 and MB140, to explore the consequences of existing excavations for the extrapolation of results to undisturbed ground. The interpretation of these measurements is based on the pressure-time records in two injection boreholes and several nearby hydrologic observation holes. Data interpretations were aided by post-test borehole video surveys of fracture traces that were made visible by ultraviolet illumination of fluorescent dye in the hydraulic fracturing fluid. The conclusions of this report relate to the upper- and lower-bound gas pressures in the WIPP, the paths of hydraulically and gas-driven fractures in MB139 and MB140, the stress states in MB139 and MB140, and the probable in situ stress states in these interbeds in undisturbed ground far away from the WIPP.

  6. Thermal-hydraulic analyses for in-pile SCWR fuel qualification test loops and SCWR material loop

    Energy Technology Data Exchange (ETDEWEB)

    Vojacek, A.; Mazzini, G.; Zmitkova, J.; Ruzickova, M. [Research Centre Rez (Czech Republic)

    2014-07-01

    One of the R&D directions of Research Centre Rez is dedicated to the supercritical water-cooled reactor concept (SCWR). Among the developed experimental facilities and infrastructure in the framework of the SUSEN project (SUStainable ENergy) is construction and experimental operation of the supercritical water loop SCWL focusing on material tests. At the first phase, this SCWL loop is assembled and operated out-of-pile in the dedicated loop facilities hall. At this out-of-pile operation various operational conditions are tested and verified. After that, in the second phase, the SCWL loop will be situated in-pile, in the core of the research reactor LVR-15, operated at CVR. Furthermore, it is planned to carry out a test of a small scale fuel assembly within the SuperCritical Water Reactor Fuel Qualification Test (SCWR-FQT) loop, which is now being designed. This paper presents the results of the thermal-hydraulic analyses of SCWL loop out-of-pile operation using the RELAP5/MOD3.3. The thermal-hydraulic modeling and the performed analyses are focused on the SCWL loop model validation through a comparison of the calculation results with the experimental results obtained at various operation conditions. Further, the present paper focuses on the transient analyses for start-up and shut-down of the FQT loop, particularly to explore the ability of system codes ATHLET 3.0A to simulate the transient between subcritical conditions and supercritical conditions. (author)

  7. Development of local TDC model in core thermal hydraulic analysis

    International Nuclear Information System (INIS)

    Kwon, H.S.; Park, J.R.; Hwang, D.H.; Lee, S.K.

    2004-01-01

    The local TDC model consisting of natural mixing and forced mixing part was developed to obtain more realistic local fluid properties in the core subchannel analysis. To evaluate the performance of local TDC model, the CHF prediction capability was tested with the various CHF correlations and local fluid properties at CHF location which are based on the local TDC model. The results show that the standard deviation of measured to predicted CHF ratio (M/P) based on local TDC model can be reduced by about 7% compared to those based on global TDC model when the CHF correlation has no term to account for distance from the spacer grid. (author)

  8. A methodology for the parametric modelling of the flow coefficients and flow rate in hydraulic valves

    International Nuclear Information System (INIS)

    Valdés, José R.; Rodríguez, José M.; Saumell, Javier; Pütz, Thomas

    2014-01-01

    Highlights: • We develop a methodology for the parametric modelling of flow in hydraulic valves. • We characterize the flow coefficients with a generic function with two parameters. • The parameters are derived from CFD simulations of the generic geometry. • We apply the methodology to two cases from the automotive brake industry. • We validate by comparing with CFD results varying the original dimensions. - Abstract: The main objective of this work is to develop a methodology for the parametric modelling of the flow rate in hydraulic valve systems. This methodology is based on the derivation, from CFD simulations, of the flow coefficient of the critical restrictions as a function of the Reynolds number, using a generalized square root function with two parameters. The methodology is then demonstrated by applying it to two completely different hydraulic systems: a brake master cylinder and an ABS valve. This type of parametric valve models facilitates their implementation in dynamic simulation models of complex hydraulic systems

  9. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs

    Science.gov (United States)

    We have conducted numerical simulation studies to assess the potential for injection-induced fault reactivation and notable seismic events associated with shale-gas hydraulic fracturing operations. The modeling is generally tuned toward conditions usually encountered in the Marce...

  10. Modeling Vertical Flow Treatment Wetland Hydraulics to Optimize Treatment Efficiency

    Science.gov (United States)

    2011-03-24

    be forced to flow in a 90 serpentine manner back and forth as it moves upward through the wetland (think waiting in line at Disneyland ). This...Flow Treatment Wetland Hydraulics to Optimize Treatment Efficiency 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  11. Hydraulic modelling of drinking water treatment plant operations

    NARCIS (Netherlands)

    Worm, G.I.M.; Mesman, G.A.M.; Van Schagen, K.M.; Borger, K.J.; Rietveld, L.C.

    2009-01-01

    The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand

  12. Thermal-hydraulic analysis for changing feedwater check valve leakage rate testing methodology

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, R.; Harrell, J.

    1996-12-01

    The current design and testing requirements for the feedwater check valves (FWCVs) at the Grand Gulf Nuclear Station are established from original licensing requirements that necessitate extremely restrictive air testing with tight allowable leakage limits. As a direct result of these requirements, the original high endurance hard seats in the FWCVs were modified with elastomeric seals to provide a sealing surface capable of meeting the stringent air leakage limits. However, due to the relatively short functional life of the elastomeric seals compared to the hard seats, the overall reliability of the sealing function actually decreased. This degraded performance was exhibited by frequent seal failures and subsequent valve repairs. The original requirements were based on limited analysis and the belief that all of the high energy feedwater vaporized during the LOCA blowdown. These phenomena would have resulted in completely voided feedwater lines and thus a steam environment within the feedwater leak pathway. To challenge these criteria, a comprehensive design basis accident analysis was developed using the RELAP5/MOD3.1 thermal-hydraulic code. Realistic assumptions were used to more accurately model the post-accident fluid conditions within the feedwater system. The results of this analysis demonstrated that no leak path exists through the feedwater lines during the reactor blowdown phase and that sufficient subcooled water remains in various portions of the feedwater piping to form liquid water loop seals that effectively isolate this leak path. These results provided the bases for changing the leak testing requirements of the FWCVs from air to water. The analysis results also established more accurate allowable leakage limits, determined the real effective margins associated with the FWCV safety functions, and led to design changes that improved the overall functional performance of the valves.

  13. Quantitative Analysis of Karst Conduit Structure Parameters and Hydraulic Parameters Based on Tracer Test

    Science.gov (United States)

    Qiang, Z.; Zhiqiang, Z.; Xu, M.; Jinyu, S.; Jihong, Q.

    2017-12-01

    The Old Town of Lijiang is famous as the world cultural heritage since 1997, while characterized by its ancient buildings and natural scenery, water is the soul of the town. Around Heilongtan Springs, there are a large quantity of springs at the Old Town of Lijiang , which is an important part of the World Cultural Heritage. Heilongtan Springs is 2420m above the sea level, the annual variation of the flow rate varies greatly (0 8042 x 104 m3 / year). Recharge area Jiuzihai depressions is 6km long, 3km wide and 2800m above sea level, as main karst water recharge area karst funnel and the sink hole are developing on this planation surface, in the research area medium to thick layers of limestone made up Beiya formation (T2b) of Triassic system distributed widely, karst is strongly developed and the fissure caves water occurrence. In order to exploring the application of tracer test in karst hydrogeology, a tracer test was conducted from Jiuzihai depressions to Ganze Spring. Based on the hydrogeological conditions in the study area, tracer test was used for analysis of groundwater connectivity and flow field characteristics, quantitative analysis of Tracer Breakthrough Curves (BTC) with code Qtracer2. The results demonstated that there are hydraulic connection between Jiuzihai depressions with Ganze Spring, and there are other karst conduits in this area. The longitudinal dispersivity coefficient is 0.24 m2/s, longitudinal dispersivity is 12.06m, flow-channel volume is 3.08×104 m3, flow-channel surface area is 3.27×107m2, mean diameter is 1.42m, Reynolds number is 25187, Froude number is 0.0061, respectively. The groundwater in this area is in a slow turbulent state. The results are of great significance to understand the law of groundwater migration, establish groundwater quality prediction model and exploit karst water resources effectively.

  14. Thermal-hydraulic analysis for changing feedwater check valve leakage rate testing methodology

    International Nuclear Information System (INIS)

    Fuller, R.; Harrell, J.

    1996-01-01

    The current design and testing requirements for the feedwater check valves (FWCVs) at the Grand Gulf Nuclear Station are established from original licensing requirements that necessitate extremely restrictive air testing with tight allowable leakage limits. As a direct result of these requirements, the original high endurance hard seats in the FWCVs were modified with elastomeric seals to provide a sealing surface capable of meeting the stringent air leakage limits. However, due to the relatively short functional life of the elastomeric seals compared to the hard seats, the overall reliability of the sealing function actually decreased. This degraded performance was exhibited by frequent seal failures and subsequent valve repairs. The original requirements were based on limited analysis and the belief that all of the high energy feedwater vaporized during the LOCA blowdown. These phenomena would have resulted in completely voided feedwater lines and thus a steam environment within the feedwater leak pathway. To challenge these criteria, a comprehensive design basis accident analysis was developed using the RELAP5/MOD3.1 thermal-hydraulic code. Realistic assumptions were used to more accurately model the post-accident fluid conditions within the feedwater system. The results of this analysis demonstrated that no leak path exists through the feedwater lines during the reactor blowdown phase and that sufficient subcooled water remains in various portions of the feedwater piping to form liquid water loop seals that effectively isolate this leak path. These results provided the bases for changing the leak testing requirements of the FWCVs from air to water. The analysis results also established more accurate allowable leakage limits, determined the real effective margins associated with the FWCV safety functions, and led to design changes that improved the overall functional performance of the valves

  15. Computational fluid dynamics modelling of hydraulics and sedimentation in process reactors during aeration tank settling.

    Science.gov (United States)

    Jensen, M D; Ingildsen, P; Rasmussen, M R; Laursen, J

    2006-01-01

    Aeration tank settling is a control method allowing settling in the process tank during high hydraulic load. The control method is patented. Aeration tank settling has been applied in several waste water treatment plants using the present design of the process tanks. Some process tank designs have shown to be more effective than others. To improve the design of less effective plants, computational fluid dynamics (CFD) modelling of hydraulics and sedimentation has been applied. This paper discusses the results at one particular plant experiencing problems with partly short-circuiting of the inlet and outlet causing a disruption of the sludge blanket at the outlet and thereby reducing the retention of sludge in the process tank. The model has allowed us to establish a clear picture of the problems arising at the plant during aeration tank settling. Secondly, several process tank design changes have been suggested and tested by means of computational fluid dynamics modelling. The most promising design changes have been found and reported.

  16. RELAP5 model to simulate the thermal-hydraulic effects of grid spacers and cladding rupture during reflood

    Energy Technology Data Exchange (ETDEWEB)

    Nithianandan, C.K.; Klingenfus, J.A.; Reilly, S.S. [B& W Nuclear Technologies, Lynchburg, VA (United States)

    1995-09-01

    Droplet breakup at spacer grids and a cladding swelled and ruptured locations plays an important role in the cooling of nuclear fuel rods during the reflooding period of a loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). During the reflood phase, a spacer grid affects the thermal-hydraulic system behavior through increased turbulence, droplet breakup due to impact on grid straps, grid rewetting, and liquid holdup due to grid form losses. Recently, models to simulate spacer grid effects and blockage and rupture effects on system thermal hydraulics were added to the B&W Nuclear Technologies (BWNT) version of the RELAP5/MOD2 computer code. Several FLECHT-SEASET forced reflood tests, CCTF Tests C1-19 and C2-6, SCTF Test S3-15, and G2 Test 561 were simulated using RELAP5/MOD2-B&W to verify the applicability of the model at the cladding swelled and rupture locations. The results demonstrate the importance of modeling the thermal-hydraulic effects due to grids, and clad swelling and rupture to correctly predict the clad temperature response during the reflood phase of large break LOCA. The RELAP5 models and the test results are described in this paper.

  17. VIPRE-01. a thermal-hydraulic analysis code for reactor cores. Volume 1. Mathematical modeling

    International Nuclear Information System (INIS)

    Stewart, C.W.; Cuta, J.M.; Koontz, A.S.; Kelly, J.M.; Basehore, K.L.; George, T.L.; Rowe, D.S.

    1983-04-01

    VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear reactor core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This volume (Volume 1: Mathematical Modeling) explains the major thermal hydraulic models and supporting correlations in detail

  18. Challenges of current hydraulic modeling with three examples; Herausforderungen des heutigen wasserbaulichen Versuchswesens mit drei Beispielen

    Energy Technology Data Exchange (ETDEWEB)

    De Cesare, Giovanni; Pfister, Michael; Daneshvari, Milad; Bieri, Martin [Ecole Polytechnique Federale de Lausanne (Switzerland). Lab. de Constructions Hydrauliques (EPFL-LCH)

    2012-07-01

    Most technical universities offering courses in civil engineering operate for meanwhile 100 years hydraulic laboratories. They investigate and optimize hydraulic structures related to dams, power plants and flood protection measures using physical modelling. These laboratories are usually fully booked today although this classical engineering approach was often predicted to disappear. The authors describe their experience and the new challenges in physical modelling, illustrated with three examples. (orig.)

  19. Modeling and design of cooperative braking in electric and hybrid vehicles using induction machine and hydraulic brake

    Directory of Open Access Journals (Sweden)

    Zaini Dalimus

    2016-07-01

    Full Text Available In mixed-mode braking applications, the electric motor / generator (M/G and hydraulic pressure valve are controlled to meet the driver’s braking demand. Controlling these braking elements is achieved by modulating the current generated by the M/G and adjusting the fluid pressure to the wheel brake cylinders. This paper aims to model and design combined regenerative and hydraulic braking systems which, comprise an induction electric machine, inverter, NiMH battery, controller, a pressure source, pressure control unit, and brake calipers. A 15 kW 1500 rpm induction machine equipped with a reduction gear having a gear ratio of 4 is used. A hydraulic brake capable to produce fluid pressure up to 40 bar is used. Direct torque control and pressure control are chosen as the control criteria in the M/G and the hydraulic solenoid valve. The braking demands for the system are derived from the Federal Testing Procedure (FTP drive cycle. Two simulation models have been developed in Matlab®/Simulink® to analyze the performance of the control strategy in each braking system. The developed model is validated through experiment. It is concluded that the control system does introduce torque ripple and pressure oscillation in the braking system, but these effects do not affect vehicle braking performance due to the high frequency nature of pressure fluctuation and the damping effect of the vehicle inertia. Moreover, experiment results prove the effectiveness of the developed model.

  20. Assessing hydraulic connections across a complex sequence of volcanic rocks - Analysis of U-20 WW multiple-well aquifer test, Pahute Mesa, Nevada National Security Site, Nevada

    Science.gov (United States)

    Garcia, C. Amanda; Fenelon, Joseph M.; Halford, Keith J.; Reiner, Steven R.; Laczniak, Randell J.

    2011-01-01

    Groundwater beneath Pahute Mesa flows through a complexly layered sequence of volcanic rock aquifers and confining units that have been faulted into distinct structural blocks. Hydraulic property estimates of rocks and structures in this flow system are necessary to assess radionuclide migration near underground nuclear testing areas. The U.S. Geological Survey (USGS) used a 12 month (October 1, 2008— October 1, 2009) intermittent pumping schedule of well U-20 WW and continuously monitored water levels in observation wells ER-20-6 #3, UE-20bh 1, and U-20bg as a multi-well aquifer test to evaluate hydraulic connections across structural blocks, bulk hydraulic properties of volcanic rocks, and the hydraulic significance of a major fault. Measured water levels were approximated using synthetic water levels generated from an analytical model. Synthetic water levels are a summation of environmental water-level fluctuations and a Theis (1935) transform of the pumping signal from flow rate to water-level change. Drawdown was estimated by summing residual differences between measured and synthetic water levels and the Theis-transformed pumping signal from April to September 2009. Drawdown estimates were used in a three‑dimensional numerical model to estimate hydraulic properties of distinct aquifers, confining units, and a major fault.

  1. Rail vehicle dynamic response to a nonlinear physical 'in-service' model of its secondary suspension hydraulic dampers

    Science.gov (United States)

    Wang, W. L.; Zhou, Z. R.; Yu, D. S.; Qin, Q. H.; Iwnicki, S.

    2017-10-01

    A full nonlinear physical 'in-service' model was built for a rail vehicle secondary suspension hydraulic damper with shim-pack-type valves. In the modelling process, a shim pack deflection theory with an equivalent-pressure correction factor was proposed, and a Finite Element Analysis (FEA) approach was applied. Bench test results validated the damper model over its full velocity range and thus also proved that the proposed shim pack deflection theory and the FEA-based parameter identification approach are effective. The validated full damper model was subsequently incorporated into a detailed vehicle dynamics simulation to study how its key in-service parameter variations influence the secondary-suspension-related vehicle system dynamics. The obtained nonlinear physical in-service damper model and the vehicle dynamic response characteristics in this study could be used in the product design optimization and nonlinear optimal specifications of high-speed rail hydraulic dampers.

  2. Suitability of parametric models to describe the hydraulic properties of an unsaturated coarse sand and gravel

    Science.gov (United States)

    Mace, Andy; Rudolph, David L.; Kachanoski , R. Gary

    1998-01-01

    The performance of parametric models used to describe soil water retention (SWR) properties and predict unsaturated hydraulic conductivity (K) as a function of volumetric water content (θ) is examined using SWR and K(θ) data for coarse sand and gravel sediments. Six 70 cm long, 10 cm diameter cores of glacial outwash were instrumented at eight depths with porous cup ten-siometers and time domain reflectometry probes to measure soil water pressure head (h) and θ, respectively, for seven unsaturated and one saturated steady-state flow conditions. Forty-two θ(h) and K(θ) relationships were measured from the infiltration tests on the cores. Of the four SWR models compared in the analysis, the van Genuchten (1980) equation with parameters m and n restricted according to the Mualem (m = 1 - 1/n) criterion is best suited to describe the θ(h) relationships. The accuracy of two models that predict K(θ) using parameter values derived from the SWR models was also evaluated. The model developed by van Genuchten (1980) based on the theoretical expression of Mualem (1976) predicted K(θ) more accurately than the van Genuchten (1980) model based on the theory of Burdine (1953). A sensitivity analysis shows that more accurate predictions of K(θ) are achieved using SWR model parameters derived with residual water content (θr) specified according to independent measurements of θ at values of h where θ/h ∼ 0 rather than model-fit θr values. The accuracy of the model K(θ) function improves markedly when at least one value of unsaturated K is used to scale the K(θ) function predicted using the saturated K. The results of this investigation indicate that the hydraulic properties of coarse-grained sediments can be accurately described using the parametric models. In addition, data collection efforts should focus on measuring at least one value of unsaturated hydraulic conductivity and as complete a set of SWR data as possible, particularly in the dry range.

  3. CSNI Integral test facility validation matrix for the assessment of thermal-hydraulic codes for LWR LOCA and transients

    International Nuclear Information System (INIS)

    1996-07-01

    This report deals with an internationally agreed integral test facility (ITF) matrix for the validation of best estimate thermal-hydraulic computer codes. Firstly, the main physical phenomena that occur during the considered accidents are identified, test types are specified, and test facilities suitable for reproducing these aspects are selected. Secondly, a life of selected experiments carried out in these facilities has been set down. The criteria to achieve the objectives are outlined. The construction of such a matrix is an attempt to collect together in a systematic way the best sets of openly available test data for code validation, assessment and improvement, including quantitative assessment of uncertainties in the modelling of phenomena by the codes. In addition to this objective, it is an attempt to record information which has been generated around the world over the last 20 years so that it is more accessible to present and future workers in that field than would otherwise be the case

  4. Physical and hydraulic characteristics of bentonite-amended soil from Area 5, Nevada Test Site

    International Nuclear Information System (INIS)

    Albright, W.

    1995-08-01

    Radioactive waste requires significant isolation from the biosphere. Shallow land burial using low-permeability covers are often used to prevent the release of impounded material. This report details the characterization of a soil mixture intended for use as the low-permeability component of a radioactive waste disposal site. The addition of 6.5 percent bentonite to the sandy soils of the site reduced the value of saturated hydraulic conductivity (K s ) by more than two orders of magnitude to 7.6 x 10- 8 cm/sec. Characterization of the soil mixture included measurements of grain density, grain size distribution, compaction, porosity, dry bulk density, shear strength, desiccation shrinkage, K s , vapor conductivity, air permeability, the characteristic water retention function, and unsaturated hydraulic conductivity by both experimental and numerical estimation methods. The ability of the soil layer to limit infiltration in a simulated application was estimated in a one-dimensional model of a landfill cover

  5. Hydraulic modelling of the CARA Fuel element; Desarrollo hidraulico del combustible CARA

    Energy Technology Data Exchange (ETDEWEB)

    Brasnarof, Daniel O; Juanico, Luis [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Disenios Avanzados y Evaluacion Economica; Giorgi, M [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Materiales; Ghiselli, Alberto M; Zampach, Ruben; Fiori, Jose M; Yedros, Pablo A [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Ensayos no Destructivos

    2004-07-01

    The CARA fuel element is been developing by the National Atomic Energy Commission for both Argentinean PHWRs. In order to keep the hydraulic restriction in their fuel channels, one of CARA's goals is to keep its similarity with both present fuel elements. In this paper is presented pressure drop test performed at a low-pressure facility (Reynolds numbers between 5x10{sup 4} and 1,5x10{sup 5}) and rational base models for their spacer grid and rod assembly. Using these models, we could estimate the CARA hydraulic performance in reactor conditions that have shown to be satisfactory. (author) [Spanish] Con el objeto de validar la similitud hidraulica del elemento combustible CARA con los actuales combustibles de Atucha y Embalse, se realizaron ensayos de perdida de carga en el circuito CBP del CAC con un nuevo diseno de separador de mejor desempeno hidraulico. Se presenta aqui el analisis de los mismos, de los cuales se validaron modelos de base racional para estimar las restricciones hidraulicas de los distintos componentes estructurales (separadores, grillas y barras combustibles) en funcion del flujo refrigerante. Se estimo asi la caida de presion del CARA dentro del canal combustible Embalse en condiciones nominales de reactor, siendo la misma similar al del combustible actual de 37 barras. (autor)

  6. EFFECTIVE APPLICATIO N OF LIDAR DATA IN T WO - DIMENSIONAL HYDRAULIC MODELLING

    Directory of Open Access Journals (Sweden)

    Bakuła Krzysztof

    2014-12-01

    Full Text Available This paper presents aspects of ALS data usage in two - dimensional hydraulic modelling including generation of high - precision digital terrain models, t heir effective processing which is a compromise between the resolution and the accuracy of the processed data, as well as information about the roughness of the land cover providing information that could compete with information from topographic databases and orthophotomaps. Still evolving ALS technology makes it possible to collect the data with constantly increasing spatial resolution that guarantees correct representation of the terrain shape and height. It also provides a reliable description of the la nd cover. However, the size of generated files may cause roblems in their effective usage in the 2D hydraulic modeling where Saint - Venant’s equations are implemented. High - resolution elevation models make it impossible or prolong the duration of the calcu lations for large areas in complex algorithms defining a model of the water movement, which is directly related to the cost of the hydraulic analysis. As far as an effective usage of voluminous datasets is concerned, the data reduction is recommended. Suc h a process should reduce the size of the data files, maintain their accuracy and keep the appropriate structure to allow their further application in the hydraulic modelling. An application of only a few percent of unprocessed datasets, selected with the use of specified filtering algorithms and spatial analysis tools, can give the same result of the hydraulic modeling obtained in a significantly shorter time than the result of the comparable operation on unprocessed datasets. Such an approach, however, is not commonly used, which means the most reliable hydraulic models are applied only in small areas in the largest cities. Another application of ALS data is its potential usage in digital roughness model creation for 2D hydraulic models. There are many po ssibilities of roughness

  7. Hydraulic Geometry, GIS and Remote Sensing, Techniques against Rainfall-Runoff Models for Estimating Flood Magnitude in Ephemeral Fluvial Systems

    Directory of Open Access Journals (Sweden)

    Rafael Garcia-Lorenzo

    2010-11-01

    Full Text Available This paper shows the combined use of remotely sensed data and hydraulic geometry methods as an alternative to rainfall-runoff models. Hydraulic geometric data and boolean images of water sheets obtained from satellite images after storm events were integrated in a Geographical Information System. Channel cross-sections were extracted from a high resolution Digital Terrain Model (DTM and superimposed on the image cover to estimate the peak flow using HEC-RAS. The proposed methodology has been tested in ephemeral channels (ramblas on the coastal zone in south-eastern Spain. These fluvial systems constitute an important natural hazard due to their high discharges and sediment loads. In particular, different areas affected by floods during the period 1997 to 2009 were delimited through HEC-GeoRAs from hydraulic geometry data and Landsat images of these floods (Landsat‑TM5 and Landsat-ETM+7. Such an approach has been validated against rainfall-surface runoff models (SCS Dimensionless Unit Hydrograph, SCSD, Témez gamma HU Tγ and the Modified Rational method, MRM comparing their results with flood hydrographs of the Automatic Hydrologic Information System (AHIS in several ephemeral channels in the Murcia Region. The results obtained from the method providing a better fit were used to calculate different hydraulic geometry parameters, especially in residual flood areas.

  8. Hydraulic design development of Xiluodu Francis turbine

    International Nuclear Information System (INIS)

    Wang, Y L; Li, G Y; Shi, Q H; Wang, Z N

    2012-01-01

    Hydraulic optimization design with CFD (Computational Fluid Dynamics) method, hydraulic optimization measures and model test results in the hydraulic development of Xiluodu hydropower station by DFEM (Dongfang Electric Machinery) of DEC (Dongfang Electric Corporation) of China were analyzed in this paper. The hydraulic development conditions of turbine, selection of design parameter, comparison of geometric parameters and optimization measure of turbine flow components were expatiated. And the measures of improving turbine hydraulic performance and the results of model turbine acceptance experiment were discussed in details.

  9. Insight into the hydraulics and resilience of Ponderosa pine seedlings using a mechanistic ecohydrologic model

    Science.gov (United States)

    Maneta, M. P.; Simeone, C.; Dobrowski, S.; Holden, Z.; Sapes, G.; Sala, A.; Begueria, S.

