WorldWideScience

Sample records for hydraulic fracture stimulation

  1. Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Mella, Michael [Univ. of Utah, Salt Lake City, UT (United States). Energy and Geoscience Inst.

    2016-08-31

    The objective of this project was to develop and demonstrate an approach for tracking the evolution of circulation immediately following a hydraulic stimulation in an EGS reservoir. Series of high-resolution tracer tests using conservative and thermally reactive tracers were designed at recently created EGS reservoirs in order to track changes in fluid flow parameters such as reservoir pore volume, flow capacity, and effective reservoir temperature over time. Data obtained from the project would be available for the calibration of reservoir models that could serve to predict EGS performance following a hydraulic stimulation.

  2. The Process of Hydraulic Fracturing

    Science.gov (United States)

    Hydraulic fracturing, know as fracking or hydrofracking, produces fractures in a rock formation by pumping fluids (water, proppant, and chemical additives) at high pressure down a wellbore. These fractures stimulate the flow of natural gas or oil.

  3. 77 FR 38024 - Oil and Gas; Well Stimulation, Including Hydraulic Fracturing, on Federal and Indian Lands

    Science.gov (United States)

    2012-06-26

    ... Hydraulic Fracturing, on Federal and Indian Lands AGENCY: Bureau of Land Management, Interior. ACTION...) published in the Federal Register a proposed rule to regulate hydraulic fracturing on public land and Indian land. The rule would require disclosure to the public of chemicals used in hydraulic fracturing on...

  4. Modeling the Hydraulic Fracture Stimulation performed for Reservoir Permeability Enhancement at the Grimsel Test Site, Switzerland

    Science.gov (United States)

    Vogler, D.; Settgast, R.; Gischig, V.; Jalali, M.; Doetsch, J.; Valley, B.; Evans, K. F.; Sherman, C.; Saar, M. O.; Amann, F.

    2016-12-01

    In-situ hydraulic stimulation has been performed on the decameter scale in the Deep Underground rock Laboratory (DUG Lab) at the Grimsel Test Site (GTS), Switzerland. The test site consists of granodiorite with a low fracture density and has been well characterized. The GTS is chosen as it represents physical properties representative for crystalline basement where the development of deep enhanced geothermal systems are planned for the future. Conducted stimulation was performed in a number of boreholes, with 3-4 packer intervals in each borehole subjected to repeated stimulation. During each stimulation event, fluid injection pressure, injection flow rate and microseismic events were recorded amongst others. Fully coupled 3D simulations have been performed with the LLNL's GEOS simulation framework. The methods applied in the simulation of the experiments address physical processes such as rock deformation/stress, LEFM fracture mechanics, fluid flow in the fracture and matrix, and the generation of micro-seismic events. This allows investigation in which we may estimate the distance of fracture penetration during the injection phase and correlate the simulated injection pressure with experimental data during injection, as well as post shut-in. Additionally, the extent of the fracture resulting from the numerical model are compared with the spatial distribution of the microseismic events recorded in the experiment.

  5. Reservoir Stimulation Experiments at the Grimsel Test Site: Stress Measurements using Hydraulic fracturing, Hydraulic Tests on Pre-existing Fractures and Overcoring

    Science.gov (United States)

    Doetsch, J.; Gischig, V.; Amann, F.; Madonna, C.; Jalali, M.; Valley, B.; Evans, K. F.

    2015-12-01

    A decameter-scale in-situ hydraulic stimulation and circulation experiment has been planned in the Deep Underground rock Laboratory (DUG Lab) at the Grimsel Test Site, Switzerland. The general objective of this experiment is to improve our understanding of the pressure, temperature and stress changes in the rock mass due to hydraulic stimulation. In this context, the main goal is to investigate the effect of hydro-shearing on the local stress variation as well as transient and permanent permeability changes with comprehensive thermo-hydro-mechanical (THM) and acoustic emission monitoring. This experiment is designed such that stimulation processes are recorded in a dataset that is unique in THM coupled processes and induced seismicity research. In preparation to the hydro-shearing experiments, the experimental rock volume has been studied in detail using geological tunnel mapping, optical televiewer in existing boreholes, hydraulic tests, geophysical imaging and review of the extensive literature on experiments at the Grimsel Test Site. The geophysical investigations include reflection and transmission ground penetrating radar (GPR) and seismic measurements between the tunnels to image shear zones and reveal heterogeneity of the rock mass. The orientation and magnitude of the principal stresses of the rock volume and its surroundings has been analyzed using hydraulic fracturing, hydraulic tests on pre-existing fractures and overcoring. The hydraulic fracturing tests for stress measurements were monitored using a 32-channel acoustic emission monitoring system and a regional seismic monitoring network. Here, we present the results of the pre-investigations and stress measurements, and give an outlook for the hydro-shearing experiments planned for spring 2016.

  6. 77 FR 27691 - Oil and Gas; Well Stimulation, Including Hydraulic Fracturing, on Federal and Indian Lands

    Science.gov (United States)

    2012-05-11

    ... Secretary of Energy's Energy Advisory Board in 2011. Also, current BLM regulations governing hydraulic... Hydraulic Fracturing, on Federal and Indian Lands AGENCY: Bureau of Land Management, Interior. ACTION: Proposed rule. SUMMARY: The Bureau of Land Management (BLM) is proposing a rule to regulate hydraulic...

  7. Hydraulic fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Clampitt, R.L.

    1973-04-17

    A method of fracturing a subterranean porous formation penetrated by a well bore consists of injecting down the well and into the formation, at a pressure sufficient to fracture the formation, a fracturing fluid comprising an aqueous gel. This gel is composed of water to which there has been added: a water-thickening amount of a water-dispersible polymer selected from the group consisting of polyacrylamides and polymethacrylamides; crosslinked polyacrylamides and crosslinked polyacrylamides; polyacrylic acid and polymethacrylic acid; polyacrylates; polymers of N-substituted acrylamides; copolymers of acrylamide with another ethylenically unsaturated monomer copolymerizable therewith; mixtures of the polymers; a water-soluble compound of a polyvalent metal which is capable of gelling the water when the valence of the metal is reduced to a lower valence state; and a water-soluble reducing agent. (31 claims)

  8. The Shear Mechanisms of Natural Fractures during the Hydraulic Stimulation of Shale Gas Reservoirs.

    Science.gov (United States)

    Zhang, Zhaobin; Li, Xiao

    2016-08-23

    The shearing of natural fractures is important in the permeability enhancement of shale gas reservoirs during hydraulic fracturing treatment. In this work, the shearing mechanisms of natural fractures are analyzed using a newly proposed numerical model based on the displacement discontinuities method. The fluid-rock coupling system of the model is carefully designed to calculate the shearing of fractures. Both a single fracture and a complex fracture network are used to investigate the shear mechanisms. The investigation based on a single fracture shows that the non-ignorable shearing length of a natural fracture could be formed before the natural fracture is filled by pressurized fluid. Therefore, for the hydraulic fracturing treatment of the naturally fractured shale gas reservoirs, the shear strength of shale is generally more important than the tensile strength. The fluid-rock coupling propagation processes of a complex fracture network are simulated under different crustal stress conditions and the results agree well with those of the single fracture. The propagation processes of complex fracture network show that a smaller crustal stress difference is unfavorable to the shearing of natural fractures, but is favorable to the formation of complex fracture network.

  9. The Shear Mechanisms of Natural Fractures during the Hydraulic Stimulation of Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Zhaobin Zhang

    2016-08-01

    Full Text Available The shearing of natural fractures is important in the permeability enhancement of shale gas reservoirs during hydraulic fracturing treatment. In this work, the shearing mechanisms of natural fractures are analyzed using a newly proposed numerical model based on the displacement discontinuities method. The fluid-rock coupling system of the model is carefully designed to calculate the shearing of fractures. Both a single fracture and a complex fracture network are used to investigate the shear mechanisms. The investigation based on a single fracture shows that the non-ignorable shearing length of a natural fracture could be formed before the natural fracture is filled by pressurized fluid. Therefore, for the hydraulic fracturing treatment of the naturally fractured shale gas reservoirs, the shear strength of shale is generally more important than the tensile strength. The fluid-rock coupling propagation processes of a complex fracture network are simulated under different crustal stress conditions and the results agree well with those of the single fracture. The propagation processes of complex fracture network show that a smaller crustal stress difference is unfavorable to the shearing of natural fractures, but is favorable to the formation of complex fracture network.

  10. Zonation of shale reservoir stimulation modes: a conceptual model based on hydraulic fracturing data from the Baltic Basin (Poland).

    Science.gov (United States)

    Jarosiński, Marek; Pachytel, Radomir

    2017-04-01

    Depending on the pressure distribution within Stimulated Reservoir Volume (SRV), a different modes of hydraulic fracturing or tectonic fracture reactivation are active. Hydraulic pressure-driven shortening or expansion of reservoir produces changes in stress field that results in decrease of differential stress either by increasing of horizontal stress minimum (Shmin) or/and by decreasing of horizontal stress maximum (SHmax). For further considerations we assume initial strike-slip stress regime which prevails in the Polish part of the Lower Paleozoic Baltic Basin (BB), as well as in majority of the USA shale basins. The data come from vertical and horizontal shale gas exploration wells drilled from one pad located in the middle of the BB. Structural survey of a long core interval combined with stress analysis based on microfrac tests and fracturing tests allow to reconstruct the initial structural and geomechanical state of reservoir. Further geomechanical evolution of the SRV depends on the hydraulic pressure bubble growth, which is in general unknown. However, the state of pressure can be determined close to the injection borehole and in the front of the SRV migrating in time. In our case, we are able to distinguish four stimulation zones characterized by increasingly diverse stimulation modes and successively closer to the borehole injection zone: (1) shear on preexisting fractures generates microseismic events that produce open fractures propped by their natural asperities being impenetrable for proppant grains; (2) above + initial hydraulic opening of natural fractures that are preferentially oriented to the Shmin, which favors microseismic events triggered by secondary shear on bedding planes and produces open spaces supported by natural fracture asperities and fine-grained proppant; (3) above + failure of primary hydraulic fractures, which increases extensional component of the microseismic events and opens space for coarse-grained proppant; (4) above

  11. Complex Fluids and Hydraulic Fracturing.

    Science.gov (United States)

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H

    2016-06-07

    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.

  12. Pore pressure migration during hydraulic stimulation due to permeability enhancement by low-pressure subcritical fracture slip

    Science.gov (United States)

    Mukuhira, Yusuke; Moriya, Hirokazu; Ito, Takatoshi; Asanuma, Hiroshi; Häring, Markus

    2017-04-01

    Understanding the details of pressure migration during hydraulic stimulation is important for the design of an energy extraction system and reservoir management, as well as for the mitigation of hazardous-induced seismicity. Based on microseismic and regional stress information, we estimated the pore pressure increase required to generate shear slip on an existing fracture during stimulation. Spatiotemporal analysis of pore pressure migration revealed that lower pore pressure migrates farther and faster and that higher pore pressure migrates more slowly. These phenomena can be explained by the relationship between fracture permeability and stress state criticality. Subcritical fractures experience shear slip following smaller increases of pore pressure and promote migration of pore pressure because of their enhanced permeability. The difference in migration rates between lower and higher pore pressures suggests that the optimum wellhead pressure is the one that can stimulate relatively permeable fractures, selectively. Its selection optimizes economic benefits and minimizes seismic risk.

  13. Hydraulic Fracture Stimulation and Acid Treatment of Well Baca 20; Geothermal Reservoir Well Stimulation Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-07-01

    The U.S. Department of Energy-sponsored Geothermal Reservoir Well Stimulation Program was initiated in February 1979 to pursue industry interest in geothermal well stimulation work and to develop technical expertise in areas directly related to geothermal well stimulation activities. This report provides an overview of the two experiments conducted in the high-temperature reservoir in Baca, New Mexico. The report discusses resource and reservoir properties, and provides a description of the stimulation experiment, a description of the treatment evaluation, and a summary of the experiment costs. (DJE-2005)

  14. Hydraulic fracturing near domestic groundwater wells.

    Science.gov (United States)

    Jasechko, Scott; Perrone, Debra

    2017-11-27

    Hydraulic fracturing operations are generating considerable discussion about their potential to contaminate aquifers tapped by domestic groundwater wells. Groundwater wells located closer to hydraulically fractured wells are more likely to be exposed to contaminants derived from on-site spills and well-bore failures, should they occur. Nevertheless, the proximity of hydraulic fracturing operations to domestic groundwater wells is unknown. Here, we analyze the distance between domestic groundwater wells (public and self-supply) constructed between 2000 and 2014 and hydraulically fractured wells stimulated in 2014 in 14 states. We show that 37% of all recorded hydraulically fractured wells stimulated during 2014 exist within 2 km of at least one recently constructed (2000-2014) domestic groundwater well. Furthermore, we identify 11 counties where most ([Formula: see text]50%) recorded domestic groundwater wells exist within 2 km of one or more hydraulically fractured wells stimulated during 2014. Our findings suggest that understanding how frequently hydraulic fracturing operations impact groundwater quality is of widespread importance to drinking water safety in many areas where hydraulic fracturing is common. We also identify 236 counties where most recorded domestic groundwater wells exist within 2 km of one or more recorded oil and gas wells producing during 2014. Our analysis identifies hotspots where both conventional and unconventional oil and gas wells frequently exist near recorded domestic groundwater wells that may be targeted for further water-quality monitoring.

  15. Method for hydraulically fracturing strata

    Energy Technology Data Exchange (ETDEWEB)

    Petryashin, L.F.; Zheltoukhov, V.V.

    1981-01-07

    The proposed method for the hydraulic fracture of strata involves the input of ground magnesium and an inert substance in the bore hole, the latter being pumped under pressure into the strata. In order to improve the quality of the fracture, crystallized chloroacetic acid is used. This acid, prior to its injection into the bore hole, is mixed with the magnesium and starch. This method allows hydraulic fracturing to be conducted in a simpler, more economical, more effective manner as well as in intervals.

  16. Percolation Theory and Modern Hydraulic Fracturing

    Science.gov (United States)

    Norris, J. Q.; Turcotte, D. L.; Rundle, J. B.

    2015-12-01

    During the past few years, we have been developing a percolation model for fracking. This model provides a powerful tool for understanding the growth and properties of the complex fracture networks generated during a modern high volume hydraulic fracture stimulations of tight shale reservoirs. The model can also be used to understand the interaction between the growing fracture network and natural reservoir features such as joint sets and faults. Additionally, the model produces a power-law distribution of bursts which can easily be compared to observed microseismicity.

  17. Selective perceptions of hydraulic fracturing.

    Science.gov (United States)

    Sarge, Melanie A; VanDyke, Matthew S; King, Andy J; White, Shawna R

    2015-01-01

    Hydraulic fracturing (HF) is a focal topic in discussions about domestic energy production, yet the American public is largely unfamiliar and undecided about the practice. This study sheds light on how individuals may come to understand hydraulic fracturing as this unconventional production technology becomes more prominent in the United States. For the study, a thorough search of HF photographs was performed, and a systematic evaluation of 40 images using an online experimental design involving N = 250 participants was conducted. Key indicators of hydraulic fracturing support and beliefs were identified. Participants showed diversity in their support for the practice, with 47 percent expressing low support, 22 percent high support, and 31 percent undecided. Support for HF was positively associated with beliefs that hydraulic fracturing is primarily an economic issue and negatively associated with beliefs that it is an environmental issue. Level of support was also investigated as a perceptual filter that facilitates biased issue perceptions and affective evaluations of economic benefit and environmental cost frames presented in visual content of hydraulic fracturing. Results suggested an interactive relationship between visual framing and level of support, pointing to a substantial barrier to common understanding about the issue that strategic communicators should consider.

  18. Database for hydraulically conductive fractures

    Energy Technology Data Exchange (ETDEWEB)

    Tammisto, E.; Palmen, J.; Ahokas, H. (Poeyry Environment Oy, Vantaa (Finland))

    2009-05-15

    Posiva flow logging (PFL) with a 0.5 m test interval and made in 10 cm steps can be used for the determination of the depth of hydraulically conductive fractures. Together with drillhole wall images and fracture data from core logging, PFL provides possibilities to detect individual conductive fractures. In this report, the results of PFL are combined with fracture data on drillholes OL-KR1 - OL-KR40, OL-KR15B - KR20B, OL-KR22B - KR23B, OL-KR25B, OL-KR27B, OL-KR29B, OL-KR31B, OLKR33B, OL-KR37B and OL-KR39B - KR40B and pilot holes OL-PH1 and ONK-PH2 - ONK-PH7. The conductive fractures were first recognised from PFL data and digital drillhole images and then the fractures from the core logging that correspond to the ones picked from the digital drillhole images were identified. The conductive fractures were primarily recognised in the images based on the openness of fractures or a visible flow in the image. In most of the cases, no tails of flow were seen in the image. In these cases the conductive fractures were recognised in the image based on the openness of fractures and a matching depth. On the basis of the results hydraulically conductive fractures/zones could in most cases be distinguished in the drillhole wall images. An important phase in the work is the calibration of the depth of the image and flow logging with the sample length. Hydraulic conductivity is clearly higher in the upper part of the bedrock in the depth range 0-150 m below sea level than deeper in the bedrock. The frequency of hydraulically conductive fractures (T > 10-10-10-9 m2/s) in depth range 0-150 m varies between 0.06 and 0.78 fractures/metre of sample length. Deeper in the rock conductive fractures are less frequent, but often occur in groups of a few fractures. About 10% of the conductive fractures are within HZ-structures and 6% within BFZ-structures. 3% of the conductive fractures are within HZ- and BFZ-structures. (orig.)

  19. Analytical Modeling of Shale Hydraulic Fracturing and Gas Production

    Science.gov (United States)

    Xu, W.

    2012-12-01

    Shale gas is abundant all over the world. Due to its extremely low permeability, extensive stimulation of a shale reservoir is always required for its economic production. Hydraulic fracturing has been the primary method of shale reservoir stimulation. Consequently the design and optimization of a hydraulic fracturing treatment plays a vital role insuring job success and economic production. Due to the many variables involved and the lack of a simple yet robust tool based on fundamental physics, horizontal well placement and fracturing job designs have to certain degree been a guessing game built on previous trial and error experience. This paper presents a method for hydraulic fracturing design and optimization in these environments. The growth of a complex hydraulic fracture network (HFN) during a fracturing job is equivalently represented by a wiremesh fracturing model (WFM) constructed on the basis of fracture mechanics and mass balance. The model also simulates proppant transport and placement during HFN growth. Results of WFM simulations can then be used as the input into a wiremesh production model (WPM) constructed based on WFM. WPM represents gas flow through the wiremesh HFN by an elliptic flow and the flow of gas in shale matrix by a novel analytical solution accounting for contributions from both free and adsorbed gases stored in the pore space. WPM simulation is validated by testing against numerical simulations using a commercially available reservoir production simulator. Due to the analytical nature of WFM and WPM, both hydraulic fracturing and gas production simulations run very fast on a regular personal computer and are suitable for hydraulic fracturing job design and optimization. A case study is presented to demonstrate how a non-optimized hydraulic fracturing job might have been optimized using WFM and WPM simulations.Fig. 1. Ellipsoidal representation of (a) stimulated reservoir and (b) hydraulic fracture network created by hydraulic

  20. Hydraulic fracturing system and method

    Energy Technology Data Exchange (ETDEWEB)

    Ciezobka, Jordan; Maity, Debotyam

    2018-01-30

    A hydraulic fracturing system and method for enhancing effective permeability of earth formations to increase hydrocarbon production, enhance operation efficiency by reducing fluid entry friction due to tortuosity and perforation, and to open perforations that are either unopened or not effective using traditional techniques, by varying a pump rate and/or a flow rate to a wellbore.

  1. Hydraulic fracturing system and method

    Science.gov (United States)

    Ciezobka, Jordan; Salehi, Iraj

    2017-02-28

    A hydraulic fracturing system and method for enhancing effective permeability of earth formations to increase hydrocarbon production, enhance operation efficiency by reducing fluid entry friction due to tortuosity and perforation, and to open perforations that are either unopened or not effective using traditional techniques, by varying a pump rate and/or a flow rate to a wellbore.

  2. Active monitoring of hydraulic and mechanical properties variations during the hydraulic stimulation of a fractured porous reservoir: Some preliminary results from the HPPP Project

    Science.gov (United States)

    Cappa, F.; Guglielmi, Y.

    2010-12-01

    A new protocol of active geophysical monitoring is used to investigate the downhole changes in the hydromechanical response of a naturally porous reservoir layer with 80° dipping fractures where permeability was artificially enhanced by a hydraulic jacking test conducted by a step-wise increase of the fluid pressure. The protocol, called the High-Pulse Poroelasticity Protocol (HPPP) (http://hppp.unice.fr/), is focusing on controlled-impulsive source repeated observations and interpretation of rock properties changes over the seismic band of frequencies. The excitation source corresponds to a fast hydraulic pulse imposed in a small section of a borehole. The source is monitored with a special borehole probe based on fiber-optic sensors which allow dynamic fluid pressure/3D-mechanical deformation measurements, with reflection of light at specific wavelength from Fabry-Pérot or fiber Bragg gratings mounted between inflatable packers. Within the injection zone, fluid pressure and deformation waves of 1 to 500 Hz and static hydraulic diffusion are simultaneously measured to quantify the hydromechanical couplings Two identical pressure pulses were performed to test the rock three-dimensionnal mechanical response before and after the jacking test. It clearly appears that (1) the magnitude of the rock deformation is a factor of 3 higher, and (2) the principal deformation component pitch is rotated of about 20° with more radial deformation of the layer after the jacking test. Those preliminary tests show that the HPPP protocol can actively improve downhole monitoring of both hydraulic and mechanical bulk properties changes of rocks under strong dynamic stress-flow couplings.

  3. Hydraulic fracturing with distinct element method

    NARCIS (Netherlands)

    Pruiksma, J.P.; Bezuijen, A.

    2002-01-01

    In this report, hydraulic fracturing is investigated using the distinct element code PFC2D from Itasca. Special routines were written to be able to model hydraulic fracturing. These include adding fluid flow to PFC2D and updating the fluid flow domains when fractures appear. A brief description of

  4. Optimisation of the Near-Wellbore Geometry of Hydraulic Fractures Propagating from Cased Perforated Completions

    NARCIS (Netherlands)

    van de Ketterij, R.G.

    2001-01-01

    Hydraulic fracturing is a technique frequently used to stimulate the production of an oil or gas well by creating a fracture in the porous rock around the wellbore. The success of a hydraulic fracture treatment depends heavily on the created fracture geometry. The optimum situation arises when a

  5. Numerical Analysis on the Formation of Fracture Network during the Hydraulic Fracturing of Shale with Pre-Existing Fractures

    Directory of Open Access Journals (Sweden)

    Jianming He

    2017-05-01

    Full Text Available In this paper, configurations of pre-existing fractures in cubic rock blocks were investigated and reconstructed for the modeling of experimental hydraulic fracturing. The fluid-rock coupling process of hydraulic fracturing was simulated based on the displacement discontinuities method. The numerical model was validated against the related laboratory experiments. The stimulated fracture configurations under different conditions can be clearly shown using the validated numerical model. First, a dominated fracture along the maximum principle stress direction is always formed when the stress difference is large enough. Second, there are less reopened pre-existing fractures, more newly formed fractures and less shear fractures with the increase of the cohesion value of pre-existing fractures. Third, the length of the stimulated shear fracture decreases rapidly with the increase of the friction coefficient, while the length of the tensile fracture has no correlation to the fiction coefficient. Finally, the increase of the fluid injection rate is favorable to the formation of a fracture network. The unfavorable effects of the large stress difference and the large cohesion of pre-existing fractures can be partly suppressed by an increase of the injection rate in the hydraulic fracturing treatment. The results of this paper are useful for understanding fracture propagation behaviors during the hydraulic fracturing of shale reservoirs with pre-existing fractures.

  6. Evaluation of hydraulic properties in fractured rockmass

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. Y.; Jang, G. M. [Korea Nuclear Environment Technology Institute, Taejon (Korea, Republic of)

    2000-05-01

    Borehole packer test and fracture survey using borehole acoustic scanning method was performed in order to evaluate hydraulic characteristics of Tuff distributed in northern Yeosu area. Total of 303 fractures were detected and then orientation, aperture size of each fracture are analyzed. Only 12 % of detected fractures were identified as open fractures and others were filled with minerals such as calcite. This indicates that the hydraulic property of rockmass is influenced by fillings as well as aperture size. Mean of hydraulic conductivity of rockmass based on stochastic continuum theory was 5x 10{sup -9}m/s and it was coincident with harmonic mean. Anisotropy of hydraulic conductivity was analyzed by fracture network modeling interpretation. The result showed that horizontal and vertical components conductivity values were nearly same, therefore it might be concluded that the rockmass was hydraulically isotropic.

  7. Crack Features and Shear-Wave Splitting Associated with Fracture Extension during Hydraulic Stimulation of the Geothermal Reservoir in Soultz-sous-Forêts

    Directory of Open Access Journals (Sweden)

    Adelinet M.

    2016-05-01

    Full Text Available The recent tomography results obtained within the scope of the Enhanced Geothermal System (EGS European Soultz project led us to revisit the meso-fracturing properties of Soultz test site. In this paper, we develop a novel approach coupling effective medium modeling and shear-wave splitting to characterize the evolution of crack properties throughout the hydraulic stimulation process. The stimulation experiment performed in 2000 consisted of 3 successive injection steps spanning over 6 days. An accurate 4-D tomographic image was first carried out based upon the travel-times measured for the induced seismicity [Calò M., Dorbath C., Cornet F.H., Cuenot N. (2011 Large-scale aseismic motion identified through 4-D P-wave tomography, Geophys. J. Int. 186, 1295-1314]. The current study shows how to take advantage of the resulting compressional wave (Calò et al., 2011 and shear-wave velocity models. These are given as input data to an anisotropic effective medium model and converted into crack properties. In short, the effective medium model aims to estimate the impact of cracks on velocities. It refers to a crack-free matrix and 2 families of penny-shaped cracks with orientations in agreement with the main observed geological features: North-South strike and dip of 65°East and 65°West [Genter A., Traineau H. (1996 Analysis of macroscopic fractures in granite in the HDR geothermal well EPS-1, Soultz-sous-Forêts, France, J. Vol. Geoth. Res. 72, 121-141], respectively. The resulting output data are the spatial distributions of crack features (lengths and apertures within the 3-D geological formation. We point out that a flow rate increase results in a crack shortening in the area imaged by both compressional and shear waves, especially in the upper part of the reservoir. Conversely, the crack length, estimated during continuous injection rate phases, is higher than during the increasing injection rate phases. A possible explanation for this is that

  8. Experimental Investigation of Crack Extension Patterns in Hydraulic Fracturing with Shale, Sandstone and Granite Cores

    Directory of Open Access Journals (Sweden)

    Jianming He

    2016-12-01

    Full Text Available Hydraulic fracturing is an important method of reservoir stimulation in the exploitation of geothermal resources, and conventional and unconventional oil and gas resources. In this article, hydraulic fracturing experiments with shale, sandstone cores (from southern Sichuan Basin, and granite cores (from Inner Mongolia were conducted to investigate the different hydraulic fracture extension patterns in these three reservoir rocks. The different reactions between reservoir lithology and pump pressure can be reflected by the pump pressure monitoring curves of hydraulic fracture experiments. An X-ray computer tomography (CT scanner was employed to obtain the spatial distribution of hydraulic fractures in fractured shale, sandstone, and granite cores. From the microscopic and macroscopic observation of hydraulic fractures, different extension patterns of the hydraulic fracture can be analyzed. In fractured sandstone, symmetrical hydraulic fracture morphology could be formed, while some micro cracks were also induced near the injection hole. Although the macroscopic cracks in fractured granite cores are barely observed by naked eye, the results of X-ray CT scanning obviously show the morphology of hydraulic fractures. It is indicated that the typical bedding planes well developed in shale formation play an important role in the propagation of hydraulic fractures in shale cores. The results also demonstrated that heterogeneity influenced the pathway of the hydraulic fracture in granite cores.

  9. Hydraulic fracturing of rock-fill dam

    Directory of Open Access Journals (Sweden)

    Jun-Jie WANG

    2016-02-01

    Full Text Available The condition in which hydraulic fracturing in core of earth-rock fill dam maybe induced, the mechanism by which the reason of hydraulic fracturing canbe explained, and the failure criterion by which the occurrence of hydraulicfracturing can be determined, were investigated. The condition dependson material properties such as, cracks in the core and low permeability ofcore soil, and “water wedging” action in cracks. An unsaturated core soiland fast impounding are the prerequisites for the formation of “waterwedging” action. The mechanism of hydraulic fracturing can be explainedby fracture mechanics. The crack propagation induced by water pressuremay follow any of mode I, mode II and mixed mode I-II. Based on testingresults of a core soil, a new criterion for hydraulic fracturing was suggested,from which mechanisms of hydraulic fracturing in the core of rock-fill damwere discussed. The results indicated that factors such as angle betweencrack surface and direction of principal stress, local stress state at thecrack, and fracture toughness KIC of core soil may largely affect theinduction of hydraulic fracturing and the mode of the propagation of thecrack.The condition in which hydraulic fracturing in core of earth-rock fill dam maybe induced, the mechanism by which the reason of hydraulic fracturing canbe explained, and the failure criterion by which the occurrence of hydraulicfracturing can be determined, were investigated. The condition dependson material properties such as, cracks in the core and low permeability ofcore soil, and “water wedging” action in cracks. An unsaturated core soiland fast impounding are the prerequisites for the formation of “waterwedging” action. The mechanism of hydraulic fracturing can be explainedby fracture mechanics. The crack propagation induced by water pressuremay follow any of mode I, mode II and mixed mode I-II. Based on testingresults of a core soil, a new criterion for hydraulic fracturing

  10. Mechanisms of hydraulic fracturing in cohesive soil

    Directory of Open Access Journals (Sweden)

    Jun-jie Wang

    2009-12-01

    Full Text Available Hydraulic fracturing in the soil core of earth-rockfill dams is a common problem affecting the safety of the dams. Based on fracture tests, a new criterion for hydraulic fracturing in cohesive soil was suggested. Using this criterion, the mechanisms of hydraulic fracturing in cubic soil specimens were investigated. The results indicate that the propagation of the crack in a cubic specimen under water pressure occurs in a mixed mode I-II if the crack face is not perpendicular to any of the principal stresses, and the crack most likely to propagate is the one that is perpendicular to the minor principal stress and propagates in mode I.

  11. Hydraulic fracturing chemicals and fluids technology

    CERN Document Server

    Fink, Johannes

    2013-01-01

    When classifying fracturing fluids and their additives, it is important that production, operation, and completion engineers understand which chemical should be utilized in different well environments. A user's guide to the many chemicals and chemical additives used in hydraulic fracturing operations, Hydraulic Fracturing Chemicals and Fluids Technology provides an easy-to-use manual to create fluid formulations that will meet project-specific needs while protecting the environment and the life of the well. Fink creates a concise and comprehensive reference that enables the engineer to logically select and use the appropriate chemicals on any hydraulic fracturing job. The first book devoted entirely to hydraulic fracturing chemicals, Fink eliminates the guesswork so the engineer can select the best chemicals needed on the job while providing the best protection for the well, workers and environment. Pinpoints the specific compounds used in any given fracturing operation Provides a systematic approach to class...

  12. Hydraulic fracturing model based on the discrete fracture model and the generalized J integral

    Science.gov (United States)

    Liu, Z. Q.; Liu, Z. F.; Wang, X. H.; Zeng, B.

    2016-08-01

    The hydraulic fracturing technique is an effective stimulation for low permeability reservoirs. In fracturing models, one key point is to accurately calculate the flux across the fracture surface and the stress intensity factor. To achieve high precision, the discrete fracture model is recommended to calculate the flux. Using the generalized J integral, the present work obtains an accurate simulation of the stress intensity factor. Based on the above factors, an alternative hydraulic fracturing model is presented. Examples are included to demonstrate the reliability of the proposed model and its ability to model the fracture propagation. Subsequently, the model is used to describe the relationship between the geometry of the fracture and the fracturing equipment parameters. The numerical results indicate that the working pressure and the pump power will significantly influence the fracturing process.

  13. DEMONSTRATION BULLETIN: HYDRAULIC FRACTURING OF CONTAMINATED SOIL

    Science.gov (United States)

    Hydraulic fracturing is a physical process that creates fractures in silty clay soil to enhance its permeability. The technology, developed by the Risk Reduction Engineering Laboratory (RREL) and the University of Cincinnati, creates sand-filled horizontal fractures up to 1 in. i...

  14. Hydraulic Fracturing and the Environment

    Science.gov (United States)

    Ayatollahy Tafti, T.; Aminzadeh, F.; Jafarpour, B.; de Barros, F.

    2013-12-01

    In this presentation, we highlight two key environmental concerns of hydraulic fracturing (HF), namely induced seismicity and groundwater contamination (GC). We examine the induced seismicity (IS) associated with different subsurface fluid injection and production (SFIP) operations and the key operational parameters of SFIP impacting it. In addition we review the key potential sources for possible water contamination. Both in the case of IS and GC we propose modeling and data analysis methods to quantify the risk factors to be used for monitoring and risk reduction. SFIP include presents a risk in hydraulic fracturing, waste water injection, enhanced oil recovery as well as geothermal energy operations. Although a recent report (NRC 2012) documents that HF is not responsible for most of the induced seismicities, we primarily focus on HF here. We look into vaious operational parameters such as volume and rate of water injection, the direction of the well versus the natural fracture network, the depth of the target and the local stress field and fault system, as well as other geological features. The latter would determine the potential for triggering tectonic related events by small induced seismicity events. We provide the building blocks for IS risk assessment and monitoring. The system we propose will involve adequate layers of complexity based on mapped seismic attributes as well as results from ANN and probabilistic predictive modeling workflows. This leads to a set of guidelines which further defines 'safe operating conditions' and 'safe operating zones' which will be a valuable reference for future SFIP operations. We also illustrate how HF can lead to groundwater aquifer contamination. The source of aquifer contamination can be the hydrocarbon gas or the chemicals used in the injected liquid in the formation. We explore possible pathways of contamination within and discuss the likelihood of contamination from each source. Many of the chemical compounds used

  15. Interaction between Hydraulic Fracturing Process and Pre-existing Natural Fractures

    NARCIS (Netherlands)

    Meng, C.

    2010-01-01

    Hydraulic fracturing is employed as a stimulation treatment by the oil and gas industry to enhance the hydro-carbon recoveries. The rationale is that by creating fractures from the wellbore into the surrounding formations, the conductivity between the well and reservoir is significantly increased

  16. Toxicity Assessment for EPA's Hydraulic Fracturing Study

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains data used to develop multiple manuscripts on the toxicity of chemicals associated with the hydraulic fracturing industry. These manuscripts...

  17. Data Analytics of Hydraulic Fracturing Data

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jovan Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Viswanathan, Hari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffery [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Middleton, Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-11

    These are a set of slides on the data analytics of hydraulic fracturing data. The conclusions from this research are the following: they proposed a permeability evolution as a new mechanism to explain hydraulic fracturing trends; they created a model to include this mechanism and it showed promising results; the paper from this research is ready for submission; they devised a way to identify and sort refractures in order to study their effects, and this paper is currently being written.

  18. Poroelastic response of geothermal reservoirs during hydraulic stimulation treatment

    Science.gov (United States)

    Jacquey, Antoine; Urpi, Luca; Cacace, Mauro; Blöcher, Guido; Zimmermann, Günter; Scheck-Wenderoth, Magdalena

    2017-04-01

    Enhanced geothermal systems (EGS) are engineered reservoirs developed to extract heat from low permeability and low porosity geological formations. Cyclic hydraulic stimulation treatments are used in such a context to create hydraulic fractures, minimizing the fluid injected volume (recently proposed as a mitigation strategy for induced seismicity) to gain access to the target formation fluids, drain the geothermal fluid and therefore increase the overall productivity of the geothermal reservoir. During these operations, successive cycles of injection of high flow rates are conducted to decrease the effective minimum principal stress, and therefore the tensile strength of the material, developing a hydraulic fracture. Opening of these newly developed fractures induces an additional deformation of the reservoir rocks. In this study, the poroelastic response resulting from induced deformation during cyclic hydraulic stimulation treatment of a well is investigated using hydromechanical coupling between pore pressure variations and solid rock deformation. The effects of this poroelastic response on the hydromechanical state of a reservoir is illustrated by means of field measurements of a cyclic hydraulic stimulation treatment conducted at the Groß Schönebeck geothermal research site in August 2007. This study points out that a nonlinear pore pressure response arises within the reservoir rocks due to the deformation generated by the stimulation treatment. It is shown here that the 3D poroelastic response of the reservoir leads to an unexpected quasi-instantaneous pore pressure increase in a neighbor monitoring well located approximatively 475 m away from the stimulated well at reservoir depth.

  19. Self-potential observations during hydraulic fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Jeffrey R.; Glaser, Steven D.

    2007-09-13

    The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

  20. Imaging hydraulic fractures by microseismic migration for downhole monitoring system

    Science.gov (United States)

    Lin, Ye; Zhang, Haijiang

    2016-12-01

    It has been a challenge to accurately characterize fracture zones created by hydraulic fracturing from microseismic event locations. This is because generally detected events are not complete due to the associated low signal to noise ratio and some fracturing stages may not produce microseismic events even if fractures are well developed. As a result, spatial distribution of microseismic events may not well represent fractured zones by hydraulic fracturing. Here, we propose a new way to characterize the fractured zones by reverse time migration (RTM) of microseismic waveforms from some events. This is based on the fact that fractures filled with proppants and other fluids can act as strong scatterers for seismic waves. Therefore, for multi-stage hydraulic fracturing, recorded waveforms from microseismic events induced in a more recent stage may be scattered by fractured zones from previous stages. Through RTM of microseismic waveforms in the current stage, we can determine fractured zones created in previous stages by imaging area of strong scattering. We test the feasibility of this method using synthetic models with different configurations of microseismic event locations and borehole sensor positions for a 2D downhole microseismic monitoring system. Synthetic tests show that with a few events fractured zones can be directly imaged and thus the stimulated reservoir volume (SRV) can be estimated. Compared to the conventional location-based SRV estimation method, the proposed new method does not depend on the completeness of detected events and only a limited number of detected and located events are necessary for characterizing fracture distribution. For simplicity, the 2D model is used for illustrating the concept of microseismic RTM for imaging the fracture zone but the method can be adapted to real cases in the future.

  1. Monitoring hydraulic stimulation using telluric sounding

    Science.gov (United States)

    Rees, Nigel; Heinson, Graham; Conway, Dennis

    2018-01-01

    The telluric sounding (TS) method is introduced as a potential tool for monitoring hydraulic fracturing at depth. The advantage of this technique is that it requires only the measurement of electric fields, which are cheap and easy when compared with magnetotelluric measurements. Additionally, the transfer function between electric fields from two locations is essentially the identity matrix for a 1D Earth no matter what the vertical structure. Therefore, changes in the earth resulting from the introduction of conductive bodies underneath one of these sites can be associated with deviations away from the identity matrix, with static shift appearing as a galvanic multiplier at all periods. Singular value decomposition and eigenvalue analysis can reduce the complexity of the resulting telluric distortion matrix to simpler parameters that can be visualised in the form of Mohr circles. This technique would be useful in constraining the lateral extent of resistivity changes. We test the viability of utilising the TS method for monitoring on both a synthetic dataset and for a hydraulic stimulation of an enhanced geothermal system case study conducted in Paralana, South Australia. The synthetic data example shows small but consistent changes in the transfer functions associated with hydraulic stimulation, with grids of Mohr circles introduced as a useful diagnostic tool for visualising the extent of fluid movement. The Paralana electric field data were relatively noisy and affected by the dead band making the analysis of transfer functions difficult. However, changes in the order of 5% were observed from 5 s to longer periods. We conclude that deep monitoring using the TS method is marginal at depths in the order of 4 km and that in order to have meaningful interpretations, electric field data need to be of a high quality with low levels of site noise.[Figure not available: see fulltext.

  2. Mechanics and direction of hydraulic fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Daneshy, A.A.

    1973-10-01

    Use of the in situ principal stresses greatly simplifies the problems of hydraulic fracturing. For one thing, it reduces the number of stresses to 3, thus simplifying the mathematics. Besides, this choice is in harmony with laboratory observations of fracture propagation perpendicular to the least principal stress. In addition to underground stresses, hydraulic stress is also influenced by the mechanical properties of the formation rock. In this discussion, it is assumed that the formation to be fractured is isotropic, homogeneous, and brittle-elastic. The initiation of hydraulic fractures is synonymous with the rupture of rock adjacent to the borehole wall. This rupture can occur only if the induced stresses exceed the strength of the formation. During fracturing treatments, fracture initiation is identified by a sudden drop in borehole fluid pressure accompanied by an increase in the injection rate. Continued injection of fluid after fracture initiation will result in its extension. The fracture will propagate in such a way that it will require the least possible amount of energy for its extension.

  3. Database for Hydraulically Conductive Fractures. Update 2010

    Energy Technology Data Exchange (ETDEWEB)

    Tammisto, E.; Palmen, J. (Poeyry Finland Oy, Espoo (Finland))

    2011-02-15

    Posiva flow logging (PFL) with 0.5 m test interval and made in 10 cm steps can be used for exact depth determination of hydraulically conductive fractures. Together with drillhole wall images and fracture data from core logging PFL provides possibilities to detect single conductive fractures. In this report, the results of PFL are combined to the fracture data in drillholes OL-KR49 .. OL-KR53, OL-KR50B, OL-KR52B and OLKR53B and pilot holes ONK-PH11 - ONK-PH13. The results are used mainly in development of hydroDFN- models. The conductive fractures were first recognised from the PFL data and digital drillhole images and then the fractures from the core logging corresponding to the ones picked from the digital drillhole images were identified. The conductive fractures were recognised from the images primarily based on openness of fractures or a visible flow in the image. In most of the cases of measured flow, no tails of flow were seen in the image. In these cases, the conductive fractures were recognised from the image based on openness of fractures and a matching depth. According to the results the hydraulically conductive fractures/zones can be distinguished from the drillhole wall images in most cases. An important phase in the work is to calibrate the depth of the image and the flow logging with the sample length. The hydraulic conductivity is clearly higher in the upper part of the bedrock in the depth range 0-150 m below sea level than deeper in the bedrock. The frequency of hydraulically conductive fractures detected in flow logging (T > 10 -10-10-9 m2/s) in depth range 0-150 m varies from 0.07 to 0.84 fractures/meter of sample length. Deeper in the rock the conductive fractures are less frequent, but occur often in groups of few fractures. In drillholes OL-KR49 .. OL-KR53, OL-KR50B, OL-KR52B and OL-KR53B about 8.5 % of all fractures and 4.4 % of the conductive fractures are within HZ-structures. (orig.)

  4. Characterisation of hydraulically-active fractures in a fractured ...

    African Journals Online (AJOL)

    ... in the initial stage of a site investigation to select the optimal site location or to evaluate the hydrogeological properties of fractures in underground exploration studies, such as those related geothermal reservoir evaluation and radioactive waste disposal. Keywords: self-potential method, hydraulically-conductive fractures, ...

  5. Effect of Poroelasticity on Hydraulic Fracture Interactions

    DEFF Research Database (Denmark)

    Usui, Tomoya; Salimzadeh, Saeed; Paluszny, Adriana

    2017-01-01

    This study investigates, by performing finite element-based simulations, the influence of fluid leak-off and poroelasticity on growth of multiple hydraulic fractures that initiate from a single horizontal well. In this research, poroelastic deformation of the matrix is coupled with fluid flow...... in the fractures, and fluid flow in the rock matrix, in three dimensions. Effects of the fluid leakoff and poroelasticity on the propagation of the neighboring fractures are studied by varying the matrix permeability, and the Biot coefficient. Simulation results show that the stress induced by the opening...... of the fractures, and the stress induced by the fluid leak-off, each have the effect of locally altering the magnitudes and orientations of the principal stresses, hence altering the propagation direction of the fractures. The stress induced by the opening of the fractures tends to propagate both of the fractures...

  6. Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Holditch; A. Daniel Hill; D. Zhu

    2007-06-19

    The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical

  7. Discrete Fracture Network Characterization of Fractured Shale Reservoirs with Implications to Hydraulic Fracturing Optimization

    Science.gov (United States)

    Jin, G.

    2016-12-01

    Shales are important petroleum source rocks and reservoir seals. Recent developments in hydraulic fracturing technology have facilitated high gas production rates from shale and have had a strong impact on the U.S. gas supply and markets. Modeling of effective permeability for fractured shale reservoirs has been challenging because the presence of a fracture network significantly alters the reservoir hydrologic properties. Due to the frequent occurrence of fracture networks, it is of vital importance to characterize fracture networks and to investigate how these networks can be used to optimize the hydraulic fracturing. We have conducted basic research on 3-D fracture permeability characterization and compartmentization analyses for fractured shale formations, which takes the advantages of the discrete fracture networks (DFN). The DFN modeling is a stochastic modeling approach using the probabilistic density functions of fractures. Three common scenarios of DFN models have been studied for fracture permeability mapping using our previously proposed techniques. In DFN models with moderately to highly concentrated fractures, there exists a representative element volume (REV) for fracture permeability characterization, which indicates that the fractured reservoirs can be treated as anisotropic homogeneous media. Hydraulic fracturing will be most effective if the orientation of the hydraulic fracture is perpendicular to the mean direction of the fractures. A DFN model with randomized fracture orientations, on the other hand, lacks an REV for fracture characterization. Therefore, a fracture permeability tensor has to be computed from each element. Modeling of fracture interconnectivity indicates that there exists no preferred direction for hydraulic fracturing to be most effective oweing to the interconnected pathways of the fracture network. 3-D fracture permeability mapping has been applied to the Devonian Chattanooga Shale in Alabama and the results suggest that an

  8. Triaxial coreflood study of the hydraulic fracturing of Utica Shale

    Science.gov (United States)

    Carey, J. W.; Frash, L.; Viswanathan, H. S.

    2015-12-01

    One of the central questions in unconventional oil and gas production research is the cause of limited recovery of hydrocarbon. There are many hypotheses including: 1) inadequate penetration of fractures within the stimulated volume; 2) limited proppant delivery; 3) multiphase flow phenomena that blocks hydrocarbon migration; etc. Underlying any solution to this problem must be an understanding of the hydrologic properties of hydraulically fractured shale. In this study, we conduct triaxial coreflood experiments using a gasket sealing mechanism to characterize hydraulic fracture development and permeability of Utica Shale samples. Our approach also includes fracture propagation with proppants. The triaxial coreflood experiments were conducted with an integrated x-ray tomography system that allows direct observation of fracture development using x-ray video radiography and x-ray computed tomography at elevated pressure. A semi-circular, fracture initiation notch was cut into an end-face of the cylindrical samples (1"-diameter with lengths from 0.375 to 1"). The notch was aligned parallel with the x-ray beam to allow video radiography of fracture growth as a function of injection pressure. The proppants included tungsten powder that provided good x-ray contrast for tracing proppant delivery and distribution within the fracture system. Fractures were propagated at injection pressures in excess of the confining pressure and permeability measurements were made in samples where the fractures propagated through the length of the sample, ideally without penetrating the sample sides. Following fracture development, permeability was characterized as a function of hydrostatic pressure and injection pressure. X-ray video radioadiography was used to study changes in fracture aperture in relation to permeability and proppant embedment. X-ray tomography was collected at steady-state conditions to fully characterize fracture geometry and proppant distribution.

  9. Multiphase flow models for hydraulic fracturing technology

    Science.gov (United States)

    Osiptsov, Andrei A.

    2017-10-01

    The technology of hydraulic fracturing of a hydrocarbon-bearing formation is based on pumping a fluid with particles into a well to create fractures in porous medium. After the end of pumping, the fractures filled with closely packed proppant particles create highly conductive channels for hydrocarbon flow from far-field reservoir to the well to surface. The design of the hydraulic fracturing treatment is carried out with a simulator. Those simulators are based on mathematical models, which need to be accurate and close to physical reality. The entire process of fracture placement and flowback/cleanup can be conventionally split into the following four stages: (i) quasi-steady state effectively single-phase suspension flow down the wellbore, (ii) particle transport in an open vertical fracture, (iii) displacement of fracturing fluid by hydrocarbons from the closed fracture filled with a random close pack of proppant particles, and, finally, (iv) highly transient gas-liquid flow in a well during cleanup. The stage (i) is relatively well described by the existing hydralics models, while the models for the other three stages of the process need revisiting and considerable improvement, which was the focus of the author’s research presented in this review paper. For stage (ii), we consider the derivation of a multi-fluid model for suspension flow in a narrow vertical hydraulic fracture at moderate Re on the scale of fracture height and length and also the migration of particles across the flow on the scale of fracture width. At the stage of fracture cleanaup (iii), a novel multi-continua model for suspension filtration is developed. To provide closure relationships for permeability of proppant packings to be used in this model, a 3D direct numerical simulation of single phase flow is carried out using the lattice-Boltzmann method. For wellbore cleanup (iv), we present a combined 1D model for highly-transient gas-liquid flow based on the combination of multi-fluid and

  10. Database for hydraulically conductive fractures. Update 2009

    Energy Technology Data Exchange (ETDEWEB)

    Palmen, J.; Tammisto, E.; Ahokas, H. (Poeyry Finland Oy, Espoo (Finland))

    2010-03-15

    Posiva flow logging (PFL) with a 0.5 m test interval and made in 10 cm steps can be used for the determination of the depth of hydraulically conductive fractures. Together with drillhole wall images and fracture data from core logging, PFL provides possibilities to detect individual conductive fractures. In this report, the results of PFL are combined with fracture data on drillholes OL-KR41 - OL-KR48, OL-KR41B - OLKR45B and pilot holes ONK-PH8 - ONK-PH10. In addition, HTU-data measured by 2 m section length and 2 m steps in holes OL-KR39 and OL-KR40 at depths 300-700 m were analyzed and combined with fracture data in a similar way. The conductive fractures were first recognised from PFL data and digital drillhole images and then the fractures from the core logging that correspond to the ones picked from the digital drillhole images were identified. The conductive fractures were primarily recognised in the images based on the openness of fractures or a visible flow in the image. In most of the cases, no tails of flow were seen in the image. In these cases the conductive fractures were recognised in the image based on the openness of fractures and a matching depth. On the basis of the results hydraulically conductive fractures/zones could in most cases be distinguished in the drillhole wall images. An important phase in the work is the calibration of the depth of the image, flow logging and the HTU logging with the sample length. In addition to results of PFL-correlation, Hydraulic Testing Unit (HTU) data measured by 2 m section length and 2 m steps was studied at selected depths for holes OL-KR39, OL-KR40, OL-KR42 and OL-KR45. Due to low HTU section depth accuracy the conducting fractures were successfully correlated with Fracture Data Base (FDB) fractures only in drillholes OL-KR39 and OL-KR40. HTU-data depth matching in these two drillholes was performed using geophysical Single Point Resistance (SPR) data both from geophysical and PFL measurements as a depth

  11. Review of Well Operator Files for Hydraulically Fractured Oil and Gas Production Wells: Hydraulic Fracturing Operations

    Science.gov (United States)

    EPA conducted a survey of oil and gas production wells hydraulically fractured by nine oil and gas service companies in the United States during 2009 and 2010. This is the second well file review report.

  12. Understanding hydraulic fracturing: a multi-scale problem

    Science.gov (United States)

    Hyman, J. D.; Jiménez-Martínez, J.; Viswanathan, H. S.; Carey, J. W.; Porter, M. L.; Rougier, E.; Karra, S.; Kang, Q.; Frash, L.; Chen, L.; Lei, Z.; O’Malley, D.; Makedonska, N.

    2016-01-01

    Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597789

  13. Hydraulic Fracturing and Production Optimization in Eagle Ford Shale Using Coupled Geomechanics and Fluid Flow Model

    Science.gov (United States)

    Suppachoknirun, Theerapat; Tutuncu, Azra N.

    2017-12-01

    With increasing production from shale gas and tight oil reservoirs, horizontal drilling and multistage hydraulic fracturing processes have become a routine procedure in unconventional field development efforts. Natural fractures play a critical role in hydraulic fracture growth, subsequently affecting stimulated reservoir volume and the production efficiency. Moreover, the existing fractures can also contribute to the pressure-dependent fluid leak-off during the operations. Hence, a reliable identification of the discrete fracture network covering the zone of interest prior to the hydraulic fracturing design needs to be incorporated into the hydraulic fracturing and reservoir simulations for realistic representation of the in situ reservoir conditions. In this research study, an integrated 3-D fracture and fluid flow model have been developed using a new approach to simulate the fluid flow and deliver reliable production forecasting in naturally fractured and hydraulically stimulated tight reservoirs. The model was created with three key modules. A complex 3-D discrete fracture network model introduces realistic natural fracture geometry with the associated fractured reservoir characteristics. A hydraulic fracturing model is created utilizing the discrete fracture network for simulation of the hydraulic fracture and flow in the complex discrete fracture network. Finally, a reservoir model with the production grid system is used allowing the user to efficiently perform the fluid flow simulation in tight formations with complex fracture networks. The complex discrete natural fracture model, the integrated discrete fracture model for the hydraulic fracturing, the fluid flow model, and the input dataset have been validated against microseismic fracture mapping and commingled production data obtained from a well pad with three horizontal production wells located in the Eagle Ford oil window in south Texas. Two other fracturing geometries were also evaluated to optimize

  14. Review of Hydraulic Fracturing for Preconditioning in Cave Mining

    Science.gov (United States)

    He, Q.; Suorineni, F. T.; Oh, J.

    2016-12-01

    Hydraulic fracturing has been used in cave mining for preconditioning the orebody following its successful application in the oil and gas industries. In this paper, the state of the art of hydraulic fracturing as a preconditioning method in cave mining is presented. Procedures are provided on how to implement prescribed hydraulic fracturing by which effective preconditioning can be realized in any in situ stress condition. Preconditioning is effective in cave mining when an additional fracture set is introduced into the rock mass. Previous studies on cave mining hydraulic fracturing focused on field applications, hydraulic fracture growth measurement and the interaction between hydraulic fractures and natural fractures. The review in this paper reveals that the orientation of the current cave mining hydraulic fractures is dictated by and is perpendicular to the minimum in situ stress orientation. In some geotechnical conditions, these orientation-uncontrollable hydraulic fractures have limited preconditioning efficiency because they do not necessarily result in reduced fragmentation sizes and a blocky orebody through the introduction of an additional fracture set. This implies that if the minimum in situ stress orientation is vertical and favors the creation of horizontal hydraulic fractures, in a rock mass that is already dominated by horizontal joints, no additional fracture set is added to that rock mass to increase its blockiness to enable it cave. Therefore, two approaches that have the potential to create orientation-controllable hydraulic fractures in cave mining with the potential to introduce additional fracture set as desired are proposed to fill this gap. These approaches take advantage of directional hydraulic fracturing and the stress shadow effect, which can re-orientate the hydraulic fracture propagation trajectory against its theoretical predicted direction. Proppants are suggested to be introduced into the cave mining industry to enhance the

  15. Hydraulic fracturing in granite under geothermal conditions

    Science.gov (United States)

    Solberg, P.; Lockner, D.; Byerlee, J.D.

    1980-01-01

    The experimental hydraulic fracturing of granite under geothermal conditions produces tensile fracture at rapid fluid injection rates and shear fracture at slow injection rates and elevated differential stress levels. A sudden burst of acoustic emission activity accompanies tensile fracture formation whereas the acoustic emission rate increases exponentially prior to shear fracture. Temperature does not significantly affect the failure mechanism, and the experimental results have not demonstrated the occurrence of thermal fracturing. A critical result of these experiments is that fluid injection at intermediate rates and elevated differential stress levels increases permeability by more than an order of magnitude without producing macroscopic fractures, and low-level acoustic emission activity occurs simultaneously near the borehole and propagates outward into the specimen with time. Permeability measurements conducted at atmospheric pressure both before and after these experiments show that increased permeability is produced by permanent structural changes in the rock. Although results of this study have not demonstrated the occurrence of thermal fracturing, they suggest that fluid injection at certain rates in situ may markedly increase local permeability. This could prove critical to increasing the efficiency of heat exchange for geothermal energy extraction from hot dry rock. ?? 1980.

  16. Application of characteristic time concepts for hydraulic fracture configuration design, control, and optimization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Advani, S.H.; Lee, T.S. [Lehigh Univ., Bethlehem, PA (United States); Moon, H. [Ohio State Univ., Columbus, OH (United States)

    1992-10-01

    The analysis of pertinent energy components or affiliated characteristic times for hydraulic stimulation processes serves as an effective tool for fracture configuration designs optimization, and control. This evaluation, in conjunction with parametric sensitivity studies, provides a rational base for quantifying dominant process mechanisms and the roles of specified reservoir properties relative to controllable hydraulic fracture variables for a wide spectrum of treatment scenarios. Results are detailed for the following multi-task effort: (a) Application of characteristic time concept and parametric sensitivity studies for specialized fracture geometries (rectangular, penny-shaped, elliptical) and three-layered elliptic crack models (in situ stress, elastic moduli, and fracture toughness contrasts). (b) Incorporation of leak-off effects for models investigated in (a). (c) Simulation of generalized hydraulic fracture models and investigation of the role of controllable vaxiables and uncontrollable system properties. (d) Development of guidelines for hydraulic fracture design and optimization.

  17. Application of characteristic time concepts for hydraulic fracture configuration design, control, and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Advani, S.H.; Lee, T.S. (Lehigh Univ., Bethlehem, PA (United States)); Moon, H. (Ohio State Univ., Columbus, OH (United States))

    1992-10-01

    The analysis of pertinent energy components or affiliated characteristic times for hydraulic stimulation processes serves as an effective tool for fracture configuration designs optimization, and control. This evaluation, in conjunction with parametric sensitivity studies, provides a rational base for quantifying dominant process mechanisms and the roles of specified reservoir properties relative to controllable hydraulic fracture variables for a wide spectrum of treatment scenarios. Results are detailed for the following multi-task effort: (a) Application of characteristic time concept and parametric sensitivity studies for specialized fracture geometries (rectangular, penny-shaped, elliptical) and three-layered elliptic crack models (in situ stress, elastic moduli, and fracture toughness contrasts). (b) Incorporation of leak-off effects for models investigated in (a). (c) Simulation of generalized hydraulic fracture models and investigation of the role of controllable vaxiables and uncontrollable system properties. (d) Development of guidelines for hydraulic fracture design and optimization.

  18. Chemical Degradation of Polyacrylamide during Hydraulic Fracturing.

    Science.gov (United States)

    Xiong, Boya; Miller, Zachary; Roman-White, Selina; Tasker, Travis L; Farina, Benjamin; Piechowicz, Bethany; Joshi, Prachi; Zhu, Liang; Gorski, Christopher A; Burgos, William D; Zydney, Andrew L; Kumar, Manish

    2017-11-27

    Polyacrylamide (PAM) based friction reducers are a primary ingredient of slickwater hydraulic fracturing fluids. Little is known regarding the fate of these polymers under downhole conditions, which could have important environmental impacts including strategies for reuse or treatment of flowback water. The objective of this study was to evaluate the chemical degradation of high molecular weight PAM, including the effects of shale, oxygen, temperature, pressure, and salinity. Data were obtained with a slickwater fracturing fluid exposed to both a shale sample collected from a Marcellus shale outcrop and to Marcellus core samples at high pressures/temperatures (HPT) simulating downhole conditions. Based on size exclusion chromatography analyses, the peak molecular weight of the PAM was reduced by two orders of magnitude, from roughly 10 MDa to 200 kDa under typical HPT fracturing conditions. The rate of degradation was independent of pressure and salinity but increased significantly at high temperatures and in the presence of oxygen dissolved in fracturing fluid. Results were consistent with a free radical chain scission mechanism, supported by measurements of sub-μM hydroxyl radical concentrations. The shale sample adsorbed some PAM (~35%), but importantly it catalyzed the chemical degradation of PAM, likely due to dissolution of Fe2+ at low pH. These results provide the first evidence of radical-induced degradation of PAM under HPT hydraulic fracturing conditions without additional oxidative breaker.

  19. Deformation Behavior between Hydraulic and Natural Fractures Using Fully Coupled Hydromechanical Model with XFEM

    Directory of Open Access Journals (Sweden)

    Fei Liu

    2017-01-01

    Full Text Available There has been a growing consensus that preexisting natural fractures play an important role during stimulation. A novel fully coupled hydromechanical model using extended finite element method is proposed. This directly coupled scheme avoids the cumbersome process during calculating the fluid pressure in complicated fracture networks and translating into an equivalent nodal force. Numerical examples are presented to simulate the hydraulic fracture propagation paths for simultaneous multifracture treatments with properly using the stress shadow effects for horizontal wells and to reveal the deformation response and interaction mechanism between hydraulic induced fracture and nonintersected natural fractures at orthotropic and nonorthotropic angles. With the stress shadow effects, the induced hydraulic flexural fracture deflecting to wellbore rather than transverse fracture would be formed during the progress of simultaneous fracturing for a horizontal well. The coupled hydromechanical simulation reveals that the adjacent section to the intersection is opened and the others are closed for orthogonal natural fracture, while the nonorthogonal natural fracture is activated near the intersection firstly and along the whole section with increasing perturbed stresses. The results imply that the induced hydraulic fracture tends to cross orthotropic natural fracture, while it is prior to being arrested by the nonorthotropic natural fracture.

  20. Hydromechanical analyses of the hydraulic stimulation of borehole Basel 1

    Science.gov (United States)

    Ortiz R., Adrián E.; Renner, Jörg; Jung, Reinhard

    2011-06-01

    We analysed the response of the underground penetrated by borehole Basel 1 to two pumping sequences, a pre-stimulation test (flow rate up to 10 L min-1) followed by a step-up stimulation (starting from 10 L min-1 up to 3380 L min-1), performed to generate a heat exchanger at about 5 km depth. Throughout the test sequences an increase in flow rate resulted in an increase in injection pressure. Yet, sudden pressure drops (≲0.1 MPa) as well as a continuous decrease in pressure occurred at constant flow rates above 100 L min-1. Analysis of the pre-stimulation record strongly suggests the existence of a vertical fracture prior to stimulation. We focused on two contrasting scenarios in fracture height and normalized fracture conductivity out of the range of possible geometrical characteristics of this pre-existent fracture as constrained by numerical modelling. Independent of chosen scenario, the initially modest pressure increase can only be modelled by hydraulic properties that change with fluid-pressure. The spatio-temporal characteristics of the pressure distributions differ significantly for the two scenarios; the 'formation linear flow'-like pattern found for the scenario with the larger fracture height of 100 m matches geometrically better with the oblate seismic cloud than the 'radial flow'-like pattern found for the smaller fracture height of 10 m. It is problematic to explain the drops in pressure observed at constant flow rate by lateral or vertical extension of the pre-existent vertical fracture in classical tensile hydrofracturing mode considering the persistent increase in pressure with every step-up in flow rate throughout the entire stimulation and the lack of reproducible and distinct instantaneous shut-in pressures. We suggest shearing and wing-extension of the pre-existent fracture(s) as an alternative mechanism since this mechanism (a) is consistent with the absence of a distinct breakdown in pressure, (b) can be initiated at fluid pressures below

  1. Strategies for Creating Prescribed Hydraulic Fractures in Cave Mining

    Science.gov (United States)

    He, Q.; Suorineni, F. T.; Oh, J.

    2017-04-01

    The cave mining method was traditionally applied to massive low-grade, weak orebodies at shallow depths (less than 500 m) that favour cave propagation under gravity. Currently, this method is being applied to stronger orebodies and is taking place at depths of up to 2000 m below the surface. To ensure continuous cave propagation, preconditioning of the orebody is essential in this latter caving environment to improve rock mass caveability and to decrease fragmentation sizes. Hydraulic fracturing was initiated in the oil industry and is now being used in the cave mining industry as a preconditioning method and for stalled caves reactivation. A limitation of conventional hydraulic fracturing in the cave mining industry is that the hydraulic fracture orientation is uncontrollable and is dictated by the minimum in situ stress orientation. The preconditioning effectiveness of orientation-uncontrollable hydraulic fractures is limited in some geotechnical conditions, and the concept of creating orientation-controllable hydraulic fractures, here termed prescribed hydraulic fractures, is proposed to fill this gap. In this paper, the feasibility of the proposed approaches to creating prescribed hydraulic fractures is presented based on previous studies and numerical modelling. The numerical modelling code reliability in simulating the hydraulic fracture propagation and reorientation process was validated by comparing with laboratory results in the reported literature. In addition, the sensitivity of the prescribed hydraulic fracturing to the in situ stress condition and rock mass properties is examined.

