WorldWideScience

Sample records for hydraulic fish habitat

  1. Investigating fish hydraulic habitat preferences using a passive integrated transponder antenna network: Scope on spatial scales and individual mobility

    Science.gov (United States)

    Roy, M. L.; Roy, A. G.

    2009-12-01

    Flow velocity is a major feature of fluvial fish habitat. It affects swimming energy expenditures, resource distribution and efficiency of prey capture, thus exerting a major influence on fish distribution. Preferences of juvenile salmonids for ranges of flow velocity are well documented. Preference curves are usually generated by comparing velocities measured at the precise location of captured fish (nose velocity) with velocities measured at random locations where fish are absent. However, these preferences tend to be specific to sites and rivers and show important variability with time. Recent biotelemetry studies have revealed that juvenile salmonids are more mobile than previously assumed and use larger home ranges and multiple micro-habitats. Therefore, fish might select habitats based on the characteristics of a microhabitat, but also based on the properties of the surrounding area. Furthermore, mobile fish could present temporal variability in their habitat preferences. Recent advances in biotelemetry provide new ways to monitor fish locations and to obtain habitat preferences both at the individual and the population levels at high temporal and spatial resolutions for extended periods. In this study, we seek to identify the most relevant spatial scales defining habitat preferences of juvenile Atlantic salmon. We emphasize both the group and individual temporal variability in hydraulic habitat preferences. During a three month period, we monitored the location and movements of 61 juveniles marked with 23-mm passive integrated transponders (PIT) using a network of 186 antennas buried into the bed of a natural river reach in Saguenay, Canada. Each antenna was scanned every 33 seconds to detect and record the presence or absence of tagged fish. The reach was 70 m long and 9 m wide on average and presented a very clear morphological sequence consisting of two pools separated by a riffle. Mean flow velocity and turbulent flow properties were measured at 3500

  2. Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates.

    Science.gov (United States)

    Guse, Björn; Kail, Jochem; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Hering, Daniel; Wolter, Christian; Fohrer, Nicola

    2015-11-15

    Climate and land use changes affect the hydro- and biosphere at different spatial scales. These changes alter hydrological processes at the catchment scale, which impact hydrodynamics and habitat conditions for biota at the river reach scale. In order to investigate the impact of large-scale changes on biota, a cascade of models at different scales is required. Using scenario simulations, the impact of climate and land use change can be compared along the model cascade. Such a cascade of consecutively coupled models was applied in this study. Discharge and water quality are predicted with a hydrological model at the catchment scale. The hydraulic flow conditions are predicted by hydrodynamic models. The habitat suitability under these hydraulic and water quality conditions is assessed based on habitat models for fish and macroinvertebrates. This modelling cascade was applied to predict and compare the impacts of climate- and land use changes at different scales to finally assess their effects on fish and macroinvertebrates. Model simulations revealed that magnitude and direction of change differed along the modelling cascade. Whilst the hydrological model predicted a relevant decrease of discharge due to climate change, the hydraulic conditions changed less. Generally, the habitat suitability for fish decreased but this was strongly species-specific and suitability even increased for some species. In contrast to climate change, the effect of land use change on discharge was negligible. However, land use change had a stronger impact on the modelled nitrate concentrations affecting the abundances of macroinvertebrates. The scenario simulations for the two organism groups illustrated that direction and intensity of changes in habitat suitability are highly species-dependent. Thus, a joined model analysis of different organism groups combined with the results of hydrological and hydrodynamic models is recommended to assess the impact of climate and land use changes on

  3. Habitat segregation in fish assemblages

    OpenAIRE

    Ibbotson, A.T.

    1990-01-01

    The segregation of habitats of fish assemblages found in the chalk streams and rivers within the Wessex, South West and Southern Water Authority boundaries in southern England have been examined. Habitat segregation is the most frequent type of resource partitioning in natural communities. The habitat of individual fish species will be defined in order to determine the following: (1) the requirements of each species in terms of depth, current velocity, substrate, cover etc.; (2) identify the ...