    2017-12-01

    In semiarid regions, drought-induced seedling mortality is considered to be caused by failure in the tree hydraulic column. Understanding the mechanisms that cause hydraulic failure and death in seedlings is important, among other things, to diagnose where some tree species may fail to regenerate, triggering demographic imbalances in the forest that could result in climate-driven shifts of tree species. Ponderosa pine is a common lower tree line species in the western US. Seedlings of ponderosa pine are often subject to low soil water potentials, which require lower water potentials in the xylem and leaves to maintain the negative pressure gradient that drives water upward. The resilience of the hydraulic column to hydraulic tension is species dependent, but from greenhouse experiments, we have identified general tension thresholds beyond which loss of xylem conductivity becomes critical, and mortality in Ponderosa pine seedlings start to occur. We describe this hydraulic behavior of plants using a mechanistic soil-vegetation-atmosphere transfer model. Before we use this models to understand water-stress induced seedling mortality at the landscape scale, we perform a modeling analysis of the dynamics of soil moisture, transpiration, leaf water potential and loss of plant water conductivity using detailed data from our green house experiments. The analysis is done using a spatially distributed model that simulates water fluxes, energy exchanges and water potentials in the soil-vegetation-atmosphere continuum. Plant hydraulic and physiological parameters of this model were calibrated using Monte Carlo methods against information on soil moisture, soil hydraulic potential, transpiration, leaf water potential and percent loss of conductivity in the xylem. This analysis permits us to construct a full portrait of the parameter space for Ponderosa pine seedling and generate posterior predictive distributions of tree response to understand the sensitivity of transpiration

  10. Pressure Transient Model of Water-Hydraulic Pipelines with Cavitation

    Directory of Open Access Journals (Sweden)

    Dan Jiang

    2018-03-01

    Full Text Available Transient pressure investigation of water-hydraulic pipelines is a challenge in the fluid transmission field, since the flow continuity equation and momentum equation are partial differential, and the vaporous cavitation has high dynamics; the frictional force caused by fluid viscosity is especially uncertain. In this study, due to the different transient pressure dynamics in upstream and downstream pipelines, the finite difference method (FDM is adopted to handle pressure transients with and without cavitation, as well as steady friction and frequency-dependent unsteady friction. Different from the traditional method of characteristics (MOC, the FDM is advantageous in terms of the simple and convenient computation. Furthermore, the mechanism of cavitation growth and collapse are captured both upstream and downstream of the water-hydraulic pipeline, i.e., the cavitation start time, the end time, the duration, the maximum volume, and the corresponding time points. By referring to the experimental results of two previous works, the comparative simulation results of two computation methods are verified in experimental water-hydraulic pipelines, which indicates that the finite difference method shows better data consistency than the MOC.

  11. Numerical simulation of the two-phase flows in a hydraulic coupling by solving VOF model

    International Nuclear Information System (INIS)

    Luo, Y; Zuo, Z G; Liu, S H; Fan, H G; Zhuge, W L

    2013-01-01

    The flow in a partially filled hydraulic coupling is essentially a gas-liquid two-phase flow, in which the distribution of two phases has significant influence on its characteristics. The interfaces between the air and the liquid, and the circulating flows inside the hydraulic coupling can be simulated by solving the VOF two-phase model. In this paper, PISO algorithm and RNG k–ε turbulence model were employed to simulate the phase distribution and the flow field in a hydraulic coupling with 80% liquid fill. The results indicate that the flow forms a circulating movement on the torus section with decreasing speed ratio. In the pump impeller, the air phase mostly accumulates on the suction side of the blades, while liquid on the pressure side; in turbine runner, air locates in the middle of the flow passage. Flow separations appear near the blades and the enclosing boundaries of the hydraulic coupling

  12. Modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator

    International Nuclear Information System (INIS)

    Fan, YaJun; Mu, AnLe; Ma, Tao

    2016-01-01

    This paper presents the modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator. The hybrid turbine captures the offshore wind energy and tidal current energy simultaneously and stores the excess energy in hydraulic accumulator prior to electricity generation. Two hydraulic pumps installed respectively in wind and tidal turbine nacelles are used to transform the captured mechanical energy into hydraulic energy. To extract the maximal power from wind and tidal current, standard torque controls are achieved by regulating the displacements of the hydraulic pumps. To meet the output power demand, a Proportion Integration Differentiation (PID) controller is designed to distribute the hydraulic energy between the accumulator and the Pelton turbine. A simulation case study based on combining a 5 MW offshore wind turbine and a 1 MW tidal current turbine is undertaken. Case study demonstrates that the hybrid generation system not only captures all the available wind and tidal energy and also delivers the desired generator power precisely through the accumulator damping out all the power fluctuations from the wind and tidal speed disturbances. Energy and exergy analyses show that the energy efficiency can exceed 100% as the small input speeds are considered, and the exergy efficiency has the consistent change trends with demand power. Further more parametric sensitivity study on hydraulic accumulator shows that there is an inversely proportional relationship between accumulator and hydraulic equipments including the pump and nozzle in terms of dimensions. - Highlights: • A hybrid wind-tidal turbine is presented. • Hydraulic accumulator stores/releases the surplus energy. • Standard torque controls extract the maximal power from wind and tidal. • Generator outputs meet the electricity demand precisely. • Parametric sensitivity study on accumulator is implemented.

  13. Thermal hydraulic test of advanced fuel bundle with spectral shift rod (SSR) for BWR. Effect of thermal hydraulic parameters on steady state characteristics

    International Nuclear Information System (INIS)

    Kondo, Takao; Kitou, Kazuaki; Chaki, Masao; Ohga, Yukiharu; Makigami, Takeshi

    2011-01-01

    Japanese national project of next generation light water reactor (LWR) development started in 2008. Under this project, spectral shift rod (SSR) is being developed. SSR, which replaces conventional water rod (WR) of boiling water reactor (BWR) fuel bundle, was invented to enhance the BWR's merit, spectral shift effect for uranium saving. In SSR, water boils by neutron and gamma-ray direct heating and water level is formed as a boundary of the upper steam region and the lower water region. This SSR water level can be controlled by core flow rate, which amplifies the change of average core void fraction, resulting in the amplified spectral shift effect. This paper presents the steady state test results of the base geometry case in SSR thermal hydraulic test, which was conducted under the national project of next generation LWR. In the test, thermal hydraulic parameters, such as flow rate, pressure, inlet subcooling and heater rod power are changed to evaluate these effects on SSR water level and other SSR characteristics. In the test results, SSR water level rose as flow rate rose, which showed controllability of SSR water level by flow rate. The sensitivities of other thermal hydraulic parameters on SSR water level were also evaluated. The obtained data of parameter's sensitivities is various enough for the further analytical evaluation. The fluctuation of SSR water level was also measured to be small enough. As a result, it was confirmed that SSR's steady state performance was as planned and that SSR design concept is feasible. (author)

  14. Deep hydraulic tests in a large earth-slide rich in clay

    Science.gov (United States)

    Ronchetti, Francesco; Piccinini, Leonardo; Deiana, Manuela; Corsini, Alessandro

    2017-04-01

    Different hydraulic tests have been conducted and replicated in a large earth slide characterized by a landslide body that is rich in clay, has a mean thickness of 30 meters, and is located in the Northern Apennines, Italy. All the tests were performed to estimate the hydrogeological properties of the landslide and to design future mitigation measures. To define the geometry of the sliding mass, the stratigraphy in more than 15 boreholes was analyzed. The boreholes were subsequently equipped with inclinometers and open standpipe piezometers. According to the stratigraphy, the landslide body is characterized by the presence of gravel layers in a clay-rich matrix. This study compares the results from the different techniques applied to 2 boreholes, 5 open standpipe piezometers and 1 well. The number of tests performed for each test type were 31 slug tests (ST), 4 falling head tests (FT), 5 low-flow pumping tests (PT), 1 point dilution (PD) test, and 2 aquifer tests (AT). Moreover, the test data was evaluated with different solutions. The ST data was evaluated with the Hvorslev and KGS solutions; the FT data was evaluated with the AGI and Hvorslev solutions; the PT data was evaluated with the Muskat solutions; the AT data was evaluated with the Theis, Cooper-Jacob, Neuman, Moench and Tartakosky-Neuman solutions; and the PD test data was evaluated with the classical solution where Darcy velocity is calculated as a function of the rate of dilution. The results show that hydraulic conductivity (K), storage (S) and specific storage (Ss) vary in the horizontal plane and with the depth (K ranges between 1.0E-5 and 1.0E-8 m/s; S ranges between 4.0E-3 and 5E-5; and Ss ranges between 1.0E-3 and 3.0E-3 1/m). The horizontal and vertical variability is correlated with the lithologic heterogeneity highlighted by the borehole stratigraphy. Moreover, all the hydraulic tests conducted on the landslide body give highly consistent results. Comparison of results derived from different

  15. Model-based nonlinear control of hydraulic servo systems: Challenges, developments and perspectives

    Science.gov (United States)

    Yao, Jianyong

    2018-06-01

    Hydraulic servo system plays a significant role in industries, and usually acts as a core point in control and power transmission. Although linear theory-based control methods have been well established, advanced controller design methods for hydraulic servo system to achieve high performance is still an unending pursuit along with the development of modern industry. Essential nonlinearity is a unique feature and makes model-based nonlinear control more attractive, due to benefit from prior knowledge of the servo valve controlled hydraulic system. In this paper, a discussion for challenges in model-based nonlinear control, latest developments and brief perspectives of hydraulic servo systems are presented: Modelling uncertainty in hydraulic system is a major challenge, which includes parametric uncertainty and time-varying disturbance; some specific requirements also arise ad hoc difficulties such as nonlinear friction during low velocity tracking, severe disturbance, periodic disturbance, etc.; to handle various challenges, nonlinear solutions including parameter adaptation, nonlinear robust control, state and disturbance observation, backstepping design and so on, are proposed and integrated, theoretical analysis and lots of applications reveal their powerful capability to solve pertinent problems; and at the end, some perspectives and associated research topics (measurement noise, constraints, inner valve dynamics, input nonlinearity, etc.) in nonlinear hydraulic servo control are briefly explored and discussed.

  16. PILOT-SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN

    International Nuclear Information System (INIS)

    Adamson, D

    2007-01-01

    Savannah River National Laboratory (SRNL) performed pilot-scale hydraulic/chemical testing of spherical resorcinol formaldehyde (RF) ion exchange (IX) resin for the River Protection Project Hanford Tank Waste Treatment and Immobilization Plant (WTP) Project. The RF resin cycle testing was conducted in two pilot-scale IX columns, 1/4 and 1/2 scale. A total of twenty-three hydraulic/chemical cycles were successfully completed on the spherical RF resin. Seven of the cycles were completed in the 12-inch IX Column and sixteen cycles were completed in the 24-inch IX Column. Hydraulic testing showed that the permeability of the RF resin remained essentially constant, with no observed trend in the reduction of the permeability as the number of cycles increased. The permeability during the pilot-scale testing was 2 1/2 times better than the design requirements of the WTP full-scale system. The permeability of the resin bed was uniform with respect to changes in bed depth. Upflow Regeneration and Simulant Introduction in the IX columns revealed another RF resin benefit; negligible radial pressures to the column walls from the swelling of resin beads. In downflow of the Regeneration and Simulant Introduction steps, the resin bed particles pack tightly together and produce higher hydraulic pressures than that found in upflow. Also, upflow Simulant Introduction produced an ideal level bed for the twenty cycles completed using upflow Simulant Introduction. Conversely, the three cycles conducted using downflow Simulant Introduction produced an uneven bed surface with erosion around the thermowells. The RF resin bed in both columns showed no tendency to form fissures or pack more densely as the number of cycles increased. Particle size measurements of the RF resin showed no indication of particle size change (for a given chemical) with cycles and essentially no fines formation. Micrographs comparing representative bead samples before and after testing indicated no change in bead

  17. PILOT-SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D

    2007-01-09

    Savannah River National Laboratory (SRNL) performed pilot-scale hydraulic/chemical testing of spherical resorcinol formaldehyde (RF) ion exchange (IX) resin for the River Protection Project Hanford Tank Waste Treatment & Immobilization Plant (WTP) Project. The RF resin cycle testing was conducted in two pilot-scale IX columns, 1/4 and 1/2 scale. A total of twenty-three hydraulic/chemical cycles were successfully completed on the spherical RF resin. Seven of the cycles were completed in the 12-inch IX Column and sixteen cycles were completed in the 24-inch IX Column. Hydraulic testing showed that the permeability of the RF resin remained essentially constant, with no observed trend in the reduction of the permeability as the number of cycles increased. The permeability during the pilot-scale testing was 2 1/2 times better than the design requirements of the WTP full-scale system. The permeability of the resin bed was uniform with respect to changes in bed depth. Upflow Regeneration and Simulant Introduction in the IX columns revealed another RF resin benefit; negligible radial pressures to the column walls from the swelling of resin beads. In downflow of the Regeneration and Simulant Introduction steps, the resin bed particles pack tightly together and produce higher hydraulic pressures than that found in upflow. Also, upflow Simulant Introduction produced an ideal level bed for the twenty cycles completed using upflow Simulant Introduction. Conversely, the three cycles conducted using downflow Simulant Introduction produced an uneven bed surface with erosion around the thermowells. The RF resin bed in both columns showed no tendency to form fissures or pack more densely as the number of cycles increased. Particle size measurements of the RF resin showed no indication of particle size change (for a given chemical) with cycles and essentially no fines formation. Micrographs comparing representative bead samples before and after testing indicated no change in bead

  18. PILOT-SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D

    2006-11-08

    Savannah River National Laboratory (SRNL) performed pilot-scale hydraulic/chemical testing of spherical resorcinol formaldehyde (RF) ion exchange (IX) resin for the River Protection Project-Hanford Tank Waste Treatment & Immobilization Plant (WTP) Project. The RF resin cycle testing was conducted in two pilot-scale IX columns, 1/4 and 1/2 scale. A total of twenty-three hydraulic/chemical cycles were successfully completed on the spherical RF resin. Seven of the cycles were completed in the 12 inch IX Column and sixteen cycles were completed in the 24 inch IX Column. Hydraulic testing showed that the permeability of the RF resin remained essentially constant, with no observed trend in the reduction of the permeability as the number of cycles increased. The permeability during the pilot-scale testing was 2 1/2 times better than the design requirements of the WTP full-scale system. The permeability of the resin bed was uniform with respect to changes in bed depth. Upflow Regeneration and Simulant Introduction in the IX columns revealed another RF resin benefit; negligible radial pressures to the column walls from the swelling of resin beads. In downflow of the Regeneration and Simulant Introduction steps, the resin bed particles pack tightly together and produce higher hydraulic pressures than that found in upflow. Also, upflow Simulant Introduction produced an ideal level bed for the twenty cycles completed using upflow Simulant Introduction. Conversely, the three cycles conducted using downflow Simulant Introduction produced an uneven bed surface with erosion around the thermowells. The RF resin bed in both columns showed no tendency to form fissures or pack more densely as the number of cycles increased. Particle size measurements of the RF resin showed no indication of particle size change (for a given chemical) with cycles and essentially no fines formation. Micrographs comparing representative bead samples before and after testing indicated no change in bead

  19. HYDROLOGIC AND HYDRAULIC MODELLING INTEGRATED WITH GIS: A STUDY OF THE ACARAÚ RIVER BASIN – CE

    Directory of Open Access Journals (Sweden)

    Samuellson Lopes Cabral

    2014-01-01

    Full Text Available The paper presents a case study integrating hydrologic models, hydraulic models and a geographic information system (GIS to delineate flooded areas in the medium-sized Acaraú River Basin in Ceará State, Brazil. The computational tools used were HEC-HMS for hydrologic modelling, HEC-RAS for hydraulic modelling and HEC-GeoRAS for the GIS. The results showed that a substantial portion of the riverine populations of the cities of Sobral, Santana do Acaraú and Groairas were affected by floods. Overall, the flood model satisfactorily represents the affected areas and shows the locations with the greatest flooding.

  20. ANTHEM2000TM: Integration of the ANTHEM Thermal Hydraulic Model in the ROSETM Environment

    International Nuclear Information System (INIS)

    Boire, R.; Nguyen, M; Salim, G.

    1999-01-01

    ROSEN TM is an object oriented, visual programming environment used for many applications, including the development of power plant simulators. ROSE provides an integrated suite of tools for the creation, calibration, test, integration, configuration management and documentation of process, electrical and I and C models. CAE recently undertook an ambitious project to integrate its two phase thermal hydraulic model ANTHEM TM into the ROSE environment. ANTHEM is a non equilibrium, non-homogenous model based on the drift flux formalism. CAE has used the model in numerous two phase applications for nuclear and fossil power plant simulators. The integration of ANTHEM into ROSE brings the full power of visual based programming to two phase modeling applications. Features include graphical model building, calibration tools, a superior test environment and process visualisation. In addition the integration of ANTHEM into ROSE makes it possible to easily apply the fidelity of ANTHEM to BOP applications. This paper describes the implementation of the ANTHEM model within the ROSE environment and gives examples of its use. (author)

  1. Groundwater potentiality mapping using geoelectrical-based aquifer hydraulic parameters: A GIS-based multi-criteria decision analysis modeling approach

    Directory of Open Access Journals (Sweden)

    Kehinde Anthony Mogaji Hwee San Lim

    2017-01-01

    Full Text Available This study conducted a robust analysis on acquired 2D resistivity imaging data and borehole pumping test records to optimize groundwater potentiality mapping in Perak province, Malaysia using derived aquifer hydraulic properties. The transverse resistance (TR parameter was determined from the interpreted 2D resistivity imaging data by applying the Dar-Zarrouk parameter equation. Linear regression and GIS techniques were used to regress the estimated values for TR parameters with the aquifer transmissivity values extracted from the geospatially produced BPT records-based aquifer transmissivity map to develop the aquifer transmissivity parameter predictive (ATPP model. The reliability evaluated ATPP model using the Theil inequality coefficient measurement approach was used to establish geoelectrical-based hydraulic parameters (GHP modeling equations for the modeling of transmissivity (Tr, hydraulic conductivity (K, storativity (St, and hydraulic diffusivity (D properties. The applied GHP modeling equation results to the delineated aquifer media was used to produce aquifer potential conditioning factor maps for Tr, K, St, and D. The maps were modeled to develop an aquifer potential mapping index (APMI model via applying the multi-criteria decision analysis-analytic hierarchy process principle. The area groundwater reservoir productivity potential model map produced based on the processed APMI model estimates in the GIS environment was found to be 71% accurate. This study establishes a good alternative approach to determine aquifer hydraulic parameters even in areas where pumping test information is unavailable using a cost effective geophysical data. The produced map can be explored for hydrological decision making.

  2. PETER loop. Multifunctional test facility for thermal hydraulic investigations of PWR fuel elements

    International Nuclear Information System (INIS)

    Ganzmann, I.; Hille, D.; Staude, U.

    2009-01-01

    The reliable fuel element behavior during the complete fuel cycle is one of the fundamental prerequisites of a safe and efficient nuclear power plant operation. The fuel element behavior with respect to pressure drop and vibration impact cannot be simulated by means of fluid-structure interaction codes. Therefore it is necessary to perform tests using fuel element mock-ups (1:1). AREVA NP has constructed the test facility PETER (PWR fuel element tests in Erlangen) loop. The modular construction allows maximum flexibility for any type of fuel elements. Modern measuring instrumentation for flow, pressure and vibration characterization allows the analysis of cause and consequences of thermal hydraulic phenomena. PETER loop is the standard test facility for the qualification of dynamic fuel element behavior in flowing fluid and is used for failure mode analysis.

  3. Improvement of auditing technology of safety analysis through thermal-hydraulic separate effect tests

    Energy Technology Data Exchange (ETDEWEB)

    No, Hee Cheon; Park, Hyun Sik; Kim, Hyoung Tae; Moon, Young Min; Choi, Sung Won; Hwang, Do Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2000-03-15

    The direct-contact condensation hear transfer coefficients are experimentally obtained in the following conditions : pure steam/steam in the presence of noncondensible gas, horizontal/slightly inclined pipe, cocurrent/countercurrent stratified flow with water. The empirical correlation for liquid Nusselt number is developed in conditions of the slightly inclined pipe and the cocurrent stratified flow. The several models - the wall friction coefficient, the interfacial friction coefficient, the correlation of direct-contact condensation with noncondensible gases, and the correlation of wall film condensation - in the RELAP5/MOD3.2 code are modified, As results, RELAP5/MOD3.2 is improved. The present experimental data is used for evaluating the improved code. The standard RELAP5/MOD3.2 code is modified using the non-iterative modeling, which is a mechanistic model and does not require any interfacial information such as the interfacial temperature, The modified RELAP5/MOD3.2 code os used to simulate the horizontally stratified in-tube condensation experiment which represents the direct-contact condensation phenomena in a hot leg of a nuclear reactor. The modeling capabilities of the modified code as well as the standard code are assessed using several hot-leg condensation experiments. The modified code gives better prediction over local experimental data of liquid void fraction and interfacial heat transfer coefficient than the standard code. For the separate effect test of the thermal-hydraulic phenomena in the pressurizer, the scaling analysis is performed to obtain a similarity of the phenomena between the Korea Standard Nuclear Power Plant(KSNPP) and the present experimental facility. The diameters and lengths of the hot-leg, the surge line and the pressurizer are scaled down with the similitude of CCFL and velocity. The ratio of gas flow rate is 1/25. The experimental facility is composed of the air-water supply tank, the horizontal pipe, the surge line and the

  4. Modelling of Moving Coil Actuators in Fast Switching Valves Suitable for Digital Hydraulic Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Roemer, Daniel Beck; Bech, Michael Møller

    2015-01-01

    an estimation of the eddy currents generated in the actuator yoke upon current rise, as they may have significant influence on the coil current response. The analytical model facilitates fast simulation of the transient actuator response opposed to the transient electro-magnetic finite element model which......The efficiency of digital hydraulic machines is strongly dependent on the valve switching time. Recently, fast switching have been achieved by using a direct electromagnetic moving coil actuator as the force producing element in fast switching hydraulic valves suitable for digital hydraulic...... machines. Mathematical models of the valve switching, targeted for design optimisation of the moving coil actuator, are developed. A detailed analytical model is derived and presented and its accuracy is evaluated against transient electromagnetic finite element simulations. The model includes...

  5. Nupec thermal hydraulic test to evaluate post-DNB characteristics for PWR fuel assemblies (1. general test plan and results)

    International Nuclear Information System (INIS)

    Norio, Kono; Kenji, Murai; Kaichiro, Misima; Takayuki, Suemura; Yoshiei, Akiyama; Keiichi, Hori

    2001-01-01

    In the present thermal hydraulic design of Pressurized Water Reactor (PWR), a departure from nucleate boiling (DNB) under anticipated transient conditions is not allowed. However, it is recognized that the DNB dose not cause a fuel rod failure immediately, and a suitable reactor trip can prevent the core from severe damages. If the fuel rod temperature under the post-DNB conditions can be accurately evaluated, the potentially existing margin in the present design method will be quantitatively assessed. To establish the heat transfer evaluation method on post-DNB event for PWR thermal hydraulic design, Nuclear Power Engineering Corporation (NUPEC) started a program, NUPEC Thermal Hydraulic Test to Evaluate Post-DNB Characteristics for PWR Fuel Assemblies (NUPEC-TH-P), in 1995 (hereinafter the year means fiscal year) under the sponsorship of Ministry of Economy, Trade and industry (METI). This program is now under going until 2001. This paper is to show the overall plan and the status of NUPEC-TH-P. (authors)

  6. Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity

    Directory of Open Access Journals (Sweden)

    G. Baroni

    2010-02-01

    the modeling results which is, as expected, different for each model and each variable analysed. The variability of the simulated water content in the root zone and of the bottom flux for different soil hydraulic parameter sets is found to be often larger than the difference between modeling results of the two models using the same soil hydraulic parameter set. Also we found that a good agreement in simulated soil moisture patterns may occur even if evapotranspiration and percolation fluxes are significantly different. Therefore multiple output variables should be considered to test the performances of methods and models.

  7. Hydraulic tests for the Excavation Disturbed Zone in deep rock mass

    International Nuclear Information System (INIS)

    Matsuoka, Eiken

    1998-03-01

    Investigation for characterization of rock properties of the Excavation Disturbed Zone (EDZ) were carried out in 250 m level drift of KAMAISHI Mine. As a part of this investigation, hydraulic tests in the two different sections which were excavated by normal and smooth blasting method respectively, were performed in the vicinity of a drift wall and floor. The test results are as follows, 1) The distribution of pore water pressure in two sections was different. 2) In this investigation, hydraulic test was performed at the different depth in the horizontal and vertical down hole. The variation of measured permeability with depth from the drift wall and floor showed different character. 3) The measured permeability in horizontal hole has no change with depth from drift wall, but in vertical down hole, the measured permeability in nearest part from the floor indicated the higher value compared to the permeability in deeper part. 4) In horizontal holes in two sections there was no difference of the measured permeabilities dependent on the excavation method. The higher permeability was obtained in the vertical hole in smooth blasting section compared to normal blasting section. (author)

  8. Thermal-hydraulic modeling needs for passive reactors

    International Nuclear Information System (INIS)

    Kelly, J.M.

    1997-01-01

    The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered, but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken

  9. Thermal-hydraulic modeling needs for passive reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.M. [Nuclear Regulatory Commission, Washington, DC (United States)

    1997-07-01

    The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered, but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken.

  10. Aquifer test to determine hydraulic properties of the Elm aquifer near Aberdeen, South Dakota

    Science.gov (United States)

    Schaap, Bryan D.

    2000-01-01

    The Elm aquifer, which consists of sandy and gravelly glacial-outwash deposits, is present in several counties in northeastern South Dakota. An aquifer test was conducted northeast of Aberdeen during the fall of 1999 to determine the hydraulic properties of the Elm aquifer in that area. An improved understanding of the properties of the aquifer will be useful in the possible development of the aquifer as a water resource. Historical water-level data indicate that the saturated thickness of the Elm aquifer can change considerably over time. From September 1977 through November 1985, water levels at three wells completed in the Elm aquifer near the aquifer test site varied by 5.1 ft, 9.50 ft, and 11.1 ft. From June 1982 through October 1999, water levels at five wells completed in the Elm aquifer near the aquifer test site varied by 8.7 ft, 11.4 ft, 13.2 ft, 13.8 ft, and 19.7 ft. The water levels during the fall of 1999 were among the highest on record, so the aquifer test was affected by portions of the aquifer being saturated that might not be saturated during drier times. The aquifer test was conducted using five existing wells that had been installed prior to this study. Well A, the pumped well, has an operating irrigation pump and is centrally located among the wells. Wells B, C, D, and E are about 70 ft, 1,390 ft, 2,200 ft, and 3,100 ft, respectively, in different directions from Well A. Using vented pressure transducers and programmable data loggers, water-level data were collected at the five wells prior to, during, and after the pumping, which started on November 19, 1999, and continued a little over 72 hours. Based on available drilling logs, the Elm aquifer near the test area was assumed to be unconfined. The Neuman (1974) method theoretical response curves that most closely match the observed water-level changes at Wells A and B were calculated using software (AQTESOLV for Windows Version 2.13-Professional) developed by Glenn M. Duffield of Hydro

  11. Application of flow network models of SINDA/FLUINT{sup TM} to a nuclear power plant system thermal hydraulic code

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ji Bum [Institute for Advanced Engineering, Yongin (Korea, Republic of); Park, Jong Woon [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    In order to enhance the dynamic and interactive simulation capability of a system thermal hydraulic code for nuclear power plant, applicability of flow network models in SINDA/FLUINT{sup TM} has been tested by modeling feedwater system and coupling to DSNP which is one of a system thermal hydraulic simulation code for a pressurized heavy water reactor. The feedwater system is selected since it is one of the most important balance of plant systems with a potential to greatly affect the behavior of nuclear steam supply system. The flow network model of this feedwater system consists of condenser, condensate pumps, low and high pressure heaters, deaerator, feedwater pumps, and control valves. This complicated flow network is modeled and coupled to DSNP and it is tested for several normal and abnormal transient conditions such turbine load maneuvering, turbine trip, and loss of class IV power. The results show reasonable behavior of the coupled code and also gives a good dynamic and interactive simulation capabilities for the several mild transient conditions. It has been found that coupling system thermal hydraulic code with a flow network code is a proper way of upgrading simulation capability of DSNP to mature nuclear plant analyzer (NPA). 5 refs., 10 figs. (Author)

  12. Hydrochemical investigations in crystalline bedrock in relation to existing hydraulic conditions: Klipperaas test-site Smaaland, Southern Sweden

    International Nuclear Information System (INIS)

    Smellie, J.; Larsson, N.Aa.; Wikberg, P.; Puigdomenech, I.; Tullborg, E.L.