  2. Hydraulic Fracturing and Drinking Water Resources: Update on EPA Hydraulic Fracturing Study

    Science.gov (United States)

    Natural gas plays a key role in our nation's energy future and the process known as hydraulic fracturing (HF) is one way of accessing that resource. Over the past few years, several key technical, economic, and energy developments have spurred increased use of HF for gas extracti...

  3. An analytical model for hydraulic fracturing in shallow bedrock formations.

    Science.gov (United States)

    dos Santos, José Sérgio; Ballestero, Thomas Paul; Pitombeira, Ernesto da Silva

    2011-01-01

    A theoretical method is proposed to estimate post-fracturing fracture size and transmissivity, and as a test of the methodology, data collected from two wells were used for verification. This method can be employed before hydrofracturing in order to obtain estimates of the potential hydraulic benefits of hydraulic fracturing. Five different pumping test analysis methods were used to evaluate the well hydraulic data. The most effective methods were the Papadopulos-Cooper model (1967), which includes wellbore storage effects, and the Gringarten-Ramey model (1974), known as the single horizontal fracture model. The hydraulic parameters resulting from fitting these models to the field data revealed that as a result of hydraulic fracturing, the transmissivity increased more than 46 times in one well and increased 285 times in the other well. The model developed by dos Santos (2008), which considers horizontal radial fracture propagation from the hydraulically fractured well, was used to estimate potential fracture geometry after hydrofracturing. For the two studied wells, their fractures could have propagated to distances of almost 175 m or more and developed maximum apertures of about 2.20 mm and hydraulic apertures close to 0.30 mm. Fracturing at this site appears to have expanded and propagated existing fractures and not created new fractures. Hydraulic apertures calculated from pumping test analyses closely matched the results obtained from the hydraulic fracturing model. As a result of this model, post-fracturing geometry and resulting post-fracturing well yield can be estimated before the actual hydrofracturing. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  4. Investigation of possible wellbore cement failures during hydraulic fracturing operations

    Science.gov (United States)

    Researchers used the peer-reviewed TOUGH+ geomechanics computational software and simulation system to investigate the possibility of fractures and shear failure along vertical wells during hydraulic fracturing operations.

  5. Addresing environmental challenges to shale gas and hydraulic fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Vadillo Fernandez, L.; Rodriguez Gomez, V.; Fernadez Naranjo, F.J.

    2016-07-01

    This article reviews the main issues of unconventional gas extracted by hydraulic fracturing techniques. Topics such as technology, fracturing stages, flowback characterization and alternatives of disposal and reuse, water consumption, physicochemical features of the geological formations, development of the fractures performed by hydraulic fracturing, well flow decline, land use and occupation and induced seismicity are presented, as well as the scientific debate: the potential steps of methane gas and groundwater contamination. (Author)

  6. A review on hydraulic fracturing of unconventional reservoir

    Directory of Open Access Journals (Sweden)

    Quanshu Li

    2015-03-01

    Full Text Available Hydraulic fracturing is widely accepted and applied to improve the gas recovery in unconventional reservoirs. Unconventional reservoirs to be addressed here are with very low permeability, complicated geological settings and in-situ stress field etc. All of these make the hydraulic fracturing process a challenging task. In order to effectively and economically recover gas from such reservoirs, the initiation and propagation of hydraulic fracturing in the heterogeneous fractured/porous media under such complicated conditions should be mastered. In this paper, some issues related to hydraulic fracturing have been reviewed, including the experimental study, field study and numerical simulation. Finally the existing problems that need to be solved on the subject of hydraulic fracturing have been proposed.

  7. Disclosure of hydraulic fracturing fluid chemical additives: analysis of regulations.

    Science.gov (United States)

    Maule, Alexis L; Makey, Colleen M; Benson, Eugene B; Burrows, Isaac J; Scammell, Madeleine K

    2013-01-01

    Hydraulic fracturing is used to extract natural gas from shale formations. The process involves injecting into the ground fracturing fluids that contain thousands of gallons of chemical additives. Companies are not mandated by federal regulations to disclose the identities or quantities of chemicals used during hydraulic fracturing operations on private or public lands. States have begun to regulate hydraulic fracturing fluids by mandating chemical disclosure. These laws have shortcomings including nondisclosure of proprietary or "trade secret" mixtures, insufficient penalties for reporting inaccurate or incomplete information, and timelines that allow for after-the-fact reporting. These limitations leave lawmakers, regulators, public safety officers, and the public uninformed and ill-prepared to anticipate and respond to possible environmental and human health hazards associated with hydraulic fracturing fluids. We explore hydraulic fracturing exemptions from federal regulations, as well as current and future efforts to mandate chemical disclosure at the federal and state level.

  8. Laboratory tests of hydraulic fracturing and swell healing

    DEFF Research Database (Denmark)

    Thunbo, Christensen Claes; Foged, Christensen Helle; Foged, Niels

    1998-01-01

    New laboratory test set-ups and test procedures are described - for testing the formation of hydraulically induced fractures as well as the potential for subsequent fracture closurefrom the relase of a swelling potential. The main purpose with the tests is to provide information on fracturing...... stresses and whether or not the material in question possesses the potential for fracture closure....

  9. [Hydraulic fracturing - a hazard for drinking water?].

    Science.gov (United States)

    Ewers, U; Gordalla, B; Frimmel, F

    2013-11-01

    Hydraulic fracturing (fracking) is a technique used to release and promote the extraction of natural gas (including shale gas, tight gas, and coal bed methane) from deep natural gas deposits. Among the German public there is great concern with regard to the potential environmental impacts of fracking including the contamination of ground water, the most important source of drinking water in Germany. In the present article the risks of ground water contamination through fracking are discussed. Due to the present safety requirements and the obligatory geological and hydrogeological scrutiny of the underground, which has to be performed prior to fracking, the risk of ground water contamination by fracking can be regarded as very low. The toxicity of chemical additives of fracking fluids is discussed. It is recommended that in the future environmental impact assessment and approval of fracs should be performed by the mining authorities in close cooperation with the water authorities. Furthermore, it is recommended that hydraulic fracturing in the future should be accompanied by obligatory ground water monitoring. © Georg Thieme Verlag KG Stuttgart · New York.

  10. 78 FR 55253 - Notification of Public Teleconference of the Hydraulic Fracturing Research Advisory Panel

    Science.gov (United States)

    2013-09-10

    ... AGENCY Notification of Public Teleconference of the Hydraulic Fracturing Research Advisory Panel AGENCY...) Science Advisory Board (SAB) Staff Office announces a public teleconference of the Hydraulic Fracturing... information related to hydraulic fracturing and drinking water resources. DATES: The public teleconference...

  11. Hydraulic fracturing: insights from field, lab, and numerical studies

    Science.gov (United States)

    Walsh, S. D.; Johnson, S.; Fu, P.; Settgast, R. R.

    2011-12-01

    Hydraulic fracturing has become an increasingly important technique in stimulating reservoirs for gas, oil, and geothermal energy production. In use commercially since the 1950's, the technique has been widely lauded, when combined with other techniques, for enabling the development of shale gas resources in the United States, providing a valuable and extensive source of domestic energy. However, the technique has also drawn a degree of notoriety from high-profile incidents involving contamination of drinking water associated with gas extraction operations in the Marcellus shale region. This work highlights some of the insights on the behavior of subsurface hydraulic fracturing operations that have been derived from field and laboratory observations as well as from numerical simulations. The sensitivity of fracture extent and orientation to parameters such as matrix material heterogeneity, presence and distribution of discontinuities, and stress orientation is of particular interest, and we discuss this in the context of knowledge derived from both observation and simulation. The limitations of these studies will also be addressed in terms of resolution, uncertainty, and assumptions as well as the balance of fidelity to cost, both in computation time (for numerical studies) and equipment / operation cost (for observational studies). We also identify a number of current knowledge gaps and propose alternatives for addressing those gaps. We especially focus on the role of numerical studies for elucidating key concepts and system sensitivities. The problem is inherently multi-scale in both space and time as well as highly coupled hydromechanically, and, in several applications, thermally as well. We will summarize the developments to date in analyzing these systems and present an approach for advancing the capabilities of our models in the short- to long-term and how these advances can help provide solutions to reduce risk and improve efficiency of hydraulic fracturing

  12. Permeability Enhancement in Enhanced Geothermal System as a result of Hydraulic Fracturing and Jacking

    Science.gov (United States)

    Jalali, Mohammadreza; Klepikova, Maria; Fisch, Hansruedi; Amann, Florian; Loew, Simon

    2016-04-01

    A decameter-scale in-situ hydraulic stimulation and circulation (ISC) experiment has been initiated by the newly-founded Swiss Competence Centre for Energy Research - Supply of Electricity (SCCER-SoE) at Nagra's Grimsel Test Site (GTS) as a part of the work-package WP1 of the Deep Underground Laboratory (DUG-Lab) initiative. The experiment area is situated in the southern part of the GTS in a low fracture density volume of the Grimsel granodiorite. The hydraulic properties of the granitic rock mass are supposed to be similar to those expected in the crystalline basement of the alpine foreland where deep enhanced geothermal systems might be developed in future. The main objectives of the multi-disciplinary experiment are to provide a high resolution pre- and post-stimulation characterization of fracture permeability and connectivity, to investigate patterns of preferential flow paths, to describe the pressure propagation during the stimulation phases and to evaluate the efficiency of the fracture-matrix heat exchanger. A comprehensive test & monitoring layout including a fair number of boreholes instrumented with a variety of sensors (e.g. pressure, strain, displacement, temperature, and seismic sensors) is designed to collect detailed data during multiple hydraulic stimulation runs. The diffusion of fluid pressure is expected to be governed mainly by the properties and geometry of the existent fracture network. The hydraulic transmissivity of fractures are in the range of 10-7 to 10-9 m2/s whereas the matrix rock has a very low hydraulic conductivity (K ˜ 10-12 m/s). As part of the stress measurement campaign during the pre-stimulation phase of the ISC experiment, a series of hydraulic fracturing (HF) and hydraulic tests in pre-existing fractures (HTPF) were conducted. The tests were accompanied by micro-seismic monitoring within several observation boreholes to investigate the initiation and propagation of the induced fractures. Together with results from over

  13. Numerical Analysis on the Stability of Hydraulic Fracture Propagation

    Directory of Open Access Journals (Sweden)

    Zhaobin Zhang

    2015-09-01

    Full Text Available The formation of dense spacing fracture network is crucial to the hydraulic fracturing treatment of unconventional reservoir. However, one difficulty for fracturing treatment is the lack of clear understanding on the nature of fracture complexity created during the treatment. In this paper, fracture propagation is numerically investigated to find the conditions needed for the stable propagation of complex fracture network. Firstly, starting from a parallel fracture system, the stability of fracture propagation is analyzed and a dimensionless number M is obtained. Then, by developing a hydraulic fracturing simulation model based on displacement discontinuity method, the propagation of parallel fractures is simulated and a clear relation between M and the stability of parallel fractures is obtained. Finally, the investigation on parallel fractures is extended to complex fracture networks. The propagation of complex fracture networks is simulated and the results show that the effects of M on complex fracture networks is the same to that of parallel fractures. The clear relation between M and fracture propagation stability is important for the optimization of hydraulic fracturing operation.

  14. FEASIBILITY OF HYDRAULIC FRACTURING OF SOILS TO IMPROVE REMEDIAL ACTIONS

    Science.gov (United States)

    Hydraulic fracturing, a technique commonly used to increase the yields of oil wells, could improve the effectiveness of several methods of in situ remediation. This project consisted of laboratory and field tests in which hydraulic fractures were created in soil. Laboratory te...

  15. An XFEM Model for Hydraulic Fracturing in Partially Saturated Rocks

    Directory of Open Access Journals (Sweden)

    Salimzadeh Saeed

    2016-01-01

    Full Text Available Hydraulic fracturing is a complex multi-physics phenomenon. Numerous analytical and numerical models of hydraulic fracturing processes have been proposed. Analytical solutions commonly are able to model the growth of a single hydraulic fracture into an initially intact, homogeneous rock mass. Numerical models are able to analyse complex problems such as multiple hydraulic fractures and fracturing in heterogeneous media. However, majority of available models are restricted to single-phase flow through fracture and permeable porous rock. This is not compatible with actual field conditions where the injected fluid does not have similar properties as the host fluid. In this study we present a fully coupled hydro-poroelastic model which incorporates two fluids i.e. fracturing fluid and host fluid. Flow through fracture is defined based on lubrication assumption, while flow through matrix is defined as Darcy flow. The fracture discontinuity in the mechanical model is captured using eXtended Finite Element Method (XFEM while the fracture propagation criterion is defined through cohesive fracture model. The discontinuous matrix fluid velocity across fracture is modelled using leak-off loading which couples fracture flow and matrix flow. The proposed model has been discretised using standard Galerkin method, implemented in Matlab and verified against several published solutions. Multiple hydraulic fracturing simulations are performed to show the model robustness and to illustrate how problem parameters such as injection rate and rock permeability affect the hydraulic fracturing variables i.e. injection pressure, fracture aperture and fracture length. The results show the impact of partial saturation on leak-off and the fact that single-phase models may underestimate the leak-off.

  16. Characterizing hydraulic fractures in shale gas reservoirs using transient pressure tests

    Directory of Open Access Journals (Sweden)

    Cong Wang

    2015-06-01

    This work presents an unconventional gas reservoir simulator and its application to quantify hydraulic fractures in shale gas reservoirs using transient pressure data. The numerical model incorporates most known physical processes for gas production from unconventional reservoirs, including two-phase flow of liquid and gas, Klinkenberg effect, non-Darcy flow, and nonlinear adsorption. In addition, the model is able to handle various types and scales of fractures or heterogeneity using continuum, discrete or hybrid modeling approaches under different well production conditions of varying rate or pressure. Our modeling studies indicate that the most sensitive parameter of hydraulic fractures to early transient gas flow through extremely low permeability rock is actually the fracture-matrix contacting area, generated by fracturing stimulation. Based on this observation, it is possible to use transient pressure testing data to estimate the area of fractures generated from fracturing operations. We will conduct a series of modeling studies and present a methodology using typical transient pressure responses, simulated by the numerical model, to estimate fracture areas created or to quantity hydraulic fractures with traditional well testing technology. The type curves of pressure transients from this study can be used to quantify hydraulic fractures in field application.

  17. The subsurface impact of hydraulic fracturing in shales- Perspectives from the well and reservoir

    Science.gov (United States)

    ter Heege, Jan; Coles, Rhys

    2017-04-01

    It has been identified that the main risks of subsurface shale gas operations in the U.S.A. and Canada are associated with (1) drilling and well integrity, (2) hydraulic fracturing, and (3) induced seismicity. Although it is unlikely that hydraulic fracturing operations result in direct pathways of enhanced migration between stimulated fracture disturbed rock volume and shallow aquifers, operations may jeopardize well integrity or induce seismicity. From the well perspective, it is often assumed that fluid injection leads to the initiation of tensile (mode I) fractures at different perforation intervals along the horizontal sections of shale gas wells if pore pressure exceeds the minimum principal stress. From the reservoir perspective, rise in pore pressure resulting from fluid injection may lead to initiation of tensile fractures, reactivation of shear (mode II) fractures if the criterion for failure in shear is exceeded, or combinations of different fracturing modes. In this study, we compare tensile fracturing simulations using conventional well-based models with shear fracturing simulations using a fractured shale model with characteristic fault populations. In the fractured shale model, stimulated permeability is described by an analytical model that incorporates populations of reactivated faults and that combines 3D permeability tensors for layered shale matrix, damage zone and fault core. Well-based models applied to wells crosscutting the Posidonia Shale Formation are compared to generic fractured shale models, and fractured shale models are compared to micro-seismic data from the Marcellus Shale. Focus is on comparing the spatial distribution of permeability, stimulated reservoir volume and seismicity, and on differences in fracture initiation pressure and fracture orientation for tensile and shear fracturing end-members. It is shown that incorporation of fault populations (for example resulting from analysis of 3D seismics or outcrops) in hydraulic

  18. Assessment of the Potential Impacts of Hydraulic Fracturing for ...

    Science.gov (United States)

    This assessment provides a review and synthesis of available scientific literature and data to assess the potential for hydraulic fracturing for oil and gas to impact the quality or quantity of drinking water resources, and identifies factors affecting the frequency or severity of any potential impacts. The scope of this assessment is defined by the hydraulic fracturing water cycle which includes five main activities: Water acquisition – the withdrawal of ground or surface water needed for hydraulic fracturing fluids;Chemical mixing – the mixing of water, chemicals, and proppant on the well pad to create the hydraulic fracturing fluid;Well injection – the injection of hydraulic fracturing fluids into the well to fracture the geologic formation; Flowback and Produced water – the return of injected fluid and water produced from the formation to the surface, and subsequent transport for reuse, treatment, or disposal; andWastewater treatment and waste disposal – the reuse, treatment and release, or disposal of wastewater generated at the well pad, including produced water. This report can be used by federal, tribal, state, and local officials; industry; and the public to better understand and address vulnerabilities of drinking water resources to hydraulic fracturing activities. To assess the potential impacts of hydraulic fracturing on drinking water resources, if any, and to identify the driving factors that may affect the severity and frequency of s

  19. Hydraulic fracturing - an attempt of DEM simulation

    Science.gov (United States)

    Kosmala, Alicja; Foltyn, Natalia; Klejment, Piotr; Dębski, Wojciech

    2017-04-01

    Hydraulic fracturing is a technique widely used in oil, gas and unconventional reservoirs exploitation in order to enable the oil/gas to flow more easily and enhance the production. It relays on pumping into a rock a special fluid under a high pressure which creates a set of microcracks which enhance porosity of the reservoir rock. In this research, attempt of simulation of such hydrofracturing process using the Discrete Element Method approach is presented. The basic assumption of this approach is that the rock can be represented as an assembly of discrete particles cemented into a rigid sample (Potyondy 2004). An existence of voids among particles simulates then a pore system which can be filled out by fracturing fluid, numerically represented by much smaller particles. Following this microscopic point of view and its numerical representation by DEM method we present primary results of numerical analysis of hydrofracturing phenomena, using the ESyS-Particle Software. In particular, we consider what is happening in distinct vicinity of the border between rock sample and fracking particles, how cracks are creating and evolving by breaking bonds between particles, how acoustic/seismic energy is releasing and so on. D.O. Potyondy, P.A. Cundall. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41 (2004), pp. 1329-1364.

  20. Dry and hydraulic extensile fracturing of porous impermeable materials

    NARCIS (Netherlands)

    Visser, J.H.M.; Van Mier, J.C.M.

    1996-01-01

    Extensile hydraulic fracturing of mortar is investigated and compared to extensile dry fracturing of sandstone. The extensile fracture experiments have been performed in a Hookean cell in deformation control. The cell allows for axial loading and radial fluid pressure loading of cylindrical

  1. Hydraulic Fracturing Fluid Analysis for Regulatory Parameters - A Progress Report

    Science.gov (United States)

    This presentation is a progress report on the analysis of Hydraulic Fracturing Fluids for regulatory compounds outlined in the various US EPA methodologies. Fracturing fluids vary significantly in consistency and viscosity prior to fracturing. Due to the nature of the fluids the analytical challenges will have to be addressed. This presentation also outlines the sampling issues associated with the collection of dissolved gas samples.

  2. Hydraulic Fracturing: Paving the Way for a Sustainable Future?

    Directory of Open Access Journals (Sweden)

    Jiangang Chen

    2014-01-01

    Full Text Available With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment.

  3. Hydraulic fracturing: paving the way for a sustainable future?

    Science.gov (United States)

    Chen, Jiangang; Al-Wadei, Mohammed H; Kennedy, Rebekah C M; Terry, Paul D

    2014-01-01

    With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC) requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment.

  4. What can we learn from ultrasonic velocities monitoring during hydraulic fracturing of tight shale ?

    Science.gov (United States)

    Fortin, Jérôme; Stanchits, Sergei

    2016-04-01

    Methods of prediction the size and aperture of created hydraulic fracture are essential for a proper design of unconventional reservoir well stimulation. Several theoretical models describing hydraulic fracture propagation have been developed. However, there is a lack of direct field measurements of hydraulic fracture dimensions, verifying results of these models. Monitoring of elastic wave parameters may be a useful tool to estimate fracture dimensions. Indeed, the elastic wave velocity in a medium containing a fracture is sensitive to the fracture geometry and its conditions: dry fracture or saturated with fluid. In this paper, we focus on ultrasonic velocities monitoring during hydraulic fracturing of tight shale. We report the results of hydraulic fracturing of Niobrara shale outcrop block of 279 x 279 x 381 mm size from Colorado, USA. In this experiment, the block was loaded in a polyaxial loading frame made by TerraTek, a Schlumberger Company. Stresses were applied to the rock blocks independently in three directions using flat jacks. Then viscous fluid was injected into borehole at a constant flow rate. 20 PZT sensors were embedded into pockets drilled in the rock. They were used for registration of Acoustic Emission (AE) signals and for periodical ultrasonic transmissions to measure P-wave velocities in different directions. Our results show that ultrasonic measurements can be useful for understanding the mechanics of the crack growth. More precisely, from the evolution of the P-velocities and their amplitudes during the loading, we are able: (i) to estimate the velocity of the hydraulic fracture which was found to be 0.15 mm/s (that is close to the fracture velocity inferred from the dynamic of AE spatial evolution). (ii) In addition, the evolution of the P-velocities during the loading shows that a liquid-free crack always precedes the liquid front. In our experiment, the lag is estimated to be 15 mm. (iii) Finally, at fixed distances from the borehole

  5. Numerical Analysis on the Optimization of Hydraulic Fracture Networks

    Directory of Open Access Journals (Sweden)

    Zhaobin Zhang

    2015-10-01

    Full Text Available The clear understanding of hydraulic fracture network complexity and the optimization of fracture network configuration are important to the hydraulic fracturing treatment of shale gas reservoirs. For the prediction of hydraulic fracture network configuration, one of the problems is the accurate representation of natural fractures. In this work, a real natural fracture network is reconstructed from shale samples. Moreover, a virtual fracture system is proposed to simulate the large number of small fractures that are difficult to identify. A numerical model based on the displacement discontinuity method is developed to simulate the fluid-rock coupling system. A dimensionless stress difference that is normalized by rock strength is proposed to quantify the anisotropy of crustal stress. The hydraulic fracturing processes under different stress conditions are simulated. The most complex fracture configurations are obtained when the maximum principle stress direction is perpendicular to the principle natural fracture direction. In contrast, the worst results are obtained when these two directions are parallel to each other. Moreover, the side effects of the unfavorable geological conditions caused by crustal stress anisotropy can be partly suppressed by increasing the viscous effect of the fluid.

  6. Electrical and Magnetic Imaging of Proppants in Shallow Hydraulic Fractures

    Science.gov (United States)

    Denison, J. L. S.; Murdoch, L. C.; LaBrecque, D. J.; Slack, W. W.

    2015-12-01

    Hydraulic fracturing is an important tool to increase the productivity of wells used for oil and gas production, water resources, and environmental remediation. Currently there are relatively few tools available to monitor the distribution of proppants within a hydraulic fracture, or the propagation of the fracture itself. We have been developing techniques for monitoring hydraulic fractures by injecting electrically conductive, dielectric, or magnetically permeable proppants. We then use the resulting contrast with the enveloping rock to image the proppants using geophysical methods. Based on coupled laboratory and numerical modeling studies, three types of proppants were selected for field evaluation. Eight hydraulic fractures were created near Clemson, SC in May of 2015 by injecting specialized proppants at a depth of 1.5 m. The injections created shallow sub-horizontal fractures extending several meters from the injection point.Each cell had a dense array of electrodes and magnetic sensors on the surface and four shallow vertical electrode arrays that were used to obtain data before and after hydraulic fracturing. Net vertical displacement and transient tilts were also measured. Cores from 130 boreholes were used to characterize the general geometries, and trenching was used to characterize the forms of two of the fractures in detail. Hydraulic fracture geometries were estimated by inverting pre- and post-injection geophysical data. Data from cores and trenching show that the hydraulic fractures were saucer-shaped with a preferred propagation direction. The geophysical inversions generated images that were remarkably similar in form, size, and location to the ground truth from direct observation. Displacement and tilt data appear promising as a constraint on fracture geometry.

  7. Transport efficiency and dynamics of hydraulic fracture networks

    Directory of Open Access Journals (Sweden)

    Till eSachau

    2015-08-01

    Full Text Available Intermittent fluid pulses in the Earth's crust can explain a variety of geological phenomena, for instance the occurrence of hydraulic breccia. Fluid transport in the crust is usually modeled as continuous darcian flow, ignoring that sufficient fluid overpressure can cause hydraulic fractures as fluid pathways with very dynamic behavior. Resulting hydraulic fracture networks are largely self-organized: opening and healing of hydraulic fractures depends on local fluid pressure, which is, in turn, largely controlled by the fracture network. We develop a crustal-scale 2D computer model designed to simulate this process. To focus on the dynamics of the process we chose a setup as simple as possible. Control factors are constant overpressure at a basal fluid source and a constant 'viscous' parameter controlling fracture-healing. Our results indicate that at large healing rates hydraulic fractures are mobile, transporting fluid in intermittent pulses to the surface and displaying a 1/fα behavior. Low healing rates result in stable networks and constant flow. The efficiency of the fluid transport is independent from the closure dynamics of veins or fractures. More important than preexisting fracture networks is the distribution of fluid pressure. A key requirement for dynamic fracture networks is the presence of a fluid pressure gradient.

  8. Transport efficiency and dynamics of hydraulic fracture networks

    Science.gov (United States)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique

    2015-08-01

    Intermittent fluid pulses in the Earth's crust can explain a variety of geological phenomena, for instance the occurrence of hydraulic breccia. Fluid transport in the crust is usually modeled as continuous darcian flow, ignoring that sufficient fluid overpressure can cause hydraulic fractures as fluid pathways with very dynamic behavior. Resulting hydraulic fracture networks are largely self-organized: opening and healing of hydraulic fractures depends on local fluid pressure, which is, in turn, largely controlled by the fracture network. We develop a crustal-scale 2D computer model designed to simulate this process. To focus on the dynamics of the process we chose a setup as simple as possible. Control factors are constant overpressure at a basal fluid source and a constant 'viscous' parameter controlling fracture-healing. Our results indicate that at large healing rates hydraulic fractures are mobile, transporting fluid in intermittent pulses to the surface and displaying a 1/fα behavior. Low healing rates result in stable networks and constant flow. The efficiency of the fluid transport is independent from the closure dynamics of veins or fractures. More important than preexisting fracture networks is the distribution of fluid pressure. A key requirement for dynamic fracture networks is the presence of a fluid pressure gradient.

  9. Numerical analysis of fracture propagation during hydraulic fracturing operations in shale gas systems

    Science.gov (United States)

    Researchers used the TOUGH+ geomechanics computational software and simulation system to examine the likelihood of hydraulic fracture propagation (the spread of fractures) traveling long distances to connect with drinking water aquifers.

  10. A review of numerical simulation strategies for hydraulic fracturing, natural fracture reactivation and induced microseismicity prediction

    NARCIS (Netherlands)

    Shahid, A.S.A.; Fokker, P.A.; Rocca, V.

    2016-01-01

    Hydraulic fracturing, natural fracture reactivation and resulting induced microseismicity are interconnected phenomena involved in shale gas exploitation. Due to their multi-physics and their complexity, deep understanding of these phenomena as well as their mutual interaction require the adoption

  11. Influence of pressure change during hydraulic tests on fracture aperture.

    Science.gov (United States)

    Ji, Sung-Hoon; Koh, Yong-Kwon; Kuhlman, Kristopher L; Lee, Moo Yul; Choi, Jong Won

    2013-03-01

    In a series of field experiments, we evaluate the influence of a small water pressure change on fracture aperture during a hydraulic test. An experimental borehole is instrumented at the Korea Atomic Energy Research Institute (KAERI) Underground Research Tunnel (KURT). The target fracture for testing was found from the analyses of borehole logging and hydraulic tests. A double packer system was developed and installed in the test borehole to directly observe the aperture change due to water pressure change. Using this packer system, both aperture and flow rate are directly observed under various water pressures. Results indicate a slight change in fracture hydraulic head leads to an observable change in aperture. This suggests that aperture change should be considered when analyzing hydraulic test data from a sparsely fractured rock aquifer. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  12. QAPP for Hydraulic Fracturing (HF) Surface Spills Data Analysis

    Science.gov (United States)

    This QAPP provides information concerning the analysis of spills associated with hydraulic fracturing. This project is relevant to both the chemical mixing and flowback and produced water stages of the HF water cycle as found in the HF Study Plan.

  13. The Criteria for the Selection of Wells for Hydraulic Fracturing

    Directory of Open Access Journals (Sweden)

    O.V. Salimov

    2017-12-01

    Full Text Available Various methods of selection of wells for hydraulic fracturing are analyzed. It is established that all methods can be divided into three large groups: criteria in the table form of boundary values of parameters, statistical methods of pattern recognition, methods of engineering calculation. The complication or use of additional parameters only leads to a reduction in the number of wells at which hydraulic fracturing is possible. It is shown that the use of reservoir properties of rocks, which are already used by hydraulic fracturing simulators, is not practicable as selection criteria. It is required to include in the selection criteria only those additional factors on which the effectiveness of hydraulic fracturing depends directly.

  14. Hydraulic fracturing: paving the way for a sustainable future?

    National Research Council Canada - National Science Library

    Chen, Jiangang; Al-Wadei, Mohammed H; Kennedy, Rebekah C M; Terry, Paul D

    2014-01-01

    With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays...

  15. EPA Published Research Related to the Hydraulic Fracturing Study

    Science.gov (United States)

    A list of publications that will support the draft assessment report on the potential impacts of hydraulic fracturing on drinking water resources. These publications have undergone peer review through the journal where the paper has been published.

  16. EPA Study of Hydraulic Fracturing and Drinking Water Resources

    Science.gov (United States)

    In its FY2010 Appropriations Committee Conference Report, Congress directed EPA to study the relationship between hydraulic fracturing and drinking water, using: • Best available science • Independent sources of information • Transparent, peer-reviewed process • Consultatio...

  17. Hydraulic Fracturing in Coalbed Methane Development, Raton Basin, Southern Colorado

    Science.gov (United States)

    Pioneer Natural Resources has performed hydraulic fractures on 2400 shallow CBM wells in the Raton Basin with no impact to drinking water. This presentation, given by Pioneer Natural Resources, discusses why might be.

  18. Executive Summary, Hydraulic Fracturing Study - Draft Assessment 2015

    Science.gov (United States)

    In this Executive Summary of the HF Draft report, EPA highlights the reviews of scientific literature to assess the potential for hydraulic fracturing for oil and gas to change the quality or quantity of drinking water resources.

  19. A 2D Model of Hydraulic Fracturing, Damage and Microseismicity

    Science.gov (United States)

    Wangen, Magnus

    2017-11-01

    We present a model for hydraulic fracturing and damage of low-permeable rock. It computes the intermittent propagation of rock damage, microseismic event locations, microseismic frequency-magnitude distributions, stimulated rock volume and the injection pressure. The model uses a regular 2D grid and is based on ideas from invasion percolation. All damaged and connected cells during a time step constitute a microseismic event, where the size of the event is the number of cells in the cluster. The magnitude of the event is the log _{10} of the event size. The model produces events with a magnitude-frequency distribution having a b value that is approximately 0.8. The model is studied with respect to the physical parameters: permeability of damaged rock and the rock strength. "High" permeabilities of the damaged rock give the same b value ≈ 0.8 , but "moderate" permeabilities give higher b values. Another difference is that "high" permeabilities produce a percolation-like fracture network, while "moderate" permeabilities result in damage zones that expand circularly away from the injection point. In the latter case of "moderate" permeabilities, the injection pressure increases substantially beyond the fracturing level. The rock strength and the time step do not change the observed b value of the model for moderate changes.

  20. Induced seismicity caused by hydraulic fracturing in deep geothermal wells in Germany and adjacent areas

    Science.gov (United States)

    Plenefisch, Thomas; Brückner, Lisa; Ceranna, Lars; Gestermann, Nicolai; Houben, Georg; Tischner, Torsten; Wegler, Ulrich; Wellbrink, Matthias; Bönnemann, Christian; Bertram, Andreas; Kirschbaum, Bernd

    2016-04-01

    Recently, the BGR has worked out a study on the potential environmental impact caused by hydraulic fracturing or chemical stimulations in deep geothermal reservoirs in Germany and adjacent areas. The investigations and analyses are based on existing studies and information provided by operators. The two environmental impacts being essentially considered in the report are induced seismicity and possible contamination of the groundwater reservoirs which serve for drinking water supply. Altogether, in this study, information on 30 hydraulic frac operations and 26 chemical stimulations including information from neighboring countries were compiled and analyzed. Out of the hydraulic stimulations two thirds were carried out as waterfracs and one third as fracturing with proppants. Parameters used in the study to characterize the induced seismicity are maximum magnitude, number of seismic events, size of the seismically active volume, and the relation of this volume to fault zones and the cap rock, as well as, finally, the impacts at the Earth's surface. The response of the subsurface to hydraulic fracturing is variable: There are some activities, which cause perceptible seismic events, others, where no perceptible but instrumentally detected events occurred, and moreover activities without even any instrumentally detected events. A classification of seismic hazard with respect to tectonic region, geology, or depth of the layer is still difficult, since the number of hydraulic fracturing measures in deep geothermal wells is small making a statistically sound analysis impossible. However, there are some indications, that hydraulic fracturing in granite in tectonically active regions like the Upper Rhine Graben results in comparatively stronger, perceptible seismicity compared to hydraulic fracturing in the sedimentary rocks of the North German basin. The maximum magnitudes of induced earthquakes caused by hydraulic fracturing of deep geothermal wells in Germany are

  1. Impact of Partially Cemented and Non-persistent Natural Fractures on Hydraulic Fracture Propagation

    Science.gov (United States)

    Fu, Wei; Ames, Brandon C.; Bunger, Andrew P.; Savitski, Alexei A.

    2016-11-01

    This paper presents laboratory experiments exploring the interaction between hydraulic fractures and preexisting natural fractures that are strongly cemented relative to the host material strength but over only a portion of the natural fracture. Two sets of experiments were conducted, including the central region cemented case and the top-bottom region cemented case. Three main patterns are observed for the interaction between hydraulic fractures and partially cemented natural fractures: (1) complete crossing, (2) crossing with mismatched crack path and (3) no crossing. The results show that a hydraulic fracture penetrates directly through a fully and strongly cemented preexisting natural fracture. When the proportion of the strongly cemented region decreases or the height of the weak natural fracture increases, the hydraulic fracture is observed to persist through the entire height of the specimen both before and after the interface. However, the fracture path proceeds directly through strongly cemented portions while causing mismatched crack path at uncemented portions. No crossing results are obtained when the strongly cemented region is sufficiently small, around 30 % of the natural fracture's height. Results of this seldom considered but almost certainly realistic configuration of partial cementing suggest that the hydraulic fracture path is strongly influenced by the size of the cemented region of the natural fracture.

  2. Hydraulic conductivities of fractures and matrix in Slovenian carbonate aquifers

    Directory of Open Access Journals (Sweden)

    Timotej Verbovšek

    2008-12-01

    Full Text Available Hydraulic conductivities and specific storage coefficients of fractures and matrix in Slovenian carbonate aquifers were determined by Barker’s method for pumping test analysis, based on fractional flow dimension. Values are presented for limestones and mainly for dolomites, and additionally for separate aquifers, divided by age andlithology in several groups. Data was obtained from hydrogeological reports for 397 water wells, and among these, 79 pumping tests were reinterpreted. Hydraulic conductivities of fractures are higher than the hydraulic conductivities of matrix, and the differences are highly statistically significant. Likewise, differences are significant for specific storage, and the values of these coefficients are higher in the matrix. Values of all coefficients vary in separate aquifers, and the differences can be explained by diagenetic effects, crystal size, degree of fracturing, andcarbonate purity. Comparison of the methods, used in the reports, and the Barker’s method (being more suitable for karstic and fractured aquifers, shows that the latter fits real data better.

  3. Dynamic Response in Transient Stress-Field Behavior Induced by Hydraulic Fracturing

    Science.gov (United States)

    Jenkins, Andrew

    Hydraulic fracturing is a technique which is used to exploit geologic features and subsurface properties in an effort to increase production in low-permeability formations. The process of hydraulic fracturing provides a greater surface contact area between the producing formation and the wellbore and thus increases the amount of recoverable hydrocarbons from within the reservoir. The use of this stimulation technique has brought on massive applause from the industry due to its widespread success and effectiveness, however the dynamic processes that take part in the development of hydraulic fractures is a relatively new area of research with respect to the massive scale operations that are seen today. The process of hydraulic fracturing relies upon understanding and exploiting the in-situ stress distribution throughout the area of study. These in-situ stress conditions are responsible for directing fracture orientation and propagation paths throughout the period of injection. The relative magnitude of these principle stresses is key in developing a successful stimulation plan. In horizontal well plan development the interpretation of stress within the reservoir is required for determining the azimuth of the horizontal well path. These horizontal laterals are typically oriented in a manner such that the well path lies parallel to the minimum horizontal stress. This allows for vertical fractures to develop transversely to the wellbore, or normal to the least principle stress without the theoretical possibility of fractures overlapping, creating the most efficient use of the fluid energy during injection. The orientation and magnitude of these in-situ stress fields however can be dynamic, controlled by the subsequent fracture propagation and redistribution of the surrounding stresses. That is, that as the fracture propagates throughout the reservoir, the relative stress fields surrounding the fractures may see a shift and deviate from their original direction or

  4. Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity

    Science.gov (United States)

    Zang, Arno; Yoon, Jeoung Seok; Stephansson, Ove; Heidbach, Oliver

    2013-11-01

    The occurrence of induced seismic events during hydraulic fracturing of reservoirs to enhance permeability is an unavoidable process. Due to the increased public concern with respect to the risks imposed by induced seismicity, however, the development of a soft stimulation method is needed creating higher permeability with less induced seismicity. We use a discrete element model of naturally fractured rock with pore fluid flow algorithm in order to analyse two scenarios of high-pressure fluid injection (hydraulic fracturing) at depth and associated induced seismicity. The ratio of pumped-in energy to released seismic energy is in agreement with field data. Our results suggest that cyclic reservoir treatment is a safer alternative to conventional hydraulic fracture stimulation as both, the total number of induced events as well as the occurrence of larger magnitude events are lowered. This work is motivated by results of laboratory triaxial indenter tests on granite rock samples where continuous loading leads to a wide fracture process zone while cyclic treatment with frequent starting and stopping of loading fatigues the rock, resulting in smaller damage volume and more persistent fracture growth.

  5. Fracture opening/propagation behavior and their significance on pressure-time records during hydraulic fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Takashi Kojima; Yasuhiko Nakagawa; Koji Matsuki; Toshiyuki Hashida

    1992-01-01

    Hydraulic fracturing with constant fluid injection rate was numerically modeled for a pair of rectangular longitudinal fractures intersecting a wellbore in an impermeable rock mass, and numerical calculations have been performed to investigate the relations among the form of pressure-time curves, fracture opening/propagation behavior and permeability of the mechanically closed fractures. The results have shown that both permeability of the fractures and fluid injection rate significantly influence the form of the pressure-time relations on the early stage of fracture opening. Furthermore it has been shown that wellbore pressure during fracture propagation is affected by the pre-existing fracture length.

  6. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Ghassemi

    2003-06-30

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are

  7. Organic compounds in hydraulic fracturing fluids and wastewaters: A review.

    Science.gov (United States)

    Luek, Jenna L; Gonsior, Michael

    2017-10-15

    High volume hydraulic fracturing (HVHF) of shale to stimulate the release of natural gas produces a large quantity of wastewater in the form of flowback fluids and produced water. These wastewaters are highly variable in their composition and contain a mixture of fracturing fluid additives, geogenic inorganic and organic substances, and transformation products. The qualitative and quantitative analyses of organic compounds identified in HVHF fluids, flowback fluids, and produced waters are reviewed here to communicate knowledge gaps that exist in the composition of HVHF wastewaters. In general, analyses of organic compounds have focused on those amenable to gas chromatography, focusing on volatile and semi-volatile oil and gas compounds. Studies of more polar and non-volatile organic compounds have been limited by a lack of knowledge of what compounds may be present as well as quantitative methods and standards available for analyzing these complex mixtures. Liquid chromatography paired with high-resolution mass spectrometry has been used to investigate a number of additives and will be a key tool to further research on transformation products that are increasingly solubilized through physical, chemical, and biological processes in situ and during environmental contamination events. Diverse treatments have been tested and applied to HVHF wastewaters but limited information has been published on the quantitative removal of individual organic compounds. This review focuses on recently published information on organic compounds identified in flowback fluids and produced waters from HVHF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Does hydraulic-fracturing theory work in jointed rock masses

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, H.D.; Keppler, H.; Dash, Z.V.

    1983-01-01

    The hypocenter locations of micro-earthquakes (acoustic emissions) generated during fracturing typically are distributed three-dimensionally suggesting that fracturing stimulates a volumetric region, rather than the planar fracture theoretically expected. The hypocenter maps generated at six operating, or potential, HDR reservoirs in the US, Europe and Japan are examined in detail and the fracture dimensions are correlated with fracture injection volumes and formation permeability. Depsite the volumetric appearance of the maps we infer that the induced fractures are mainly planar and may propagate aseismically. The induced seismicity stems from nearby joints, which are not opened significantly by fracturing, but are caused to shear-slip because of local pore pressure.

  9. A New Tree-Type Fracturing Method for Stimulating Coal Seam Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Qian Li

    2017-09-01

    Full Text Available Hydraulic fracturing is used widely to stimulate coalbed methane production in coal mines. However, some factors associated with conventional hydraulic fracturing, such as the simple morphology of the fractures it generates and inhomogeneous stress relief, limit its scope of application in coal mines. These problems mean that gas extraction efficiency is low. Conventional fracturing may leave hidden pockets of gas, which will be safety hazards for subsequent coal mining operations. Based on a new drilling technique applicable to drilling boreholes in coal seams, this paper proposes a tree-type fracturing technique for stimulating reservoir volumes. Tree-type fracturing simulation experiments using a large-scale triaxial testing apparatus were conducted in the laboratory. In contrast to the single hole drilled for conventional hydraulic fracturing, the tree-type sub-boreholes induce radial and tangential fractures that form complex fracture networks. These fracture networks can eliminate the “blank area” that may host dangerous gas pockets. Gas seepage in tree-type fractures was analyzed, and gas seepage tests after tree-type fracturing showed that permeability was greatly enhanced. The equipment developed for tree-type fracturing was tested in the Fengchun underground coal mine in China. After implementing tree-type fracturing, the gas extraction rate was around 2.3 times greater than that for traditional fracturing, and the extraction rate remained high for a long time during a 30-day test. This shortened the gas drainage time and improved gas extraction efficiency.

  10. Characterization of hydraulic fractures and reservoir properties of shale using natural tracers

    Science.gov (United States)

    Heath, J. E.; Gardner, P.; Kuhlman, K. L.; Malama, B.

    2013-12-01

    Hydraulic fracturing plays a major role in the economic production of hydrocarbon from shale. Current fracture characterization techniques are limited in diagnosing the transport properties of the fractures on the near wellbore scale to that of the entire stimulated reservoir volume. Microseismic reveals information on fracture geometries, but not transport properties. Production analysis (e.g., rate transient analysis using produced fluids) estimates fracture and reservoir flow characteristics, but often relies on simplified models in terms of fracture geometries and fluid storage and transport. We present the approach and potential benefits of incorporating natural tracers with production data analysis for fracture and reservoir characterization. Hydraulic fracturing releases omnipresent natural tracers that accumulate in low permeability rocks over geologic time (e.g., radiogenic 4He and 40Ar). Key reservoir characteristics govern the tracer release, which include: the number, connectivity, and geometry of fractures; the distribution of fracture-surface-area to matrix-block-volume; and the nature of hydrocarbon phases within the reservoir (e.g., methane dissolved in groundwater or present as a separate gas phase). We explore natural tracer systematics using numerical techniques under relevant shale-reservoir conditions. We evaluate the impact on natural tracer transport due to a variety of conceptual models of reservoir-transport properties and boundary conditions. Favorable attributes for analysis of natural tracers include the following: tracer concentrations start with a well-defined initial condition (i.e., equilibrium between matrix and any natural fractures); there is a large suite of tracers that cover a range of at least 7x in diffusion coefficients; and diffusive mass-transfer out of the matrix into hydraulic fractures will cause elemental and isotopic fractionation. Sandia National Laboratories is a multi-program laboratory managed and operated by

  11. Hydraulic Fracture Growth in a Layered Formation based on Fracturing Experiments and Discrete Element Modeling

    Science.gov (United States)

    Yushi, Zou; Xinfang, Ma; Tong, Zhou; Ning, Li; Ming, Chen; Sihai, Li; Yinuo, Zhang; Han, Li

    2017-09-01

    Hydraulic fracture (HF) height containment tends to occur in layered formations, and it significantly influences the entire HF geometry or the stimulated reservoir volume. This study aims to explore the influence of preexisting bedding planes (BPs) on the HF height growth in layered formations. Laboratory fracturing experiments were performed to confirm the occurrence of HF height containment in natural shale that contains multiple weak and high-permeability BPs under triaxial stresses. Numerical simulations were then conducted to further illustrate the manner in which vertical stress, BP permeability, BP density(or spacing), pump rate, and fluid viscosity control HF height growth using a 3D discrete element method-based fracturing model. In this model, the rock matrix was considered transversely isotropic and multiple BPs can be explicitly represented. Experimental and numerical results show that the vertically growing HF tends to be limited by multi-high-permeability BPs, even under higher vertical stress. When the vertically growing HF intersects with the multi-high-permeability BPs, the injection pressure will be sharply reduced. If a low pumping rate or a low-viscosity fluid is used, the excess fracturing fluid leak-off into the BPs obviously decreases the rate of pressure build up, which will then limit the growth of HF. Otherwise, a higher pumping rate and/or a higher viscosity will reduce the leak-off time and fluid volume, but increase the injection pressure to drive the HF to grow and to penetrate through the BPs.

  12. TOUGH-RBSN simulator for hydraulic fracture propagation within fractured media: Model validations against laboratory experiments

    Science.gov (United States)

    Kim, Kunhwi; Rutqvist, Jonny; Nakagawa, Seiji; Birkholzer, Jens

    2017-11-01

    This paper presents coupled hydro-mechanical modeling of hydraulic fracturing processes in complex fractured media using a discrete fracture network (DFN) approach. The individual physical processes in the fracture propagation are represented by separate program modules: the TOUGH2 code for multiphase flow and mass transport based on the finite volume approach; and the rigid-body-spring network (RBSN) model for mechanical and fracture-damage behavior, which are coupled with each other. Fractures are modeled as discrete features, of which the hydrological properties are evaluated from the fracture deformation and aperture change. The verification of the TOUGH-RBSN code is performed against a 2D analytical model for single hydraulic fracture propagation. Subsequently, modeling capabilities for hydraulic fracturing are demonstrated through simulations of laboratory experiments conducted on rock-analogue (soda-lime glass) samples containing a designed network of pre-existing fractures. Sensitivity analyses are also conducted by changing the modeling parameters, such as viscosity of injected fluid, strength of pre-existing fractures, and confining stress conditions. The hydraulic fracturing characteristics attributed to the modeling parameters are investigated through comparisons of the simulation results.

  13. Seismicity Induced by Hydraulic Fracturing in Shales: A Bedding Plane Slip Model

    Science.gov (United States)

    Staněk, František; Eisner, Leo

    2017-10-01

    Passive seismic monitoring of microseismic events induced in oil or gas reservoirs is known as microseismic monitoring. Microseismic monitoring is used to understand the process of hydraulic fracturing, which is a reservoir stimulation technique. We use a new geomechanical model with bedding plane slippage induced by hydraulic fractures within shale reservoirs to explain seismicity observed in a typical case study of hydraulic fracturing of a shale gas play in North America. Microseismic events propagating from the injection point are located at similar depths (within the uncertainty of their locations), and their source mechanisms are dominated by shear failure with both dip-slip and strike-slip senses of motion. The prevailing dip-slip mechanisms have one nearly vertical nodal plane perpendicular to the minimum horizontal stress axis, while the other nodal plane is nearly horizontal. Such dip-slip mechanisms can be explained by slippage along bedding planes activated by the aseismic opening of vertical hydraulic fractures. The model explains the observed prevailing orientation of the shear planes of the microseismic events, as well as the large difference between seismic and hydraulic energy.

  14. Hydro-mechanical coupled simulation of hydraulic fracturing using the eXtended Finite Element Method (XFEM)

    Science.gov (United States)

    Youn, Dong Joon

    This thesis presents the development and validation of an advanced hydro-mechanical coupled finite element program analyzing hydraulic fracture propagation within unconventional hydrocarbon formations under various conditions. The realistic modeling of hydraulic fracturing is necessarily required to improve the understanding and efficiency of the stimulation technique. Such modeling remains highly challenging, however, due to factors including the complexity of fracture propagation mechanisms, the coupled behavior of fracture displacement and fluid pressure, the interactions between pre-existing natural and initiated hydraulic fractures and the formation heterogeneity of the target reservoir. In this research, an eXtended Finite Element Method (XFEM) scheme is developed allowing for representation of single or multiple fracture propagations without any need for re-meshing. Also, the coupled flows through the fracture are considered in the program to account for their influence on stresses and deformations along the hydraulic fracture. In this research, a sequential coupling scheme is applied to estimate fracture aperture and fluid pressure with the XFEM. Later, the coupled XFEM program is used to estimate wellbore bottomhole pressure during fracture propagation, and the pressure variations are analyzed to determine the geometry and performance of the hydraulic fracturing as pressure leak-off test. Finally, material heterogeneity is included into the XFEM program to check the effect of random formation property distributions to the hydraulic fracture geometry. Random field theory is used to create the random realization of the material heterogeneity with the consideration of mean, standard deviation, and property correlation length. These analyses lead to probabilistic information on the response of unconventional reservoirs and offer a more scientific approach regarding risk management for the unconventional reservoir stimulation. The new stochastic approach

  15. Impact of ductility on hydraulic fracturing in shales

    Science.gov (United States)

    MacMinn, Chris; Auton, Lucy

    2016-04-01

    Hydraulic fracturing is a method for extracting natural gas and oil from low-permeability rocks such as shale via the high-pressure injection of fluid into the bulk of the rock. The goal is to initiate and propagate fractures that will provide hydraulic access deeper into the reservoir, enabling gas or oil to be collected from a larger region of the rock. Fracture is the tensile failure of a brittle material upon reaching a threshold tensile stress, but some shales have a high clay content and may yield plastically before fracturing. Plastic deformation is the shear failure of a ductile material, during which stress relaxes through irreversible rearrangements of the particles of the material. Here, we investigate the impact of the ductility of shales on hydraulic fracturing. We first consider a simple, axisymmetric model for radially outward fluid injection from a wellbore into a ductile porous rock. We use this model to show that plastic deformation greatly reduces the maximum tensile stress, and that this maximum stress does not always occur at the wellbore. We then complement these results with laboratory experiments in an analogue system, and with numerical simulations based on the discrete element method (DEM), both of which suggest that ductile failure can indeed dramatically change the resulting deformation pattern. These results imply that hydraulic fracturing may fail in ductile rocks, or that the required injection rate for fracking may be much larger than the rate predicted from models that assume purely elastic mechanical behavior.

  16. Understanding the Geometry of Connected Fracture Flow with Multiperiod Oscillatory Hydraulic Tests.

    Science.gov (United States)

    Sayler, Claire; Cardiff, Michael; Fort, Michael D

    2018-03-01

    An understanding of the spatial and hydraulic properties of fast preferential flow pathways in the subsurface is necessary in applications ranging from contaminant fate and transport modeling to design of energy extraction systems. One method for the characterization of fracture properties over interwellbore scales is Multiperiod Oscillatory Hydraulic (MOH) testing, in which the aquifer response to oscillatory pressure stimulations is observed. MOH tests were conducted on isolated intervals of wells in siliciclastic and carbonate aquifers in southern Wisconsin. The goal was to characterize the spatial properties of discrete fractures over interwellbore scales. MOH tests were conducted on two discrete fractured intervals intersecting two boreholes at one field site, and a nest of three piezometers at another field site. Fracture diffusivity estimates were obtained using analytical solutions that relate diffusivity to observed phase lag and amplitude decay. In addition, MOH tests were used to investigate the spatial extent of flow using different conceptual models of fracture geometry. Results indicated that fracture geometry at both field sites can be approximated by permeable two-dimensional fracture planes, oriented near-horizontally at one site, and near-vertically at the other. The technique used on MOH field data to characterize fracture geometry shows promise in revealing fracture network characteristics important to groundwater flow and transport. © 2017, National Ground Water Association.

  17. Quantifying Representative Hydraulic Conductivity for Three-Dimensional Fractured Formations

    Science.gov (United States)

    Lee, I.; Ni, C.

    2013-12-01

    The fractures and pores in rock formations are the fundamental units for flow and contaminant transport simulations. Due to technical and logical limitations it is difficult in reality to account for such small units to model flow and transport in large-scale problems. The concept of continuum representations of fractured rocks is then used as an alternative to solve for flow and transport in complex fractured formations. For these types of approaches the determinations of the representative parameters such as hydraulic conductivity and dispersion coefficient play important roles in controlling the accuracy of simulation results for large-scale problems. The objective of this study is to develop a discrete fracture network (DFN) model and the associated unstructured mesh generation system to characterize the continuum hydraulic conductivity for fractured rocks on different scales. In this study a coupled three-dimensional model of water flow, thermal transport, solute transport, and geochemical kinetic/equilibrium reactions in saturated/unsaturated porous media (HYDROGEOCHEM) is employed to be the flow simulator to analyze the flow behaviors in fracture formations. The fracture network model and the corresponding continuum model are simulated for same scale problems. Based on the concept of mass conservation in flow, the correlations between statistics of fracture structure and the representative continuum parameters are quantified for a variety of fracture distribution scenarios and scales. The results of this study are expected to provide general insight into the procedures and the associated techniques for analyzing flow in complex large-scale fractured rock systems.

  18. Fault activation by hydraulic fracturing in western Canada.

    Science.gov (United States)

    Bao, Xuewei; Eaton, David W

    2016-12-16

    Hydraulic fracturing has been inferred to trigger the majority of injection-induced earthquakes in western Canada, in contrast to the Midwestern United States, where massive saltwater disposal is the dominant triggering mechanism. A template-based earthquake catalog from a seismically active Canadian shale play, combined with comprehensive injection data during a 4-month interval, shows that earthquakes are tightly clustered in space and time near hydraulic fracturing sites. The largest event [moment magnitude (MW) 3.9] occurred several weeks after injection along a fault that appears to extend from the injection zone into crystalline basement. Patterns of seismicity indicate that stress changes during operations can activate fault slip to an offset distance of >1 km, whereas pressurization by hydraulic fracturing into a fault yields episodic seismicity that can persist for months. Copyright © 2016, American Association for the Advancement of Science.

  19. Occupational exposures to respirable crystalline silica during hydraulic fracturing.

    Science.gov (United States)

    Esswein, Eric J; Breitenstein, Michael; Snawder, John; Kiefer, Max; Sieber, W Karl

    2013-01-01

    This report describes a previously uncharacterized occupational health hazard: work crew exposures to respirable crystalline silica during hydraulic fracturing. Hydraulic fracturing involves high pressure injection of large volumes of water and sand, and smaller quantities of well treatment chemicals, into a gas or oil well to fracture shale or other rock formations, allowing more efficient recovery of hydrocarbons from a petroleum-bearing reservoir. Crystalline silica ("frac sand") is commonly used as a proppant to hold open cracks and fissures created by hydraulic pressure. Each stage of the process requires hundreds of thousands of pounds of quartz-containing sand; millions of pounds may be needed for all zones of a well. Mechanical handling of frac sand creates respirable crystalline silica dust, a potential exposure hazard for workers. Researchers at the National Institute for Occupational Safety and Health collected 111 personal breathing zone samples at 11 sites in five states to evaluate worker exposures to respirable crystalline silica during hydraulic fracturing. At each of the 11 sites, full-shift samples exceeded occupational health criteria (e.g., the Occupational Safety and Health Administration calculated permissible exposure limit, the NIOSH recommended exposure limit, or the ACGIH threshold limit value), in some cases, by 10 or more times the occupational health criteria. Based on these evaluations, an occupational health hazard was determined to exist for workplace exposures to crystalline silica. Seven points of dust generation were identified, including sand handling machinery and dust generated from the work site itself. Recommendations to control exposures include product substitution (when feasible), engineering controls or modifications to sand handling machinery, administrative controls, and use of personal protective equipment. To our knowledge, this represents the first systematic study of work crew exposures to crystalline silica during

  20. Effect of Injection Site on Fault Activation and Seismicity during Hydraulic Fracturing

    Directory of Open Access Journals (Sweden)

    Zhaohui Chong

    2017-10-01

    Full Text Available Hydraulic fracturing is a key technology to stimulate oil and gas wells to increase production in shale reservoirs with low permeability. Generally, the stimulated reservoir volume is performed based on pre-existing natural fractures (NF. Hydraulic fracturing in shale reservoirs with large natural fractures (i.e., faults often results in fault activation and seismicity. In this paper, a coupled hydro-mechanical model was employed to investigate the effects of injection site on fault activation and seismicity. A moment tensor method was used to evaluate the magnitude and affected areas of seismic events. The micro-parameters of the proposed model were calibrated through analytical solutions of the interaction between hydraulic fractures (HF and the fault. The results indicated that the slip displacement and activation range of the fault first decreased, then remained stable with the increase in the distance between the injection hole and the fault (Lif. In the scenario of the shortest Lif (Lif = 10 m, the b-value—which represents the proportion of frequency of small events in comparison with large events—reached its maximum value, and the magnitude of concentrated seismic events were in the range of −3.5 to −1.5. The frequency of seismic events containing only one crack was the lowest, and that of seismic events containing more than ten cracks was the highest. The interaction between the injection-induced stress disturbance and fault slip was gentle when Lif was longer than the critical distance (Lif = 40–50 m. The results may help optimize the fracturing treatment designs during hydraulic fracturing.

  1. Interaction of hydraulic and buckling mechanisms in blowout fractures.

    Science.gov (United States)

    Nagasao, Tomohisa; Miyamoto, Junpei; Jiang, Hua; Tamaki, Tamotsu; Kaneko, Tsuyoshi

    2010-04-01

    The etiology of blowout fractures is generally attributed to 2 mechanisms--increase in the pressure of the orbital contents (the hydraulic mechanism) and direct transmission of impacts on the orbital walls (the buckling mechanism). The present study aims to elucidate whether or not an interaction exists between these 2 mechanisms. We performed a simulation experiment using 10 Computer-Aided-Design skull models. We applied destructive energy to the orbits of the 10 models in 3 different ways. First, to simulate pure hydraulic mechanism, energy was applied solely on the internal walls of the orbit. Second, to simulate pure buckling mechanism, energy was applied solely on the inferior rim of the orbit. Third, to simulate the combined effect of the hydraulic and buckling mechanisms, energy was applied both on the internal wall of the orbit and inferior rim of the orbit. After applying the energy, we calculated the areas of the regions where fracture occurred in the models. Thereafter, we compared the areas among the 3 energy application patterns. When the hydraulic and buckling mechanisms work simultaneously, fracture occurs on wider areas of the orbital walls than when each of these mechanisms works separately. The hydraulic and buckling mechanisms interact, enhancing each other's effect. This information should be taken into consideration when we examine patients in whom blowout fracture is suspected.

  2. Overview of Chronic Oral Toxicity Values for Chemicals Present in Hydraulic Fracturing Fluids, Flowback and Produced Waters

    Science.gov (United States)

    as part of EPA's Hydraulic Fracturing Drinking Water Assessment, EPA is summarizing existing toxicity data for chemicals reported to be used in hydraulic fracturing fluids and/or found in flowback or produced waters from hydraulically fractured wells

  3. 75 FR 36387 - Informational Public Meetings for Hydraulic Fracturing Research Study; Correction

    Science.gov (United States)

    2010-06-25

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Informational Public Meetings for Hydraulic Fracturing Research Study; Correction AGENCY... Hydraulic Fracturing Research Study. The document contained an incorrect EPA Web site address in two places...

  4. Hydraulic fracturing water use variability in the United States and potential environmental implications.

    Science.gov (United States)

    Gallegos, Tanya J; Varela, Brian A; Haines, Seth S; Engle, Mark A

    2015-07-01

    A U.S. map of water volumes used to hydraulically fracture oil and gas wells, 2011-2014Hydraulic fracturing water volumes differ regionally across the U.S.Discussion of variation in water use and potential environmental implications.

  5. Hydraulic fracture experiments in GT-1 and GT-2

    Energy Technology Data Exchange (ETDEWEB)

    Aamodt, R.L.

    1977-02-01

    Hydraulic fracturing experiments were conducted in granite rock, at temperatures near 100 and 150/sup 0/C, in two wells 0.785 km (2575 ft) and 1.98 km (6500 ft) deep near Los Alamos, New Mexico. No unusual difficulty was observed in fracturing crystalline rock hydraulically. The apparent surface energy (energy required to create new fracture surface by breaking the rock) was measured as 100 J/m/sup 2/. Orientation of the deeper fracture was measured as N35/sup 0/E (+-5/sup 0/). The fraction of fluid injected into the rock that could be recovered at hydrostatic surface pressure was measured. The efficiency of recovery was as high as 92 percent after the fracture impedance was lowered by ''propping'' the fracture with sand. Permeability of the rock over the face of the fracture was compatible with laboratory measurements (10/sup -7/ to 10/sup -8/ darcys). Downhole pressures required to extend the fractures were about 150 and 340 bars (2175 and 4900 psi), respectively.

  6. Numerical Modeling of Fluid Migration and Propagation of Multiple Hydraulic Fractures in Crystalline Geothermal Reservoir

    Science.gov (United States)

    Yoon, Jeoung Seok; Zang, Arno; Zimmermann, Günter; Stephansson, Ove; Min, Ki-Bok

    2015-04-01

    This paper presents discrete element based numerical model which is applied to simulation of multiple stage hydraulic fracturing in crystalline granitic geothermal reservoir. Target site modeled locates in south of state of Saxony Germany. Particle Flow Code 2D (Itasca) is used in which fluid flow algorithm and moment tensor based seismicity computation algorithm are implemented. Crystalline rock layer to be stimulated locates at 4-6 km depth with relative low density of pre-existing joints and faults. Hydraulic stimulation is modeled with five stages of fluid injection with distance of several hundreds of meters. Hydraulic fracturing is done on the stages from toe to heel direction along a series of sub-horizontally drilled wellbore with constant rate of fluid injection. Fracture propagation paths and induced seismic events are documented based on their time of occurrence and their magnitude. In addition to the evolution of the fracture propagation path and distribution of the induced events, migration of the injected fluid is investigated in space and time. This is to see how the results relate to the fluid migration front in low permeability crystalline reservoir subjected to multiple stage hydraulic fracturing. Moreover, this paper addresses advantages and disadvantages of the inclined drilling of the wellbore in low permeability reservoir and multi-stage fracturing setting. We try to seek an optimum inclination of the drilling in relation to the gradients and magnitudes of the in situ stresses, which are horizontal minimum and vertical stresses. Preliminary modeling results show that inclination angle of the drilling has a significant effect on lowering of the stress shadow effect and level of induced seismicity in terms of total number, magnitudes and the Gutenberg-Richter relation.

  7. Hydraulic fracturing and environmental concerns : The role of local government

    NARCIS (Netherlands)

    Verschuuren, Jonathan

    2015-01-01

    This article discusses how local governments, in three different countries, challenge higher levels of government’s decision making that enables hydraulic fracturing, and it explores how these higher levels of government should respond. The article finds that in those countries where at the local

  8. Hydraulic fracturing, energy transition and political engagement in the Netherlands

    NARCIS (Netherlands)

    Rasch, Elisabet Dueholm; Köhne, Michiel

    2016-01-01

    This paper analyses how citizens (re)define their relation to the state in the contestation of hydraulic fracturing in the Noordoostpolder (the Netherlands) in the context of energy transition. It approaches citizenship as the negotiations between governments and citizens about in-and exclusion

  9. Nucleation of dynamic slip on a hydraulically fractured fault

    Science.gov (United States)

    Azad, M.; Garagash, D. I.; Satish, M.