  4. Essential Fish Habitat (EFH) Areas Protected From Fishing

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Designated Essential Fish Habitat (EFH) areas where fishing or the use of fishing gears has been restricted or modified in order to minimize the adverse effects of...

  5. Fish habitat mitigation measures for hydrotechnical projects

    International Nuclear Information System (INIS)

    McPhail, G.D.; MacMillan, D.B.; Katopodis, C.

    1992-01-01

    In recent years, the identification and mitigation of environmental impacts of hydrotechnical projects, particularly on fish and fish habitats, have become a major component of project planning and design. Potential impacts to fish and fish habitat may include increased fish mortality, decreased species diversity, and loss or decreases in fish production due to loss of habitat or alteration of its suitability. These impacts arise from flooding of riverine habitat, alteration of flow quantity and distribution, changes in morphology, and alteration of water quality, including suspended sediments, temperature, dissolved oxygen, and mercury. The results of a study for the Canadian Federal Department of Fisheries and Oceans Central and Arctic Region, examining fish habitat mitigation techniques for their applicability to hydrotechnical projects in Canada are summarized. The requirements for achievement and verification of the no net loss policy for a project are discussed. 10 refs., 2 tabs

  6. Evaluation of Fish Passage at Whitewater Parks Using 2D and 3D Hydraulic Modeling

    Science.gov (United States)

    Hardee, T.; Nelson, P. A.; Kondratieff, M.; Bledsoe, B. P.

    2016-12-01

    In-stream whitewater parks (WWPs) are increasingly popular recreational amenities that typically create waves by constricting flow through a chute to increase velocities and form a hydraulic jump. However, the hydraulic conditions these structures create can limit longitudinal habitat connectivity and potentially inhibit upstream fish migration, especially of native fishes. An improved understanding of the fundamental hydraulic processes and potential environmental effects of whitewater parks is needed to inform management decisions about Recreational In-Channel Diversions (RICDs). Here, we use hydraulic models to compute a continuous and spatially explicit description of velocity and depth along potential fish swimming paths in the flow field, and the ensemble of potential paths are compared to fish swimming performance data to predict fish passage via logistic regression analysis. While 3d models have been shown to accurately predict trout movement through WWP structures, 2d methods can provide a more cost-effective and manager-friendly approach to assessing the effects of similar hydraulic structures on fish passage when 3d analysis in not feasible. Here, we use 2d models to examine the hydraulics in several WWP structures on the North Fork of the St. Vrain River at Lyons, Colorado, and we compare these model results to fish passage predictions from a 3d model. Our analysis establishes a foundation for a practical, transferable and physically-rigorous 2d modeling approach for mechanistically evaluating the effects of hydraulic structures on fish passage.

  7. Habitat hydraulic models - a tool for Danish stream quality assessment?

    DEFF Research Database (Denmark)

    Olsen, Martin

    and hydromorphological and chemical characteristics has to be enlightened (EUROPA, 2005). This study links catchment hydrology, stream discharge and physical habitat in a small Danish stream, the stream Ledreborg, and discusses the utility of habitat hydraulic models in relation to the present criteria and methods used......).  Hydromorphological conditions in the stream are measured through field study, using a habitat mapping approach and modelled using a habitat hydraulic model (RHYHABSIM). Using RHYHABSIM and both "site-specific" and general HSI's, Weighted Usable Area (WUA) for the trout population at different discharges is assessed...... and differences between simulated WUA using "site-specific" and general habitat preferences are discussed. In RHYHABSIM it is possible to use two different approaches to investigate the hydromorphological conditions in a river, the habitat mapping approach used in this project and the representative reach...

  8. Habitat Use Database - Groundfish Essential Fish Habitat (EFH) Habitat Use Database (HUD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Habitat Use Database (HUD) was specifically designed to address the need for habitat-use analyses in support of groundfish EFH, HAPCs, and fishing and nonfishing...

  9. Influence of habitat degradation on fish replenishment

    Science.gov (United States)

    McCormick, M. I.; Moore, J. A. Y.; Munday, P. L.