    1987-09-01

    This report of the Klipperaas test-site area has been structured to allow a full discussion of all the component procedures employed during the study, and to evaluate their respective use in such a site specific programme. For example, the suitability of the sampled groundwaters, in terms of representative compositions for the hydrogeological environment sampled, are thoroughly assessed before their use in the geochemical modelling procedures. The major hydrologic and chemical parameters considered for the Klipperaas area are similar to those previously described for the other sites. Respectively, these parameters referred to: 1) hydraulic conductivity and hydraulic head, 2) the pH and carbonate contents of the groundwaters, 3) the sodium, calcium and chloride contents of the groundwaters, 4) the groundwater redox-sensitive parameters, 5) the uranium geochemistry, and 6) the environmental isotopic characteristics of the groundwaters. For the Klipperaas site area additional borehole measurements using tubewave and radar techniques have been carried out, and the application of geochemical modelling to the groundwater data has been attempted. (With 40 refs.) (authors)

  13. Thermal-hydraulic Experiments for Advanced Physical Model Development

    International Nuclear Information System (INIS)

    Song, Chulhwa

    2012-04-01

    The improvement of prediction models is needed to enhance the safety analysis capability through experimental database of local phenomena. To improve the two-phase interfacial area transport model, the various experiments were carried out with local two-phase interfacial structure test facilities. 2 Χ 2 and 6 Χ 6 rod bundle test facilities were used for the experiment on the droplet behavior. The experiments on the droplet behavior inside a heated rod bundle geometry. The experiments used GIRLS and JICO and CFD analysis were carried out to comprehend the local condensation of steam jet, turbulent jet induced by condensation and the thermal mixing in a pool. In order to develop a model for key phenomena of newly adapted safety system, experiments for boiling inside a pool and condensation in horizontal channel have been performed. An experimental database of the CHF (Critical Heat Flux) and PDO (Post-dryout) was constructed. The mechanism of the heat transfer enhancement by surface modifications in nano-fluid was investigated in boiling mode and rapid quenching mode. The special measurement techniques were developed. They are Double-sensor optical void probe, Optic Rod, PIV technique and UBIM system

  14. Modeling coupled nitrogen and water use strategies of plant productivity through hydraulic traits

    Science.gov (United States)

    Mackay, D. S.; Savoy, P.; Pleban, J. R.; Tai, X.; Ewers, B. E.; Sperry, J.; Weinig, C.

    2016-12-01

    Changes in heat, nutrient, and drought stresses create novel environments that threaten the health of forests and viability of crop production. Here a trait-based conceptual model finds tradeoffs in maximum hydraulic conductance (Kmax), root to leaf area ratio (RLA) and vulnerability to cavitation (VC) based on the energy costs of acquiring water and nitrogen (N) to support gross primary production (GPP). The atmosphere supplies carbon to and demands water from plants via their stomata. The demand for water increases at higher temperatures due to increased vapor pressure deficits. The lost water is replenished by a passive wicking process that pulls water and N from the soil into roots and up water-filled xylem tubes. When water is in short supply the cost of getting it is high as measured by a decline in K and stomatal closure. Soil N dynamics also influence plant water use. When N is abundant, plants grow low VC fine roots with lower specific root length (m g-1), low Kmax, and maintain a relatively low RLA. In low N environments, N is costly and fine roots gain efficiency by building less robust (or higher VC) xylem with higher Kmax and higher RLA. What happens when the cost of acquiring water changes from high to low under low and high N costs? We incorporated the conceptual model into TREES, which couples whole plant hydraulics to carbon allocation, root-rhizosphere expansion/contraction and, also new for this study, a rhizosphere-root centric microbe-plant N dynamics. We used two experimental studies (drought, N) and two drought-prone fluxnet sites to test the conceptual model at individual plant and regional scales, respectively, and with frequent short versus infrequent long dry periods. When water was not limiting the hydraulic tradeoffs suppressed differences in GPP between the N use strategies. When water was in short supply, however, low RLA&VC plants dropped GPP early during drought because of low Kmax. Since these plants had low VC roots they also

  15. Crosshole investigations - details of the construction and operation of the hydraulic testing system

    International Nuclear Information System (INIS)

    Holmes, D.; Sehlstedt, M.

    1986-05-01

    The Crosshole Programme, part of the international Stripa Project is designed to evaluate the effectiveness of various remote-sensing techniques in characterising a rock mass around a repository. A multidisciplinary approach has been adopted in which various geophysical, mapping and hydrogeological methods are used to determine the location and characteristics of significant features in the rock. The Programme utilises six boreholes drilled in a fan array from the 360 metre level in the Stripa Mine, Sweden. The hydrogeological component of the work uses single and crosshole testing methods, including sinusoidal pressure testing, to locate fractures and characterise groundwater movement within them. Crosshole methods use packers to isolate portions of two boreholes which both intersect a significant feature in the rock mass. Hydraulic signals are generated in one isolated section and received in the other borehole. This report describes the design and operation of the computer-controlled system which automatically performs the hydrogeological tests. (author) 3 refs., 13 figs

  16. Crosshole investigations - Details of the construction and operation of the hydraulic testing system

    International Nuclear Information System (INIS)

    Holmes, D.; Sehlstedt, M.

    1986-05-01

    The Crosshole Programme, part of the international Stripa Project is designed to evaluate the effectiveness of various remote-sensing techniques in characterizing a rock mass around a repository. A multidisciplinary approach has been adopted in which various geophysical, mapping and hydrogeological methods are used to determine the location and characteristics of significant features in the rock. The Programme utilises six boreholes drilled in a fan array from the 360 metre level in the Stripa Mine, Sweden. The hydrogeological component of the work uses single and crosshole testing methods, including sinusoidal pressure testing, to locate fractures and characterize groundwater movement within them. Crosshole methods use packers to isolate portions of two boreholes which both intersect a significant feature in the rock mass. Hydraulic signals are generated in one isolated section and received in the other borehole. This report describes the design and operation of the computer-controlled system which automatically performs the hydrogeological tests. (authors)

  17. A mini slug test method for determination of a local hydraulic conductivity of an unconfined sandy aquifer

    DEFF Research Database (Denmark)

    Hinsby, Klaus; Bjerg, Poul Løgstrup; Andersen, Lars J.

    1992-01-01

    distributed measurements of a local hydraulic conductivity at a tracer test site at Vejen, Denmark. The mini slug test results calculated by a modified Dax slug test analysing method, applying the elastic storativity in the Dax equations instead of the specific yield, are in good accordance with the results...

  18. Development of a 3D Stream Network and Topography for Improved Large-Scale Hydraulic Modeling

    Science.gov (United States)

    Saksena, S.; Dey, S.; Merwade, V.

    2016-12-01

    Most digital elevation models (DEMs) used for hydraulic modeling do not include channel bed elevations. As a result, the DEMs are complimented with additional bathymetric data for accurate hydraulic simulations. Existing methods to acquire bathymetric information through field surveys or through conceptual models are limited to reach-scale applications. With an increasing focus on large scale hydraulic modeling of rivers, a framework to estimate and incorporate bathymetry for an entire stream network is needed. This study proposes an interpolation-based algorithm to estimate bathymetry for a stream network by modifying the reach-based empirical River Channel Morphology Model (RCMM). The effect of a 3D stream network that includes river bathymetry is then investigated by creating a 1D hydraulic model (HEC-RAS) and 2D hydrodynamic model (Integrated Channel and Pond Routing) for the Upper Wabash River Basin in Indiana, USA. Results show improved simulation of flood depths and storage in the floodplain. Similarly, the impact of river bathymetry incorporation is more significant in the 2D model as compared to the 1D model.

  19. A phenomenological model of thermal-hydraulics of convective boiling during the quenching of hot rod bundles

    International Nuclear Information System (INIS)

    Unal, C.; Nelson, R.

    1991-01-01

    After completion of the thermal-hydraulic model developed in a companion paper, the authors performed developmental assessment calculation of the model using steady-state and transient post-critical heat flux (CHF) data. This paper discusses the results of those calculations. The overall interfacial drag model predicted reasonable drag coefficients for both the nucleate boiling and the inverted annular flow (IAF) regimes. The predicted pressure drops agreed reasonably well with the measured data of two transient experiments, CCTF Run 14 and a Lehigh reflood test. The thermal-hydraulic model for post-CHF convective heat transfer predicted the rewetting velocities reasonably well for both experiments. The predicted average slope of the wall temperature traces for these tests showed reasonable agreement with the measured data, indicating that the transient-calculated precursory cooling rates agreed with measured data. The hot-patch model, in conjunction with the other thermal-hydraulic models, was capable of modeling the Winfrith post-CHF hot-patch experiments. The hot-patch model kept the wall temperatures at the specified levels in the hot-patch regions and did not allow any quench-front propagation from either the bottom or the top of the test section. The interfacial heat-transfer model tended to slightly underpredict the vapor temperatures. The maximum difference between calculated and measured vapor temperatures was 20%, with a 10% difference for the remainder of the runs considered. The wall-to-fluid heat transfer was predicted reasonably well, and the predicted wall temperatures were in reasonable agreement with measured data with a maximum relative error of less than 13%

  20. Site characterization and validation - equipment design and techniques used in single borehole hydraulic testing, simulated drift experiment and crosshole testing

    International Nuclear Information System (INIS)

    Holmes, D.C.; Sehlstedt, M.

    1991-10-01

    This report describes the equipment and techniques used to investigate the variation of hydrogeological parameters within a fractured crystalline rock mass. The testing program was performed during stage 3 of the site characterization and validation programme at the Stripa mine in Sweden. This programme used a multidisciplinary approach, combining geophysical, geological and hydrogeological methods, to determine how groundwater moved through the rock mass. The hydrogeological work package involved three components. Firstly, novel single borehole techniques (focused packer testing) were used to determine the distribution of hydraulic conductivity and head along individual boreholes. Secondly, water was abstracted from boreholes which were drilled to simulate a tunnel (simulated drift experiment). Locations and magnitudes of flows were measured together with pressure responses at various points in the SCV rock mass. Thirdly, small scale crosshole tests, involving detailed interference testing, were used to determine the variability of hydrogeological parameters within previously identified, significant flow zones. (au)

  1. Sensitivity analysis of hydraulic fracturing Using an extended finite element method for the PKN model

    NARCIS (Netherlands)

    Garikapati, Hasini; Verhoosel, Clemens V.; van Brummelen, Harald; Diez, Pedro; Papadrakakis, M.; Papadopoulos, V.; Stefanou, G.; Plevris, V.

    2016-01-01

    Hydraulic fracturing is a process that is surrounded by uncertainty, as available data on e.g. rock formations is scant and available models are still rudimentary. In this contribution sensitivity analysis is carried out as first step in studying the uncertainties in the model. This is done to

  2. Thermal-hydraulic feedback model to calculate the neutronic cross-section in PWR reactions

    International Nuclear Information System (INIS)

    Santiago, Daniela Maiolino Norberto

    2011-01-01

    In neutronic codes,it is important to have a thermal-hydraulic feedback module. This module calculates the thermal-hydraulic feedback of the fuel, that feeds the neutronic cross sections. In the neutronic co de developed at PEN / COPPE / UFRJ, the fuel temperature is obtained through an empirical model. This work presents a physical model to calculate this temperature. We used the finite volume technique of discretized the equation of temperature distribution, while calculation the moderator coefficient of heat transfer, was carried out using the ASME table, and using some of their routines to our program. The model allows one to calculate an average radial temperature per node, since the thermal-hydraulic feedback must follow the conditions imposed by the neutronic code. The results were compared with to the empirical model. Our results show that for the fuel elements near periphery, the empirical model overestimates the temperature in the fuel, as compared to our model, which may indicate that the physical model is more appropriate to calculate the thermal-hydraulic feedback temperatures. The proposed model was validated by the neutronic simulator developed in the PEN / COPPE / UFRJ for analysis of PWR reactors. (author)

  3. Survey of thermal-hydraulic models of commercial nuclear power plants

    International Nuclear Information System (INIS)

    Determan, J.C.; Hendrix, C.E.

    1992-12-01

    A survey of the thermal-hydraulic models of nuclear power plants has been performed to identify the NRC's current analytical capabilities for critical event response. The survey also supports ongoing research for accident management. The results of the survey are presented here. The PC database which records detailed data on each model is described

  4. Tests Performed on Hydraulic Turbines at Commissioning or after Capital Repairs. Part II. Tests Performed on a 6.5 MW Kaplan Turbine

    Directory of Open Access Journals (Sweden)

    Adrian Cuzmoş

    2015-07-01

    Full Text Available The paper presents the tests performed on a hydraulic turbine on commissioning, the devices, test methods and the results obtained from the respective tests, as well as the conclusions and recommendations resulted from these tests. This kind of tests can be performed for the verification of guarantees.

  5. Numerical and field tests of hydraulic transients at Piva power plant

    International Nuclear Information System (INIS)

    Giljen, Z

    2014-01-01

    In 2009, a sophisticated field investigation was undertaken and later, in 2011, numerical tests were completed, on all three turbine units at the Piva hydroelectric power plant. These tests were made in order to assist in making decisions about the necessary scope of the reconstruction and modernisation of the Piva hydroelectric power plant, a plant originally constructed in the mid-1970s. More specifically, the investigation included several hydraulic conditions including both the start-up and stopping of each unit, load rejection under governor control from different initial powers, as well as emergency shut-down. Numerical results were obtained using the method of characteristics in a representation that included the full flow system and the characteristics of each associated Francis turbine. The impact of load rejection and emergency shut-down on the penstock pressure and turbine speed changes are reported and numerical and experimental results are compared, showing close agreement

  6. Thermal - hydraulic analysis of pressurizer water reactors using the model of open lateral boundary

    International Nuclear Information System (INIS)

    Borges, R.C.

    1980-10-01

    A computational method is developed for thermal-hydraulic analysis, where the channel may be analysed by more than one independent steps of calculation. This is made possible by the incorporation of the model of open lateral boundary in the code COBRA-IIIP, which permits the determination of the subchannel of an open lattice PWR core in a multi-step calculation. The thermal-hydraulic code COBRA-IIIP, developed at the Massachusetts Institute of Technology, is used as the basic model for this study. (Author) [pt

  7. Model and simulation of the hydraulic turbine speed regulator of the Atucha I nuclear power plant

    International Nuclear Information System (INIS)

    Copparoni, G.; Etchepareborda, A.; Urrutia, G.

    1992-01-01

    The hydraulics turbines of Atucha I Nuclear Power Plant takes advantage of condenser cooling water level difference between the plant and the river to recover about 2,5 MW e. It also supplies emergency power until diesel generators start up. Speed regulation is needed due to the transients that during this process occur. The purpose is to minimize the diesels start up time, and to avoid overshoots on the internal grid frequency. The hydraulic turbine, its speed regulator and the electric system associated with this transient have been modeled. The models and some simulation results are presented in this work. (author)

  8. Hydraulic Fracturing and Production Optimization in Eagle Ford Shale Using Coupled Geomechanics and Fluid Flow Model

    Science.gov (United States)

    Suppachoknirun, Theerapat; Tutuncu, Azra N.

    2017-12-01

    With increasing production from shale gas and tight oil reservoirs, horizontal drilling and multistage hydraulic fracturing processes have become a routine procedure in unconventional field development efforts. Natural fractures play a critical role in hydraulic fracture growth, subsequently affecting stimulated reservoir volume and the production efficiency. Moreover, the existing fractures can also contribute to the pressure-dependent fluid leak-off during the operations. Hence, a reliable identification of the discrete fracture network covering the zone of interest prior to the hydraulic fracturing design needs to be incorporated into the hydraulic fracturing and reservoir simulations for realistic representation of the in situ reservoir conditions. In this research study, an integrated 3-D fracture and fluid flow model have been developed using a new approach to simulate the fluid flow and deliver reliable production forecasting in naturally fractured and hydraulically stimulated tight reservoirs. The model was created with three key modules. A complex 3-D discrete fracture network model introduces realistic natural fracture geometry with the associated fractured reservoir characteristics. A hydraulic fracturing model is created utilizing the discrete fracture network for simulation of the hydraulic fracture and flow in the complex discrete fracture network. Finally, a reservoir model with the production grid system is used allowing the user to efficiently perform the fluid flow simulation in tight formations with complex fracture networks. The complex discrete natural fracture model, the integrated discrete fracture model for the hydraulic fracturing, the fluid flow model, and the input dataset have been validated against microseismic fracture mapping and commingled production data obtained from a well pad with three horizontal production wells located in the Eagle Ford oil window in south Texas. Two other fracturing geometries were also evaluated to optimize

  9. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer.

    Science.gov (United States)

    Lens, Frederic; Sperry, John S; Christman, Mairgareth A; Choat, Brendan; Rabaey, David; Jansen, Steven

    2011-05-01

    • Vulnerability to cavitation and conductive efficiency depend on xylem anatomy. We tested a large range of structure-function hypotheses, some for the first time, within a single genus to minimize phylogenetic 'noise' and maximize detection of functionally relevant variation. • This integrative study combined in-depth anatomical observations using light, scanning and transmission electron microscopy of seven Acer taxa, and compared these observations with empirical measures of xylem hydraulics. • Our results reveal a 2 MPa range in species' mean cavitation pressure (MCP). MCP was strongly correlated with intervessel pit structure (membrane thickness and porosity, chamber depth), weakly correlated with pit number per vessel, and not related to pit area per vessel. At the tissue level, there was a strong correlation between MCP and mechanical strength parameters, and some of the first evidence is provided for the functional significance of vessel grouping and thickenings on inner vessel walls. In addition, a strong trade-off was observed between xylem-specific conductivity and MCP. Vessel length and intervessel wall characteristics were implicated in this safety-efficiency trade-off. • Cavitation resistance and hydraulic conductivity in Acer appear to be controlled by a very complex interaction between tissue, vessel network and pit characteristics. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  10. FY 1995 progress report on the ANS thermal-hydraulic test loop operation and results

    Energy Technology Data Exchange (ETDEWEB)

    Siman-Tov, M.; Felde, D.K.; Farquharson, G.; McDuffee, J.L.; McFee, M.T.; Ruggles, A.E.; Wendel, M.W.; Yoder, G.L.

    1997-07-01

    The Thermal-Hydraulic Test Loop (THTL) is an experimental facility constructed to support the development of the Advanced Neutron Source Reactor (ANSR) at Oak Ridge National Laboratory (ORNL). The THTL facility was designed and built to provide known thermal-hydraulic (T/H) conditions for a simulated full-length coolant subchannel of the ANS reactor core, thus facilitating experimental determination of FE and CHF thermal limits under expected ANSR T/H conditions. Special consideration was given to allow operation of the system in a stiff mode (constant flow) and in a soft mode (constant pressure drop) for proper implementation of true FE and DNB experiments. The facility is also designed to examine other T/H phenomena, including onset of incipient boiling (IB), single-phase heat transfer coefficients and friction factors, and two-phase heat transfer and pressure drop characteristics. Tests will also be conducted that are representative of decay heat levels at both high pressure and low pressure as well as other quasi-equilibrium conditions encountered during transient scenarios. A total of 22 FE tests and 2 CHF tests were performed during FY 1994 and FY 1995 with water flowing vertically upward. Comparison of these data as well as extensive data from other investigators led to a proposed modification to the Saha and Zuber correlation for onset of significant void (OSV), applied to FE prediction. The modification takes into account a demonstrated dependence of the OSV or FE thermal limits on subcooling levels, especially in the low subcooling regime.

  11. FY 1995 progress report on the ANS thermal-hydraulic test loop operation and results

    International Nuclear Information System (INIS)

    Siman-Tov, M.; Felde, D.K.; Farquharson, G.; McDuffee, J.L.; McFee, M.T.; Ruggles, A.E.; Wendel, M.W.; Yoder, G.L.

    1997-07-01

    The Thermal-Hydraulic Test Loop (THTL) is an experimental facility constructed to support the development of the Advanced Neutron Source Reactor (ANSR) at Oak Ridge National Laboratory (ORNL). The THTL facility was designed and built to provide known thermal-hydraulic (T/H) conditions for a simulated full-length coolant subchannel of the ANS reactor core, thus facilitating experimental determination of FE and CHF thermal limits under expected ANSR T/H conditions. Special consideration was given to allow operation of the system in a stiff mode (constant flow) and in a soft mode (constant pressure drop) for proper implementation of true FE and DNB experiments. The facility is also designed to examine other T/H phenomena, including onset of incipient boiling (IB), single-phase heat transfer coefficients and friction factors, and two-phase heat transfer and pressure drop characteristics. Tests will also be conducted that are representative of decay heat levels at both high pressure and low pressure as well as other quasi-equilibrium conditions encountered during transient scenarios. A total of 22 FE tests and 2 CHF tests were performed during FY 1994 and FY 1995 with water flowing vertically upward. Comparison of these data as well as extensive data from other investigators led to a proposed modification to the Saha and Zuber correlation for onset of significant void (OSV), applied to FE prediction. The modification takes into account a demonstrated dependence of the OSV or FE thermal limits on subcooling levels, especially in the low subcooling regime

  12. Hydraulic correction method (HCM) to enhance the efficiency of SRTM DEM in flood modeling

    Science.gov (United States)

    Chen, Huili; Liang, Qiuhua; Liu, Yong; Xie, Shuguang

    2018-04-01

    Digital Elevation Model (DEM) is one of the most important controlling factors determining the simulation accuracy of hydraulic models. However, the currently available global topographic data is confronted with limitations for application in 2-D hydraulic modeling, mainly due to the existence of vegetation bias, random errors and insufficient spatial resolution. A hydraulic correction method (HCM) for the SRTM DEM is proposed in this study to improve modeling accuracy. Firstly, we employ the global vegetation corrected DEM (i.e. Bare-Earth DEM), developed from the SRTM DEM to include both vegetation height and SRTM vegetation signal. Then, a newly released DEM, removing both vegetation bias and random errors (i.e. Multi-Error Removed DEM), is employed to overcome the limitation of height errors. Last, an approach to correct the Multi-Error Removed DEM is presented to account for the insufficiency of spatial resolution, ensuring flow connectivity of the river networks. The approach involves: (a) extracting river networks from the Multi-Error Removed DEM using an automated algorithm in ArcGIS; (b) correcting the location and layout of extracted streams with the aid of Google Earth platform and Remote Sensing imagery; and (c) removing the positive biases of the raised segment in the river networks based on bed slope to generate the hydraulically corrected DEM. The proposed HCM utilizes easily available data and tools to improve the flow connectivity of river networks without manual adjustment. To demonstrate the advantages of HCM, an extreme flood event in Huifa River Basin (China) is simulated on the original DEM, Bare-Earth DEM, Multi-Error removed DEM, and hydraulically corrected DEM using an integrated hydrologic-hydraulic model. A comparative analysis is subsequently performed to assess the simulation accuracy and performance of four different DEMs and favorable results have been obtained on the corrected DEM.

  13. Coupled thermal-hydraulic and neutronic simulations of Phenix control rod withdrawal tests with SIMMER-IV

    International Nuclear Information System (INIS)

    Kriventsev, Vladimir; Gabrielli, Fabrizio; Rineiski, Andrei

    2014-01-01

    The “end-of-life” tests performed in the Phenix reactor before its final shutdown in 2009, in particular the Control Rod (CR) withdrawal experiments provide an excellent opportunity for the validation and verification of the reactor physics computer codes and modeling approaches. SIMMER-IV, a modern three-dimensional reactor safety code, has been recently employed at Karlsruhe Institute of Technology (KIT) for simulating Phenix experiments in the framework of a benchmark exercise organized under the IAEA project. In this paper, we report and discuss main results obtained with SIMMER-IV at KIT. Particular attention is devoted to the coupling features of thermal-hydraulics and neutronics and their mutual influences. The reactor reactivity, power and neutron flux distributions calculated with SIMMER-IV are in good agreement both with experimental results and with calculations with advanced neutronics codes, such as ERANOS, while the CR reactivity worth is overestimated due to neglecting heterogeneity effects. Because of its multi-physics capabilities SIMMER also calculates the temperature distributions which are in a good agreement with the experimental test results. In this work we describe the improvements in SIMMER neutronics model by employing a correction that is based on the results of cell calculations performed with ERANOS. The study confirms that the 3D SIMMER-IV code can accurately predict major fast reactor neutronics and thermal hydraulic parameters, provided that a special treatment is employed for CR modeling. The results of calculations are analyzed in frames of SIMMER-IV validation and verification assessment. (author)

  14. A complete soil hydraulic model accounting for capillary and adsorptive water retention, capillary and film conductivity, and hysteresis

    NARCIS (Netherlands)

    Sakai, Masaru; Van Genuchten, Martinus Th|info:eu-repo/dai/nl/31481518X; Alazba, A. A.; Setiawan, Budi Indra; Minasny, Budiman

    2015-01-01

    A soil hydraulic model that considers capillary hysteretic and adsorptive water retention as well as capillary and film conductivity covering the complete soil moisture range is presented. The model was obtained by incorporating the capillary hysteresis model of Parker and Lenhard into the hydraulic

  15. A Generic Model Based Tracking Controller for Hydraulic Valve-Cylinder Drives

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Schmidt, Lasse; Pedersen, Henrik Clemmensen

    2016-01-01

    in the entire range of operation, rather than reducing stationary errors, and may be parameterized from the desired gain margin, as well as linear model parameters. The proposed control design approaches are evaluated in an experimentally validated, nonlinear simulation model of a hydraulic valve-cylinder drive......The control of hydraulic valve-cylinder drives is still an active subject of research, and various linear and particularly nonlinear approaches has been proposed, especially in the last two-three decades. In many cases the proposed controllers appear to produce excellent tracking ability due...... generally has failed to break through in industry. This paper discusses the dominant properties necessary to take into account when considering position tracking control of hydraulic valve-cylinder drives, and presents two generally applicable, generic control design approaches that combines non...

  16. High Resolution Modelling of the Congo River's Multi-Threaded Main Stem Hydraulics

    Science.gov (United States)

    Carr, A. B.; Trigg, M.; Tshimanga, R.; Neal, J. C.; Borman, D.; Smith, M. W.; Bola, G.; Kabuya, P.; Mushie, C. A.; Tschumbu, C. L.