    2017-04-01

    This work is concerned with the relationship between hydraulic fracturing injection into a fault and the possibility of a seismic slip. The results of this study show that the nucleation of dynamic slip on a fault with slip-weakening friction is only weakly dependent on the magnitude of the stress perturbation ahead of the propagating hydraulic fracture (HF), or the HF propagation regime, and is mainly controlled by the hydraulic fracture length (i.e., the size of the fully unloaded fault segment at a given time). The growth of the fault slipping patch remains stable when the background shear stress τ0 is smaller than the residual fault strength τr under ambient conditions. Otherwise (τ0>τr), nucleation of dynamic slip takes place when the hydraulic fracture grows to the critical size ℓc, which is vanishingly small ∝τp-τ0 for critically stressed faults (i.e., when the background stress approaches the fault peak strength, τ0→τp) and is diverging as ∝1/(τ0-τr) when the stability boundary is approached (τ0→τr). Our solution for the critical HF size allows to infer the corresponding fluid injection volume that may lead to slip instability on a fault with given frictional properties and background stress.

  10. Potential Relationships Between Hydraulic Fracturing and Drinking Water Resources

    Science.gov (United States)

    The conferees urge the Agency to carry out a study on the relationship between hydraulic fracturing and drinking water, using a credible approach that relies on the best available science, as well as independent sources of information. The conferees expect the study to be conduct...

  11. 78 FR 31635 - Oil and Gas; Hydraulic Fracturing on Federal and Indian Lands

    Science.gov (United States)

    2013-05-24

    ... (Subcommittee) of the Secretary of Energy Advisory Board to evaluate hydraulic fracturing issues. The... the Interior Bureau of Land Management 43 CFR Part 3160 Oil and Gas; Hydraulic Fracturing on Federal... [WO-300-L13100000.FJ0000] RIN 1004-AE26 Oil and Gas; Hydraulic Fracturing on Federal and Indian Lands...

  12. 75 FR 35023 - Informational Public Meetings for Hydraulic Fracturing Research Study

    Science.gov (United States)

    2010-06-21

    ... AGENCY Informational Public Meetings for Hydraulic Fracturing Research Study AGENCY: Environmental... meetings related to the Agency's proposed Hydraulic Fracturing Research Study. The meetings are open to the.... Persons wishing to contribute comments to EPA regarding the proposed Hydraulic Fracturing Research Study...

  13. 78 FR 20637 - Notification of Public Meeting and a Public Teleconference of the Hydraulic Fracturing Research...

    Science.gov (United States)

    2013-04-05

    ... AGENCY Notification of Public Meeting and a Public Teleconference of the Hydraulic Fracturing Research... teleconference of the Hydraulic Fracturing Research Advisory Panel to provide an opportunity for independent... Hydraulic Fracturing on Drinking Water Resources: Progress Report, which was released in December 2012. The...

  14. Analytic crack solutions for tilt fields around hydraulic fractures

    Energy Technology Data Exchange (ETDEWEB)

    Warpinski, N.R.

    2000-01-05

    The recent development of downhole tiltmeter arrays for monitoring hydraulic fractures has provided new information on fracture growth and geometry. These downhole arrays offer the significant advantages of being close to the fracture (large signal) and being unaffected by the free surface. As with surface tiltmeter data, analysis of these measurements requires the inversion of a crack or dislocation model. To supplement the dislocation models of Davis [1983], Okada [1992] and others, this work has extended several elastic crack solutions to provide tilt calculations. The solutions include constant-pressure 2D, penny-shaped, and 3D-elliptic cracks and a 2D-variable-pressure crack. Equations are developed for an arbitrary inclined fracture in an infinite elastic space. Effects of fracture height, fracture length, fracture dip, fracture azimuth, fracture width and monitoring distance on the tilt distribution are given, as well as comparisons with the dislocation model. The results show that the tilt measurements are very sensitive to the fracture dimensions, but also that it is difficult to separate the competing effects of the various parameters.

  15. Massive hydraulic fracture mapping and characterization program. First annual report, August 1975--July 1976

    Energy Technology Data Exchange (ETDEWEB)

    McCann, R.P.; Hay, R.G.; Bartel, L.C.

    1977-06-01

    The FY'76 major objectives of the Massive Hydraulic Fracture Mapping and Characterization Program were to assess the feasibility of the surface electrical potential and surface seismic systems to provide locational information on hydraulically created fracture systems. The surface electrical potential system has demonstrated the capability to provide information on fracture azimuthal orientation, asymmetry of fracture, and direction of major fracture wing. Assessment of the surface seismic technique for fracture characterization is not encouraging. During FY'76, Sandia participated in five MHF experiments for natural gas stimulation. Two of these were conducted by El Paso Natural Gas in the Green River Basin at Pinedale, Wyoming, and three were conducted by AMOCO in the Wattenberg field northeast of Denver, Colorado. Sandia supported all five experiments with the surface electrical potential system and three with surface seismic arrays. This report describes both fracture characterization techniques, provides an overview of the associated hardware and software development, and presents the results obtained from participation in the field tests.

  16. Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (Final Report)

    Science.gov (United States)

    This final report provides a review and synthesis of available scientific information concerning the relationship between hydraulic fracturing activities and drinking water resources in the United States. The report is organized around activities in the hydraulic...

  17. Reliability of Source Mechanisms for a Hydraulic Fracturing Dataset

    Science.gov (United States)

    Eyre, T.; Van der Baan, M.

    2016-12-01

    Non-double-couple components have been inferred for induced seismicity due to fluid injection, yet these components are often poorly constrained due to the acquisition geometry. Likewise non-double-couple components in microseismic recordings are not uncommon. Microseismic source mechanisms provide an insight into the fracturing behaviour of a hydraulically stimulated reservoir. However, source inversion in a hydraulic fracturing environment is complicated by the likelihood of volumetric contributions to the source due to the presence of high pressure fluids, which greatly increases the possible solution space and therefore the non-uniqueness of the solutions. Microseismic data is usually recorded on either 2D surface or borehole arrays of sensors. In many cases, surface arrays appear to constrain source mechanisms with high shear components, whereas borehole arrays tend to constrain more variable mechanisms including those with high tensile components. The abilities of each geometry to constrain the true source mechanisms are therefore called into question.The ability to distinguish between shear and tensile source mechanisms with different acquisition geometries is investigated using synthetic data. For both inversions, both P- and S- wave amplitudes recorded on three component sensors need to be included to obtain reliable solutions. Surface arrays appear to give more reliable solutions due to a greater sampling of the focal sphere, but in reality tend to record signals with a low signal to noise ratio. Borehole arrays can produce acceptable results, however the reliability is much more affected by relative source-receiver locations and source orientation, with biases produced in many of the solutions. Therefore more care must be taken when interpreting results.These findings are taken into account when interpreting a microseismic dataset of 470 events recorded by two vertical borehole arrays monitoring a horizontal treatment well. Source locations and

  18. Laboratory hydraulic fracturing experiments in intact and pre-fractured rock

    Science.gov (United States)

    Zoback, M.D.; Rummel, F.; Jung, R.; Raleigh, C.B.

    1977-01-01

    Laboratory hydraulic fracturing experiments were conducted to investigate two factors which could influence the use of the hydrofrac technique for in-situ stress determinations; the possible dependence of the breakdown pressure upon the rate of borehole pressurization, and the influence of pre-existing cracks on the orientation of generated fractures. The experiments have shown that while the rate of borehole pressurization has a marked effect on breakdown pressures, the pressure at which hydraulic fractures initiate (and thus tensile strength) is independent of the rate of borehole pressurization when the effect of fluid penetration is negligible. Thus, the experiments indicate that use of breakdown pressures rather than fracture initiation pressures may lead to an erroneous estimate of tectonic stresses. A conceptual model is proposed to explain anomalously high breakdown pressures observed when fracturing with high viscosity fluids. In this model, initial fracture propagation is presumed to be stable due to large differences between the borehole pressure and that within the fracture. In samples which contained pre-existing fractures which were 'leaky' to water, we found it possible to generate hydraulic fractures oriented parallel to the direction of maximum compression if high viscosity drilling mud was used as the fracturing fluid. ?? 1977.

  19. Comparison of chemical-use between hydraulic fracturing, acidizing, and routine oil and gas development.

    Science.gov (United States)

    Stringfellow, William T; Camarillo, Mary Kay; Domen, Jeremy K; Shonkoff, Seth B C

    2017-01-01

    The potential hazards and risks associated with well-stimulation in unconventional oil and gas development (hydraulic fracturing, acid fracturing, and matrix acidizing) have been investigated and evaluated and federal and state regulations requiring chemical disclosure for well-stimulation have been implemented as part of an overall risk management strategy for unconventional oil and gas development. Similar evaluations for chemicals used in other routine oil and gas development activities, such as maintenance acidizing, gravel packing, and well drilling, have not been previously conducted, in part due to a lack of reliable information concerning on-field chemical-use. In this study, we compare chemical-use between routine activities and the more closely regulated well-stimulation activities using data collected by the South Coast Air Quality Monitoring District (SCAQMD), which mandates the reporting of both unconventional and routine on-field chemical-use for parts of Southern California. Analysis of this data shows that there is significant overlap in chemical-use between so-called unconventional activities and routine activities conducted for well maintenance, well-completion, or rework. A comparison within the SCAQMD shows a significant overlap between both types and amounts of chemicals used for well-stimulation treatments included under State mandatory-disclosure regulations and routine treatments that are not included under State regulations. A comparison between SCAQMD chemical-use for routine treatments and state-wide chemical-use for hydraulic fracturing also showed close similarity in chemical-use between activities covered under chemical disclosure requirements (e.g. hydraulic fracturing) and many other oil and gas field activities. The results of this study indicate regulations and risk assessments focused exclusively on chemicals used in well-stimulation activities may underestimate potential hazard or risk from overall oil field chemical-use.

  20. Intermediate-Scale Hydraulic Fracturing in a Deep Mine - kISMET Project Summary 2016

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, C. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dobson, P. F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wu, Y. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cook, P. J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kneafsey, T. J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nakagawa, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ulrich, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Siler, D. L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Guglielmi, Y. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ajo-Franklin, J. B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Daley, T. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, J. T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wang, H. F. [Univ. of Wisconsin, Madison, WI (United States); Lord, N. E. [Univ. of Wisconsin, Madison, WI (United States); Haimson, B. C. [Univ. of Wisconsin, Madison, WI (United States); Sone, H. [Univ. of Wisconsin, Madison, WI (United States); Vigilante, P. [Univ. of Wisconsin, Madison, WI (United States); Roggenthen, W. M. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Doe, T. W. [Golder Associates Inc., Toronto, ON (Canada); Lee, M. Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ingraham, M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Huang, H. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mattson, E. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhou, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Johnson, T. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Morris, J. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Johnson, P. A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Coblentz, D. D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Heise, J. [Stanford Underground Research Facility, Lead, SD (United States); Zoback, M. D. [Stanford Univ., CA (United States)

    2016-11-04

    negligible microseismicity. Field measurements of the stress field by hydraulic fracturing showed that the minimum horizontal stress at the kISMET site averages 21.7 MPa (3146 psi) pointing approximately N-S (356 degrees azimuth) and plunging slightly NNW at 12°. The vertical and horizontal maximum stress are similar in magnitude at 42-44 MPa (6090-6380 psi) for the depths of testing which averaged approximately 1530 m (5030 ft). Hydraulic fractures were remarkably uniform suggesting core-scale and larger rock fabric did not play a role in controlling fracture orientation. Monitoring using ERT and CASSM in the four monitoring boreholes, and passive seismic accelerometer-based measurements in the West Access Drift, was carried out during the generation of a larger fracture (so-called stimulation test) at a depth of 40 m below the invert. ERT was not able to detect the fracture created, nor were the accelerometers in the drift, but microseismicity was detected for first (deepest) hydraulic-fracturing stress measurement. The CASSM data have not yet been analyzed. Analytical solutions suggest fracture radius of the large fracture (stimulation test) was more than 6 m, depending on the unknown amount of leak-off. The kISMET results for stress state are consistent with large-scale mid-continent estimates of stress. Currently we are using the orientation of the stress field we determined to interpret a large number of borehole breakouts recorded in nearby boreholes at SURF to generate a more complete picture of the stress field and its variations at SURF. The efforts on the project have prompted a host of additional follow-on studies that we recommend be carried out at the kISMET site.

  1. Hydraulic Fracturing and Microseismicity: Global Perspective in Oil Exploration

    Directory of Open Access Journals (Sweden)

    J.R. Kayal

    2017-09-01

    Full Text Available Induced microseismicity is a common phenomenon in oil and gas reservoirs due to changes in internal stress accompanied by hydraulic fracturing and oil-gas extraction. These microseismicity can be monitored to understand the direction and type of hydraulic fracturing and pre-existing faults by precise hypocenter location and focal mechanism studies. Normal as well as strike-slip faulting earthquakes occur due to opening up of new cracks/fractures, and thrust/reverse faulting earthquakes due to compaction or closing of existing fractures. Further, frequency-magnitude relation (b-value and fractal dimension (D-value of the spatial and temporal clusterization of induced microseismicity may be much useful to characterize the fractures / existing faults and the stress regimes. Seismic tomography, on the other hand, can image the heterogeneous velocity structures / perturbations in the reservoir due to fractures and oil-gas-water contents. A few global case studies are illustrated to understand these processes and to draw attention towards importance of these studies in oil industries.

  2. Periodic Hydraulic Tests in a Bedrock Fracture Network

    Science.gov (United States)

    Cole, M. C.; Becker, M.; Ciervo, C.

    2016-12-01

    Better understanding of groundwater flow through bedrock fracture networks is critical for the emerging field of enhanced geothermal systems, as well as traditional hydrogeologic characterization. Periodic hydraulic testing has shown promise for its sensitivity to local heterogeneity and, therefore, may provide useful information about flow channelization and short circuiting. Unlike conventional steady-rate pumping or injection tests, periodic tests create a disturbance such that heads in the pumping and observation wells are always in the transient state. The volume of hydraulic influence of the oscillating flow increases with period of oscillation. Thus, different portions of the formation may be interrogated even with a single well pair. We recently performed periodic pumping tests at the Mirror Lake experimental fractured rock hydrology field site in the Northeastern United States. Head in one well was oscillated while heads in five monitoring wells 30 to 60 m away were monitored. Head oscillation was accomplished through alternating injection and pumping from a surface tank and pressure was measured using a network of transducers in zones isolated by pneumatic packers. Periodicity of the induced signal was varied in order to investigate different volumes of the formation. Drawdown data from the monitoring wells were digitally filtered, which enabled use of responses that were too small or noisy for curve fitting methods. As expected, the volume of hydraulic influence increased with period, but well response was not strictly a function of distance from the source well. This anomalous response is attributed to variation in fracture network hydraulic connectivity. The ability to vary the effective penetration distance of hydraulic influence provided more information about network connectivity than from a constant rate pumping test. Estimates of hydraulic parameters displayed a decreasing trend with period length, which has been noted in previous periodic tests

  3. Aerobic biodegradation of organic compounds in hydraulic fracturing fluids.

    Science.gov (United States)

    Kekacs, Daniel; Drollette, Brian D; Brooker, Michael; Plata, Desiree L; Mouser, Paula J

    2015-07-01

    Little is known of the attenuation of chemical mixtures created for hydraulic fracturing within the natural environment. A synthetic hydraulic fracturing fluid was developed from disclosed industry formulas and produced for laboratory experiments using commercial additives in use by Marcellus shale field crews. The experiments employed an internationally accepted standard method (OECD 301A) to evaluate aerobic biodegradation potential of the fluid mixture by monitoring the removal of dissolved organic carbon (DOC) from an aqueous solution by activated sludge and lake water microbial consortia for two substrate concentrations and four salinities. Microbial degradation removed from 57 % to more than 90 % of added DOC within 6.5 days, with higher removal efficiency at more dilute concentrations and little difference in overall removal extent between sludge and lake microbe treatments. The alcohols isopropanol and octanol were degraded to levels below detection limits while the solvent acetone accumulated in biological treatments through time. Salinity concentrations of 40 g/L or more completely inhibited degradation during the first 6.5 days of incubation with the synthetic hydraulic fracturing fluid even though communities were pre-acclimated to salt. Initially diverse microbial communities became dominated by 16S rRNA sequences affiliated with Pseudomonas and other Pseudomonadaceae after incubation with the synthetic fracturing fluid, taxa which may be involved in acetone production. These data expand our understanding of constraints on the biodegradation potential of organic compounds in hydraulic fracturing fluids under aerobic conditions in the event that they are accidentally released to surface waters and shallow soils.

  4. The water footprint of hydraulic fracturing in Sichuan Basin, China.

    Science.gov (United States)

    Zou, Caineng; Ni, Yunyan; Li, Jian; Kondash, Andrew; Coyte, Rachel; Lauer, Nancy; Cui, Huiying; Liao, Fengrong; Vengosh, Avner

    2018-02-23

    Shale gas is likely to play a major role in China's transition away from coal. In addition to technological and infrastructural constraints, the main challenges to China's sustainable shale gas development are sufficient shale gas production, water availability, and adequate wastewater management. Here we present, for the first time, actual data of shale gas production and its water footprint from the Weiyuan gas field, one of the major gas fields in Sichuan Basin. We show that shale gas production rates during the first 12 months (24 million m 3 per well) are similar to gas production rates in U.S. shale basins. The amount of water used for hydraulic fracturing (34,000 m 3 per well) and the volume of flowback and produced (FP) water in the first 12 months (19,800 m 3 per well) in Sichuan Basin are also similar to the current water footprints of hydraulic fracturing in U.S. basins. We present salinity data of the FP water (5000 to 40,000 mgCl/L) in Sichuan Basin and the treatment operations, which include sedimentation, dilution with fresh water, and recycling of the FP water for hydraulic fracturing. We utilize the water use data, empirical decline rates of shale gas and FP water productions in Sichuan Basin to generate two prediction models for water use for hydraulic fracturing and FP water production upon achieving China's goals to generate 100 billion m 3 of shale gas by 2030. The first model utilizes the current water use and FP production data, and the second assumes a yearly 5% intensification of the hydraulic fracturing process. The predicted water use for hydraulic fracturing in 2030 (50-65 million m 3 per year), FP water production (50-55 million m 3 per year), and fresh water dilution of FP water (25 million m 3 per year) constitute a water footprint that is much smaller than current water consumption and wastewater generation for coal mining, but higher than those of conventional gas production in China. Given estimates

  5. The quasi-one-dimensional hyperbolic model of hydraulic fracturing

    Directory of Open Access Journals (Sweden)

    Aidar M. Il'yasov

    2016-12-01

    Full Text Available The paper describes a quasi-one-dimensional hyperbolic model of hydraulic fracture growth assuming for the hydraulic fracturing that stress intensity is much higher than fracture resistance. The mode under analysis, which accounts for convective and unsteady terms in the fluid flow equation, is a generalization of the Perkins–Kern–Nordgren local model. It has been proved that the obtained system of differential equations is a quasi-linear strictly hyperbolic system, for which the characteristics were found as well as their correlations. For the case of the Coriolis correction neglect, the Riemann invariants were found. Neglecting the injected fluid leak-off and viscosity, the Riemann waves, similar to simple plane waves in gas dynamics, were defined and their properties were studied. The evolutionism of fracture boundaries was investigated. The initial boundary value problem was set for fracture growth. It has been shown that the neglect of dissipative terms in the presented model allows constructing a simple wave theory analogous to the theory of one-dimensional gas dynamics for isentropic plane waves.

  6. Investigation of Possible Wellbore Cement Failures During Hydraulic Fracturing Operations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihoon; Moridis, George

    2014-11-01

    We model and assess the possibility of shear failure, using the Mohr-Coulomb model ? along the vertical well by employing a rigorous coupled flow-geomechanic analysis. To this end, we vary the values of cohesion between the well casing and the surrounding cement to representing different quality levels of the cementing operation (low cohesion corresponds to low-quality cement and/or incomplete cementing). The simulation results show that there is very little fracturing when the cement is of high quality.. Conversely, incomplete cementing and/or weak cement can causes significant shear failure and the evolution of long fractures/cracks along the vertical well. Specifically, low cohesion between the well and cemented areas can cause significant shear failure along the well, but the same cohesion as the cemented zone does not cause shear failure. When the hydraulic fracturing pressure is high, low cohesion of the cement can causes fast propagation of shear failure and of the resulting fracture/crack, but a high-quality cement with no weak zones exhibits limited shear failure that is concentrated near the bottom of the vertical part of the well. Thus, high-quality cement and complete cementing along the vertical well appears to be the strongest protection against shear failure of the wellbore cement and, consequently, against contamination hazards to drinking water aquifers during hydraulic fracturing operations.

  7. Scintillation gamma spectrometer for analysis of hydraulic fracturing waste products.

    Science.gov (United States)

    Ying, Leong; O'Connor, Frank; Stolz, John F

    2015-01-01

    Flowback and produced wastewaters from unconventional hydraulic fracturing during oil and gas explorations typically brings to the surface Naturally Occurring Radioactive Materials (NORM), predominantly radioisotopes from the U238 and Th232 decay chains. Traditionally, radiological sampling are performed by sending collected small samples for laboratory tests either by radiochemical analysis or measurements by a high-resolution High-Purity Germanium (HPGe) gamma spectrometer. One of the main isotopes of concern is Ra226 which requires an extended 21-days quantification period to allow for full secular equilibrium to be established for the alpha counting of its progeny daughter Rn222. Field trials of a sodium iodide (NaI) scintillation detector offers a more economic solution for rapid screenings of radiological samples. To achieve the quantification accuracy, this gamma spectrometer must be efficiency calibrated with known standard sources prior to field deployments to analyze the radioactivity concentrations in hydraulic fracturing waste products.

  8. A reassessment of in situ stress determination by hydraulic fracturing

    Science.gov (United States)

    Lakirouhani, A.; Detournay, E.; Bunger, A. P.

    2016-06-01

    Estimating in situ stress based on hydraulic fracturing data typically depends on interpretation of the breakdown, secondary breakdown (`reopening') and shut-in pressure. While it has been recognized that the near-wellbore stress field should be taken into account and that the compressibility of the injection system and the viscous flow of the fluid can diminish the accuracy of stress estimates, these issues have not been well quantified. A coupled numerical model that includes the compressibility of the injection system and the flow of a viscous fluid in a plane-strain hydraulic fracture extending from a wellbore, in an impermeable rock, and in the presence of a non-isotropic in situ stress field provides a basic tool for estimating the order of the error associated with hydraulic fracturing stress measurements under non-ideal conditions. The main findings of this work are model-based guidelines on the values of relevant dimensionless parameter groups to ensure sufficient accuracy of stress estimates that use idealized models. When these guidelines cannot be met under field conditions, the model can be further applied to obtain first-order corrections that account for compressibility, viscosity and near-wellbore effects.

  9. Interpretation of resonance frequencies recorded during hydraulic fracturing treatments

    Science.gov (United States)

    Tary, J. B.; van der Baan, M.; Eaton, D. W.

    2014-02-01

    Hydraulic fracturing treatments are often monitored by strings of geophones deployed in boreholes. Instead of picking discrete events only, we here use time-frequency representations of continuous recordings to identify resonances in two case studies. This paper outlines an interpretational procedure to identify their cause using a subdivision into source, path, and receiver-side effects. For the first case study, two main resonances are observed both at depth by the downhole geophones and on the surface by two broadband arrays. The two acquisition networks have different receiver and path effects, yet recorded the same resonances; these resonances are therefore likely generated by source effects. The amplitude pattern at the surface arrays indicates that these resonances are probably due to pumping operations. In the second case study, selective resonances are detected by the downhole geophones. Resonances coming from receiver effects are either lower or higher frequency, and wave propagation modeling shows that path effects are not significant. We identify two possible causes within the source area, namely, eigenvibrations of fractures or non-Darcian flow within the hydraulic fractures. In the first situation, 15-30 m long fluid-filled cracks could generate the observed resonances. An interconnected fracture network would then be required, corresponding to mesoscale deformation of the reservoir. Alternatively, systematic patterns in non-Darcian fluid flow within the hydraulic fracture could also be their leading cause. Resonances can be used to gain a better understanding of reservoir deformations or dynamic fluid flow perturbations during fluid injection into hydrocarbon and geothermal reservoirs, CO2 sequestration, or volcanic eruptions.

  10. Experimental Investigation of the Effect of Bedding Planes on Hydraulic Fracturing Under True Triaxial Stress

    Science.gov (United States)

    Huang, Bingxiang; Liu, Jiangwei

    2017-10-01

    A bedding plane effect occurs when hydraulic fractures encounter the bedding plane. True triaxial hydraulic fracturing experiments were conducted with test blocks containing bedding planes. The effects of bedding plane properties and stress state on fracture propagation were analyzed. When hydraulic fracture encounters the bedding plane in sedimentary stratum, it usually propagates along the bedding plane at first. When the hydraulic pressure increases to a critical value in the direction of main hydraulic fracture, the main hydraulic fracture continues propagating along the original direction. The length of the long axial of the hydraulic fracture propagating along the bedding plane is greater than the length of the main hydraulic fracture before penetrating the bedding plane, and both of them are greater than the length of the main hydraulic fracture after penetrating the bedding plane. Three-dimensional propagation models were established. Three propagation forms of hydraulic fractures existed when encountering bedding planes: (1) propagation along the bedding plane; (2) initial propagation along the bedding plane followed by penetration of the bedding plane and propagation along the principal direction; and (3) direct penetration of the bedding plane and propagation along the principal direction.

  11. Numerical Simulation of the Propagation of Hydraulic and Natural Fracture Using Dijkstra’s Algorithm

    Directory of Open Access Journals (Sweden)

    Yanfang Wu

    2016-07-01

    Full Text Available Utilization of hydraulic-fracturing technology is dramatically increasing in exploitation of natural gas extraction. However the prediction of the configuration of propagated hydraulic fracture is extremely challenging. This paper presents a numerical method of obtaining the configuration of the propagated hydraulic fracture into discrete natural fracture network system. The method is developed on the basis of weighted fracture which is derived in combination of Dijkstra’s algorithm energy theory and vector method. Numerical results along with experimental data demonstrated that proposed method is capable of predicting the propagated hydraulic fracture configuration reasonably with high computation efficiency. Sensitivity analysis reveals a number of interesting observation results: the shortest path weight value decreases with increasing of fracture density and length, and increases with increasing of the angle between fractures to the maximum principal stress direction. Our method is helpful for evaluating the complexity of the discrete fracture network, to obtain the extension direction of the fracture.

  12. Hydraulic fracturing in cells and tissues: fracking meets cell biology.

    Science.gov (United States)

    Arroyo, Marino; Trepat, Xavier

    2017-02-01

    The animal body is largely made of water. A small fraction of body water is freely flowing in blood and lymph, but most of it is trapped in hydrogels such as the extracellular matrix (ECM), the cytoskeleton, and chromatin. Besides providing a medium for biological molecules to diffuse, water trapped in hydrogels plays a fundamental mechanical role. This role is well captured by the theory of poroelasticity, which explains how any deformation applied to a hydrogel causes pressure gradients and water flows, much like compressing a sponge squeezes water out of it. Here we review recent evidence that poroelastic pressures and flows can fracture essential biological barriers such as the nuclear envelope, the cellular cortex, and epithelial layers. This type of fracture is known in engineering literature as hydraulic fracturing or 'fracking'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Pore Pressure and Stress Distributions Around a Hydraulic Fracture in Heterogeneous Rock

    Science.gov (United States)

    Gao, Qian; Ghassemi, Ahmad

    2017-12-01

    One of the most significant characteristics of unconventional petroleum bearing formations is their heterogeneity, which affects the stress distribution, hydraulic fracture propagation and also fluid flow. This study focuses on the stress and pore pressure redistributions during hydraulic stimulation in a heterogeneous poroelastic rock. Lognormal random distributions of Young's modulus and permeability are generated to simulate the heterogeneous distributions of material properties. A 3D fully coupled poroelastic model based on the finite element method is presented utilizing a displacement-pressure formulation. In order to verify the model, numerical results are compared with analytical solutions showing excellent agreements. The effects of heterogeneities on stress and pore pressure distributions around a penny-shaped fracture in poroelastic rock are then analyzed. Results indicate that the stress and pore pressure distributions are more complex in a heterogeneous reservoir than in a homogeneous one. The spatial extent of stress reorientation during hydraulic stimulations is a function of time and is continuously changing due to the diffusion of pore pressure in the heterogeneous system. In contrast to the stress distributions in homogeneous media, irregular distributions of stresses and pore pressure are observed. Due to the change of material properties, shear stresses and nonuniform deformations are generated. The induced shear stresses in heterogeneous rock cause the initial horizontal principal stresses to rotate out of horizontal planes.

  14. Extended geothermal potential of clastic aquifers by hydraulic stimulation

    NARCIS (Netherlands)

    Veldkamp, J.G.; Pluymaekers, M.P.D.; Wees, J.D.A.M.

    2014-01-01

    We evaluated the implications of hydraulic stimulation in a Dutch context for low permeability clastic aquifers at a depth of 2000 to 4000 m, whose transmissivity has been mapped in the framework of the Dutch subsurface information system on geothermal energy in the Netherlands. For the simulation

  15. Study of pore pressure reaction on hydraulic fracturing

    Science.gov (United States)

    Trimonova, Mariia; Baryshnikov, Nikolay; Turuntaev, Sergey; Zenchenko, Evgeniy; Zenchenko, Petr

    2017-04-01

    We represent the results of the experimental study of the hydraulic fracture propagation influence on the fluid pore pressure. Initial pore pressure was induced by injection and production wells. The experiments were carried out according to scaling analysis based on the radial model of the fracture. All required geomechanical and hydrodynamical properties of a sample were derived from the scaling laws. So, gypsum was chosen as a sample material and vacuum oil as a fracturing fluid. The laboratory setup allows us to investigate the samples of cylindrical shape. It can be considered as an advantage in comparison with standard cubic samples, because we shouldn't consider the stress field inhomogeneity induced by the corners. Moreover, we can set 3D-loading by this setting. Also the sample diameter is big enough (43cm) for placing several wells: the fracturing well in the center and injection and production wells on two opposite sides of the central well. The experiment consisted of several stages: a) applying the horizontal pressure; b) applying the vertical pressure; c) water solution injection in the injection well with a constant pressure; d) the steady state obtaining; e) the oil injection in the central well with a constant rate. The pore pressure was recorded in the 15 points along bottom side of the sample during the whole experiment. We observe the pore pressure change during all the time of the experiment. First, the pore pressure changed due to water injection. Then we began to inject oil in the central well. We compared the obtained experimental data on the pore pressure changes with the solution of the 2D single-phase equation of pore-elasticity, and we found significant difference. The variation of the equation parameters couldn't help to resolve the discrepancy. After the experiment, we found that oil penetrated into the sample before and after the fracture initiation. This fact encouraged us to consider another physical process - the oil

  16. Constraints on Upward Migration of Hydraulic Fracturing Fluid and Brine

    Science.gov (United States)

    Flewelling, Samuel A; Sharma, Manu

    2014-01-01

    Recent increases in the use of hydraulic fracturing (HF) to aid extraction of oil and gas from black shales have raised concerns regarding potential environmental effects associated with predictions of upward migration of HF fluid and brine. Some recent studies have suggested that such upward migration can be large and that timescales for migration can be as short as a few years. In this article, we discuss the physical constraints on upward fluid migration from black shales (e.g., the Marcellus, Bakken, and Eagle Ford) to shallow aquifers, taking into account the potential changes to the subsurface brought about by HF. Our review of the literature indicates that HF affects a very limited portion of the entire thickness of the overlying bedrock and therefore, is unable to create direct hydraulic communication between black shales and shallow aquifers via induced fractures. As a result, upward migration of HF fluid and brine is controlled by preexisting hydraulic gradients and bedrock permeability. We show that in cases where there is an upward gradient, permeability is low, upward flow rates are low, and mean travel times are long (often >106 years). Consequently, the recently proposed rapid upward migration of brine and HF fluid, predicted to occur as a result of increased HF activity, does not appear to be physically plausible. Unrealistically high estimates of upward flow are the result of invalid assumptions about HF and the hydrogeology of sedimentary basins. PMID:23895673

  17. 3D Numerical Modeling of the Propagation of Hydraulic Fracture at Its Intersection with Natural (Pre-existing) Fracture

    Science.gov (United States)

    Dehghan, Ali Naghi; Goshtasbi, Kamran; Ahangari, Kaveh; Jin, Yan; Bahmani, Aram

    2017-02-01

    A variety of 3D numerical models were developed based on hydraulic fracture experiments to simulate the propagation of hydraulic fracture at its intersection with natural (pre-existing) fracture. Since the interaction between hydraulic and pre-existing fractures is a key condition that causes complex fracture patterns, the extended finite element method was employed in ABAQUS software to simulate the problem. The propagation of hydraulic fracture in a fractured medium was modeled in two horizontal differential stresses (Δ σ) of 5e6 and 10e6 Pa considering different strike and dip angles of pre-existing fracture. The rate of energy release was calculated in the directions of hydraulic and pre-existing fractures (G_{{frac}} /G_{{rock}}) at their intersection point to determine the fracture behavior. Opening and crossing were two dominant fracture behaviors during the hydraulic and pre-existing fracture interaction at low and high differential stress conditions, respectively. The results of numerical studies were compared with those of experimental models, showing a good agreement between the two to validate the accuracy of the models. Besides the horizontal differential stress, strike and dip angles of the natural (pre-existing) fracture, the key finding of this research was the significant effect of the energy release rate on the propagation behavior of the hydraulic fracture. This effect was more prominent under the influence of strike and dip angles, as well as differential stress. The obtained results can be used to predict and interpret the generation of complex hydraulic fracture patterns in field conditions.

  18. Simulation of Hydraulic and Natural Fracture Interaction Using a Coupled DFN-DEM Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.; Huang, H.; Deo, M.

    2016-03-01

    The presence of natural fractures will usually result in a complex fracture network due to the interactions between hydraulic and natural fracture. The reactivation of natural fractures can generally provide additional flow paths from formation to wellbore which play a crucial role in improving the hydrocarbon recovery in these ultra-low permeability reservoir. Thus, accurate description of the geometry of discrete fractures and bedding is highly desired for accurate flow and production predictions. Compared to conventional continuum models that implicitly represent the discrete feature, Discrete Fracture Network (DFN) models could realistically model the connectivity of discontinuities at both reservoir scale and well scale. In this work, a new hybrid numerical model that couples Discrete Fracture Network (DFN) and Dual-Lattice Discrete Element Method (DL-DEM) is proposed to investigate the interaction between hydraulic fracture and natural fractures. Based on the proposed model, the effects of natural fracture orientation, density and injection properties on hydraulic-natural fractures interaction are investigated.

  19. Analysis of Proppant Hydraulic Fracturing in a Sand Oil Reservoir in Southwest of Iran

    OpenAIRE

    Reza Masoomi; Iniko Bassey; Dolgow Sergie Viktorovich; Hosein Dehghani

    2015-01-01

    Hydraulic fracturing is one way to increase the productivity of oil and gas wells. One of the most fundamental successes of hydraulic fracturing operation is selecting the proper size and type of proppants which are used during the process. The aim of this study is optimizing the type and size of used propant in hydraulic fracturing operation in a sand oil reservoir in southwest of Iran. In this study sand and ceramic (sintered bauxite) have been considered as proppant type. Also the various ...

  20. Fluid driven fracture mechanics in highly anisotropic shale: a laboratory study with application to hydraulic fracturing

    Science.gov (United States)

    Gehne, Stephan; Benson, Philip; Koor, Nick; Enfield, Mark

    2017-04-01

    The finding of considerable volumes of hydrocarbon resources within tight sedimentary rock formations in the UK led to focused attention on the fundamental fracture properties of low permeability rock types and hydraulic fracturing. Despite much research in these fields, there remains a scarcity of available experimental data concerning the fracture mechanics of fluid driven fracturing and the fracture properties of anisotropic, low permeability rock types. In this study, hydraulic fracturing is simulated in a controlled laboratory environment to track fracture nucleation (location) and propagation (velocity) in space and time and assess how environmental factors and rock properties influence the fracture process and the developing fracture network. Here we report data on employing fluid overpressure to generate a permeable network of micro tensile fractures in a highly anisotropic shale ( 50% P-wave velocity anisotropy). Experiments are carried out in a triaxial deformation apparatus using cylindrical samples. The bedding planes are orientated either parallel or normal to the major principal stress direction (σ1). A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from the pre-defined zone inside the sample. Acoustic Emission location is used to record and map the nucleation and development of the micro-fracture network. Indirect tensile strength measurements at atmospheric pressure show a high tensile strength anisotropy ( 60%) of the shale. Depending on the relative bedding orientation within the stress field, we find that fluid induced fractures in the sample propagate in two of the three principal fracture orientations: Divider and Short-Transverse. The fracture progresses parallel to the bedding plane (Short-Transverse orientation) if the bedding plane is aligned (parallel) with the

  1. Investigation of growth features in several hydraulic fractures

    Science.gov (United States)

    Bykov, Alexander; Galybin, Alexander; Evdokimov, Alexander; Zavialova, Natalia; Zavialov, Ivan; Negodiaev, Sergey; Perepechkin, Ilia

    2017-04-01

    In this paper we simulate the growth of three or more interacting hydraulic fractures in the horizontal well with a cross flow of fluid between them. Calculation of the dynamics of cracks is performed in three dimensional space. The computation of the movement of fracturing fluid with proppant is performed in the two-dimensional space (the flow was averaged along crack aperture). For determining the hydraulic pipe resistance coefficient we used a generalization of the Reynolds number for fluids with power rheology and a generalization of the von Karman equation made by Dodge and Meiner. The calculations showed that the first crack was developing faster than the rest in homogeneous medium. During the steady loading the outer cracks pinch the inner cracks and it was shown that only the first and last fracture develop in extreme case. It is also possible to simulate the parameters at which the two developing outer cracks pinch the central one in the horizontal direction. In this case, the central crack may grow in the vertical direction.

  2. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV Fracturing in Tight Oil Reservoirs.

    Directory of Open Access Journals (Sweden)

    Yuliang Su

    Full Text Available Stimulated reservoir volume (SRV fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM, mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing.

  3. Pioneer hydraulic fracturing intervention on Brazilian Amazon Forest; Operacao pioneira de fraturamento hidraulico na selva Amazonica brasileira

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Cledeilson; Silva, Luis A.; Duque, Luis H.; Steffan, Rodolfo H.P.; Guimaraes, Zacarias [Baker Hughes, Houston, TX (United States); Sabino, Afonso H. dos S.; Corregio, Fabio; Ferreira, Jose Carlos da Silva; Melo, Marcelo Moura; Ludovice, Roberto C. [Petroleo Brasileiro S.A (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Hydraulic fracturing is a stimulation technique where fluid is pumped with enough energy to create a fracture in the reservoir and to propagate it filling the broken zone with proppant agent. To the end of the treatment the proppant agent will support the fracture creating a production flow path, once it will have permeability higher than the original formation. Since a long time it was desired to use that technique to explore tight reservoirs in the Solimoes basin. However the lack of information on the interest zones, the great amount of equipment and fluids volumes involved hindered the application in an area that withholds a environmental certification. In November 10th of 2011 these challenges were surpassed. This article describes the technique, job details and results of the pioneering hydraulic fracturing intervention in the heart of the Amazon forest that became economically viable the gas production in tight reservoirs of the Solimoes basin with minimum environmental impact. (author)

  4. Failure Mode of the Water-filled Fractures under Hydraulic Pressure in Karst Tunnels

    Directory of Open Access Journals (Sweden)

    Dong Xin

    2017-06-01

    Full Text Available Water-filled fractures continue to grow after the excavation of karst tunnels, and the hydraulic pressure in these fractures changes along with such growth. This paper simplifies the fractures in the surrounding rock as flat ellipses and then identifies the critical hydraulic pressure values required for the occurrence of tensile-shear and compression-shear failures in water-filled fractures in the case of plane stress. The occurrence of tensile-shear fracture requires a larger critical hydraulic pressure than compression-shear failure in the same fracture. This paper examines the effects of fracture strike and lateral pressure coefficient on critical hydraulic pressure, and identifies compression-shear failure as the main failure mode of water-filled fractures. This paper also analyses the hydraulic pressure distribution in fractures with different extensions, and reveals that hydraulic pressure decreases along with the continuous growth of fractures and cannot completely fill a newly formed fracture with water. Fracture growth may be interrupted under the effect of hydraulic tensile shear.

  5. XFEM modeling of hydraulic fracture in porous rocks with natural fractures

    Science.gov (United States)

    Wang, Tao; Liu, ZhanLi; Zeng, QingLei; Gao, Yue; Zhuang, Zhuo

    2017-08-01

    Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.

  6. Geothermal Reservoir Well Stimulation Program: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    The following are included: review of available data from previous fracturing stimulation operations, stimulation process variables, fracturing fluid design, hydraulic fracture design, stimulation case histories, and selected bibliography. (MHR)

  7. Radium release mechanisms during hydraulic fracturing of Marcellus Shale

    Science.gov (United States)

    Sharma, M.; Landis, J. D.; Renock, D. J.

    2016-12-01

    Wastewater co-produced with methane from Devonian Marcellus Shale is hypersaline and enriched in Ra. Recent studies find that water injected during hydraulic fracturing can leach out significant quantities of Na, Ca, Ba and Sr from solid phases in the shale over just hours to days. Here, we show with water-rock leaching experiments that the measured 226Ra/228Ra ratios of Marcellus wastewater could also derive from rapid leaching of mineral and organic phases of the shale. Radium isotopes 226Ra (t1/2 = 1600 a) and 228Ra (t1/2 = 5.8 a) are produced through radioactive decay of 238U (t1/2 = 4.5 Ga) and 232Th (t1/2 = 14 Ga), respectively. In the absence of processes that fractionate U, Th and Ra from one another, the decay rates of each parent-daughter pair become identical over 5 half-lives of the daughter radionuclide reaching a condition of secular equilibrium. Water-rock interaction may induce pronounced deviations from secular equilibrium in the water phase, however. Such is the case during hydraulic fracturing, where Ra is soluble and mobile, and is orphaned from insoluble U and Th parents. Once 226Ra and 228Ra are mobilized no fractionation between these isotopes is expected during their transport to the surface. Thus the 226Ra/228Ra ratio in wastewater provides a fingerprint of Ra source(s). Leaching Marcellus Shale with pure water under anoxic conditions releases mainly 228Ra from clays; extraction of 228Ra from radiation damaged sites is likely the dominant contributing mechanism. Using a novel isotope dilution technique we find that 90% of the Ra released in pure water partitions back onto rock (possibly clays). In comparison, leaching with high ionic strength solutions induces the release of 226Ra from mainly organics; the breakdown of organic matter in these solutions may be the driving mechanism controlling 226Ra release in solution. Radium released by high ionic strength solutions strongly partitions into water and results in the development of leachates

  8. Analysis of multi-factor coupling effect on hydraulic fracture network in shale reservoirs

    Directory of Open Access Journals (Sweden)

    Yuzhang Liu

    2015-03-01

    Full Text Available Based on the research results of lab triaxial hydraulic fracturing simulation experiments, field fracturing practice, and theory analysis, the factors affecting the growth of hydraulic fracture network in shale reservoirs, including brittleness, difference of horizontal stress, distribution and mechanical characteristics of natural fractures, fluid viscosity and fracturing parameters, etc are analyzed in this study. The results show that the growth of fracture network in shale reservoirs is affected by geological factors and engineering factors jointly. From the perspective of reservoir geological factors, the higher the rock brittleness, the more developed the natural fractures, and the poorer the natural fracture consolidation, the more likely hydraulic fracture network will be formed. From the perspective of fracturing engineering factors, lower fluid viscosity and larger fracturing scale will be more helpful to the formation of extensive fracture network. On the basis of the analysis of single factors, a multi-factor coupling index has been established to characterize the growth degree of hydraulic fracture network and evaluate the complexity of hydraulic fractures after the fracturing of shale reservoirs.

  9. Mapping the Isotropic Component of Focal Mechanisms in Hydraulic Fractures

    Science.gov (United States)

    Baig, A. M.; Urbancic, T. I.

    2009-12-01

    We present the results of a hydraulic fracture monitoring study where the events induced by the treatment are recorded with a three-dimensional sensor distribution. The fact that the microseismicity is recorded over multiple azimuths allows not only for better convergence of the location algorithm, but also acheives sufficient coverage of the focal sphere to reliably invert for the full moment tensor. Unlike in tectonic settings, many of these focal mechanisms have very strong non-double-couple components, due to the intrusion of proppants into the surrounding rock, and are thus characterized by mechanisms consistant with tensile cracks opening or closing. Mapping these mechanisms in time and space offers insight into both the processes responsible for the fracturing, but also how effectively the treatment propped open the rock and identifying which areas may have opened and subsequently closed.

  10. Boundary element simulation of petroleum reservoirs with hydraulically fractured wells

    Science.gov (United States)

    Pecher, Radek

    The boundary element method is applied to solve the linear pressure-diffusion equation of fluid-flow in porous media. The governing parabolic partial differential equation is transformed into the Laplace space to obtain the elliptic modified-Helmholtz equation including the homogeneous initial condition. The free- space Green's functions, satisfying this equation for anisotropic media in two and three dimensions, are combined with the generalized form of the Green's second identity. The resulting boundary integral equation is solved by following the collocation technique and applying the given time-dependent boundary conditions of the Dirichlet or Neumann type. The boundary integrals are approximated by the Gaussian quadrature along each element of the discretized domain boundary. Heterogeneous regions are represented by the sectionally-homogeneous zones of different rock and fluid properties. The final values of the interior pressure and velocity fields and of their time-derivatives are found by numerically inverting the solutions from the Laplace space by using the Stehfest's algorithm. The main extension of the mostly standard BEM-procedure is achieved in the modelling of the production and injection wells represented by internal sources and sinks. They are treated as part of the boundary by means of special single-node and both-sided elements, corresponding to the line and plane sources respectively. The wellbore skin and storage effects are considered for the line and cylindrical sources. Hydraulically fractured wells of infinite conductivity are handled directly according to the specified constraint type, out of the four alternatives. Fractures of finite conductivity are simulated by coupling the finite element model of their 1D-interior with the boundary element model of their 2D- exterior. Variable fracture width, fractures crossing zone boundaries, ``networking'' of fractures, fracture-tip singularity handling, or the 3D-description are additional advanced

  11. Modeling thermal stress propagation during hydraulic stimulation of geothermal wells

    Science.gov (United States)

    Jansen, Gunnar; Miller, Stephen A.

    2017-04-01

    A large fraction of the world's water and energy resources are located in naturally fractured reservoirs within the earth's crust. Depending on the lithology and tectonic history of a formation, fracture networks can range from dense and homogeneous highly fractured networks to single large scale fractures dominating the flow behavior. Understanding the dynamics of such reservoirs in terms of flow and transport is crucial to successful application of engineered geothermal systems (also known as enhanced geothermal systems or EGS) for geothermal energy production in the future. Fractured reservoirs are considered to consist of two distinct separate media, namely the fracture and matrix space respectively. Fractures are generally thin, highly conductive containing only small amounts of fluid, whereas the matrix rock provides high fluid storage but typically has much smaller permeability. Simulation of flow and transport through fractured porous media is challenging due to the high permeability contrast between the fractures and the surrounding rock matrix. However, accurate and efficient simulation of flow through a fracture network is crucial in order to understand, optimize and engineer reservoirs. It has been a research topic for several decades and is still under active research. Accurate fluid flow simulations through field-scale fractured reservoirs are still limited by the power of current computer processing units (CPU). We present an efficient implementation of the embedded discrete fracture model, which is a promising new technique in modeling the behavior of enhanced geothermal systems. An efficient coupling strategy is determined for numerical performance of the model. We provide new insight into the coupled modeling of fluid flow, heat transport of engineered geothermal reservoirs with focus on the thermal stress changes during the stimulation process. We further investigate the interplay of thermal and poro-elastic stress changes in the reservoir

  12. Simulations of hydraulic fracturing and leakage in sedimentary basins

    Energy Technology Data Exchange (ETDEWEB)

    Lothe, Ane Elisabeth

    2004-01-01

    Hydraulic fracturing and leakage of water through the caprock is described from sedimentary basin over geological time scale. Abnormal pressure accumulations reduce the effective stresses in the underground and trigger the initiation of hydraulic fractures. The major faults in the basin define these pressure compartments. In this Thesis, basin simulations of hydraulic fracturing and leakage have been carried out. A simulator (Pressim) is used to calculate pressure generation and dissipitation between the compartments. The flux between the compartments and not the flow within the compartments is modelled. The Griffith-Coulomb failure criterion determines initial failure at the top structures of overpressured compartments, whereas the frictional sliding criterion is used for reactivation along the same fractures. The minimum horizontal stress is determined from different formulas, and an empirical one seems to give good results compared to measured pressures and minimum horizontal stresses. Simulations have been carried out on two datasets; one covering the Halten Terrace area and one the Tune Field area in the northern North Sea. The timing of hydraulic fracturing and amount of leakage has been quantified in the studies from the Halten Terrace area. This is mainly controlled by the lateral fluid flow and the permeability of the major faults in the basin. Low fault permeability gives early failure, while high fault permeabilities results in no or late hydraulic fracturing and leakage from overpressured parts of the basin. In addition to varying the transmissibility of all faults in a basin, the transmissibility across individual faults can be varied. Increasing the transmissibility across faults is of major importance in overpressured to intermediately pressured areas. However, to obtain change in the flow, a certain pressure difference has to be the situation between the different compartments. The coefficient of internal friction and the coefficient of frictional

  13. Analysis of the Thermal and Hydraulic Stimulation Program at Raft River, Idaho

    Science.gov (United States)

    Bradford, Jacob; McLennan, John; Moore, Joseph; Podgorney, Robert; Plummer, Mitchell; Nash, Greg

    2017-05-01

    The Raft River geothermal field, located in southern Idaho, roughly 100 miles northwest of Salt Lake City, is the site of a Department of Energy Enhanced Geothermal System project designed to develop new techniques for enhancing the permeability of geothermal wells. RRG-9 ST1, the target stimulation well, was drilled to a measured depth of 5962 ft. and cased to 5551 ft. The open-hole section of the well penetrates Precambrian quartzite and quartz monzonite. The well encountered a temperature of 282 °F at its base. Thermal and hydraulic stimulation was initiated in June 2013. Several injection strategies have been employed. These strategies have included the continuous injection of water at temperatures ranging from 53 to 115 °F at wellhead pressures of approximately 275 psi and three short-term hydraulic stimulations at pressures up to approximately 1150 psi. Flow rates, wellhead and line pressures and fluid temperatures are measured continuously. These data are being utilized to assess the effectiveness of the stimulation program. As of August 2014, nearly 90 million gallons have been injected. A modified Hall plot has been used to characterize the relationships between the bottom-hole flowing pressure and the cumulative injection fluid volume. The data indicate that the skin factor is decreased, and/or the permeability around the wellbore has increased since the stimulation program was initiated. The injectivity index also indicates a positive improvement with values ranging from 0.15 gal/min psi in July 2013 to 1.73 gal/min psi in February 2015. Absolute flow rates have increased from approximately 20 to 475 gpm by February 2 2015. Geologic, downhole temperature and seismic data suggest the injected fluid enters a fracture zone at 5650 ft and then travels upward to a permeable horizon at the contact between the Precambrian rocks and the overlying Tertiary sedimentary and volcanic deposits. The reservoir simulation program FALCON developed at the Idaho National

  14. Numerical Evaluation and Optimization of Multiple Hydraulically Fractured Parameters Using a Flow-Stress-Damage Coupled Approach

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2016-04-01

    Full Text Available Multiple-factor analysis and optimization play a critical role in the the ability to maximizethe stimulated reservoir volume (SRV and the success of economic shale gas production. In this paper, taking the typical continental naturally fractured silty laminae shale in China as anexample, response surface methodology (RSM was employed to optimize multiple hydraulic fracturing parameters to maximize the stimulated area in combination with numerical modeling based on the coupled flow-stress-damage (FSD approach. This paper demonstrates hydraulic fracturing effectiveness by defining two indicesnamelythe stimulated reservoir area (SRA and stimulated silty laminae area (SLA. Seven uncertain parameters, such as laminae thickness, spacing, dip angle, cohesion, internal friction angle (IFA, in situ stress difference (SD, and an operational parameter-injection rate (IR with a reasonable range based on silty Laminae Shale, Southeastern Ordos Basin, are used to fit a response of SRA and SLA as the objective function, and finally identity the optimum design under the parameters based on simultaneously maximizingSRA and SLA. In addition, asensitivity analysis of the influential factors is conducted for SRA and SLA. The aim of the study is to improve the artificial ability to control the fracturing network by means of multi-parameteroptimization. This work promises to provide insights into the effective exploitation of unconventional shale gas reservoirs via optimization of the fracturing design for continental shale, Southeastern Ordos Basin, China.

  15. Environmentally Friendly, Rheoreversible, Hydraulic-fracturing Fluids for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Hongbo; Kabilan, Senthil; Stephens, Sean A.; Suresh, Niraj; Beck, Anthon NR; Varga, Tamas; Martin, Paul F.; Kuprat, Andrew P.; Jung, Hun Bok; Um, Wooyong; Bonneville, Alain; Heldebrant, David J.; Carroll, KC; Moore, Joseph; Fernandez, Carlos A.

    2015-07-01

    Cost-effective creation of high-permeability reservoirs inside deep crystalline bedrock is the primary challenge for the feasibility of enhanced geothermal systems (EGS). Current reservoir stimulation entails adverse environmental impacts and substantial economic costs due to the utilization of large volumes of water “doped” with chemicals including rheology modifiers, scale and corrosion inhibitors, biocides, friction reducers among others where, typically, little or no information of composition and toxicity is disclosed. An environmentally benign, CO2-activated, rheoreversible fracturing fluid has recently been developed that significantly enhances rock permeability at effective stress significantly lower than current technology. We evaluate the potential of this novel fracturing fluid for application on geothermal sites under different chemical and geomechanical conditions, by performing laboratory-scale fracturing experiments with different rock sources under different confining pressures, temperatures, and pH environments. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable Polyallylamine (PAA) represent a highly versatile fracturing fluid technology. This fracturing fluid creates/propagates fracture networks through highly impermeable crystalline rock at significantly lower effective stress as compared to control experiments where no PAA was present, and permeability enhancement was significantly increased for PAA compared to conventional hydraulic fracturing controls. This was evident in all experiments, including variable rock source/type, operation pressure and temperature (over the entire range for EGS applications), as well as over a wide range of formation-water pH values. This versatile novel fracturing fluid technology represents a great alternative to industrially available fracturing fluids for cost-effective and competitive geothermal energy production.

  16. Numerical Simulation of Hydraulic Fracture Propagation Guided by Single Radial Boreholes

    Directory of Open Access Journals (Sweden)

    Tiankui Guo

    2017-10-01

    Full Text Available Conventional hydraulic fracturing is not effective in target oil development zones with available wellbores located in the azimuth of the non-maximum horizontal in-situ stress. To some extent, we think that the radial hydraulic jet drilling has the function of guiding hydraulic fracture propagation direction and promoting deep penetration, but this notion currently lacks an effective theoretical support for fracture propagation. In order to verify the technology, a 3D extended finite element numerical model of hydraulic fracturing promoted by the single radial borehole was established, and the influences of nine factors on propagation of hydraulic fracture guided by the single radial borehole were comprehensively analyzed. Moreover, the term ‘Guidance factor (Gf’ was introduced for the first time to effectively quantify the radial borehole guidance. The guidance of nine factors was evaluated through gray correlation analysis. The experimental results were consistent with the numerical simulation results to a certain extent. The study provides theoretical evidence for the artificial control technology of directional propagation of hydraulic fracture promoted by the single radial borehole, and it predicts the guidance effect of a single radial borehole on hydraulic fracture to a certain extent, which is helpful for planning well-completion and fracturing operation parameters in radial borehole-promoted hydraulic fracturing technology.

  17. Real-time microseismic monitoring technology for hydraulic fracturing in shale gas reservoirs: A case study from the Southern Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Furong Wu

    2017-01-01

    Full Text Available Zipper hydraulic fracturing in multiple wells with long horizontal sections is a primary solution means to increase the shale gas production rate and efficiency and to reduce the cost in Southern Sichuan Basin. Microseismic based fracturing monitoring can be used for real-time imaging of hydraulic fractures, so it has been widely used to evaluate the fracturing effect of shale gas reservoirs and to direct the optimization and adjustment of fracturing parameters. In China, however, the microseismic fracturing monitoring on fracturing of shale gas reservoirs cannot be used to evaluate the fracturing results until the fracturing operation in the pad wells is completed according to the parameters which are designed prior to the fracturing monitoring. Its evaluation results can merely provide a guidance for the fracturing parameters of the next pad wells instead of the wells in operation. As a result, the real-time effect of microseismic fracturing monitoring is out of work. In view of this, the fractures induced by zipper hydraulic fracturing in multiple shale gas wells with long horizontal sections in the southern Sichuan Basin, was real-time imaged by using the combined technology of radially arranged microseismic surface monitoring and microseismic well monitoring on the basis of real-time positioning method. The fracturing results were assessed and used in real time for the optimization of prepad fluid parameter, perforation and temporary plugging additive releasing time, so as to effectively avoid repeated fracturing and uneven fracturing effects and improve fracturing stimulation effects. This method is applied in two well groups. It is shown that the average shale gas production rate is increased by 2–5 times. Furthermore, microseismic fracturing real-time monitoring plays a vital role in real-time evaluation of fracturing effect and real-time optimization of fracturing parameters, so it can be used as the reference and should be

  18. Flow of viscoplastic suspensions in a hydraulic fracture: implications to overflush

    Science.gov (United States)

    Boronin, S. A.; Osiptsov, A. A.; Desroches, J.

    2017-10-01

    The study is devoted to modeling of multiphase flows of immiscible viscoplastic fluids in a hydraulic fracture. In the framework of the lubrication approximation, three-dimensional Navier-Stokes equations are reduced to hyperbolic transport equations for the fluid tracers and a quasi-linear elliptic equation in terms of the fluid pressure. The governing equations are solved numerically using the finite-difference approach. A parametric study of the displacement of Bingham fluids in a Hele-Shaw cell is carried out. It is found that fingers developed through the pillar of a yield-stress suspension trigger the development of unyielded zones. An increase in the Bingham number leads to an increase in the so-called finger shielding effect, which manifests itself via an increase in the overall finger penetration zone and a decrease in the total number of fingers. The effect of flow parameters on the displacement of hydraulic fracturing proppant-laden suspension by a clean fluid in the vicinity of the perforation zone is carried out. This particular case is considered in application to overflush at the end of a stimulation treatment, when a small portion of a thin clean fluid is injected to wash out the particles from the wellbore into the fracture. It is found that an increase in the yield stress and the viscosity contrast between the fracturing and the overflush fluids typically reduces the area of the cavity thus mitigating the risk of loosing the conductive path between the wellbore and the fracture after the fracture closure.

  19. Hydraulic fracturing water use variability in the United States and potential environmental implications

    Science.gov (United States)

    Varela, Brian A.; Haines, Seth S.; Engle, Mark A.

    2015-01-01

    Abstract Until now, up‐to‐date, comprehensive, spatial, national‐scale data on hydraulic fracturing water volumes have been lacking. Water volumes used (injected) to hydraulically fracture over 263,859 oil and gas wells drilled between 2000 and 2014 were compiled and used to create the first U.S. map of hydraulic fracturing water use. Although median annual volumes of 15,275 m3 and 19,425 m3 of water per well was used to hydraulically fracture individual horizontal oil and gas wells, respectively, in 2014, about 42% of wells were actually either vertical or directional, which required less than 2600 m3 water per well. The highest average hydraulic fracturing water usage (10,000−36,620 m3 per well) in watersheds across the United States generally correlated with shale‐gas areas (versus coalbed methane, tight oil, or tight gas) where the greatest proportion of hydraulically fractured wells were horizontally drilled, reflecting that the natural reservoir properties influence water use. This analysis also demonstrates that many oil and gas resources within a given basin are developed using a mix of horizontal, vertical, and some directional wells, explaining why large volume hydraulic fracturing water usage is not widespread. This spatial variability in hydraulic fracturing water use relates to the potential for environmental impacts such as water availability, water quality, wastewater disposal, and possible wastewater injection‐induced earthquakes. PMID:26937056

  20. Recent Developments in Multiscale and Multiphase Modelling of the Hydraulic Fracturing Process

    Directory of Open Access Journals (Sweden)

    Yong Sheng

    2015-01-01

    Full Text Available Recently hydraulic fracturing of rocks has received much attention not only for its economic importance but also for its potential environmental impact. The hydraulically fracturing technique has been widely used in the oil (EOR and gas (EGR industries, especially in the USA, to extract more oil/gas through the deep rock formations. Also there have been increasing interests in utilising the hydraulic fracturing technique in geological storage of CO2 in recent years. In all cases, the design and implementation of the hydraulic fracturing process play a central role, highlighting the significance of research and development of this technique. However, the uncertainty behind the fracking mechanism has triggered public debates regarding the possible effect of this technique on human health and the environment. This has presented new challenges in the study of the hydraulic fracturing process. This paper describes the hydraulic fracturing mechanism and provides an overview of past and recent developments of the research performed towards better understandings of the hydraulic fracturing and its potential impacts, with particular emphasis on the development of modelling techniques and their implementation on the hydraulic fracturing.

  1. 78 FR 34611 - Oil and Gas; Hydraulic Fracturing on Federal and Indian Lands

    Science.gov (United States)

    2013-06-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management 43 CFR Part 3160 RIN 1004-AE26 Oil and Gas; Hydraulic Fracturing on Federal and...) published in the Federal Register a proposed rule to regulate hydraulic fracturing on Federal and Indian...

  2. Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources (Monterey, CA)

    Science.gov (United States)

    A summary of EPA's research relating to potential impacts of hydraulic fracturing on drinking water resources will be presented. Background about the study plan development will be presented along with an analysis of the water cycle as it relates to hydraulic fracturing processe...

  3. 78 FR 25267 - Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water Resources

    Science.gov (United States)

    2013-04-30

    ... research on the potential impacts of hydraulic fracturing on drinking water resources from April 30, 2013... research to examine the relationship between hydraulic fracturing and drinking water resources. The EPA... drinking water resources and to identify the driving factors that may affect the severity and frequency of...

  4. 77 FR 67361 - Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water Resources

    Science.gov (United States)

    2012-11-09

    ... impacts of hydraulic fracturing on drinking water resources. DATES: EPA will accept data and literature in... scientific research to examine the relationship between hydraulic fracturing and drinking water resources... water resources, if any, and to identify the driving factors that may affect the severity and frequency...

  5. Results of Scientific and Technical Supervision of Hydraulic Fracturing Operations

    Directory of Open Access Journals (Sweden)

    I.Kh. Makhmutov

    2017-11-01

    Full Text Available The paper presents actual results of the research conducted as part of a field pilot project which consisted in interpretation of minifrac test data and evaluation of the efficiency of the scientific and technical supervision of fracking operations. The research program involved 11 wells targeting Devonian terrigenous reservoirs. Minifrac tests in one perforation interval were performed only in seven wells, that is approximately in 64% of total well count. A reliable fracture closure estimate was obtained only in six wells (55%, beginning of pseudoradial flow was observed only in one well out of 11 wells (9%. Hence, conventional minifrac tests should be supplemented with other diagnostic injection tests. Analysis of the performance of hydraulic fracturing operations conducted according to this pilot project plan indicates that fracture modelling, and scientific and technical supervision of fracking operations performed by Hydrofrac Research Laboratory of Institute TatNIPIneft Tatneft PJSC have yielded beneficial effects, namely 1.44 times increase in oil production rates.

  6. Simulation of Hydraulic Fracture in Unsaturated Soils with High Degree of Saturation

    Directory of Open Access Journals (Sweden)

    Tielin Chen

    2014-01-01

    Full Text Available A numerical simulation approach of hydraulic fracture process, considering the couplings of the stress distribution, the fluid flow of the water-air mixture, the compression and dissolution of air, and the element damage evolution, has been developed to investigate the mechanisms of crack initiation and propagation in porous media during hydraulic fracturing. The concept of homogenized pore fluid has been adopted to represent the water air mixture. A large number of numerical analysis on hydraulic fracturing in clay with incipient injection slot have been carried out to study the mechanism of hydraulic fracturing in unsaturated soil with the characteristic of critical model I type of crack loading using stress intensity factor KIc. The results provide a numerical picture depicting the mechanisms of crack initiation and propagation during hydraulic fracturing. The numerical results are in good agreement with the experimental results, which confirms the adequacy and the power of the numerical approach.