    2010-09-01

    Temperature-induced coral bleaching is a major threat to the biodiversity of coral reef ecosystems. While reductions in species diversity and abundance of fish communities have been documented following coral bleaching, the mechanisms that underlie these changes are poorly understood. The present study examined the impacts of coral bleaching on the early life-history processes of coral reef fishes. Daily monitoring of fish settlement patterns found that ten times as many fish settled to healthy coral than sub-lethally bleached coral. Species diversity of settling fishes was least on bleached coral and greatest on dead coral, with healthy coral having intermediate levels of diversity. Laboratory experiments using light-trap caught juveniles showed that different damselfish species chose among healthy, bleached and dead coral habitats using different combinations of visual and olfactory cues. The live coral specialist, Pomacentrus moluccensis, preferred live coral and avoided bleached and dead coral, using mostly visual cues to inform their habitat choice. The habitat generalist, Pomacentrus amboinensis, also preferred live coral and avoided bleached and dead coral but selected these habitats using both visual and olfactory cues. Trials with another habitat generalist, Dischistodus sp., suggested that vision played a significant role. A 20 days field experiment that manipulated densities of P. moluccensis on healthy and bleached coral heads found an influence of fish density on juvenile weight and growth, but no significant influence of habitat quality. These results suggests that coral bleaching will affect settlement patterns and species distributions by influencing the visual and olfactory cues that reef fish larvae use to make settlement choices. Furthermore, increased fish density within the remaining healthy coral habitats could play an important role in influencing population dynamics.

  10. Fish habitat simulation models and integrated assessment tools

    International Nuclear Information System (INIS)

    Harby, A.; Alfredsen, K.

    1999-01-01

    Because of human development water use increases in importance, and this worldwide trend is leading to an increasing number of user conflicts with a strong need for assessment tools to measure the impacts both on the ecosystem and the different users and user groups. The quantitative tools must allow a comparison of alternatives, different user groups, etc., and the tools must be integrated while impact assessments includes different disciplines. Fish species, especially young ones, are indicators of the environmental state of a riverine system and monitoring them is a way to follow environmental changes. The direct and indirect impacts on the ecosystem itself are measured, and impacts on user groups is not included. Fish habitat simulation models are concentrated on, and methods and examples are considered from Norway. Some ideas on integrated modelling tools for impact assessment studies are included. One dimensional hydraulic models are rapidly calibrated and do not require any expert knowledge in hydraulics. Two and three dimensional models require a bit more skilled users, especially if the topography is very heterogeneous. The advantages of using two and three dimensional models include: they do not need any calibration, just validation; they are predictive; and they can be more cost effective than traditional habitat hydraulic models when combined with modern data acquisition systems and tailored in a multi-disciplinary study. Suitable modelling model choice should be based on available data and possible data acquisition, available manpower, computer, and software resources, and needed output and accuracy in the output. 58 refs

  11. 50 CFR 660.395 - Essential Fish Habitat (EFH)

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Essential Fish Habitat (EFH) 660.395... Groundfish Fisheries § 660.395 Essential Fish Habitat (EFH) Essential fish habitat (EFH) is defined as those waters and substrate necessary to fish for spawning, breeding, feeding or growth to maturity (16 U.S.C...

  12. Fish habitat selection in a large hydropeaking river: Strong individual and temporal variations revealed by telemetry.

    Science.gov (United States)

    Capra, Hervé; Plichard, Laura; Bergé, Julien; Pella, Hervé; Ovidio, Michaël; McNeil, Eric; Lamouroux, Nicolas