    2017-12-01

    We present the results of a summer 2017 field campaign by members of the Congo River users Hydraulics and Morphology (CRuHM) project, and a subsequent reach-scale hydraulic modelling study on the Congo's main stem. Sonar bathymetry, ADCP transects, and water surface elevation data have been collected along the Congo's heavily multi-threaded middle reach, which exhibits complex in-channel hydraulic processes that are not well understood. To model the entire basin's hydrodynamics, these in-channel hydraulic processes must be parameterised since it is not computationally feasible to represent them explicitly. Furthermore, recent research suggests that relative to other large global rivers, in-channel flows on the Congo represent a relatively large proportion of total flow through the river-floodplain system. We therefore regard sufficient representation of in-channel hydraulic processes as a Congo River hydrodynamic research priority. To enable explicit representation of in-channel hydraulics, we develop a reach-scale (70 km), high resolution hydraulic model. Simulation of flow through individual channel threads provides new information on flow depths and velocities, and will be used to inform the parameterisation of a broader basin-scale hydrodynamic model. The basin-scale model will ultimately be used to investigate floodplain fluxes, flood wave attenuation, and the impact of future hydrological change scenarios on basin hydrodynamics. This presentation will focus on the methodology we use to develop a reach-scale bathymetric DEM. The bathymetry of only a small proportion of channel threads can realistically be captured, necessitating some estimation of the bathymetry of channels not surveyed. We explore different approaches to this bathymetry estimation, and the extent to which it influences hydraulic model predictions. The CRuHM project is a consortium comprising the Universities of Kinshasa, Rhodes, Dar es Salaam, Bristol, and Leeds, and is funded by Royal

  17. Numerical modeling of local scour around hydraulic structure in sandy beds by dynamic mesh method

    Science.gov (United States)

    Fan, Fei; Liang, Bingchen; Bai, Yuchuan; Zhu, Zhixia; Zhu, Yanjun

    2017-10-01

    Local scour, a non-negligible factor in hydraulic engineering, endangers the safety of hydraulic structures. In this work, a numerical model for simulating local scour was constructed, based on the open source code computational fluid dynamics model OpenFOAM. We consider both the bedload and suspended load sediment transport in the scour model and adopt the dynamic mesh method to simulate the evolution of the bed elevation. We use the finite area method to project data between the three-dimensional flow model and the two-dimensional (2D) scour model. We also improved the 2D sand slide method and added it to the scour model to correct the bed bathymetry when the bed slope angle exceeds the angle of repose. Moreover, to validate our scour model, we conducted and compared the results of three experiments with those of the developed model. The validation results show that our developed model can reliably simulate local scour.

  18. Thermal-hydraulic Experiments for Advanced Physical Model Development

    International Nuclear Information System (INIS)

    Song, Chul Hwa; Baek, W. P.; Yoon, B. J.

    2010-04-01

    The improvement of prediction models is needed to enhance the safety analysis capability through the fine measurements of local phenomena. To improve the two-phase interfacial area transport model, the various experiments were carried out used SUBO and DOBO. 2x2 and 6x6 rod bundle test facilities were used for the experiment on the droplet behavior. The experiments on the droplet behavior inside a heated rod bundle were focused on the break-up of droplets induced by a spacer grid in a rod bundle geometry. The experiments used GIRLS and JICO and CFD analysis were carried out to comprehend the local condensation of steam jet, turbulent jet induced by condensation and the thermal mixing in a pool. An experimental database of the CHF (Critical Heat Flux) and PDO (Post-dryout) had been constructed. The mechanism of the heat transfer enhancement by surface modifications in nano-fluid was investigated in boiling mode and rapid quenching mode. The special measurement techniques were developed. They are Double -sensor optical void probe, Optic Rod, PIV technique and UBIM system

  19. Optimised design and thermal-hydraulic analysis of the IFMIF/HFTM test section

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, S.; Heinzel, V.; Lang, K.H.; Moeslang, A.; Schleisiek, K.; Slobodtchouk, V.; Stratmanns, E.

    2003-10-01

    On the basis of previous concepts, analyses and experiments, the high flux test module (HFTM) for the International Fusion Materials Irradiation Facility (IFMIF) was further optimised. The work focused on the design and the thermal hydraulic analysis of the HFTM section containing the material specimens to be irradiated, the ''test section'', with the main objective to improve the concept with respect to the optimum use of the available irradiation volume and to the temperature of the specimens. Particular emphasis was laid on the application of design principles which assure stable and reproducible thermal conditions. The present work has confirmed the feasibility and suitability of the optimised design of the HFTM test section with chocolate plate like shaped rigs. In particular it has been shown that the envisaged irradiation temperatures can be reached with acceptable temperature differences inside the specimen stack. The latter can be achieved only by additional electrical heating of the axial ends of the capsules. Division of the heater in three sections with separate power supply and control units is necessary. Maintaining of the temperatures during beam-off periods likewise requires electrical heating. The required electrical heaters - mineral isolated wires - are commercially available. The potential of the CFD code STAR-CD for the thermal hydraulic analysis of complex systems like the HFTM was confirmed. Nevertheless, experimental confirmation is desirable. Suitable experiments are under preparation. To verify the assumptions made on the thermal conductivity of the contact faces and layers between the two shells of the rig, dedicated experiments are suggested. The present work must be complemented by a thermal mechanical analysis of the module. Most critical component in this respect seems to be the rig wall. Furthermore, it will be necessary to investigate the response of the HFTM to power transients, and to determine the requirements

  20. Optimised design and thermal-hydraulic analysis of the IFMIF/HFTM test section

    International Nuclear Information System (INIS)

    Gordeev, S.; Heinzel, V.; Lang, K.H.; Moeslang, A.; Schleisiek, K.; Slobodtchouk, V.; Stratmanns, E.

    2003-10-01

    On the basis of previous concepts, analyses and experiments, the high flux test module (HFTM) for the International Fusion Materials Irradiation Facility (IFMIF) was further optimised. The work focused on the design and the thermal hydraulic analysis of the HFTM section containing the material specimens to be irradiated, the ''test section'', with the main objective to improve the concept with respect to the optimum use of the available irradiation volume and to the temperature of the specimens. Particular emphasis was laid on the application of design principles which assure stable and reproducible thermal conditions. The present work has confirmed the feasibility and suitability of the optimised design of the HFTM test section with chocolate plate like shaped rigs. In particular it has been shown that the envisaged irradiation temperatures can be reached with acceptable temperature differences inside the specimen stack. The latter can be achieved only by additional electrical heating of the axial ends of the capsules. Division of the heater in three sections with separate power supply and control units is necessary. Maintaining of the temperatures during beam-off periods likewise requires electrical heating. The required electrical heaters - mineral isolated wires - are commercially available. The potential of the CFD code STAR-CD for the thermal hydraulic analysis of complex systems like the HFTM was confirmed. Nevertheless, experimental confirmation is desirable. Suitable experiments are under preparation. To verify the assumptions made on the thermal conductivity of the contact faces and layers between the two shells of the rig, dedicated experiments are suggested. The present work must be complemented by a thermal mechanical analysis of the module. Most critical component in this respect seems to be the rig wall. Furthermore, it will be necessary to investigate the response of the HFTM to power transients, and to determine the requirements on the electrical

  1. Rainfall-runoff and hydraulic modelling integration in the Blatina River

    International Nuclear Information System (INIS)

    Timko, J.

    2017-01-01

    This paper investigates the use and integration of rainfall-runoff modelling and hydrologic modelling of Blatina river catchment. Characteristics of physical-geographical sphere and its components were created within the model, enhancing the robustness of input data for the mathematical modelling of landscape runoff. Rainfall-runoff model HEC-HMS utilised in this research allows using a wide range of methodologies to determine the movement of water in the riverbed, water losses in the basin, hydraulic and hydrological methods of transformation and base-flow. Loss and transformation of water in the basin were modeled with curve numbers method SCS-CN. The simulated hydrograph was calibrated using rainfall-runoff event from June 2009. The same event was also modelled after the deforestation of the focus area. Using hydraulic model MIKE 21, a flood of focus rainfall-runoff area was simulated under both current real and changed land cover scenarios. (authors)

  2. The Study on the Measurement and Testing Technology of the HMCVT Hydraulic Pressure Based on the Data Fusion Technology

    International Nuclear Information System (INIS)

    Cheng, G W; Zhou, Z L; Men, Q Y; Deng, C N

    2006-01-01

    The pressure of the hydro-mechanical continuously variable transmission (HMCVT) is not only one of the major factors affecting the performance of the power train but also the major control parameter of the HMCVT control system. So how to improve the high accuracy hydraulic pressure parameter for the HMCVT control system will be one of the key technologies in system development. Based on the HMCVT test system for a certain tracked vehicle, the hydraulic pressure is studied, and multi-sensor data fusion technology based on Taylor polynomial regression equation is put forward, which turn out to improve the performance of the pressure sensor. Utilizing the above-mentioned method, the ability of antijamming of the hydraulic screen pressure system of the HMCVT is effectively improved, and the validity of the test data in the test system is improved too

  3. The Thermal-hydraulic Performance Test Report for the Non-instrumented Irradiation Test Rig of Annular Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Lee, Kang Hee; Shin, Chang Hwan

    2008-09-15

    This report presents the results of pressure drop test, vibration test and endurance test for the non-instrumented rig using the irradiation test in HANARO of the double cooled annular fuel which were designed and fabricated by KAERI. From the out-pile thermal hydraulic tests, corresponding to the pressure drop of 200 kPa is measured to be about 9.72 kg/sec. Vibration frequency for the non-instrumented rig ranges from 5.0 to 10.7 kg/s. RMS(Root Mean Square) displacement for non-instrumented rig is less than 11.73 m, and the maximum displacement is less than 54.87m. The flow rate for endurance test were 10.5 kg/s, which was 110% of 9.72 kg/s. And the endurance test was carried out for 3 days. The test results found not to the wear and satisfied to the limits of pressure drop, flow rate, vibration and wear in the non-instrumented rig. This test was performed at the FIVPET facility.

  4. Thermal modeling of a hydraulic hybrid vehicle transmission based on thermodynamic analysis

    International Nuclear Information System (INIS)

    Kwon, Hyukjoon; Sprengel, Michael; Ivantysynova, Monika

    2016-01-01

    Hybrid vehicles have become a popular alternative to conventional powertrain architectures by offering improved fuel efficiency along with a range of environmental benefits. Hydraulic Hybrid Vehicles (HHV) offer one approach to hybridization with many benefits over competing technologies. Among these benefits are lower component costs, more environmentally friendly construction materials, and the ability to recover a greater quantity of energy during regenerative braking which make HHVs partially well suited to urban environments. In order to further the knowledge base regarding HHVs, this paper explores the thermodynamic characteristics of such a system. A system model is detailed for both the hydraulic and thermal components of a closed circuit hydraulic hybrid transmission following the FTP-72 driving cycle. Among the new techniques proposed in this paper is a novel method for capturing rapid thermal transients. This paper concludes by comparing the results of this model with experimental data gathered on a Hardware-in-the-Loop (HIL) transmission dynamometer possessing the same architecture, components, and driving cycle used within the simulation model. This approach can be used for several applications such as thermal stability analysis of HHVs, optimal thermal management, and analysis of the system's thermodynamic efficiency. - Highlights: • Thermal modeling for HHVs is introduced. • A model for the hydraulic and thermal system is developed for HHVs. • A novel method for capturing rapid thermal transients is proposed. • The thermodynamic system diagram of a series HHV is predicted.

  5. Modeling of excavation induced coupled hydraulic-mechanical processes in claystone

    Energy Technology Data Exchange (ETDEWEB)

    Massmann, Jobst

    2009-07-01

    Concepts for the numerical modeling of excavation induced processes in claystone are investigated. The study has been motivated by the international discussion on the adequacy of claystone as a potential host rock for a final repository of radioactive waste. The processes, which could impact the safety of such a repository, are manifold and strongly interacting. Thus, a multiphysics approach is needed, regarding solid mechanics and fluid mechanics within a geological context. A coupled modeling concept is therefore indispensable. Based on observations and measurements at an argillaceous test site (the underground laboratory Tournemire, operated by the Institute of Radioprotection and Nuclear Safety, France) the modeling concept is developed. Two main processes constitute the basis of the applied model: deformation (linear elasticity considering damage) and fluid flow (unsaturated one-phase flow). Several coupling phenomena are considered: Terzaghi 's effective stress concept, mass conservation of the liquid in a deformable porous media, drying induced shrinkage, and a permeability which depends on deformation and damage. In addition, transversely isotropic material behavior is considered. The numerical simulations are done with the finite element code RockFlow, which is extended to include: an orthotropic non-linear shrinkage model, a continuum damage model, and an orthotropic permeability model. For these new methods the theory and a literature review are presented, followed by applications, which illustrate the capability to model excavation induced processes in principle. In a comprehensive case study, the modeling concept is used to simulate the response of the Tournemire argillite to excavation. The results are compared with observations and measurements of three different excavations (century old tunnel, two galleries excavated in 1996 and 2003). In summary, it can be concluded that the developed model concept provides a prediction of the excavation

  6. Modeling of excavation induced coupled hydraulic-mechanical processes in claystone

    Energy Technology Data Exchange (ETDEWEB)

    Massmann, Jobst

    2009-07-01

    Concepts for the numerical modeling of excavation induced processes in claystone are investigated. The study has been motivated by the international discussion on the adequacy of claystone as a potential host rock for a final repository of radioactive waste. The processes, which could impact the safety of such a repository, are manifold and strongly interacting. Thus, a multiphysics approach is needed, regarding solid mechanics and fluid mechanics within a geological context. A coupled modeling concept is therefore indispensable. Based on observations and measurements at an argillaceous test site (the underground laboratory Tournemire, operated by the Institute of Radioprotection and Nuclear Safety, France) the modeling concept is developed. Two main processes constitute the basis of the applied model: deformation (linear elasticity considering damage) and fluid flow (unsaturated one-phase flow). Several coupling phenomena are considered: Terzaghi 's effective stress concept, mass conservation of the liquid in a deformable porous media, drying induced shrinkage, and a permeability which depends on deformation and damage. In addition, transversely isotropic material behavior is considered. The numerical simulations are done with the finite element code RockFlow, which is extended to include: an orthotropic non-linear shrinkage model, a continuum damage model, and an orthotropic permeability model. For these new methods the theory and a literature review are presented, followed by applications, which illustrate the capability to model excavation induced processes in principle. In a comprehensive case study, the modeling concept is used to simulate the response of the Tournemire argillite to excavation. The results are compared with observations and measurements of three different excavations (century old tunnel, two galleries excavated in 1996 and 2003). In summary, it can be concluded that the developed model concept provides a prediction of the excavation induced

  7. Modeling of excavation induced coupled hydraulic-mechanical processes in claystone

    International Nuclear Information System (INIS)

    Massmann, Jobst

    2009-01-01

    Concepts for the numerical modeling of excavation induced processes in claystone are investigated. The study has been motivated by the international discussion on the adequacy of claystone as a potential host rock for a final repository of radioactive waste. The processes, which could impact the safety of such a repository, are manifold and strongly interacting. Thus, a multiphysics approach is needed, regarding solid mechanics and fluid mechanics within a geological context. A coupled modeling concept is therefore indispensable. Based on observations and measurements at an argillaceous test site (the underground laboratory Tournemire, operated by the Institute of Radioprotection and Nuclear Safety, France) the modeling concept is developed. Two main processes constitute the basis of the applied model: deformation (linear elasticity considering damage) and fluid flow (unsaturated one-phase flow). Several coupling phenomena are considered: Terzaghi 's effective stress concept, mass conservation of the liquid in a deformable porous media, drying induced shrinkage, and a permeability which depends on deformation and damage. In addition, transversely isotropic material behavior is considered. The numerical simulations are done with the finite element code RockFlow, which is extended to include: an orthotropic non-linear shrinkage model, a continuum damage model, and an orthotropic permeability model. For these new methods the theory and a literature review are presented, followed by applications, which illustrate the capability to model excavation induced processes in principle. In a comprehensive case study, the modeling concept is used to simulate the response of the Tournemire argillite to excavation. The results are compared with observations and measurements of three different excavations (century old tunnel, two galleries excavated in 1996 and 2003). In summary, it can be concluded that the developed model concept provides a prediction of the excavation induced

  8. A siphon well model for hydraulic performance optimization and bubble elimination

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Hui, E-mail: fuhui_iwhr@126.com; Ji, Ping; Xia, Qingfu; Guo, Xinlei

    2017-01-15

    Highlights: • A new method was proposed to improve the hydraulic performance and bubble elimination. • The diversion pier and diversion grid were used to stabilize the flow pattern. • Double multi-hole orifices were arranged after the weir. • The new method has a simpler construction and greater bubble elimination. - Abstract: In coastal nuclear power plants, bubble entrainment at the hydraulic jump in the siphon well causes foam pollution and salt fog erosion near the outfall of the siphon well. Thus, bubble elimination in siphon wells has been a topic of considerable interest. This study presents a new hydraulic performance optimization and bubble elimination method based on model experiments. Compared to previous methods, the new method has a simple structure, is effective in eliminating bubbles and is well adapted to different tide levels. The method mainly uses a diversion pier, diversion grid and multi-hole orifices to improve the hydraulic performance, thus reducing bubble entrainment at the hydraulic jump and shortening the bubble movement length in the siphon well. This study provides a valuable reference for the future siphon well design of coastal power plants.

  9. A siphon well model for hydraulic performance optimization and bubble elimination

    International Nuclear Information System (INIS)

    Fu, Hui; Ji, Ping; Xia, Qingfu; Guo, Xinlei

    2017-01-01

    Highlights: • A new method was proposed to improve the hydraulic performance and bubble elimination. • The diversion pier and diversion grid were used to stabilize the flow pattern. • Double multi-hole orifices were arranged after the weir. • The new method has a simpler construction and greater bubble elimination. - Abstract: In coastal nuclear power plants, bubble entrainment at the hydraulic jump in the siphon well causes foam pollution and salt fog erosion near the outfall of the siphon well. Thus, bubble elimination in siphon wells has been a topic of considerable interest. This study presents a new hydraulic performance optimization and bubble elimination method based on model experiments. Compared to previous methods, the new method has a simple structure, is effective in eliminating bubbles and is well adapted to different tide levels. The method mainly uses a diversion pier, diversion grid and multi-hole orifices to improve the hydraulic performance, thus reducing bubble entrainment at the hydraulic jump and shortening the bubble movement length in the siphon well. This study provides a valuable reference for the future siphon well design of coastal power plants.

  10. Comparison for the interfacial and wall friction models in thermal-hydraulic system analysis codes

    International Nuclear Information System (INIS)

    Hwang, Moon Kyu; Park, Jee Won; Chung, Bub Dong; Kim, Soo Hyung; Kim, See Dal

    2007-07-01

    The average equations employed in the current thermal hydraulic analysis codes need to be closed with the appropriate models and correlations to specify the interphase phenomena along with fluid/structure interactions. This includes both thermal and mechanical interactions. Among the closure laws, an interfacial and wall frictions, which are included in the momentum equations, not only affect pressure drops along the fluid flow, but also have great effects for the numerical stability of the codes. In this study, the interfacial and wall frictions are reviewed for the commonly applied thermal-hydraulic system analysis codes, i.e. RELAP5-3D, MARS-3D, TRAC-M, and CATHARE

  11. Characterisation of karst hydrogeology in Western Ireland using geophysical and hydraulic modelling techniques

    Directory of Open Access Journals (Sweden)

    T. McCormack

    2017-04-01

    New hydrological insights for the region: Results suggest two primary pathways of northwards groundwater flow in the catchment, a fault which discharges offshore, and a ∼2 m diameter karst conduit running underneath the catchment lowlands against the prevailing geological dip. This conduit, whose existence was suspected but never confirmed, links a large ephemeral lake to the coast where it discharges intertidally. Hydraulic modelling indicates that the conduit network is a complex mixture of constrictions with multiple inlets and outlets. Two ephemeral lakes are shown to be hydraulically discontinuous, either drained separately or linked by a low pressure channel.

  12. Computational Fluid Dynamics Modelling of Hydraulics and Sedimentation in Process Reactors During Aeration Tank Settling

    DEFF Research Database (Denmark)

    Dam Jensen, Mette; Ingildsen, Pernille; Rasmussen, Michael R.

    2005-01-01

    Aeration Tank Settling is a control method alowing settling in the process tank during high hydraulic load. The control method is patented. Aeration Tank Settling has been applied in several waste water treatment plant's using present design of the process tanks. Some process tank designs have...... shown to be more effective than others. To improve the design of less effective plants Computational Fluid Dynamics (CFD) modelling of hydraulics and sedimentation has been applied. The paper discusses the results at one particular plant experiencing problems with partly short-circuiting of the inlet...

  13. FY 1993 progress report on the ANS thermal-hydraulic test loop operation and results

    Energy Technology Data Exchange (ETDEWEB)

    Siman-Tov, M.; Felde, D.K.; Farquharson, G. [and others

    1994-07-01

    The Thermal-Hydraulic Test Loop (THTL) is an experimental facility constructed to support the development of the Advanced Neutron Source Reactor (ANSR) at Oak Ridge National Laboratory (ORNL). Highly subcooled heavy-water coolant flows vertically upward at a very high mass flux of almost 27 MG/m{sup 2}-s. In a parallel fuel plate configuration as in the ANSR, the flow is subject to a potential excursive static-flow instability that can very rapidly lead to flow starvation and departure from nucleate boiling (DNB) in the ``hot channel``. The current correlations and experimental data bases for flow excursion (FE) and critical heat flux (CHF) seldom evaluate the specific combination of ANSR operating parameters. The THTL facility was designed and built to provide known thermal-hydraulic (T/H) conditions for a simulated full-length coolant subchannel of the ANS reactor core, thus facilitating experimental determination of FE and CHF thermal limits under expected ANSR T/H conditions. A series of FE tests with water flowing vertically upward was completed over a nominal heat flux range of 6 to 17 MW/m{sup 2}, a mass flux range of 8 to 28 Mg/m{sup 2}-s, an exit pressure range of 1.4 to 2.1 MPa, and an inlet temperature range of 40 to 50 C. FE experiments were also conducted using as ``soft`` a system as possible to secure a true FE phenomena (actual secondary burnout). True DNB experiments under similar conditions were also conducted. To the author`s knowledge, no other FE data have been reported in the literature to date that dover such a combination of conditions of high mass flux, high heat flux, and moderately high pressure.

  14. FY 1993 progress report on the ANS thermal-hydraulic test loop operation and results

    International Nuclear Information System (INIS)

    Siman-Tov, M.; Felde, D.K.; Farquharson, G.

    1994-07-01

    The Thermal-Hydraulic Test Loop (THTL) is an experimental facility constructed to support the development of the Advanced Neutron Source Reactor (ANSR) at Oak Ridge National Laboratory (ORNL). Highly subcooled heavy-water coolant flows vertically upward at a very high mass flux of almost 27 MG/m 2 -s. In a parallel fuel plate configuration as in the ANSR, the flow is subject to a potential excursive static-flow instability that can very rapidly lead to flow starvation and departure from nucleate boiling (DNB) in the ''hot channel''. The current correlations and experimental data bases for flow excursion (FE) and critical heat flux (CHF) seldom evaluate the specific combination of ANSR operating parameters. The THTL facility was designed and built to provide known thermal-hydraulic (T/H) conditions for a simulated full-length coolant subchannel of the ANS reactor core, thus facilitating experimental determination of FE and CHF thermal limits under expected ANSR T/H conditions. A series of FE tests with water flowing vertically upward was completed over a nominal heat flux range of 6 to 17 MW/m 2 , a mass flux range of 8 to 28 Mg/m 2 -s, an exit pressure range of 1.4 to 2.1 MPa, and an inlet temperature range of 40 to 50 C. FE experiments were also conducted using as ''soft'' a system as possible to secure a true FE phenomena (actual secondary burnout). True DNB experiments under similar conditions were also conducted. To the author's knowledge, no other FE data have been reported in the literature to date that dover such a combination of conditions of high mass flux, high heat flux, and moderately high pressure

  15. Thermal-hydraulic analysis of LTS cables for the DEMO TF coil using simplified models

    Directory of Open Access Journals (Sweden)

    Lewandowska Monika

    2017-03-01

    Full Text Available The conceptual design activities for the DEMOnstration reactor (DEMO – the prototype fusion power plant – are conducted in Europe by the EUROfusion Consortium. In 2015, three design concepts of the DEMO toroidal field (TF coil were proposed by Swiss Plasma Center (EPFL-SPC, PSI Villigen, Italian National Agency for New Technologies (ENEA Frascati, and Atomic Energy and Alternative Energies Commission (CEA Cadarache. The proposed conductor designs were subjected to complete mechanical, electromagnetic, and thermal-hydraulic analyses. The present study is focused on the thermal-hydraulic analysis of the candidate conductor designs using simplified models. It includes (a hydraulic analysis, (b heat removal analysis, and (c assessment of the maximum temperature and the maximum pressure in each conductor during quench. The performed analysis, aimed at verification whether the proposed design concepts fulfil the established acceptance criteria, provides the information for further improvements of the coil and conductors design.

  16. Unsaturated hydraulic properties of xerophilous mosses: towards implementation of moss covered soils in hydrological models

    NARCIS (Netherlands)

    Voortman, B.R.; Bartholomeus, R.P.; Bodegom, van P.M.; Gooren, H.P.A.; Zee, van der S.E.A.T.M.; Witte, J.P.M.

    2014-01-01

    Evaporation from mosses and lichens can form a major component of the water balance, especially in ecosystems where mosses and lichens often grow abundantly, such as tundra, deserts and bogs. To facilitate moss representation in hydrological models, we parameterized the unsaturated hydraulic

  17. Comparison of Methods for Modeling a Hydraulic Loader Crane With Flexible Translational Links

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben O.; Nielsen, Brian K.

    2015-01-01

    not hold for translational links. Hence, special care has to be taken when including flexible translational links. In the current paper, different methods for modeling a hydraulic loader crane with a telescopic arm are investigated and compared using both the finite segment (FS) and AMs method...

  18. A Stochastic model for two-station hydraulics exhibiting transient impact

    DEFF Research Database (Denmark)

    Jacobsen, Judith L.; Madsen, Henrik; Harremoës, Poul

    1997-01-01

    The objective of the paper is to interpret data on water level variation in a river affected by overflow from a sewer system during rain. The simplest possible, hydraulic description is combined with stochastic methods for data analysis and model parameter estimation. This combination...

  19. Probabilistic flood inundation mapping at ungauged streams due to roughness coefficient uncertainty in hydraulic modelling

    Science.gov (United States)

    Papaioannou, George; Vasiliades, Lampros; Loukas, Athanasios; Aronica, Giuseppe T.