  7. Hydromechanical and Thermomechanical Behaviour of Elastic Fractures during Thermal Stimulation of Naturally Fractured Reservoirs

    Science.gov (United States)

    Jalali, Mohammadreza; Valley, Benoît

    2015-04-01

    During the last two decades, incentives were put in place in order to feed our societies in energy with reduced CO2 emissions. Various policies have been considered to fulfill this strategy such as replacing coal by natural gas in power plants, producing electricity using CO2 free resources, and CO2 sequestration as a remediation for large point-source emitters (e.g. oil sands facilities, coal-fired power plants, and cement kilns). Naturally fractured reservoirs (NFRs) are among those geological structures which play a crucial role in the mentioned energy revolution. The behavior of fractured reservoirs during production processes is completely different than conventional reservoirs because of the dominant effects of fractures on fluid flux, with attendant issues of fracture fabric complexity and lithological heterogeneity. The level of complexity increases when thermal effects are taking place - as during the thermal stimulation of these stress-sensitive reservoirs in order to enhance the gas production in tight shales and/or increase the local conductivity of the fractures during the development of enhanced geothermal systems - where temperature is introduced as another degree of freedom in addition to pressure and displacement (or effective stress). Study of these stress-pressure-temperature effects requires a thermo-hydro-mechanical (THM) coupling approach, which considers the simultaneous variation of effective stress, pore pressure, and temperature and their interactions. In this study, thermal, hydraulic and mechanical behavior of partially open and elastic fractures in a homogeneous, isotropic and low permeable porous rock is studied. In order to compare the hydromechanical (HM) and thermomechanical (TM) characteristics of these fractures, three different injection scenarios, i.e. constant isothermal fluid injection rate, constant cooling without any fluid injection and constant cold fluid injection, are considered. Both thermomechanical and hydromechanical

  8. Hydraulic Fracture Extending into Network in Shale: Reviewing Influence Factors and Their Mechanism

    Science.gov (United States)

    Ren, Lan; Zhao, Jinzhou; Hu, Yongquan

    2014-01-01

    Hydraulic fracture in shale reservoir presents complex network propagation, which has essential difference with traditional plane biwing fracture at forming mechanism. Based on the research results of experiments, field fracturing practice, theory analysis, and numerical simulation, the influence factors and their mechanism of hydraulic fracture extending into network in shale have been systematically analyzed and discussed. Research results show that the fracture propagation in shale reservoir is influenced by the geological and the engineering factors, which includes rock mineral composition, rock mechanical properties, horizontal stress field, natural fractures, treating net pressure, fracturing fluid viscosity, and fracturing scale. This study has important theoretical value and practical significance to understand fracture network propagation mechanism in shale reservoir and contributes to improving the science and efficiency of shale reservoir fracturing design. PMID:25032240

  9. Hydraulic Fracture Propagation Through an Orthogonal Discontinuity: A Laboratory, Analytical and Numerical Study

    Science.gov (United States)

    Llanos, Ella María; Jeffrey, Robert G.; Hillis, Richard; Zhang, Xi

    2017-08-01

    Rocks are naturally fractured, and lack of knowledge of hydraulic fracture growth through the pre-existing discontinuities in rocks has impeded enhancing hydrocarbon extraction. This paper presents experimental results from uniaxial and biaxial tests, combined with numerical and analytical modelling results to develop a criterion for predicting whether a hydraulic fracture will cross a discontinuity, represented at the laboratory by unbonded machined frictional interfaces. The experimental results provide the first evidence for the impact of viscous fluid flow on the orthogonal fracture crossing. The fracture elliptical footprint also reflects the importance of both the applied loading stress and the viscosity in fracture propagation. The hydraulic fractures extend both in the direction of maximum compressive stress and in the direction with discontinuities that are arranged to be normal to the maximum compressive stress. The modelling results of fracture growth across discontinuities are obtained for the locations of slip starting points in initiating fracture crossing. Our analysis, in contrast to previous work on the prediction of frictional crossing, includes the non-singular stresses generated by the finite pressurised hydraulic fracture. Experimental and theoretical outcomes herein suggest that hydraulic fracture growth through an orthogonal discontinuity does not depend primarily on the interface friction coefficient.

  10. The risks of hydraulic fracturing and the responsibilities of engineers

    Directory of Open Access Journals (Sweden)

    Robert Kirkman

    2017-03-01

    Full Text Available One third of U.S. natural gas is extracted by injecting fluid at high pressure into shale formations, a process associated with a number of possible hazards and risks that have become the subject of intense public controversy. We develop a three-part schema to make sense of risks of hydraulic fracturing and the responsibilities of engineers: the lab, the field, and the forum. In the lab, researchers seek to answer basic questions about, for example, the behavior of shale under particular conditions; there uncertainty seems to arise at every turn. In the field, engineers and others work to implement technological processes, such as hydraulic fracturing and the subsequent extraction of oil and gas; hazards may arise as natural and social systems respond in sometimes surprising ways. In the forum, the public and their representatives deliberate about risk and acceptable risk, questions that are framed in ethical as well as technical terms. The difficulty of characterizing – and in living up to – the responsibilities of engineers lie in part in the apparent distance between the lab and the forum. We examine in turn uncertainties in the lab, hazards in the field, and deliberation in the forum, leading to the conclusion that scientists and engineers can and should help to inform public deliberation but that their research cannot, on its own, resolve all controversies. Scientists and engineers who seek to inform deliberation should be mindful of the scope and limits of their authority, clear and modest in communicating research findings to the public, and careful to avoid even apparent conflicts of interest wherever possible. We close by drawing from the lab-field-forum schema to suggest a direction for pedagogical innovations aimed at the formation of responsible engineers in the context of college-level degree programs.

  11. Near Wellbore Hydraulic Fracture Propagation from Perforations in Tight Rocks: The Roles of Fracturing Fluid Viscosity and Injection Rate

    Directory of Open Access Journals (Sweden)

    Seyed Hassan Fallahzadeh

    2017-03-01

    Full Text Available Hydraulic fracture initiation and near wellbore propagation is governed by complex failure mechanisms, especially in cased perforated wellbores. Various parameters affect such mechanisms, including fracturing fluid viscosity and injection rate. In this study, three different fracturing fluids with viscosities ranging from 20 to 600 Pa.s were used to investigate the effects of varying fracturing fluid viscosities and fluid injection rates on the fracturing mechanisms. Hydraulic fracturing tests were conducted in cased perforated boreholes made in tight 150 mm synthetic cubic samples. A true tri-axial stress cell was used to simulate real far field stress conditions. In addition, dimensional analyses were performed to correspond the results of lab experiments to field-scale operations. The results indicated that by increasing the fracturing fluid viscosity and injection rate, the fracturing energy increased, and consequently, higher fracturing pressures were observed. However, when the fracturing energy was transferred to a borehole at a faster rate, the fracture initiation angle also increased. This resulted in more curved fracture planes. Accordingly, a new parameter, called fracturing power, was introduced to relate fracture geometry to fluid viscosity and injection rate. Furthermore, it was observed that the presence of casing in the wellbore impacted the stress distribution around the casing in such a way that the fracture propagation deviated from the wellbore vicinity.

  12. Hazard assessment of hydraulic fracturing chemicals using an indexing method.

    Science.gov (United States)

    Hu, Guangji; Liu, Tianyi; Hager, James; Hewage, Kasun; Sadiq, Rehan

    2017-11-14

    The rapid expansion of unconventional natural gas production has triggered considerable public concerns, particularly regarding environmental and human health (EHH) risks posed by various chemical additives used in hydraulic fracturing (HF) operations. There is a need to assess the potential EHH hazards of additives used in real-world HF operations. In this study, HF additive and fracturing fluid data was acquired, and EHH hazards were assessed using an indexing approach. The indexing system analyzed chemical toxicological data of different ingredients contained within additives and produced an aggregated EHH safety index for each additive, along with an indicator describing the completeness of the chemical toxicological data. The results show that commonly used additives are generally associated with medium-level EHH hazards. In each additive category, ingredients of high EHH concern were identified, and the high hazard designation was primarily attributed to ingredients' high aquatic toxicity and carcinogenic effects. Among all assessed additive categories, iron control agents were identified as the greatest EHH hazards. Lack of information, such as undisclosed ingredients and chemical toxicological data gaps, has resulted in different levels of assessment uncertainties. In particular, friction reducers show the highest data incompleteness with regards to EHH hazards. This study reveals the potential EHH hazards associated with chemicals used in current HF field operations and can provide decision makers with valuable information to facilitate sustainable and responsible unconventional gas production. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A decision-analytic approach to predict state regulation of hydraulic fracturing.

    Science.gov (United States)

    Linkov, Igor; Trump, Benjamin; Jin, David; Mazurczak, Marcin; Schreurs, Miranda

    2014-01-01

    The development of horizontal drilling and hydraulic fracturing methods has dramatically increased the potential for the extraction of previously unrecoverable natural gas. Nonetheless, the potential risks and hazards associated with such technologies are not without controversy and are compounded by frequently changing information and an uncertain landscape of international politics and laws. Where each nation has its own energy policies and laws, predicting how a state with natural gas reserves that require hydraulic fracturing will regulate the industry is of paramount importance for potential developers and extractors. We present a method for predicting hydraulic fracturing decisions using multiple-criteria decision analysis. The case study evaluates the decisions of five hypothetical countries with differing political, social, environmental, and economic priorities, choosing among four policy alternatives: open hydraulic fracturing, limited hydraulic fracturing, completely banned hydraulic fracturing, and a cap and trade program. The result is a model that identifies the preferred policy alternative for each archetypal country and demonstrates the sensitivity the decision to particular metrics. Armed with such information, observers can predict each country's likely decisions related to natural gas exploration as more data become available or political situations change. Decision analysis provides a method to manage uncertainty and address forecasting concerns where rich and objective data may be lacking. For the case of hydraulic fracturing, the various political pressures and extreme uncertainty regarding the technology's risks and benefits serve as a prime platform to demonstrate how decision analysis can be used to predict future behaviors.

  14. Advanced hydraulic fracturing methods to create in situ reactive barriers

    Energy Technology Data Exchange (ETDEWEB)

    Murdoch, L. [FRx Inc., Cincinnati, OH (United States)]|[Clemson Univ., SC (United States); Siegrist, B. [Oak Ridge National Lab., TN (United States); Vesper, S. [Univ. of Cincinnati, OH (United States)] [and others

    1997-12-31

    Many contaminated areas consist of a source area and a plume. In the source area, the contaminant moves vertically downward from a release point through the vadose zone to an underlying saturated region. Where contaminants are organic liquids, NAPL may accumulate on the water table, or it may continue to migrate downward through the saturated region. Early developments of permeable barrier technology have focused on intercepting horizontally moving plumes with vertical structures, such as trenches, filled with reactive material capable of immobilizing or degrading dissolved contaminants. This focus resulted in part from a need to economically treat the potentially large volumes of contaminated water in a plume, and in part from the availability of construction technology to create the vertical structures that could house reactive compounds. Contaminant source areas, however, have thus far remained largely excluded from the application of permeable barrier technology. One reason for this is the lack of conventional construction methods for creating suitable horizontal structures that would place reactive materials in the path of downward-moving contaminants. Methods of hydraulic fracturing have been widely used to create flat-lying to gently dipping layers of granular material in unconsolidated sediments. Most applications thus far have involved filling fractures with coarse-grained sand to create permeable layers that will increase the discharge of wells recovering contaminated water or vapor. However, it is possible to fill fractures with other compounds that alter the chemical composition of the subsurface. One early application involved development and field testing micro-encapsulated sodium percarbonate, a solid compound that releases oxygen and can create aerobic conditions suitable for biodegradation in the subsurface for several months.

  15. The EPA's Study on the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

    Science.gov (United States)

    Burden, Susan

    2013-03-01

    Natural gas plays a key role in our nation's clean energy future. The United States has vast reserves of natural gas that are commercially viable as a result of advances in horizontal drilling and hydraulic fracturing technologies, which enable greater access to gas in rock formations deep underground. These advances have spurred a significant increase in the production of both natural gas and oil across the country. However, as the use of hydraulic fracturing has increased, so have concerns about its potential human health and environmental impacts, especially for drinking water. In response to public concern, the US Congress requested that the US Environmental Protection Agency (EPA) conduct scientific research to examine the relationship between hydraulic fracturing and drinking water resources. In 2011, the EPA began research to assess the potential impacts of hydraulic fracturing on drinking water resources, if any, and to identify the driving factors that may affect the severity and frequency of such impacts. The study is organized around the five stages of the hydraulic fracturing water cycle, from water acquisition through the mixing of chemicals and the injection of fracturing fluid to post-fracturing treatment and/or disposal of wastewater. EPA scientists are using a transdisciplinary research approach involving laboratory studies, computer modeling, toxicity assessments, and case studies to answer research questions associated with each stage of the water cycle. This talk will provide an overview of the EPA's study, including a description of the hydraulic fracturing water cycle and a summary of the ongoing research projects.

  16. Water-Energy Metrics for Hydraulic Fracturing Versus Other Energy Technologies

    Science.gov (United States)

    Jackson, R. B.

    2015-12-01

    The combination of hydraulic fracturing and horizontal drilling has transformed energy production but drawn scrutiny for its water demands. Hydraulically fractured wells in the United States require millions of gallons of water per well and generate hundreds of billions of gallons of wastewater each year. Such wells also generate considerable energy. How does the water intensity (water per unit energy) for hydraulic fracturing compare with the intensity of other fossil fuels, nuclear power, and various renewables? I will use new data from plays such as the Marcellus and Bakken to address this question, comparing water metrics for extraction, processing, and, where relevant, electricity generation.

  17. Implementation of distributed feedback fiber laser sensor for acoustic measurements in hydraulic fracturing

    Science.gov (United States)

    Chen, Rongzhang; Yan, Aidong; Zaghloul, Mohamed A. S.; Lu, Guanyi; Bunger, Andrew P.; Miller, Gary A.; Cranch, Geoffrey A.; Chen, Kevin P.

    2016-09-01

    A distributed feedback (DFB) fiber laser strain sensor was implemented to measure acoustic emission induced by the hydraulic fracturing process. A study of practical sensor mounting configurations and their characteristics was carried out to find a practical solution. Combining the suitable mounting configuration and ultrahigh strain sensitivity of the DFB fiber laser, the evolution of the hydraulic fracturing process was well monitored. This study shows that fiber lasers can be useful alternatives to piezoelectric sensors in the field of hydraulic fracturing for gas and oil extraction.

  18. Coupled Three-Dimensional Fracture Stimulation and Prediction Model for Enhanced Geothermal Systems

    Science.gov (United States)

    Kumar, D.; Gutierrez, M.

    2013-12-01

    The paper presents development of a three-dimensional fracture stimulation and prediction model using the Boundary Element Method (BEM) for Enhanced Geothermal Systems (EGS). The BEM method results in a numerical procedure which eliminates discretization of complete reservoir domain; hence, only the fracture surface discretization is required. The Displacement Discontinuity Method which is an invariant of the BEM was used to model the fracture geometry (e.g., fracture width, length and elongation), fluid pressure and stress distribution around the fracture. The main feature of the model is that it is able to handle true three-dimensional fractures that can twist turn and not just planar or pseudo three-dimensional fracture geometries. The numerical aspects of various mechanisms involved in the hydraulic fracturing process in the EGS such as fracture deformation, fluid flow and heat flow, fracture initiation and propagation were addressed. The laminar fracture fluid flow and transient heat flow were modeled using the Finite Element Method. The non-Newtonian fluid flow behavior was assumed. Temperature-dependent fluid and rock physical properties were used. The fracture same mesh was used to model for the fracture deformation, fluid flow and heat flow processes. The fracture surface was discretized using 4-node rectangular elements. The important numerical issues of the BEM implementation for the fracture modeling such as near singular, hypersingular cases and crack tip singularity were taken into account. The processes involved in hydraulic fracturing are interdependent. The fracture aperture strongly influences the fluid flow rate inside the fracture, as the fluid velocity is proportional to its width. Thermal-induced stresses effects the fracture aperture. These fully coupled processes of fluid flow, heat flow, and fracture deformation were solved in a coupled manner using iterative method. One of the main challenges of this research was to couple the thermal

  19. Inverse modeling of hydraulic tests in fractured crystalline rock based on a transition probability geostatistical approach

    Science.gov (United States)

    Blessent, Daniela; Therrien, René; Lemieux, Jean-Michel

    2011-12-01

    This paper presents numerical simulations of a series of hydraulic interference tests conducted in crystalline bedrock at Olkiluoto (Finland), a potential site for the disposal of the Finnish high-level nuclear waste. The tests are in a block of crystalline bedrock of about 0.03 km3 that contains low-transmissivity fractures. Fracture density, orientation, and fracture transmissivity are estimated from Posiva Flow Log (PFL) measurements in boreholes drilled in the rock block. On the basis of those data, a geostatistical approach relying on a transitional probability and Markov chain models is used to define a conceptual model based on stochastic fractured rock facies. Four facies are defined, from sparsely fractured bedrock to highly fractured bedrock. Using this conceptual model, three-dimensional groundwater flow is then simulated to reproduce interference pumping tests in either open or packed-off boreholes. Hydraulic conductivities of the fracture facies are estimated through automatic calibration using either hydraulic heads or both hydraulic heads and PFL flow rates as targets for calibration. The latter option produces a narrower confidence interval for the calibrated hydraulic conductivities, therefore reducing the associated uncertainty and demonstrating the usefulness of the measured PFL flow rates. Furthermore, the stochastic facies conceptual model is a suitable alternative to discrete fracture network models to simulate fluid flow in fractured geological media.

  20. From Micro to Meso: an exercise in determining hydraulic conductivity of fractured sandstone cores from detailed characterization of the fractures

    Science.gov (United States)

    Baraka-Lokmane, Salima; Liedl, Rudolf

    2006-09-01

    Hydraulic conductivities of fractured sandstone bore cores of 0.1 m in diameter are calculated using detailed characterization of the fracture geometry parameters determined using a resin casting technique. The accuracy of the measurements was about 0.25-1.25 μm with the image size used. The values of the effective fracture apertures vary between 10 μm and 50 μm. For modelling purposes the samples are sectioned serially, perpendicular to the flow direction along the cylinder axis. The hydraulic conductivity of individual slices is estimated by summing the contribution of the matrix (assumed uniform) and each fracture (depending on its length and aperture). Finally, the hydraulic conductivity of the bulk sample is estimated by a harmonic average in series along the flow path. Results of this geometrical upscaling compare favourably with actual conductivity measured in hydraulic and pneumatic experiments carried out prior to sectioning. This study shows that the determination of larger-scale conductivity can be achieved, based on the evaluation of fracture geometry parameters (e.g. fracture aperture, fracture width and fracture length), measured using an optical method, at least at the laboratory scale.

  1. A Laboratory Study of the Effects of Interbeds on Hydraulic Fracture Propagation in Shale Formation

    Directory of Open Access Journals (Sweden)

    Zhiheng Zhao

    2016-07-01

    Full Text Available To investigate how the characteristics of interbeds affect hydraulic fracture propagation in the continental shale formation, a series of 300 mm × 300 mm × 300 mm concrete blocks with varying interbeds, based on outcrop observation and core measurement of Chang 7-2 shale formation, were prepared to conduct the hydraulic fracturing experiments. The results reveal that the breakdown pressure increases with the rise of thickness and strength of interbeds under the same in-situ field stress and injection rate. In addition, for the model blocks with thick and high strength interbeds, the hydraulic fracture has difficulty crossing the interbeds and is prone to divert along the bedding faces, and the fracturing effectiveness is not good. However, for the model blocks with thin and low strength interbeds, more long branches are generated along the main fracture, which is beneficial to the formation of the fracture network. What is more, combining the macroscopic descriptions with microscopic observations, the blocks with thinner and lower strength interbeds tend to generate more micro-fractures, and the width of the fractures is relatively larger on the main fracture planes. Based on the experiments, it is indicated that the propagation of hydraulic fractures is strongly influenced by the characteristics of interbeds, and the results are instructive to the understanding and evaluation of the fracability in the continental shale formation.

  2. An Experimental Investigation of Hydraulic Fracturing in Shale Considering Anisotropy and Using Freshwater and Supercritical CO2

    Directory of Open Access Journals (Sweden)

    Jianming He

    2018-03-01

    Full Text Available The process of hydraulic fracturing makes use of a liquid to fracture reservoir rocks for the exploitation of unconventional resources. Hence, it is vital to understand the processes that produce the fracture networks that occur during hydraulic fracturing. A shale reservoir is one of the largest unconventional resources and it displays obvious anisotropic characteristics due to its inherent sedimentary structures. The viscosity and flow ability of the fracturing fluid plays an important role in this process. We conducted a series of hydraulic fracturing tests on shale cores (from the southern Sichuan Basin using freshwater and supercritical CO2 (SCO2 as fracturing fluids to investigate the different modes of fracture propagation. The pump pressure curves that we obtained during the fracturing experiment show how the shale responded to each of the fracturing fluids. We examined the influence of the anisotropic characteristics on the propagation of hydraulic fractures by conducting a series of hydraulic fracturing experiments on the shale cores using different bedding orientations. The bedding orientation of the shale had a profound influence on the fracture propagation when using either freshwater or a SCO2 fluid. The breakdown pressure of the shale core was affected not only by the bedding orientation but also by the fracturing fluid. A macroscopic observation of the fractures revealed different fracture geometries and propagation patterns. The results demonstrated that the anisotropic structures and the fracturing fluids could influence the path of the hydraulic fracture.

  3. Upfront predictions of hydraulic fracturing and gas production in underexplored shale gas basins: Example of the posidonia shale formation in the Netherlands

    NARCIS (Netherlands)

    TerHeege, J.H.; Zijp, M.; DeBruin, G.; Buijze, L.

    2014-01-01

    Upfront predictions of hydraulic fracturing and gas production of potential shale gas targets in Europe are important as often large potential resources are deduced without detailed knowledge on the potential for successful stimulation. Such predictions are challenging as they need to be based on

  4. 40 CFR 147.52 - State-administered program-Hydraulic Fracturing of Coal Beds.

    Science.gov (United States)

    2010-07-01

    ... hydraulic fracturing of coal beds in the State of Alabama, except those on Indian lands, is the program..., 1999, to Dr. Donald F. Oltz, Supervisor, State Oil and Gas Board of Alabama, Subject: Attorney General...

  5. Case Study Analysis of the Impacts of Water Acquisition for Hydraulic Fracturing on Local Water Availability

    Science.gov (United States)

    Hydraulic fracturing (HF) is used to develop unconventional gas reserves, but the technology requires large volumes of water, placing demands on local water resources and potentially creating conflict with other users and ecosystems. This study examines the balance between water ...

  6. Hydraulic sealing due to pressure solution contact zone growth in siliciclastic rock fractures

    National Research Council Canada - National Science Library

    Lang, P. S; Paluszny, A; Zimmerman, R. W

    2015-01-01

    Thermo‐hydro‐mechanical‐chemical simulations at the pore scale are conducted to study the hydraulic sealing of siliciclastic rock fractures as contact zones grow driven by pressure dissolution. The evolving fluid‐saturated three...

  7. Mechanical and hydraulic behavior of a rock fracture under shear deformation

    National Research Council Canada - National Science Library

    Nishiyama, Satoshi; Ohnishi, Yuzo; Ito, Hisao; Yano, Takao

    2014-01-01

    ...-scale hydraulic behavior. To this end, a simultaneous permeability and shear test device is developed, and shear-flow coupling tests are conducted on specimens having fractures with varied levels of surface roughness...

  8. Analysis of Hydraulic Fracturing Fluid Data from the FracFocus Chemical Disclosure Registry 1 (PDF)

    Science.gov (United States)

    The EPA analyzed data from the FracFocus Chemical Disclosure Registry 1.0 to better understand the chemicals and water used to hydraulically fracture oil and gas production wells across the United States.

  9. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs

    Science.gov (United States)

    We have conducted numerical simulation studies to assess the potential for injection-induced fault reactivation and notable seismic events associated with shale-gas hydraulic fracturing operations. The modeling is generally tuned toward conditions usually encountered in the Marce...

  10. Analysis of Hydraulic Fracturing Fluid Data from the FracFocus Chemical Disclosure Registry 1

    Science.gov (United States)

    The EPA analyzed data from the FracFocus Chemical Disclosure Registry 1.0 to better understand the chemicals and water used to hydraulically fracture oil and gas production wells across the United States.

  11. Hydraulic fracturing and infant health: New evidence from Pennsylvania.

    Science.gov (United States)

    Currie, Janet; Greenstone, Michael; Meckel, Katherine

    2017-12-01

    The development of hydraulic fracturing ("fracking") is considered the biggest change to the global energy production system in the last half-century. However, several communities have banned fracking because of unresolved concerns about the impact of this process on human health. To evaluate the potential health impacts of fracking, we analyzed records of more than 1.1 million births in Pennsylvania from 2004 to 2013, comparing infants born to mothers living at different distances from active fracking sites and those born both before and after fracking was initiated at each site. We adjusted for fixed maternal determinants of infant health by comparing siblings who were and were not exposed to fracking sites in utero. We found evidence for negative health effects of in utero exposure to fracking sites within 3 km of a mother's residence, with the largest health impacts seen for in utero exposure within 1 km of fracking sites. Negative health impacts include a greater incidence of low-birth weight babies as well as significant declines in average birth weight and in several other measures of infant health. There is little evidence for health effects at distances beyond 3 km, suggesting that health impacts of fracking are highly local. Informal estimates suggest that about 29,000 of the nearly 4 million annual U.S. births occur within 1 km of an active fracking site and that these births therefore may be at higher risk of poor birth outcomes.

  12. IMPACT OF HYDRAULIC FRACTURING ON THE QUALITY OF NATURAL WATERS

    Directory of Open Access Journals (Sweden)

    Wojciech Cel

    2017-03-01

    Full Text Available Poland, due to the estimated shale gas deposits amounting to 346-768 billion m3 has become one of the most attractive regions for shale gas exploration in Europe. Throughout the period 2010-2015, 72 exploratory drillings have been made (as of 4.01.2016 while hydraulic fracturing was carried out 25 times. Employing new drilling and shale gas prospecting technologies raises a question pertaining to their impact on the environment. The number of chemical compounds used (approximately 2000 for the production of new technological fluids may potentially pollute the environment. The fact that the composition of these fluids remains undisclosed hinders the assessment of their impact on the environment and devising optimal methods for managing this type of waste. The presented work indicates the chemical compounds which may infiltrate to groundwater, identified on the basis of technological fluids characteristics, as well as the review of studies pertaining to their impact on potable water carried out in the United States. The study focused on marking heavy metals, calcium, sodium, magnesium, potassium, chlorides and sulphates in the surface waters collected in proximity of Lewino well.

  13. Development of an Advanced Hydraulic Fracture Mapping System

    Energy Technology Data Exchange (ETDEWEB)

    Norm Warpinski; Steve Wolhart; Larry Griffin; Eric Davis

    2007-01-31

    The project to develop an advanced hydraulic fracture mapping system consisted of both hardware and analysis components in an effort to build, field, and analyze combined data from tiltmeter and microseismic arrays. The hardware sections of the project included: (1) the building of new tiltmeter housings with feedthroughs for use in conjunction with a microseismic array, (2) the development of a means to use separate telemetry systems for the tilt and microseismic arrays, and (3) the selection and fabrication of an accelerometer sensor system to improve signal-to-noise ratios. The analysis sections of the project included a joint inversion for analysis and interpretation of combined tiltmeter and microseismic data and improved methods for extracting slippage planes and other reservoir information from the microseisms. In addition, testing was performed at various steps in the process to assess the data quality and problems/issues that arose during various parts of the project. A prototype array was successfully tested and a full array is now being fabricated for industrial use.

  14. Application of Phase-Field Techniques to Hydraulically- and Deformation-Induced Fracture.

    Energy Technology Data Exchange (ETDEWEB)

    Culp, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Nathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schweizer, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Phase-field techniques provide an alternative approach to fracture problems which mitigate some of the computational expense associated with tracking the crack interface and the coalescence of individual fractures. The technique is extended to apply to hydraulically driven fracture such as would occur during fracking or CO2 sequestration. Additionally, the technique is applied to a stainless steel specimen used in the Sandia Fracture Challenge. It was found that the phase-field model performs very well, at least qualitatively, in both deformation-induced fracture and hydraulically-induced fracture, though spurious hourglassing modes were observed during coupled hydralically-induced fracture. Future work would include performing additional quantitative benchmark tests and updating the model as needed.

  15. INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    David S. Schechter

    2005-04-27

    This report describes the work performed during the fourth year of the project, ''Investigating of Efficiency Improvements during CO{sub 2} Injection in Hydraulically and Naturally Fractured Reservoirs.'' The objective of this project is to perform unique laboratory experiments with artificially fractured cores (AFCs) and X-ray CT scanner to examine the physical mechanisms of bypassing in hydraulically fractured reservoirs (HFR) and naturally fractured reservoirs (NFR) that eventually result in more efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. In Chapter 1, we worked with DOE-RMOTC to investigate fracture properties in the Tensleep Formation at Teapot Dome Naval Reserve as part of their CO{sub 2} sequestration project. In Chapter 2, we continue our investigation to determine the primary oil recovery mechanism in a short vertically fractured core. Finally in Chapter 3, we report our numerical modeling efforts to develop compositional simulator with irregular grid blocks.

  16. Rock Springs Site 12 hydraulic/explosive true in situ oil shale fracturing experiment

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, R.L.; Boade, R.R.; Stevens, A.L.; Long, A. Jr.; Turner, T.F.

    1980-06-01

    The experiment plan involved the creation and characterization of three horizontal hydraulic fractures, followed by the insertion and simultaneous detonation of slurry explosive in the two lower fractures. Core analyses, wellbore logging, and airflow and /sup 85/Kr tracer tests were used for site characterization and assessment of the hydraulic and explosive fracturing. Tiltmeters, wellhead pressure and flow gages, and in-formation pressure, flow and crack-opening sensors were used to monitor hydrofracture creation and explosive insertion. Explosive detonation diagnostic data were taken with stress and time-of-arrival gages and surface and in-formation accelerometers. The post-fracturing assessments indicated that: (1) hydrofracture creation and explosive insertion and detonation were accomplished essentially as planned; (2) induced fractures were randomly distributed through the shale with no extensively fractured regions or dislocation of shale; and (3) enhancement of permeability was limited to enlargement of the explosive-filled fractures.

  17. Energy Release Rate in hydraulic fracture: can we neglect an impact of the hydraulically induced shear stress?

    CERN Document Server

    Wrobel, Michal; Piccolroaz, Andrea

    2016-01-01

    A novel hydraulic fracture (HF) formulation is introduced which accounts for the hydraulically induced shear stress at the crack faces. It utilizes a general form of the elasticity operator alongside a revised fracture propagation condition based on the critical value of the energy release rate. It is shown that the revised formulation describes the underlying physics of HF in a more accurate way and is in agreement with the asymptotic behaviour of the linear elastic fracture mechanics. A number of numerical simulations by means of the universal HF algorithm previously developed in Wrobel & Mishuris (2015) are performed in order to: i) compare the modified HF formulation with its classic counterpart and ii) investigate the peculiarities of the former. Computational advantages of the revised HF model are demonstrated. Asymptotic estimations of the main solution elements are provided for the cases of small and large toughness. The modified formulation opens new ways to analyse the physical phenomenon of HF ...

  18. Coupling Hydraulic Fracturing Propagation and Gas Well Performance for Simulation of Production in Unconventional Shale Gas Reservoirs

    Science.gov (United States)

    Wang, C.; Winterfeld, P. H.; Wu, Y. S.; Wang, Y.; Chen, D.; Yin, C.; Pan, Z.

    2014-12-01

    Hydraulic fracturing combined with horizontal drilling has made it possible to economically produce natural gas from unconventional shale gas reservoirs. An efficient methodology for evaluating hydraulic fracturing operation parameters, such as fluid and proppant properties, injection rates, and wellhead pressure, is essential for the evaluation and efficient design of these processes. Traditional numerical evaluation and optimization approaches are usually based on simulated fracture properties such as the fracture area. In our opinion, a methodology based on simulated production data is better, because production is the goal of hydraulic fracturing and we can calibrate this approach with production data that is already known. This numerical methodology requires a fully-coupled hydraulic fracture propagation and multi-phase flow model. In this paper, we present a general fully-coupled numerical framework to simulate hydraulic fracturing and post-fracture gas well performance. This three-dimensional, multi-phase simulator focuses on: (1) fracture width increase and fracture propagation that occurs as slurry is injected into the fracture, (2) erosion caused by fracture fluids and leakoff, (3) proppant subsidence and flowback, and (4) multi-phase fluid flow through various-scaled anisotropic natural and man-made fractures. Mathematical and numerical details on how to fully couple the fracture propagation and fluid flow parts are discussed. Hydraulic fracturing and production operation parameters, and properties of the reservoir, fluids, and proppants, are taken into account. The well may be horizontal, vertical, or deviated, as well as open-hole or cemented. The simulator is verified based on benchmarks from the literature and we show its application by simulating fracture network (hydraulic and natural fractures) propagation and production data history matching of a field in China. We also conduct a series of real-data modeling studies with different combinations of

  19. Mechanical and hydraulic behavior of a rock fracture under shear deformation

    Science.gov (United States)

    Nishiyama, Satoshi; Ohnishi, Yuzo; Ito, Hisao; Yano, Takao

    2014-12-01

    With regard to crystalline rock that constitutes deep geology, attempts have been made to explore its hydraulic characteristics by focusing on the network of numerous fractures within. As the hydraulic characteristics of a rock are the accumulation of hydraulic characteristics of each fracture, it is necessary to develop the hydraulic model of a single fracture to predict the large-scale hydraulic behavior. To this end, a simultaneous permeability and shear test device is developed, and shear-flow coupling tests are conducted on specimens having fractures with varied levels of surface roughness in the constant normal stiffness conditions. The results show that the permeability characteristics in the relation between shear displacement and transmissivity change greatly at the point where the stress path reaches the Mohr-Coulomb failure curve. It is also found that there exists a range in which transmissivity is not proportional to the cube of mechanical aperture width, which seems to be because of the occurrence of channeling phenomenon at small mechanical aperture widths. This channeling flow disappears with increasing shear and is transformed into a uniform flow. We develop a simulation technique to evaluate the macroscopic permeability characteristics by the lattice gas cellular automaton method, considering the microstructure of fracture, namely the fracture surface roughness. With this technique, it is shown that the formation of the Hagen-Poiseuille flow is affected by the fracture microstructure under shear, which as a result determines the relationship between the mechanical aperture width and transmissivity.

  20. Productivity model for gas reservoirs with open-hole multi-fracturing horizontal wells and optimization of hydraulic fracture parameters

    Directory of Open Access Journals (Sweden)

    Jianqiang Xue

    2017-12-01

    Full Text Available Multi-fractured horizontal wells are commonly employed to improve the productivity of low and ultra-low permeability gas reservoirs. However, conventional productivity models for open-hole multi-fractured horizontal wells do not consider the interferences between hydraulic fractures and the open-hole segments, resulting in significant errors in calculation results. In this article, a novel productivity prediction model for gas reservoirs with open-hole multi-fractured horizontal wells was proposed based on complex potential theories, potential superimposition, and numerical analysis. Herein, an open-hole segment between two adjacent fractures was regarded as an equivalent fracture, which was discretized as in cases of artificial fractures. The proposed model was then applied to investigate the effects of various parameters, such as the angle between the fracture and horizontal shaft, fracture quantity, fracture length, diversion capacity of fractures, horizontal well length, and inter-fracture distance, on the productivity of low permeability gas reservoirs with multi-fractured horizontal wells. Simulation results revealed that the quantity, length, and distribution of fractures had significant effects on the productivity of low permeability gas reservoirs while the effects of the diversion capacity of fractures and the angle between the fracture and horizontal shaft were negligible. Additionally, a U-shaped distribution of fracture lengths was preferential as the quantity of fractures at shaft ends was twice that in the middle area. Keywords: Low permeability gas reservoir, Multi-fractured horizontal well, Productivity prediction, Open-hole completion, Unsteady-state flow, Fracture parameters optimization

  1. Numerical simulation of hydraulic fracture propagation in heterogeneous unconventional reservoir

    Science.gov (United States)

    Liu, Chunting; Li, Mingzhong; Hao, Lihua; Hu, Hang

    2017-10-01

    The distribution of the unconventional reservoir fracture network is influenced by many factors. For the natural fracture undeveloped reservoir, the reservoir heterogeneity, construction factors (fracturing fluid flow rate, fluid viscosity, perforation clusters spacing), horizontal stress difference and stress different coefficient are the main factors that affect the fracture propagation. In the study, first, calculate the reservoir physics mechanics parameters that affect the fracture propagation on the base of the logging date from one actual horizontal well. Set the formation parameters according to the calculation that used to simulate the reservoir heterogeneity. Then, using damage mechanics method, the 2D fracture propagation model with seepage-stress-damage coupling of multi-fracture tight sand reservoir was established. Study the influences of different fracturing ways (open whole fracturing and oriented perforation fracturing) and the position of the perforation clusters to the fracture propagation for heterogeneity reservoir. Analyze the effects of flow rate, fracturing fluid viscosity, perforation clusters spacing, horizontal stress difference and stress different coefficient to fracture morphology for the heterogeneity reservoir and contrast with the homogeneous reservoir. The simulation results show that: the fracture morphology is more complexity formed by oriented perforation crack than open whole crack; For natural fracture undeveloped reservoir, as the flow rate or the fracturing fluid viscosity increases within a certain range, the fracture network tends to be more complexity and the effect is more obvious to heterogeneous reservoir than homogeneous reservoir; As the perforation clusters spacing decreases, the interaction of each fracture will increase, it tends to form more complexity fracture network but with short major fracture; If the horizontal stress difference and stress different coefficient is large (The stress different coefficient >0

  2. The Depths of Hydraulic Fracturing and Accompanying Water Use Across the United States.

    Science.gov (United States)

    Jackson, Robert B; Lowry, Ella R; Pickle, Amy; Kang, Mary; DiGiulio, Dominic; Zhao, Kaiguang

    2015-08-04

    Reports highlight the safety of hydraulic fracturing for drinking water if it occurs "many hundreds of meters to kilometers underground". To our knowledge, however, no comprehensive analysis of hydraulic fracturing depths exists. Based on fracturing depths and water use for ∼44,000 wells reported between 2010 and 2013, the average fracturing depth across the United States was 8300 ft (∼2500 m). Many wells (6900; 16%) were fractured less than a mile from the surface, and 2600 wells (6%) were fractured above 3000 ft (900 m), particularly in Texas (850 wells), California (720), Arkansas (310), and Wyoming (300). Average water use per well nationally was 2,400,000 gallons (9,200,000 L), led by Arkansas (5,200,000 gallons), Louisiana (5,100,000 gallons), West Virginia (5,000,000 gallons), and Pennsylvania (4,500,000 gallons). Two thousand wells (∼5%) shallower than one mile and 350 wells (∼1%) shallower than 3000 ft were hydraulically fractured with >1 million gallons of water, particularly in Arkansas, New Mexico, Texas, Pennsylvania, and California. Because hydraulic fractures can propagate 2000 ft upward, shallow wells may warrant special safeguards, including a mandatory registry of locations, full chemical disclosure, and, where horizontal drilling is used, predrilling water testing to a radius 1000 ft beyond the greatest lateral extent.

  3. A County Level Assessment of Water Withdrawals for Hydraulic Fracturing: Where are Impacts Most Likely?

    Science.gov (United States)

    Fleming, M. M.; LeDuc, S. D.; Clark, C.; Todd, J.

    2015-12-01

    Concerns have arisen of the potential effects of hydraulic fracturing water withdrawals on both water for human consumption and aquatic communities. Any impacts are likely to be location specific since current U.S. hydraulic fracturing activities are concentrated in particular regions, water availability is unevenly distributed, and hydraulic fracturing water use differs between locations, including the amount of water use per well, source water, and reuse rates. Here, we used FracFocus to estimate annual hydraulic fracturing water use, and combined this with U.S. Geological Survey water use data and water availability indices to identify U.S. counties where potential impacts may be most likely. We surveyed the literature to understand source water and reuse rates. Overall, we found that hydraulic fracturing water use and consumption are a small percentage relative to total water use and consumption for most U.S. counties. However, there are 26 counties where fracturing water use is greater than 10% compared to 2010 total water use, and eight and four counties at greater than 30% and 50%, respectively. We conclude hydraulic fracturing water use currently has the greatest potential for impacts in southern and western Texas due to relatively high fracturing water use, low reuse rates, low fresh water availability, and frequent drought. However, the availability of brackish groundwater in these areas is also high relative to fracturing water use, suggesting an alternative source that could reduce potential impacts. Comparatively, the potential for impacts appears to be lower in other U.S. regions. While our county-scale findings do not preclude the possibility of more localized water quantity effects, this study provides a relative indicator of areas where potential problems might arise. Disclaimer: The views expressed here are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

  4. Multi-hazard risk assessment applied to hydraulic fracturing operations

    Science.gov (United States)

    Garcia-Aristizabal, Alexander; Gasparini, Paolo; Russo, Raffaella; Capuano, Paolo

    2017-04-01

    Without exception, the exploitation of any energy resource produces impacts and intrinsically bears risks. Therefore, to make sound decisions about future energy resource exploitation, it is important to clearly understand the potential environmental impacts in the full life-cycle of an energy development project, distinguishing between the specific impacts intrinsically related to exploiting a given energy resource and those shared with the exploitation of other energy resources. Technological advances as directional drilling and hydraulic fracturing have led to a rapid expansion of unconventional resources (UR) exploration and exploitation; as a consequence, both public health and environmental concerns have risen. The main objective of a multi-hazard risk assessment applied to the development of UR is to assess the rate (or the likelihood) of occurrence of incidents and the relative potential impacts on surrounding environment, considering different hazards and their interactions. Such analyses have to be performed considering the different stages of development of a project; however, the discussion in this paper is mainly focused on the analysis applied to the hydraulic fracturing stage of a UR development project. The multi-hazard risk assessment applied to the development of UR poses a number of challenges, making of this one a particularly complex problem. First, a number of external hazards might be considered as potential triggering mechanisms. Such hazards can be either of natural origin or anthropogenic events caused by the same industrial activities. Second, failures might propagate through the industrial elements, leading to complex scenarios according to the layout of the industrial site. Third, there is a number of potential risk receptors, ranging from environmental elements (as the air, soil, surface water, or groundwater) to local communities and ecosystems. The multi-hazard risk approach for this problem is set by considering multiple hazards

  5. Hydraulic fracturing for natural gas: impact on health and environment.

    Science.gov (United States)

    Carpenter, David O

    2016-03-01

    Shale deposits exist in many parts of the world and contain relatively large amounts of natural gas and oil. Recent technological developments in the process of horizontal hydraulic fracturing (hydrofracturing or fracking) have suddenly made it economically feasible to extract natural gas from shale. While natural gas is a much cleaner burning fuel than coal, there are a number of significant threats to human health from the extraction process as currently practiced. There are immediate threats to health resulting from air pollution from volatile organic compounds, which contain carcinogens such as benzene and ethyl-benzene, and which have adverse neurologic and respiratory effects. Hydrogen sulfide, a component of natural gas, is a potent neuro- and respiratory toxin. In addition, levels of formaldehyde are elevated around fracking sites due to truck traffic and conversion of methane to formaldehyde by sunlight. There are major concerns about water contamination because the chemicals used can get into both ground and surface water. Much of the produced water (up to 40% of what is injected) comes back out of the gas well with significant radioactivity because radium in subsurface rock is relatively water soluble. There are significant long-term threats beyond cancer, including exacerbation of climate change due to the release of methane into the atmosphere, and increased earthquake activity due to disruption of subsurface tectonic plates. While fracking for natural gas has significant economic benefits, and while natural gas is theoretically a better fossil fuel as compared to coal and oil, current fracking practices pose significant adverse health effects to workers and near-by residents. The health of the public should not be compromized simply for the economic benefits to the industry.

  6. Rock specific hydraulic fracturing and matrix acidizing to enhance a geothermal system — Concepts and field results

    Science.gov (United States)

    Zimmermann, Günter; Blöcher, Guido; Reinicke, Andreas; Brandt, Wulf

    2011-04-01

    Enhanced geothermal systems (EGS) are engineered reservoirs developed to extract economic amounts of heat from low permeability and/or porosity geothermal resources. To enhance the productivity of reservoirs, a site specific concept is necessary to actively make reservoir conditions profitable using specially adjusted stimulation treatments, such as multi fracture concepts and site specific well path design. The results of previously performed stimulation treatments in the geothermal research well GtGrSk4/05 at Groß Schönebeck, Germany are presented. The reservoir is located at a 4100-4300 m depth within the Lower Permian of the NE German Basin with a bottom-hole temperature of 150 °C. The reservoir rock is classified by two lithological units from bottom to top: volcanic rocks (andesitic rocks) and siliciclastics ranging from conglomerates to fine-grained sandstones (fluvial sediments). The stimulation treatments included multiple hydraulic stimulations and an acid treatment. In order to initiate a cross-flow from the sandstone layer, the hydraulic stimulations were performed in different depth sections (two in the sandstone section and one in the underlying volcanic section). In low permeability volcanic rocks, a cyclic hydraulic fracturing treatment was performed over 6 days in conjunction with adding quartz in low concentrations to maintain a sustainable fracture performance. Flow rates of up to 150 l/s were realized, and a total of 13,170 m 3 of water was injected. A hydraulic connection to the sandstone layer was successfully achieved in this way. However, monitoring of the water level in the offsetting well EGrSk3/90, which is 475 m apart at the final depth, showed a very rapid water level increase due to the stimulation treatment. This can be explained by a connected fault zone within the volcanic rocks. Two gel-proppant treatments were performed in the slightly higher permeability sandstones to obtain long-term access to the reservoir rocks. During each

  7. XFEM-Based CZM for the Simulation of 3D Multiple-Cluster Hydraulic Fracturing in Quasi-Brittle Shale Formations

    Science.gov (United States)

    Haddad, Mahdi; Sepehrnoori, Kamy

    2016-12-01

    The cohesive zone model (CZM) honors the softening effects and plastic zone at the fracture tip in a quasi-brittle rock, e.g., shale, which results in a more precise fracture geometry and pumping pressure compared to those from linear elastic fracture mechanics. Nevertheless, this model, namely the planar CZM, assumes a predefined surface on which the fractures propagate and therefore restricts the fracture propagation direction. Notably, this direction depends on the stress interactions between closely spaced fractures and can be acquired by integrating CZM as the segmental contact interaction model with a fully coupled pore pressure-displacement model based on extended finite element method (XFEM). This integrated model, called XFEM-based CZM, simulates the fracture initiation and propagation along an arbitrary, solution-dependent path. In this work, we modeled a single stage of 3D hydraulic fracturing initiating from three perforation clusters in a single-layer, quasi-brittle shale formation using planar CZM and XFEM-based CZM including slit flow and poroelasticity for fracture and matrix spaces, respectively, in Abaqus. We restricted the XFEM enrichment zones to the stimulation regions as enriching the whole domain leads to extremely high computational expenses and unrealistic fracture growths around sharp edges. Moreover, we validated our numerical technique by comparing the solution for a single fracture with KGD solution and demonstrated several precautionary measures in using XFEM in Abaqus for faster solution convergence, for instance the initial fracture length and mesh refinement. We demonstrated the significance of the injection rate and stress contrast in fracture aperture, injection pressure, and the propagation direction. Moreover, we showed the effect of the stress distribution on fracture propagation direction comparing the triple-cluster fracturing results from planar CZM with those from XFEM-based CZM. We found that the stress shadowing effect of

  8. High Resolution Hydraulic Profiling and Groundwater Sampling using FLUTe™ System in a Fractured Limestone Setting

    DEFF Research Database (Denmark)

    Janniche, Gry Sander; Christensen, Anders G.; Grosen, Bernt

    innovative investi-gation methods for characterization of the source zone hydrogeology and contamination, including FLUTe system hydraulic profiling and Water-FLUTe multilevel groundwater sampling, in fractured bryo-zoan limestone bedrock. High resolution hydraulic profiling was conducted in three cored......Characterization of the contaminant source zone architecture and the hydraulics is essential to develop accurate site specific conceptual models, delineate and quantify contaminant mass, perform risk as-sessment, and select and design remediation alternatives. This characterization is particularly...... challeng-ing in deposit types as fractured limestone. The activities of a bulk distribution facility for perchloroe-thene (PCE) and trichloroethene (TCE) at the Naverland site near Copenhagen, Denmark, has resulted in PCE and TCE DNAPL impacts to a fractured clay till and an underlying fractured limestone...

  9. Shallow Aquifer Vulnerability From Subsurface Fluid Injection at a Proposed Shale Gas Hydraulic Fracturing Site

    Science.gov (United States)

    Wilson, M. P.; Worrall, F.; Davies, R. J.; Hart, A.

    2017-11-01

    Groundwater flow resulting from a proposed hydraulic fracturing (fracking) operation was numerically modeled using 91 scenarios. Scenarios were chosen to be a combination of hydrogeological factors that a priori would control the long-term migration of fracking fluids to the shallow subsurface. These factors were induced fracture extent, cross-basin groundwater flow, deep low hydraulic conductivity strata, deep high hydraulic conductivity strata, fault hydraulic conductivity, and overpressure. The study considered the Bowland Basin, northwest England, with fracking of the Bowland Shale at ˜2,000 m depth and the shallow aquifer being the Sherwood Sandstone at ˜300-500 m depth. Of the 91 scenarios, 73 scenarios resulted in tracked particles not reaching the shallow aquifer within 10,000 years and 18 resulted in travel times less than 10,000 years. Four factors proved to have a statistically significant impact on reducing travel time to the aquifer: increased induced fracture extent, absence of deep high hydraulic conductivity strata, relatively low fault hydraulic conductivity, and magnitude of overpressure. Modeling suggests that high hydraulic conductivity formations can be more effective barriers to vertical flow than low hydraulic conductivity formations. Furthermore, low hydraulic conductivity faults can result in subsurface pressure compartmentalization, reducing horizontal groundwater flow, and encouraging vertical fluid migration. The modeled worst-case scenario, using unlikely geology and induced fracture lengths, maximum values for strata hydraulic conductivity and with conservative tracer behavior had a particle travel time of 130 years to the base of the shallow aquifer. This study has identified hydrogeological factors which lead to aquifer vulnerability from shale exploitation.

  10. Simultaneous initiation and growth of multiple radial hydraulic fractures from a horizontal wellbore

    Science.gov (United States)

    Lecampion, Brice; Desroches, Jean

    2015-09-01

    Multi-stage fracturing is the current preferred method of completion of horizontal wells in unconventional hydrocarbon reservoirs. Its core component consists in simultaneously initiating and propagating an array of hydraulic fractures. We develop a numerical model for the initiation and growth of an array of parallel radial hydraulic fractures. The solution accounts for fracture growth, coupling between elastic deformation and fluid flow in the fractures, elastic stress interactions between fractures and fluid flow in the wellbore. We also take into account the presence of a local pressure drop (function of the entering flow rate) at the connection between the well and the fracture, i.e., a choke-like effect due to current well completion practices, also referred to as entry friction. The partitioning of the fluid into the different fractures at any given time is part of the solution and is a critical indicator of simultaneous (balanced fluid partitioning) versus preferential growth. We validate our numerical model against reference solutions and a laboratory experiment for the initiation and growth of a single radial hydraulic fracture. We then investigate the impact of stress interaction on preferential growth of a subset of fractures in the array. Our results show that a sufficiently large local entry friction provides a strong feedback in the system and thus can counteract elastic stress interaction between fractures, thereby ensuring simultaneous growth. We propose a dimensionless number capturing the competition between stress interaction and local entry friction. This dimensionless number is a function of rock properties, fracture spacing and injection parameters. We verify that it captures the transition from the case of simultaneous growth (entry friction larger than interaction stress) to the case of preferential growth of some fractures (interaction stress larger than entry friction). We also discuss the implication of these results for multi

  11. Implementation of Linear Pipe Channel Network to Estimate Hydraulic Parameters of Fractured Rock Masses

    Science.gov (United States)

    Han, J.; Um, J. G.; Wang, S.

    2014-12-01

    Modeling of fluid flow is important in geological, petroleum, environmental, civil and mining engineering. Fluid flow through fractured hard rock is very much dependent on the fracture network pattern in the rock mass and on the flow behavior through these fractures. This research deals with fluid flow behavior through fractures at an abandoned copper mine in southeast Korea. An injection well and three observation wells were installed at the mine site to monitor the hydraulic heads induced by injection of fresh water. A series of packer tests were performed to estimate the rock mass permeability and corresponding effective hydraulic aperture of the fractures. The three dimensional stochastic fracture network model was built and validated for the mine site. The two dimensional linear pipe network systems were constructed in directions of the observation wells using the fracture network model. A procedure of the fluid flow analysis on two dimensional discrete domain was applied to estimate the conductance, flow quantity and nodal head in the 2-D linear pipe channel network. The present results indicate that fracture geometry parameters (orientation, density and size) play an important role in the hydraulic characteristics of fractured rock masses.

  12. An Improved Rate-Transient Analysis Model of Multi-Fractured Horizontal Wells with Non-Uniform Hydraulic Fracture Properties

    Directory of Open Access Journals (Sweden)

    Youwei He

    2018-02-01

    Full Text Available Although technical advances in hydraulically fracturing and drilling enable commercial production from tight reservoirs, oil/gas recovery remains at a low level. Due to the technical and economic limitations of well-testing operations in tight reservoirs, rate-transient analysis (RTA has become a more attractive option. However, current RTA models hardly consider the effect of the non-uniform production on rate decline behaviors. In fact, PLT results demonstrate that production profile is non-uniform. To fill this gap, this paper presents an improved RTA model of multi-fractured horizontal wells (MFHWs to investigate the effects of non-uniform properties of hydraulic fractures (production of fractures, fracture half-length, number of fractures, fracture conductivity, and vertical permeability on rate transient behaviors through the diagnostic type curves. Results indicate obvious differences on the rate decline curves among the type curves of uniform properties of fractures (UPF and non-uniform properties of fractures (NPF. The use of dimensionless production integral derivative curve magnifies the differences so that we can diagnose the phenomenon of non-uniform production. Therefore, it’s significant to incorporate the effects of NPF into the RDA models of MFHWs, and the model proposed in this paper enables us to better evaluate well performance based on long-term production data.

  13. Numerical simulation of hydraulic fracturing and associated microseismicity using finite-discrete element method

    Directory of Open Access Journals (Sweden)

    Qi Zhao

    2014-12-01

    Full Text Available Hydraulic fracturing (HF technique has been extensively used for the exploitation of unconventional oil and gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formations by fluid injection, which creates an interconnected fracture network and increases the hydrocarbon production. Meanwhile, microseismic (MS monitoring is one of the most effective approaches to evaluate such stimulation process. In this paper, the combined finite-discrete element method (FDEM is adopted to numerically simulate HF and associated MS. Several post-processing tools, including frequency-magnitude distribution (b-value, fractal dimension (D-value, and seismic events clustering, are utilized to interpret numerical results. A non-parametric clustering algorithm designed specifically for FDEM is used to reduce the mesh dependency and extract more realistic seismic information. Simulation results indicated that at the local scale, the HF process tends to propagate following the rock mass discontinuities; while at the reservoir scale, it tends to develop in the direction parallel to the maximum in-situ stress.

  14. Two new methods for the determination of hydraulic fracture ...

    African Journals Online (AJOL)

    2008-09-15

    Sep 15, 2008 ... Fracture apertures play a significant role in groundwater systems. For proper groundwater quantity and .... relationship between the two is non-linear and breaks down for smaller fracture apertures, where .... This is the equation for the determination of the mechanical aperture of a fracture in a borehole ...

  15. Two new methods for the determination of hydraulic fracture ...

    African Journals Online (AJOL)

    Fracture apertures play a significant role in groundwater systems. For proper groundwater quantity and contamination management, fractures have to be properly characterised. However, due to their complexity, fracture characterisation is one of the main challenges for hydrogeologists all over the world. This is particularly ...

  16. Three-Dimensional poroelastic effects during hydraulic fracturing in permeable rocks

    DEFF Research Database (Denmark)

    Salimzadeh, Saeed; Paluszny, Adriana; Zimmerman, Robert W.

    2017-01-01

    -dominated, and leakoff-dominated regimes. However, for intermediate regimes, these analytical solutions cannot be used to predict the key hydraulic fracturing variables, i.e. injection pressure, fracture aperture, and length. For leakoff-dominated cases in permeable rocks, the asymptotic solutions fail to accurately...... predict the lower-bound for fracture radius and apertures, and the upper-bound for fracture pressure. This is due to the poroelastic effects in the dilated rock matrix, as well as due to the multi-dimensional flow within matrix, which in many simulation codes is idealised as being one-dimensional, normal......A fully coupled three-dimensional finite-element model for hydraulic fractures in permeable rocks is presented, and used to investigate the ranges of applicability of the classical analytical solutions that are known to be valid in limiting cases. This model simultaneously accounts for fluid flow...

  17. Finite element simulations of interactions between multiple hydraulic fractures in a poroelastic rock

    DEFF Research Database (Denmark)

    Salimzadeh, Saeed; Usui, Tomoya; Paluszny, Adriana

    2017-01-01

    -dominated, and leakoff-dominated regimes. However, for intermediate regimes, these analytical solutions cannot be used to predict the key hydraulic fracturing variables, i.e. injection pressure, fracture aperture, and length. For leakoff-dominated cases in permeable rocks, the asymptotic solutions fail to accurately...... predict the lower-bound for fracture radius and apertures, and the upper-bound for fracture pressure. This is due to the poroelastic effects in the dilated rock matrix, as well as due to the multi-dimensional flow within matrix, which in many simulation codes is idealised as being one-dimensional, normal......A fully coupled three-dimensional finite-element model for hydraulic fractures in permeable rocks is presented, and used to investigate the ranges of applicability of the classical analytical solutions that are known to be valid in limiting cases. This model simultaneously accounts for fluid flow...

  18. On the possibility of magnetic nano-markers use for hydraulic fracturing in shale gas mining

    Science.gov (United States)

    Zawadzki, Jaroslaw; Bogacki, Jan

    2016-04-01

    Recently shale gas production became essential for the global economy, thanks to fast advances in shale fracturing technology. Shale gas extraction can be achieved by drilling techniques coupled with hydraulic fracturing. Further increasing of shale gas production is possible by improving the efficiency of hydraulic fracturing and assessing the spatial distribution of fractures in shale deposits. The latter can be achieved by adding magnetic markers to fracturing fluid or directly to proppant, which keeps the fracture pathways open. After that, the range of hydraulic fracturing can be assessed by measurement of vertical and horizontal component of earth's magnetic field before and after fracturing. The difference in these components caused by the presence of magnetic marker particles may allow to delineate spatial distribution of fractures. Due to the fact, that subterranean geological formations may contain minerals with significant magnetic properties, it is important to provide to the markers excellent magnetic properties which should be also, independent of harsh chemical and geological conditions. On the other hand it is of great significance to produce magnetic markers at an affordable price because of the large quantities of fracturing fluids or proppants used during shale fracturing. Examining the properties of nano-materials, it was found, that they possess clearly superior magnetic properties, as compared to the same structure but having a larger particle size. It should be then possible, to use lower amount of magnetic marker, to obtain the same effect. Although a research on properties of new magnetic nano-materials is very intensive, cheap magnetic nano-materials are not yet produced on a scale appropriate for shale gas mining. In this work we overview, in detail, geological, technological and economic aspects of using magnetic nano-markers in shale gas mining. Acknowledgment This work was supported by the NCBiR under Grant "Electromagnetic method to

  19. Multiscale pore networks and their effect on deformation and transport property alteration associated with hydraulic fracturing

    Science.gov (United States)

    Daigle, Hugh; Hayman, Nicholas; Jiang, Han; Tian, Xiao; Jiang, Chunbi

    2017-04-01

    Multiple lines of evidence indicate that, during a hydraulic fracture stimulation, the permeability of the unfractured matrix far from the main, induced tensile fracture increases by one to two orders of magnitude. This permeability enhancement is associated with pervasive shear failure in a large region surrounding the main induced fracture. We have performed low-pressure gas sorption, mercury intrusion, and nuclear magnetic resonance measurements along with high-resolution scanning electron microscope imaging on several preserved and unpreserved shale samples from North American basins before and after inducing failure in confined compressive strength tests. We have observed that the pore structure in intact samples exhibits multiscale behavior, with sub-micron-scale pores in organic matter connected in isolated, micron-scale clusters which themselves are connected to each other through a network of microcracks. The organic-hosted pore networks are poorly connected due to a significant number of dead-end pores within the organic matter. Following shear failure, we often observe an increase in pore volume in the sub-micron range, which appears to be related to the formation of microcracks that propagate along grain boundaries and other planes of mechanical strength contrast. This is consistent with other experimental and field evidence. In some cases these microcracks cross or terminate in organic matter, intersecting the organic-hosted pores. The induced microcrack networks typically have low connectivity and do not appreciably increase the connectivity of the overall pore network. However, in other cases the shear deformation results in an overall pore volume decrease; samples which exhibit this behavior tend to have more clay minerals. Our interpretation of these phenomena is as follows. As organic matter is converted to hydrocarbons, organic-hosted pores develop, and the hydrocarbons contained in these pores are overpressured. The disconnected nature of these

  20. Spatial Risk Analysis of Hydraulic Fracturing near Abandoned and Converted Oil and Gas Wells.

    Science.gov (United States)

    Brownlow, Joshua W; Yelderman, Joe C; James, Scott C

    2017-03-01

    Interaction between hydraulically generated fractures and existing wells (frac hits) could represent a potential risk to groundwater. In particular, frac hits on abandoned oil and gas wells could lead to upward leakage into overlying aquifers, provided migration pathways are present along the abandoned well. However, potential risk to groundwater is relatively unknown because few studies have investigated the probability of frac hits on abandoned wells. In this study, actual numbers of frac hits were not determined. Rather, the probability for abandoned wells to intersect hypothetical stimulated reservoir sizes of horizontal wells was investigated. Well data were compiled and analyzed for location and reservoir information, and sensitivity analyses were conducted by varying assumed sizes of stimulated reservoirs. This study used public and industry data for the Eagle Ford Shale play in south Texas, with specific attention paid to abandoned oil and gas wells converted into water wells (converted wells). In counties with Eagle Ford Shale activity, well-data analysis identified 55,720 abandoned wells with a median age of 1983, and 2400 converted wells with a median age of 1954. The most aggressive scenario resulted in 823 abandoned wells and 184 converted wells intersecting the largest assumed stimulated reservoir size. Analysis showed abandoned wells have the potential to be intersected by multiple stimulated reservoirs, and risks for intersection would increase if currently permitted horizontal wells in the Eagle Ford Shale are actually completed. Results underscore the need to evaluate historical oil and gas activities in areas with modern unconventional oil and gas activities. © 2016, National Ground Water Association.

  1. Turbulent - laminar transition in the propagation of height-contained hydraulic fracture.

    Science.gov (United States)

    Zia, Haseeb; Lecampion, Brice

    2016-04-01

    Fluid flow is usually assumed to be laminar in the modelling of hydraulic fracture propagation. This approximation can however break down in certain cases where a low viscosity fluid (e.g. water) is injected at a high rate resulting in Reynolds numbers well into the turbulent flow regime. This is notably the case of hydraulic fracture propagation at glacier beds where Reynolds numbers above 100,000 are expected (Tsai and Rice 2010). Recent trend of high injection rate slickwater treatment for the hydraulic fracturing of oil and gas wells has also called the validity of the laminar flow assumption into question. Ames & Bunger (2015) recently investigated the effect of fully rough turbulent flow on the propagation of a height contained hydraulic fracture (Perkins & Kern 1961, Nordgren 1972). They have shown via dimensional analysis that the characteristic pressure should be larger and length shorter in the fully turbulent-rough regime compared to the laminar case. However, in practice, the range of Reynolds numbers for a typical slickwater treatment is expected to be from 1000 to 100,000 which coincides with the transition range from the fully laminar to fully turbulent-rough flows. Moreover, the Reynolds number is also expected to drop significantly in the tip region of a hydraulic fracture as the fracture width tends to zero. We present a numerical model that accommodates the complete laminar-turbulent transition of the flow and its impact on the propagation of a height contained hydraulic fracture. The numerical model is based on an explicit non-oscillatory central scheme for the solution of the coupled system of equations governing fluid flow and fracture elastic deformation. A volume of fluid method is used for tracking of the fracture front. The accuracy of the scheme is validated against the classical solution for the laminar flow regime. The relevance of the different limiting approximations (i.e. fully laminar versus fully turbulent regime) to simulate

  2. Interpretation of hydraulic conductivity in a fractured-rock aquifer over increasingly larger length dimensions

    Science.gov (United States)

    Shapiro, Allen M.; Ladderud, Jeffery; Yager, Richard M.