    2017-02-01

    Modeling individual fish habitat selection in highly variable environments such as hydropeaking rivers is required for guiding efficient management decisions. We analyzed fish microhabitat selection in the heterogeneous hydraulic and thermal conditions (modeled in two-dimensions) of a reach of the large hydropeaking Rhône River locally warmed by the cooling system of a nuclear power plant. We used modern fixed acoustic telemetry techniques to survey 18 fish individuals (five barbels, six catfishes, seven chubs) signaling their position every 3s over a three-month period. Fish habitat selection depended on combinations of current microhabitat hydraulics (e.g. velocity, depth), past microhabitat hydraulics (e.g. dewatering risk or maximum velocities during the past 15days) and to a lesser extent substrate and temperature. Mixed-effects habitat selection models indicated that individual effects were often stronger than specific effects. In the Rhône, fish individuals appear to memorize spatial and temporal environmental changes and to adopt a "least constraining" habitat selection. Avoiding fast-flowing midstream habitats, fish generally live along the banks in areas where the dewatering risk is high. When discharge decreases, however, they select higher velocities but avoid both dewatering areas and very fast-flowing midstream habitats. Although consistent with the available knowledge on static fish habitat selection, our quantitative results demonstrate temporal variations in habitat selection, depending on individual behavior and environmental history. Their generality could be further tested using comparative experiments in different environmental configurations. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Habitat specialization in tropical continental shelf demersal fish assemblages.

    Directory of Open Access Journals (Sweden)

    Ben M Fitzpatrick

    Full Text Available The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304 collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1-10 m depth, down the fore reef slope to the reef base (10-30 m depth then across the adjacent continental shelf (30-110 m depth. Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of

  14. Modelling Fish Habitat Suitability in the Eastern English Channel. Application to community habitat level

    OpenAIRE

    Vaz, Sandrine; Carpentier, Andre; Loots, Christophe; Koubbi, Philippe

    2004-01-01

    Valuable marine habitats and living resources can be found in the Eastern English Channel and in 2003, a Franco-British Interreg IIIA project, ‘Eastern Channel Habitat Atlas for Marine Resource Management’ (CHARM), was initiated to support decision-making for management of essential fish habitats. Fish habitat corresponds to geographic areas within which ranges of environmental factors define the presence of a particular species. Habitat Suitability index (HSI) modelling was used to relate fi...

  15. Habitat Ecology Visual Surveys of Demersal Fishes and Habitats off California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Since 1992, the Habitat Ecology team has been conducting fishery independent, visual surveys of demersal fishes and associated habitats in deep water (20 to 900...

  16. Habitat preferences of common native fishes in a tropical river in Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Marcus Rodrigues da Costa

    Full Text Available We determined in this study the habitat preferences of seven native fish species in a regulated river in Southeastern Brazil. We tested the hypothesis that fishes differ in habitat preference and that they use stretches of the river differing in hydraulic characteristics and substrate type. We surveyed fishes in four 1-km long river stretches encompassing different habitat traits, where we also measured water depth, velocity, and substrate type. We investigated preference patterns of four Siluriformes (Loricariichthys castaneus, Hoplosternum littorale, Pimelodus maculatus, and Trachelyopterus striatulus and three Characiformes (Astyanax aff. bimaculatus, Oligosarcus hepsetus, and Hoplias malabaricus, representing approximately 70% of the total number of fishes and 64% of the total biomass. We classified fishes into four habitat guilds: (1 a slow-flowing water guild that occupied mud-sand substrate, composed of two Siluriformes in either shallow ( 8 m, L. castaneus waters; (2 a run-dwelling guild that occurs in deep backwaters with clay-mud substrate, composed of the Characiformes A. aff. bimaculatus and O. hepsetus; (3 a run-dwelling guild that occurs in sandy and shallow substrate, composed of T. striatulus; and (4 a fast-flowing guild that occurs primarily along shorelines with shallow mud bottoms, composed of H. malabaricus and P. maculatus. Our hypothesis was confirmed, as different habitat preferences by fishes appear to occur in this regulated river.

  17. Grande Ronde Basin Fish Habitat Enhancement Project : 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Powell, Russ M.

    1999-05-01

    The primary goal of ''The Grande Ronde Basin Fish Habitat Improvement Project'' is to access, create, improve, protect, and restore reparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin.