    2017-04-01

    Probabilistic flood inundation mapping is performed and analysed at the ungauged Xerias stream reach, Volos, Greece. The study evaluates the uncertainty introduced by the roughness coefficient values on hydraulic models in flood inundation modelling and mapping. The well-established one-dimensional (1-D) hydraulic model, HEC-RAS is selected and linked to Monte-Carlo simulations of hydraulic roughness. Terrestrial Laser Scanner data have been used to produce a high quality DEM for input data uncertainty minimisation and to improve determination accuracy on stream channel topography required by the hydraulic model. Initial Manning's n roughness coefficient values are based on pebble count field surveys and empirical formulas. Various theoretical probability distributions are fitted and evaluated on their accuracy to represent the estimated roughness values. Finally, Latin Hypercube Sampling has been used for generation of different sets of Manning roughness values and flood inundation probability maps have been created with the use of Monte Carlo simulations. Historical flood extent data, from an extreme historical flash flood event, are used for validation of the method. The calibration process is based on a binary wet-dry reasoning with the use of Median Absolute Percentage Error evaluation metric. The results show that the proposed procedure supports probabilistic flood hazard mapping at ungauged rivers and provides water resources managers with valuable information for planning and implementing flood risk mitigation strategies.

  20. Adaptive PID and Model Reference Adaptive Control Switch Controller for Nonlinear Hydraulic Actuator

    Directory of Open Access Journals (Sweden)

    Xin Zuo

    2017-01-01

    Full Text Available Nonlinear systems are modeled as piecewise linear systems at multiple operating points, where the operating points are modeled as switches between constituent linearized systems. In this paper, adaptive piecewise linear switch controller is proposed for improving the response time and tracking performance of the hydraulic actuator control system, which is essentially piecewise linear. The controller composed of PID and Model Reference Adaptive Control (MRAC adaptively chooses the proportion of these two components and makes the designed system have faster response time at the transient phase and better tracking performance, simultaneously. Then, their stability and tracking performance are analyzed and evaluated by the hydraulic actuator control system, the hydraulic actuator is controlled by the electrohydraulic system, and its model is built, which has piecewise linear characteristic. Then the controller results are compared between PID and MRAC and the switch controller designed in this paper is applied to the hydraulic actuator; it is obvious that adaptive switch controller has better effects both on response time and on tracking performance.

  1. Hydrologic and hydraulic modelling of the Nyl River floodplain Part 3 ...

    African Journals Online (AJOL)

    The ecological functioning of the Nyl River floodplain in the Limpopo Province of South Africa depends on water supplied by catchments which are experiencing continuing water resource development. Hydrological and hydraulic models have been produced to assist in future planning by simulating the effects of ...

  2. On a model simulating lack of hydraulic connection between a man ...

    Indian Academy of Sciences (India)

    The idea that a direct hydraulic connection between a man-made reservoir and the foci of postimpoundment earthquakes may not exist at all sites is eminently credible on geological grounds. Our aim is to provide a simple earth model and related theory for use during investigations of earthquakes near new man-made ...

  3. On a model simulating lack of hydraulic connection between a man ...

    Indian Academy of Sciences (India)

    The idea that a direct hydraulic connection between a man-made reservoir and the foci of post- impoundment earthquakes may not exist at all sites is eminently credible on geological grounds. Our aim is to provide a simple earth model and related theory for use during investigations of earthquakes near new man-made ...

  4. Downstream fish passage guide walls: A hydraulic scale model analysis

    Science.gov (United States)

    Mulligan, Kevin; Towler, Brett; Haro, Alexander J.; Ahlfeld, David P.

    2018-01-01

    Partial-depth guide walls are used to improve passage efficiency and reduce the delay of out-migrating anadromous fish species by guiding fish to a bypass route (i.e. weir, pipe, sluice gate) that circumvents the turbine intakes, where survival is usually lower. Evaluation and monitoring studies, however, indicate a high propensity for some fish to pass underneath, rather than along, the guide walls, compromising their effectiveness. In the present study we evaluated a range of guide wall structures to identify where/if the flow field shifts from sweeping (i.e. flow direction primarily along the wall and towards the bypass) to downward-dominant. Many migratory fish species, particularly juveniles, are known to drift with the flow and/or exhibit rheotactic behaviour during their migration. When these behaviours are present, fish follow the path of the flow field. Hence, maintaining a strong sweeping velocity in relation to the downward velocity along a guide wall is essential to successful fish guidance. Nine experiments were conducted to measure the three-dimensional velocity components upstream of a scale model guide wall set at a wide range of depths and angles to flow. Results demonstrated how each guide wall configuration affected the three-dimensional velocity components, and hence the downward and sweeping velocity, along the full length of the guide wall. In general, the velocities produced in the scale model were sweeping dominant near the water surface and either downward dominant or close to the transitional depth near the bottom of the guide wall. The primary exception to this shift from sweeping do downward flow was for the minimum guide wall angle tested in this study (15°). At 15° the flow pattern was fully sweeping dominant for every cross-section, indicating that a guide wall with a relatively small angle may be more likely to produce conditions favorable to efficient guidance. A critical next step is to evaluate the behaviour of migratory fish as

  5. An application of a hydraulic model simulator in flood risk assessment under changing climatic conditions

    Science.gov (United States)

    Doroszkiewicz, J. M.; Romanowicz, R. J.

    2016-12-01

    The standard procedure of climate change impact assessment on future hydrological extremes consists of a chain of consecutive actions, starting from the choice of GCM driven by an assumed CO2 scenario, through downscaling of climatic forcing to a catchment scale, estimation of hydrological extreme indices using hydrological modelling tools and subsequent derivation of flood risk maps with the help of a hydraulic model. Among many possible sources of uncertainty, the main are the uncertainties related to future climate scenarios, climate models, downscaling techniques and hydrological and hydraulic models. Unfortunately, we cannot directly assess the impact of these different sources of uncertainties on flood risk in future due to lack of observations of future climate realizations. The aim of this study is an assessment of a relative impact of different sources of uncertainty on the uncertainty of flood risk maps. Due to the complexity of the processes involved, an assessment of total uncertainty of maps of inundation probability might be very computer time consuming. As a way forward we present an application of a hydraulic model simulator based on a nonlinear transfer function model for the chosen locations along the river reach. The transfer function model parameters are estimated based on the simulations of the hydraulic model at each of the model cross-sections. The study shows that the application of a simulator substantially reduces the computer requirements related to the derivation of flood risk maps under future climatic conditions. Biala Tarnowska catchment, situated in southern Poland is used as a case study. Future discharges at the input to a hydraulic model are obtained using the HBV model and climate projections obtained from the EUROCORDEX project. The study describes a cascade of uncertainty related to different stages of the process of derivation of flood risk maps under changing climate conditions. In this context it takes into account the

  6. Hydraulic description of a flood event with optical remote sensors: a constructive constraint on modelling uncertainties

    Science.gov (United States)

    Battiston, Stéphanie; Allenbach, Bernard

    2010-05-01

    compartments; high resolution optical imagery allow the exhaustive inventory of breaches and overflows; turbidity variations and draw-off give information on stream directions. These facts are of primary interest to help in deriving a firm understanding of the flooding processes, but also comprise a powerful source for the necessary parameterization and/or calibration of hydraulic models. Thus the accuracy of flood extents derived from remote sensing data could, on the one hand, be valuable inputs to historical flood info-bases within overall risk-linked databases, and on the other hand, test the validity of hydrological modelling, while helping to lift equifinality uncertainties. These first investigations highlight that space imagery of events constitutes an unrivalled tool for flood disaster observation. This 2D record is complementary to all field measurements and the integration of "space derived flood products" is valuable for all stages of risk management. This potential of EO optical sensors for flood monitoring is also confirmed in a detailed analysis making a qualitative and quantitative evaluation of the results, confronting ten optical and radar remote sensing platforms with field observations.

  7. Hydraulic testing plan for the Bear Creek Valley Treatability Study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The Bear Creek Valley (BCV) Treatability Study is intended to provide site-specific data defining potential treatability technologies applicable to contaminated groundwater and surface water. The ultimate goal of this effort is to install a treatment system that will remove uranium, technetium, nitrate, and several metals from groundwater before it reaches Bear Creek. This project directly supports the BCV Feasibility Study. Part of the Treatability Study, Phase II Hydraulic Performance Testing, will produce hydraulic and treatment performance data required to design a long-term treatment system. This effort consists of the installation and testing of two groundwater collection systems: a trench in the vicinity of GW-835 and an angled pumping well adjacent to NT-1. Pumping tests and evaluations of gradients under ambient conditions will provide data for full-scale design of treatment systems. In addition to hydraulic performance, in situ treatment chemistry data will be obtained from monitoring wells installed in the reactive media section of the trench. The in situ treatment work is not part of this test plan. This Hydraulic Testing Plan describes the location and installation of the trench and NT-1 wells, the locations and purpose of the monitoring wells, and the procedures for the pumping tests of the trench and NT-1 wells

  8. COBRA/TRAC analysis of two-dimensional thermal-hydraulic behavior in SCTF reflood tests

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Ohnuki, Akira; Sobajima, Makoto; Adachi, Hiromichi

    1987-01-01

    The effects of radial power distribution and non-uniform upper plenum water accumulation on thermal-hydraulic behavior in the core were observed in the reflood tests with Slab Core Test Facility (SCTF). In order to examine the predictability of these two effects by a multi-dimensional analysis code, the COBRA/TRAC calculations were made. The calculated results indicated that the heat transfer enhancement in high power bundles above quench front was caused by high vapor flow rate in those bundles due to the radial power distribution. On the other hand, the heat transfer degradation in the peripheral bundles under the condition of non-uniform upper plenum water accumulation was caused by the lower flow rates of vapor and entrained liquid above the quench front in those bundles by the reason that vapor concentrated in the center bundles due to the cross flow induced by the horizontal pressure gradient in the core. The above-mentioned two-dimensional heat transfer behaviors calculated with the COBRA/TRAC code is similar to those observed in SCTF tests and therefore those calculations are useful to investigate the mechanism of the two-dimensional effects in SCTF reflood tests. (author)

  9. Determination of hydraulic conductivity coefficient in NSD site, Serpong, based on in-situ permeability test method

    International Nuclear Information System (INIS)

    Heri Syaeful; Sucipta

    2013-01-01

    In line with the increase of amount of radioactive waste, PTLR-BATAN plans to build the Near Surface Disposal (NSD) facility, especially in the preliminary stages is the Demo Plant of NSD facility. NSD is a low to medium level radioactive waste storage concept. Most important aspect in the site study for planning NSD is hydrogeological aspect especially related to the migration of radionuclides to the environment. In the study of radionuclide migration, a preliminary parameter which is required to know is the hydraulic conductivity in order to deliver the soil and rock hydraulic conductivity values in the site then conducted the in-situ permeability test. Based on the test, obtained soil and rock hydraulic conductivity values ranging from 10 -6 to 10 -2 cm/sec. The greatest hydraulic conductivity value located in the gravelly silt soil units which is in the site, constitute as aquifer, with depth ranging from 8 - 24 m, with hydraulic conductivity value reached 10 -2 cm/sec. (author)

  10. Fracture hydraulic conductivity in the Mexico City clayey aquitard: Field piezometer rising-head tests

    Science.gov (United States)

    Vargas, Carlos; Ortega-Guerrero, Adrián

    A regional lacustrine aquitard covers the main aquifer of the metropolitan area of Mexico City. The aquitard's hydraulic conductivity (K') is fundamental for evaluating the natural protection of the aquifer against a variety of contaminants present on the surface and its hydraulic response. This study analyzes the distribution and variation of K' in the plains of Chalco, Texcoco and Mexico City (three of the six former lakes that existed in the Basin of Mexico), on the basis of 225 field-permeability tests, in nests of existing piezometers located at depths of 2-85 m. Tests were interpreted using the Hvorslev method and some by the Bouwer-Rice method. Results indicate that the distribution of K' fits log-Gaussian regression models. Dominant frequencies for K' in the Chalco and Texcoco plains range between 1E-09 and 1E-08 m/s, with similar population means of 1.19E-09 and 1.7E-09 m/s, respectively, which are one to two orders of magnitude higher than the matrix conductivity. In the Mexico City Plain the population mean is near by one order of magnitude lower; K'=2.6E-10 m/s. The contrast between the measured K' and that of the matrix is attributed to the presence of fractures in the upper 25-40 m, which is consistent with the findings of previous studies on solute migration in the aquitard. Un imperméable régional d'origine lacustre recouvre le principal aquifère de la zone urbaine de la ville de Mexico. La conductivité hydraulique K' de cet imperméable est fondamentale pour évaluer la protection naturelle de l'aquifère, contre les différents contaminants présents en surface, et sa réponse hydraulique. Cette étude analyse et les variations de K' dans les plaines de Chalco, Texcoco et Mexico (trois des six anciens lacs qui existaient dans le Bassin de Mexico), sur la base de 225 essais de perméabilité sur le terrain, réalisés en grappes dans des piézomètres existants entre 2 et 85 m de profondeur. Les essais ont été interprétés avec la m

  11. A Grey Box Model for the Hydraulics in a Creek

    DEFF Research Database (Denmark)

    Jonsdottir, Harpa; Jacobsen, Judith L.; Madsen, Henrik

    1998-01-01

    The Saint-Venant equation of mass balance is used to derive a stochastics lumped model, describing the dynamics of a cross-sectional area in a river. The unknown parameters of the model are estimated by combining the physical equation with a set of data, a method known as grey box modelling...

  12. Global river flood hazard maps: hydraulic modelling methods and appropriate uses

    Science.gov (United States)

    Townend, Samuel; Smith, Helen; Molloy, James

    2014-05-01

    Flood hazard is not well understood or documented in many parts of the world. Consequently, the (re-)insurance sector now needs to better understand where the potential for considerable river flooding aligns with significant exposure. For example, international manufacturing companies are often attracted to countries with emerging economies, meaning that events such as the 2011 Thailand floods have resulted in many multinational businesses with assets in these regions incurring large, unexpected losses. This contribution addresses and critically evaluates the hydraulic methods employed to develop a consistent global scale set of river flood hazard maps, used to fill the knowledge gap outlined above. The basis of the modelling approach is an innovative, bespoke 1D/2D hydraulic model (RFlow) which has been used to model a global river network of over 5.3 million kilometres. Estimated flood peaks at each of these model nodes are determined using an empirically based rainfall-runoff approach linking design rainfall to design river flood magnitudes. The hydraulic model is used to determine extents and depths of floodplain inundation following river bank overflow. From this, deterministic flood hazard maps are calculated for several design return periods between 20-years and 1,500-years. Firstly, we will discuss the rationale behind the appropriate hydraulic modelling methods and inputs chosen to produce a consistent global scaled river flood hazard map. This will highlight how a model designed to work with global datasets can be more favourable for hydraulic modelling at the global scale and why using innovative techniques customised for broad scale use are preferable to modifying existing hydraulic models. Similarly, the advantages and disadvantages of both 1D and 2D modelling will be explored and balanced against the time, computer and human resources available, particularly when using a Digital Surface Model at 30m resolution. Finally, we will suggest some

  13. Dynamics Of Karstification: A Model Applied To Hydraulic Structures In Karst Terranes

    Science.gov (United States)

    Dreybrodt, W.

    1992-01-01

    To model the development of karst channels from primary fissures in limestone, a computer simulation of solutional widening of a fracture by calcite agressive water is proposed. The parameters defining the problem are the initial width a0 of the fracture, its length l, and the hydraulic gradient i driving water through it. The dissolution rates limestone determine how fast enlargement of the fractures proceeds. At a calcite concentration, c, far from equilibrium, the dissolution follows a first-order rate law, F(1)=α0(ceq-c); close to the equilibrium concentration, ceq, a slow fourth-order rate law F(4)=β0(ceq-c)4 is valid. The results show that, at the time of initiation, the water flow through the karst channels increases slowly in time until an abrupt increase occurs. After this moment of breakthrough, the channel enlarges rapidly and evenly over its entire length by first-order kinetics. Breakthrough times have been calculated for karstification under natural conditions for low hydraulic gradients as functions of a0, l, and i. Special attention is given to karstification in the vicinity of hydraulic structures where hydraulic gradients are high (>0.5) and channel lengths are below 200 m. We find that the breakthrough event will occur in less than 100 years, if: (i/l) > (5.3·10-8a0 -2.63PCO2 -0.77) where l is in m and a0 is in cm, (i/l) is given in m-1, and PCO2[atm] is the CO2 pressure of the water entering the fracture. After this event, the channels will widen to a width of about 1 cm within only 10 years, which can cause considerable leakage near or through hydraulic structures. Finally, critical values of the parameters i, l, a0, which give the conditions of failure in various types of hydraulic structures are discussed.

  14. A multiscale approach to determine hydraulic conductivity in thick claystone aquitards using field, laboratory, and numerical modeling methods

    Science.gov (United States)

    Smith, L. A.; Barbour, S. L.; Hendry, M. J.; Novakowski, K.; van der Kamp, G.

    2016-07-01

    Characterizing the hydraulic conductivity (K) of aquitards is difficult due to technical and logistical difficulties associated with field-based methods as well as the cost and challenge of collecting representative and competent core samples for laboratory analysis. The objective of this study was to produce a multiscale comparison of vertical and horizontal hydraulic conductivity (Kv and Kh, respectively) of a regionally extensive Cretaceous clay-rich aquitard in southern Saskatchewan. Ten vibrating wire pressure transducers were lowered into place at depths between 25 and 325 m, then the annular was space was filled with a cement-bentonite grout. The in situ Kh was estimated at the location of each transducer by simulating the early-time pore pressure measurements following setting of the grout using a 2-D axisymmetric, finite element, numerical model. Core samples were collected during drilling for conventional laboratory testing for Kv to compare with the transducer-determined in situ Kh. Results highlight the importance of scale and consideration of the presence of possible secondary features (e.g., fractures) in the aquitard. The proximity of the transducers to an active potash mine (˜1 km) where depressurization of an underlying aquifer resulted in drawdown through the aquitard provided a unique opportunity to model the current hydraulic head profile using both the Kh and Kv estimates. Results indicate that the transducer-determined Kh estimates would allow for the development of the current hydraulic head distribution, and that simulating the pore pressure recovery can be used to estimate moderately low in situ Kh (<10-11 m s-1).

  15. A Bayesian inverse modeling approach to estimate soil hydraulic properties of a toposequence in southeastern Amazonia.

    Science.gov (United States)

    Stucchi Boschi, Raquel; Qin, Mingming; Gimenez, Daniel; Cooper, Miguel

    2016-04-01

    Modeling is an important tool for better understanding and assessing land use impacts on landscape processes. A key point for environmental modeling is the knowledge of soil hydraulic properties. However, direct determination of soil hydraulic properties is difficult and costly, particularly in vast and remote regions such as one constituting the Amazon Biome. One way to overcome this problem is to extrapolate accurately estimated data to pedologically similar sites. The van Genuchten (VG) parametric equation is the most commonly used for modeling SWRC. The use of a Bayesian approach in combination with the Markov chain Monte Carlo to estimate the VG parameters has several advantages compared to the widely used global optimization techniques. The Bayesian approach provides posterior distributions of parameters that are independent from the initial values and allow for uncertainty analyses. The main objectives of this study were: i) to estimate hydraulic parameters from data of pasture and forest sites by the Bayesian inverse modeling approach; and ii) to investigate the extrapolation of the estimated VG parameters to a nearby toposequence with pedologically similar soils to those used for its estimate. The parameters were estimated from volumetric water content and tension observations obtained after rainfall events during a 207-day period from pasture and forest sites located in the southeastern Amazon region. These data were used to run HYDRUS-1D under a Differential Evolution Adaptive Metropolis (DREAM) scheme 10,000 times, and only the last 2,500 times were used to calculate the posterior distributions of each hydraulic parameter along with 95% confidence intervals (CI) of volumetric water content and tension time series. Then, the posterior distributions were used to generate hydraulic parameters for two nearby toposequences composed by six soil profiles, three are under forest and three are under pasture. The parameters of the nearby site were accepted when

  16. Uncertainty Evaluation of the SFR Subchannel Thermal-Hydraulic Modeling Using a Hot Channel Factors Analysis

    International Nuclear Information System (INIS)

    Choi, Sun Rock; Cho, Chung Ho; Kim, Sang Ji

    2011-01-01

    In an SFR core analysis, a hot channel factors (HCF) method is most commonly used to evaluate uncertainty. It was employed to the early design such as the CRBRP and IFR. In other ways, the improved thermal design procedure (ITDP) is able to calculate the overall uncertainty based on the Root Sum Square technique and sensitivity analyses of each design parameters. The Monte Carlo method (MCM) is also employed to estimate the uncertainties. In this method, all the input uncertainties are randomly sampled according to their probability density functions and the resulting distribution for the output quantity is analyzed. Since an uncertainty analysis is basically calculated from the temperature distribution in a subassembly, the core thermal-hydraulic modeling greatly affects the resulting uncertainty. At KAERI, the SLTHEN and MATRA-LMR codes have been utilized to analyze the SFR core thermal-hydraulics. The SLTHEN (steady-state LMR core thermal hydraulics analysis code based on the ENERGY model) code is a modified version of the SUPERENERGY2 code, which conducts a multi-assembly, steady state calculation based on a simplified ENERGY model. The detailed subchannel analysis code MATRA-LMR (Multichannel Analyzer for Steady-State and Transients in Rod Arrays for Liquid Metal Reactors), an LMR version of MATRA, was also developed specifically for the SFR core thermal-hydraulic analysis. This paper describes comparative studies for core thermal-hydraulic models. The subchannel analysis and a hot channel factors based uncertainty evaluation system is established to estimate the core thermofluidic uncertainties using the MATRA-LMR code and the results are compared to those of the SLTHEN code

  17. Assessment of RELAP5/Mod3 system thermal hydraulic code using power test data of a BWR6 reactor

    International Nuclear Information System (INIS)

    Lee, M.; Chiang, C.S.

    1997-01-01

    The power test data of Kuosheng Nuclear Power Plant were used to assess RELAP5/Mod3 system thermal hydraulic analysis code. The plant employed a General Electric designed Boiling Water Reactor (BWR6) with rated power of 2894 MWth. The purpose of the assessment is to verify the validity of the plant specific RELAP5/Mod3 input deck for transient analysis. The power tests considered in the assessment were 100% power generator load rejection, the closure of main steam isolation valves (MSIVs) at 96% power, and the trip of recirculation pumps at 68% power. The major parameters compared in the assessment were steam dome pressure, steam flow rate, core flow rate, and downcomer water level. The comparisons of the system responses predicted by the code and the power test data were reasonable which demonstrated the capabilities of the code and the validity of the input deck. However, it was also identified that the separator model of the code may cause energy imbalance problem in the transient calculation. In the assessment, the steam separators were modeled using time-dependent junctions. In the approach, a complete separation of steam and water was predicted. The system responses predicted by RELAP5/Mod3 code were also compared with those from the calculations of RETRAN code. When these results were compared with the power test data, the predictions of the RETRAN code were better than those of RELAP5/Mod3. In the simulation of 100% power generator load rejection, it was believed that the difference in the steam separator model of these two codes was one of the reason of the difference in the prediction of power test data. The predictions of RELAP/Mod3 code can also be improved by the incorporation of one-dimensional kinetic model. There was also some margin for the improvement of the input related to the feedwater control system. (author)

  18. Constitutive model development needs for reactor safety thermal-hydraulic codes

    International Nuclear Information System (INIS)

    Kelly, J.M.

    1998-01-01

    This paper discusses the constitutive model development needs for our current and future generation of reactor safety thermal-hydraulic analysis codes. Rather than provide a simple 'shopping list' of models to be improved, a detailed description is given of how a constitutive model works within the computational framework of a current reactor safety code employing the two-fluid model of two-phase flow. The intent is to promote a better understanding of both the types of experiments and the instrumentation needs that will be required in the USNRCs code improvement program. First, a summary is given of the modeling considerations that need to be taken into account when developing constitutive models for use in reactor safety thermal-hydraulic codes. Specifically, the two-phase flow model should be applicable to a control volume formulation employing computational volumes with dimensions on the order of meters but containing embedded structure with a dimension on the order of a centimeter. The closure relations are then required to be suitable when averaged over such large volumes containing millions or even tens of millions of discrete fluid particles (bubbles/drops). This implies a space and time averaging procedure that neglects the intermittency observed in slug and chum turbulent two-phase flows. Furthermore, the geometries encountered in reactor systems are complex, the constitutive relations should therefore be component specific (e.g., interfacial shear in a tube does not represent that in a rod bundle nor in the downcomer). When practicable, future modeling efforts should be directed towards resolving the spatial evolution of two-phase flow patterns through the introduction of interfacial area transport equations and by modeling the individual physical processes responsible for the creation or destruction of interfacial area. Then the example of the implementation and assessment of a subcooled boiling model in a two-fluid code is given. The primary parameter

  19. A coupled carbon and plant hydraulic model to predict ecosystem carbon and water flux responses to disturbance and environmental change

    Science.gov (United States)

    Mackay, D. S.; Ewers, B. E.; Roberts, D. E.; McDowell, N. G.; Pendall, E.; Frank, J. M.; Reed, D. E.; Massman, W. J.; Mitra, B.

    2011-12-01

    Changing climate drivers including temperature, humidity, precipitation, and carbon dioxide (CO2) concentrations directly control land surface exchanges of CO2 and water. In a profound way these responses are modulated by disturbances that are driven by or exacerbated by climate change. Predicting these changes is challenging given that the feedbacks between environmental controls, disturbances, and fluxes are complex. Flux data in areas of bark beetle outbreaks in the western U.S.A. show differential declines in carbon and water flux in response to the occlusion of xylem by associated fungi. For example, bark beetle infestation at the GLEES AmeriFlux site manifested in a decline in summer water use efficiency to 60% in the year after peak infestation compared to previous years, and no recovery of carbon uptake following a period of high vapor pressure deficit. This points to complex feedbacks between disturbance and differential ecosystem reaction and relaxation responses. Theory based on plant hydraulics and extending to include links to carbon storage and exhaustion has potential for explaining these dynamics with simple, yet rigorous models. In this spirit we developed a coupled model that combines an existing model of canopy water and carbon flow, TREES [e.g., Loranty et al., 2010], with the Sperry et al., [1998] plant hydraulic model. The new model simultaneously solves carbon uptake and losses along with plant hydraulics, and allows for testing specific hypotheses on feedbacks between xylem dysfunction, stomatal and non-stomatal controls on photosynthesis and carbon allocation, and autotrophic and heterotrophic respiration. These are constrained through gas exchange, root vulnerability to cavitation, sap flux, and eddy covariance data in a novel model complexity-testing framework. Our analysis focuses on an ecosystem gradient spanning sagebrush to subalpine forests. Our modeling results support hypotheses on feedbacks between hydraulic dysfunction and 1) non

  20. Thermal-Hydraulic Experiment To Test The Stable Operation Of A PIUS Type Reactor

    International Nuclear Information System (INIS)

    Irianto, Djoko; Kanji, T.; Kukita, Y.