    2015-01-01

    A comparison of the hydraulic conductivity over increasingly larger volumes of crystalline rock was conducted in the Piedmont physiographic region near Bethesda, Maryland, USA. Fluid-injection tests were conducted on intervals of boreholes isolating closely spaced fractures. Single-hole tests were conducted by pumping in open boreholes for approximately 30 min, and an interference test was conducted by pumping a single borehole over 3 days while monitoring nearby boreholes. An estimate of the hydraulic conductivity of the rock over hundreds of meters was inferred from simulating groundwater inflow into a kilometer-long section of a Washington Metropolitan Area Transit Authority tunnel in the study area, and a groundwater modeling investigation over the Rock Creek watershed provided an estimate of the hydraulic conductivity over kilometers. The majority of groundwater flow is confined to relatively few fractures at a given location. Boreholes installed to depths of approximately 50 m have one or two highly transmissive fractures; the transmissivity of the remaining fractures ranges over five orders of magnitude. Estimates of hydraulic conductivity over increasingly larger rock volumes varied by less than half an order of magnitude. While many investigations point to increasing hydraulic conductivity as a function of the measurement scale, a comparison with selected investigations shows that the effective hydraulic conductivity estimated over larger volumes of rock can either increase, decrease, or remain stable as a function of the measurement scale. Caution needs to be exhibited in characterizing effective hydraulic properties in fractured rock for the purposes of groundwater management.

  3. What happens between pure hydraulic and buckling mechanisms of blowout fractures?

    Science.gov (United States)

    Nagasao, Tomohisa; Miyamoto, Junpei; Shimizu, Yusuke; Jiang, Hua; Nakajima, Tatsuo

    2010-06-01

    The present study aims to evaluate how the ratio of the hydraulic and buckling mechanisms affects blowout fracture patterns, when these two mechanisms work simultaneously. Three-dimensional computer-aided-design (CAD)models were generated simulating ten skulls. To simulate impact, 1.2J was applied on the orbital region of these models in four patterns. Pattern 1: All the energy works to cause the hydraulic effect. Pattern 2: Two-thirds of the energy works to cause the hydraulic effect; one-third of the energy works to cause the buckling effect. Pattern 3: One-third of the energy works to cause the hydraulic effect; two-thirds of the energy works to cause the buckling effect. Pattern 4: The entire energy quantum works to cause the buckling effect. Using the finite element method, the regions where fractures were theoretically expected to occur were calculated and were compared between the four patterns. More fracture damage occurred for Pattern 1 than Pattern 2, and for Pattern 3 than for Pattern 4. The hydraulic and buckling mechanisms interact with one another. When these two mechanisms are combined, the orbital walls tend to develop serious fractures. Copyright (c) 2009 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. Trends in hydraulic fracturing distributions and treatment fluids, additives, proppants, and water volumes applied to wells drilled in the United States from 1947 through 2010: data analysis and comparison to the literature

    Science.gov (United States)

    Gallegos, Tanya J.; Varela, Brian A.

    2015-01-01

    Hydraulic fracturing is presently the primary stimulation technique for oil and gas production in low-permeability, unconventional reservoirs. Comprehensive, published, and publicly available information regarding the extent, location, and character of hydraulic fracturing in the United States is scarce. This national spatial and temporal analysis of data on nearly 1 million hydraulically fractured wells and 1.8 million fracturing treatment records from 1947 through 2010 (aggregated in Data Series 868) is used to identify hydraulic fracturing trends in drilling methods and use of proppants, treatment fluids, additives, and water in the United States. These trends are compared to the literature in an effort to establish a common understanding of the differences in drilling methods, treatment fluids, and chemical additives and of how the newer technology has affected the water use volumes and areal distribution of hydraulic fracturing. Historically, Texas has had the highest number of records of hydraulic fracturing treatments and associated wells in the United States documented in the datasets described herein. Water-intensive horizontal/directional drilling has also increased from 6 percent of new hydraulically fractured wells drilled in the United States in 2000 to 42 percent of new wells drilled in 2010. Increases in horizontal drilling also coincided with the emergence of water-based “slick water” fracturing fluids. As such, the most current hydraulic fracturing materials and methods are notably different from those used in previous decades and have contributed to the development of previously inaccessible unconventional oil and gas production target areas, namely in shale and tight-sand reservoirs. Publicly available derivative datasets and locations developed from these analyses are described.

  5. Hydraulic properties of 3D rough-walled fractures during shearing: An experimental study

    Science.gov (United States)

    Yin, Qian; Ma, Guowei; Jing, Hongwen; Wang, Huidong; Su, Haijian; Wang, Yingchao; Liu, Richeng

    2017-12-01

    This study experimentally analyzed the influence of shear processes on nonlinear flow behavior through 3D rough-walled rock fractures. A high-precision apparatus was developed to perform stress-dependent fluid flow tests of fractured rocks. Then, water flow tests on rough-walled fractures with different mechanical displacements were conducted. At each shear level, the hydraulic pressure ranged from 0 to 0.6 MPa, and the normal load varied from 7 to 35 kN. The results show that (i) the relationship between the volumetric flow rate and hydraulic gradient of rough-walled fractures can be well fit using Forchheimer's law. Notably, both the linear and nonlinear coefficients in Forchheimer's law decrease during shearing; (ii) a sixth-order polynomial function is used to evaluate the transmissivity based on the Reynolds number of fractures during shearing. The transmissivity exhibits a decreasing trend as the Reynolds number increases and an increasing trend as the shear displacement increases; (iii) the critical hydraulic gradient, critical Reynolds number and equivalent hydraulic aperture of the rock fractures all increase as the shear displacement increases. When the shear displacement varies from 0 to 15 mm, the critical hydraulic gradient ranges from 0.3 to 2.2 for a normal load of 7 kN and increases to 1.8-8.6 for a normal load of 35 kN; and (iv) the Forchheimer law results are evaluated by plotting the normalized transmissivity of the fractures during shearing against the Reynolds number. An increase in the normal load shifts the fitted curves downward. Additionally, the Forchheimer coefficient β decreases with the shear displacement but increases with the applied normal load.

  6. Characteristics and management of flowback/produced water from hydraulically fractured wells in California - findings from the California SB 4 assessment

    Science.gov (United States)

    Varadharajan, C.; Cooley, H.; Heberger, M. G.; Stringfellow, W. T.; Domen, J. K.; Sandelin, W.; Camarillo, M. K.; Jordan, P. D.; Reagan, M. T.; Donnelly, K.; Birkholzer, J. T.; Long, J. C. S.

    2015-12-01

    As part of a recent assessment of well stimulation in California, we analyzed the hazards and potential impacts of hydraulic fracturing (the primary form of well stimulation in California) on water resources, which included an analysis of the quantity and quality of flowback/produced water generated, current management and disposal practices, associated potential release mechanisms and transport pathways that can lead to contaminants being released into the environment, and practices to mitigate or avoid impacts from produced water on water resources. The wastewater returned after stimulation includes "recovered fluids" (flowback fluids collected into tanks following stimulation, but before the start of production) and "produced water" (water extracted with oil and gas during production). In contrast to hydraulic fracturing in regions with primarily gas production, the quantities of recovered fluids from hydraulically fractured wells in California are small in comparison to the fluids injected (typically irrigation and discharge into sewer systems. Each of these disposal and reuse methods presents its own unique set of concerns that need to be considered together, in designing a produced water management plan.

  7. Hydraulic fracturing to enhance the remediation of DNAPL in low permeability soils

    Energy Technology Data Exchange (ETDEWEB)

    Murdoch, L. [Univ. of Cincinnati, OH (United States); Slack, B. [FRX Inc., Cincinnati, OH (United States)

    1996-08-01

    Meager rates of fluid flow are a major obstacle to in situ remediation of low permeability soils. This paper describes methods designed to avoid that obstacle by creating fractures and filling them with sand to increase well discharge and change paths of fluid flow in soil. Gently dipping fractures 10 m in maximum dimension and 1 to 2 cm thick can be created in some contaminated soils at depths of a few in or greater. Hydraulic fractures can also be used to create electrically conductive layers or to deliver granules of chemically or biologically active compounds that will degrade contaminants in place. Benefits of applying hydraulic fractures to DNAPL recovery include rates of fluid recovery, enhancing upward gradients to improve hydrodynamic stabilization, forming flat-lying reactive curtains to intersect compounds moving downward, or improving the performance of electrokinetics intended to recover compounds dissolved in water. 30 refs., 7 figs., 1 tab.

  8. Hydraulic fracturing as an interpretive policy problem: lessons on energy controversies in Europe and the U.S.A.

    NARCIS (Netherlands)

    Dodge, Jennifer; Metze, Tamara

    2017-01-01

    This special issue addresses hydraulic fracturing for shale gas extraction as an interpretive policy problem. Bringing together empirical cases from the U.S.A., the Netherlands, the U.K., Poland, and Germany, we identify three approaches to the interpretation of hydraulic fracturing in the article:

  9. Geomechanics of Hydraulic Stimulation in Geothermal Systems: Designing and Implementing a Successful Enhanced Geothermal System at Desert Peak, Nevada

    Science.gov (United States)

    Hickman, S. H.; Davatzes, N. C.; Zemach, E.; Chabora, E.; Lutz, S.; Rose, P.; Majer, E. L.; Robertson-Tait, A.

    2013-12-01

    Creation of an Enhanced Geothermal System (EGS) in hot but low-permeability rocks involves hydraulic stimulation of fracture permeability to develop a complex heat exchange system with low hydraulic impedance. An integrated study of stress, fractures and rock mechanical properties was conducted to develop the geomechanical framework for a multi-stage EGS stimulation in Desert Peak well 27-15, located at the low-permeability margins of an active geothermal field. The stimulation targeted silicified tuffs and metamorphosed mudstones at depths of 0.9 to 1.8 km and temperatures ~180 to 210° C. Drilling-induced tensile fractures in image logs from well 27-15 show that the least horizontal principal stress (Shmin) is consistent with normal faulting on ESE- and WNW-dipping fractures mapped at the surface and seen in the image logs. A hydraulic fracturing stress measurement indicates that the magnitude of Shmin at ~0.93 km depth is 0.61 of the calculated vertical stress. Coulomb failure calculations using these stresses together with measurements of friction and permeability on core predict that dilatant shear failure should be induced on pre-existing conjugate normal faults once pore pressures are increased ~2.5 MPa or more above ambient values, generating a zone of enhanced permeability elongated in the direction toward active geothermal wells ~0.5 km to the SSW. Hydraulic stimulation of well 27-15 began in September 2010 by injecting water into the open-hole interval between the casing shoe at 0.9 km depth and a temporary cement plug at 1.1 km. Stimulation was monitored by combined surface and down-hole seismic monitoring, inter-well tracer testing and periodic pressure-temperature-flowmeter logging. An initial stage of low-pressure (shear) stimulation was conducted for ~100 days at a series of pressure steps Shmin and injection rates up to 2800 l/min, resulting in an additional 6-fold increase in injectivity. Numerous microearthquakes induced during this high

  10. Characterization of Hydraulic Fractures Growth During the Äspö Hard Rock Laboratory Experiment (Sweden)

    Science.gov (United States)

    López-Comino, J. A.; Cesca, S.; Heimann, S.; Grigoli, F.; Milkereit, C.; Dahm, T.; Zang, A.

    2017-11-01

    A crucial issue to characterize hydraulic fractures is the robust, accurate and automated detection and location of acoustic emissions (AE) associated with the fracture nucleation and growth process. Waveform stacking and coherence analysis techniques are here adapted using massive datasets with very high sampling (1 MHz) from a hydraulic fracturing experiment that took place 410 m below surface in the Äspö Hard Rock Laboratory (Sweden). We present the results obtained during the conventional, continuous water injection experiment Hydraulic Fracture 2. The resulting catalogue is composed of more than 4000 AEs. Frequency-magnitude distribution from AE magnitudes (MAE) reveals a high b value of 2.4. The magnitude of completeness is also estimated approximately MAE 1.1, and we observe an interval range of MAE between 0.77 and 2.79. The hydraulic fractures growth is then characterized by mapping the spatiotemporal evolution of AE hypocentres. The AE activity is spatially clustered in a prolate ellipsoid, resembling the main activated fracture volume ( 105 m3), where the lengths of the principal axes ( a = 10 m; b = 5 m; c = 4 m) define its size and its orientation can be estimated for a rupture plane (strike 123°, dip 60°). An asymmetric rupture process regarding to the fracturing borehole is clearly exhibited. AE events migrate upwards covering the depth interval between 404 and 414 m. After completing each injection and reinjection phase, the AE activity decreases and appears located in the same area of the initial fracture phase, suggesting a crack-closing effect.

  11. SIMULATION AND OPTIMIZATION OF THE HYDRAULIC FRACTURING OPERATION IN A HEAVY OIL RESERVOIR IN SOUTHERN IRAN

    Directory of Open Access Journals (Sweden)

    REZA MASOOMI

    2017-01-01

    Full Text Available Extraction of oil from some Iranian reservoirs due to high viscosity of their oil or reducing the formation permeability due to asphaltene precipitation or other problems is not satisfactory. Hydraulic fracturing method increases production in the viscous oil reservoirs that the production rate is low. So this is very important for some Iranian reservoirs that contain these characteristics. In this study, hydraulic fracturing method has been compositionally simulated in a heavy oil reservoir in southern Iran. In this study, the parameters of the fracture half length, the propagation direction of the cracks and the depth of fracturing have been considered in this oil reservoir. The aim of this study is to find the best scenario which has the highest recovery factor in this oil reservoir. For this purpose the parameters of the length, propagation direction and depth of fracturing have been optimized in this reservoir. Through this study the cumulative oil production has been evaluated with the compositional simulation for the next 10 years in this reservoir. Also at the end of this paper, increasing the final production of this oil reservoir caused by optimized hydraulic fracturing has been evaluated.

  12. Numerical Study of Critical Role of Rock Heterogeneity in Hydraulic Fracture Propagation

    Energy Technology Data Exchange (ETDEWEB)

    J. Zhou; H. Huang; M. Deo

    2016-03-01

    Log and seismic data indicate that most shale formations have strong heterogeneity. Conventional analytical and semi-analytical fracture models are not enough to simulate the complex fracture propagation in these highly heterogeneous formation. Without considering the intrinsic heterogeneity, predicted morphology of hydraulic fracture may be biased and misleading in optimizing the completion strategy. In this paper, a fully coupling fluid flow and geomechanics hydraulic fracture simulator based on dual-lattice Discrete Element Method (DEM) is used to predict the hydraulic fracture propagation in heterogeneous reservoir. The heterogeneity of rock is simulated by assigning different material force constant and critical strain to different particles and is adjusted by conditioning to the measured data and observed geological features. Based on proposed model, the effects of heterogeneity at different scale on micromechanical behavior and induced macroscopic fractures are examined. From the numerical results, the microcrack will be more inclined to form at the grain weaker interface. The conventional simulator with homogeneous assumption is not applicable for highly heterogeneous shale formation.

  13. Effect of rock rheology on fluid leak- off during hydraulic fracturing

    Science.gov (United States)

    Yarushina, V. M.; Bercovici, D.; Oristaglio, M. L.

    2012-04-01

    In this communication, we evaluate the effect of rock rheology on fluid leak­off during hydraulic fracturing of reservoirs. Fluid leak-off in hydraulic fracturing is often nonlinear. The simple linear model developed by Carter (1957) for flow of fracturing fluid into a reservoir has three different regions in the fractured zone: a filter cake on the fracture face, formed by solid additives from the fracturing fluid; a filtrate zone affected by invasion of the fracturing fluid; and a reservoir zone with the original formation fluid. The width of each zone, as well as its permeability and pressure drop, is assumed to remain constant. Physical intuition suggests some straightforward corrections to this classical theory to take into account the pressure dependence of permeability, the compressibility or non-Newtonian rheology of fracturing fluid, and the radial (versus linear) geometry of fluid leak­off from the borehole. All of these refinements, however, still assume that the reservoir rock adjacent to the fracture face is non­deformable. Although the effect of poroelastic stress changes on leak-off is usually thought to be negligible, at the very high fluid pressures used in hydraulic fracturing, where the stresses exceed the rock strength, elastic rheology may not be the best choice. For example, calculations show that perfectly elastic rock formations do not undergo the degree of compaction typically seen in sedimentary basins. Therefore, pseudo-elastic or elastoplastic models are used to fit observed porosity profiles with depth. Starting from balance equations for mass and momentum for fluid and rock, we derive a hydraulic flow equation coupled with a porosity equation describing rock compaction. The result resembles a pressure diffusion equation with the total compressibility being a sum of fluid, rock and pore-space compressibilities. With linear elastic rheology, the bulk formation compressibility is dominated by fluid compressibility. But the possibility

  14. The Effect of Loading Rate on Hydraulic Fracturing in Synthetic Granite - a Discrete Element Study

    Science.gov (United States)

    Tomac, I.; Gutierrez, M.

    2015-12-01

    Hydraulic fracture initiation and propagation from a borehole in hard synthetic rock is modeled using the two dimensional Discrete Element Method (DEM). DEM uses previously established procedure for modeling the strength and deformation parameters of quasi-brittle rocks with the Bonded Particle Model (Itasca, 2004). A series of simulations of laboratory tests on granite in DEM serve as a reference for synthetic rock behavior. Fracturing is enabled by breaking parallel bonds between DEM particles as a result of the local stress state. Subsequent bond breakage induces fracture propagation during a time-stepping procedure. Hydraulic fracturing occurs when pressurized fluid induces hoop stresses around the wellbore which cause rock fracturing and serves for geo-reservoir permeability enhancement in oil, gas and geothermal industries. In DEM, a network of fluid pipes and reservoirs is used for mathematical calculation of fluid flow through narrow channels between DEM particles, where the hydro-mechanical coupling is fully enabled. The fluid flow calculation is superimposed with DEM stress-strain calculation at each time step. As a result, the fluid pressures during borehole pressurization in hydraulic fracturing, as well as, during the fracture propagation from the borehole, can be simulated. The objective of this study is to investigate numerically a hypothesis that fluid pressurization rate, or the fluid flow rate, influences upon character, shape and velocity of fracture propagation in rock. The second objective is to better understand and define constraints which are important for successful fracture propagation in quasi-brittle rock from the perspective of flow rate, fluid density, viscosity and compressibility relative to the rock physical properties. Results from this study indicate that not only too high fluid flow rates cause fracture arrest and multiple fracture branching from the borehole, but also that the relative compressibility of fracturing fluid and

  15. A Geochemical Framework for Evaluating Shale-Hydraulic Fracture Fluid Interactions

    Science.gov (United States)

    Harrison, A. L.; Jew, A. D.; Dustin, M. K.; Joe-Wong, C. M.; Thomas, D.; Maher, K.; Brown, G. E.; Bargar, J.; Bill, M.; Conrad, M. E.

    2015-12-01

    The development of shale oil and gas reservoirs has increased dramatically due to the application of hydraulic fracturing techniques. Fracture fluids contain dissolved oxygen and numerous chemical additives [1] that are out of equilibrium with the reducing conditions in shale reservoirs and could react extensively with shale minerals and alter porosity. Yet, the complex dissolution-precipitation reactions in shales along with the poorly constrained characteristics of many fracture fluid additives hinder predictive modeling based on established reaction kinetics and thermodynamic constants [2]. Here, we are developing a reaction framework to better predict reaction progress and porosity evolution upon exposure of shales to hydraulic fracturing fluids. To this end, the reactive transport model CrunchFlow [3] was applied to the results of batch reactor experiments containing shales of different mineralogical and organic compositions exposed to simulated fracturing fluid. Despite relatively good agreement between modeled and experimental data for pH and aqueous Ca concentrations, which are strongly governed by carbonate dissolution, the model is presently unable to reproduce observed trends in aqueous Fe concentration. This is largely attributable to the dearth of thermodynamic data for certain fracture fluid components and the complex interactions between multiple Fe-bearing mineral phases. Experimental results revealed that the presence of organic fracture fluid components strongly influenced the precipitation of Fe-bearing phases, which are speculated to coat fracture fluid polymers that formed in the reactors. The incorporation of these effects in our reactive transport model will permit improved prediction of reservoir permeability evolution and metal release during hydraulic fracturing operations. [1] Stringfellow et al. (2014) J. Hazard. Mater. [2] Carroll et al. (2013) Environ. Sci. Technol. [3] Steefel and Maher (2009) Rev. Mineral. Geochem.

  16. Simulation of quasi-static hydraulic fracture propagation in porous media with XFEM

    Science.gov (United States)

    Juan-Lien Ramirez, Alina; Neuweiler, Insa; Löhnert, Stefan

    2015-04-01

    Hydraulic fracturing is the injection of a fracking fluid at high pressures into the underground. Its goal is to create and expand fracture networks to increase the rock permeability. It is a technique used, for example, for oil and gas recovery and for geothermal energy extraction, since higher rock permeability improves production. Many physical processes take place when it comes to fracking; rock deformation, fluid flow within the fractures, as well as into and through the porous rock. All these processes are strongly coupled, what makes its numerical simulation rather challenging. We present a 2D numerical model that simulates the hydraulic propagation of an embedded fracture quasi-statically in a poroelastic, fully saturated material. Fluid flow within the porous rock is described by Darcy's law and the flow within the fracture is approximated by a parallel plate model. Additionally, the effect of leak-off is taken into consideration. The solid component of the porous medium is assumed to be linear elastic and the propagation criteria are given by the energy release rate and the stress intensity factors [1]. The used numerical method for the spatial discretization is the eXtended Finite Element Method (XFEM) [2]. It is based on the standard Finite Element Method, but introduces additional degrees of freedom and enrichment functions to describe discontinuities locally in a system. Through them the geometry of the discontinuity (e.g. a fracture) becomes independent of the mesh allowing it to move freely through the domain without a mesh-adapting step. With this numerical model we are able to simulate hydraulic fracture propagation with different initial fracture geometries and material parameters. Results from these simulations will also be presented. References [1] D. Gross and T. Seelig. Fracture Mechanics with an Introduction to Micromechanics. Springer, 2nd edition, (2011) [2] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal

  17. Regulation of hydraulic fracturing in South Africa: a project life-cycle ...

    African Journals Online (AJOL)

    This note deals with the 2015 regulations pertaining to hydraulic fracturing in South Africa from a project life-cycle approach. A brief history of the fragmentation of the regulation of environmental and mining related matters is provided, followed by a discussion of the application of the 2015 regulations during the project life ...

  18. Chloride concentration gradients in tank-stored hydraulic fracturing fluids following flowback

    Science.gov (United States)

    Pamela J. Edwards; Linda L. Tracy; William K. Wilson

    2011-01-01

    A natural gas well in West Virginia was hydraulically fractured and the flowback was recovered and stored in an 18-foot-deep tank. Both in situ field test kit and laboratory measurements of electrical conductivity and chloride concentrations increased substantially with depth, although the laboratory measurements showed a greater increase. The field test kit also...

  19. Risks to Water Resources from Shale Gas Development and Hydraulic Fracturing in the United States

    Science.gov (United States)

    Vengosh, Avner; Jackson, Robert B.; Warner, Nathaniel; Darrah, Thomas H.; Kondash, Andrew

    2014-05-01

    The rise of shale gas development through horizontal drilling and high volume hydraulic fracturing has expanded oil and gas exploration in the USA. The rapid rate of shale gas exploration has triggered an intense public debate regarding the potential environmental and human health effects. A review of the updated literature has identified four potential risks for impacts on water resources: (1) stray gas contamination of shallow aquifers near shale gas sites; (2) contamination of surface water and shallow groundwater from spills, leaks, and disposal of inadequately treated wastewater or hydraulic fracturing fluids; (3) accumulation of toxic and radioactive residues in soil or stream sediments near disposal or spill sites; and (4) over-extraction of water resources for drilling and hydraulic fracturing that could induce water shortages and conflicts with other water users, particularly in water-scarce areas. As part of a long-term research on the potential water contamination associated with shale gas development, new geochemical and isotopic techniques have been developed for delineating the origin of gases and contaminants in water resource. In particular, multiple geochemical and isotopic (carbon isotopes in hydrocarbons, noble gas, strontium, boron, radium isotopes) tracers have been utilized to distinguish between naturally occurring dissolved gas and salts in water and contamination directly induced from shale gas drilling and hydraulic fracturing operations.

  20. The Role of Toxicological Science in Meeting the Challenges and Opportunities of Hydraulic Fracturing

    Science.gov (United States)

    We briefly describe how toxicology can inform the discussion and debate of the merits of hydraulic fracturing by providing information on the potential toxicity of the chemical and physical agents associated with this process, individually and in combination. We consider upstream...

  1. Halogenated Organic Compounds Identified in Hydraulic Fracturing Wastewaters Using Ultrahigh Resolution Mass Spectrometry.

    Science.gov (United States)

    Luek, Jenna L; Schmitt-Kopplin, Philippe; Mouser, Paula J; Petty, William Tyler; Richardson, Susan D; Gonsior, Michael

    2017-05-16

    Large volumes of water return to the surface following hydraulic fracturing of deep shale formations to retrieve oil and natural gas. Current understanding of the specific organic constituents in these hydraulic fracturing wastewaters is limited to hydrocarbons and a fraction of known chemical additives. In this study, we analyzed hydraulic fracturing wastewater samples using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) as a nontargeted technique to assign unambiguous molecular formulas to singly charged molecular ions. Halogenated molecular formulas were identified and confirmed using isotopic simulation and MS-MS fragmentation spectra. The abundance of halogenated organic compounds in flowback fluids rather than older wastewaters suggested that the observed molecular ions might have been related to hydraulic fracturing additives and related subsurface reactions, such as through the reaction of shale-extracted chloride, bromide, and iodide with strong oxidant additives (e.g., hypochlorite, persulfate, hydrogen peroxide) and subsequently with diverse dissolved organic matter. Some molecular ions matched the exact masses of known disinfection byproducts including diiodoacetic acid, dibromobenzoic acid, and diiodobenzoic acid. The identified halogenated organic compounds, particularly iodinated organic molecules, are absent from inland natural systems and these compounds could therefore play an important role as environmental tracers.

  2. Geochemical simulation of fluid rock interactions to predict flowback water compostions during hydraulic fracturing

    Science.gov (United States)

    Kühn, Michael; Vieth-Hillebrand, Andrea; Wilke, Franziska D. H.

    2017-04-01

    Black shales are a heterogeneous mixture of minerals, organic matter and formation water and little is actually known about the fluid-rock interactions during hydraulic fracturing and their effects on composition of flowback and produced water. Geochemical simulations have been performed based on the analyses of "real" flowback water samples and artificial stimulation fluids from lab experiments with the aim to set up a chemical process model for shale gas reservoirs. Prediction of flowback water compositions for potential or already chosen sites requires validated and parameterized geochemical models. For the software "Geochemist's Workbench" (GWB) data bases are adapted and amended based on a literature review. Evaluation of the system has been performed in comparison with the results from laboratory experiments. Parameterization was done in regard to field data provided. Finally, reaction path models are applied for quantitative information about the mobility of compounds in specific settings. Our work leads to quantitative estimates of reservoir compounds in the flowback based on calibrations by laboratory experiments. Such information is crucial for the assessment of environmental impacts as well as to estimate human- and ecotoxicological effects of the flowback waters from a variety of natural gas shales. With a comprehensive knowledge about potential composition and mobility of flowback water, selection of water treatment techniques will become easier.

  3. Identifying chemicals of concern in hydraulic fracturing fluids used for oil production.

    Science.gov (United States)

    Stringfellow, William T; Camarillo, Mary Kay; Domen, Jeremy K; Sandelin, Whitney L; Varadharajan, Charuleka; Jordan, Preston D; Reagan, Matthew T; Cooley, Heather; Heberger, Matthew G; Birkholzer, Jens T

    2017-01-01

    Chemical additives used for hydraulic fracturing and matrix acidizing of oil reservoirs were reviewed and priority chemicals of concern needing further environmental risk assessment, treatment demonstration, or evaluation of occupational hazards were identified. We evaluated chemical additives used for well stimulation in California, the third largest oil producing state in the USA, by the mass and frequency of use, as well as toxicity. The most frequently used chemical additives in oil development were gelling agents, cross-linkers, breakers, clay control agents, iron and scale control agents, corrosion inhibitors, biocides, and various impurities and product stabilizers used as part of commercial mixtures. Hydrochloric and hydrofluoric acids, used for matrix acidizing and other purposes, were reported infrequently. A large number and mass of solvents and surface active agents were used, including quaternary ammonia compounds (QACs) and nonionic surfactants. Acute toxicity was evaluated and many chemicals with low hazard to mammals were identified as potentially hazardous to aquatic environments. Based on an analysis of quantities used, toxicity, and lack of adequate hazard evaluation, QACs, biocides, and corrosion inhibitors were identified as priority chemicals of concern that deserve further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Elucidating hydraulic fracturing impacts on groundwater quality using a regional geospatial statistical modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Burton, Taylour G., E-mail: tgburton@uh.edu [Civil and Environmental Engineering, University of Houston, W455 Engineering Bldg. 2, Houston, TX 77204-4003 (United States); Rifai, Hanadi S., E-mail: rifai@uh.edu [Civil and Environmental Engineering, University of Houston, N138 Engineering Bldg. 1, Houston, TX 77204-4003 (United States); Hildenbrand, Zacariah L., E-mail: zac@informenv.com [Inform Environmental, LLC, Dallas, TX 75206 (United States); Collaborative Laboratories for Environmental Analysis and Remediation, University of Texas at Arlington, Arlington, TX 76019 (United States); Carlton, Doug D., E-mail: doug.carlton@mavs.uta.edu [Collaborative Laboratories for Environmental Analysis and Remediation, University of Texas at Arlington, Arlington, TX 76019 (United States); Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX (United States); Fontenot, Brian E., E-mail: brian.fonteno@mavs.uta.edu [Collaborative Laboratories for Environmental Analysis and Remediation, University of Texas at Arlington, Arlington, TX 76019 (United States); Schug, Kevin A., E-mail: kschug@uta.edu [Collaborative Laboratories for Environmental Analysis and Remediation, University of Texas at Arlington, Arlington, TX 76019 (United States); Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX (United States)

    2016-03-01

    Hydraulic fracturing operations have been viewed as the cause of certain environmental issues including groundwater contamination. The potential for hydraulic fracturing to induce contaminant pathways in groundwater is not well understood since gas wells are completed while isolating the water table and the gas-bearing reservoirs lay thousands of feet below the water table. Recent studies have attributed ground water contamination to poor well construction and leaks in the wellbore annulus due to ruptured wellbore casings. In this paper, a geospatial model of the Barnett Shale region was created using ArcGIS. The model was used for spatial analysis of groundwater quality data in order to determine if regional variations in groundwater quality, as indicated by various groundwater constituent concentrations, may be associated with the presence of hydraulically fractured gas wells in the region. The Barnett Shale reservoir pressure, completions data, and fracture treatment data were evaluated as predictors of groundwater quality change. Results indicated that elevated concentrations of certain groundwater constituents are likely related to natural gas production in the study area and that beryllium, in this formation, could be used as an indicator variable for evaluating fracturing impacts on regional groundwater quality. Results also indicated that gas well density and formation pressures correlate to change in regional water quality whereas proximity to gas wells, by itself, does not. The results also provided indirect evidence supporting the possibility that micro annular fissures serve as a pathway transporting fluids and chemicals from the fractured wellbore to the overlying groundwater aquifers. - Graphical abstract: A relative increase in beryllium concentrations in groundwater for the Barnett Shale region from 2001 to 2011 was visually correlated with the locations of gas wells in the region that have been hydraulically fractured over the same time period

  5. A New Physics-Based Modeling of Multiple Non-Planar Hydraulic Fractures Propagation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jing [University of Utah; Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States); Deo, Milind [University of Utah; Jiang, Shu [Energy & Geoscience Institute

    2015-10-01

    Because of the low permeability in shale plays, closely spaced hydraulic fractures and multilateral horizontal wells are generally required to improve production. Therefore, understanding the potential fracture interaction and stress evolution is critical in optimizing fracture/well design and completion strategy in multi-stage horizontal wells. In this paper, a novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple non-planar fractures propagation. The numerical model from Discrete Element Method (DEM) is used to simulate the mechanics of fracture propagations and interactions, while a conjugate irregular lattice network is generated to represent fluid flow in both fractures and formation. The fluid flow in the formation is controlled by Darcy’s law, but within fractures it is simulated by using cubic law for laminar flow through parallel plates. Initiation, growth and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. We investigate the fracture propagation path in both homogeneous and heterogeneous reservoirs using the simulator developed. Stress shadow caused by the transverse fracture will change the orientation of principal stress in the fracture neighborhood, which may inhibit or alter the growth direction of nearby fracture clusters. However, the initial in-situ stress anisotropy often helps overcome this phenomenon. Under large in-situ stress anisotropy, the hydraulic fractures are more likely to propagate in a direction that is perpendicular to the minimum horizontal stress. Under small in-situ stress anisotropy, there is a greater chance for fractures from nearby clusters to merge with each other. Then, we examine the differences in fracture geometry caused by fracturing in cemented or uncemented wellbore. Moreover, the impact of

  6. Experimental and theoretical study of hydraulic fracturing in impermeable and permeable materials

    Science.gov (United States)

    Rubin, M. B.

    1981-10-01

    Hydraulic fracture propagation in impermeable and permeable materials was studied. The complicating effects of fluid leak-off and proppant transport were separated by conducting experiments on an impermeable material without proppants, on a permeable material without proppants, and, finally, on the same permeable material with proppants. Borehole pressure, pressure in the fracture, fracture width, and fracture length were measured in both impermeable and permeable experiments. In addition, the extent of fluid penetration into the permeable material was measured in the permeable experiments. It was observed that both the borehole pressure and the pressure gradient in the fracture were considerably larger in the experiments with proppants than in the experiments without proppants. The results of the impermeable and permeable experiments were compared with the corresponding predictions of a solution developed here as well as those of other simple formulas for hydraulic fracture propagation. Although the predictions of the present solution are an improvement over those of the other simple solutions, future research is needed to reduce the discrepancy between theory and experiment. This discrepancy is attributed to the effect of fluid penetration on the fracture mechanics of the permeable medium.

  7. Non-symmetry of a hydraulic fracture due to the inhomogeneity of the reservoir

    CERN Document Server

    Baykin, Alexey N

    2016-01-01

    It is usually assumed that hydraulic fracture has two symmetrical wings with respect to the fluid injection point. Hence, authors limit themselves to modelling of one half of the fracture. In our work we demonstrate that the case of a symmetrical fracture occurs only in a homogeneous reservoir with constant physical parameters and confining {\\it in situ} stress. Otherwise, inhomogeneity in the stress or the rock permeability can significantly change the dynamics of the fracture propagation. The mathematical model of the hydraulic fracturing used in the paper is adopted from our earlier work \\cite{Golovin_Baykin_2016_Pore}. In present paper we perform numerical experiments demonstrating that in case of non-constant confining stress or reservoir permeability the fracture is developing non-symmetrically. An important role is played by the action of the backstress that is formed near the fracture due to the pore pressure. To support this observation we give a formal definition of the backstress and compare the va...

  8. Techniques for determining subsurface stress direction and assessing hydraulic fracture azimuth

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.E.; Peterson, R.E.; Warpinski, N.R.; Lorenz, J.C.; Teufel, L.W. [Sandia National Labs., Albuquerque, NM (United States); Aslakson, J.K.

    1994-12-31

    This reference paper reviews and describes 15 techniques for determining hydraulic fracture azimuth. The techniques described are categorized into core-based, borehole-based, near-wellbore, and regional geologic indicators that can be used to predict or measure hydraulic fracture azimuth. The core based methods include: (1) circumferential velocity anisotropy, (2) anelastic strain recovery, (3) differential strain curve analysis, (4) axial point load tests, (5) petrographic examination of microcracks, (6) overcoming of archived core, (7) drilling-induced fractures in core, and (8) direct observation of over-cored open-hole stress test fractures. The borehole based techniques include: (9) borehole breakouts, (10) borehole deformation, (11) borehole imaging of drilling induced fractures, and (12) directional gamma ray logging. The near-wellbore techniques provided data on the orientation of the fracture induced during an actual fracture treatment and include: (13) microseismic logging and (14) earth tilt surveys. Finally there are the geologic indicators (Method 15) including earthquake focal mechanisms, fault slip data, surface mapping of neotectonic joints, and volcanic vent alignment. These regional data have been compiled for the World Stress Mapping Project and many maps are available that can be used as a first approximation of stress direction. Experience has shown that the more techniques that can be used in a single well or field, the more reliable the result. The concept or theoretical basis for each technique as well as the benefits and limitations of the techniques are described.

  9. First successful multistage hydraulic fracture monitoring for a horizontal well in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Guillermo; Rios, Austreberto; Riano, Juan M. [PEMEX, Mexico, DF (Mexico); Sanchez, Adrian; Bustos, Tomas [Schlumberger, Mexico DF (Mexico)

    2008-07-01

    In their constant effort to increase the production from Chicontepec, PEMEX drilled a multilateral well with three horizontal lateral sections; the intention was to increase the production in comparison with vertical wells. In the second arm of this well four intervals were identified to be fractured, this was a new approach since it was the first occasion that multiple fractures were planned in a horizontal well. An important part of the project was the evaluation of the effectiveness of the hydraulic fracturing. This evaluation was performed by micro seismic monitoring during the treatment. This technology allows the detection of events generated during the fluid injection in the reservoir, with receivers located in a nearby monitoring well. The interpretation of this data allows the identification in 3 D space of the fracture locations. This information is valuable for optimization of subsequent treatments and for planning the field development. The data is recorded in real time and can be used to make decisions during the fracturing operation. In this paper we describe the results of the hydraulic fracturing monitoring performed in four intervals in a horizontal well showing the geometry and direction of each one of the fractures. (author)

  10. Fully coupled simulation of multiple hydraulic fractures to propagate simultaneously from a perforated horizontal wellbore

    Science.gov (United States)

    Zeng, Qinglei; Liu, Zhanli; Wang, Tao; Gao, Yue; Zhuang, Zhuo

    2017-05-01

    In hydraulic fracturing process in shale rock, multiple fractures perpendicular to a horizontal wellbore are usually driven to propagate simultaneously by the pumping operation. In this paper, a numerical method is developed for the propagation of multiple hydraulic fractures (HFs) by fully coupling the deformation and fracturing of solid formation, fluid flow in fractures, fluid partitioning through a horizontal wellbore and perforation entry loss effect. The extended finite element method (XFEM) is adopted to model arbitrary growth of the fractures. Newton's iteration is proposed to solve these fully coupled nonlinear equations, which is more efficient comparing to the widely adopted fixed-point iteration in the literatures and avoids the need to impose fluid pressure boundary condition when solving flow equations. A secant iterative method based on the stress intensity factor (SIF) is proposed to capture different propagation velocities of multiple fractures. The numerical results are compared with theoretical solutions in literatures to verify the accuracy of the method. The simultaneous propagation of multiple HFs is simulated by the newly proposed algorithm. The coupled influences of propagation regime, stress interaction, wellbore pressure loss and perforation entry loss on simultaneous propagation of multiple HFs are investigated.

  11. Algal Treatment of Wastewater Generated during Oil and Gas Production Using Hydraulic Fracturing Technology.

    Science.gov (United States)

    Lutzu, Giovanni Antonio; Dunford, Nurhan Turgut

    2017-12-11

    Hydraulic fracturing technology is widely used for recovering natural gas and oil from tight oil and gas reserves. Large volumes of wastewater, flowback water, are produced during the fracturing process. This study examines algal treatment of flowback water. Thirteen microalgae strains consisting of cyanobacteria and green algae were examined. Wastewater quality before and after algae treatment and volatile matter, fixed carbon and ash contents of the biomass grown in flowback water were examined. The experimental results demonstrated that microalgae can grow in flowback water. The chemical composition of the algal biomass produced in flowback water was strain specific. Over 65% total dissolved solids, 100% nitrate and over 95% boron reduction in flowback water could be achieved. Hence, algal treatment of flowback water can significantly reduce the adverse environmental impact of hydraulic fracturing technology and produce biomass that can be converted to bio-products.

  12. INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    David S. Schechter

    2003-10-01

    This report describes the work performed during the second year of the project, ''Investigating of Efficiency Improvements during CO{sub 2} Injection in Hydraulically and Naturally Fractured Reservoirs.'' The objective of this project is to perform unique laboratory experiments with artificial fractured cores (AFCs) and X-ray CT to examine the physical mechanisms of bypassing in HFR and NFR that eventually result in less efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. To achieve this objective, in this period we concentrated our effort on modeling the fluid flow in fracture surface, examining the fluid transfer mechanisms and describing the fracture aperture distribution under different overburden pressure using X-ray CT scanner.

  13. INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    David S. Schechter

    2004-04-26

    This report describes the work performed during the second year of the project, ''Investigating of Efficiency Improvements during CO{sub 2} Injection in Hydraulically and Naturally Fractured Reservoirs.'' The objective of this project is to perform unique laboratory experiments with artificial fractured cores (AFCs) and X-ray CT to examine the physical mechanisms of bypassing in HFR and NFR that eventually result in less efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. To achieve this objective, in this period we concentrated our effort on investigating the effect of CO{sub 2} injection rates in homogeneous and fractured cores on oil recovery and a strategy to mitigate CO{sub 2} bypassing in a fractured core.

  14. Hydraulically conductive fractures and their properties in boreholes KR4 and KR7 - KR10 at Olkiluoto site

    Energy Technology Data Exchange (ETDEWEB)

    Hellae, P.; Tammisto, E.; Ahokas, H. [JP-Fintact Oy (Finland)

    2004-05-01

    As part of the program for the final disposal of the nuclear fuel waste, Posiva Oy investigates the prevailing hydrological conditions at the Olkiluoto island. Hydraulic properties of fractures are of interest for the groundwater flow modelling and for planning of grouting and analysis of leakages etc. The detailed flow logging with 0.5 m test interval and made in 10 cm steps is used for exact depth determination of hydraulically conductive fractures or fracture zones. Together with borehole wall images flow logging provides possibilities to detect single conductive fractures. The results of flow logging are combined to the fracture data and other rock properties. Boreholes KR4, KR7, KR8, KR9 and KR10 have been selected as pilot holes. The conductive fractures were recognised from the images primarily based on a visible flow traces along the image. In most of the cases of measured flow, no visible flow traces were seen in the image. In these cases the most probable fracture(s) to conduct the flow were picked using the single point resistance measurements as supportive information. In order to be able to analyse the properties of the hydraulically conductive fractures, the fractures in the mineralogical/drilling report corresponding to the ones picked from the borehole wall image were identified. The combination was done based on matching the depth, intersection angle and other fracture properties (reported large aperture or thickness etc.). The results from boreholes KR7 and KR8 were checked also from the core sample. According to the results the hydraulically conductive fractures/zones could be distinguished from the borehole wall images in most cases. An important phase in the work is to calibrate the depth of the image and the flow logging with the sample length. Checking results from the core samples is essential in order to reliably correlate the borehole wall fractures to the core sample mappings. The hydraulic conductivity is clearly higher in the upper part

  15. Combining periodic hydraulic tests and surface tilt measurements to explore in situ fracture hydromechanics

    Science.gov (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Guihéneuf, Nicolas; Becker, Matthew W.; Cole, Matthew; Burbey, Thomas J.; Lavenant, Nicolas; Boudin, Frédéric

    2017-08-01

    Fractured bedrock reservoirs are of socio-economical importance, as they may be used for storage or retrieval of fluids and energy. In particular, the hydromechanical behavior of fractures needs to be understood as it has implications on flow and governs stability issues (e.g., microseismicity). Laboratory, numerical, or field experiments have brought considerable insights to this topic. Nevertheless, in situ hydromechanical experiments are relatively uncommon, mainly because of technical and instrumental limitations. Here we present the early stage development and validation of a novel approach aiming at capturing the integrated hydromechanical behavior of natural fractures. It combines the use of surface tiltmeters to monitor the deformation associated with the periodic pressurization of fractures at depth in crystalline rocks. Periodic injection and withdrawal advantageously avoids mobilizing or extracting significant amounts of fluid, and it hinders any risk of reservoir failure. The oscillatory perturbation is intended to (1) facilitate the recognition of its signature in tilt measurements and (2) vary the hydraulic penetration depth in order to sample different volumes of the fractured bedrock around the inlet and thereby assess scale effects typical of fractured systems. By stacking tilt signals, we managed to recover small tilt amplitudes associated with pressure-derived fracture deformation. Therewith, we distinguish differences in mechanical properties between the three tested fractures, but we show that tilt amplitudes are weakly dependent on pressure penetration depth. Using an elastic model, we obtain fracture stiffness estimates that are consistent with published data. Our results should encourage further improvement of the method.

  16. Method development for determining the hydraulic conductivity of fractured porous media

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Kenneth L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-09-30

    Plausible, but unvalidated, theoretical model constructs for unsaturated hydraulic conductivity of fractured porous media are currently used in Performance Assessment (PA) modeling for cracked saltstone and concrete (Flach 2011). The Nuclear Regulatory Commission (NRC) has expressed concern about the lack of model support for these assumed Moisture Characteristic Curves (MCC) data, as noted in Requests for Additional Information (RAIs) PA-8 and SP-4 (Savannah River Remediation, LLC, 2011). The objective of this task was to advance PA model support by developing an experimental method for determining the hydraulic conductivity of fractured cementitious materials under unsaturated conditions, and to demonstrate the technique on fractured saltstone samples. The task was requested through Task Technical Request (TTR) HLW-SSF-TTR-2012-0016 and conducted in accordance with Task Technical & Quality Assurance Plan (TTQAP) SRNL-TR-2012-00090. Preliminary method development previously conducted by Kohn et al. (2012) identified transient outflow extraction as the most promising method for characterizing the unsaturated properties of fractured porous media. While the research conducted by Kohn et al. (2012) focused on fractured media analogs such as stacked glass slides, the current task focused directly on fractured saltstone. For this task, four sample types with differing fracture geometries were considered: 1) intact saltstone, 2) intact saltstone with a single saw cut, smooth surface fracture, 3) micro-fractured saltstone (induced by oven drying), and 4) micro-fractured saltstone with a single, fully-penetrating, rough-surface fracture. Each sample type was tested initially for saturated hydraulic conductivity following method ASTM D 5084 using a flexible wall permeameter. Samples were subsequently tested using the transient outflow extraction method to determine cumulative outflow as a function of time and applied pressure. Of the four sample types tested, two yielded

  17. Hydrophobic Organic Compounds in Hydraulic Fracturing Flowback Waters: Identification and Source Apportionment

    Science.gov (United States)

    Plata, D.; Shregglman, K.; Elsner, M.; Getzinger, G.; Ferguson, L.; Drollette, B.; Karatum, O.; Nelson, R. K.; Reddy, C. M.

    2014-12-01

    Current hydraulic fracturing technologies rely on organic chemicals to serve multiple critical functions, including corrosion inhibition, in situ gel formation, and friction reduction. While industrial users have disclosed several hundreds of compound and mixture identities, it is unclear which of these are used and where, in what proportion, and with what frequency. Furthermore, while flowback and production waters contain both fracturing additive and geogenic compounds, they may contain potential reaction byproducts as well. Here, we identified several hundred organic compounds present in six hydraulic fracturing flowback waters over the Fayetteville shale. Identifications were made via non-target analysis using two-dimensional gas chromatography with time of flight mass spectrometry for hydrophobic organic compounds and liquid chromatography- orbitrap mass spectrometry. Compound identities were confirmed using purchased standards when available. Using the SkyTruth database and the Waxman list of disclosed compounds, we assigned compounds as either fracturing-fluid-derived or geogenic (or both), or a putative transformation products thereof. Several unreported halogenated compounds were detected, including chlorinated, brominated, and iodated species that have no known natural sources. Control studies indicated that these could not be formed under typical laboratory or field storage conditions, suggesting that halogenation reactions may give rise to novel compounds in the subsurface, presumably via reaction between fracturing fluid additives and shale-derived brines. Further, the six samples were strikingly heterogeneous, reflecting the diversity in fracturing fluid composition and flowback handling procedures at the time of the study.

  18. Blade-shaped (PKN) Hydraulic Fracture Driven By A Turbulent Fluid In An Impermeable Rock

    CERN Document Server

    Zolfaghari, Navid; Bunger, Andrew P

    2016-01-01

    High flow rate, water-driven hydraulic fractures are more common now than ever in the oil and gas industry. Although the fractures are small, the high injection rate and low viscosity of the water, lead to high Reynolds numbers and potentially turbulence in the fracture. Here we present a semi-analytical solution for a blade-shaped (PKN) geometry hydraulic fracture driven by a turbulent fluid in the limit of zero fluid leak-off to the formation. We model the turbulence in the PKN fracture using the Gaukler-Manning-Strickler parametrization, which relates the the flow rate of the water to the pressure gradient along the fracture. The key parameter in this relation is the Darcy-Weisbach friction factor for the roughness of the crack wall. Coupling this turbulence parametrization with conservation of mass allows us to write a nonlinear pde for the crack width as a function of space and time. By way of a similarity ansatz, we obtain a semi-analytical solution using an orthogonal polynomial series. Embedding the a...

  19. Numerical evaluation of effective unsaturated hydraulic properties for fractured rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhiming [Los Alamos National Laboratory; Kwicklis, Edward M [Los Alamos National Laboratory

    2009-01-01

    To represent a heterogeneous unsaturated fractured rock by its homogeneous equivalent, Monte Carlo simulations are used to obtain upscaled (effective) flow properties. In this study, we present a numerical procedure for upscaling the van Genuchten parameters of unsaturated fractured rocks by conducting Monte Carlo simulations of the unsaturated flow in a domain under gravity-dominated regime. The simulation domain can be chosen as the scale of block size in the field-scale modeling. The effective conductivity is computed from the steady-state flux at the lower boundary and plotted as a function of the averaging pressure head or saturation over the domain. The scatter plot is then fitted using van Genuchten model and three parameters, i.e., the saturated conductivity K{sub s}, the air-entry parameter {alpha}, the pore-size distribution parameter n, corresponding to this model are considered as the effective K{sub s}, effective {alpha}, and effective n, respectively.

  20. Numerical Investigation of Influence of In-Situ Stress Ratio, Injection Rate and Fluid Viscosity on Hydraulic Fracture Propagation Using a Distinct Element Approach

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2016-02-01

    Full Text Available Numerical simulation is very useful for understanding the hydraulic fracturing mechanism. In this paper, we simulate the hydraulic fracturing using the distinct element approach, to investigate the effect of some critical parameters on hydraulic fracturing characteristics. The breakdown pressure obtained by the distinct element approach is consistent with the analytical solution. This indicates that the distinct element approach is feasible on modeling the hydraulic fracturing. We independently examine the influence of in-situ stress ratio, injection rate and fluid viscosity on hydraulic fracturing. We further emphasize the relationship between these three factors and their contributions to the hydraulic fracturing. With the increase of stress ratio, the fracture aperture increases almost linearly; with the increase of injection rate and fluid viscosity, the fracture aperture and breakdown pressure increase obviously. A low value of product of injection rate and fluid viscosity (i.e., Qμ will lead to narrow fracture aperture, low breakdown pressure, and complex or dispersional hydraulic fractures. A high value of Qμ would lead wide fracture aperture, high breakdown pressure, and simple hydraulic fractures (e.g., straight or wing shape. With low viscosity fluid, the hydraulic fracture geometry is not sensitive to stress ratio, and thus becomes a complex fracture network.

  1. Quantitative Stress Determination by Wire-line Hydraulic Fracturing Tests in the ANDRILL South McMurdo Sound Drillhole

    Science.gov (United States)

    Schmitt, D. R.; Wilson, T. J.; Pierdominici, S.; Jarrard, R. D.; Paulsen, T. S.; Wonik, T.; Handwerger, D.

    2008-12-01

    In general, knowledge of the state of stress within the Antarctic lithosphere remains largely unconstrained due in part to Antarctica's inaccessibility and because of the paucity of seismic focal mechanism solutions. As such, an important component of the ANDRILL project was to acquire new information on the stress directions and magnitudes within the upper crust. Extensive fracture mapping of the core and oriented ultrasonic televiewer logging, as presented in a related contribution, provided strong constraints on both stress orientations and the faulting regime. The first hydraulic fracturing stress determinations in Antarctica were also carried out to provide complimentary stress magnitudes. These measurements were accomplished using a wireline transported hydraulic fracturing system consisting, essentially, of two synthetic polymer packers that were inflated to isolate the 1-m long pressurization interval. The tests were conducted at the end of the drilling and logging in a ~130-m section specially drilled below 1000 mbsf for hydraulic fractures. This zone was drilled primarily through competent, dense, and low permeability diamicts. The core fracture and televiewer logging information was used to site twenty separate measurements. Classic hydraulic fracturing pressurization records with unambiguous breakdown and fracture closure pressures were obtained in about half of the measurements. The remaining tests provided fracture propagation and closure pressures that are consistent with the classic breakdown curves, but they did not include a clear breakdown pressure and are indicative of the reopening of either natural or drilling induced fractures in the wellbore wall. Comparison of the televiewer images obtained before and after the hydraulic fracturing tests highlighted the existence of at least one artificial hydraulic fracture; more could not be obtained because blockage of the wellbore did not allow the lowest sections to be logged a second time. The

  2. Identification of Hydraulic Fracture Orientation from Ground Surface Using the Seismic Moment Tensor

    Directory of Open Access Journals (Sweden)

    E.V. Birialtcev

    2017-09-01

    Full Text Available Microseismic monitoring from ground surface is applied in the development of hard-to-recover reserves, especially in the process of hydraulic fracturing (HF. This paper compares several methods of HF microseismic monitoring from the surface, including diffraction stacking, time reverse modeling, and spectral methods. In (Aki and Richards, 1980 it is shown that signal enhancement from seismic events under correlated noises significantly improves when applying the maximum likelihood method. The maximum likelihood method allows to exclude influence of the correlated noise, and also to estimate the seismic moment tensor from ground surface. Estimation of the seismic moment tensor allows to detect type and orientation of source. Usually, the following source types are identified: “Explosion Point” (EXP, “Tensile Crack” (TC, “Double-Couple” (DC and “Compensated Linear Vector Dipole” (CLVD. The orientation of the hydraulic fracture can be estimated even when there is no obvious asymmetry of the spatial distribution of the cloud of events. The features of full-wave location technology are presented. The paper also reviews an example of microseismic monitoring of hydraulic fracturing when there is no obvious asymmetry of microseismic activity cloud, but due to the estimation of the seismic moment tensor it becomes possible to identify with confidence the dominant direction of the fracture.

  3. Hydraulic sealing due to pressure solution contact zone growth in siliciclastic rock fractures

    Science.gov (United States)

    Lang, P. S.; Paluszny, A.; Zimmerman, R. W.

    2015-06-01

    Thermo-hydro-mechanical-chemical simulations at the pore scale are conducted to study the hydraulic sealing of siliciclastic rock fractures as contact zones grow driven by pressure dissolution. The evolving fluid-saturated three-dimensional pore space of the fracture results from the elastic contact between self-affine, randomly rough surfaces in response to the effective confining pressure. A diffusion-reaction equation controls pressure solution over contact zones as a function of their emergent geometry and stress variations. Results show that three coupled processes govern the evolution of the fracture's hydraulic properties: (1) the dissolution-driven convergence of the opposing fracture walls acts to compact the pore space; (2) the growth of contact zones reduces the elastic compression of the pore space; and (3) the growth of contact zones leads to flow channeling and the presence of stagnant zones in the flow field. The dominant early time compaction mechanism is the elastic compression of the fracture void space, but this eventually becomes overshadowed by the irreversible process of pressure dissolution. Growing contact zones isolate void space and cause an increasing disproportion between average and hydraulic aperture. This results in the loss of hydraulic conductivity when the mean aperture is a third of its initial value and the contact ratio approaches the characteristic value of one half. Convergence rates depend on small-wavelength roughness initially and on long-wavelength roughness in the late time. The assumption of a characteristic roughness length scale, therefore, leads to a characteristic time scale with an underestimation of dissolution rates before and an overestimation thereafter.

  4. Investigation of hydraulic fracture re-orientation effects in tight gas reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, B.; Wegner, J.; Ganzer, L. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

    2013-08-01

    In tight gas formations where the low matrix permeability prevents successful and economic production rates, hydraulic fracturing is required to produce a well at economic rates. The initial fracture opens in the direction of minimum stress and propagates into the direction of maximum stress. As production from the well and its initial fracture declines, re-fracturing treatments are required to accelerate recovery. The orientation of the following hydraulic fracture depends on the actual stress-state of the formation in the vicinity of the wellbore. Previous investigations by Elbel and Mack (1993) demonstrated that the stress alters during depletion and a stress reversal region appears. This behavior causes a different fracture orientation of the re-fracturing operation. For the investigation of re-fracture orientation a two-dimensional reservoir model has been designed using COMSOL Multiphysics. The model represents a fractured vertical well in a tight gas reservoir of infinite thickness. A time dependent study was set up to simulate the reservoir depletion by the production from the fractured well. The theory of poroelasticity was used to couple the fluid flow and geo-mechanical behavior. The stress state is initially defined as uniform and the attention is concentrated to the alteration of stress due to the lowered pore pressure. Different cases with anisotropic and heterogeneous permeability are set up to determine its significance. The simulation shows that an elliptical shaped drainage area appears around the fracture. The poroelastic behavior effects that the stress re-orientates and a stress reversal region originates, if the difference between minimum and maximum horizontal stresses is small. The consideration of time indicates that the dimension of the region initially extends fast until it reaches its maximum. Subsequently, the stress reversal region's extent shrinks slowly until it finally disappears. The reservoir characteristics, e.g. the

  5. Experimental study on the mechanism of hydraulic fracture growth in a glutenite reservoir

    Science.gov (United States)

    Ma, Xinfang; Zou, Yushi; Li, Ning; Chen, Ming; Zhang, Yinuo; Liu, Zizhong

    2017-04-01

    Glutenite reservoirs are frequently significantly heterogeneous because of their unique depositional environment. The presence of gravel in this type of formation complicates the growth path of hydraulic fracture (HF). In this study, laboratory fracturing experiments were conducted on six large natural glutenite specimens (300 mm × 300 mm × 300 mm) using a true triaxial hydraulic fracturing system to investigate the growth law of HF in glutenite reservoirs. Before the experiments were performed, the rock properties of the gravel particles and matrix in the glutenite specimens were determined using various apparatuses. The effects of gravel size, horizontal differential stress, fracturing fluid type (or viscosity), and flow rate on the HF growth pattern, fracture width, and injection pressure were examined in detail. Similar to previous studies, four types of HF intersections with gravel particles, namely, termination, penetration, deflection, and attraction, were observed. The HF growth path in the glutenite specimens with large gravel (40 mm-100 mm) is likely branched and tortuous even under high horizontal differential stress. The HF growth path in the glutenite specimens with small gravel (less than 20 mm) is simple, but a process zone with multiple thin fractures may be created. Breakdown pressure may increase significantly when HF initiates from high-strength gravel particles, which are mainly composed of quartz. HF propagation is likely limited within high-strength gravel particles, thereby resulting in narrow fractures and even termination. The use of low-viscosity fluids, such as slickwater, and the low injection rate can further limit HF growth, particularly its width. As a response, high extension pressure builds up during fracturing.

  6. Experience in North America Tight Oil Reserves Development. Horizontal Wells and Multistage Hydraulic Fracturing

    Directory of Open Access Journals (Sweden)

    R.R. Ibatullin

    2017-09-01

    Full Text Available The accelerated development of horizontal drilling technology in combination with the multistage hydraulic fracturing of the reservoir has expanded the geological conditions for commercial oil production from tight reservoirs in North America. Geological and physical characteristics of tight reservoirs in North America are presented, as well as a comparison of the geological and physical properties of the reservoirs of the Western Canadian Sedimentary Basin and the Volga-Ural oil and gas province, in particular, in the territory of Tatarstan. The similarity of these basins is shown in terms of formation and deposition. New drilling technologies for horizontal wells (HW and multistage hydraulic fracturing are considered. The drilling in tight reservoirs is carried out exclusively on hydrocarbon-based muds The multi-stage fracturing technology with the use of sliding sleeves, and also slick water – a low-viscous carrier for proppant is the most effective solution for conditions similar to tight reservoirs in the Devonian formation of Tatarstan. Tax incentives which are actively used for the development of HW and multistage fracturing technologies in Canada are described. wells, multistage fracturing

  7. Application of particle and lattice codes to simulation of hydraulic fracturing

    Science.gov (United States)

    Damjanac, Branko; Detournay, Christine; Cundall, Peter A.

    2016-04-01

    With the development of unconventional oil and gas reservoirs over the last 15 years, the understanding and capability to model the propagation of hydraulic fractures in inhomogeneous and naturally fractured reservoirs has become very important for the petroleum industry (but also for some other industries like mining and geothermal). Particle-based models provide advantages over other models and solutions for the simulation of fracturing of rock masses that cannot be assumed to be continuous and homogeneous. It has been demonstrated (Potyondy and Cundall Int J Rock Mech Min Sci Geomech Abstr 41:1329-1364, 2004) that particle models based on a simple force criterion for fracture propagation match theoretical solutions and scale effects derived using the principles of linear elastic fracture mechanics (LEFM). The challenge is how to apply these models effectively (i.e., with acceptable models sizes and computer run times) to the coupled hydro-mechanical problems of relevant time and length scales for practical field applications (i.e., reservoir scale and hours of injection time). A formulation of a fully coupled hydro-mechanical particle-based model and its application to the simulation of hydraulic treatment of unconventional reservoirs are presented. Model validation by comparing with available analytical asymptotic solutions (penny-shape crack) and some examples of field application (e.g., interaction with DFN) are also included.

  8. Microbial community changes in hydraulic fracturing fluids and produced water from shale gas extraction.

    Science.gov (United States)

    Murali Mohan, Arvind; Hartsock, Angela; Bibby, Kyle J; Hammack, Richard W; Vidic, Radisav D; Gregory, Kelvin B

    2013-11-19

    Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

  9. Response to 'Word choice as political speech': Hydraulic fracturing is a partisan issue.

    Science.gov (United States)

    Hopke, Jill E; Simis, Molly

    2016-04-28

    In 2015, Hopke & Simis published an analysis of social media discourse around hydraulic fracturing. Grubert (2016) offered a commentary on the research, highlighting the politicization of terminology used in the discourse on this topic. The present article is a response to Grubert (2016)'s commentary, in which we elaborate on the distinctions between terminology used in social media discourse around hydraulic fracturing (namely, 'frack,' 'fracking,' 'frac,' and 'fracing'). Additionally preliminary analysis supports the claim that industry-preferred terminology is severely limited in its reach. When industry actors opt-out of the discourse, the conversation followed by the majority of lay audiences is dominated by activists. exacerbating the political schism on the issue. © The Author(s) 2016.

  10. Formation of damage zone and seismic velocity variations during hydraulic stimulation: numerical modelling and field observations

    Science.gov (United States)

    Shalev, Eyal; Calò, Marco; Lyakhovsky, Vladimir

    2013-11-01

    During hydraulic stimulations, a complex interaction is observed between the injected flux and pressure, number and magnitude of induced seismic events, and changes in seismic velocities. In this paper, we model formation and propagation of damage zones and seismicity patterns induced by wellbore fluid injection. The model includes the coupling of poroelastic deformation and groundwater flow with damage evolution (weakening and healing) and its effect on the elastic and hydrologic parameters of crystalline rocks. Results show that three subsequent interactions occur during stimulation. (1) Injected flux-pressure interaction: typically, after a flux increase, the wellbore pressure also rises to satisfy the flux conditions. Thereafter, the elevated pore pressure triggers damage accumulation and seismic activity, that is, accompanied by permeability increase. As a result, wellbore pressure decreases retaining the target injected flux. (2) Wellbore pressure-seismicity interaction: damage processes create an elongated damage zone in the direction close to the main principal stress. The rocks within the damage zone go through partial healing and remain in a medium damage state. Damage that originates around the injection well propagates within the damage zone away from the well, raising the damage state of the already damaged rocks, and is followed by compaction and fast partial healing back to a medium damage state. This `damage wave' behaviour is associated with the injected flux changes only in early stages while fracture's height (h) is larger than its length (l). The ratio h/l controls the deformation process that is responsible for several key features of the damage zone. (3) Stress- and damage-induced variations of the seismic P-wave velocities (Vp). Vp gradually decreases as damage is accumulated and increases after rock failure as the shear stress is released and healing and compaction are dominant. Typically, Vp decreases within the damage zone and increases in

  11. Regulation Of Hydraulic Fracturing In South Africa: A Project Life-Cycle Approach?

    Directory of Open Access Journals (Sweden)

    Willemien du Plessis

    2015-12-01

    Full Text Available This note deals with the 2015 regulations pertaining to hydraulic fracturing in South Africa from a project life-cycle approach. A brief history of the fragmentation of the regulation of environmental and mining related matters is provided, followed by a discussion of the application of the 2015 regulations during the project life cycle, ie the pre-commencement phase, the design and authorisation phase, the testing phase, the operational phase and the decommissioning and closure phase.