  18. Establishment of blue mussel beds to enhance fish habitats

    DEFF Research Database (Denmark)

    Kristensen, Louise Dahl; Stenberg, Claus; Støttrup, Josianne

    2015-01-01

    Human activity has impacted many coastal fjords causing degeneration of the structure and function of the fish habitats. In Nørrefjord, Denmark, local fishermen complained of declining fish catches which could be attributed to eutrophication and extraction of sediments over several decades. This ...... directly on hemp sacs hanging on long-lines was the most effective method. This new method is potentially a useful management tool to improve fish habitats...

  19. Fish Habitat and Fish Populations in a Southern Appalachian Watershed before and after Hurricane Hugo

    Science.gov (United States)

    C. Andrew Dolloff; Patricia A. Flebbe; Michael D. Owen

    1994-01-01

    Habitat features and relative abundance of all fish species were estimated in 8.4 km of a small mountain stream system before and 11 months after Hurricane Hugo crossed the southern Appalachians in September 1989. There was no change in the total amount (area) of each habitat type but the total number of habitat units decreased and average size and depth of habitat...

  20. Relative and combined effects of habitat and fishing on reef fish communities across a limited fishing gradient at Ningaloo.

    Science.gov (United States)

    Wilson, Shaun K; Babcock, Russ C; Fisher, Rebecca; Holmes, Thomas H; Moore, James A Y; Thomson, Damian P

    2012-10-01

    Habitat degradation and fishing are major drivers of temporal and spatial changes in fish communities. The independent effects of these drivers are well documented, but the relative importance and interaction between fishing and habitat shifts is poorly understood, particularly in complex systems such as coral reefs. To assess the combined and relative effects of fishing and habitat we examined the composition of fish communities on patch reefs across a gradient of high to low structural complexity in fished and unfished areas of the Ningaloo Marine Park, Western Australia. Biomass and species richness of fish were positively correlated with structural complexity of reefs and negatively related to macroalgal cover. Total abundance of fish was also positively related to structural complexity, however this relationship was stronger on fished reefs than those where fishing is prohibited. The interaction between habitat condition and fishing pressure is primarily due to the high abundance of small bodied planktivorous fish on fished reefs. However, the influence of management zones on the abundance and biomass of predators and target species is small, implying spatial differences in fishing pressure are low and unlikely to be driving this interaction. Our results emphasise the importance of habitat in structuring reef fish communities on coral reefs especially when gradients in fishing pressure are low. The influence of fishing effort on this relationship may however become more important as fishing pressure increases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. ENERGETIC EXTREMES IN REEF FISH OCCUPYING HARSH HABITATS

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2009-01-01

    document how relatively small changes in fin morphology has afforded some coral reef fish taxa with exceptional locomotor performance and energetic efficiency, and how this key attribute may have played a key role in the evolution and ecology of several diverse Indo-Pacific reef fish families. Using......-finned counterparts. We discuss how such differences in locomotor efficiency are pivotal to the habitat-use of these fishes, and how eco-energetic models may be used to provide new insights into spatial variations in fish demography and ecology among coral reef habitat zones....

  2. Fish pass assessment by remote control: a novel framework for quantifying the hydraulics at fish pass entrances

    Science.gov (United States)

    Kriechbaumer, Thomas; Blackburn, Kim; Gill, Andrew; Breckon, Toby; Everard, Nick; Wright, Ros; Rivas Casado, Monica