    1996-01-01

    An advanced type of reaktor concept as the Process Inherent Ultimate Safety (PIUS) reactor was based on intrinsically passive safety considerations. The stable operation of a PIUS type reactor is based on the automation of circulation pump speed. An automatic circulation pump speed control system by using a measurement of the temperature distribution in the lower density lock is proposed the PIUS-type reactor. In principle this control system maintains the fluid temperature at the axial center of the lower density lock at average of the fluid temperatures below and above the lower density lock. This control system will prevent the poison water from penetrating into the core during normal operation. The effectiveness of this control system was successfully confirmed by a series of experiments using atmospheric pressure thermal-hydraulic test loop which simulated the PIUS principle. The experiments such as: start-up and power ramping tests for normal operation simulation and loss of feedwater test for an accident condition simulation, carried out in JAERI

  1. A versatile hydraulically operated respiratory servo system for ventilation and lung function testing.

    Science.gov (United States)

    Meyer, M; Slama, H

    1983-09-01

    A description is given of the design and performance of a microcomputer-controlled respiratory servo system that incorporates the characteristics of a mechanical ventilator and also allows the performance of a multitude of test procedures required for assessment of pulmonary function in paralyzed animals. The device consists of a hydraulically operated cylinder-piston assembly and solenoid valves that direct inspiratory and expiratory gas flow and also enable switching to different test gas sources. The system operates as a volume-flow-preset ventilator but may be switched to other operational cycling modes. Gas flow rates may be constant or variable. The system operates as an assister-controller and, combined with a gas analyzer, can function as a "demand" ventilator allowing for set-point control of end-tidal PCO2 and PO2. Complex breathing maneuvers for a variety of single- and multiple-breath lung function tests are automatically performed. Because of the flexibility in selection and timing of respiratory parameters, the system is particularly suitable for respiratory gas studies.

  2. Hydrological and hydraulic models for determination of flood-prone and flood inundation areas

    Science.gov (United States)

    Aksoy, Hafzullah; Sadan Ozgur Kirca, Veysel; Burgan, Halil Ibrahim; Kellecioglu, Dorukhan

    2016-05-01

    Geographic Information Systems (GIS) are widely used in most studies on water resources. Especially, when the topography and geomorphology of study area are considered, GIS can ease the work load. Detailed data should be used in this kind of studies. Because of, either the complication of the models or the requirement of highly detailed data, model outputs can be obtained fast only with a good optimization. The aim in this study, firstly, is to determine flood-prone areas in a watershed by using a hydrological model considering two wetness indexes; the topographical wetness index, and the SAGA (System for Automated Geoscientific Analyses) wetness index. The wetness indexes were obtained in the Quantum GIS (QGIS) software by using the Digital Elevation Model of the study area. Flood-prone areas are determined by considering the wetness index maps of the watershed. As the second stage of this study, a hydraulic model, HEC-RAS, was executed to determine flood inundation areas under different return period-flood events. River network cross-sections required for this study were derived from highly detailed digital elevation models by QGIS. Also river hydraulic parameters were used in the hydraulic model. Modelling technology used in this study is made of freely available open source softwares. Based on case studies performed on watersheds in Turkey, it is concluded that results of such studies can be used for taking precaution measures against life and monetary losses due to floods in urban areas particularly.

  3. Hydrological and hydraulic models for determination of flood-prone and flood inundation areas

    Directory of Open Access Journals (Sweden)

    H. Aksoy

    2016-05-01

    Full Text Available Geographic Information Systems (GIS are widely used in most studies on water resources. Especially, when the topography and geomorphology of study area are considered, GIS can ease the work load. Detailed data should be used in this kind of studies. Because of, either the complication of the models or the requirement of highly detailed data, model outputs can be obtained fast only with a good optimization. The aim in this study, firstly, is to determine flood-prone areas in a watershed by using a hydrological model considering two wetness indexes; the topographical wetness index, and the SAGA (System for Automated Geoscientific Analyses wetness index. The wetness indexes were obtained in the Quantum GIS (QGIS software by using the Digital Elevation Model of the study area. Flood-prone areas are determined by considering the wetness index maps of the watershed. As the second stage of this study, a hydraulic model, HEC-RAS, was executed to determine flood inundation areas under different return period-flood events. River network cross-sections required for this study were derived from highly detailed digital elevation models by QGIS. Also river hydraulic parameters were used in the hydraulic model. Modelling technology used in this study is made of freely available open source softwares. Based on case studies performed on watersheds in Turkey, it is concluded that results of such studies can be used for taking precaution measures against life and monetary losses due to floods in urban areas particularly.

  4. Hydraulic modeling of clay ceramic water filters for point-of-use water treatment.

    Science.gov (United States)

    Schweitzer, Ryan W; Cunningham, Jeffrey A; Mihelcic, James R

    2013-01-02

    The acceptability of ceramic filters for point-of-use water treatment depends not only on the quality of the filtered water, but also on the quantity of water the filters can produce. This paper presents two mathematical models for the hydraulic performance of ceramic water filters under typical usage. A model is developed for two common filter geometries: paraboloid- and frustum-shaped. Both models are calibrated and evaluated by comparison to experimental data. The hydraulic models are able to predict the following parameters as functions of time: water level in the filter (h), instantaneous volumetric flow rate of filtrate (Q), and cumulative volume of water produced (V). The models' utility is demonstrated by applying them to estimate how the volume of water produced depends on factors such as the filter shape and the frequency of filling. Both models predict that the volume of water produced can be increased by about 45% if users refill the filter three times per day versus only once per day. Also, the models predict that filter geometry affects the volume of water produced: for two filters with equal volume, equal wall thickness, and equal hydraulic conductivity, a filter that is tall and thin will produce as much as 25% more water than one which is shallow and wide. We suggest that the models can be used as tools to help optimize filter performance.

  5. Loglinear Rasch model tests

    NARCIS (Netherlands)

    Kelderman, Hendrikus

    1984-01-01

    Existing statistical tests for the fit of the Rasch model have been criticized, because they are only sensitive to specific violations of its assumptions. Contingency table methods using loglinear models have been used to test various psychometric models. In this paper, the assumptions of the Rasch

  6. Water transport through tall trees: A vertically-explicit, analytical model of xylem hydraulic conductance in stems.

    Science.gov (United States)

    Couvreur, Valentin; Ledder, Glenn; Manzoni, Stefano; Way, Danielle A; Muller, Erik B; Russo, Sabrina E

    2018-05-08

    Trees grow by vertically extending their stems, so accurate stem hydraulic models are fundamental to understanding the hydraulic challenges faced by tall trees. Using a literature survey, we showed that many tree species exhibit continuous vertical variation in hydraulic traits. To examine the effects of this variation on hydraulic function, we developed a spatially-explicit, analytical water transport model for stems. Our model allows Huber ratio, stem-saturated conductivity, pressure at 50% loss of conductivity, leaf area, and transpiration rate to vary continuously along the hydraulic path. Predictions from our model differ from a matric flux potential model parameterized with uniform traits. Analyses show that cavitation is a whole-stem emergent property resulting from nonlinear pressure-conductivity feedbacks that, with gravity, cause impaired water transport to accumulate along the path. Because of the compounding effects of vertical trait variation on hydraulic function, growing proportionally more sapwood and building tapered xylem with height, as well as reducing xylem vulnerability only at branch tips while maintaining transport capacity at the stem base, can compensate for these effects. We therefore conclude that the adaptive significance of vertical variation in stem hydraulic traits is to allow trees to grow tall and tolerate operating near their hydraulic limits. This article is protected by copyright. All rights reserved.

  7. Assessment of MARS for downcomer multi-dimensional thermal hydraulics during LBLOCA reflood using KAERI air-water direct vessel injection tests

    Energy Technology Data Exchange (ETDEWEB)

    Won-Jae, Lee; Kwi-Seok, Ha; Chul-Hwa, Song [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2001-07-01

    The MARS code has been assessed for the downcomer multi-dimensional thermal hydraulics during a large break loss-of-coolant accident (LBLOCA) reflood of Korean Next Generation Reactor (KNGR) that adopted an upper direct vessel injection (DVI) design. Direct DVI bypass and downcomer level sweep-out tests carried out at 1/50-scale air-water DVI test facility are simulated to examine the capability of MARS. Test conditions are selected such that they represent typical reflood conditions of KNGR, that is, DVI injection velocities of 1.0 {approx} 1.6 m/sec and air injection velocities of 18.0 {approx} 35.0 m/sec, for single and double DVI configurations. MARS calculation is first adjusted to the experimental DVI film distribution that largely affects air-water interaction in a scaled-down downcomer, then, the code is assessed for the selected test matrix. With some improvements of MARS thermal-hydraulic (T/H) models, it has been demonstrated that the MARS code is capable of simulating the direct DVI bypass and downcomer level sweep-out as well as the multi-dimensional thermal hydraulics in downcomer, where condensation effect is excluded. (authors)

  8. Finite mixture models for sensitivity analysis of thermal hydraulic codes for passive safety systems analysis

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, Francesco, E-mail: francesco.dimaio@polimi.it [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Nicola, Giancarlo [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Zio, Enrico [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Chair on System Science and Energetic Challenge Fondation EDF, Ecole Centrale Paris and Supelec, Paris (France); Yu, Yu [School of Nuclear Science and Engineering, North China Electric Power University, 102206 Beijing (China)

    2015-08-15

    Highlights: • Uncertainties of TH codes affect the system failure probability quantification. • We present Finite Mixture Models (FMMs) for sensitivity analysis of TH codes. • FMMs approximate the pdf of the output of a TH code with a limited number of simulations. • The approach is tested on a Passive Containment Cooling System of an AP1000 reactor. • The novel approach overcomes the results of a standard variance decomposition method. - Abstract: For safety analysis of Nuclear Power Plants (NPPs), Best Estimate (BE) Thermal Hydraulic (TH) codes are used to predict system response in normal and accidental conditions. The assessment of the uncertainties of TH codes is a critical issue for system failure probability quantification. In this paper, we consider passive safety systems of advanced NPPs and present a novel approach of Sensitivity Analysis (SA). The approach is based on Finite Mixture Models (FMMs) to approximate the probability density function (i.e., the uncertainty) of the output of the passive safety system TH code with a limited number of simulations. We propose a novel Sensitivity Analysis (SA) method for keeping the computational cost low: an Expectation Maximization (EM) algorithm is used to calculate the saliency of the TH code input variables for identifying those that most affect the system functional failure. The novel approach is compared with a standard variance decomposition method on a case study considering a Passive Containment Cooling System (PCCS) of an Advanced Pressurized reactor AP1000.

  9. Groundwater Flow and Thermal Modeling to Support a Preferred Conceptual Model for the Large Hydraulic Gradient North of Yucca Mountain

    International Nuclear Information System (INIS)

    McGraw, D.; Oberlander, P.

    2007-01-01

    The purpose of this study is to report on the results of a preliminary modeling framework to investigate the causes of the large hydraulic gradient north of Yucca Mountain. This study builds on the Saturated Zone Site-Scale Flow and Transport Model (referenced herein as the Site-scale model (Zyvoloski, 2004a)), which is a three-dimensional saturated zone model of the Yucca Mountain area. Groundwater flow was simulated under natural conditions. The model framework and grid design describe the geologic layering and the calibration parameters describe the hydrogeology. The Site-scale model is calibrated to hydraulic heads, fluid temperature, and groundwater flowpaths. One area of interest in the Site-scale model represents the large hydraulic gradient north of Yucca Mountain. Nearby water levels suggest over 200 meters of hydraulic head difference in less than 1,000 meters horizontal distance. Given the geologic conceptual models defined by various hydrogeologic reports (Faunt, 2000, 2001; Zyvoloski, 2004b), no definitive explanation has been found for the cause of the large hydraulic gradient. Luckey et al. (1996) presents several possible explanations for the large hydraulic gradient as provided below: The gradient is simply the result of flow through the upper volcanic confining unit, which is nearly 300 meters thick near the large gradient. The gradient represents a semi-perched system in which flow in the upper and lower aquifers is predominantly horizontal, whereas flow in the upper confining unit would be predominantly vertical. The gradient represents a drain down a buried fault from the volcanic aquifers to the lower Carbonate Aquifer. The gradient represents a spillway in which a fault marks the effective northern limit of the lower volcanic aquifer. The large gradient results from the presence at depth of the Eleana Formation, a part of the Paleozoic upper confining unit, which overlies the lower Carbonate Aquifer in much of the Death Valley region. The

  10. Evaluation of scale effects on hydraulic characteristics of fractured rock using fracture network model

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Uchida, Masahiro; Ishiguro, Katsuhiko; Umeki, Hiroyuki; Sakamoto, Kazuhiko; Ohnishi, Yuzo

    2001-01-01

    It is important to take into account scale effects on fracture geometry if the modeling scale is much larger than the in-situ observation scale. The scale effect on fracture trace length, which is the most scale dependent parameter, is investigated using fracture maps obtained at various scales in tunnel and dam sites. We found that the distribution of fracture trace length follows negative power law distribution in regardless of locations and rock types. The hydraulic characteristics of fractured rock is also investigated by numerical analysis of discrete fracture network (DFN) model where power law distribution of fracture radius is adopted. We found that as the exponent of power law distribution become larger, the hydraulic conductivity of DFN model increases and the travel time in DFN model decreases. (author)

  11. Installation of aerosol behavior model into multi-dimensional thermal hydraulic analysis code AQUA

    International Nuclear Information System (INIS)

    Kisohara, Naoyuki; Yamaguchi, Akira

    1997-12-01

    The safety analysis of FBR plant system for sodium leak phenomena needs to evaluate the deposition of the aerosol particle to the components in the plant, the chemical reaction of aerosol to humidity in the air and the effect of the combustion heat through aerosol to the structural component. For this purpose, ABC-INTG (Aerosol Behavior in Containment-INTeGrated Version) code has been developed and used until now. This code calculates aerosol behavior in the gas area of uniform temperature and pressure by 1 cell-model. Later, however, more detailed calculation of aerosol behavior requires the installation of aerosol model into multi-cell thermal hydraulic analysis code AQUA. AQUA can calculate the carrier gas flow, temperature and the distribution of the aerosol spatial concentration. On the other hand, ABC-INTG can calculate the generation, deposition to the wall and flower, agglomeration of aerosol particle and figure out the distribution of the aerosol particle size. Thus, the combination of these two codes enables to deal with aerosol model coupling the distribution of the aerosol spatial concentration and that of the aerosol particle size. This report describes aerosol behavior model, how to install the aerosol model to AQUA and new subroutine equipped to the code. Furthermore, the test calculations of the simple structural model were executed by this code, appropriate results were obtained. Thus, this code has prospect to predict aerosol behavior by the introduction of coupling analysis with multi-dimensional gas thermo-dynamics for sodium combustion evaluation. (J.P.N.)

  12. TRSM-a thermal-hydraulic real-time simulation model for PWR

    International Nuclear Information System (INIS)

    Zhou Weichang

    1997-01-01

    TRSM (a Thermal-hydraulic Real-time Simulation Model) has been developed for PWR real-time simulation and best-estimate prediction of normal operating and abnormal accident conditions. It is a non-equilibrium two phase flow thermal-hydraulic model based on five basic conservation equations. A drift flux model is used to account for the unequal velocities of liquid and gaseous mixture, with or without the presence of the noncondensibles. Critical flow models are applied for break flow and valve flow calculations. A 5-regime two phase heat convection model is applied for clad-to-coolant as well as fluid-to-tubing heat transfer. A rigorous reactor coolant pump model is used to calculate the pressure drop and rise for the suction and discharge ends with complete pump characteristics curves included. The TRSM model has been adapted in the full-scale training simulator of Qinshan Nuclear Power Plant 300 MW unit to simulate the thermal-hydraulic performance of the NSSS. The simulation results of a cold leg LOCA and a steam generator tube rupture (SGTR) accident are presented

  13. The time-dependent 3D discrete ordinates code TORT-TD with thermal-hydraulic feedback by ATHLET models

    International Nuclear Information System (INIS)

    Seubert, A.; Velkov, K.; Langenbuch, S.

    2008-01-01

    This paper describes the time-dependent 3D discrete ordinates transport code TORT-TD. Thermal-hydraulic feedback is considered by coupling TORT-TD with the thermal-hydraulics system code ATHLET. The coupled code TORT-TD/ATHLET allows 3D pin-by-pin analyses of transients in few energy groups and anisotropic scattering by solving the time-dependent transport equation using the unconditionally stable implicit method. The nuclear cross sections are interpolated between pre-calculated table values of fuel temperature, moderator density and boron concentration. For verification of the implementation, selected test cases have been calculated by TORT-TD/ATHLET. They include a control rod ejection transient in a small PWR fuel assembly arrangement and a local boron concentration change in a single PWR fuel assembly. In the latter, special attention has been paid to study the influence of the thermal-hydraulic feedback modelling in ATHLET. The results obtained for a control rod ejection accident in a PWR quarter core demonstrate the applicability of TORT-TD/ATHLET. (authors)

  14. Urban micro-scale flood risk estimation with parsimonious hydraulic modelling and census data

    Directory of Open Access Journals (Sweden)

    C. Arrighi

    2013-05-01

    Full Text Available The adoption of 2007/60/EC Directive requires European countries to implement flood hazard and flood risk maps by the end of 2013. Flood risk is the product of flood hazard, vulnerability and exposure, all three to be estimated with comparable level of accuracy. The route to flood risk assessment is consequently much more than hydraulic modelling of inundation, that is hazard mapping. While hazard maps have already been implemented in many countries, quantitative damage and risk maps are still at a preliminary level. A parsimonious quasi-2-D hydraulic model is here adopted, having many advantages in terms of easy set-up. It is here evaluated as being accurate in flood depth estimation in urban areas with a high-resolution and up-to-date Digital Surface Model (DSM. The accuracy, estimated by comparison with marble-plate records of a historic flood in the city of Florence, is characterized in the downtown's most flooded area by a bias of a very few centimetres and a determination coefficient of 0.73. The average risk is found to be about 14 € m−2 yr−1, corresponding to about 8.3% of residents' income. The spatial distribution of estimated risk highlights a complex interaction between the flood pattern and the building characteristics. As a final example application, the estimated risk values have been used to compare different retrofitting measures. Proceeding through the risk estimation steps, a new micro-scale potential damage assessment method is proposed. This is based on the georeferenced census system as the optimal compromise between spatial detail and open availability of socio-economic data. The results of flood risk assessment at the census section scale resolve most of the risk spatial variability, and they can be easily aggregated to whatever upper scale is needed given that they are geographically defined as contiguous polygons. Damage is calculated through stage–damage curves, starting from census data on building type and

  15. Updated of the events tree of total loss of power at the site, SBO, taking into account the results of stress tests and methodological updates, convolution, and hydraulic power recovery from model RCPs

    International Nuclear Information System (INIS)

    Lopez Lorenzo, M. A.; Perez Martin, F.

    2013-01-01

    In this paper, is described a tree of events to an accident loss total power at the site (SBO) considering, first the results of stress tests arising from the Fukushima accident and moreover, various methodological updates related to this initiating event.

  16. Thermal-hydraulic and characteristic models for packed debris beds

    International Nuclear Information System (INIS)

    Mueller, G.E.; Sozer, A.

    1986-12-01

    APRIL is a mechanistic core-wide meltdown and debris relocation computer code for Boiling Water Reactor (BWR) severe accident analyses. The capabilities of the code continue to be increased by the improvement of existing models. This report contains information on theory and models for degraded core packed debris beds. The models, when incorporated into APRIL, will provide new and improved capabilities in predicting BWR debris bed coolability characteristics. These models will allow for a more mechanistic treatment in calculating temperatures in the fluid and solid phases in the debris bed, in determining debris bed dryout, debris bed quenching from either top-flooding or bottom-flooding, single and two-phase pressure drops across the debris bed, debris bed porosity, and in finding the minimum fluidization mass velocity. The inclusion of these models in a debris bed computer module will permit a more accurate prediction of the coolability characteristics of the debris bed and therefore reduce some of the uncertainties in assessing the severe accident characteristics for BWR application. Some of the debris bed theoretical models have been used to develop a FORTRAN 77 subroutine module called DEBRIS. DEBRIS is a driver program that calls other subroutines to analyze the thermal characteristics of a packed debris bed. Fortran 77 listings of each subroutine are provided in the appendix

  17. Application of Fuzzy Clustering in Modeling of a Water Hydraulics System

    DEFF Research Database (Denmark)

    Zhou, Jianjun; Kroszynski, Uri

    2000-01-01

    This article presents a case study of applying fuzzy modeling techniques for a water hydraulics system. The obtained model is intended to provide a basis for model-based control of the system. Fuzzy clustering is used for classifying measured input-output data points into partitions. The fuzzy...... model is extracted from the obtained partitions. The identified model has been evaluated by comparing measurements with simulation results. The evaluation shows that the identified model is capable of describing the system dynamics over a reasonably wide frequency range....

  18. Development of a quality management system for borehole investigations. (1) Quality assurance and quality control methodology for hydraulic packer testing

    International Nuclear Information System (INIS)

    Takeuchi, Shinji; Kunimaru, Takanori; Ota, Kunio; Frieg, Bernd

    2011-01-01

    A quality assurance and quality control (QA/QC) system for the hydraulic packer tests has been established based on the surface-based investigations at JAEA's underground research laboratories in Mizunami and Horonobe. The established QA/QC system covers field investigations (data acquisition) and data analysis. For the field investigations, the adopted procedure is selection of a test section based on a detail fluid logging and checking with tally list, followed by inspection of test tools such as pressure transducers and shut-in valves, etc., test method selection using a 'sequential hydraulic test' for deciding appropriate method, and finally data quality confirmation by pressure changes and derivatives on a log-log plots during testing. Test event logs should also be described during testing for traceability. For the test data analysis, a quick analysis for rough estimation of hydraulic parameters, and a detailed analysis using type curve and/or numerical analyses are conducted stepwise. The established QA/QC system has been applied to the recent borehole investigations and its efficiency has been confirmed. (author)

  19. Combining multi-objective optimization and bayesian model averaging to calibrate forecast ensembles of soil hydraulic models

    Energy Technology Data Exchange (ETDEWEB)

    Vrugt, Jasper A [Los Alamos National Laboratory; Wohling, Thomas [NON LANL

    2008-01-01

    Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multi-objective optimization and Bayesian Model Averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multi-objective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM, and used to generate four different model ensembles. These ensembles are post-processed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are: (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multi-objective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models.

  20. Deformation Behavior between Hydraulic and Natural Fractures Using Fully Coupled Hydromechanical Model with XFEM

    Directory of Open Access Journals (Sweden)

    Fei Liu

    2017-01-01

    Full Text Available There has been a growing consensus that preexisting natural fractures play an important role during stimulation. A novel fully coupled hydromechanical model using extended finite element method is proposed. This directly coupled scheme avoids the cumbersome process during calculating the fluid pressure in complicated fracture networks and translating into an equivalent nodal force. Numerical examples are presented to simulate the hydraulic fracture propagation paths for simultaneous multifracture treatments with properly using the stress shadow effects for horizontal wells and to reveal the deformation response and interaction mechanism between hydraulic induced fracture and nonintersected natural fractures at orthotropic and nonorthotropic angles. With the stress shadow effects, the induced hydraulic flexural fracture deflecting to wellbore rather than transverse fracture would be formed during the progress of simultaneous fracturing for a horizontal well. The coupled hydromechanical simulation reveals that the adjacent section to the intersection is opened and the others are closed for orthogonal natural fracture, while the nonorthogonal natural fracture is activated near the intersection firstly and along the whole section with increasing perturbed stresses. The results imply that the induced hydraulic fracture tends to cross orthotropic natural fracture, while it is prior to being arrested by the nonorthotropic natural fracture.

  1. Simulation of the hydraulic performance of highway filter drains through laboratory models and stormwater management tools.

    Science.gov (United States)

    Sañudo-Fontaneda, Luis A; Jato-Espino, Daniel; Lashford, Craig; Coupe, Stephen J

    2017-05-23

    Road drainage is one of the most relevant assets in transport infrastructure due to its inherent influence on traffic management and road safety. Highway filter drains (HFDs), also known as "French Drains", are the main drainage system currently in use in the UK, throughout 7000 km of its strategic road network. Despite being a widespread technique across the whole country, little research has been completed on their design considerations and their subsequent impact on their hydraulic performance, representing a gap in the field. Laboratory experiments have been proven to be a reliable indicator for the simulation of the hydraulic performance of stormwater best management practices (BMPs). In addition to this, stormwater management tools (SMT) have been preferentially chosen as a design tool for BMPs by practitioners from all over the world. In this context, this research aims to investigate the hydraulic performance of HFDs by comparing the results from laboratory simulation and two widely used SMT such as the US EPA's stormwater management model (SWMM) and MicroDrainage®. Statistical analyses were applied to a series of rainfall scenarios simulated, showing a high level of accuracy between the results obtained in laboratory and using SMT as indicated by the high and low values of the Nash-Sutcliffe and R 2 coefficients and root-mean-square error (RMSE) reached, which validated the usefulness of SMT to determine the hydraulic performance of HFDs.

  2. Development of thermal-hydraulic models for the safety evaluation of CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Young; Hwang, Gi Suk; Jung, Yun Sik [Handong Univ., Pohang (Korea, Republic of); No, Hee Cheon; Moon, Young Min [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2003-03-15

    The objective of the present research is to evaluate the safety analysis for CANDU and to improve the Horizontal Stratification Entrainment Model (HSEM) of RELAP5/MOD3.3. This report includes two items : the one is the development of experimental facility for the safety evaluation of CANDU, the other is the results of comparison with the existing correlations and data. The literature reviews are performed and the database for previous off-take experiments are built. By a survey of state-of-the-articles, the deficiencies of previous works and limitations of existing models are examined. The hydraulic behavior branching through the feeder pipes from the header pipe is analyzed and the test facility of off-take experiment is designed and manufactured as the prototype CANDU6, by a proper scaling methodologies. The test facility contains various branch pipes not only for three directions (top, side and bottom), but for arbitrary directions. The experiments about the onset of entrainment and branch quality only for three directions (top, side and bottom) are carried out by using air-water as working fluids. On the whole, the existing correlations predict the present experimental results well branch quality, entrainment, which validates the availability of experimental facility and methodology. Especially, for the branch quality with top and bottom branches, the different results are shown because of the unstable flow regimes in the horizontal pipe and the different branch diameters. The deficiencies of previous works and limitations of existing models are considered. The off-take experiment for arbitrary branch angles continues as the next year research.

  3. Single-channel model for steady thermal-hydraulic analysis in nuclear reactor

    International Nuclear Information System (INIS)

    Zhang Xiaoying; Huang Yuanyuan

    2010-01-01

    This article established a single-channel model for steady analysis in the reactor and an example of thermal-hydraulic analysis was made by using this model, including the Maximum heat flux density of fuel element, enthalpy, Coolant flow, various kinds of pressure drop, enthalpy increase in average tube and thermal tube. I also got the Coolant temperature distribution and the fuel element temperature distribution and analysis of the final result. The results show that some relevant parameters which we got in this paper are well coincide with the actual operating parameters. It is also show that the single-channel model can be used to the steady thermal-hydraulic analysis. (authors)

  4. Model Testing - Bringing the Ocean into the Laboratory

    DEFF Research Database (Denmark)

    Aage, Christian

    2000-01-01

    Hydrodynamic model testing, the principle of bringing the ocean into the laboratory to study the behaviour of the ocean itself and the response of man-made structures in the ocean in reduced scale, has been known for centuries. Due to an insufficient understanding of the physics involved, however......, the early model tests often gave incomplete or directly misleading results.This keynote lecture deals with some of the possibilities and problems within the field of hydrodynamic and hydraulic model testing....