  12. A decision-analytic approach to predict state regulation of hydraulic fracturing

    OpenAIRE

    Linkov, Igor; Trump, Benjamin; Jin, David S.; Mazurczak, Marcin; Schreurs, Miranda

    2014-01-01

    Background: The development of horizontal drilling and hydraulic fracturing methods has dramatically increased the potential for the extraction of previously unrecoverable natural gas. Nonetheless, the potential risks and hazards associated with such technologies are not without controversy and are compounded by frequently changing information and an uncertain landscape of international politics and laws. Where each nation has its own energy policies and laws, predicting how a state with natu...

  13. Coupled Mineral Dissolution and Precipitation Reactions in Shale-Hydraulic Fracturing Fluid Systems

    Science.gov (United States)

    Joe-Wong, C. M.; Harrison, A. L.; Thomas, D.; Dustin, M. K.; Jew, A. D.; Brown, G. E.; Maher, K.; Bargar, J.

    2015-12-01

    Hydraulic fracturing of low-permeability, hydrocarbon-rich shales has recently become an important energy source in the United States. However, hydrocarbon recovery rates are low and drop rapidly after a few months. Hydraulic fracture fluids, which contain dissolved oxygen and numerous organic additives, induce dissolution and precipitation reactions that change the porosity and permeability of the shale. To investigate these reactions, we studied the interactions of four shales (Eagle Ford, Barnett, Marcellus, and Green River) with a simulated hydraulic fracture fluid in batch reactors at 80 °C. The shales were chosen for both economic viability and chemical variety, allowing us to explore the reactivities of different components. The Eagle Ford shale is carbonate rich, and the Green River shale contains significant siderite and kerogen. The Barnett shale also has a high organic content, while the Marcellus shale has the highest fractions of clay and pyrite. Our experiments show that hydrochloric acid in the fluid promotes carbonate mineral dissolution, rapidly raising the pH from acidic to circumneutral levels for the Eagle Ford and Green River shales. Dissolution textures in the Green River shale and large cavities in the Barnett shale indicate significant mineralogical and physical changes in the reacted rock. Morphological changes are not readily apparent in the Eagle Ford and Marcellus shales. For all shales, ongoing changes to the solution Al: Si ratio suggest incongruent aluminosilicate dissolution. Siderite or pyrite dissolution occurs within days and is followed by the formation of secondary Fe precipitates in suspension and coating the walls of the reactor. However, little evidence of any coatings on shale surfaces was found. The net effect of these reactions on porosity and permeability and their influence on the long-term efficacy of oil and gas recovery after hydraulic fracturing are critical to the energy landscape of the United States.

  14. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; Moridis, George J.

    2013-07-01

    We have conducted numerical simulation studies to assess the potential for injection-induced fault reactivation and notable seismic events associated with shale-gas hydraulic fracturing operations. The modeling is generally tuned towards conditions usually encountered in the Marcellus shale play in the Northeastern US at an approximate depth of 1500 m (~;;4,500 feet). Our modeling simulations indicate that when faults are present, micro-seismic events are possible, the magnitude of which is somewhat larger than the one associated with micro-seismic events originating from regular hydraulic fracturing because of the larger surface area that is available for rupture. The results of our simulations indicated fault rupture lengths of about 10 to 20 m, which, in rare cases can extend to over 100 m, depending on the fault permeability, the in situ stress field, and the fault strength properties. In addition to a single event rupture length of 10 to 20 m, repeated events and aseismic slip amounted to a total rupture length of 50 m, along with a shear offset displacement of less than 0.01 m. This indicates that the possibility of hydraulically induced fractures at great depth (thousands of meters) causing activation of faults and creation of a new flow path that can reach shallow groundwater resources (or even the surface) is remote. The expected low permeability of faults in producible shale is clearly a limiting factor for the possible rupture length and seismic magnitude. In fact, for a fault that is initially nearly-impermeable, the only possibility of larger fault slip event would be opening by hydraulic fracturing; this would allow pressure to penetrate the matrix along the fault and to reduce the frictional strength over a sufficiently large fault surface patch. However, our simulation results show that if the fault is initially impermeable, hydraulic fracturing along the fault results in numerous small micro-seismic events along with the propagation, effectively

  15. Estimates of hydraulic fracturing (Frac) sand production, consumption, and reserves in the United States

    Science.gov (United States)

    Bleiwas, Donald I.

    2015-01-01

    The practice of fracturing reservoir rock in the United States as a method to increase the flow of oil and gas from wells has a relatively long history and can be traced back to 1858 in Fredonia, New York, when a gas well situated in shale of the Marcellus Formation was successfully fractured using black powder as a blasting agent. Nearly all domestic hydraulic fracturing, often referred to as hydrofracking or fracking, is a process where fluids are injected under high pressure through perforations in the horizontal portion of a well casing in order to generate fractures in reservoir rock with low permeability (“tight”). Because the fractures are in contact with the well bore they can serve as pathways for the recovery of gas and oil. To prevent the fractures generated by the fracking process from closing or becoming obstructed with debris, material termed “proppant,” most commonly high-silica sand, is injected along with water-rich fluids to maintain or “prop” open the fractures. The first commercial application of fracking in the oil and gas industry took place in Oklahoma and Texas during the 1940s. In 1949, over 300 wells, mostly vertical, were fracked (ALL Consulting, LLC, 2012; McGee, 2012; Veil, 2012) and used silica sand as a proppant (Fracline, 2011). The resulting increase in well productivity demonstrated the significant potential that fracking might have for the oil and gas industry.

  16. Comprehensive Assessment of New Proppants for Hydraulic Fracturing Utilization under the Consideration of Cost, Environmental & Health Impacts

    Science.gov (United States)

    Adebakin, Mariam Abiodun

    The advancement and increased practice of hydraulic fracturing, a process which involves the drilling of a well and the injection of fracture fluid (water, proppant and various chemicals) under high pressure to stimulate the production of oil and gas, has gradually gained public attention over the past years. This is because of its effectiveness in booming the nation's economy as well as the adverse effects in terms of risks this process poses to all forms of life. Several speculations have been raised about the choice of proppant used as a contributory factor to the risks hydraulic fracturing poses. Frac sand is the most widely used proppant in several wells in the United States but several health and environmental concerns has been raised on its short and long term use. It is therefore imperative to examine the impacts (health and environmental) as well as cost implication, if any, in selecting the most appropriate proppant in other to reduce and or completely eliminate its effect on humans and other forms of life. This study aims to compare other proppants (resin-coated sand and ceramic) with frac sand, focusing on cost, environmental and health implications when used. This study found that sand is the cheapest and most available proppant in terms of production cost compared to resin coated sand and ceramic proppant. However, sand cannot be used in deep wells as it is subjected to more stress leading to its disintegration and crushing in the well which eventually blocks the fissures created and the subsequent flow of oil and gas. In terms of health and environmental impacts, sand should be discouraged as it generates crystalline silica dust known to be injurious if inhaled.

  17. New tracers identify hydraulic fracturing fluids and accidental releases from oil and gas operations.

    Science.gov (United States)

    Warner, N R; Darrah, T H; Jackson, R B; Millot, R; Kloppmann, W; Vengosh, A

    2014-11-04

    Identifying the geochemical fingerprints of fluids that return to the surface after high volume hydraulic fracturing of unconventional oil and gas reservoirs has important applications for assessing hydrocarbon resource recovery, environmental impacts, and wastewater treatment and disposal. Here, we report for the first time, novel diagnostic elemental and isotopic signatures (B/Cl, Li/Cl, δ11B, and δ7Li) useful for characterizing hydraulic fracturing flowback fluids (HFFF) and distinguishing sources of HFFF in the environment. Data from 39 HFFFs and produced water samples show that B/Cl (>0.001), Li/Cl (>0.002), δ11B (25-31‰) and δ7Li (6-10‰) compositions of HFFF from the Marcellus and Fayetteville black shale formations were distinct in most cases from produced waters sampled from conventional oil and gas wells. We posit that boron isotope geochemistry can be used to quantify small fractions (∼0.1%) of HFFF in contaminated fresh water and likely be applied universally to trace HFFF in other basins. The novel environmental application of this diagnostic isotopic tool is validated by examining the composition of effluent discharge from an oil and gas brine treatment facility in Pennsylvania and an accidental spill site in West Virginia. We hypothesize that the boron and lithium are mobilized from exchangeable sites on clay minerals in the shale formations during the hydraulic fracturing process, resulting in the relative enrichment of boron and lithium in HFFF.

  18. Back Analysis of Rock Hydraulic Fracturing by Coupling Numerical Model and Computational Intelligent Technology

    Directory of Open Access Journals (Sweden)

    Shaojun Li

    2017-01-01

    Full Text Available Hydraulic fracturing is widely used to determine in situ stress of rock engineering. In this paper we propose a new method for simultaneously determining the in situ stress and elastic parameters of rock. The method utilizing the hydraulic fracturing numerical model and a computational intelligent method is proposed and verified. The hydraulic fracturing numerical model provides the samples which include borehole pressure, in situ stress, and elastic parameters. A computational intelligent method is applied in back analysis. A multioutput support vector machine is used to map the complex, nonlinear relationship between the in situ stress, elastic parameters, and borehole pressure. The artificial bee colony algorithm is applied in back analysis to find the optimal in situ stress and elastic parameters. The in situ stress is determined using the proposed method and the results are compared with those of the classic breakdown formula. The proposed method provides a good estimate of the relationship between the in situ stress and borehole pressure and predicts the maximum horizontal in situ stress with high precision while considering the influence of pore pressure without the need to estimate Biot’s coefficient and other parameters.

  19. Biocides in hydraulic fracturing fluids: a critical review of their usage, mobility, degradation, and toxicity.

    Science.gov (United States)

    Kahrilas, Genevieve A; Blotevogel, Jens; Stewart, Philip S; Borch, Thomas

    2015-01-06

    Biocides are critical components of hydraulic fracturing ("fracking") fluids used for unconventional shale gas development. Bacteria may cause bioclogging and inhibit gas extraction, produce toxic hydrogen sulfide, and induce corrosion leading to downhole equipment failure. The use of biocides such as glutaraldehyde and quaternary ammonium compounds has spurred a public concern and debate among regulators regarding the impact of inadvertent releases into the environment on ecosystem and human health. This work provides a critical review of the potential fate and toxicity of biocides used in hydraulic fracturing operations. We identified the following physicochemical and toxicological aspects as well as knowledge gaps that should be considered when selecting biocides: (1) uncharged species will dominate in the aqueous phase and be subject to degradation and transport whereas charged species will sorb to soils and be less bioavailable; (2) many biocides are short-lived or degradable through abiotic and biotic processes, but some may transform into more toxic or persistent compounds; (3) understanding of biocides' fate under downhole conditions (high pressure, temperature, and salt and organic matter concentrations) is limited; (4) several biocidal alternatives exist, but high cost, high energy demands, and/or formation of disinfection byproducts limits their use. This review may serve as a guide for environmental risk assessment and identification of microbial control strategies to help develop a sustainable path for managing hydraulic fracturing fluids.

  20. 'Fracking' Controversy and Communication: Using National Survey Data to Understand Public Perceptions of Hydraulic Fracturing (Invited)

    Science.gov (United States)

    Boudet, H. S.

    2013-12-01

    The recent push to develop unconventional sources of oil and gas both in the U.S. and abroad via hydraulic fracturing ('fracking') has generated a great deal of controversy. Effectively engaging stakeholders and setting appropriate policies requires insights into current public perceptions of this issue. Using a nationally representative U.S. sample (N=1,061), we examine public perceptions of hydraulic fracturing including: 'top of mind' associations; familiarity with the issue; levels of support/opposition; and predictors of such judgments. Similar to findings on other emerging technologies, our results suggest limited familiarity with the process and its potential impacts and considerable uncertainty about whether to support it. Multiple regression analysis (r2 = 0.49) finds that women, those holding egalitarian worldviews, those who read newspapers more than once a week, those more familiar with hydraulic fracturing, and those who associate the process with environmental impacts are more likely to oppose fracking. In contrast, people more likely to support fracking tend to be older, hold a bachelor's degree or higher, politically conservative, watch TV news more than once a week, and associate the process with positive economic or energy supply outcomes. Based on these findings, we discuss recommendations for future research, risk communication, and energy policy.

  1. Iodide, bromide, and ammonium in hydraulic fracturing and oil and gas wastewaters: environmental implications.

    Science.gov (United States)

    Harkness, Jennifer S; Dwyer, Gary S; Warner, Nathaniel R; Parker, Kimberly M; Mitch, William A; Vengosh, Avner

    2015-02-03

    The expansion of unconventional shale gas and hydraulic fracturing has increased the volume of the oil and gas wastewater (OGW) generated in the U.S. Here we demonstrate that OGW from Marcellus and Fayetteville hydraulic fracturing flowback fluids and Appalachian conventional produced waters is characterized by high chloride, bromide, iodide (up to 56 mg/L), and ammonium (up to 420 mg/L). Br/Cl ratios were consistent for all Appalachian brines, which reflect an origin from a common parent brine, while the I/Cl and NH4/Cl ratios varied among brines from different geological formations, reflecting geogenic processes. There were no differences in halides and ammonium concentrations between OGW originating from hydraulic fracturing and conventional oil and gas operations. Analysis of discharged effluents from three brine treatment sites in Pennsylvania and a spill site in West Virginia show elevated levels of halides (iodide up to 28 mg/L) and ammonium (12 to 106 mg/L) that mimic the composition of OGW and mix conservatively in downstream surface waters. Bromide, iodide, and ammonium in surface waters can impact stream ecosystems and promote the formation of toxic brominated-, iodinated-, and nitrogen disinfection byproducts during chlorination at downstream drinking water treatment plants. Our findings indicate that discharge and accidental spills of OGW to waterways pose risks to both human health and the environment.

  2. Analysis of hydraulic fracturing flowback and produced waters using accurate mass: identification of ethoxylated surfactants.

    Science.gov (United States)

    Thurman, E Michael; Ferrer, Imma; Blotevogel, Jens; Borch, Thomas

    2014-10-07

    Two series of ethylene oxide (EO) surfactants, polyethylene glycols (PEGs from EO3 to EO33) and linear alkyl ethoxylates (LAEs C-9 to C-15 with EO3-EO28), were identified in hydraulic fracturing flowback and produced water using a new application of the Kendrick mass defect and liquid chromatography/quadrupole-time-of-flight mass spectrometry. The Kendrick mass defect differentiates the proton, ammonium, and sodium adducts in both singly and doubly charged forms. A structural model of adduct formation is presented, and binding constants are calculated, which is based on a spherical cagelike conformation, where the central cation (NH4(+) or Na(+)) is coordinated with ether oxygens. A major purpose of the study was the identification of the ethylene oxide (EO) surfactants and the construction of a database with accurate masses and retention times in order to unravel the mass spectral complexity of surfactant mixtures used in hydraulic fracturing fluids. For example, over 500 accurate mass assignments are made in a few seconds of computer time, which then is used as a fingerprint chromatogram of the water samples. This technique is applied to a series of flowback and produced water samples to illustrate the usefulness of ethoxylate "fingerprinting", in a first application to monitor water quality that results from fluids used in hydraulic fracturing.

  3. Discourse over a contested technology on Twitter: A case study of hydraulic fracturing.

    Science.gov (United States)

    Hopke, Jill E; Simis, Molly

    2015-10-04

    High-volume hydraulic fracturing, a drilling simulation technique commonly referred to as "fracking," is a contested technology. In this article, we explore discourse over hydraulic fracturing and the shale industry on the social media platform Twitter during a period of heightened public contention regarding the application of the technology. We study the relative prominence of negative messaging about shale development in relation to pro-shale messaging on Twitter across five hashtags (#fracking, #globalfrackdown, #natgas, #shale, and #shalegas). We analyze the top actors tweeting using the #fracking hashtag and receiving @mentions with the hashtag. Results show statistically significant differences in the sentiment about hydraulic fracturing and shale development across the five hashtags. In addition, results show that the discourse on the main contested hashtag #fracking is dominated by activists, both individual activists and organizations. The highest proportion of tweeters, those posting messages using the hashtag #fracking, were individual activists, while the highest proportion of @mention references went to activist organizations. © The Author(s) 2015.

  4. The risk of hydraulic fracturing on public health in the UK and the UK's fracking legislation.

    Science.gov (United States)

    Reap, Elisabeth

    2015-01-01

    Hydraulic fracturing to extract natural gas from shale rock is a new, rapidly expanding industry in the United States (US). However, there is concern that these operations could be having large negative impacts such as groundwater contamination, increased air pollution and seismic events. The United Kingdom (UK) is looking at the potential for emulating the success of 'shale gas' in the US. Differences in population density and geological conditions mean that the public health impacts recorded in the US cannot be directly extrapolated to the UK. There is limited academic literature available but findings suggest that the UK government is not fully recognising the inherent risks of hydraulic fracturing exposed by this literature. Government reports suggest a reliance on engineering solutions and better practice to overcome problems found in the US when evidence suggests that there are inherent risks and impacts that cannot be eliminated. This study applies US results to approximate the impact of one exposure pathway, inhalation of hydrocarbons by the public from operational air emissions over the 30 year lifetime of a well and finds that 7.2 extra cancer cases from exposure to air contamination would be expected in the UK if all test sites, approved test sites and test sites awaiting approval as of January 2015 went on to extract gas. In conclusion, limited assessment of the public health implications of hydraulic fracturing operations is available but the UK government appears to not be applying the precautionary principle to potentially significant legislation.

  5. Geothermal fracture stimulation technology. Volume III. Geothermal fracture fluids

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    A detailed study of all available and experimental frac fluid systems is presented. They have been examined and tested for physical properties that are important in the stimulation of hot water geothermal wells. These fluids consist of water-based systems containing high molecular weight polymers in the uncrosslinked and crosslinked state. The results of fluid testing for many systems are summarized specifically at geothermal conditions or until breakdown occurs. Some of the standard tests are ambient viscosity, static aging, high temperature viscosity, fluid-loss testing, and falling ball viscosity at elevated temperatures and pressures. Results of these tests show that unalterable breakdown of the polymer solutions begins above 300/sup 0/F. This continues at higher temperatures with time even if stabilizers or other high temperature additives are included.

  6. Study on Initiation Mechanisms of Hydraulic Fracture Guided by Vertical Multi-radial Boreholes

    Science.gov (United States)

    Guo, Tiankui; Liu, Binyan; Qu, Zhanqing; Gong, Diguang; Xin, Lei

    2017-07-01

    The conventional hydraulic fracturing fails in the target oil development zone (remaining oil or gas, closed reservoir, etc.) which is not located in the azimuth of maximum horizontal in situ stress of available wellbores. The technology of directional propagation of hydraulic fracture guided by vertical multi-radial boreholes is innovatively developed. The effects of in situ stress, wellbore internal pressure and fracturing fluid percolation effect on geostress field distribution are taken into account, a mechanical model of two radial boreholes (basic research unit) is established, and the distribution and change rule of the maximum principal stress on the various parameters have been studied. The results show that as the radial borehole azimuth increases, the preferential rock tensile fracturing in the axial plane of radial boreholes becomes increasingly difficult. When the radial borehole azimuth increases to a certain extent, the maximum principal stress no longer appears in the azimuth of the radial boreholes, but will go to other orientations outside the axial plane of radial boreholes and the maximum horizontal stress orientation. Therefore, by reducing the ratio between the distance of the radial boreholes and increasing the diameter of the radial boreholes can enhance the guiding strength. In the axial plane of the radical boreholes, particularly in the radial hole wall, position closer to the radial boreholes is more prone to rock tensile destruction. Even in the case of large radial borehole azimuth, rock still preferentially ruptures in this position. The more the position is perpendicularly far from the axis of the wellbore, the lesser it will be affected by wellbore, and the lesser the tensile stress of each point. Meanwhile, at a certain depth, due to the decrease in the impact of the wellbore and the impact of the two radial boreholes increases accordingly, at the further position from the wellbore axis, the tensile fracture is the most prone to

  7. Characterization of the chemicals used in hydraulic fracturing fluids for wells located in the Marcellus Shale Play.

    Science.gov (United States)

    Chen, Huan; Carter, Kimberly E

    2017-09-15

    Hydraulic fracturing, coupled with the advances in horizontal drilling, has been used for recovering oil and natural gas from shale formations and has aided in increasing the production of these energy resources. The large volumes of hydraulic fracturing fluids used in this technology contain chemical additives, which may be toxic organics or produce toxic degradation byproducts. This paper investigated the chemicals introduced into the hydraulic fracturing fluids for completed wells located in Pennsylvania and West Virginia from data provided by the well operators. The results showed a total of 5071 wells, with average water volumes of 5,383,743 ± 2,789,077 gal (mean ± standard deviation). A total of 517 chemicals was introduced into the formulated hydraulic fracturing fluids. Of the 517 chemicals listed by the operators, 96 were inorganic compounds, 358 chemicals were organic species, and the remaining 63 cannot be identified. Many toxic organics were used in the hydraulic fracturing fluids. Some of them are carcinogenic, including formaldehyde, naphthalene, and acrylamide. The degradation of alkylphenol ethoxylates would produce more toxic, persistent, and estrogenic intermediates. Acrylamide monomer as a primary degradation intermediate of polyacrylamides is carcinogenic. Most of the chemicals appearing in the hydraulic fracturing fluids can be removed when adopting the appropriate treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Source mechanism characterization and integrated interpretation of microseismic data monitoring two hydraulic stimulations in pouce coupe field, Alberta

    Science.gov (United States)

    Lindholm, Garrison J.

    The study of the Pouce Coupe Field is a joint effort between the Reservoir Characterization Project (RCP) and Talisman Energy Inc. My study focuses on the hydraulic stimulation of two horizontal wells within the Montney Formation located in north-western Alberta. The Montney is an example of a modern-day tight, engineering-driven play in which recent advances in drilling of horizontal wells and hydraulic fracturing have made shale gas exploitation economical. The wells were completed in December 2008 and were part of a science driven project in which a multitude of data were collected including multicomponent seismic, microseismic, and production logs. Since this time, a number of studies have been performed by students at Colorado School of Mines to better understand the effects the completions have had on the reservoir. This thesis utilizes the microseismic data that were recorded during the stimulation of the two horizontal wells in order to understand the origin of the microseismic events themselves. The data are then used to understand and correlate to the well production. To gain insight into the source of the microseismic events, amplitude ratios of recorded seismic modes (P, Sh and Sv) for the microseismic events are studied. By fitting trends of simple end member source mechanisms (strike-slip, dip-slip, and tensile) to groups of amplitude ratio data, the events are found to be of strike-slip nature. By comparing the focal mechanisms to other independent natural fracture determination techniques (shear-wave splitting analysis, FMI log), it is shown that the source of recorded microseismic events is likely to be a portion of the shear slip along existing weak planes (fractures) within a reservoir. The technique described in this work is one that is occasionally but increasingly used but offers the opportunity to draw further information from microseismic data using results that are already part of a typical processing workflow. The microseismic events are

  9. Characterization of the Oriskany and Berea Sandstones: Evaluating Biogeochemical Reactions of Potential Sandstone–Hydraulic Fracturing Fluid Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Verba, Circe [National Energy Technology Lab. (NETL), Albany, OR (United States); Harris, Aubrey [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2016-07-07

    The Marcellus shale, located in the mid-Atlantic Appalachian Basin, has been identified as a source for natural gas and targeted for hydraulic fracturing recovery methods. Hydraulic fracturing is a technique used by the oil and gas industry to access petroleum reserves in geologic formations that cannot be accessed with conventional drilling techniques (Capo et al., 2014). This unconventional technique fractures rock formations that have low permeability by pumping pressurized hydraulic fracturing fluids into the subsurface. Although the major components of hydraulic fracturing fluid are water and sand, chemicals, such as recalcitrant biocides and polyacrylamide, are also used (Frac Focus, 2015). There is domestic concern that the chemicals could reach groundwater or surface water during transport, storage, or the fracturing process (Chapman et al., 2012). In the event of a surface spill, understanding the natural attenuation of the chemicals in hydraulic fracturing fluid, as well as the physical and chemical properties of the aquifers surrounding the spill site, will help mitigate potential dangers to drinking water. However, reports on the degradation pathways of these chemicals are limited in existing literature. The Appalachian Basin Marcellus shale and its surrounding sandstones host diverse mineralogical suites. During the hydraulic fracturing process, the hydraulic fracturing fluids come into contact with variable mineral compositions. The reactions between the fracturing fluid chemicals and the minerals are very diverse. This report: 1) describes common minerals (e.g. quartz, clay, pyrite, and carbonates) present in the Marcellus shale, as well as the Oriskany and Berea sandstones, which are located stratigraphically below and above the Marcellus shale; 2) summarizes the existing literature of the degradation pathways for common hydraulic fracturing fluid chemicals [polyacrylamide, ethylene glycol, poly(diallyldimethylammonium chloride), glutaraldehyde

  10. Influence of heat treatment on the wear life of hydraulic fracturing tools

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Chao; Liu, Yonghong; Wang, Hanxiang; Qin, Jie; Shen, Yang; Zhang, Shihong [China University of Petroleum, Qingdao (China)

    2017-02-15

    Wear phenomenon has caused severe damage or failure of fracturing tools in oil and gas industry. In this paper, influence of heat treatment on the mechanical properties and wear resistance of fracturing tool made of lamellar graphite grey cast iron were investigated. The surface composition and microstructure were characterized by X-ray diffraction (XRD) and metallographic microscope. Sliding wear tests were performed to study the tribological behavior. Tests results showed that wear rates of treated specimens decreased by 33 %. Besides, worn morphology and wear debris were analyzed using Scanning electron microscope (SEM) and Energy dispersive Xray spectra (EDS). Wear failure mechanisms of specimens were identified. Furthermore, on-site experiment results indicated that wear loss of treated samples decreased by 37.5 %. The wear life of hydraulic fracturing tools can be improved obviously by the heat treatment.

  11. Hydraulically active biopores stimulate pesticide mineralization in agricultural subsoil

    DEFF Research Database (Denmark)

    Badawi, Nora; Johnsen, Anders R.; Brandt, Kristian Koefoed

    2013-01-01

    for microbially-mediated pesticide mineralization, thereby reducing the risk of pesticide leaching. To investigate this we identified hydraulically active biopores in a test plot of an agricultural field by percolating brilliant blue through the soil. Small portions of soil (500 mg) were sampled at approx. 1-cm....... Compared to the matrix soil, increased density of heterotrophic bacteria, respiratory activity, growth activity, and bromoxynil mineralization was observed in the biopores in the subsoil layer, but not in the transition zone. By contrast, the density of MCPA degraders and MCPA mineralization activity were......Soil biopores can serve as preferential flow paths for downward transport of inorganic nutrients and organic compounds. Pesticides may also be transported down through the subsoil in biopores, thereby posing a threat to the groundwater resource. However, biopores may also constitute hot spots...

  12. INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    David S. Schechter

    2004-10-10

    This report describes the work performed during the third year of the project, ''Investigating of Efficiency Improvements during CO{sub 2} Injection in Hydraulically and Naturally Fractured Reservoirs.'' The objective of this project is to perform unique laboratory experiments with artificial fractured cores (AFCs) and X-ray CT to examine the physical mechanisms of bypassing in HFR and NFR that eventually result in more efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. To achieve this objective, in this period we concentrated our effort on modeling fluid flow through rough fractures and investigating the grid orientation effect in rectangular grid blocks particularly at high mobility ratio as our precursor to use a compositional simulator. We are developing a robust simulator using Voronoi grids to accurately represent natural and induced fractures. We are also verifying the accuracy of the simulation using scaled laboratory experiments to provide a benchmark for our simulation technique. No such simulator currently exists so this capability will represent a major breakthrough in simulation of gas injection in fractured systems. The following sections outline the results that appear in this report.

  13. Application of the boundary elements method for modeling of the fracture of cylindrical bodies by hydraulic fracturing

    Science.gov (United States)

    Legan, M. A.; Blinov, V. A.; Larichkin, A. Yu; Novoselov, A. N.

    2017-10-01

    Experimental study of hydraulic fracturing of thick-walled cylinders with a central circular hole was carried out using the machine that creates a high oil pressure. Experiments on the compression fracture of the solid cylinders by diameter and rectangular parallelepipeds perpendicular to the ends were carried out with a multipurpose test machine Zwick / Roell Z100. Samples were made of GF-177 material based on cement. Ultimate stresses in the material under study were determined for three types of stress state: under compression, with a pure shear on the surface of the hole under frecking conditions and under a compound stress state under conditions of diametral compression of a solid cylinder. The value of the critical stress intensity factor of GF-177 material was obtained. The modeling of the fracturing process taking into account the inhomogeneity of the stress state near the hole was carried out using the boundary elements method (in the variant of the fictitious load method) and the gradient fracture criterion. Calculation results of the ultimate pressure were compared with values obtained analytically on the basis of the Lame solution and with experimental data.

  14. Stimulating Fracture Healing in Ischemic Environments: Does Oxygen Direct Stem Cell Fate during Fracture Healing?

    Science.gov (United States)

    Miclau, Katherine R.; Brazina, Sloane A.; Bahney, Chelsea S.; Hankenson, Kurt D.; Hunt, Thomas K.; Marcucio, Ralph S.; Miclau, Theodore

    2017-01-01

    Bone fractures represent an enormous societal and economic burden as one of the most prevalent causes of disability worldwide. Each year, nearly 15 million people are affected by fractures in the United States alone. Data indicate that the blood supply is critical for fracture healing; as data indicate that concomitant bone and vascular injury are major risk factors for non-union. However, the various role(s) that the vasculature plays remains speculative. Fracture stabilization dictates stem cell fate choices during repair. In stabilized fractures stem cells differentiate directly into osteoblasts and heal the injury by intramembranous ossification. In contrast, in non-stable fractures stem cells differentiate into chondrocytes and the bone heals through endochondral ossification, where a cartilage template transforms into bone as the chondrocytes transform into osteoblasts. One suggested role of the vasculature has been to participate in the stem cell fate decisions due to delivery of oxygen. In stable fractures, the blood vessels are thought to remain intact and promote osteogenesis, while in non-stable fractures, continual disruption of the vasculature creates hypoxia that favors formation of cartilage, which is avascular. However, recent data suggests that non-stable fractures are more vascularized than stable fractures, that oxygen does not appear associated with differentiation of stem cells into chondrocytes and osteoblasts, that cartilage is not hypoxic, and that oxygen, not sustained hypoxia, is required for angiogenesis. These unexpected results, which contrast other published studies, are indicative of the need to better understand the complex, spatio-temporal regulation of vascularization and oxygenation in fracture healing. This work has also revealed that oxygen, along with the promotion of angiogenesis, may be novel adjuvants that can stimulate healing in select patient populations. PMID:28523266

  15. Scaling of postinjection-induced seismicity: An approach to assess hydraulic fracturing related processes

    Science.gov (United States)

    Johann, Lisa; Dinske, Carsten; Shapiro, Serge

    2017-04-01

    Fluid injections into unconventional reservoirs have become a standard for the enhancement of fluid-mobility parameters. Microseismic activity during and after the injection can be frequently directly associated with subsurface fluid injections. Previous studies demonstrate that postinjection-induced seismicity has two important characteristics: On the one hand, the triggering front, which corresponds to early and distant events and envelops farthest induced events. On the other hand, the back front, which describes the lower boundary of the seismic cloud and envelops the aseismic domain evolving around the source after the injection stop. A lot of research has been conducted in recent years to understand seismicity-related processes. For this work, we follow the assumption that the diffusion of pore-fluid pressure is the dominant triggering mechanism. Based on Terzaghi's concept of an effective normal stress, the injection of fluids leads to increasing pressures which in turn reduce the effective normal stress and lead to sliding along pre-existing critically stressed and favourably oriented fractures and cracks. However, in many situations, spatio-temporal signatures of induced events are captured by a rather non-linear process of pore-fluid pressure diffusion, where the hydraulic diffusivity becomes pressure-dependent. This is for example the case during hydraulic fracturing where hydraulic transport properties are significantly enhanced. For a better understanding of processes related to postinjection-induced seismicity, we analytically describe the temporal behaviour of triggering and back fronts. We introduce a scaling law which shows that postinjection-induced events are sensitive to the degree of non-linearity and to the Euclidean dimension of the seismic cloud (see Johann et al., 2016, JGR). To validate the theory, we implement comprehensive modelling of non-linear pore-fluid pressure diffusion in 3D. We solve numerically for the non-linear equation of

  16. Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM

    Directory of Open Access Journals (Sweden)

    Ingrid Tomac

    2017-02-01

    Full Text Available This paper presents an improved understanding of coupled hydro-thermo-mechanical (HTM hydraulic fracturing of quasi-brittle rock using the bonded particle model (BPM within the discrete element method (DEM. BPM has been recently extended by the authors to account for coupled convective–conductive heat flow and transport, and to enable full hydro-thermal fluid–solid coupled modeling. The application of the work is on enhanced geothermal systems (EGSs, and hydraulic fracturing of hot dry rock (HDR is studied in terms of the impact of temperature difference between rock and a flowing fracturing fluid. Micro-mechanical investigation of temperature and fracturing fluid effects on hydraulic fracturing damage in rocks is presented. It was found that fracture is shorter with pronounced secondary microcracking along the main fracture for the case when the convective–conductive thermal heat exchange is considered. First, the convection heat exchange during low-viscosity fluid infiltration in permeable rock around the wellbore causes significant rock cooling, where a finger-like fluid infiltration was observed. Second, fluid infiltration inhibits pressure rise during pumping and delays fracture initiation and propagation. Additionally, thermal damage occurs in the whole area around the wellbore due to rock cooling and cold fluid infiltration. The size of a damaged area around the wellbore increases with decreasing fluid dynamic viscosity. Fluid and rock compressibility ratio was found to have significant effect on the fracture propagation velocity.

  17. An analysis of chemicals and other constituents found in produced water from hydraulically fractured wells in California and the challenges for wastewater management.

    Science.gov (United States)

    Chittick, Emily A; Srebotnjak, Tanja

    2017-12-15

    As high-volume hydraulic fracturing (HF) has grown substantially in the United States over the past decade, so has the volume of produced water (PW), i.e., briny water brought to the surface as a byproduct of oil and gas production. According to a recent study (Groundwater Protection Council, 2015), more than 21 billion barrels of PW were generated in 2012. In addition to being high in TDS, PW may contain hydrocarbons, PAH, alkylphenols, naturally occurring radioactive material (NORM), metals, and other organic and inorganic substances. PW from hydraulically fractured wells includes flowback water, i.e., injection fluids containing chemicals and additives used in the fracturing process such as friction reducers, scale inhibitors, and biocides - many of which are known to cause serious health effects. It is hence important to gain a better understanding of the chemical composition of PW and how it is managed. This case study of PW from hydraulically fractured wells in California provides a first aggregate chemical analysis since data collection began in accordance with California's 2013 oil and gas well stimulation law (SB4, Pavley). The results of analyzing one-time wastewater analyses of 630 wells hydraulically stimulated between April 1, 2014 and June 30, 2015 show that 95% of wells contained measurable and in some cases elevated concentrations of BTEX and PAH compounds. PW from nearly 500 wells contained lead, uranium, and/or other metals. The majority of hazardous chemicals known to be used in HF operations, including formaldehyde and acetone, are not reported in the published reports. The prevalent methods for dealing with PW in California - underground injection and open evaporation ponds - are inadequate for this waste stream due to risks from induced seismicity, well integrity failure, well upsets, accidents and spills. Beneficial reuse of PW, such as for crop irrigation, is as of yet insufficiently safety tested for consumers and agricultural workers as

  18. Analysis on the Initial Cracking Parameters of Cross-Measure Hydraulic Fracture in Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Yiyu Lu

    2015-07-01

    Full Text Available Initial cracking pressure and locations are important parameters in conducting cross-measure hydraulic fracturing to enhance coal seam permeability in underground coalmines, which are significantly influenced by in-situ stress and occurrence of coal seam. In this study, stress state around cross-measure fracturing boreholes was analyzed using in-situ stress coordinate transformation, then a mathematical model was developed to evaluate initial cracking parameters of borehole assuming the maximum tensile stress criterion. Subsequently, the influences of in-situ stress and occurrence of coal seams on initial cracking pressure and locations in underground coalmines were analyzed using the proposed model. Finally, the proposed model was verified with field test data. The results suggest that the initial cracking pressure increases with the depth cover and coal seam dip angle. However, it decreases with the increase in azimuth of major principle stress. The results also indicate that the initial cracking locations concentrated in the second and fourth quadrant in polar coordinate, and shifted direction to the strike of coal seam as coal seam dip angle and azimuth of maximum principle stress increase. Field investigation revealed consistent rule with the developed model that the initial cracking pressure increases with the coal seam dip angle. Therefore, the proposed mathematical model provides theoretical insight to analyze the initial cracking parameters during cross-measure hydraulic fracturing for underground coalmines.

  19. Natural Attenuation of Nonionic Surfactants Used in Hydraulic Fracturing Fluids: Degradation Rates, Pathways, and Mechanisms.

    Science.gov (United States)

    Heyob, Katie M; Blotevogel, Jens; Brooker, Michael; Evans, Morgan V; Lenhart, John J; Wright, Justin; Lamendella, Regina; Borch, Thomas; Mouser, Paula J

    2017-12-05

    Hydraulic fracturing fluids are injected into shales to extend fracture networks that enhance oil and natural gas production from unconventional reservoirs. Here we evaluated the biodegradability of three widely used nonionic polyglycol ether surfactants (alkyl ethoxylates (AEOs), nonylphenol ethoxylates (NPEOs), and polypropylene glycols (PPGs)) that function as weatherizers, emulsifiers, wetting agents, and corrosion inhibitors in injected fluids. Under anaerobic conditions, we observed complete removal of AEOs and NPEOs from solution within 3 weeks regardless of whether surfactants were part of a chemical mixture or amended as individual additives. Microbial enzymatic chain shortening was responsible for a shift in ethoxymer molecular weight distributions and the accumulation of the metabolite acetate. PPGs bioattenuated the slowest, producing sizable concentrations of acetone, an isomer of propionaldehyde. Surfactant chain shortening was coupled to an increased abundance of the diol dehydratase gene cluster (pduCDE) in Firmicutes metagenomes predicted from the 16S rRNA gene. The pduCDE enzymes are responsible for cleaving ethoxylate chain units into aldehydes before their fermentation into alcohols and carboxylic acids. These data provide new mechanistic insight into the environmental fate of hydraulic fracturing surfactants after accidental release through chain shortening and biotransformation, emphasizing the importance of compound structure disclosure for predicting biodegradation products.

  20. Analysis of hydraulic fracturing additives by LC/Q-TOF-MS.

    Science.gov (United States)

    Ferrer, Imma; Thurman, E Michael

    2015-08-01

    The chemical additives used in fracturing fluids can be used as tracers of water contamination caused by hydraulic fracturing operations. For this purpose, a complete chemical characterization is necessary using advanced analytical techniques. Liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC/Q-TOF-MS) was used to identify chemical additives present in flowback and produced waters. Accurate mass measurements of main ions and fragments were used to characterize the major components of fracking fluids. Sodium adducts turned out to be the main molecular adduct ions detected for some additives due to oxygen-rich structures. Among the classes of chemical components analyzed by mass spectrometry include gels (guar gum), biocides (glutaraldehyde and alkyl dimethyl benzyl ammonium chloride), and surfactants (cocamidopropyl dimethylamines, cocamidopropyl hydroxysultaines, and cocamidopropyl derivatives). The capabilities of accurate mass and MS-MS fragmentation are explored for the unequivocal identification of these compounds. A special emphasis is given to the mass spectrometry elucidation approaches used to identify a major class of hydraulic fracturing compounds, surfactants.

  1. Hydraulic fracture model and diagnostics verification at GRI/DOE multi-site projects and tight gas sand program support. Final report, July 28, 1993--February 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, J.E.

    1997-12-31

    The Mesaverde Group of the Piceance Basin in western Colorado has been a pilot study area for government-sponsored tight gas sand research for over twenty years. Early production experiments included nuclear stimulations and massive hydraulic fracture treatments. This work culminated in the US Department of Energy (DOE)`s Multiwell Experiment (MWX), a field laboratory designed to study the reservoir and production characteristics of low permeability sands. A key feature of MWX was an infrastructure which included several closely spaced wells that allowed detailed characterization of the reservoir through log and core analysis, and well testing. Interference and tracer tests, as well as the use of fracture diagnostics gave further information on stimulation and production characteristics. Thus, the Multiwell Experiment provided a unique opportunity for identifying the factors affecting production from tight gas sand reservoirs. The purpose of this operation was to support the gathering of field data that may be used to resolve the number of unknowns associated with measuring and modeling the dimensions of hydraulic fractures. Using the close-well infrastructure at the Multiwell Site near Rifle, Colorado, this operation focused primarily on the field design and execution of experiments. The data derived from the experiments were gathered and analyzed by DOE team contractors.

  2. Information and dialogue process on safety and environmental effects of the hydraulic fracturing technology; Der Informations- und Dialogprozess zur Sicherheit und Umweltvertraeglichkeit der Fracking-Technologie

    Energy Technology Data Exchange (ETDEWEB)

    Borchardt, Dietrich; Richter, Sandra [Helmholtz-Zentrum fuer Umweltforschung - UFZ, Magdeburg (Germany); Ewen, Christoph [team ewen, Darmstadt (Germany); Hammerbacher, Ruth [hammerbacher gmbh - beratung und projekte, Osnabrueck (Germany)

    2012-10-15

    After the big success of hydraulic fracturing in the USA, natural gas utilities are now planning natural gas production from nonconventional deposits (shale gas, coal seam gas) by hydraulic fracturing also in Germany. In order to calm public fears, an 'information and dialogue process on safety and environmental effects of the hydraulic fracturing technology' was initiated. A risk study carried out by a team of neutral experts gives recommendations for a well-founded, careful and realistic discussion of the environmental compatibility of hydraulic fracturing.

  3. Pumping-Test Evaluation of Fault-Zone Hydraulic Properties in a Fractured Sandstone

    Science.gov (United States)

    Johnson, N. M.

    2014-12-01

    Subzones of both reduced and enhanced permeability are often ascribed to fault zones, consistent with a fault-core/damage-zone conceptualization, with associated implications for assessing potential contaminant transport. Within this context, a 31-day pumping test was conducted in relation to a relatively minor, 2000 m long fault zone cutting fractured Cretaceous sandstone interbedded with siltstone and shale at a groundwater remediation site in the Simi Hills of southern California during March-April 2013. Our objective was to evaluate the potential hydrogeologic influence of the fault zone on groundwater movement across and along it by observing the spatial patterns of drawdown and estimated hydraulic properties. A 122 m deep open borehole was pumped at a constant rate of approximately 112 L/min while monitoring hydraulic heads in 14 observation wells, two completed with multi-level systems, within 750 m of the pumping well. Hydraulic heads were monitored for more than 9 months before, during, and after the test. Prior to the test, we used the site's three-dimensional, equivalent-porous-media groundwater flow model to anticipate the potential response of alternative fault-zone permeability structures. The results suggest that the fault zone may be slightly more permeable (by a factor of about 2 or less) and less confined than the fractured sandstone away from the fault, and is not a significant barrier to groundwater flow across it. Within the areal extent of observed drawdown, the site's hydrostratigraphic structures exhibited a relatively greater hydraulic influence. The pattern and magnitude of observed drawdown lie within the range of pre-test model simulations, and the test results are now being used to revise and recalibrate the model.

  4. Quantifying the Impact of Technological Trends and Spatiotemporal Variability in Hydraulic Fracturing Water Intensity

    Science.gov (United States)

    Montgomery, J.; O'sullivan, F.

    2016-12-01

    An important metric for comparing the environmental impact of hydraulically fractured oil and gas wells to other energy technologies is the water intensity, or water usage normalized to energy production. Due to varying hydraulic fracturing practices, immense variability in short-term well performance, and uncertainty about lifetime production from wells, the water intensity of wells is difficult to predict and should be modeled statistically using field data. We analyzed public production and hydraulic fracturing data for 3497 wells drilled in the North Dakota Williston Basin between 2012 and 2015 to identify technology and sweet-spotting trends and identify their impact on well productivity and water intensity. We found that the water used per well increased by an average of 43% per year over this period while the water intensity of wells increased by 32% per year. The difference in these rates was due to a trend of increasing production rates, which we found to be associated equally with changes in technology and sweet-spotting. The prevalent role of sweet spotting means that as future drilling activity shifts into less productive areas than are presently being exploited, this will predictably increase the water intensity of new wells. Although some of the variability in well productivity and water intensity is resolvable to the influence of spatial heterogeneity and technology practices, a substantial amount of uncertainty is irreducible due to unobservable factors. This uncertainty can best be represented and updated with new information, such as initial rates of production, using a Bayesian decline curve model. We demonstrate how this approach can be used to forecast uncertainty of water intensity at different locations and points in time, making it a useful tool for a range of stakeholders, including regulatory agencies assessing the environmental impact of drilling activity within particular watersheds.

  5. The Role of Toxicological Science in Meeting the Challenges and Opportunities of Hydraulic Fracturing

    Science.gov (United States)

    Goldstein, Bernard D.; Brooks, Bryan W.; Cohen, Steven D.; Gates, Alexander E.; Honeycutt, Michael E.; Morris, John B.; Orme-Zavaleta, Jennifer; Penning, Trevor M.; Snawder, John

    2014-01-01

    We briefly describe how toxicology can inform the discussion and debate of the merits of hydraulic fracturing by providing information on the potential toxicity of the chemical and physical agents associated with this process, individually and in combination. We consider upstream activities related to bringing chemical and physical agents to the site, on-site activities including drilling of wells and containment of agents injected into or produced from the well, and downstream activities including the flow/removal of hydrocarbon products and of produced water from the site. A broad variety of chemical and physical agents are involved. As the industry expands this has raised concern about the potential for toxicological effects on ecosystems, workers, and the general public. Response to these concerns requires a concerted and collaborative toxicological assessment. This assessment should take into account the different geology in areas newly subjected to hydraulic fracturing as well as evolving industrial practices that can alter the chemical and physical agents of toxicological interest. The potential for ecosystem or human exposure to mixtures of these agents presents a particular toxicological and public health challenge. These data are essential for developing a reliable assessment of the potential risks to the environment and to human health of the rapidly increasing use of hydraulic fracturing and deep underground horizontal drilling techniques for tightly bound shale gas and other fossil fuels. Input from toxicologists will be most effective when employed early in the process, before there are unwanted consequences to the environment and human health, or economic losses due to the need to abandon or rework costly initiatives. PMID:24706166

  6. Assessment of the Acute and Chronic Health Hazards of Hydraulic Fracturing Fluids.

    Science.gov (United States)

    Wattenberg, Elizabeth V; Bielicki, Jeffrey M; Suchomel, Ashley E; Sweet, Jessica T; Vold, Elizabeth M; Ramachandran, Gurumurthy

    2015-01-01

    There is growing concern about how hydraulic fracturing affects public health because this activity involves handling large volumes of fluids that contain toxic and carcinogenic constituents, which are injected under high pressure through wells into the subsurface to release oil and gas from tight shale formations. The constituents of hydraulic fracturing fluids (HFFs) present occupational health risks because workers may be directly exposed to them, and general public health risks because of potential air and water contamination. Hazard identification, which focuses on the types of toxicity that substances may cause, is an important step in the complex health risk assessment of hydraulic fracturing. This article presents a practical and adaptable tool for the hazard identification of HFF constituents, and its use in the analysis of HFF constituents reported to be used in 2,850 wells in North Dakota between December 2009 and November 2013. Of the 569 reported constituents, 347 could be identified by a Chemical Abstract Service Registration Number (CASRN) and matching constituent name. The remainder could not be identified either because of trade secret labeling (210) or because of an invalid CASRN (12). Eleven public databases were searched for health hazard information on thirteen health hazard endpoints for 168 identifiable constituents that had at least 25 reports of use. Health hazard counts were generated for chronic and acute endpoints, including those associated with oral, inhalation, ocular, and dermal exposure. Eleven of the constituents listed in the top 30 by total health hazard count were also listed in the top 30 by reports of use. This includes naphthalene, which along with benzyl chloride, has the highest health hazard count. The top 25 constituents reportedly used in North Dakota largely overlap with those reported for Texas and Pennsylvania, despite different geologic formations, target resources (oil vs. gas), and disclosure requirements

  7. Modeling Studies to Constrain Fluid and Gas Migration Associated with Hydraulic Fracturing Operations

    Science.gov (United States)

    Rajaram, H.; Birdsell, D.; Lackey, G.; Karra, S.; Viswanathan, H. S.; Dempsey, D.

    2015-12-01

    The dramatic increase in the extraction of unconventional oil and gas resources using horizontal wells and hydraulic fracturing (fracking) technologies has raised concerns about potential environmental impacts. Large volumes of hydraulic fracturing fluids are injected during fracking. Incidents of stray gas occurrence in shallow aquifers overlying shale gas reservoirs have been reported; whether these are in any way related to fracking continues to be debated. Computational models serve as useful tools for evaluating potential environmental impacts. We present modeling studies of hydraulic fracturing fluid and gas migration during the various stages of well operation, production, and subsequent plugging. The fluid migration models account for overpressure in the gas reservoir, density contrast between injected fluids and brine, imbibition into partially saturated shale, and well operations. Our results highlight the importance of representing the different stages of well operation consistently. Most importantly, well suction and imbibition both play a significant role in limiting upward migration of injected fluids, even in the presence of permeable connecting pathways. In an overall assessment, our fluid migration simulations suggest very low risk to groundwater aquifers when the vertical separation from a shale gas reservoir is of the order of 1000' or more. Multi-phase models of gas migration were developed to couple flow and transport in compromised wellbores and subsurface formations. These models are useful for evaluating both short-term and long-term scenarios of stray methane release. We present simulation results to evaluate mechanisms controlling stray gas migration, and explore relationships between bradenhead pressures and the likelihood of methane release and transport.

  8. A time step criterion for the stable numerical simulation of hydraulic fracturing

    Science.gov (United States)

    Juan-Lien Ramirez, Alina; Löhnert, Stefan; Neuweiler, Insa

    2017-04-01

    The process of propagating or widening cracks in rock formations by means of fluid flow, known as hydraulic fracturing, has been gaining attention in the last couple of decades. There is growing interest in its numerical simulation to make predictions. Due to the complexity of the processes taking place, e.g. solid deformation, fluid flow in an open channel, fluid flow in a porous medium and crack propagation, this is a challenging task. Hydraulic fracturing has been numerically simulated for some years now [1] and new methods to take more of its processes into account (increasing accuracy) while modeling in an efficient way (lower computational effort) have been developed in recent years. An example is the use of the Extended Finite Element Method (XFEM), whose application originated within the framework of solid mechanics, but is now seen as an effective method for the simulation of discontinuities with no need for re-meshing [2]. While more focus has been put to the correct coupling of the processes mentioned above, less attention has been paid to the stability of the model. When using a quasi-static approach for the simulation of hydraulic fracturing, choosing an adequate time step is not trivial. This is in particular true if the equations are solved in a staggered way. The difficulty lies within the inconsistency between the static behavior of the solid and the dynamic behavior of the fluid. It has been shown that too small time steps may lead to instabilities early into the simulation time [3]. While the solid reaches a stationary state instantly, the fluid is not able to achieve equilibrium with its new surrounding immediately. This is why a time step criterion has been developed to quantify the instability of the model concerning the time step. The presented results were created with a 2D poroelastic model, using the XFEM for both the solid and the fluid phases. An embedded crack propagates following the energy release rate criteria when the fluid pressure

  9. Ensuring stability of maintained goaf by means of directional hydraulic fracturing (DHF)

    Science.gov (United States)

    Klishin, V. I.; Opruk, G. Yu; Teleguz, A. S.

    2017-09-01

    The article describes how directional hydraulic fracturing (DHF) of roof rock was used while the longwall face was operating and airway for the isolated methane-air mixture drainage from the goaf was preserved. The authors give the reasons for using DHF in mining and geological conditions of Esaulskaya mine. They describe the sequence of the performed operations aimed at weakening roof rocks and also list the special equipment used during the process. Based on the results of the performed operations, the authors make a conclusion concerning the effectiveness of this work.

  10. Analysis of BTEX groundwater concentrations from surface spills associated with hydraulic fracturing operations.

    Science.gov (United States)

    Gross, Sherilyn A; Avens, Heather J; Banducci, Amber M; Sahmel, Jennifer; Panko, Julie M; Tvermoes, Brooke E

    2013-04-01

    Concerns have arisen among the public regarding the potentialfor drinking-water contamination from the migration of methane gas and hazardous chemicals associated with hydraulic fracturing and horizontal drilling. However, little attention has been paid to the potentialfor groundwater contamination resulting from surface spills from storage and production facilities at active well sites. We performed a search for publically available data regarding groundwater contamination from spills at ULS. drilling sites. The Colorado Oil and Gas Conservation Commission (COGCC) database was selected for further analysis because it was the most detailed. The majority ofspills were in Weld County, Colorado, which has the highest density of wells that used hydraulic fracturing for completion, many producing both methane gas and crude oil. We analyzed publically available data reported by operators to the COGCC regarding surface spills that impacted groundwater From July 2010 to July 2011, we noted 77 reported surface spills impacting the groundwater in Weld County, which resulted in surface spills associated with less than 0.5% of the active wells. The reported data included groundwater samples that were analyzed for benzene, toluene, ethylbenzene, andxylene (BTEX) components of crude oil. For groundwater samples taken both within the spill excavation area and on the first reported date of sampling, the BTEX measurements exceeded National Drinking Water maximum contaminant levels (MCLs) in 90, 30, 12, and 8% of the samples, respectively. However, actions taken to remediate the spills were effective at reducing BJTEX levels, with at least 84% of the spills reportedly achieving remediation as of May 2012. Our analysis demonstrates that surface spills are an important route of potential groundwater contamination from hydraulic fracturing activities and should be a focus of programs to protect groundwater While benzene can occur naturally in groundwater sources, spills and migration

  11. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms

    Science.gov (United States)

    Wei, Mingzhen; Liu, Hong

    2018-01-01

    Development of unconventional shale gas reservoirs (SGRs) has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW) have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Darcy flow. The productivity of the SGRs with MsFHW is influenced by both reservoir conditions and hydraulic fracture properties. However, rare simulation work has been conducted for multi-stage hydraulic fractured SGRs. Most of them use well testing methods, which have too many unrealistic simplifications and assumptions. Also, no systematical work has been conducted considering all reasonable transport mechanisms. And there are very few works on sensitivity studies of uncertain parameters using real parameter ranges. Hence, a detailed and systematic study of reservoir simulation with MsFHW is still necessary. In this paper, a dual porosity model was constructed to estimate the effect of parameters on shale gas production with MsFHW. The simulation model was verified with the available field data from the Barnett Shale. The following mechanisms have been considered in this model: viscous flow, slip flow, Knudsen diffusion, and gas desorption. Langmuir isotherm was used to simulate the gas desorption process. Sensitivity analysis on SGRs’ production performance with MsFHW has been conducted. Parameters influencing shale gas production were classified into two categories: reservoir parameters including matrix permeability, matrix porosity; and hydraulic fracture parameters including hydraulic fracture spacing, and fracture half-length. Typical ranges of matrix parameters have been reviewed. Sensitivity analysis have been conducted to analyze the effect of the above factors on the production performance of SGRs. Through comparison, it can be found that hydraulic fracture

  12. Investigating the traffic-related environmental impacts of hydraulic-fracturing (fracking) operations.

    Science.gov (United States)

    Goodman, Paul S; Galatioto, Fabio; Thorpe, Neil; Namdeo, Anil K; Davies, Richard J; Bird, Roger N

    2016-01-01

    Hydraulic fracturing (fracking) has been used extensively in the US and Canada since the 1950s and offers the potential for significant new sources of oil and gas supply. Numerous other countries around the world (including the UK, Germany, China, South Africa, Australia and Argentina) are now giving serious consideration to sanctioning the technique to provide additional security over the future supply of domestic energy. However, relatively high population densities in many countries and the potential negative environmental impacts that may be associated with fracking operations has stimulated controversy and significant public debate regarding if and where fracking should be permitted. Road traffic generated by fracking operations is one possible source of environmental impact whose significance has, until now, been largely neglected in the available literature. This paper therefore presents a scoping-level environmental assessment for individual and groups of fracking sites using a newly-created Traffic Impacts Model (TIM). The model produces estimates of the traffic-related impacts of fracking on greenhouse gas emissions, local air quality emissions, noise and road pavement wear, using a range of hypothetical fracking scenarios to quantify changes in impacts against baseline levels. Results suggest that the local impacts of a single well pad may be short duration but large magnitude. That is, whilst single digit percentile increases in emissions of CO2, NOx and PM are estimated for the period from start of construction to pad completion (potentially several months or years), excess emissions of NOx on individual days of peak activity can reach 30% over baseline. Likewise, excess noise emissions appear negligible (fracking water and flowback waste requirements. The TIM model is designed to be adaptable to any geographic area where the required input data are available (such as fleet characteristics, road type and quality), and we suggest could be deployed as a

  13. Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Peter Eugene [Energy and Geoscience Institute at the University of Utah

    2013-04-15

    This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved, however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the Coso team

  14. Experimental Study of Crack Initiation and Extension Induced by Hydraulic Fracturing in a Tree-Type Borehole Array

    Directory of Open Access Journals (Sweden)

    Yiyu Lu

    2016-06-01

    Full Text Available High-pressure hydraulic fracturing technology in coal and coal bed methane mines can lead to roof and floor damage, and fracture initiation disorder that leads to a “blank area”, and other issues. A new method of hydraulic fracturing is proposed to increase the homogeneous permeability of coal in underground coalmines. Numerical and other simulation tests for different forms of a tree-type, branched borehole model are presented. The results show that the branched array causes cracks to initiate from the bottom of the array, and these extend along the direction of the adjacent boreholes. Generally, as the number of branched boreholes increases, the coal seam fracture network also increase, improving the distribution of the fracture network, making the fracturing effect better. The branched boreholes appear to reduce initiation pressure and, with increasing branches, the initiation pressure decreases. A model with four tree-type, branched boreholes leads to a reduction in initiation pressure of 69%. In terms of permeability improvement technology in underground coalmines, a branched hydraulic fracturing borehole array has the advantages of reducing initiation pressure, controlling crack initiation and extension, enhancing the fracturing effect and reducing the destruction of the roof and floor.

  15. Stress wave propagationin the site 12 hydraulic/explosive fracturing experiment

    Energy Technology Data Exchange (ETDEWEB)

    Boade, R. R.; Reed, R. P.

    1980-05-01

    The Site 12 experiment was a heavily instrumented field event performed to examine the hydraulic/explosive fracturing concept for preparing an underground oil shale bed for true in situ processing. One of the key phases of this fracturing concept is the blasting operation which involves the insertion and detonation of slurry explosive in a pre-formed system of hydrofractures. To obtain a sound understanding of the nature of the blasting operations, a rather extensive array of stress gages, accelerometers, and time-of-arrival gages was installed in the rock mass in the vacinity of the explosive to monitor the dynamic events initiated by the detonation. These gages provided considerable amounts of information which were useful in evaluating overall results of the experiment. Details of the gage array, of the data, of analysis methods, and of the results and conclusions are considered in the report.

  16. Hydraulic Fracturing

    Science.gov (United States)

    EPA works with states and other key stakeholders, through sound scientific research and regulation; to help ensure that natural gas extraction from shale formations, also called fracking or hydrofracking, does not harm public health and the environment.

  17. Raft River well stimulation experiments: geothermal reservoir well stimulation program

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The Geothermal Reservoir Well Stimulation Program (GRWSP) performed two field experiments at the Raft River KGRA in 1979. Wells RRGP-4 and RRGP-5 were selected for the hydraulic fracture stimulation treatments. The well selection process, fracture treatment design, field execution, stimulation results, and pre- and post-job evaluations are presented.

  18. In situ experiments of geothermal well stimulation using gas fracturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.Y.; Warpinski, N.; Jacobson, R.D.

    1988-07-01

    The results of an experimental study of gas fracturing technology for geothermal well stimulation demonstrated that multiple fractures could be created to link water-filled boreholes with existing fractures. The resulting fracture network and fracture interconnections were characterized by mineback as well as flow tests. Commercial oil field fracturing tools were used successfully in these experiments. Simple scaling laws for gas fracturing and a brief discussion of the application of this technique to actual geothermal well stimulation are presented. 10 refs., 42 figs., 4 tabs.

  19. Flexible parallel implicit modelling of coupled thermal-hydraulic-mechanical processes in fractured rocks

    Science.gov (United States)

    Cacace, Mauro; Jacquey, Antoine B.

    2017-09-01

    Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture-solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment) which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton-Raphson or by free Jacobian inexact Newton-Krylow schemes) on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres) and temporal scales (from minutes to hundreds of years).

  20. An Analytical Solution of Partially Penetrating Hydraulic Fractures in a Box-Shaped Reservoir

    Directory of Open Access Journals (Sweden)

    He Zhang

    2015-01-01

    Full Text Available This paper presents a new method to give an analytical solution in Laplace domain directly that is used to describe pressure transient behavior of partially penetrating hydraulic fractures in a box-shaped reservoir with closed boundaries. The basic building block of the method is to solve diffusivity equation with the integration of Dirac function over the distance that is presented for the first time. Different from the traditional method of using the source solution and Green’s function presented by Gringarten and Ramey, this paper uses Laplace transform and Fourier transform to solve the diffusivity equation and the analytical solution obtained is accurate and simple. The effects of parameters including fracture height, fracture length, the position of the fracture, and reservoir width on the pressure and pressure derivative are fully investigated. The advantage of the analytical solution is easy to incorporate storage coefficient and skin factor. It can also reduce the amount of computation and compute efficiently and quickly.

  1. The Geothermic Fatigue Hydraulic Fracturing Experiment in Äspö Hard Rock Laboratory, Sweden: New Insights Into Fracture Process through In-situ AE Monitoring

    Science.gov (United States)

    Kwiatek, G.; Plenkers, K.; Zang, A.; Stephansson, O.; Stenberg, L.

    2016-12-01

    The geothermic Fatigue Hydraulic Fracturing (FHF) in situ experiment (Nova project 54-14-1) took place in the Äspö Hard Rock Laboratory/Sweden in a 1.8 Ma old granitic to dioritic rock mass. The experiment aims at optimizing geothermal heat exchange in crystalline rock mass by multistage hydraulic fracturing at 10 m scale. Six fractures are driven by three different water injection schemes (continuous, cyclic, pulse pressurization) inside a 28 m long, horizontal borehole at depth level 410 m. The rock volume subject to hydraulic fracturing and monitored by three different networks with acoustic emission (AE), micro-seismicity and electromagnetic sensors is about 30 m x 30 m x 30 m in size. The 16-channel In-situ AE monitoring network by GMuG monitored the rupture generation and propagation in the frequency range 1000 Hz to 100,000 Hz corresponding to rupture dimensions from cm- to dm-scale. The in-situ AE monitoring system detected and analyzed AE activity in-situ (P- and S-wave picking, localization). The results were used to review the ongoing microfracturing activity in near real-time. The in-situ AE monitoring network successfully recorded and localized 196 seismic events for most, but not all, hydraulic fractures. All AE events detected in-situ occurred during fracturing time periods. The source parameters (fracture sizes, moment magnitudes, static stress drop) of AE events framing injection periods were calculated using the combined spectral fitting/spectra ratio techniques. The AE activity is clustered in space and clearly outline the fractures location, its orientation, and expansion as well as their temporal evolution. The outward migration of AE events away from the borehole is observed. Fractures extend up to 7 m from the injection interval in the horizontal borehole. The fractures orientation and location correlate for most fractures roughly with the results gained by image packer. Clear differences in seismic response between hydraulic fractures in

  2. Research on Annular Frictional Pressure Loss of Hydraulic-Fracturing in Buckling Coiled Tubing

    Science.gov (United States)

    Liu, Bin; Cai, Meng; Li, Junliang; Xu, Yongquan; Wang, Peng

    2018-01-01

    Compared with conventional hydraulic fracturing, coiled tubing (CT) annular delivery sand fracturing technology is a new method to enhance the recovery ratio of low permeability reservoir. Friction pressure loss through CT has been a concern in fracturing. The small diameter of CT limits the cross-sectional area open to flow, therefore, to meet large discharge capacity, annular delivery sand technology has been gradually developed in oilfield. Friction pressure is useful for determining the required pump horsepower and fracturing construction design programs. Coiled tubing can buckle when the axial compressive load acting on the tubing is greater than critical buckling load, then the geometry shape of annular will change. Annular friction pressure loss elevates dramatically with increasing of discharge capacity, especially eccentricity and CT buckling. Despite the frequency occurrence of CT buckling in oilfield operations, traditionally annular flow frictional pressure loss considered concentric and eccentric annuli, not discussing the effects of for discharge capacity and sand ratio varying degree of CT buckling. The measured data shows that the factors mentioned above cannot be ignored in the prediction of annular pressure loss. It is necessary to carry out analysis of annulus flow pressure drop loss in coiled tubing annular with the methods of theoretical analysis and numerical simulation. Coiled tubing buckling has great influence on pressure loss of fracturing fluid. Therefore, the correlations have been developed for turbulent flow of Newtonian fluids and Two-phase flow (sand-liquid), and that improve the friction pressure loss estimation in coiled tubing operations involving a considerable level of buckling. Quartz sand evidently increases pressure loss in buckling annular, rising as high as 40%-60% more than fresh water. Meanwhile, annulus flow wetted perimeter increases with decreasing helical buckling pitch of coiled tubing, therefore, the annulus flow

  3. Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales

    Energy Technology Data Exchange (ETDEWEB)

    Daly, Rebecca A.; Borton, Mikayla A.; Wilkins, Michael J.; Hoyt, David W.; Kountz, Duncan J.; Wolfe, Richard A.; Welch, Susan A.; Marcus, Daniel N.; Trexler, Ryan V.; MacRae, Jean D.; Krzycki, Joseph A.; Cole, David R.; Mouser, Paula J.; Wrighton, Kelly C.