  5. Storm Water Management Model Reference Manual Volume II – Hydraulics

    Science.gov (United States)

    SWMM is a dynamic rainfall-runoff simulation model used for single event or long-term (continuous) simulation of runoff quantity and quality from primarily urban areas. The runoff component of SWMM operates on a collection of subcatchment areas that receive precipitation and gene...

  6. Hydrological and hydraulic modelling of the Nyl River floodplain Part ...

    African Journals Online (AJOL)

    Catchment land-use and water resource developments may threaten the ecological integrity of the Nyl River floodplain, a world-renowned conservation area. The effect of developments on the water supply regime to the floodplain can be predicted by hydrological modelling, but assessing their ecological consequences ...

  7. A Thermal Hydraulic Model of Melt Lubrication in Railgun Armatures

    National Research Council Canada - National Science Library

    Kothmann, R

    2003-01-01

    ... wear of 7075 aluminum sliding against ETP copper for face pressures ranging from 6 to 22 ksi. Discrepancies between calculated and experimental results are attributed to uncertainties in modeling the complex phase change behavior of aluminum alloy 7075 and uncertain conditions at the rail interface.

  8. Coupled hydrologic and hydraulic modeling of Upper Niger River Basin

    Science.gov (United States)

    Fleischmann, Ayan; Siqueira, Vinícius; Paris, Adrien; Collischonn, Walter; Paiva, Rodrigo; Gossett, Marielle; Pontes, Paulo; Calmant, Stephane; Biancamaria, Sylvain; Crétaux, Jean-François; Tanimoune, Bachir

    2017-04-01

    The Upper Niger Basin is located in Western Africa, flowing from Guinea Highlands towards the Sahel region. In this area lies the seasonally inundated Niger Inland Delta, which supports important environmental services such as habitats for wildlife, climate and flood regulation, as well as large fishery and agricultural areas. In this study, we present the application of MGB-IPH large scale hydrologic and hydrodynamic model for the Upper Niger Basin, totaling c.a. 650,000 km2 and set up until the city of Niamey in Niger. The model couples hydrological vertical balance and runoff generation with hydrodynamic flood wave propagation, by allowing infiltration from floodplains into soil column as well as representing backwater effects and floodplain storage throughout flat areas such as the Inland Delta. The model is forced with TRMM 3B42 daily precipitation and Climate Research Unit (CRU) climatology for the period 2000-2010, and was calibrated against in-situ discharge gauges and validated with in-situ water level, remotely sensed estimations of flooded areas (classification of MODIS imagery) and satellite altimetry (JASON-2 mission). Model results show good predictions for calibrated daily discharge and validated water level and altimetry at stations both upstream and downstream of the delta (Nash-Sutcliffe Efficiency>0.7 for all stations), as well as for flooded areas within the delta region (ENS=0.5; r2=0.8), allowing a good representation of flooding dynamics basinwide and simulation of flooding behavior of both perennial (e.g., Niger main stem) and ephemeral rivers (e.g., Niger Red Flood tributaries in Sahel). Coupling between hydrology and hydrodynamic processes indicates an important feedback between floodplain and soil water storage that allows high evapotranspiration rates even after the flood passage around the inner delta area. Also, representation of water retention in floodplain channels and distributaries in the inner delta (e.g., Diaka river

  9. Hydrogeological model of the territory of Kowsar hydraulic project

    Directory of Open Access Journals (Sweden)

    Orekhov Vyacheslav Valentinovich

    2015-03-01

    Full Text Available Mathematical hydrogeology model of the territory of Kowsar Project was created with account for the results of the engineering surveys and hydro geological monitoring, which was conducted in the process of Kowsar Project construction. In order to create the model in the present work a universal computer system Ansys was used, which implements the finite element method and solid modeling technology, allowing to solve the filtration problem with the use of thermal analogy. The three-dimensional geometric model was built with use of the principle “hard body” modeling, which displays the main line of the territory relief, including the created water reservoir, geological structure (anticline Duk and the main lithological complexes developed within the territory. In the limestone mass As here is a zone characterized by water permeability on territory of Kowsar Project, and a layer characterized by seepage feeding, which occurs outside the considered territory. The water reservoir is a source of the change of hydro geological situation. The results of field observations witness, that the levels of underground waters within the area of the main structures reacts almost instantly on the water level change in the water reservoir; the delay period of levels change is not more than 1,5…2,0 weeks at maximum distance from the water reservoir. These particularities of the hydro geological regime allow using the steady-state scheme of the decision of forecast problems. The mass of limestone As, containing the structures of the Kowsar Project, is not homogeneous and anisotropy in its seepage characteristics. The heterogeneity is conditioned by exogenous influence on the mass up to the depth of 100…150 m. The seepage anisotropy of the mass is expressed by the difference of water permeability of the mass along and across the layers for almost one order. The structures of Kowsar Project is presented by a dam, grouting curtain on axis of the dam and

  10. Modeling thermal stress propagation during hydraulic stimulation of geothermal wells

    Science.gov (United States)

    Jansen, Gunnar; Miller, Stephen A.

    2017-04-01

    A large fraction of the world's water and energy resources are located in naturally fractured reservoirs within the earth's crust. Depending on the lithology and tectonic history of a formation, fracture networks can range from dense and homogeneous highly fractured networks to single large scale fractures dominating the flow behavior. Understanding the dynamics of such reservoirs in terms of flow and transport is crucial to successful application of engineered geothermal systems (also known as enhanced geothermal systems or EGS) for geothermal energy production in the future. Fractured reservoirs are considered to consist of two distinct separate media, namely the fracture and matrix space respectively. Fractures are generally thin, highly conductive containing only small amounts of fluid, whereas the matrix rock provides high fluid storage but typically has much smaller permeability. Simulation of flow and transport through fractured porous media is challenging due to the high permeability contrast between the fractures and the surrounding rock matrix. However, accurate and efficient simulation of flow through a fracture network is crucial in order to understand, optimize and engineer reservoirs. It has been a research topic for several decades and is still under active research. Accurate fluid flow simulations through field-scale fractured reservoirs are still limited by the power of current computer processing units (CPU). We present an efficient implementation of the embedded discrete fracture model, which is a promising new technique in modeling the behavior of enhanced geothermal systems. An efficient coupling strategy is determined for numerical performance of the model. We provide new insight into the coupled modeling of fluid flow, heat transport of engineered geothermal reservoirs with focus on the thermal stress changes during the stimulation process. We further investigate the interplay of thermal and poro-elastic stress changes in the reservoir

  11. Earthquake likelihood model testing

    Science.gov (United States)

    Schorlemmer, D.; Gerstenberger, M.C.; Wiemer, S.; Jackson, D.D.; Rhoades, D.A.

    2007-01-01

    INTRODUCTIONThe Regional Earthquake Likelihood Models (RELM) project aims to produce and evaluate alternate models of earthquake potential (probability per unit volume, magnitude, and time) for California. Based on differing assumptions, these models are produced to test the validity of their assumptions and to explore which models should be incorporated in seismic hazard and risk evaluation. Tests based on physical and geological criteria are useful but we focus on statistical methods using future earthquake catalog data only. We envision two evaluations: a test of consistency with observed data and a comparison of all pairs of models for relative consistency. Both tests are based on the likelihood method, and both are fully prospective (i.e., the models are not adjusted to fit the test data). To be tested, each model must assign a probability to any possible event within a specified region of space, time, and magnitude. For our tests the models must use a common format: earthquake rates in specified “bins” with location, magnitude, time, and focal mechanism limits.Seismology cannot yet deterministically predict individual earthquakes; however, it should seek the best possible models for forecasting earthquake occurrence. This paper describes the statistical rules of an experiment to examine and test earthquake forecasts. The primary purposes of the tests described below are to evaluate physical models for earthquakes, assure that source models used in seismic hazard and risk studies are consistent with earthquake data, and provide quantitative measures by which models can be assigned weights in a consensus model or be judged as suitable for particular regions.In this paper we develop a statistical method for testing earthquake likelihood models. A companion paper (Schorlemmer and Gerstenberger 2007, this issue) discusses the actual implementation of these tests in the framework of the RELM initiative.Statistical testing of hypotheses is a common task and a

  12. The perceptual trap: Experimental and modelling examples of soil moisture, hydraulic conductivity and response units in complex subsurface settings.

    Science.gov (United States)

    Jackisch, Conrad; Demand, Dominic; Allroggen, Niklas; Loritz, Ralf; Zehe, Erwin

    2017-04-01

    In order to discuss hypothesis testing in hydrology, the question of the solid foundation of such tests has to be answered. But how certain are we about our measurements of the components of the water balance and the states and dynamics of the complex systems? What implicit assumptions or bias are already embedded in our perception of the processes? How can we find light in the darkness of heterogeneity? We will contribute examples from experimental findings, modelling approaches and landscape analysis to the discussion. Example soil moisture and the soil continuum: The definition of soil moisture as fraction of water in the porous medium assumes locally well-mixed conditions. Moreover, a unique relation of soil water retention presumes instant local thermodynamic equilibrium in the pore water arrangement. We will show findings from soil moisture responses to precipitation events, from irrigation experiments, and from a model study of initial infiltration velocities. The results highlight, that the implicit assumption relating soil moisture state dynamics with actual soil water flow is biased towards the slow end of the actual velocity distribution and rather blind for preferential flow acting in a very small proportion of the pore space. Moreover, we highlight the assumption of a well-defined continuum during the extrapolation of point-scale measurements and why spatially and temporally continuous observation techniques of soil water states are essential for advancing our understanding and development of subsurface process theories. Example hydraulic conductivity: Hydraulic conductivity lies at the heart of hydrological research and modelling. Its values can range across several orders of magnitude at a single site alone. Yet, we often consider it a crisp, effective parameter. We have conducted measurements of soil hydraulic conductivity in the lab and in the field. Moreover, we assessed infiltration capacity and conducted plot-scale irrigation experiments to

  13. A fifth equation to model the relative velocity the 3-D thermal-hydraulic code THYC

    International Nuclear Information System (INIS)

    Jouhanique, T.; Rascle, P.

    1995-11-01

    E.D.F. has developed, since 1986, a general purpose code named THYC (Thermal HYdraulic Code) designed to study three-dimensional single and two-phase flows in rod tube bundles (pressurised water reactor cores, steam generators, condensers, heat exchangers). In these studies, the relative velocity was calculated by a drift-flux correlation. However, the relative velocity between vapor and liquid is an important parameter for the accuracy of a two-phase flow modelling in a three-dimensional code. The range of application of drift-flux correlations is mainly limited by the characteristic of the flow pattern (counter current flow ...) and by large 3-D effects. The purpose of this paper is to describe a numerical scheme which allows the relative velocity to be computed in a general case. Only the methodology is investigated in this paper which is not a validation work. The interfacial drag force is an important factor of stability and accuracy of the results. This force, closely dependent on the flow pattern, is not entirely established yet, so a range of multiplicator of its expression is used to compare the numerical results with the VATICAN test section measurements. (authors). 13 refs., 6 figs

  14. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E

    2011-01-01

    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  15. Coupling hydrologic and hydraulic models to take into consideration retention effects on extreme peak discharges in Switzerland

    Science.gov (United States)

    Felder, Guido; Zischg, Andreas; Weingartner, Rolf

    2015-04-01

    Estimating peak discharges with very low probabilities is still accompanied by large uncertainties. Common estimation methods are usually based on extreme value statistics applied to observed time series or to hydrological model outputs. However, such methods assume the system to be stationary and do not specifically consider non-stationary effects. Observed time series may exclude events where peak discharge is damped by retention effects, as this process does not occur until specific thresholds, possibly beyond those of the highest measured event, are exceeded. Hydrological models can be complemented and parameterized with non-linear functions. However, in such cases calibration depends on observed data and non-stationary behaviour is not deterministically calculated. Our study discusses the option of considering retention effects on extreme peak discharges by coupling hydrological and hydraulic models. This possibility is tested by forcing the semi-distributed deterministic hydrological model PREVAH with randomly generated, physically plausible extreme precipitation patterns. The resulting hydrographs are then used to force the hydraulic model BASEMENT-ETH (riverbed in 1D, potential inundation areas in 2D). The procedure ensures that the estimated extreme peak discharge does not exceed the physical limit given by the riverbed capacity and that the dampening effect of inundation processes on peak discharge is considered.

  16. Development and industrial tests of the first LNG hydraulic turbine system in China

    OpenAIRE

    Jie Chen; Yihuai Hua; Qingbo Su; Xueli Wan; Zhenlin Li

    2016-01-01

    The cryogenic hydraulic turbine can be used to replace the conventional J–T valve for LNG or mixed refrigerant throttling and depressurization in a natural gas liquefaction plant. This advanced technology is not only to enhance the efficiency of the liquefaction plant, but to usher a new trend in the development of global liquefaction technologies. China has over 136 liquefaction plants, but the cryogenic hydraulic turbines have not been deployed in industrial utilization. In addition, these ...

  17. A hydraulic test stand for demonstrating the operation of Eaton’s energy recovery system (ERS)

    OpenAIRE

    Wang, Meng (Rachel); Danzl, Per; Mahulkar, Vishal; Piyabongkarn, Damrongrit (Neng); Brenner, Paul

    2016-01-01

    Fuel cost represents a significant operating expense for owners and fleet managers of hydraulic off-highway vehicles. Further, the upcoming Tier IV compliance for off-highway applications will create further expense for after-treatment and cooling. Solutions that help address these factors motivate fleet operators to consider and pursue more fuelefficient hydraulic energy recovery systems. Electrical hybridization schemes are typically complex, expensive, and often do not satisfy customer pay...

  18. Development, field testing and implementation of automated hydraulically controlled, variable volume loading systems for reciprocating compressors

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, Dwayne A. [ACI Services, Inc., Cambridge, OH (United States); Slupsky, John [Kvaerner Process Systems, Calgary, Alberta (Canada); Chrisman, Bruce M.; Hurley, Tom J. [Cooper Energy Services, Oklahoma City, OK (United States). Ajax Division

    2003-07-01

    Automated, variable volume unloaders provide the ability to smoothly load/unload reciprocating compressors to maintain ideal operations in ever-changing environments. Potential advantages provided by this load control system include: maximizing unit capacity, optimizing power economy, maintaining low exhaust emissions, and maintaining process suction and discharge pressures. Obstacles foreseen include: reliability, stability, serviceability and automation integration. Results desired include: increased productivity for the compressor and its operators, increased up time, and more stable process control. This presentation covers: system design features with descriptions of how different types of the devices were developed, initial test data, and how they can be effectively operated; three actual-case studies detailing the reasons why automated, hydraulically controlled, variable volume, head-end unloaders were chosen over other types of unloading devices; sophisticated software used in determining the device sizing and predicted performance; mechanical and field considerations; installation, serviceability and operating considerations; device control issues, including PC and PLC considerations; monitoring of actual performance and comparison of such with predicted performance; analysis of mechanical reliability and stability; and preliminary costs versus return on investment analysis. (author)

  19. FLOOD HAZARD MAP IN THE CITY OF BATNA (ALGERIA BY HYDRAULIC MODELING APPROCH

    Directory of Open Access Journals (Sweden)

    Guellouh SAMI

    2016-06-01

    Full Text Available In the light of the global climatic changes that appear to influence the frequency and the intensity of floods, and whose damages are still growing; understanding the hydrological processes, their spatiotemporal setting and their extreme shape, became a paramount concern to local communities in forecasting terms. The aim of this study is to map the floods hazard using a hydraulic modeling method. In fact, using the operating Geographic Information System (GIS, would allow us to perform a more detailed spatial analysis about the extent of the flooding risk, through the approval of the hydraulic modeling programs in different frequencies. Based on the results of this analysis, decision makers can implement a strategy of risk management related to rivers overflowing through the city of Batna.

  20. Numerical modeling for the retrofit of the hydraulic cooling subsystems in operating power plant

    Science.gov (United States)

    AlSaqoor, S.; Alahmer, A.; Al Quran, F.; Andruszkiewicz, A.; Kubas, K.; Regucki, P.; Wędrychowicz, W.

    2017-08-01

    This paper presents the possibility of using the numerical methods to analyze the work of hydraulic systems on the example of a cooling system of a power boiler auxiliary devices. The variety of conditions at which hydraulic system that operated in specific engineering subsystems requires an individualized approach to the model solutions that have been developed for these systems modernizing. A mathematical model of a series-parallel propagation for the cooling water was derived and iterative methods were used to solve the system of nonlinear equations. The results of numerical calculations made it possible to analyze different variants of a modernization of the studied system and to indicate its critical elements. An economic analysis of different options allows an investor to choose an optimal variant of a reconstruction of the installation.

  1. MATHEMATICAL MODELING OF WORKING PROCESS IN HYDRAULIC DRIVE OF SPECIFICALLY HEAVY-DUTY TRUCK STEERING

    Directory of Open Access Journals (Sweden)

    E. M. Zabolotsky

    2006-01-01

    Full Text Available The paper provides an analysis that shows application of pump-controlled steering hydraulic drives. Dynamic model of steering hydraulic drive of open-cast BelAZ-75131 dump truck developed at BNTU and also mathematical models for circuit consisting of a metering pump and a turning cylinder and a flow amplifier and a turning cylinder with due account of compressibility and resistance of service drain line. It is noted that on the basis of the given methodology a multi-variant dynamic calculation has been carried out, drive dynamics has been analyzed at various design and component parameters of a metering pump and a flow amplifier, rational values of these parameters has been selected for design development. The paper also gives an algorithm scheme for the solution of the derived equation systems.

  2. Simple deterministic model of the hydraulic buffer effect in septic tanks

    OpenAIRE

    Forquet, N.; Dufresne, M.

    2015-01-01

    Septic tanks are widely used in on-site wastewater treatment systems. In addition to anaerobic pre-treatment, hydraulic buffering is one of the roles attributed to septic tanks. However there is still no tool for assessing it, especially in dynamic conditions. For gravity fed system, it could help both researchers and system designers. This technical note reports a simple mechanistic model based on the assumption of flow transition between the septic tank and the outflow pipe. The only parame...

  3. PLUGM: a coupled thermal-hydraulic computer model for freezing melt flow in a channel

    International Nuclear Information System (INIS)

    Pilch, M.

    1982-01-01

    PLUGM is a coupled thermal-hydraulic computer model for freezing liquid flow and plugging in a cold channel. PLUGM is being developed at Sandia National Laboratories for applications in Sandia's ex-vessel Core Retention Concept Assessment Program and in Sandia's LMFBR Transition Phase Program. The purpose of this paper is to introduce PLUGM and demonstrate how it can be used in the analysis of two of the core retention concepts under investigation at Sandia: refractory brick crucibles and particle beds

  4. A General Model for Thermal, Hydraulic and Electric Analysis of Superconducting Cables

    CERN Document Server

    Bottura, L; Rosso, C

    2000-01-01

    In this paper we describe a generic, multi-component and multi-channel model for the analysis of superconducting cables. The aim of the model is to treat in a general and consistent manner simultaneous thermal, electric and hydraulic transients in cables. The model is devised for most general situations, but reduces in limiting cases to most common approximations without loss of efficiency. We discuss here the governing equations, and we write them in a matrix form that is well adapted to numerical treatment. We finally demonstrate the model capability by comparison with published experimental data on current distribution in a two-strand cable.

  5. Degradation modeling and experiment of electro-hydraulic shift valve in contamination circumstances

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2015-05-01

    Full Text Available In this article, a degradation assessment model has been proposed for electro-hydraulic shift valve in power-shift steering transmission. Our work is motivated by the failure mechanism of abrasive wear with a mathematic model. Abrasive wear will consecutively enlarge the clearance between the friction pairs. It is an overwhelming wear mechanism in the degradation of shift valve within serious contaminated fluid. Herein, a mathematic model is proposed by considering particle morphology and abrasion theory. Such model has been verified for its applicability and accuracy through comparison between the theoretical and experimental results.

  6. An Improved Rate-Transient Analysis Model of Multi-Fractured Horizontal Wells with Non-Uniform Hydraulic Fracture Properties

    Directory of Open Access Journals (Sweden)

    Youwei He

    2018-02-01

    Full Text Available Although technical advances in hydraulically fracturing and drilling enable commercial production from tight reservoirs, oil/gas recovery remains at a low level. Due to the technical and economic limitations of well-testing operations in tight reservoirs, rate-transient analysis (RTA has become a more attractive option. However, current RTA models hardly consider the effect of the non-uniform production on rate decline behaviors. In fact, PLT results demonstrate that production profile is non-uniform. To fill this gap, this paper presents an improved RTA model of multi-fractured horizontal wells (MFHWs to investigate the effects of non-uniform properties of hydraulic fractures (production of fractures, fracture half-length, number of fractures, fracture conductivity, and vertical permeability on rate transient behaviors through the diagnostic type curves. Results indicate obvious differences on the rate decline curves among the type curves of uniform properties of fractures (UPF and non-uniform properties of fractures (NPF. The use of dimensionless production integral derivative curve magnifies the differences so that we can diagnose the phenomenon of non-uniform production. Therefore, it’s significant to incorporate the effects of NPF into the RDA models of MFHWs, and the model proposed in this paper enables us to better evaluate well performance based on long-term production data.

  7. Determination of the hydraulic characteristics by means of integral parameters in a model of wetland with subsuperficial flow

    International Nuclear Information System (INIS)

    Vallejos, G.; Ponce Caballero, C.; Quintal Franco, C.; Mendez Novelo, R.

    2009-01-01

    The main objective of this study was to assess the portions of plug flow and death zones using tracer tests by empiric models as Wolf-Resnick and Dispersion in evaluate bed-packed reactors with horizontal subsurface flow, as a model of a constructed wetland. In order to assess the hydraulic behavior of systems such as packed-bed reactors and constructed wetlands both of subsurface flow, it is necessary to study and evaluate them modifying some variables while others remain constant. As well it is important to use mathematical models to describe, as precise as possible, the different phenomenon inside the systems, in such a way that these models bring information in an integral way to predict the behavior of the systems. (Author)

  8. Hydraulic impact end effector final test report. Automation and robotics section, ER/WM-AT Program

    International Nuclear Information System (INIS)

    Couture, S.

    1994-01-01

    One tool being developed for dislodging and fragmenting the hard salt cake waste in the single-shell nuclear waste tanks at the Hanford Reservation near Richland, Washington, is the hydraulic impact end effector (HIEE). This total operates by discharging 11-in. slugs of water at ultrahigh pressures. The HIEE was designed, built, and initially tested in 1992. Work in 1993 included advanced developments of the HIEE to further investigate its fragmentation abilities and to determine more effective operating procedures. These tests showed that more fragmentation can be achieved by increasing the charge pressure of 40 kpsi to 55 kpsi and by the use of different operating procedures. The size of the material and the impact energy of the water slug fired from the HIEE are believed to be major factors in material fragmentation. The material's ability to fracture also appears to depend on the distance a fracture or crack line must travel to a free surface. Thus, larger material is more difficult to fracture than smaller material. Discharge pressures of 40 kpsi resulted in little penetration or fracturing of the material. At 55 kpsi, however, the size and depth of the fractures increased. Nozzle geometry had a significant effect on fragment size and quantity. Fragmentation was about an order of magnitude greater when the HIEE was discharged into drilled holes rather than onto the material surface. Since surface shots tend to create craters, a multi-shot procedure, coupled with an advanced nozzle design, was used to drill (crater) deep holes into large material. With this procedure, a 600-lb block was reduced to smaller pieces without the use of any additional equipment. Through this advanced development program, the HIEE has demonstrated that it can quickly fragment salt cake material into small, easily removable fragments. The HIEE's material fragmentation ability can be substantially increased through the use of different nozzle geometries and operating procedures

  9. Thermal-hydraulically controlled blowdown tests in the experimental facility COSIMA to study PWR fuel behavior: experimental and theoretical results

    International Nuclear Information System (INIS)

    Class, G.; Hain, K.; Meyder, R.

    1978-01-01

    The fuel behavior in the blow-down phase of a LOCA is of importance for fuel rods with high internal pressure and high rod power, because of the effects on clad failure of the small cladding deformations occurring. The operating results of the COSIMA facility show that, on the basis of the new developments for measuring technique and fuel rod simulators performed, reactor relevant blow-down performances can be conducted in a controlled and reproduceable manner. The mechanical and thermal-hydraulic states occurring in the test bed may be subject to computational checking. This permits on one hand to improve the computing models and on the other yields a confirmation of the high state of development of the available computer codes. Therefore it appears that, with the results from COSIMA and the associated theoretical work in the field of the blow-down process, difficult to treat experimentally, an essential contribution to verifying the models for accident calculations is given. The work scheduled for the next about 1 1/2 years will serve to further support the rather preliminary results and to extend the range of then application. (orig.) [de

  10. Two and Three-Phases Fractal Models Application in Soil Saturated Hydraulic Conductivity Estimation

    Directory of Open Access Journals (Sweden)

    ELNAZ Rezaei abajelu

    2017-03-01

    Full Text Available Introduction: Soil Hydraulic conductivity is considered as one of the most important hydraulic properties in water and solutionmovement in porous media. In recent years, variousmodels as pedo-transfer functions, fractal models and scaling technique are used to estimate the soil saturated hydraulic conductivity (Ks. Fractal models with two subset of two (solid and pore and three phases (solid, pore and soil fractal (PSF are used to estimate the fractal dimension of soil particles. The PSF represents a generalization of the solid and pore mass fractal models. The PSF characterizes both the solid and pore phases of the porous material. It also exhibits self-similarity to some degree, in the sense that where local structure seems to be similar to the whole structure.PSF models can estimate interface fractal dimension using soil pore size distribution data (PSD and soil moisture retention curve (SWRC. The main objective of this study was to evaluate different fractal models to estimate the Ksparameter. Materials and Methods: The Schaapetal data was used in this study. The complex consists of sixty soil samples. Soil texture, soil bulk density, soil saturated hydraulic conductivity and soil particle size distribution curve were measured by hydrometer method, undistributed soil sample, constant head method and wet sieve method, respectively for all soil samples.Soil water retention curve were determined by using pressure plates apparatus.The Ks parameter could be estimated by Ralws model as a function of fractal dimension by seven fractal models. Fractal models included Fuentes at al. (1996, Hunt and Gee (2002, Bird et al. (2000, Huang and Zhang (2005, Tyler and Wheatcraft (1990, Kutlu et al. (2008, Sepaskhah and Tafteh (2013.Therefore The Ks parameter can be estimated as a function of the DS (fractal dimension by seven fractal models (Table 2.Sensitivity analysis of Rawls model was assessed by making changes±10%, ±20% and±30%(in input parameters

  11. A coupled hydraulic and structure-dynamic model for prediction of RCCA drop time under hypothetical FA deformation

    International Nuclear Information System (INIS)

    Ren, Mingmin; Dressel, Bernd

    2009-01-01

    The ability of the RCCA (Rod Control Cluster Assemblies) in a pressurized water reactor (PWR) to be fully inserted into the core and to reach the dashpot within a required time limit is one of the important safety requirements for quick shutdown. This kind of quick shutdown in a PWR is initiated by allowing the control rod with the drive rod together to fall into the core by gravity. During normal operation, the RCCA drop time is mainly influenced by the weight of control assembly, hydraulic resistance in the CRDM (Control Rod Drive Mechanism), control rod guide assembly and guide thimbles and by the mechanical friction forces between the RCCA and its surroundings. In the case of an accident, e.g. earthquake, an additional influence of horizontal vibrations of the RCCA and its surroundings has to be considered [1]. A coupled hydraulic and structure-dynamic model is presented in this paper for prediction of RCCA drop time down to dashpot under hypothetical fuel assembly (FA) deformations. This coupled model was verified by RCCA static and dynamic drop tests with a deformed FA and by RCCA drop tests under operational conditions. (orig.)