    2016-09-05

    Hydraulic fracturing is the industry standard for extracting hydrocarbons from shale formations. Attention has been paid to the economic benefits and environmental impacts of this process, yet the biogeochemical changes induced in the deep subsurface are poorly understood. Recent single-gene investigations revealed that halotolerant microbial communities were enriched after hydraulic fracturing. Here the reconstruction of 31 unique genomes coupled to metabolite data from the Marcellus and Utica shales revealed that methylamine cycling supports methanogenesis in the deep biosphere. Fermentation of injected chemical additives also sustains long-term microbial persistence, while sulfide generation from thiosulfate represents a poorly recognized corrosion mechanism in shales. Extensive links between viruses and microbial hosts demonstrate active viral predation, which may contribute to the release of labile cellular constituents into the extracellular environment. Our analyses show that hydraulic fracturing provides the organismal and chemical inputs for colonization and persistence in the deep terrestrial subsurface.

  4. Understanding public perception of hydraulic fracturing: a case study in Spain.

    Science.gov (United States)

    Costa, D; Pereira, V; Góis, J; Danko, A; Fiúza, A

    2017-12-15

    Public acceptance is crucial for the implementation of energy technologies. Hydraulic fracturing is a technology widely used in the USA for natural gas production from shale formations, but currently finds strong public opposition worldwide, especially in Europe. Shale gas exploitation and exploration have the potential to significantly reduce import dependency in several countries, including Spain. To better understand public opinion on this issue, this article reports a survey targeting both the entire Spanish population and the inhabitants of the province of Burgos, the location where shale gas exploration permits have already been issued. Results demonstrate that half of the Spanish population opposes shale gas, and this opposition increases in autonomous communities that are closer to possible exploration sites. The results also show that socio-demographic aspects are not strong predictors of opposition. In addition, Burgos' population show different behaviours toward shale gas that demonstrates that proximity and prospect of shale gas development affects opinion. Finally, there is still a great level of unfamiliarity with high volume hydraulic fracturing and shale gas in both populations sampled. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Radium and barium removal through blending hydraulic fracturing fluids with acid mine drainage.

    Science.gov (United States)

    Kondash, Andrew J; Warner, Nathaniel R; Lahav, Ori; Vengosh, Avner

    2014-01-21

    Wastewaters generated during hydraulic fracturing of the Marcellus Shale typically contain high concentrations of salts, naturally occurring radioactive material (NORM), and metals, such as barium, that pose environmental and public health risks upon inadequate treatment and disposal. In addition, fresh water scarcity in dry regions or during periods of drought could limit shale gas development. This paper explores the possibility of using alternative water sources and their impact on NORM levels through blending acid mine drainage (AMD) effluent with recycled hydraulic fracturing flowback fluids (HFFFs). We conducted a series of laboratory experiments in which the chemistry and NORM of different mix proportions of AMD and HFFF were examined after reacting for 48 h. The experimental data combined with geochemical modeling and X-ray diffraction analysis suggest that several ions, including sulfate, iron, barium, strontium, and a large portion of radium (60-100%), precipitated into newly formed solids composed mainly of Sr barite within the first ∼ 10 h of mixing. The results imply that blending AMD and HFFF could be an effective management practice for both remediation of the high NORM in the Marcellus HFFF wastewater and beneficial utilization of AMD that is currently contaminating waterways in northeastern U.S.A.

  6. Unveiling the signals from extremely noisy microseismic data for high-resolution hydraulic fracturing monitoring.

    Science.gov (United States)

    Huang, Weilin; Wang, Runqiu; Li, Huijian; Chen, Yangkang

    2017-09-20

    Microseismic method is an essential technique for monitoring the dynamic status of hydraulic fracturing during the development of unconventional reservoirs. However, one of the challenges in microseismic monitoring is that those seismic signals generated from micro seismicity have extremely low amplitude. We develop a methodology to unveil the signals that are smeared in the strong ambient noise and thus facilitate a more accurate arrival-time picking that will ultimately improve the localization accuracy. In the proposed technique, we decompose the recorded data into several morphological multi-scale components. In order to unveil weak signal, we propose an orthogonalization operator which acts as a time-varying weighting in the morphological reconstruction. The orthogonalization operator is obtained using an inversion process. This orthogonalized morphological reconstruction can be interpreted as a projection of the higher-dimensional vector. We first test the proposed technique using a synthetic dataset. Then the proposed technique is applied to a field dataset recorded in a project in China, in which the signals induced from hydraulic fracturing are recorded by twelve three-component (3-C) geophones in a monitoring well. The result demonstrates that the orthogonalized morphological reconstruction can make the extremely weak microseismic signals detectable.

  7. Spills of Hydraulic Fracturing Chemicals on Agricultural Topsoil: Biodegradation, Sorption, and Co-contaminant Interactions.

    Science.gov (United States)

    McLaughlin, Molly C; Borch, Thomas; Blotevogel, Jens

    2016-06-07

    Hydraulic fracturing frequently occurs on agricultural land. Yet the extent of sorption, transformation, and interactions among the numerous organic frac fluid and oil and gas wastewater constituents upon environmental release is hardly known. Thus, this study aims to advance our current understanding of processes that control the environmental fate and toxicity of commonly used hydraulic fracturing chemicals. Poly(ethylene glycol) surfactants were completely biodegraded in agricultural topsoil within 42-71 days, but their transformation was impeded in the presence of the biocide glutaraldehyde and was completely inhibited by salt at concentrations typical for oil and gas wastewater. At the same time, aqueous glutaraldehyde concentrations decreased due to sorption to soil and were completely biodegraded within 33-57 days. While no aqueous removal of polyacrylamide friction reducer was observed over a period of 6 months, it cross-linked with glutaraldehyde, further lowering the biocide's aqueous concentration. These findings highlight the necessity to consider co-contaminant effects when we evaluate the risk of frac fluid additives and oil and gas wastewater constituents in agricultural soils in order to fully understand their human health impacts, likelihood for crop uptake, and potential for groundwater contamination.

  8. Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas.

    Science.gov (United States)

    Murali Mohan, Arvind; Hartsock, Angela; Hammack, Richard W; Vidic, Radisav D; Gregory, Kelvin B

    2013-12-01

    Hydraulic fracturing for natural gas extraction from shale produces waste brine known as flowback that is impounded at the surface prior to reuse and/or disposal. During impoundment, microbial activity can alter the fate of metals including radionuclides, give rise to odorous compounds, and result in biocorrosion that complicates water and waste management and increases production costs. Here, we describe the microbial ecology at multiple depths of three flowback impoundments from the Marcellus shale that were managed differently. 16S rRNA gene clone libraries revealed that bacterial communities in the untreated and biocide-amended impoundments were depth dependent, diverse, and most similar to species within the taxa γ-proteobacteria, α-proteobacteria, δ-proteobacteria, Clostridia, Synergistetes, Thermotogae, Spirochetes, and Bacteroidetes. The bacterial community in the pretreated and aerated impoundment was uniform with depth, less diverse, and most similar to known iodide-oxidizing bacteria in the α-proteobacteria. Archaea were identified only in the untreated and biocide-amended impoundments and were affiliated to the Methanomicrobia class. This is the first study of microbial communities in flowback water impoundments from hydraulic fracturing. The findings expand our knowledge of microbial diversity of an emergent and unexplored environment and may guide the management of flowback impoundments. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Chemical and toxicological characterizations of hydraulic fracturing flowback and produced water.

    Science.gov (United States)

    He, Yuhe; Flynn, Shannon L; Folkerts, Erik J; Zhang, Yifeng; Ruan, Dongliang; Alessi, Daniel S; Martin, Jonathan W; Goss, Greg G

    2017-05-01

    Hydraulic fracturing (HF) has emerged as a major method of unconventional oil and gas recovery. The toxicity of hydraulic fracturing flowback and produced water (HF-FPW) has not been previously reported and is complicated by the combined complexity of organic and inorganic constituents in HF fluids and deep formation water. In this study, we characterized the solids, salts, and organic signatures in an HF-FPW sample from the Duvernay Formation, Alberta, Canada. Untargeted HPLC-Orbitrap revealed numerous unknown dissolved polar organics. Among the most prominent peaks, a substituted tri-phenyl phosphate was identified which is likely an oxidation product of a common polymer antioxidant. Acute toxicity of zebrafish embryo was attributable to high salinity and organic contaminants in HF-FPW with LC50 values ranging from 0.6% to 3.9%, depending on the HF-FPW fractions and embryo developmental stages. Induction of ethoxyresorufin-O-deethylase (EROD) activity was detected, due in part to polycyclic aromatic hydrocarbons (PAHs), and suspended solids might have a synergistic effect on EROD induction. This study demonstrates that toxicological profiling of real HF-FPW sample presents great challenges for assessing the potential risks and impacts posed by HF-FPW spills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Investigating the potential use of radium isotopes to trace hydraulic fracturing pollution in streams

    Science.gov (United States)

    Hitchens, A.; Knee, K.

    2013-12-01

    In recent years, hydraulic fracturing or 'fracking' to extract petroleum and natural gas from shale deposits has become much more prevalent. There are currently over 25,000 natural gas wells in the U.S., not all presently active, and permits to date allow projections of more drilling until 2020. Many fracking wells are located in close proximity to streams, and anecdotal evidence suggests that fracking and related activities may lead to surface water pollution. However, little data about the environmental impacts of hydraulic fracturing on streams has been collected. This project investigates the novel use of radium and radon, which are widely used to trace groundwater discharge into coastal waters, as indicators of fracking waste. We measured radium, radon, pH, conductivity, Secchi depth, and dissolved metal concentrations in 20 stream sites near fracking wells in western Pennsylvania and 10 comparable sites where fracking does not take place in western Maryland. We assessed broad differences in water quality between Pennsylvania (fracking) and Maryland (control) sites and investigated correlations between these water quality parameters and intensity of fracking. If radium or radon shows promise as a tracer of fracking pollution, we can also use it to better understand how widespread environmental pollution from fracking is and how this pollution is transported in order to detect spills or inadequate treatment at wastewater facilities.

  11. SHynergie: Development of a virtual project laboratory for monitoring hydraulic stimulations

    Science.gov (United States)

    Renner, Jörg; Friederich, Wolfgang; Meschke, Günther; Müller, Thomas; Steeb, Holger

    2016-04-01

    Hydraulic stimulations are the primary means of developing subsurface reservoirs regarding the extent of fluid transport in them. The associated creation or conditioning of a system of hydraulic conduits involves a range of hydraulic and mechanical processes but also chemical reactions, such as dissolution and precipitation, may affect the stimulation result on time scales as short as hours. In the light of the extent and complexity of these processes, the steering potential for the operator of a stimulation critically depends on the ability to integrate the maximum amount of site-specific information with profound process understanding and a large spectrum of experience. We report on the development of a virtual project laboratory for monitoring hydraulic stimulations within the project SHynergie (http://www.ruhr-uni-bochum.de/shynergie/). The concept of the laboratory envisioned product that constitutes a preparing and accompanying rather than post-processing instrument ultimately accessible to persons responsible for a project over a web-repository. The virtual laboratory consists of a data base, a toolbox, and a model-building environment. Entries in the data base are of two categories. On the one hand, selected mineral and rock properties are provided from the literature. On the other hand, project-specific entries of any format can be made that are assigned attributes regarding their use in a stimulation problem at hand. The toolbox is interactive and allows the user to perform calculations of effective properties and simulations of different types (e.g., wave propagation in a reservoir, hydraulic test). The model component is also hybrid. The laboratory provides a library of models reflecting a range of scenarios but also allows the user to develop a site-specific model constituting the basis for simulations. The laboratory offers the option to use its components following the typical workflow of a stimulation project. The toolbox incorporates simulation

  12. Influences of Hydraulic Fracturing on Fluid Flow and Mineralization at the Vein-Type Tungsten Deposits in Southern China

    Directory of Open Access Journals (Sweden)

    Xiangchong Liu

    2017-01-01

    Full Text Available Wolframite is the main ore mineral at the vein-type tungsten deposits in the Nanling Range, which is a world-class tungsten province. It is disputed how wolframite is precipitated at these deposits and no one has yet studied the links of the mechanical processes to fluid flow and mineralization. Finite element-based numerical experiments are used to investigate the influences of a hydraulic fracturing process on fluid flow and solubility of CO2 and quartz. The fluids are aqueous NaCl solutions and fluid pressure is the only variable controlling solubility of CO2 and quartz in the numerical experiments. Significant fluctuations of fluid pressure and high-velocity hydrothermal pulse are found once rock is fractured by high-pressure fluids. The fluid pressure drop induced by hydraulic fracturing could cause a 9% decrease of quartz solubility. This amount of quartz deposition may not cause a significant decrease in rock permeability. The fluid pressure decrease after hydraulic fracturing also reduces solubility of CO2 by 36% and increases pH. Because an increase in pH would cause a major decrease in solubility of tungsten, the fluid pressure drop accompanying a hydraulic fracturing process facilitates wolframite precipitation. Our numerical experiments provide insight into the mechanisms precipitating wolframite at the tungsten deposits in the Nanling Range as well as other metals whose solubility is strongly dependent on pH.

  13. Cross-hole fracture connectivity assessed using hydraulic responses during liner installations in crystalline bedrock boreholes

    Science.gov (United States)

    Persaud, Elisha; Levison, Jana; Pehme, Peeter; Novakowski, Kentner; Parker, Beth

    2018-01-01

    In order to continually improve the current understanding of flow and transport in crystalline bedrock environments, developing and improving fracture system characterization techniques is an important area of study. The presented research examines the installation of flexible, impermeable FLUTe™ liners as a means for assessing cross-hole fracture connectivity. FLUTe™ liners are used to generate a new style of hydraulic pulse, with pressure response monitored in a nearby network of open boreholes drilled in gneissic rock of the Canadian Shield in eastern Ontario, Canada. Borehole liners were installed in six existing 10-15 cm diameter boreholes located 10-35 m apart and drilled to depths ranging between 25-45 m. Liner installation tests were completed consecutively with the number of observation wells available for each test ranging between one and six. The collected pressure response data have been analyzed to identify significant groundwater flow paths between source and observation boreholes as well as to estimate inter-well transmissivity and storativity using a conventional type-curve analysis. While the applied solution relies on a number of general assumptions, it has been found that reasonable comparison can be made to previously completed pulse interference and pumping tests. Results of this research indicate areas where method refinement is necessary, but, nonetheless, highlight the potential for use in crystalline bedrock environments. This method may provide value to future site characterization efforts given that it is complementary to, and can be used in conjunction with, other currently employed borehole liner applications, such as the removal of cross-connection at contaminated sites and the assessment of discrete fracture distributions when boreholes are sealed, recreating natural hydraulic gradient conditions.

  14. Sustainable Management of Flowback Water during Hydraulic Fracturing of Marcellus Shale for Natural Gas Production

    Energy Technology Data Exchange (ETDEWEB)

    Vidic, Radisav [Univ. of Pittsburgh, PA (United States)

    2015-01-24

    This study evaluated the feasibility of using abandoned mine drainage (AMD) as make- up water for the reuse of produced water for hydraulic fracturing. There is an abundance of AMD sources near permitted gas wells as documented in this study that can not only serve as makeup water and reduce the demand on high quality water resources but can also as a source of chemicals to treat produced water prior to reuse. The assessment of AMD availability for this purpose based on proximity and relevant regulations was accompanied by bench- and pilot-scale studies to determine optimal treatment to achieve desired water quality for use in hydraulic fracturing. Sulfate ions that are often present in AMD at elevated levels will react with Ba²⁺ and Sr²⁺ in produced water to form insoluble sulfate compounds. Both membrane microfiltration and gravity separation were evaluated for the removal of solids formed as a result of mixing these two impaired waters. Laboratory studies revealed that neither AMD nor barite formed in solution had significant impact on membrane filtration but that some produced waters contained submicron particles that can cause severe fouling of microfiltration membrane. Coagulation/flocculation was found to be an effective process for the removal of suspended solids and both bench- and pilot-scale studies revealed that optimal process conditions can consistently achieve the turbidity of the finished water below 5 NTU. Adjusting the blending ratio of AMD and produced water can achieve the desired effluent sulfate concentration that can be accurately predicted by chemical thermodynamics. Co-treatment of produced water and AMD will result in elevated levels of naturally occurring radioactive materials (NORM) in the solid waste generated in this process due to radium co-precipitation with barium sulfate. Laboratory studies revealed that the mobility of barite that may form in the subsurface due to the presence of sulfate in the fracturing fluid can be

  15. Electromagnetic Monitoring of Hydraulic Fracturing: Relationship to Permeability, Seismicity, and Stress

    Science.gov (United States)

    Thiel, Stephan

    2017-09-01

    Hydraulic fracking is a geoengineering application designed to enhance subsurface permeability to maximize fluid and gas flow. Fracking is commonly used in enhanced geothermal systems (EGS), tight shale gas, and coal seam gas (CSG) plays and in CO_2 storage scenarios. Common monitoring methods include microseismics and mapping small earthquakes with great resolution associated with fracture opening at reservoir depth. Recently, electromagnetic (EM) methods have been employed in the field to provide an alternative way of direct detection of fluids as they are pumped in the ground. Surface magnetotelluric (MT) measurements across EGS show subtle yet detectable changes during fracking derived from time-lapse MT deployments. Changes are directional and are predominantly aligned with current stress field, dictating preferential fracture orientation, supported by microseismic monitoring of frack-related earthquakes. Modeling studies prior to the injection are crucial for survey design and feasibility of monitoring fracks. In particular, knowledge of sediment thickness plays a fundamental role in resolving subtle changes. Numerical forward modeling studies clearly favor some form of downhole measurement to enhance sensitivity; however, these have yet to be conclusively demonstrated in the field. Nevertheless, real surface-based monitoring examples do not necessarily replicate the expected magnitude of change derived from forward modeling and are larger than expected in some cases from EGS and CSG systems. It appears the injected fluid volume alone cannot account for the surface change in resistivity, but connectedness of pore space is also significantly enhanced and nonlinear. Recent numerical studies emphasize the importance of percolation threshold of the fracture network on both electrical resistivity and permeability, which may play an important role in accounting for temporal changes in surface EM measurements during hydraulic fracking.

  16. A hybrid inverse method for hydraulic tomography in fractured and karstic media

    Science.gov (United States)

    Wang, Xiaoguang; Jardani, Abderrahim; Jourde, Hervé

    2017-08-01

    We apply a stochastic Newton (SN) approach to solve a high-dimensional hydraulic inverse problem in highly heterogeneous geological media. By recognizing the connection between the cost function of deterministic optimizations and the posterior probability density of stochastic inversions, the Markov chain Monte Carlo (MCMC) sampler of SN is constructed by two parts: a deterministic part, which corresponds to a Newton step of deterministic optimization, and a stochastic part, which is a Gaussian distribution with the inverse of the local Hessian as the covariance matrix. The hybrid inverse method exploits the efficient tools for fast solution of deterministic inversions to improve the efficiency of the MCMC sampler. To address the ill-posedness of the inverse problem, a priori models, generated by a transition-probability geostatistical method, and conditioned to inter-well connection data, are used as regularization constraints. The effectiveness of the stochastic Newton method is first demonstrated by a synthetic test. The transmissivity field of the synthetic model is highly heterogeneous, and includes sharp variations. The inverse approach was then applied to a field hydraulic tomography investigation in a fractured and karstified aquifer to reconstruct its transmissivity field from a collection of real hydraulic head measurements. From the inversions, a series of transmissivity fields that produce good correlations between the inverted and the measured hydraulic heads were obtained. The inverse approach produced slightly different a posteriori transmissivity patterns for different a priori structure models of transmissivity; however, the trend and location of the high-transmissivity channels are consistent among various realizations. In addition, the uncertainty associated with each realization of the inverted transmissivity fields was quantified.

  17. Draft Genome Sequence of Pseudomonas sp. BDAL1 Reconstructed from a Bakken Shale Hydraulic Fracturing-Produced Water Storage Tank Metagenome.

    Science.gov (United States)

    Lipus, Daniel; Ross, Daniel; Bibby, Kyle; Gulliver, Djuna

    2017-03-16

    We report the 5,425,832 bp draft genome of Pseudomonas sp. strain BDAL1, recovered from a Bakken shale hydraulic fracturing-produced water tank metagenome. Genome annotation revealed several key biofilm formation genes and osmotic stress response mechanisms necessary for survival in hydraulic fracturing-produced water. Copyright © 2017 Lipus et al.

  18. Hydraulically conductive fractures and their properties in boreholes KR4 and KR7 - KR10 at Olkiluoto site, Eurajoki

    Energy Technology Data Exchange (ETDEWEB)

    Hellae, P.; Tammisto, E.; Ahokas, H. [Jaakko Poeyry Infra Fintact Oy, Vantaa (Finland)

    2004-07-01

    As part of the program for the final disposal of the nuclear fuel waste, Posiva Oy investigates the prevailing hydrological conditions at the Olkiluoto Island. Hydraulic properties of fractures are of interest for the groundwater flow modelling, planning of grouting, analysis of leakages etc. This paper presents the results of a pilot study carried out to combine the results of detailed flow logging with borehole wall images and core mapping and thereby to describe properties of single conductive fractures. (orig.)

  19. Modeling Outburst Flooding as a Turbulent Hydraulic Fracture Parallel to a Nearby Free Surface

    Science.gov (United States)

    Tsai, Victor; Rice, James

    2010-05-01

    Meltwater generated at the surface and base of glaciers and ice sheets is known to have a large impact on how ice masses behave dynamically, but much is still unknown about the physical processes responsible for how this meltwater drains out of the glacier. For example, little attention has been paid to short-timescale processes like turbulent hydraulic fracture, which is likely an important mechanism by which drainage channels initially form when water pressures are high. In recent work (Tsai and Rice [Fall AGU, 2008; JGR subm., 2009]), we have constructed a model of this turbulent hydraulic fracture process in which over-pressurized water is assumed to flow turbulently through a crack, leading to crack growth. However, one important limitation of this prior work is that it only strictly applies in the limit of short crack length, 2L, compared to glacier height, H, whereas relevant observations of supraglacial lake drainage, jokulhlaups and sub-glacial lake-to-lake transport episodes do not fall in this regime. Here, we improve somewhat upon this model by explicitly accounting for a nearby free surface. We accomplish this by applying the approach of Erdogan et al. [Meth. Anal. Sol. Crack Prob., 1973] to numerically calculate elastic displacements consistent with crack pressure distribution for a crack near a free surface, and use these results as before to simultaneously satisfy the governing fluid, elastic and fracture equations. Our results are analogous to the zero fracture toughness results of Zhang et al. [Int. J. Numer. Anal. Meth. Geomech., 2005], but applied to the case of turbulent flow rather than laminar flow of a Newtonian viscous fluid. Our new results clarify the importance of the free surface and potentially explain discrepancies between our previous modeling results and observations of supraglacial lake drainage by Das et al. [Science, 2008]. However, the numerical challenges increase as 2L becomes comparable to or much larger than H. We hope to

  20. Approach to estimating the maximum depth for glacially induced hydraulic jacking in fractured crystalline rock at Forsmark, Sweden

    Science.gov (United States)

    Lönnqvist, M.; Hökmark, H.

    2013-09-01

    Hydraulic jacking is a significant dilation of a fracture that occurs when the pore pressure within it exceeds the sum of the fracture's normal stress and tensile strength. This phenomenon may occur during a glacial period because of changes in hydraulic and mechanical boundary conditions. Since hydraulic jacking may alter flow patterns and the transport capacity of the rock mass, its possible effects on the long-term performance of a nuclear waste repository should be considered. We develop an approach to assess glacially induced hydraulic jacking in fractured crystalline rock and establish bounding estimates of the maximum jacking depth for the Swedish Nuclear Fuel and Waste Management Company's (SKB) repository site at Forsmark. The pore pressure is estimated using mechanically uncoupled two-dimensional poroelastic continuum models with hydraulic and mechanical conditions based on SKB's reconstruction of the Weichselian glaciation at this site (120-0 ka B.P.). For warm-based conditions, the water pressure at the ice/bed interface is set at 98% of the mechanical load, whereas for glacial conditions with extensive proglacial permafrost, the corresponding water pressure is set at a (lower) annual average value. We demonstrate that the pore pressure within the uppermost kilometer of rock is mainly governed by the water pressure at the ice/bed interface and that the mechanical impact of the ice load on the pore pressure is sufficiently small to be ignored. Given the current and estimated future stress conditions at Forsmark, hydraulic jacking is mainly of concern for subhorizontal fractures, i.e., it is sufficient to consider situations when the pore pressure exceeds the vertical stress. We conclude that hydraulic jacking at Forsmark will be confined to the uppermost 200 m of the rock mass.

  1. Impact of Petrophysical Properties on Hydraulic Fracturing and Development in Tight Volcanic Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Yinghao Shen

    2017-01-01

    Full Text Available The volcanic reservoir is an important kind of unconventional reservoir. The aqueous phase trapping (APT appears because of fracturing fluids filtration. However, APT can be autoremoved for some wells after certain shut-in time. But there is significant distinction for different reservoirs. Experiments were performed to study the petrophysical properties of a volcanic reservoir and the spontaneous imbibition is monitored by nuclear magnetic resonance (NMR and pulse-decay permeability. Results showed that natural cracks appear in the samples as well as high irreducible water saturation. There is a quick decrease of rock permeability once the rock contacts water. The pores filled during spontaneous imbibition are mainly the nanopores from NMR spectra. Full understanding of the mineralogical effect and sample heterogeneity benefits the selection of segments to fracturing. The fast flow-back scheme is applicable in this reservoir to minimize the damage. Because lots of water imbibed into the nanopores, the main flow channels become larger, which are beneficial to the permeability recovery after flow-back of hydraulic fracturing. This is helpful in understanding the APT autoremoval after certain shut-in time. Also, Keeping the appropriate production differential pressure is very important in achieving the long term efficient development of volcanic gas reservoirs.

  2. Proppant backproduction during hydraulic fracturing -- A new failure mechanism for resin-coated proppants

    Energy Technology Data Exchange (ETDEWEB)

    Vreeburg, R.J.; Roodhart, L.P.; Davies, D.R.; Penny, G.S. (STIM-LAB Inc., Duncan, OK (United States))

    1994-10-01

    Backproduction of proppant from hydraulically fractured wells, particularly those completed in the northern European Rotliegend formation, is a major operational problem, necessitating costly and manpower-intensive surface-handling procedures. Further, the development of unmanned platform operations offshore, required in today's economic climate, is impossible as long as this problem remains unsolved. The most cost-effective potential solution to this problem is provided by curable resin-coated proppant (RCP), which consolidates in the fracture. Early field trials with RCP's, however, were not completely effective in stopping the backproduction of proppant. Typically, some 10% of the total volume of RCP placed in the fracture was backproduced. The authors performed a laboratory study to help clarify the effect of curing temperature, water production rate, proppant size, and stress cycling on the integrity of RCP packs. The experiments confirmed the field experience that stress cycling has a dramatic effect on proppant backproduction of commercial RCP packs. The number of applied stress cycles (i.e., the number of times the well is shut in) and the initial RCP pack strength appear to be the dominant factors that govern proppant backproduction. Dedicated experiments are therefore required to evaluate the use of RCP's to eliminate proppant backproduction for a particular field application.

  3. Characterization of hydraulic fracturing flowback water in Colorado: Implications for water treatment

    Science.gov (United States)

    Lester, Yaal; Ferrer, Imma; Thurman, E. Michael; Sitterley, Kurban A.; Korak, Julie A.; Aiken, George R.; Linden, Karl G.

    2015-01-01

    A suite of analytical tools was applied to thoroughly analyze the chemical composition of an oil/gas well flowback water from the Denver–Julesburg (DJ) basin in Colorado, and the water quality data was translated to propose effective treatment solutions tailored to specific reuse goals. Analysis included bulk quality parameters, trace organic and inorganic constituents, and organic matter characterization. The flowback sample contained salts (TDS = 22,500 mg/L), metals (e.g., iron at 81.4 mg/L) and high concentration of dissolved organic matter (DOC = 590 mgC/L). The organic matter comprised fracturing fluid additives such as surfactants (e.g., linear alkyl ethoxylates) and high levels of acetic acid (an additives' degradation product), indicating the anthropogenic impact on this wastewater. Based on the water quality results and preliminary treatability tests, the removal of suspended solids and iron by aeration/precipitation (and/or filtration) followed by disinfection was identified as appropriate for flowback recycling in future fracturing operations. In addition to these treatments, a biological treatment (to remove dissolved organic matter) followed by reverse osmosis desalination was determined to be necessary to attain water quality standards appropriate for other water reuse options (e.g., crop irrigation). The study provides a framework for evaluating site-specific hydraulic fracturing wastewaters, proposing a suite of analytical methods for characterization, and a process for guiding the choice of a tailored treatment approach.

  4. Characterization of hydraulic fracturing flowback water in Colorado: implications for water treatment.

    Science.gov (United States)

    Lester, Yaal; Ferrer, Imma; Thurman, E Michael; Sitterley, Kurban A; Korak, Julie A; Aiken, George; Linden, Karl G

    2015-04-15

    A suite of analytical tools was applied to thoroughly analyze the chemical composition of an oil/gas well flowback water from the Denver-Julesburg (DJ) basin in Colorado, and the water quality data was translated to propose effective treatment solutions tailored to specific reuse goals. Analysis included bulk quality parameters, trace organic and inorganic constituents, and organic matter characterization. The flowback sample contained salts (TDS=22,500 mg/L), metals (e.g., iron at 81.4 mg/L) and high concentration of dissolved organic matter (DOC=590 mgC/L). The organic matter comprised fracturing fluid additives such as surfactants (e.g., linear alkyl ethoxylates) and high levels of acetic acid (an additives' degradation product), indicating the anthropogenic impact on this wastewater. Based on the water quality results and preliminary treatability tests, the removal of suspended solids and iron by aeration/precipitation (and/or filtration) followed by disinfection was identified as appropriate for flowback recycling in future fracturing operations. In addition to these treatments, a biological treatment (to remove dissolved organic matter) followed by reverse osmosis desalination was determined to be necessary to attain water quality standards appropriate for other water reuse options (e.g., crop irrigation). The study provides a framework for evaluating site-specific hydraulic fracturing wastewaters, proposing a suite of analytical methods for characterization, and a process for guiding the choice of a tailored treatment approach. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic Fracturing in Shale Gas Systems and Electromagnetic Geophysical Monitoring of Fluid Migration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihoon; Um, Evan; Moridis, George

    2014-12-01

    We investigate fracture propagation induced by hydraulic fracturing with water injection, using numerical simulation. For rigorous, full 3D modeling, we employ a numerical method that can model failure resulting from tensile and shear stresses, dynamic nonlinear permeability, leak-off in all directions, and thermo-poro-mechanical effects with the double porosity approach. Our numerical results indicate that fracture propagation is not the same as propagation of the water front, because fracturing is governed by geomechanics, whereas water saturation is determined by fluid flow. At early times, the water saturation front is almost identical to the fracture tip, suggesting that the fracture is mostly filled with injected water. However, at late times, advance of the water front is retarded compared to fracture propagation, yielding a significant gap between the water front and the fracture top, which is filled with reservoir gas. We also find considerable leak-off of water to the reservoir. The inconsistency between the fracture volume and the volume of injected water cannot properly calculate the fracture length, when it is estimated based on the simple assumption that the fracture is fully saturated with injected water. As an example of flow-geomechanical responses, we identify pressure fluctuation under constant water injection, because hydraulic fracturing is itself a set of many failure processes, in which pressure consistently drops when failure occurs, but fluctuation decreases as the fracture length grows. We also study application of electromagnetic (EM) geophysical methods, because these methods are highly sensitive to changes in porosity and pore-fluid properties due to water injection into gas reservoirs. Employing a 3D finite-element EM geophysical simulator, we evaluate the sensitivity of the crosswell EM method for monitoring fluid movements in shaly reservoirs. For this sensitivity evaluation, reservoir models are generated through the coupled flow

  6. Measuring water quality from individual fractures in open wellbores using hydraulic isolation and the dissolved oxygen alteration method

    Science.gov (United States)

    Vitale, Sarah A.; Robbins, Gary A.

    2017-11-01

    This study describes a low-cost method for sampling individual fractures in open wellbores in crystalline bedrock utilizing naturally occurring flow conditions in the well. The method entails using the dissolved oxygen alteration method (DOAM) to identify transmissive fractures and vertical flow direction. After obtaining information about relative hydraulic gradients, flow direction in the well is modified using a single control pump to isolate fractures of interest for sampling. Additional dissolved oxygen, injected during the DOAM procedure, serves as a tracer to ensure the water quality in the sampling zone is characteristic of the fracture of interest by requiring a tracer-free zone prior to sampling. Sampling procedures are described conceptually for nine bedrock wells with varying flow conditions containing one, two, or three transmissive inflowing fractures. The method was demonstrated in two crystalline bedrock wells containing one and two transmissive inflowing fractures.

  7. Sulfide Generation by DominantHalanaerobiumMicroorganisms in Hydraulically Fractured Shales.

    Science.gov (United States)

    Booker, Anne E; Borton, Mikayla A; Daly, Rebecca A; Welch, Susan A; Nicora, Carrie D; Hoyt, David W; Wilson, Travis; Purvine, Samuel O; Wolfe, Richard A; Sharma, Shikha; Mouser, Paula J; Cole, David R; Lipton, Mary S; Wrighton, Kelly C; Wilkins, Michael J

    2017-01-01

    Hydraulic fracturing of black shale formations has greatly increased United States oil and natural gas recovery. However, the accumulation of biomass in subsurface reservoirs and pipelines is detrimental because of possible well souring, microbially induced corrosion, and pore clogging. Temporal sampling of produced fluids from a well in the Utica Shale revealed the dominance of Halanaerobium strains within the in situ microbial community and the potential for these microorganisms to catalyze thiosulfate-dependent sulfidogenesis. From these field data, we investigated biogenic sulfide production catalyzed by a Halanaerobium strain isolated from the produced fluids using proteogenomics and laboratory growth experiments. Analysis of Halanaerobium isolate genomes and reconstructed genomes from metagenomic data sets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes capable of converting thiosulfate to sulfide. Shotgun proteomics measurements using a Halanaerobium isolate verified that these proteins were more abundant when thiosulfate was present in the growth medium, and culture-based assays identified thiosulfate-dependent sulfide production by the same isolate. Increased production of sulfide and organic acids during the stationary growth phase suggests that fermentative Halanaerobium uses thiosulfate to remove excess reductant. These findings emphasize the potential detrimental effects that could arise from thiosulfate-reducing microorganisms in hydraulically fractured shales, which are undetected by current industry-wide corrosion diagnostics. IMPORTANCE Although thousands of wells in deep shale formations across the United States have been hydraulically fractured for oil and gas recovery, the impact of microbial metabolism within these environments is poorly understood. Our research demonstrates that dominant microbial populations in these subsurface ecosystems contain the conserved capacity for the reduction of

  8. Sulfide Generation by Dominant Halanaerobium Microorganisms in Hydraulically Fractured Shales

    Energy Technology Data Exchange (ETDEWEB)

    Booker, Anne E.; Borton, Mikayla A.; Daly, Rebecca A.; Welch, Susan A.; Nicora, Carrie D.; Hoyt, David W.; Wilson, Travis; Purvine, Samuel O.; Wolfe, Richard A.; Sharma, Shikha; Mouser, Paula J.; Cole, David R.; Lipton, Mary S.; Wrighton, Kelly C.; Wilkins, Michael J.; McMahon, Katherine

    2017-07-05

    ABSTRACT

    Hydraulic fracturing of black shale formations has greatly increased United States oil and natural gas recovery. However, the accumulation of biomass in subsurface reservoirs and pipelines is detrimental because of possible well souring, microbially induced corrosion, and pore clogging. Temporal sampling of produced fluids from a well in the Utica Shale revealed the dominance ofHalanaerobiumstrains within thein situmicrobial community and the potential for these microorganisms to catalyze thiosulfate-dependent sulfidogenesis. From these field data, we investigated biogenic sulfide production catalyzed by aHalanaerobiumstrain isolated from the produced fluids using proteogenomics and laboratory growth experiments. Analysis ofHalanaerobiumisolate genomes and reconstructed genomes from metagenomic data sets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes capable of converting thiosulfate to sulfide. Shotgun proteomics measurements using aHalanaerobiumisolate verified that these proteins were more abundant when thiosulfate was present in the growth medium, and culture-based assays identified thiosulfate-dependent sulfide production by the same isolate. Increased production of sulfide and organic acids during the stationary growth phase suggests that fermentativeHalanaerobiumuses thiosulfate to remove excess reductant. These findings emphasize the potential detrimental effects that could arise from thiosulfate-reducing microorganisms in hydraulically fractured shales, which are undetected by current industry-wide corrosion diagnostics.

    IMPORTANCEAlthough thousands of wells in deep shale formations across the United States have been hydraulically fractured for oil and gas recovery, the impact of microbial metabolism within these environments is poorly understood. Our

  9. Adequacy of Current State Setbacks for Directional High-Volume Hydraulic Fracturing in the Marcellus, Barnett, and Niobrara Shale Plays.

    Science.gov (United States)

    Haley, Marsha; McCawley, Michael; Epstein, Anne C; Arrington, Bob; Bjerke, Elizabeth Ferrell

    2016-09-01

    There is an increasing awareness of the multiple potential pathways leading to human health risks from hydraulic fracturing. Setback distances are a legislative method to mitigate potential risks. We attempted to determine whether legal setback distances between well-pad sites and the public are adequate in three shale plays. We reviewed geography, current statutes and regulations, evacuations, thermal modeling, air pollution studies, and vapor cloud modeling within the Marcellus, Barnett, and Niobrara Shale Plays. The evidence suggests that presently utilized setbacks may leave the public vulnerable to explosions, radiant heat, toxic gas clouds, and air pollution from hydraulic fracturing activities. Our results suggest that setbacks may not be sufficient to reduce potential threats to human health in areas where hydraulic fracturing occurs. It is more likely that a combination of reasonable setbacks with controls for other sources of pollution associated with the process will be required. Haley M, McCawley M, Epstein AC, Arrington B, Bjerke EF. 2016. Adequacy of current state setbacks for directional high-volume hydraulic fracturing in the Marcellus, Barnett, and Niobrara Shale Plays. Environ Health Perspect 124:1323-1333; http://dx.doi.org/10.1289/ehp.1510547.

  10. Assessment of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources (External Review Draft)

    Science.gov (United States)

    This assessment provides a review and synthesis of available scientific literature and data to assess the potential for hydraulic fracturing for oil and gas to impact the quality or quantity of drinking water resources, and identifies factors affecting the frequency or severity o...

  11. Potential Impacts of Spilled Hydraulic Fracturing Fluid Chemicals on Water Resources: Types, volumes, and physical-chemical properties of chemicals

    Science.gov (United States)

    Hydraulic fracturing (HF) fluid chemicals spilled on-site may impact drinking water resources. While chemicals generally make up <2% of the total injected fluid composition by mass, spills may have undiluted concentrations. HF fluids typically consist of a mixture of base flui...

  12. Baseflow recession analysis in a large shale play: Climate variability and anthropogenic alterations mask effects of hydraulic fracturing

    Science.gov (United States)

    Arciniega-Esparza, Saúl; Breña-Naranjo, Jose Agustín; Hernández-Espriú, Antonio; Pedrozo-Acuña, Adrián; Scanlon, Bridget R.; Nicot, Jean Philippe; Young, Michael H.; Wolaver, Brad D.; Alcocer-Yamanaka, Victor Hugo

    2017-10-01

    Water resources development and landscape alteration exert marked impacts on water-cycle dynamics, including areas subjected to hydraulic fracturing (HF) for exploitation of unconventional oil and gas resources found in shale or tight sandstones. Here we apply a conceptual framework for linking baseflow analysis to changes in water demands from different sectors (e.g. oil/gas extraction, irrigation, and municipal consumption) and climatic variability in the semiarid Eagle Ford play in Texas, USA. We hypothesize that, in water-limited regions, baseflow (Qb) changes are partly due (along with climate variability) to groundwater abstraction. For a more realistic assessment, the analysis was conducted in two different sets of unregulated catchments, located outside and inside the Eagle Ford play. Three periods were considered in the analysis related to HF activities: pre-development (1980-2000), moderate (2001-2008) and intensive (2009-2015) periods. Results indicate that in the Eagle Ford play region, temporal changes in baseflow cannot be directly related to the increase in hydraulic fracturing. Instead, substantial baseflow declines during the intensive period of hydraulic fracturing represent the aggregated effects from the combination of: (1) a historical exceptional drought during 2011-2012; (2) increased groundwater-based irrigation; and (3) an intensive hydraulic fracturing activity.

  13. Hydraulic Fracturing At Sedimentary Basin Scale Fracturation hydraulique à l'échelle des bassins sédimentaires

    Directory of Open Access Journals (Sweden)

    Schneider F.

    2006-12-01

    Full Text Available One key point for simulating the hydraulic fracturing at basin scale, is to be able to compute the stress tensor. This is generally not addressed in basin model because of the complexity of this problem. In order to get access to the stress tensor we have to assume that:- one of the principal stress is vertical and equals the overburden weight;- the horizontal stress is deduced from the vertical stress with the K0 coefficient that is a function of depth and of the tectonical setting. Consolidation is considered here as the combined effect of the mechanical compaction and the chemical compaction. The mechanical compaction is mainly caused by the rearrangement of grains during burial and could be represented at the macroscopical scale by an elastoplastic rheology. The chemical compaction is considered here as resulting from dissolution-precipitation mechanisms, generally induced by stress (pressure-solution. The chemical compaction could be represented at the macroscopical scale by a viscoplastic rheology. The complete elastoplastic yield is defined by the union of the consolidation elastoplastic yield and of the different failure criteria that could be seen as elastobrittle yields. Thus, the elastoplastic yield is composed of six elementary elastoplastic yields which define the onset of vertical compaction, horizontal compaction, vertical tensile fracturing, horizontal tensile fracturing, subvertical shear fracturing, and subhorizontal shear fracturing. Due to the consolidation, most of the parameters that describe the physical properties of the sediments evolve with the geological times. One difficulty is to quantify the degree of evolution of the porous medium during its geological history. Here, we have chosen to measure the evolution of the sediments by their porosity. The local simulations showed that fracturing may occur is numerous configurations. Some of these configurations indicate that the sediments can reach the limit of its elastic

  14. Risks to biodiversity from hydraulic fracturing for natural gas in the Marcellus and Utica shales.

    Science.gov (United States)

    Kiviat, Erik

    2013-05-01

    High-volume horizontal hydraulic fracturing (HVHHF) for mining natural gas from the Marcellus and Utica shales is widespread in Pennsylvania and potentially throughout approximately 280,000 km(2) of the Appalachian Basin. Physical and chemical impacts of HVHHF include pollution by toxic synthetic chemicals, salt, and radionuclides, landscape fragmentation by wellpads, pipelines, and roads, alteration of stream and wetland hydrology, and increased truck traffic. Despite concerns about human health, there has been little study of the impacts on habitats and biota. Taxa and guilds potentially sensitive to HVHHF impacts include freshwater organisms (e.g., brook trout, freshwater mussels), fragmentation-sensitive biota (e.g., forest-interior breeding birds, forest orchids), and species with restricted geographic ranges (e.g., Wehrle's salamander, tongue-tied minnow). Impacts are potentially serious due to the rapid development of HVHHF over a large region. © 2013 New York Academy of Sciences.

  15. High volume hydraulic fracturing operations: potential impacts on surface water and human health.

    Science.gov (United States)

    Mrdjen, Igor; Lee, Jiyoung

    2016-08-01

    High volume, hydraulic fracturing (HVHF) processes, used to extract natural gas and oil from underground shale deposits, pose many potential hazards to the environment and human health. HVHF can negatively affect the environment by contaminating soil, water, and air matrices with potential pollutants. Due to the relatively novel nature of the process, hazards to surface waters and human health are not well known. The purpose of this article is to link the impacts of HVHF operations on surface water integrity, with human health consequences. Surface water contamination risks include: increased structural failure rates of unconventional wells, issues with wastewater treatment, and accidental discharge of contaminated fluids. Human health risks associated with exposure to surface water contaminated with HVHF chemicals include increased cancer risk and turbidity of water, leading to increased pathogen survival time. Future research should focus on modeling contamination spread throughout the environment, and minimizing occupational exposure to harmful chemicals.

  16. The impact of in-situ stress and outcrop-based fracture geometry on hydraulic aperture and upscaled permeability in fractured reservoirs

    DEFF Research Database (Denmark)

    Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamid

    2016-01-01

    and permeability, where hydraulic opening is maximum for an angle of 15°. At this angle, the fracture experiences a minor amount of shear displacement that allows the fracture to remain open even when fluid pressure is lower than the local normal stress. Averaging the heterogeneous aperture to scale up......Aperture has a controlling impact on porosity and permeability and is a source of uncertainty in modeling of naturally fractured reservoirs. This uncertainty results from difficulties in accurately quantifying aperture in the subsurface and from a limited fundamental understanding of the mechanical...... and diagenetic processes that control aperture. In the absence of cement bridges and high pore pressure, fractures in the subsurface are generally considered to be closed. However, experimental work, outcrop analyses and subsurface data show that some fractures remain open, and that aperture varies even along...

  17. Non-trivial Clustering and Inter-Event Triggering in Microseismicity Induced by Hydraulic Fracturing

    Science.gov (United States)

    Davidsen, J.; Maghsoudi, S.; Eaton, D. W. S.

    2016-12-01

    For induced microseismicity associated with hydraulic fracturing, the frequency-magnitude distribution is typically characterized by a fallo ff with increasing magnitude that is signi cantly faster than what is observed for tectonic seismicity. This characteristic is thought to be a consequence of a break in scale invariance arising from mechanical layering that typifi es many shale gas and tight oil reservoirs. Here, we provide evidence that this specifi c geometry also leads to magnitude correlations between consecutive microseismic events such that events with similar magnitudes tend to cluster in space and time. We show that this behavior is independent of the speci c site where the hydraulic fracturing is performed, using three widely separated case studies from Noth America. In addition, we provide evidence for a significant amount of non-trivial spatio-temporal clustering due to the presence of inter-event triggering in these case studies. This indicaties that pore pressure diffusion and the knowledge of injection rates alone is insufficient for seismic hazard assessment. Using novel methods from statistical seismology, we find specifically that these triggering cascades exhibit features that also characterize tectonic aftershock sequences such as the empirical Omori-Utsu relation and the productivity relation. This is confirmed by an independent analysis of the inter-event times. Their distribution can be described by a universal functional form characterized by two power-laws. One exponent can be directly related to the presence of inter-event triggering following the Omori-Utsu relation. The other one is a reflection of the intrinsic spatial variation in the microseismic response rates.

  18. Mechanisms of boron removal from hydraulic fracturing wastewater by aluminum electrocoagulation.

    Science.gov (United States)

    Sari, Mutiara Ayu; Chellam, Shankararaman

    2015-11-15

    Boron uptake from highly saline hydraulic fracturing wastewater by freshly precipitated amorphous Al(OH)3 precipitates is due to ligand exchange and complexation with surface hydroxyl groups. Consequently, aluminum electrocoagulation can be a feasible approach to remove boron from flowback/produced water. Actual hydraulic fracturing wastewater containing ∼120mg/L boron from the Eagle Ford shale play was employed. Electrocoagulation was performed over a range of aluminum dosages (0-1350mg/L), pH 6.4 and 8, and high current densities (20-80mA/cm(2)) using a cylindrical aluminum anode encompassed by a porous cylindrical 316-stainless steel cathode. Direct measurements of boron uptake along with its chemical state and coordination were made using Attenuated Total Reflection-Fourier Transform Infrared spectroscopy (ATR-FTIR) and X-Ray Photoelectron Spectroscopy. Boron removal increased monotonically with aluminum dosage and was higher at pH 8, but remained relatively constant at ⩾20mA/cm(2). Chloride ions induced anodic pitting and super-Faradaic (131% efficiency) aluminum dissolution and their electrooxidation produced free chlorine. ATR-FTIR suggested outer-sphere and inner-sphere complexation of trigonal B(OH)3 with Al(OH)3, which was confirmed by the BO bond shifting toward lower binding energies in XPS. Severe AlO interferences precluded evidence for tetrahedral B(OH)4(-) complexation. No evidence for co-precipitation was obtained. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Assessing the induced seismicity by hydraulic fracturing at the Wysin site (Poland)

    Science.gov (United States)

    Ángel López Comino, José; Cesca, Simone; Kriegerowski, Marius; Heimann, Sebastian; Dahm, Torsten; Mirek, Janusz; Lasocky, Stanislaw

    2017-04-01

    Induced seismicity related to industrial processes including shale gas and oil exploitation is a current issues that implies enough reasons to be concerned. Hydraulic fracturing usually induces weak events. However, scenarios with larger earthquakes are possible, e.g. if the injected fluids alter friction conditions and trigger the failure of neighbouring faults. This work is focused on a hydrofracking experiment monitored in the framework of the SHEER (SHale gas Exploration and Exploitation induced Risks) EU project at the Wysin site, located in the central-western part of the Peribaltic synclise of Pomerania, Poland. A specific network setup has been installed combining surface installation with three small-scale arrays and a shallow borehole installation. The fracking operations were carried out in June and July 2016 at a depth 4000 m. The monitoring has been operational before, during and after the termination of hydraulic fracturing operations. We apply a recently developed automated full waveform detection algorithm based on the stacking of smooth characteristic function and the identification of high coherence in the signals recorded at different stations. The method was tested with synthetic data and different detector levels yielding values of magnitude of completeness around 0.1. An unsupervised detection catalogue is generated with real data for a time period May-September 2016. We identify strong temporal changes (day/night) of the detection performance. A manual revision of the detected signals reveals that most detections are associated to local and regional seismic signals. Only two events could be assigned to the volume potentially affected by the fracking operations.

  20. Combined use of straddle packer testing and FLUTe profiling for hydraulic testing in fractured rock boreholes

    Science.gov (United States)

    Quinn, Patryk; Cherry, John A.; Parker, Beth L.

    2015-05-01

    A combination of high resolution hydraulic tests using straddle packers and transmissivity (T) profiling using the FLUTe flexible liner method (liner profiling) in densely fractured rock boreholes is shown to be efficient for the determination of the vertical distribution of T along the entire hole. The liner T profiling method takes a few hours or less to scan the entire borehole length resulting in a T profile. Under favorable conditions this method has good reliability for identifying the highest T zones identified by distinct decreases in liner velocity when these zones are covered by the descending liner. In contrast, for one short test interval (e.g., 1-2 m) the multiple-test, straddle-packer method takes a few hours to measure T with good precision and accuracy using a combination of steady-state and transient tests (e.g., constant head step tests, slug tests, and constant rate pumping tests). Because of the time consuming aspect of this multiple-test method, it is most efficient in each borehole to conduct straddle packer testing only in priority zones selected after assessment of other borehole data collected prior to packer testing. The T profile from the liner method is instrumental in selecting high permeable zones for application of the multiple-test method using straddle packers, which in turn, refines the T estimation from the liner profile. Results from three boreholes in densely fractured sandstone demonstrate this approach showing the synergistic use of the methods with emphasis on information important for determining hydraulic apertures.

  1. Probabilistic Risk Assessment of Hydraulic Fracturing in Unconventional Reservoirs by Means of Fault Tree Analysis: An Initial Discussion

    Science.gov (United States)

    Rodak, C. M.; McHugh, R.; Wei, X.

    2016-12-01

    The development and combination of horizontal drilling and hydraulic fracturing has unlocked unconventional hydrocarbon reserves around the globe. These advances have triggered a number of concerns regarding aquifer contamination and over-exploitation, leading to scientific studies investigating potential risks posed by directional hydraulic fracturing activities. These studies, balanced with potential economic benefits of energy production, are a crucial source of information for communities considering the development of unconventional reservoirs. However, probabilistic quantification of the overall risk posed by hydraulic fracturing at the system level are rare. Here we present the concept of fault tree analysis to determine the overall probability of groundwater contamination or over-exploitation, broadly referred to as the probability of failure. The potential utility of fault tree analysis for the quantification and communication of risks is approached with a general application. However, the fault tree design is robust and can handle various combinations of regional-specific data pertaining to relevant spatial scales, geological conditions, and industry practices where available. All available data are grouped into quantity and quality-based impacts and sub-divided based on the stage of the hydraulic fracturing process in which the data is relevant as described by the USEPA. Each stage is broken down into the unique basic events required for failure; for example, to quantify the risk of an on-site spill we must consider the likelihood, magnitude, composition, and subsurface transport of the spill. The structure of the fault tree described above can be used to render a highly complex system of variables into a straightforward equation for risk calculation based on Boolean logic. This project shows the utility of fault tree analysis for the visual communication of the potential risks of hydraulic fracturing activities on groundwater resources.

  2. A decision analysis framework for estimating the potential hazards for drinking water resources of chemicals used in hydraulic fracturing fluids.

    Science.gov (United States)

    Yost, Erin E; Stanek, John; Burgoon, Lyle D

    2017-01-01

    Despite growing concerns over the potential for hydraulic fracturing to impact drinking water resources, there are limited data available to identify chemicals used in hydraulic fracturing fluids that may pose public health concerns. In an effort to explore these potential hazards, a multi-criteria decision analysis (MCDA) framework was employed to analyze and rank selected subsets of these chemicals by integrating data on toxicity, frequency of use, and physicochemical properties that describe transport in water. Data used in this analysis were obtained from publicly available databases compiled by the United States Environmental Protection Agency (EPA) as part of a larger study on the potential impacts of hydraulic fracturing on drinking water. Starting with nationwide hydraulic fracturing chemical usage data from EPA's analysis of the FracFocus Chemical Disclosure Registry 1.0, MCDAs were performed on chemicals that had either noncancer toxicity values (n=37) or cancer-specific toxicity values (n=10). The noncancer MCDA was then repeated for subsets of chemicals reported in three representative states (Texas, n=31; Pennsylvania, n=18; and North Dakota, n=20). Within each MCDA, chemicals received scores based on relative toxicity, relative frequency of use, and physicochemical properties (mobility in water, volatility, persistence). Results show a relative ranking of these chemicals based on hazard potential, and provide preliminary insight into chemicals that may be more likely than others to impact drinking water resources. Comparison of nationwide versus state-specific analyses indicates regional differences in the chemicals that may be of more concern to drinking water resources, although many chemicals were commonly used and received similar overall hazard rankings. Several chemicals highlighted by these MCDAs have been reported in groundwater near areas of hydraulic fracturing activity. This approach is intended as a preliminary analysis, and represents one

  3. Hydraulic fracturing in unconventional reservoirs - Identification of hazards and strategies for a quantitative risk assessment

    Science.gov (United States)

    Helmig, R.; Kissinger, A.; Class, H.; Ebigbo, A.

    2012-12-01

    fractured reservoir, fracture propagation, fault zones and their role in regard to fluid migration into shallow aquifers). A quantitative risk assessment which should be the main aim of future work in this field has much higher demands, especially on site specific data, as the estimation of statistical parameter uncertainty requires site specific parameter distributions. There is already ongoing research on risk assessment in related fields like CO2 sequestration. We therefore propose these methodologies to be transferred to risk estimation relating to the use of the hydraulic fracking method, be it for unconventional gas or enhanced geothermal energy production. The overall aim should be to set common and transparent standards for different uses of the subsurface and their involved risks and communicate those to policy makers and stake holders.

  4. Influences of hydraulic gradient, surface roughness, intersecting angle, and scale effect on nonlinear flow behavior at single fracture intersections

    Science.gov (United States)

    Li, Bo; Liu, Richeng; Jiang, Yujing

    2016-07-01

    Fluid flow tests were conducted on two crossed fracture models for which the geometries of fracture segments and intersections were measured by utilizing a visualization technique using a CCD (charged coupled device) camera. Numerical simulations by solving the Navier-Stokes equations were performed to characterize the fluid flow at fracture intersections. The roles of hydraulic gradient, surface roughness, intersecting angle, and scale effect in the nonlinear fluid flow behavior through single fracture intersections were investigated. The simulation results of flow rate agreed well with the experimental results for both models. The experimental and simulation results showed that with the increment of the hydraulic gradient, the ratio of the flow rate to the hydraulic gradient, Q/J, decreases and the relative difference of Q/J between the calculation results employing the Navier-Stokes equations and the cubic law, δ, increases. When taking into account the fracture surface roughness quantified by Z2 ranging 0-0.42 for J = 1, the value of δ would increase by 0-10.3%. The influences of the intersecting angle on the normalized flow rate that represents the ratio of the flow rate in a segment to the total flow rate, Ra, and the ratio of the hydraulic aperture to the mechanical aperture, e/E, are negligible when J 10-2. Based on the regression analysis on simulation results, a mathematical expression was proposed to quantify e/E, involving variables of J and Rr, where Rr is the radius of truncating circles centered at an intersection. For E/Rr > 10-2, e/E varies significantly and the scale of model has large impacts on the nonlinear flow behavior through intersections, while for E/Rr fracture intersections is suggested as J < 10-3, E/Rr < 10-3, and Z2 = 0.

  5. Hydraulic fracturing offers view of microbial life in the deep terrestrial subsurface.

    Science.gov (United States)

    Mouser, Paula J; Borton, Mikayla; Darrah, Thomas H; Hartsock, Angela; Wrighton, Kelly C

    2016-11-01

    Horizontal drilling and hydraulic fracturing are increasingly used for recovering energy resources in black shales across the globe. Although newly drilled wells are providing access to rocks and fluids from kilometer depths to study the deep biosphere, we have much to learn about microbial ecology of shales before and after 'fracking'. Recent studies provide a framework for considering how engineering activities alter this rock-hosted ecosystem. We first provide data on the geochemical environment and microbial habitability in pristine shales. Next, we summarize data showing the same pattern across fractured shales: diverse assemblages of microbes are introduced into the subsurface, eventually converging to a low diversity, halotolerant, bacterial and archaeal community. Data we synthesized show that the shale microbial community predictably shifts in response to temporal changes in geochemistry, favoring conservation of key microorganisms regardless of inputs, shale location or operators. We identified factors that constrain diversity in the shale and inhibit biodegradation at the surface, including salinity, biocides, substrates and redox. Continued research in this engineered ecosystem is required to assess additive biodegradability, quantify infrastructure biocorrosion, treat wastewaters that return to the surface and potentially enhance energy production through in situ methanogenesis. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Identification of polypropylene glycols and polyethylene glycol carboxylates in flowback and produced water from hydraulic fracturing.

    Science.gov (United States)

    Thurman, E Michael; Ferrer, Imma; Rosenblum, James; Linden, Karl; Ryan, Joseph N

    2017-02-05

    The purpose of the study was to separate and identify the unknown surfactants present in flowback and produced water from oil and gas wells in the Denver-Julesburg Basin (Niobrara Formation) in Weld County, Colorado, USA. Weld County has been drilled extensively during the last five years for oil and gas between 7000-8000 feet below land-surface. Polypropylene glycols (PPGs) and polyethylene glycols carboxylates (PEG-Cs) were found for the first time in these flowback and produced water samples. These ethoxylated surfactants may be used as friction reducers, clay stabilizers, and surfactants. Ultrahigh-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UHPLC/QTOF-MS) was used to separate and identify the different classes of PPGs, PEG-Cs, and their isomers. The Kendrick mass scale was applied along with mass spectrometry/mass spectrometry (MS-MS) with accurate mass for rapid and unequivocal identification. The PPGs and their isomers occur at the ppm concentration range and may be useful as "fingerprints" of hydraulic-fracturing. Comparing these detections to the compounds used in the fracturing process from FracFocus 3.0 (https://fracfocus.org), it appears that both PPGs and polyethylene glycols (PEGs) are commonly named as additives, but the PEG-Cs have not been reported. The PEG-Cs may be trace impurities or degradation products of PEGs. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing

    Science.gov (United States)

    Osborn, Stephen G.; Vengosh, Avner; Warner, Nathaniel R.; Jackson, Robert B.

    2011-01-01

    Directional drilling and hydraulic-fracturing technologies are dramatically increasing natural-gas extraction. In aquifers overlying the Marcellus and Utica shale formations of northeastern Pennsylvania and upstate New York, we document systematic evidence for methane contamination of drinking water associated with shale-gas extraction. In active gas-extraction areas (one or more gas wells within 1 km), average and maximum methane concentrations in drinking-water wells increased with proximity to the nearest gas well and were 19.2 and 64 mg CH4 L-1 (n = 26), a potential explosion hazard; in contrast, dissolved methane samples in neighboring nonextraction sites (no gas wells within 1 km) within similar geologic formations and hydrogeologic regimes averaged only 1.1 mg L-1 (P fracturing fluids. We conclude that greater stewardship, data, and—possibly—regulation are needed to ensure the sustainable future of shale-gas extraction and to improve public confidence in its use. PMID:21555547

  8. Reactivity of Dazomet, a Hydraulic Fracturing Additive: Hydrolysis and Interaction with Pyrite

    Science.gov (United States)

    Consolazio, N.; Lowry, G. V.; Karamalidis, A.; Hakala, A.

    2015-12-01

    The Marcellus Shale is currently the largest shale gas formation in play across the world. The low-permeability formation requires hydraulic fracturing to be produced. In this process, millions of gallons of water are blended with chemical additives and pumped into each well to fracture the reservoir rock. Although additives account for less than 2% of the fracking fluid mixture, they amount to hundreds of tons per frack job. The environmental properties of some of these additives have been studied, but their behavior under downhole conditions is not widely reported in the peer-reviewed literature. These compounds and their reaction products may return to the surface as produced or waste water. In the event of a spill or release, this water has the potential to contaminate surface soil and water. Of these additives, biocides may present a formidable challenge to water quality. Biocides are toxic compounds (by design), typically added to the Marcellus Shale to control bacteria in the well. An assessment of the most frequently used biocides indicated a need to study the chemical dazomet under reservoir conditions. The Marcellus Shale contains significant deposits of pyrite. This is a ubiquitous mineral within black shales that is known to react with organic compounds in both oxic and anoxic settings. Thus, the objective of our study was to determine the effect of pyrite on the hydrolysis of dazomet. Liquid chromatography-triple quadrupole mass spectrometry (LC-QQQ) was used to calculate the loss rate of aqueous dazomet. Gas chromatography-mass spectrometry (GC-MS) was used to identify the reaction products. Our experiments show that in water, dazomet rapidly hydrolyses in water to form organic and inorganic transformation products. This reaction rate was unaffected when performed under anoxic conditions. However, with pyrite we found an appreciable increase in the removal rate of dazomet. This was accompanied by a corresponding change in the distribution of observed

  9. Acoustic emission in a fluid saturated heterogeneous porous layer with application to hydraulic fracture

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J.T. (California Univ., Berkeley, CA (USA). Dept. of Mechanical Engineering Lawrence Berkeley Lab., CA (USA))

    1988-11-01

    A theoretical model for acoustic emission in a vertically heterogeneous porous layer bounded by semi-infinite solid regions is developed using linearized equations of motion for a fluid/solid mixture and a reflectivity method. Green's functions are derived for both point loads and moments. Numerically integrated propagators represent solutions for intermediate heterogeneous layers in the porous region. These are substituted into a global matrix for solution by Gaussian elimination and back-substitution. Fluid partial stress and seismic responses to dislocations associated with fracturing of a layer of rock with a hydraulically conductive fracture network are computed with the model. A constitutive model is developed for representing the fractured rock layer as a porous material, using commonly accepted relationships for moduli. Derivations of density, tortuosity, and sinuosity are provided. The main results of the model application are the prediction of a substantial fluid partial stress response related to a second mode wave for the porous material. The response is observable for relatively large distances, on the order of several tens of meters. The visco-dynamic transition frequency associated with parabolic versus planar fluid velocity distributions across micro-crack apertures is in the low audio or seismic range, in contrast to materials with small pore size, such as porous rocks, for which the transition frequency is ultrasonic. Seismic responses are predicted for receiver locations both in the layer and in the outlying solid regions. In the porous region, the seismic response includes both shear and dilatational wave arrivals and a second-mode arrival. The second-mode arrival is not observable outside of the layer because of its low velocity relative to the dilatational and shear wave propagation velocities of the solid region.