  12. Studies of field test procedures in hydraulic turbines for SHP; Estudos de procedimentos de ensaios de campo em turbinas hidraulicas para PCH

    Energy Technology Data Exchange (ETDEWEB)

    Justino, Lucimary Aparecida

    2006-07-01

    A supply contract of equipment for Small Hydro Power, contain the power and turbine efficiency guarantees and can contain adds guarantees referring to a rotation and pressure variation, runaway speed and cavitations test. To the determination about the hydraulics turbines performance for contractual guarantees are realized the field acceptance test, that are methods quite a lot used for enterprises like tools to prove the contractual guarantees in substitution to model test, that showed a cost extremely high. In the field acceptance test are measures of some values that added to the others, possibility obtain the turbine efficiency. In the small hydro power, the turbine efficiency represents the hydraulic power percentage that is subject to be transformed in electrical power. In the turbine purchase, the manufacturer has to guarantee the efficiency specified if it is become down to expected, the damages are enormous, then the importance to exist precise methods and reliable for your measurement. The method accuracy of the discharge measurement that has, between another problems, the calibration and installation, that influence hard the value of the efficiency obtained. This work shows the different methodologies about discharge measurement in hydraulic turbines, that can be apply in Small Hydro Power field tests and shows too the procedures used that in specifics cases of small hydro, without quality damage, the site tests could be executed the form that the guarantees will be approve with compatible cots with the investment done. As an example for said above, are show two cases in small hydro where did realized field acceptance tests to assure the contractual guarantees. (author)

  13. Thermal-hydraulic and aerosol containment phenomena modelling in ASTEC severe accident computer code

    International Nuclear Information System (INIS)

    Kljenak, Ivo; Dapper, Maik; Dienstbier, Jiri; Herranz, Luis E.; Koch, Marco K.; Fontanet, Joan

    2010-01-01

    Transients in containment systems of different scales (Phebus.FP containment, KAEVER vessel, Battelle Model Containment, LACE vessel and VVER-1000 nuclear power plant containment) involving thermal-hydraulic phenomena and aerosol behaviour, were simulated with the computer integral code ASTEC. The results of the simulations in the first four facilities were compared with experimental results, whereas the results of the simulated accident in the VVER-1000 containment were compared to results obtained with the MELCOR code. The main purpose of the simulations was the validation of the CPA module of the ASTEC code. The calculated results support the applicability of the code for predicting in-containment thermal-hydraulic and aerosol phenomena during a severe accident in a nuclear power plant.

  14. Prediction of Hydraulic Performance of a Scaled-Down Model of SMART Reactor Coolant Pump

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sun Guk; Park, Jin Seok; Yu, Je Yong; Lee, Won Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-08-15

    An analysis was conducted to predict the hydraulic performance of a reactor coolant pump (RCP) of SMART at the off-design as well as design points. In order to reduce the analysis time efficiently, a single passage containing an impeller and a diffuser was considered as the computational domain. A stage scheme was used to perform a circumferential averaging of the flux on the impeller-diffuser interface. The pressure difference between the inlet and outlet of the pump was determined and was used to compute the head, efficiency, and break horse power (BHP) of a scaled-down model under conditions of steady-state incompressible flow. The predicted curves of the hydraulic performance of an RCP were similar to the typical characteristic curves of a conventional mixed-flow pump. The complex internal fluid flow of a pump, including the internal recirculation loss due to reverse flow, was observed at a low flow rate.

  15. Streaming potential modeling in fractured rock: Insights into the identification of hydraulically active fractures

    Science.gov (United States)

    Roubinet, D.; Linde, N.; Jougnot, D.; Irving, J.

    2016-05-01

    Numerous field experiments suggest that the self-potential (SP) geophysical method may allow for the detection of hydraulically active fractures and provide information about fracture properties. However, a lack of suitable numerical tools for modeling streaming potentials in fractured media prevents quantitative interpretation and limits our understanding of how the SP method can be used in this regard. To address this issue, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid flow and associated self-potential problems in fractured rock. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.

  16. Hydraulic model to assess the hydromorphological changes within the Danube Delta

    Directory of Open Access Journals (Sweden)

    CIOACĂ Eugenia

    2012-09-01

    Full Text Available Morphological changes of the hydrographic networks (rivers /channels /brooks /lakes as result of fluvial processes (erosion and alluvial sedimentation induce modification on hydrologic regime with positive /negative impacts on biodiversity. This paper aims at emphasizing the amplitude of these processes within the Danube Delta Biosphere Reserve (Romanian part inner hydrographic network, by means of the morphologic model, as maincomponent of 3D mathematical /hydraulic model. It is constructed based on geo-referenced database as resulted from hydraulicand bathymetric field measurements carried out within 2008-2010. Hydro-morphological changes are assessed by analyzingthose zones where fluvial processes have been identified to be active, meaning that specific hydraulic conditions are fulfilled,such as: water flow with high energy /high values of hydraulic parameters: level, speed, slope, and solid transport (upstream ofdelta: erosion followed by a decrease of these values (middle part: alluvia sedimentation and ending with very clear water at very low flow velocity (downstream of delta: no fluvial processes. Both erosion and, especially, alluvial sedimentation zones, in low water level conditions lead to disconnection of some channels /lakes generating ecological disequilibrium with negative impact on some flora and fauna species. Thus, the gained knowledge on the aquatic ecosystem function is used as scientific tool for decision making on a sound management of such an environment system in order to improve the quality of aquatic life by restoration of hydrographical network with impacts on habitats and overall ecological reconstruction.

  17. Experiments on hydraulically-compensated Compressed Air Energy Storage (CAES) system using large-diameter vertical pipe two-phase flow test facility: test facility and test procedure

    International Nuclear Information System (INIS)

    Ohtsu, Iwao; Murata, Hideo; Kukita, Yutaka; Kumamaru, Hiroshige.

    1996-07-01

    JAERI, the University of Tokyo, the Central Research Institute of Electric Power Industry and Shimizu Corporation jointing performed and experimental study on two-phase flow in the hydraulically-compensated Compressed Air Energy Storage (CAES) system with a large-diameter vertical pipe two-phase flow test facility from 1993 to 1995. A hydraulically-compensated CAES system is a proposed, conceptual energy storage system where energy is stored in the form of compressed air in an underground cavern which is sealed by a deep (several hundred meters) water shaft. The shaft water head maintains a constant pressure in the cavern, of several mega Pascals, even during loading or unloading of the cavern with air. The dissolved air in the water, however, may create voids in the shaft when the water rises through the shaft during the loading, being forced by the air flow into the cavern. The voids may reduce the effective head of the shaft, and thus the seal may fail, if significant bubbling should occur in the shaft. This bubbling phenomenon (termed 'Champaign effect') and potential failure of the water seal ('blowout') are simulated in a scaled-height, scaled-diameter facility. Carbon dioxide is used to simulate high solubility of air in the full-height, full-pressure system. This report describes the expected and potential two-phase flow phenomena in a hydraulically-compensated CAES system, the test facility and the test procedure, a method to estimate quantities which are not directly measured by using measured quantities and hydrodynamic basic equations, and desirable additional instrumentation. (author)

  18. Comparative study of boron transport models in NRC Thermal-Hydraulic Code Trace

    Energy Technology Data Exchange (ETDEWEB)

    Olmo-Juan, Nicolás; Barrachina, Teresa; Miró, Rafael; Verdú, Gumersindo; Pereira, Claubia, E-mail: nioljua@iqn.upv.es, E-mail: tbarrachina@iqn.upv.es, E-mail: rmiro@iqn.upv.es, E-mail: gverdu@iqn.upv.es, E-mail: claubia@nuclear.ufmg.br [Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM). Universitat Politècnica de València (Spain); Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    Recently, the interest in the study of various types of transients involving changes in the boron concentration inside the reactor, has led to an increase in the interest of developing and studying new models and tools that allow a correct study of boron transport. Therefore, a significant variety of different boron transport models and spatial difference schemes are available in the thermal-hydraulic codes, as TRACE. According to this interest, in this work it will be compared the results obtained using the different boron transport models implemented in the NRC thermal-hydraulic code TRACE. To do this, a set of models have been created using the different options and configurations that could have influence in boron transport. These models allow to reproduce a simple event of filling or emptying the boron concentration in a long pipe. Moreover, with the aim to compare the differences obtained when one-dimensional or three-dimensional components are chosen, it has modeled many different cases using only pipe components or a mix of pipe and vessel components. In addition, the influence of the void fraction in the boron transport has been studied and compared under close conditions to BWR commercial model. A final collection of the different cases and boron transport models are compared between them and those corresponding to the analytical solution provided by the Burgers equation. From this comparison, important conclusions are drawn that will be the basis of modeling the boron transport in TRACE adequately. (author)

  19. Review of turbulence modelling for numerical simulation of nuclear reactor thermal-hydraulics

    International Nuclear Information System (INIS)

    Bernard, J.P.; Haapalehto, T.

    1996-01-01

    The report deals with the modelling of turbulent flows in nuclear reactor thermal-hydraulic applications. The goal is to give tools and knowledge about turbulent flows and their modelling in practical applications for engineers, and especially nuclear engineers. The emphasize is on the theory of turbulence, the existing different turbulence models, the state-of-art of turbulence in research centres, the available models in the commercial code CFD-FLOW3D, and the latest applications of turbulence modelling in nuclear reactor thermal-hydraulics. It turns out that it is difficult to elaborate an universal turbulence model and each model has its advantages and drawbacks in each application. However, the increasing power of computers can permit the emergence of new methods of turbulence modelling such as Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) which open new horizons in this field. These latter methods are beginning to be available in commercial codes and are used in different nuclear applications such as 3-D modelling of the nuclear reactor cores and the steam generators. (orig.) (22 refs.)

  20. Preliminary Test for Constitutive Models of CAP

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Yeon Joon; Hong, Soon Joon; Hwang, Su Hyun; Lee, Keo Hyung; Kim, Min Ki; Lee, Byung Chul [FNC Tech., Seoul (Korea, Republic of); Ha, Sang Jun; Choi, Hoon [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    The development project for the domestic design code was launched to be used for the safety and performance analysis of pressurized light water reactors. As a part of this project, CAP (Containment Analysis Package) code has been developing for the containment safety and performance analysis side by side with SPACE. The CAP code treats three fields (vapor, continuous liquid and dispersed drop) for the assessment of containment specific phenomena, and is featured by assessment capabilities in multi-dimensional and lumped parameter thermal hydraulic cell. Thermal hydraulics solver was developed and has a significant progress now. Implementation of the well proven constitutive models and correlations are essential in other for a containment code to be used with the generalized or optimized purposes. Generally, constitutive equations are composed of interfacial and wall transport models and correlations. These equations are included in the source terms of the governing field equations. In order to develop the best model and correlation package of the CAP code, various models currently used in major containment analysis codes, such as GOTHIC, CONTAIN2.0 and CONTEMPT-LT are reviewed. Several models and correlations were incorporated for the preliminary test of CAP's performance and test results and future plans to improve the level of execution besides will be discussed in this paper

  1. Preliminary Test for Constitutive Models of CAP

    International Nuclear Information System (INIS)

    Choo, Yeon Joon; Hong, Soon Joon; Hwang, Su Hyun; Lee, Keo Hyung; Kim, Min Ki; Lee, Byung Chul; Ha, Sang Jun; Choi, Hoon

    2010-01-01

    The development project for the domestic design code was launched to be used for the safety and performance analysis of pressurized light water reactors. As a part of this project, CAP (Containment Analysis Package) code has been developing for the containment safety and performance analysis side by side with SPACE. The CAP code treats three fields (vapor, continuous liquid and dispersed drop) for the assessment of containment specific phenomena, and is featured by assessment capabilities in multi-dimensional and lumped parameter thermal hydraulic cell. Thermal hydraulics solver was developed and has a significant progress now. Implementation of the well proven constitutive models and correlations are essential in other for a containment code to be used with the generalized or optimized purposes. Generally, constitutive equations are composed of interfacial and wall transport models and correlations. These equations are included in the source terms of the governing field equations. In order to develop the best model and correlation package of the CAP code, various models currently used in major containment analysis codes, such as GOTHIC, CONTAIN2.0 and CONTEMPT-LT are reviewed. Several models and correlations were incorporated for the preliminary test of CAP's performance and test results and future plans to improve the level of execution besides will be discussed in this paper

  2. Saturated hydraulic conductivity model computed from bimodal water retention curves for a range of New Zealand soils

    Directory of Open Access Journals (Sweden)

    J. A. P. Pollacco

    2017-06-01

    Full Text Available Descriptions of soil hydraulic properties, such as the soil moisture retention curve, θ(h, and saturated hydraulic conductivities, Ks, are a prerequisite for hydrological models. Since the measurement of Ks is expensive, it is frequently derived from statistical pedotransfer functions (PTFs. Because it is usually more difficult to describe Ks than θ(h from pedotransfer functions, Pollacco et al. (2013 developed a physical unimodal model to compute Ks solely from hydraulic parameters derived from the Kosugi θ(h. This unimodal Ks model, which is based on a unimodal Kosugi soil pore-size distribution, was developed by combining the approach of Hagen–Poiseuille with Darcy's law and by introducing three tortuosity parameters. We report here on (1 the suitability of the Pollacco unimodal Ks model to predict Ks for a range of New Zealand soils from the New Zealand soil database (S-map and (2 further adaptations to this model to adapt it to dual-porosity structured soils by computing the soil water flux through a continuous function of an improved bimodal pore-size distribution. The improved bimodal Ks model was tested with a New Zealand data set derived from historical measurements of Ks and θ(h for a range of soils derived from sandstone and siltstone. The Ks data were collected using a small core size of 10 cm diameter, causing large uncertainty in replicate measurements. Predictions of Ks were further improved by distinguishing topsoils from subsoil. Nevertheless, as expected, stratifying the data with soil texture only slightly improved the predictions of the physical Ks models because the Ks model is based on pore-size distribution and the calibrated parameters were obtained within the physically feasible range. The improvements made to the unimodal Ks model by using the new bimodal Ks model are modest when compared to the unimodal model, which is explained by the poor accuracy of measured total porosity. Nevertheless, the new bimodal

  3. Saturated hydraulic conductivity model computed from bimodal water retention curves for a range of New Zealand soils

    Science.gov (United States)

    Pollacco, Joseph Alexander Paul; Webb, Trevor; McNeill, Stephen; Hu, Wei; Carrick, Sam; Hewitt, Allan; Lilburne, Linda

    2017-06-01

    Descriptions of soil hydraulic properties, such as the soil moisture retention curve, θ(h), and saturated hydraulic conductivities, Ks, are a prerequisite for hydrological models. Since the measurement of Ks is expensive, it is frequently derived from statistical pedotransfer functions (PTFs). Because it is usually more difficult to describe Ks than θ(h) from pedotransfer functions, Pollacco et al. (2013) developed a physical unimodal model to compute Ks solely from hydraulic parameters derived from the Kosugi θ(h). This unimodal Ks model, which is based on a unimodal Kosugi soil pore-size distribution, was developed by combining the approach of Hagen-Poiseuille with Darcy's law and by introducing three tortuosity parameters. We report here on (1) the suitability of the Pollacco unimodal Ks model to predict Ks for a range of New Zealand soils from the New Zealand soil database (S-map) and (2) further adaptations to this model to adapt it to dual-porosity structured soils by computing the soil water flux through a continuous function of an improved bimodal pore-size distribution. The improved bimodal Ks model was tested with a New Zealand data set derived from historical measurements of Ks and θ(h) for a range of soils derived from sandstone and siltstone. The Ks data were collected using a small core size of 10 cm diameter, causing large uncertainty in replicate measurements. Predictions of Ks were further improved by distinguishing topsoils from subsoil. Nevertheless, as expected, stratifying the data with soil texture only slightly improved the predictions of the physical Ks models because the Ks model is based on pore-size distribution and the calibrated parameters were obtained within the physically feasible range. The improvements made to the unimodal Ks model by using the new bimodal Ks model are modest when compared to the unimodal model, which is explained by the poor accuracy of measured total porosity. Nevertheless, the new bimodal model provides an

  4. Summary of several hydraulic tests in support of the light water breeder reactor design (LWBR development program)

    International Nuclear Information System (INIS)

    McWilliams, K.D.; Turner, J.R.

    1979-05-01

    As part of the Light Water Breeder Reactor development program, hydraulic tests of reactor components were performed. This report presents the results of several of those tests performed for components which are somewhat unique in their application to a pressurized water reactor design. The components tested include: triplate orifices used for flow distribution purposes, multiventuri type flowmeters, tight lattice triangular pitch rod support grids, fuel rod end support plates, and the balance piston which is a major component of the movable fuel balancing system. Test results include component pressure loss coefficients, flowmeter coefficients and fuel rod region pressure drop characteristics

  5. Low-field NMR logging sensor for measuring hydraulic parameters of model soils

    Science.gov (United States)

    Sucre, Oscar; Pohlmeier, Andreas; Minière, Adrien; Blümich, Bernhard

    2011-08-01

    SummaryKnowing the exact hydraulic parameters of soils is very important for improving water management in agriculture and for the refinement of climate models. Up to now, however, the investigation of such parameters has required applying two techniques simultaneously which is time-consuming and invasive. Thus, the objective of this current study is to present only one technique, i.e., a new non-invasive method to measure hydraulic parameters of model soils by using low-field nuclear magnetic resonance (NMR). Hereby, two model clay or sandy soils were respectively filled in a 2 m-long acetate column having an integrated PVC tube. After the soils were completely saturated with water, a low-field NMR sensor was moved up and down in the PVC tube to quantitatively measure along the whole column the initial water content of each soil sample. Thereafter, both columns were allowed to drain. Meanwhile, the NMR sensor was set at a certain depth to measure the water content of that soil slice. Once the hydraulic equilibrium was reached in each of the two columns, a final moisture profile was taken along the whole column. Three curves were subsequently generated accordingly: (1) the initial moisture profile, (2) the evolution curve of the moisture depletion at that particular depth, and (3) the final moisture profile. All three curves were then inverse analyzed using a MATLAB code over numerical data produced with the van Genuchten-Mualem model. Hereby, a set of values ( α, n, θr and θs) was found for the hydraulic parameters for the soils under research. Additionally, the complete decaying NMR signal could be analyzed through Inverse Laplace Transformation and averaged on the 1/ T2 space. Through measurement of the decay in pure water, the effect on the relaxation caused by the sample could be estimated from the obtained spectra. The migration of the sample-related average with decreasing saturation speaks for a enhancement of the surface relaxation as the soil dries, in

  6. COMMIX analysis of four constant flow thermal upramp experiments performed in a thermal hydraulic model of an advanced LMR

    International Nuclear Information System (INIS)

    Yarlagadda, B.S.

    1989-04-01

    The three-dimensional thermal hydraulics computer code COMMIX-1AR was used to analyze four constant flow thermal upramp experiments performed in the thermal hydraulic model of an advanced LMR. An objective of these analyses was the validation of COMMIX-1AR for buoyancy affected flows. The COMMIX calculated temperature histories of some thermocouples in the model were compared with the corresponding measured data. The conclusions of this work are presented. 3 refs., 5 figs

  7. Fully Coupled Geomechanics and Discrete Flow Network Modeling of Hydraulic Fracturing for Geothermal Applications

    Energy Technology Data Exchange (ETDEWEB)

    Fu, P; Johnson, S M; Hao, Y; Carrigan, C R

    2011-01-18

    The primary objective of our current research is to develop a computational test bed for evaluating borehole techniques to enhance fluid flow and heat transfer in enhanced geothermal systems (EGS). Simulating processes resulting in hydraulic fracturing and/or the remobilization of existing fractures, especially the interaction between propagating fractures and existing fractures, represents a critical goal of our project. To this end, we are continuing to develop a hydraulic fracturing simulation capability within the Livermore Distinct Element Code (LDEC), a combined FEM/DEM analysis code with explicit solid-fluid mechanics coupling. LDEC simulations start from an initial fracture distribution which can be stochastically generated or upscaled from the statistics of an actual fracture distribution. During the hydraulic stimulation process, LDEC tracks the propagation of fractures and other modifications to the fracture system. The output is transferred to the Non-isothermal Unsaturated Flow and Transport (NUFT) code to capture heat transfer and flow at the reservoir scale. This approach is intended to offer flexibility in the types of analyses we can perform, including evaluating the effects of different system heterogeneities on the heat extraction rate as well as seismicity associated with geothermal operations. This paper details the basic methodology of our approach. Two numerical examples showing the capability and effectiveness of our simulator are also presented.

  8. A Special Pre-Service-Inspection Using Radiographic Testing(RT) for Brazing Fitting used in Aircraft Hydraulic System

    International Nuclear Information System (INIS)

    Kim, Gyu Ho

    2010-01-01

    Brazing fitting which is one of the aircraft hydraulic power system components is widely used for saving weight and achieving higher reliability. Any inherent defects or damage of fitting can cause system failure and/or physical damage of human body due to highly pressurized fluid. Radiographic testing(RT) technique and additional micro-structure investigation on cut-away surfaces have been accomplished to find out some defect-like-inhomogeneity in the fittings. The radiography results showed that some defect-like-inhomogeneity existed inside body. Additional micro-structure investigation on cut-away surface reveals that the inhomogeneity is due to internal voids. In this study, it can be is said that RT technique can be a useful tool for field acceptance test of hydraulic brazing fitting in short time

  9. Water flux characterization through hydraulic head and temperature data assimilation: Numerical modeling and sandbox experiments

    Science.gov (United States)

    Ju, Lei; Zhang, Jiangjiang; Chen, Cheng; Wu, Laosheng; Zeng, Lingzao

    2018-03-01

    Spatial distribution of groundwater recharge/discharge fluxes has an important impact on mass and energy exchanges in shallow streambeds. During the last two decades, extensive studies have been devoted to the quantification of one-dimensional (1-D) vertical exchange fluxes. Nevertheless, few studies were conducted to characterize two-dimensional (2-D) heterogeneous flux fields that commonly exist in real-world cases. In this study, we used an iterative ensemble smoother (IES) to quantify the spatial distribution of 2-D exchange fluxes by assimilating hydraulic head and temperature measurements. Four assimilation scenarios corresponding to different potential field applications were tested. In the first three scenarios, the heterogeneous hydraulic conductivity fields were first inferred from hydraulic head and/or temperature measurements, and then the flux fields were derived through Darcy's law using the estimated conductivity fields. In the fourth scenario, the flux fields were estimated directly from the temperature measurements, which is more efficient and especially suitable for the situation that a complete knowledge of flow boundary conditions is unavailable. We concluded that, the best estimation could be achieved through jointly assimilating hydraulic head and temperature measurements, and temperature data were superior to the head data when they were used independently. Overall, the IES method provided more robust and accurate vertical flux estimations than those given by the widely used analytical solution-based methods. Furthermore, IES gave reasonable uncertainty estimations, which were unavailable in traditional methods. Since temperature can be accurately monitored with high spatial and temporal resolutions, the coupling of heat tracing techniques and IES provides promising potential in quantifying complex exchange fluxes under field conditions.

  10. Hydraulic effects of unsealed boreholes. Numerical groundwater flow modelling of the Forsmark and Laxemar sites

    International Nuclear Information System (INIS)

    Bockgaard, Niclas

    2011-06-01

    The objective of the work was to investigate hydraulic effects of open and poorly sealed boreholes on groundwater flow conditions through simulations using a numerical groundwater model. Specifically, the boreholes KFM07A, KFM09A, and KFM09B in Forsmark and the boreholes KLX04, KLX06, and KLX10 in Laxemar were studied. The criteria for the selection of these boreholes were that the boreholes should represent typical conditions of the site, the borehole length should exceed 500 m, and that several major fractured zones should be intersected. The boreholes KFM07A and KLX06, respectively, were selected as reference boreholes for more detailed studies of different sealing schemes. The model setup of the Forsmark model followed the Forsmark 2.2 regional-scale conceptual hydrogeological model. The model domain was approximately 15 km (north-south) x 10 km (west- east) x 1.2 km (depth). The 131 deformation zones and three layers of superficial horizontal sheet joint were modelled deterministically. A stochastic discrete fracture network (DFN) representing fractures and minor deformation zones were also generated between the deterministic deformation zones inside central model volume. The side lengths of the square fractures were from 1,000 m down to 10 m. In order to resolve the details of flow in to and out from the borehole, a more detailed DFN was generated in a zone around the borehole KFM07A, where fractures down to a side length of 0.5 m were considered. The model setup of the Laxemar model followed the SDM-Site Laxemar (Laxemar 2.3) regional scale conceptual hydrogeological model. The model domain was approximately 12 km (north-south) x 20 km (west-east) x 2.1 km (depth). A number of 71 deformation zones were modelled deterministically, and one realization of a stochastic DFN, the so-called hydrogeological DFN model base case, was imported to the model. Similar to the Forsmark case, a more detailed DFN was also generated around the reference borehole KLX06. The

  11. Hydraulic effects of unsealed boreholes. Numerical groundwater flow modelling of the Forsmark and Laxemar sites

    Energy Technology Data Exchange (ETDEWEB)

    Bockgaard, Niclas [Golder Associates AB, Stockholm (Sweden)

    2011-06-15

    The objective of the work was to investigate hydraulic effects of open and poorly sealed boreholes on groundwater flow conditions through simulations using a numerical groundwater model. Specifically, the boreholes KFM07A, KFM09A, and KFM09B in Forsmark and the boreholes KLX04, KLX06, and KLX10 in Laxemar were studied. The criteria for the selection of these boreholes were that the boreholes should represent typical conditions of the site, the borehole length should exceed 500 m, and that several major fractured zones should be intersected. The boreholes KFM07A and KLX06, respectively, were selected as reference boreholes for more detailed studies of different sealing schemes. The model setup of the Forsmark model followed the Forsmark 2.2 regional-scale conceptual hydrogeological model. The model domain was approximately 15 km (north-south) x 10 km (west- east) x 1.2 km (depth). The 131 deformation zones and three layers of superficial horizontal sheet joint were modelled deterministically. A stochastic discrete fracture network (DFN) representing fractures and minor deformation zones were also generated between the deterministic deformation zones inside central model volume. The side lengths of the square fractures were from 1,000 m down to 10 m. In order to resolve the details of flow in to and out from the borehole, a more detailed DF