  10. Genesis of natural hydraulic fractures as an indicator of basin inversion

    Science.gov (United States)

    Meng, Qingfeng; Hooker, John; Cartwright, Joe

    2017-09-01

    Satin spar (fibrous gypsum) veins, which occur in evaporite basins worldwide, provide significant insights into host rock deformation and fluid flow, although the genetic mechanism remains obscure. Satin spar veins in the red marls of the Triassic Mercia Mudstone of the Bristol Channel Basin were characterized in the context of regional and local setting. The vein network in the Keuper Marl (lower Mercia) exhibits a lack of systematic cross-cutting between three distinct vein sets. Two sets of veins are observed in the overlying Tea Green Marl, with one set clearly crossing the other. The gypsum veins commonly contain a blocky median zone of multiple thin bands of host-rock inclusions and alabastrine gypsum crystals, exhibiting crack-seal patterns. Fibrous zones on either side of the median zone consist of pure parallel-aligned gypsum fibres that are oblique to vein walls, indicating a hybrid shear-extensional mode of vein widening. Veins developed within reverse-reactivated faults contain fibre lineations in the median zones and also on vein surfaces, suggesting a minimum of two phases of fault slip. The veins are interpreted to have formed as a result of overpressure in the low-permeability mudstones by tectonic compression during basin inversion, giving rise to the median zone. Growth of gypsum fibres commenced when the initial fractures were completely sealed. The timing of vein formation is suggested to be Miocene, based on cross-cutting relationships with folds formed during the latest phase of basin inversion. Because the fractures initiated in response to fluid overpressures, they provide a useful analog to subsurface hydraulic fracture systems in low-permeability rocks subjected to tectonic compression. The fibrous widening of the veins post-dates their initiation and led to continued propagation and increased connectivity.

  11. Critical hydraulic gradient for nonlinear flow through rock fracture networks: The roles of aperture, surface roughness, and number of intersections

    Science.gov (United States)

    Liu, Richeng; Li, Bo; Jiang, Yujing

    2016-02-01

    Transition of fluid flow from the linear to the nonlinear regime has been confirmed in single rock fractures when the Reynolds number (Re) exceeds some critical values, yet the criterion for such a transition in discrete fracture networks (DFNs) has received little attention. This study conducted flow tests on crossed fracture models with a single intersection and performed numerical simulations on fluid flow through DFNs of various geometric characteristics. The roles of aperture, surface roughness, and number of intersections of fractures on the variation of the critical hydraulic gradient (Jc) for the onset of nonlinear flow through DFNs were systematically investigated. The results showed that the relationship between hydraulic gradient (J) and flow rate can be well quantified by Forchheimer's law; when J drops below Jc, it reduces to the widely used cubic law, by diminishing the nonlinear term. Larger apertures, rougher fracture surfaces, and a greater number of intersections in a DFN would result in the onset of nonlinear flow at a lower Jc. Mathematical expressions of Jc and the coefficients involved in Forchheimer's law were developed based on multi-variable regressions of simulation results, which can help to choose proper governing equations when solving problems associated with fluid flow in fracture networks.

  12. Combined interpretation of radar, hydraulic, and tracer data from a fractured-rock aquifer near Mirror Lake, New Hampshire, USA

    Science.gov (United States)

    Day-Lewis, F. D.; Lane, J.W.; Gorelick, S.M.

    2006-01-01

    An integrated interpretation of field experimental cross-hole radar, tracer, and hydraulic data demonstrates the value of combining time-lapse geophysical monitoring with conventional hydrologic measurements for improved characterization of a fractured-rock aquifer. Time-lapse difference-attenuation radar tomography was conducted during saline tracer experiments at the US Geological Survey Fractured Rock Hydrology Research Site near Mirror Lake, Grafton County, New Hampshire, USA. The presence of electrically conductive saline tracer effectively illuminates permeable fractures or pathways for geophysical imaging. The geophysical results guide the construction of three-dimensional numerical models of ground-water flow and solute transport. In an effort to explore alternative explanations for the tracer and tomographic data, a suite of conceptual models involving heterogeneous hydraulic conductivity fields and rate-limited mass transfer are considered. Calibration data include tracer concentrations, the arrival time of peak concentration at the outlet, and steady-state hydraulic head. Results from the coupled inversion procedure suggest that much of the tracer mass migrated outside the three tomographic image planes, and that solute is likely transported by two pathways through the system. This work provides basic and site-specific insights into the control of permeability heterogeneity on ground-water flow and solute transport in fractured rock. ?? Springer-Verlag 2004.

  13. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    Science.gov (United States)

    Reagan, Matthew T; Moridis, George J; Keen, Noel D; Johnson, Jeffrey N

    2015-01-01

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes. Key Points: Short-term leakage fractured reservoirs requires high-permeability pathways Production strategy affects the likelihood and magnitude of gas release Gas release is likely short-term, without additional driving forces PMID

  14. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport.

    Science.gov (United States)

    Reagan, Matthew T; Moridis, George J; Keen, Noel D; Johnson, Jeffrey N

    2015-04-01

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes. Short-term leakage fractured reservoirs requires high-permeability pathways Production strategy affects the likelihood and magnitude of gas release Gas release is likely short-term, without additional driving forces.

  15. A novel intramedullary nail for micromotion stimulation of tibial fractures.

    LENUS (Irish Health Repository)

    Dailey, Hannah L

    2011-09-20

    BACKGROUND: Animal studies and clinical trials have suggested that early application of controlled axial micromotion can accelerate healing of long bone fractures compared to rigid fixation. However, experimental investigations of micromotion constructs have been limited to external fixators, which have a higher incidence of complications than intramedullary nails. The purpose of this study was to assess whether a novel intramedullary nail design can generate stimulatory micromotion under minimal weight-bearing loads typical of the early healing period. METHODS: Eight cadaver tibiae were reamed, osteotomised, and implanted with commercially-available IM nails fitted with a custom insert that allowed 1mm of axial micromotion after proximal\\/distal interlocking. Specimens were mounted in a materials testing machine and subjected to cyclic axial loading while interfragmentary motion was measured using an extensometer. Implants were also tested in standard statically-locked mode. FINDINGS: The average force required to cause distraction of the fracture gap in micromotion mode was 37.0 (SD 21.7) N. The mean construct stiffness was 1046.8 (SD 193.6) N\\/mm in static locking mode and 512.4 (SD 99.6) N\\/mm in micromotion mode (significantly different, P<0.001). INTERPRETATION: These results support the development of a micromotion-enabled IM nail because the forces required to cause interfragmentary movements are very low, less than the weight of the hanging shank and foot. In contrast to rigid-fixation nails, which require significant weight-bearing to induce interfragmentary motion, the micromotion-enabled nail may allow movement in non-weight-bearing patients during the early healing period when the benefits of mechanical stimulation are most critical.

  16. Stakeholder Engagement Road Map and Peer Review Overview for EPA's Study of the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

    Science.gov (United States)

    This roadmap outlines EPA’s plans to build upon the Agency’s commitment to transparency & stakeholder engagement coordinated during the development of the Hydraulic Fracturing (HF) Study Plan & will help inform the 2014 HF study draft assessment report.

  17. Scoping Materials for Initial Design of EPA Research Study on Potential Relationships Between Hydraulic Fracturing and Drinking Water Resources, March 2010

    Science.gov (United States)

    The purpose of this document is to describe the initial steps in framing a study consistent with the House of Representatives Appropriate Conference committee mandate to carry out a study on the relationship between hydraulic fracturing and drinking water.

  18. Development of Rapid Radiochemical Method for Gross Alpha and Gross Beta Activity Concentration in Flowback and Produced Waters from Hydraulic Fracturing Operations

    Science.gov (United States)

    This report summarizes the development and validation of an improved method for the Determination of Gross Alpha and Gross Beta Activity in Flowback and Produced Waters from Hydraulic Fracturing Operations (FPWHFO). Flowback and produced waters are characterized by high concentra...

  19. Regulation of Water Pollution from Hydraulic Fracturing in Horizontally-Drilled Wells in the Marcellus Shale Region, USA

    OpenAIRE

    Heather Hatzenbuhler; Terence J. Centner

    2012-01-01

    Hydraulic fracturing is an industrial process used to extract fossil fuel reserves that lie deep underground. With the introduction of horizontal drilling, new commercial sources of energy have become available. Wells are drilled and injected with large quantities of water mixed with specially selected chemicals at high pressures that allow petroleum reserves to flow to the surface. While the increased economic activities and the outputs of domestic energy are welcomed, there is growing conce...

  20. Stimuli-Responsive/Rheoreversible Hydraulic Fracturing Fluids as a Greener Alternative to Support Geothermal and Fossil Energy Production

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hun Bok; Carroll, KC; Kabilan, Senthil; Heldebrant, David J.; Hoyt, David W.; Zhong, Lirong; Varga, Tamas; Stephens, Sean A.; Adams, Lexor; Bonneville, Alain; Kuprat, Andrew P.; Fernandez, Carlos A.

    2015-01-01

    Cost-effective yet safe creation of high-permeability reservoirs within deep bedrock is the primary challenge for the viability of enhanced geothermal systems (EGS) and unconventional oil/gas recovery. Although fracturing fluids are commonly used for oil/gas, standard fracturing methods are not developed or proven for EGS temperatures and pressures. Furthermore, the environmental impacts of currently used fracturing methods are only recently being determined. Widespread concerns about the environmental contamination have resulted in a number of regulations for fracturing fluids advocating for greener fracturing processes. To enable EGS feasibility and lessen environmental impact of reservoir stimulation, an environmentally benign, CO2-activated, rheoreversible fracturing fluid that enhances permeability through fracturing (at significantly lower effective stress than standard fracturing fluids) due to in situ volume expansion and gel formation is investigated herein. The chemical mechanism, stability, phase-change behavior, and rheology for a novel polyallylamine (PAA)-CO2 fracturing fluid was characterized at EGS temperatures and pressures. Hydrogel is formed upon reaction with CO2 and this process is reversible (via CO2 depressurization or solubilizing with a mild acid) allowing removal from the formation and recycling, decreasing environmental impact. Rock obtained from the Coso geothermal field was fractured in laboratory experiments under various EGS temperatures and pressures with comparison to standard fracturing fluids, and the fractures were characterized with imaging, permeability measurement, and flow modeling. This novel fracturing fluid and process may vastly reduce water usage and the environmental impact of fracturing practices and effectively make EGS production and unconventional oil/gas exploitation cost-effective and cleaner.

  1. Hydraulic fracture conductivity: effects of rod-shaped proppant from lattice-Boltzmann simulations and lab tests

    Science.gov (United States)

    Osiptsov, Andrei A.

    2017-06-01

    The goal of this study is to evaluate the conductivity of random close packings of non-spherical, rod-shaped proppant particles under the closure stress using numerical simulation and lab tests, with application to the conductivity of hydraulic fractures created in subterranean formation to stimulate production from oil and gas reservoirs. Numerical simulations of a steady viscous flow through proppant packs are carried out using the lattice Boltzmann method for the Darcy flow regime. The particle packings were generated numerically using the sequential deposition method. The simulations are conducted for packings of spheres, ellipsoids, cylinders, and mixtures of spheres with cylinders at various volumetric concentrations. It is demonstrated that cylinders provide the highest permeability among the proppants studied. The dependence of the nondimensional permeability (scaled by the equivalent particle radius squared) on porosity obtained numerically is well approximated by the power-law function: K /Rv2 = 0.204ϕ4.58 in a wide range of porosity: 0.3 ≤ ϕ ≤ 0.7. Lattice-Boltzmann simulations are cross-verified against finite-volume simulations using Navier-Stokes equations for inertial flow regime. Correlations for the normalized beta-factor as a function of porosity and normalized permeability are presented as well. These formulae are in a good agreement with the experimental measurements (including packings of rod-shaped particles) and existing laboratory data, available in the porosity range 0.3 ≤ ϕ ≤ 0.5. Comparison with correlations by other authors is also given.

  2. Managing the Increasing Water Footprint of Hydraulic Fracturing in the Bakken Play, United States.

    Science.gov (United States)

    Scanlon, Bridget R; Reedy, Robert C; Male, Frank; Hove, Michael

    2016-09-20

    The water footprint of oil production, including water used for hydraulic fracturing (HF) and flowback-produced (FP) water, is increasingly important in terms of HF water sourcing and FP water management. Here, we evaluate trends in HF water use relative to supplies and FP water relative to disposal using well by well analysis in the Bakken Play. HF water use per well increased by ∼6 times from 2005-2014, totaling 24.5 × 10(9) gal (93 × 10(9) L) for ∼10 140 wells. Water supplies expanded to meet increased demand, including access of up to ∼33 × 10(9) gal/year (125 × 10(9) L/year) from Lake Sakakawea, expanding pipeline infrastructure by hundreds of miles and allowing water transfers from irrigation. The projected inventory of ∼60 000 future wells should require an additional ∼11 times more HF water. Cumulative FP water has been managed by disposal into an increasing number (277 to 479) of salt water disposal wells. FP water is projected to increase by ∼10 times during the play lifetime (∼40 years). Disposal of FP water into deeper geologic units should be considered because of reported overpressuring of parts of the Dakota Group. The long time series shows how policies have increased water supplies for HF and highlights potential issues related to FP water management.

  3. Ground gas monitoring: implications for hydraulic fracturing and CO2 storage.

    Science.gov (United States)

    Teasdale, Christopher J; Hall, Jean A; Martin, John P; Manning, David A C

    2014-12-02

    Understanding the exchange of carbon dioxide (CO2) and methane (CH4) between the geosphere and atmosphere is essential for the management of anthropogenic emissions. Human activities such as carbon capture and storage and hydraulic fracturing ("fracking") affect the natural system and pose risks to future global warming and to human health and safety if not engineered to a high standard. In this paper an innovative approach of expressing ground gas compositions is presented, using data derived from regulatory monitoring of boreholes in the unsaturated zone at infrequent intervals (typically 3 months) with data from a high frequency monitoring instrument deployed over periods of weeks. Similar highly variable trends are observed for time scales ranging from decades to hourly for boreholes located close to sanitary landfill sites. Additionally, high frequency monitoring data confirm the effect of meteorological controls on ground gas emissions; the maximum observed CH4 and CO2 concentrations in a borehole monitored over two weeks were 40.1% v/v and 8.5% v/v respectively, but for 70% of the monitoring period only air was present. There is a clear weakness in current point monitoring strategies that may miss emission events and this needs to be considered along with obtaining baseline data prior to starting any engineering activity.

  4. Source and fate of hydraulic fracturing water in the Barnett Shale: a historical perspective.

    Science.gov (United States)

    Nicot, Jean-Philippe; Scanlon, Bridget R; Reedy, Robert C; Costley, Ruth A

    2014-02-18

    Considerable controversy continues about water availability for and potential impacts of hydraulic fracturing (HF) of hydrocarbon assets on water resources. Our objective was to quantify HF water volume in terms of source, reuse, and disposal, using the Barnett Shale in Texas as a case study. Data were obtained from commercial and state databases, river authorities, groundwater conservation districts, and operators. Cumulative water use from ∼ 18,000 (mostly horizontal) wells since 1981 through 2012 totaled ∼ 170,000 AF (210 Mm(3)); ∼ 26 000 AF (32 Mm(3)) in 2011, representing 32% of Texas HF water use and ∼ 0.2% of 2011 state water consumption. Increase in water use per well by 60% (from 3 to 5 Mgal/well; 0.011-0.019 Mm(3)) since the mid-2000s reflects the near-doubling of horizontal-well lengths (2000-3800 ft), offset by a reduction in water-use intensity by 40% (2000-1200 gal/ft; 2.5-1.5 m(3)/m). Water sources include fresh surface water and groundwater in approximately equal amounts. Produced water amount is inversely related to gas production, exceeds HF water volume, and is mostly disposed in injection wells. Understanding the historical evolution of water use in the longest-producing shale play is invaluable for assessing its water footprint for energy production.

  5. Potential water resource impacts of hydraulic fracturing from unconventional oil production in the Bakken shale.

    Science.gov (United States)

    Shrestha, Namita; Chilkoor, Govinda; Wilder, Joseph; Gadhamshetty, Venkataramana; Stone, James J

    2017-01-01

    Modern drilling techniques, notably horizontal drilling and hydraulic fracturing, have enabled unconventional oil production (UOP) from the previously inaccessible Bakken Shale Formation located throughout Montana, North Dakota (ND) and the Canadian province of Saskatchewan. The majority of UOP from the Bakken shale occurs in ND, strengthening its oil industry and businesses, job market, and its gross domestic product. However, similar to UOP from other low-permeability shales, UOP from the Bakken shale can result in environmental and human health effects. For example, UOP from the ND Bakken shale generates a voluminous amount of saline wastewater including produced and flowback water that are characterized by unusual levels of total dissolved solids (350 g/L) and elevated levels of toxic and radioactive substances. Currently, 95% of the saline wastewater is piped or trucked onsite prior to disposal into Class II injection wells. Oil and gas wastewater (OGW) spills that occur during transport to injection sites can potentially result in drinking water resource contamination. This study presents a critical review of potential water resource impacts due to deterministic (freshwater withdrawals and produced water management) and probabilistic events (spills due to leaking pipelines and truck accidents) related to UOP from the Bakken shale in ND. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Physical, chemical, and biological characteristics of compounds used in hydraulic fracturing.

    Science.gov (United States)

    Stringfellow, William T; Domen, Jeremy K; Camarillo, Mary Kay; Sandelin, Whitney L; Borglin, Sharon

    2014-06-30

    Hydraulic fracturing (HF), a method to enhance oil and gas production, has become increasingly common throughout the U.S. As such, it is important to characterize the chemicals found in HF fluids to evaluate potential environmental fate, including fate in treatment systems, and human health impacts. Eighty-one common HF chemical additives were identified and categorized according to their functions. Physical and chemical characteristics of these additives were determined using publicly available chemical information databases. Fifty-five of the compounds are organic and twenty-seven of these are considered readily or inherently biodegradable. Seventeen chemicals have high theoretical chemical oxygen demand and are used in concentrations that present potential treatment challenges. Most of the HF chemicals evaluated are non-toxic or of low toxicity and only three are classified as Category 2 oral toxins according to standards in the Globally Harmonized System of Classification and Labeling of Chemicals; however, toxicity information was not located for thirty of the HF chemicals evaluated. Volatilization is not expected to be a significant exposure pathway for most HF chemicals. Gaps in toxicity and other chemical properties suggest deficiencies in the current state of knowledge, highlighting the need for further assessment to understand potential issues associated with HF chemicals in the environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Dispersion analysis of passive surface-wave noise generated during hydraulic-fracturing operations

    Science.gov (United States)

    Forghani-Arani, Farnoush; Willis, Mark; Snieder, Roel; Haines, Seth S.; Behura, Jyoti; Batzle, Mike; Davidson, Michael

    2014-01-01

    Surface-wave dispersion analysis is useful for estimating near-surface shear-wave velocity models, designing receiver arrays, and suppressing surface waves. Here, we analyze whether passive seismic noise generated during hydraulic-fracturing operations can be used to extract surface-wave dispersion characteristics. Applying seismic interferometry to noise measurements, we extract surface waves by cross-correlating several minutes of passive records; this approach is distinct from previous studies that used hours or days of passive records for cross-correlation. For comparison, we also perform dispersion analysis for an active-source array that has some receivers in common with the passive array. The active and passive data show good agreement in the dispersive character of the fundamental-mode surface-waves. For the higher mode surface waves, however, active and passive data resolve the dispersive properties at different frequency ranges. To demonstrate an application of dispersion analysis, we invert the observed surface-wave dispersion characteristics to determine the near-surface, one-dimensional shear-wave velocity.

  8. The Water Risks of Hydraulic Fracturing (Fracking): Key Issues from the New California Assessment

    Science.gov (United States)

    Gleick, P. H.

    2015-12-01

    A key component of the Water-Energy Nexus is the effort over the past decade or so to quantify the volumes and form of water required for the energy fuel cycle from extraction to generation to waste disposal. The vast majority of the effort in this area has focused on the water needs of electricity generation, but other fuel-cycle components also entail significant water demands and threats to water quality. Recent work for the State of California (managed by the California Council on Science and Technology - CCST) has produced a new state-of-the-art assessment of a range of potential water risks associated with hydraulic fracturing and related oil and gas extraction, including volumetric water demands, methods of disposal of produced water, and aquifer contamination. For example, this assessment produced new information on the disposal of produced water in surface percolation pits and the potential for contamination of local groundwater (see Figure). Understanding these risks raises questions about current production and future plans to expand production, as well as tools used by state and federal agencies to manage these risks. This talk will summarize the science behind the CCST assessment and related policy recommendations for both water and energy managers.

  9. Estimating the Potential Toxicity of Chemicals Associated with Hydraulic Fracturing Operations Using Quantitative Structure-Activity Relationship Modeling.

    Science.gov (United States)

    Yost, Erin E; Stanek, John; DeWoskin, Robert S; Burgoon, Lyle D

    2016-07-19

    The United States Environmental Protection Agency (EPA) identified 1173 chemicals associated with hydraulic fracturing fluids, flowback, or produced water, of which 1026 (87%) lack chronic oral toxicity values for human health assessments. To facilitate the ranking and prioritization of chemicals that lack toxicity values, it may be useful to employ toxicity estimates from quantitative structure-activity relationship (QSAR) models. Here we describe an approach for applying the results of a QSAR model from the TOPKAT program suite, which provides estimates of the rat chronic oral lowest-observed-adverse-effect level (LOAEL). Of the 1173 chemicals, TOPKAT was able to generate LOAEL estimates for 515 (44%). To address the uncertainty associated with these estimates, we assigned qualitative confidence scores (high, medium, or low) to each TOPKAT LOAEL estimate, and found 481 to be high-confidence. For 48 chemicals that had both a high-confidence TOPKAT LOAEL estimate and a chronic oral reference dose from EPA's Integrated Risk Information System (IRIS) database, Spearman rank correlation identified 68% agreement between the two values (permutation p-value =1 × 10(-11)). These results provide support for the use of TOPKAT LOAEL estimates in identifying and prioritizing potentially hazardous chemicals. High-confidence TOPKAT LOAEL estimates were available for 389 of 1026 hydraulic fracturing-related chemicals that lack chronic oral RfVs and OSFs from EPA-identified sources, including a subset of chemicals that are frequently used in hydraulic fracturing fluids.

  10. A reactive transport modelling approach to assess the leaching potential of hydraulic fracturing fluids associated with coal seam gas extraction

    Science.gov (United States)

    Mallants, Dirk; Simunek, Jirka; Gerke, Kirill

    2015-04-01

    Coal Seam Gas production generates large volumes of "produced" water that may contain compounds originating from the use of hydraulic fracturing fluids. Such produced water also contains elevated concentrations of naturally occurring inorganic and organic compounds, and usually has a high salinity. Leaching of produced water from storage ponds may occur as a result of flooding or containment failure. Some produced water is used for irrigation of specific crops tolerant to elevated salt levels. These chemicals may potentially contaminate soil, shallow groundwater, and groundwater, as well as receiving surface waters. This paper presents an application of scenario modelling using the reactive transport model for variably-saturated media HP1 (coupled HYDRUS-1D and PHREEQC). We evaluate the fate of hydraulic fracturing chemicals and naturally occurring chemicals in soil as a result of unintentional release from storage ponds or when produced water from Coal Seam Gas operations is used in irrigation practices. We present a review of exposure pathways and relevant hydro-bio-geo-chemical processes, a collation of physico-chemical properties of organic/inorganic contaminants as input to a set of generic simulations of transport and attenuation in variably saturated soil profiles. We demonstrate the ability to model the coupled processes of flow and transport in soil of contaminants associated with hydraulic fracturing fluids and naturally occurring contaminants.

  11. A systematic evaluation of chemicals in hydraulic-fracturing fluids and wastewater for reproductive and developmental toxicity.

    Science.gov (United States)

    Elliott, Elise G; Ettinger, Adrienne S; Leaderer, Brian P; Bracken, Michael B; Deziel, Nicole C

    2017-01-01

    Hydraulic-fracturing fluids and wastewater from unconventional oil and natural gas development contain hundreds of substances with the potential to contaminate drinking water. Challenges to conducting well-designed human exposure and health studies include limited information about likely etiologic agents. We systematically evaluated 1021 chemicals identified in hydraulic-fracturing fluids (n=925), wastewater (n=132), or both (n=36) for potential reproductive and developmental toxicity to triage those with potential for human health impact. We searched the REPROTOX database using Chemical Abstract Service registry numbers for chemicals with available data and evaluated the evidence for adverse reproductive and developmental effects. Next, we determined which chemicals linked to reproductive or developmental toxicity had water quality standards or guidelines. Toxicity information was lacking for 781 (76%) chemicals. Of the remaining 240 substances, evidence suggested reproductive toxicity for 103 (43%), developmental toxicity for 95 (40%), and both for 41 (17%). Of these 157 chemicals, 67 had or were proposed for a federal water quality standard or guideline. Our systematic screening approach identified a list of 67 hydraulic fracturing-related candidate analytes based on known or suspected toxicity. Incorporation of data on potency, physicochemical properties, and environmental concentrations could further prioritize these substances for future drinking water exposure assessments or reproductive and developmental health studies.

  12. Fuel for Debate: Three Studies of the Political Mobilization for and against Hydraulic Fracturing in New York State

    Science.gov (United States)

    Dokshin, Fedor Aleksandrovich

    This dissertation uses the context of the unfolding boom in oil and gas production enabled by hydraulic fracturing ("fracking") technology to ask several interrelated questions: What motivates people to oppose or support industrial development? How do material interests interact with political identities to shape political mobilization? What consequences does this political contestation have for policymaking? Three stand-alone articles, each using unique data and methods, provide new evidence for answering these questions. The three studies place a common emphasis on the multiple meanings that fracking has for opponents and supporters of proposed development as well as the alternative structural conditions that give rise to the divergent beliefs and the social networks that facilitate mobilization. The first article, examines the passage of local zoning ordinances prohibiting fracking and identifies spatial and temporal processes that influenced the pattern of ordinance adoption. The second article, looks more closely at political mobilization for and against hydraulic fracturing by examining individual-level data collected from one town's debate over a proposed ban on oil and gas development. The third article uses a large set of public comments to directly examine the meanings that the public attached to hydraulic fracturing and whether residents who live in close proximity to proposed development understood the industry in systematically different terms than individuals who participated in the debate despite facing little or no direct impact from fracking.

  13. Determination of hydraulic fracture azimuth by geophysical, geological, and oriented-core methods at the multiwell experiment site, Rifle, CO

    Energy Technology Data Exchange (ETDEWEB)

    Teufel, L.W.; Hart, C.M.; Sattler, A.R.

    1984-09-01

    A comprehensive program for prediction of hydraulic fracture azimuth is being conducted in the tight, lenticular, gas sandstone reservoirs of the Mesaverde Group in the Department of Energy's Multi-Well Experiment near Rifle, Colorado. Methods used in the program can be divided into two groups: 1) indirect, predictive techniques which determine either the principal paleo-stresses or in-situ stresses prior to fracturing and 2) direct observation from either geophysical detection and mapping of hydraulic fracture propagation or wellbore impression-packers of open-hole hydraulic fractures. Predictive methods which determine the paleo-stress directions include geologic observations of the orientation of normal faults and fractures at the surface and in oriented core and twinned calcite strain analysis of oriented core. These methods show a consistent direction of N75/sup 0/W + or - 10/sup 0/ for the maximum horizontal paleo-stress. Predictive methods which determine the in-situ stress directions include 1) oriented core analysis using anelastic strain recovery measurements and differential strain curve analysis, 2) oriented caliper and televiewer logs to infer stress directions from wellbore breakouts, and 3) computer modeling of the horizontal stress directions due to gravitational loading of topographic relief. The results of these methods are fairly consistent, and are in general agreement with the paleo-stress results, but also suggest a possible 20/sup 0/ clockwise rotation with depth of the maximum horizontal in-situ stress from N89/sup 0/W + or - 10/sup 0/ in the upper fluvial zone starting at 1330 m to N68/sup 0/W + or - 9/sup 0/ in the marine zone ending at 2450 m.

  14. Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array

    Science.gov (United States)

    Zang, Arno; Stephansson, Ove; Stenberg, Leif; Plenkers, Katrin; Specht, Sebastian; Milkereit, Claus; Schill, Eva; Kwiatek, Grzegorz; Dresen, Georg; Zimmermann, Günter; Dahm, Torsten; Weber, Michael

    2017-02-01

    In this paper, an underground experiment at the Äspö Hard Rock Laboratory (HRL) is described. Main goal is optimizing geothermal heat exchange in crystalline rock mass at depth by multistage hydraulic fracturing with minimal impact on the environment, that is, seismic events. For this, three arrays with acoustic emission, microseismicity and electromagnetic sensors are installed mapping hydraulic fracture initiation and growth. Fractures are driven by three different water injection schemes (continuous, progressive and pulse pressurization). After a brief review of hydraulic fracture operations in crystalline rock mass at mine scale, the site geology and the stress conditions at Äspö HRL are described. Then, the continuous, single-flow rate and alternative, multiple-flow rate fracture breakdown tests in a horizontal borehole at depth level 410 m are described together with the monitoring networks and sensitivity. Monitoring results include the primary catalogue of acoustic emission hypocentres obtained from four hydraulic fractures with the in situ trigger and localizing network. The continuous versus alternative water injection schemes are discussed in terms of the fracture breakdown pressure, the fracture pattern from impression packer result and the monitoring at the arrays. An example of multistage hydraulic fracturing with several phases of opening and closing of fracture walls is evaluated using data from acoustic emissions, seismic broad-band recordings and electromagnetic signal response. Based on our limited amount of in situ tests (six) and evaluation of three tests in Ävrö granodiorite, in the multiple-flow rate test with progressively increasing target pressure, the acoustic emission activity starts at a later stage in the fracturing process compared to the conventional fracturing case with continuous water injection. In tendency, also the total number and magnitude of acoustic events are found to be smaller in the progressive treatment with

  15. Status of the art: hydraulic conductivity of acid- fractures; Condutividade hidraulica de fratura acida: estado da arte

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Valdo Ferreira [Universidade Estadual do Norte Fluminense Darcy Ribeiro (LENEP/UENF), Macae, RJ (Brazil). Centro de Ciencia e Tecnologia. Lab. de Engenharia e Exploracao de Petroleo; Campos, Wellington [PETROBRAS, RJ (Brazil). E and P Engenharia de Producao. Gerencia de Completacao e Avaliacao], e-mail: wcampos@petrobras.com.br

    2010-06-15

    This paper presents a review of the hydraulic conductivity models developed for acid fractures in almost four decades of studies in petroleum engineering. These studies have often benefited from theories and experiments carried out in areas of knowledge such as physics, geology, hydrology, fluid mechanics, rock mechanics and tribology. The review showed that the pioneer study of Nierode and Kruk (1973) is still used in commercial software and influences the current studies. There was significant evolution on the quantitative surface topography characterization of the fractures and their impact on the hydraulic conductivity. The same occurred for the effects of acid dissolution on the rock resistance. Improvements on correlations similar to the Nierode and Kruk can be applied at once on the acid fracturing project and evaluation practice for the cases of rough dissolution pattern. A method to consider the overall conductivity from heterogeneous channels and roughness pattern was recently proposed. The complexity of the theoretical fundaments, specially the range of validity of the equations in face of the simplifications assumed, the difficulty of performing representative laboratory and field experiments, the difficulty of characterizing quantitatively the fractures surface topography and its effects on the conductivity, and the large variety of rocks and acid systems keep this subject open for research. (author)

  16. EM Earthquake Precursor Detection Associated with Fluid Injection for Hydraulic Fracturing and Tectonic Sources

    Science.gov (United States)

    Jones, Kenneth B., II

    2015-04-01

    , Texas field sites, a proactive detection approach was taken, due to the heavy presence of hydraulic fracturing activity for regional hydrocarbon extraction, which appeared to be causing several rare M4.0+ earthquakes. As a result, detailed Southern California and Timpson, Texas field studies led to the improved design of two newer, prototype antennae and the first ever earthquake epicenter map. With more antennae and continuous monitoring, more fracture cycles can be established well ahead of the next earthquake. In addition, field data could be ascertained longer by the proper authorities and lead to significantly improved earthquake forecasting. The EM precursor determined by this method appears to surpass all prior precursor claims, and the general public may finally receive long overdue forecasting.

  17. Optimal vibration stimulation to the neck extensor muscles using hydraulic vibrators to shorten saccadic reaction time.

    Science.gov (United States)

    Fujiwara, Katsuo; Kunita, Kenji; Furune, Naoe; Maeda, Kaoru; Asai, Hitoshi; Tomita, Hidehito

    2006-09-01

    Optimal vibration stimulation to the neck extensor muscles using hydraulic vibrators to shorten the saccadic reaction time was examined. Subjects were 14 healthy young adults. Visual targets (LEDs) were located 10 degrees left and right of a central point. The targets were alternately lit for random durations of 2-4 seconds in a resting neck condition and various vibration conditions, and saccadic reaction times were measured. Vibration amplitude was 0.5 mm in every condition. The upper trapezius muscles were vibrated at 40, 60, 80, and 100 Hz in a sub-maximum stretch condition in which the muscles were stretched at 70% of maximum stretch. In addition, the muscles were vibrated at 60 Hz with the muscles maximally stretched, with 70% vertical pressure without stretching, and with vibration applied to the skin in the same area as the muscle vibration. At 60, 80, and 100 Hz at 70% maximum stretch, saccadic reaction time shortened significantly compared with the resting neck condition. However, no significant difference in the reaction time was observed among the frequencies. The saccadic reaction times in the maximum stretch condition, muscle pressure condition, and skin contact condition did not differ significantly from that in the resting neck condition. Vibration stimulation to the trapezius with 60-100 Hz frequencies at 0.5 mm amplitude in the sub-maximum stretch condition was effective for shortening saccadic reaction time. The main mechanism appears to be Ia information originating from the muscle spindle.

  18. Will water scarcity in semiarid regions limit hydraulic fracturing of shale plays?

    Science.gov (United States)

    Scanlon, Bridget R.; Reedy, Robert C.; Nicot, Jean Philippe

    2014-12-01

    There is increasing concern about water constraints limiting oil and gas production using hydraulic fracturing (HF) in shale plays, particularly in semiarid regions and during droughts. Here we evaluate HF vulnerability by comparing HF water demand with supply in the semiarid Texas Eagle Ford play, the largest shale oil producer globally. Current HF water demand (18 billion gallons, bgal; 68 billion liters, bL in 2013) equates to ˜16% of total water consumption in the play area. Projected HF water demand of ˜330 bgal with ˜62 000 additional wells over the next 20 years equates to ˜10% of historic groundwater depletion from regional irrigation. Estimated potential freshwater supplies include ˜1000 bgal over 20 yr from recharge and ˜10 000 bgal from aquifer storage, with land-owner lease agreements often stipulating purchase of freshwater. However, pumpage has resulted in excessive drawdown locally with estimated declines of ˜100-200 ft in ˜6% of the western play area since HF began in 2009-2013. Non-freshwater sources include initial flowback water, which is ≤5% of HF water demand, limiting reuse/recycling. Operators report shifting to brackish groundwater with estimated groundwater storage of 80 000 bgal. Comparison with other semiarid plays indicates increasing brackish groundwater and produced water use in the Permian Basin and large surface water inputs from the Missouri River in the Bakken play. The variety of water sources in semiarid regions, with projected HF water demand representing ˜3% of fresh and ˜1% of brackish water storage in the Eagle Ford footprint indicates that, with appropriate management, water availability should not physically limit future shale energy production.

  19. Boron removal from hydraulic fracturing wastewater by aluminum and iron coagulation: Mechanisms and limitations.

    Science.gov (United States)

    Chorghe, Darpan; Sari, Mutiara Ayu; Chellam, Shankararaman

    2017-12-01

    One promising water management strategy during hydraulic fracturing is treatment and reuse of flowback/produced water. In particular, the saline flowback water contains many of the chemicals employed for fracking, which need to be removed before possible reuse as "frac water." This manuscript targets turbidity along with one of the additives; borate-based cross-linkers used to adjust the rheological characteristics of the frac-fluid. Alum and ferric chloride were evaluated as coagulants for clarification and boron removal from saline flowback water obtained from a well in the Eagle Ford shale. Extremely high dosages (> 9000 mg/L or 333 mM Al and 160 mM Fe) corresponding to Al/B and Fe/B mass ratios of ∼70 and molar ratios of ∼28 and 13 respectively were necessary to remove ∼80% boron. Hence, coagulation does not appear to be feasible for boron removal from high-strength waste streams. X-ray photoelectron spectroscopy revealed BO bonding on surfaces of freshly precipitated Al(OH)3(am) and Fe(OH)3(am) suggesting boron uptake was predominantly via ligand exchange. Attenuated total reflection-Fourier transform infrared spectroscopy provided direct evidence of inner-sphere boron complexation with surface hydroxyl groups on both amorphous aluminum and iron hydroxides. Only trigonal boron was detected on aluminum flocs since possible presence of tetrahedral boron was masked by severe AlO interferences. Both trigonal and tetrahedral conformation of boron complexes were identified on Fe(OH)3 surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Modeling Atmospheric Emissions and Calculating Mortality Rates Associated with High Volume Hydraulic Fracturing Transportation

    Science.gov (United States)

    Mathews, Alyssa

    Emissions from the combustion of fossil fuels are a growing pollution concern throughout the global community, as they have been linked to numerous health issues. The freight transportation sector is a large source of these emissions and is expected to continue growing as globalization persists. Within the US, the expanding development of the natural gas industry is helping to support many industries and leading to increased transportation. The process of High Volume Hydraulic Fracturing (HVHF) is one of the newer advanced extraction techniques that is increasing natural gas and oil reserves dramatically within the US, however the technique is very resource intensive. HVHF requires large volumes of water and sand per well, which is primarily transported by trucks in rural areas. Trucks are also used to transport waste away from HVHF well sites. This study focused on the emissions generated from the transportation of HVHF materials to remote well sites, dispersion, and subsequent health impacts. The Geospatial Intermodal Freight Transport (GIFT) model was used in this analysis within ArcGIS to identify roadways with high volume traffic and emissions. High traffic road segments were used as emissions sources to determine the atmospheric dispersion of particulate matter using AERMOD, an EPA model that calculates geographic dispersion and concentrations of pollutants. Output from AERMOD was overlaid with census data to determine which communities may be impacted by increased emissions from HVHF transport. The anticipated number of mortalities within the impacted communities was calculated, and mortality rates from these additional emissions were computed to be 1 in 10 million people for a simulated truck fleet meeting stricter 2007 emission standards, representing a best case scenario. Mortality rates due to increased truck emissions from average, in-use vehicles, which represent a mixed age truck fleet, are expected to be higher (1 death per 341,000 people annually).

  1. Comparison of water use for hydraulic fracturing for unconventional oil and gas versus conventional oil.

    Science.gov (United States)

    Scanlon, B R; Reedy, R C; Nicot, J-P

    2014-10-21

    We compared water use for hydraulic fracturing (HF) for oil versus gas production within the Eagle Ford shale. We then compared HF water use for Eagle Ford oil with Bakken oil, both plays accounting for two-thirds of U.S. unconventional oil production in 2013. In the Eagle Ford, we found similar average water use in oil and gas zones per well (4.7-4.9 × 10(6) gallons [gal]/well). However, about twice as much water is used per unit of energy (water-to-oil ratio, WOR, vol water/vol oil) in the oil zone (WOR: 1.4) as in the gas zone (water-to-oil-equivalent-ratio, WOER: 0.6). We also found large differences in water use for oil between the two plays, with mean Bakken water use/well (2.0 × 10(6) gal/well) about half that in the Eagle Ford, and a third per energy unit. We attribute these variations mostly to geological differences. Water-to-oil ratios for these plays (0.6-1.4) will further decrease (0.2-0.4) based on estimated ultimate oil recovery of wells. These unconventional water-to-oil ratios (0.2-1.4) are within the lower range of those for U.S. conventional oil production (WOR: 0.1-5). Therefore, the U.S. is using more water because HF has expanded oil production, not because HF is using more water per unit of oil production.

  2. Hydraulic Properties of Fractured Rock Samples at In-Situ Conditions - Insights from Lab Experiments Using X-Ray Tomography

    Science.gov (United States)

    Nehler, Mathias; Stöckhert, Ferdinand; Duda, Mandy; Renner, Jörg; Bracke, Rolf

    2017-04-01

    The hydraulic properties of low-porosity rock formations are controlled by the geometry of open fractures, joints and faults. Aperture, surface roughness, accessible length, and thus, the volume available for fluids associated of such interfaces are strongly affected by their state of stress. Moreover, these properties may evolve with time in particular due to processes involving chemically active fluids. Understanding the physico-chemical interactions of rocks with fluids at reservoir conditions will help to predict the long-term reservoir development and to increase the efficiency of geothermal power plants. We designed an x-ray transparent flow-through cell. Confining pressure can be up to 50 MPa and pore fluid can currently be circulated through the sample with pressures of up to 25 MPa. All wetted parts are made of PEEK to avoid corrosion when using highly saline fluids. Laboratory experiments were performed to investigate hydraulic properties of fractured low-porosity samples under reservoir conditions while x-rays transmit the sample. The cell is placed inside a µCT scanner with a 225 kV multifocal x-ray tube for high resolution x-ray tomography. Samples measure 10 mm in diameter and 25 mm in length resulting in a voxel resolution of approximately 10 µm. Samples with single natural as well as artificial fractures were subjected to various confining pressures ranging from 2.5 MPa to 25 MPa. At each pressure level, effective permeability was determined from steady-state flow relying on Darcy's law. In addition, a full 3D image was recorded by the µCT scanner to gain information on the fracture aperture and geometry. Subvolumes (400x400x400 voxels) of the images were analyzed to reduce computational cost. The subvolumes were filtered in 3D with an edge preserving non-local means filter. Further quantification algorithms were implemented in Matlab. Segmentation into pore space and minerals was done automatically for all datasets by a peak finder algorithm

  3. The functional potential of microbial communities in hydraulic fracturing source water and produced water from natural gas extraction characterized by metagenomic sequencing.

    Directory of Open Access Journals (Sweden)

    Arvind Murali Mohan

    Full Text Available Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. The metabolic profile revealed a relative increase in genes responsible for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection.

  4. The functional potential of microbial communities in hydraulic fracturing source water and produced water from natural gas extraction characterized by metagenomic sequencing.

    Science.gov (United States)

    Mohan, Arvind Murali; Bibby, Kyle J; Lipus, Daniel; Hammack, Richard W; Gregory, Kelvin B

    2014-01-01

    Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. The metabolic profile revealed a relative increase in genes responsible for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection.

  5. Cardio-respirometry disruption in zebrafish (Danio rerio) embryos exposed to hydraulic fracturing flowback and produced water.

    Science.gov (United States)

    Folkerts, Erik J; Blewett, Tamzin A; He, Yuhe; Goss, Greg G

    2017-12-01

    Hydraulic fracturing to extract oil and natural gas reserves is an increasing practice in many international energy sectors. Hydraulic fracturing flowback and produced water (FPW) is a hyper saline wastewater returned to the surface from a fractured well containing chemical species present in the initial fracturing fluid, geogenic contaminants, and potentially newly synthesized chemicals formed in the fracturing well environment. However, information on FPW toxicological mechanisms of action remain largely unknown. Both cardiotoxic and respirometric responses were explored in zebrafish (Danio rerio) embryos after either an acute sediment-free (FPW-SF) or raw/sediment containing (FPW-S) fraction exposure of 24 and 48 h at 2.5% and 5% dilutions. A 48 h exposure to either FPW fraction in 24-72 h post fertilization zebrafish embryos significantly increased occurrences of pericardial edema, yolk-sac edema, and tail/spine curvature. In contrast, larval heart rates significantly decreased after FPW fraction exposures. FPW-S, but not FPW-SF, at 2.5% doses significantly reduced embryonic respiration/metabolic rates (MO 2 ), while for 5% FPW, both fractions reduced MO 2 . Expression of select cardiac genes were also significantly altered in each FPW exposure group, implicating a cardiovascular system compromise as the potential cause for reduced embryonic MO 2 . Collectively, these results support our hypothesis that organics are major contributors to cardiac and respiratory responses to FPW exposure in zebrafish embryos. Our study is the first to investigate cardiac and respiratory sub-lethal effects of FPW exposure, demonstrating that FPW effects extend beyond initial osmotic stressors and verifies the use of respirometry as a potential marker for FPW exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Pore pressure effects on fracture net pressure and hydraulic fracture containment : Insights from an empirical and simulation approach

    NARCIS (Netherlands)

    Prabhakaran, R.; de Pater, C.J.; Shaoul, Josef

    2017-01-01

    Pore pressure and its relationship with fracture net pressure has been reported qualitatively from both field and experimental observations. From a modeling perspective, the ubiquitously used pseudo 3D (P3D) models that are based on linear elastic fracture mechanics (LEFM) do not include the

  7. Advances in coalbed methane reservoirs using integrated reservoir characterization and hydraulic fracturing in Karaganda coal basin, Kazakhstan

    Science.gov (United States)

    Ivakhnenko, Aleksandr; Aimukhan, Adina; Kenshimova, Aida; Mullagaliyev, Fandus; Akbarov, Erlan; Mullagaliyeva, Lylia; Kabirova, Svetlana; Almukhametov, Azamat

    2017-04-01

    Coalbed methane from Karaganda coal basin is considered to be an unconventional source of energy for the Central and Eastern parts of Kazakhstan. These regions are situated far away from the main traditional sources of oil and gas related to Precaspian petroleum basin. Coalbed methane fields in Karaganda coal basin are characterized by geological and structural complexity. Majority of production zones were characterized by high methane content and extremely low coal permeability. The coal reservoirs also contained a considerable natural system of primary, secondary, and tertiary fractures that were usually capable to accommodate passing fluid during hydraulic fracturing process. However, after closing was often observed coal formation damage including the loss of fluids, migration of fines and higher pressures required to treat formation than were expected. Unusual or less expected reservoir characteristics and values of properties of the coal reservoir might be the cause of the unusual occurred patterns in obtained fracturing, such as lithological peculiarities, rock mechanical properties and previous natural fracture systems in the coals. Based on these properties we found that during the drilling and fracturing of the coal-induced fractures have great sensitivity to complex reservoir lithology and stress profiles, as well as changes of those stresses. In order to have a successful program of hydraulic fracturing and avoid unnecessary fracturing anomalies we applied integrated reservoir characterization to monitor key parameters. In addition to logging data, core sample analysis was applied for coalbed methane reservoirs to observe dependence tiny lithological variations through the magnetic susceptibility values and their relation to permeability together with expected principal stress. The values of magnetic susceptibility were measured by the core logging sensor, which is equipped with the probe that provides volume magnetic susceptibility parameters

  8. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States.

    Science.gov (United States)

    Vengosh, Avner; Jackson, Robert B; Warner, Nathaniel; Darrah, Thomas H; Kondash, Andrew

    2014-01-01

    The rapid rise of shale gas development through horizontal drilling and high volume hydraulic fracturing has expanded the extraction of hydrocarbon resources in the U.S. The rise of shale gas development has triggered an intense public debate regarding the potential environmental and human health effects from hydraulic fracturing. This paper provides a critical review of the potential risks that shale gas operations pose to water resources, with an emphasis on case studies mostly from the U.S. Four potential risks for water resources are identified: (1) the contamination of shallow aquifers with fugitive hydrocarbon gases (i.e., stray gas contamination), which can also potentially lead to the salinization of shallow groundwater through leaking natural gas wells and subsurface flow; (2) the contamination of surface water and shallow groundwater from spills, leaks, and/or the disposal of inadequately treated shale gas wastewater; (3) the accumulation of toxic and radioactive elements in soil or stream sediments near disposal or spill sites; and (4) the overextraction of water resources for high-volume hydraulic fracturing that could induce water shortages or conflicts with other water users, particularly in water-scarce areas. Analysis of published data (through January 2014) reveals evidence for stray gas contamination, surface water impacts in areas of intensive shale gas development, and the accumulation of radium isotopes in some disposal and spill sites. The direct contamination of shallow groundwater from hydraulic fracturing fluids and deep formation waters by hydraulic fracturing itself, however, remains controversial.

  9. Contesting Technologies in the Networked Society: A Case Study of Hydraulic Fracturing and Shale Development

    Science.gov (United States)

    Hopke, Jill E.

    In this dissertation, I study the network structure and content of a transnational movement against hydraulic fracturing and shale development, Global Frackdown. I apply a relational perspective to the study of role of digital technologies in transnational political organizing. I examine the structure of the social movement through analysis of hyperlinking patterns and qualitative analysis of the content of the ties in one strand of the movement. I explicate three actor types: coordinator, broker, and hyper-local. This research intervenes in the paradigm that considers international actors as the key nodes to understanding transnational advocacy networks. I argue this focus on the international scale obscures the role of globally minded local groups in mediating global issues back to the hyper-local scale. While international NGOs play a coordinating role, local groups with a global worldview can connect transnational movements to the hyper-local scale by networking with groups that are too small to appear in a transnational network. I also examine the movement's messaging on the social media platform Twitter. Findings show that Global Frackdown tweeters engage in framing practices of: movement convergence and solidarity, declarative and targeted engagement, prefabricated messaging, and multilingual tweeting. The episodic, loosely-coordinated and often personalized, transnational framing practices of Global Frackdown tweeters support core organizers' goal of promoting the globalness of activism to ban fracking. Global Frackdown activists use Twitter as a tool to advance the movement and to bolster its moral authority, as well as to forge linkages between localized groups on a transnational scale. Lastly, I study the relative prominence of negative messaging about shale development in relation to pro-shale messaging on Twitter across five hashtags (#fracking, #globalfrackdown, #natgas, #shale, and #shalegas). I analyze the top actors tweeting using the #fracking

  10. Biocides in hydraulic fracturing: hazard and vulnerability with respect to potential groundwater pollution

    Science.gov (United States)

    Worrall, Fred; Wilson, Miles; Davies, Richard

    2016-04-01

    Biocides are one possible chemical additive to frack fluids and their role is to control bacterial growth. Bacterial growth might lead to biofilm build up; and acid sulfide species and hydrogen sulfide (H2S) production: biofilm build up may reduce formation permeability and hinder gas extraction. Kahrilas et al. (2014) published a review of common biocides used in fracking in the USA. The biocides assessed in the review were the sixteen most commonly used in the USA, based on the hydraulic fracturing chemical registry Frac Focus (Frac Focus, 2015). However, the review of Kahrilas et al. (2014) contained no data or observations and so the objective of this study was to consider whether biocides proposed for use in hydrofacturing could be a threat to English groundwater. The study considered all groundwater samples analysed for biocides in English groundwater between 2005 and 2014. The monitoring records were compared to: records of application (both amount and area); and chemical and molecular data for the biocides. The study did not use traditional adsorption and degradation data as these parameters are to prone to variability and are not pure molecular parameters. The study then used the approach of Worrall and Thomsen (2004) to consider the hazard represented by proposed frack biocides and the approach of Worrall and Kolpin (2003) to consider the vulnerability of the areas of potential shale gas exploitation. The study showed that of the 113 biocides tested for in English groundwaters in the decade 2005 - 2014 that 95 were detected above 0.1 g/l . Of these 95, 41 were compounds that were not recorded as being applied during the period of record and the detection of these 41 compounds did not decline over the 10 year period which implies very long residence times and that once compounds do pollute an aquifer then they will be a persistent problem. Furthermore, the solubility of the range of biocides used in frack fluids would imply a potentially higher hazard

  11. Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater.

    Science.gov (United States)

    Sun, Yuqing; Lei, Cheng; Khan, Eakalak; Chen, Season S; Tsang, Daniel C W; Ok, Yong Sik; Lin, Daohui; Feng, Yujie; Li, Xiang-Dong

    2017-06-01

    Nanoscale zero-valent iron (nZVI) was tested for the removal of Cu(II), Zn(II), Cr(VI), and As(V) in model saline wastewaters from hydraulic fracturing. Increasing ionic strength (I) from 0.35 to 4.10 M (Day-1 to Day-90 wastewaters) increased Cu(II) removal (25.4-80.0%), inhibited Zn(II) removal (58.7-42.9%), slightly increased and then reduced Cr(VI) removal (65.7-44.1%), and almost unaffected As(V) removal (66.7-75.1%) by 8-h reaction with nZVI at 1-2 g L-1. The removal kinetics conformed to pseudo-second-order model, and increasing I decreased the surface area-normalized rate coefficient (ksa) of Cu(II) and Cr(VI), probably because agglomeration of nZVI in saline wastewaters restricted diffusion of metal(loid)s to active surface sites. Increasing I induced severe Fe dissolution from 0.37 to 0.77% in DIW to 4.87-13.0% in Day-90 wastewater; and Fe dissolution showed a significant positive correlation with Cu(II) removal. With surface stabilization by alginate and polyvinyl alcohol, the performance of entrapped nZVI in Day-90 wastewater was improved for Zn(II) and Cr(VI), and Fe dissolution was restrained (3.20-7.36%). The X-ray spectroscopic analysis and chemical speciation modelling demonstrated that the difference in removal trends from Day-1 to Day-90 wastewaters was attributed to: (i) distinctive removal mechanisms of Cu(II) and Cr(VI) (adsorption, (co-)precipitation, and reduction), compared to Zn(II) (adsorption) and As(V) (bidentate inner-sphere complexation); and (ii) changes in solution speciation (e.g., from Zn2+ to ZnCl3- and ZnCl42-; from CrO42- to CaCrO4 complex). Bare nZVI was susceptible to variations in wastewater chemistry while entrapped nZVI was more stable and environmentally benign, which could be used to remove metals/metalloids before subsequent treatment for reuse/disposal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Introduction of water from halogen layers to lower reservoirs under high pressure and by hydraulic fracturing of rock

    Energy Technology Data Exchange (ETDEWEB)

    Prozoravich, G.E.; Skrynnik, Z.B.

    1978-11-01

    A petrographic study of the distribution characteristics of chemogenic cements and oil-bearing Cambrian and gas-bearing Triassic granular reservoirs of the Khassi-Messaud and Khassi R'mel fields has made it possible to establish that these cements were formed from halogenic Triassic waters which were squeezed downward under high pressure, and filtered through the rock. This process was accompanied by the natural hydraulic fracturing of rock. During periods of tectonic activation, these waters penetrated downward through fractures which intersected the layer, and brought liquid petroleum with them. This explains the presence of oil in rocks of a significantly lower water--oil layer contact in the foundation. 5 references.

  13. Flow of Gas and Water in Hydraulically Fractured Shale Gas Reservoirs, March 28-29, 2011

    Science.gov (United States)

    Underground fluid flow is primarily controlled by two physical factors: hydraulic conduits and pressure gradients. Both are required, or fluids will not move. In their natural state, shale formations are very impermeable.

  14. Regulation of Water Pollution from Hydraulic Fracturing in Horizontally-Drilled Wells in the Marcellus Shale Region, USA

    Directory of Open Access Journals (Sweden)

    Heather Hatzenbuhler

    2012-12-01

    Full Text Available Hydraulic fracturing is an industrial process used to extract fossil fuel reserves that lie deep underground. With the introduction of horizontal drilling, new commercial sources of energy have become available. Wells are drilled and injected with large quantities of water mixed with specially selected chemicals at high pressures that allow petroleum reserves to flow to the surface. While the increased economic activities and the outputs of domestic energy are welcomed, there is growing concern over negative environmental impacts from horizontal drilling in shale formations. The potential for water contamination, land destruction, air pollution, and geologic disruption has raised concerns about the merits of production activities used during extraction. This paper looks at the impacts of horizontal drilling using hydraulic fracturing on water supplies and takes a comprehensive look at legislative and regulatory approaches to mitigate environmental risks in the Marcellus shale region. The overview identifies shortcomings associated with regulatory controls by local and state governments and offers two policy suggestions to better protect waters of the region.

  15. Building Pipelines for Information: Developing Partnerships Between Scientists, Educators, and Community Groups to Learn More About Hydraulic Fracturing in Colorado

    Science.gov (United States)

    Hafich, K. A.; Hannigan, M.; Martens, W.; McDonald, J. E.; Knight, D.; Gardiner, L. S.; Collier, A. M.; Fletcher, H.; Polmear, M.

    2015-12-01

    Hydraulic fracturing is a highly contentious issue, and trusted sources of information about the impacts and benefits are difficult to find. Scientific research is making strides to catch up with rapidly expanding unconventional oil and gas development, in part, to meet the need for information for policy, regulation, and public interest. A leader in hydraulic fracturing research, the AirWaterGas Sustainability Research Network is a multi-institution, multi-disciplinary team of researchers working to understand the environmental, economic, and social tradeoffs of oil and gas development. AirWaterGas recently restructured and implemented our education and outreach program around a partnership with the CU-Boulder Office for Outreach and Engagement that leverages existing campus infrastructure, networks, and expertise to disseminate research results and engage the public. The education and outreach team is working with formal and informal K-12 educators through several programs: a yearlong teacher professional development program, a rural classroom air quality monitoring program, and a community partnership grant program. Each program brings together scientists and educators in different environments such as the classroom, online learning, in-person workshops, and community lectures. We will present best practices for developing and implementing a viable outreach and education program through building and fostering mutually beneficial partnerships that bridge the gap between scientists and the public.

  16. Development of a data-driven forecasting tool for hydraulically fractured, horizontal wells in tight-gas sands

    Science.gov (United States)

    Kulga, B.; Artun, E.; Ertekin, T.

    2017-06-01

    Tight-gas sand reservoirs are considered to be one of the major unconventional resources. Due to the strong heterogeneity and very low permeability of the formation, and the complexity of well trajectories with multiple hydraulic fractures; there are challenges associated with performance forecasting and optimum exploitation of these resources using conventional modeling approaches. In this study, it is aimed to develop a data-driven forecasting tool for tight-gas sands, which are based on artificial neural networks that can complement the physics-driven modeling approach, namely numerical-simulation models. The tool is designed to predict the horizontal-well performance as a proxy to the numerical model, once the initial conditions, operational parameters, reservoir/hydraulic-fracture characteristics are provided. The data-driven model, that the forecasting tool is based on, is validated with blind cases by estimating the cumulative gas production after 10 years with an average error of 3.2%. A graphical-user-interface application is developed that allows the practicing engineer to use the developed tool in a practical manner by visualizing estimated performance for a given reservoir within a fraction of a second. Practicality of the tool is demonstrated with a case study for the Williams Fork Formation by assessing the performance of various well designs and by incorporating known uncertainties through Monte Carlo simulation. P10, P50 and P90 estimates of the horizontal-well performance are quickly obtained within acceptable accuracy levels.

  17. Integrated In Situ Stress Estimation by Hydraulic Fracturing, Borehole Observations and Numerical Analysis at the EXP-1 Borehole in Pohang, Korea

    Science.gov (United States)

    Kim, Hanna; Xie, Linmao; Min, Ki-Bok; Bae, Seongho; Stephansson, Ove

    2017-12-01

    It is desirable to combine the stress measurement data produced by different methods to obtain a more reliable estimation of in situ stress. We present a regional case study of integrated in situ stress estimation by hydraulic fracturing, observations of borehole breakouts and drilling-induced fractures, and numerical modeling of a 1 km-deep borehole (EXP-1) in Pohang, South Korea. Prior to measuring the stress, World Stress Map (WSM) and modern field data in the Korean Peninsula are used to construct a best estimate stress model in this area. Then, new stress data from hydraulic fracturing and borehole observations is added to determine magnitude and orientation of horizontal stresses. Minimum horizontal principal stress is estimated from the shut-in pressure of the hydraulic fracturing measurement at a depth of about 700 m. The horizontal stress ratios ( S Hmax/ S hmin) derived from hydraulic fracturing, borehole breakout, and drilling-induced fractures are 1.4, 1.2, and 1.1-1.4, respectively, and the average orientations of the maximum horizontal stresses derived by field methods are N138°E, N122°E, and N136°E, respectively. The results of hydraulic fracturing and borehole observations are integrated with a result of numerical modeling to produce a final rock stress model. The results of the integration give in situ stress ratios of 1.3/1.0/0.8 ( S Hmax/ S V/ S hmin) with an average azimuth of S Hmax in the orientation range of N130°E-N136°E. It is found that the orientation of S Hmax is deviated by more than 40° clockwise compared to directions reported for the WSM in southeastern Korean peninsula.

  18. Postinjection Normal Closure of Fractures as a Mechanism for Induced Seismicity

    Science.gov (United States)

    Ucar, E.; Berre, I.; Keilegavlen, E.

    2017-10-01

    Understanding the controlling mechanisms underlying injection-induced seismicity is important for optimizing reservoir productivity and addressing seismicity-related concerns related to hydraulic stimulation in Enhanced Geothermal Systems. Hydraulic stimulation enhances permeability through elevated pressures, which cause normal deformations and the shear slip of preexisting fractures. Previous experiments indicate that fracture deformation in the normal direction reverses as the pressure decreases, e.g., at the end of stimulation. We hypothesize that this normal closure of fractures enhances pressure propagation away from the injection region and significantly increases the potential for postinjection seismicity. To test this hypothesis, hydraulic stimulation is modeled by numerically coupling flow in the fractures and matrix, fracture deformation, and matrix deformation for a synthetic reservoir in which the flow and mechanics are strongly affected by a complex three-dimensional fracture network. The role of the normal closure of fractures is verified by comparing simulations conducted with and without the normal closure effect.

  19. Mechanical interactions between proppants and rock and their effect on hydraulic fracture performance

    Energy Technology Data Exchange (ETDEWEB)

    Legarth, B.A.; Raab, S.; Huenges, E. [GeoForschungsZentrum Potsdam (Germany)

    2005-07-01

    Proppants interact mechanically with the rock matrix. This causes damage to the fracture face and influences propped fracture performance. Therefore, proppant embedment and proppant crushing phenomena were analysed in laboratory under simulated in situ conditions. The embedment tests were performed in a conductivity cell using reassembled core halves. Embedment features in the rock matrix were optically analyzed. In a separate unit single grain strength tests were performed on a wide range of ceramic proppant types (AI203-based, coated/uncoated) and sizes (diameter 0,2-1,6 mm). The experiment showed that areas in the fracture with low proppant concentration revealed severe proppant crushing and embedment that occurred already at low effective stress. Punctual loading was identified as reason for premature proppant failure. Grain strength testing showed that compressive fracture force increases with grain diameter, is influenced by the presence of a coating and might be additionally controlled by grain surface structure. Compressive fracture strength is largely independent from size for same proppant types. A contact model introduced by Hertz was applied to retrieve the stress magnitudes at grain failure. Proppant crushing leads to generation of fines in the matrix and the proppant pack. These fines can be transported and plug pore-throats and flow channels. Dependent on completion type and expected fracture widths proppant grain size should be maximized for higher fracture conductivity. Proppant crushing and embedment processes are enforced by decreasing proppant concentration. Considering natural conditions in a fracture - rough surfaces, tortuous-twisted paths that hinder even proppant distribution - low proppant concentrations appear to be very real, maybe even the normal case in nature. Thus, high proppant concentration is the key issue to mitigate fracture impairment. (orig.)

  20. Numerical Simulation of One-Phase Flow to Multi-Stage Hydraulically Fractured Horizontal Well

    Directory of Open Access Journals (Sweden)

    M.R. Khamidullin

    2016-06-01

    Full Text Available This paper presents a method of numerical simulation of one-phase flow near multi-stage fractured horizontal well in oil reservoir. Differential models for flows within reservoir and within fractures are formulated separately on the basis of Darcy's law. Numerical approximations of these models are performed using the finite volume method. The resulting systems of linear equations are then assembled into the single system to avoid an iterative coupling of numerical solutions for problems in the reservoir and fractures. Different solution methods for coupled ill-conditioned systems of linear equations are examined.

  1. Evaluation of Hydraulic Fracturing (Fracking) Plays for Potential Impact on USACE-Managed Waterways

    Science.gov (United States)

    2015-01-01

    consist of two parts: the solution, which is an aqueous-based liquid; and solid particulate material, which is called the proppant (sand, ceramic...material, gels, etc). When the fluid is injected at high pressure, the proppant works its way into existing fractures, making them larger, and also can...create new