    2014-05-01

    Fragmentation of aquatic habitats can lead to the extinction of migratory fish species with severe negative consequences at the ecosystem level and thus opposes the target of good ecological status of rivers defined in the EU Water Framework Directive (WFD). In the UK, the implementation of the EU WFD requires investments in fish pass facilities of estimated 532 million GBP (i.e. 639 million Euros) until 2027 to ensure fish passage at around 3,000 barriers considered critical. Hundreds of passes have been installed in the past. However, monitoring studies of fish passes around the world indicate that on average less than half of the fish attempting to pass such facilities are actually successful. There is a need for frameworks that allow the rapid identification of facilities that are biologically effective and those that require enhancement. Although there are many environmental characteristics that can affect fish passage success, past research suggests that variations in hydrodynamic conditions, reflected in water velocities, velocity gradients and turbulences, are the major cues that fish use to seek migration pathways in rivers. This paper presents the first steps taken in the development of a framework for the rapid field-based quantification of the hydraulic conditions downstream of fish passes and the assessment of the attractivity of fish passes for salmonids and coarse fish in UK rivers. For this purpose, a small-sized remote control platform carrying an acoustic Doppler current profiler (ADCP), a GPS unit, a stereo camera and an inertial measurement unit has been developed. The large amount of data on water velocities and depths measured by the ADCP within relatively short time is used to quantify the spatial and temporal distribution of water velocities. By matching these hydraulic features with known preferences of migratory fish, it is attempted to identify likely migration routes and aggregation areas at barriers as well as hydraulic features that

  3. Tracing multi-habitat support of coastal fishes

    Science.gov (United States)

    Hydrologic linkages among coastal wetland and nearshore areas allow coastal fish to move among the habitats, which has led to a variety of habitat use patterns. In the Great Lakes, fine-scale microchemical analyses of yellow perch otoliths have revealed life-history categories th...

  4. Essential coastal habitats for fish in the Baltic Sea

    DEFF Research Database (Denmark)

    Kraufvelin, Patrik; Pekcan-Hekim, Zeynep; Bergström, Ulf

    2018-01-01

    Many coastal and offshore fish species are highly dependent on specific habitat types for population maintenance. In the Baltic Sea, shallow productive habitats in the coastal zone such as wetlands, vegetated flads/lagoons and sheltered bays as well as more exposed rocky and sandy areas are utili...

  5. Individual variation in habitat use in two stream fish assemblages

    OpenAIRE

    Luisa Resende Manna; Carla Ferreira Rezende

    2015-01-01

    The habitat use is an individual choice that is influenced by physical conditions such as substrate type, food resources availability and adequate depth. However, habitat use is often measured only through interspecific variability because intraspecific variability is supposed to be low. Here, the differences in habitat use by two stream fish assemblages in two different environments (Brazilian rainforest and semiarid) were investigated at both interspecific and intraspecific levels. We perfo...

  6. Field review of fish habitat improvement projects in central Idaho

    International Nuclear Information System (INIS)

    Beschta, R.L.; Griffith, J.; Wesche, T.A.

    1993-05-01

    The goal of this field review was to provide information to the Bonneville Power Administration (BPA) regarding previous and ongoing fish habitat improvement projects in central Idaho. On July 14, 1992, the review team met at the Sawtooth National Recreation Area office near Ketchum, Idaho, for a slide presentation illustrating several habitat projects during their construction phases. Following the slide presentation, the review team inspected fish habitat projects that have been implemented in the last several years in the Stanley Basin and adjacent valleys. At each site the habitat project was described to the field team and a brief period for project inspection followed. The review team visited approximately a dozen sites on the Challis, Sawtooth, and Boise National Forests over a period of approximately two and a half days. There are two objectives of this review namely to summarize observations for specific field sites and to provide overview commentary regarding the BPA habitat improvement program in central Idaho

  7. Habitat degradation and fishing effects on the size structure of coral reef fish communities.

    Science.gov (United States)

    Wilson, S K; Fisher, R; Pratchett, M S; Graham, N A J; Dulvy, N K; Turner, R A; Cakacaka, A; Polunin, N V C

    2010-03-01

    Overfishing and habitat degradation through climate change pose the greatest threats to sustainability of marine resources on coral reefs. We examined how changes in fishing pressure and benthic habitat composition influenced the size spectra of island-scale reef fish communities in Lau, Fiji. Between 2000 and 2006 fishing pressure declined in the Lau Islands due to declining human populations and reduced demand for fresh fish. At the same time, coral cover declined and fine-scale architectural complexity eroded due to coral bleaching and outbreaks of crown-of-thorns starfish, Acanthaster planci. We examined the size distribution of reef fish communities using size spectra analysis, the linearized relationship between abundance and body size class. Spatial variation in fishing pressure accounted for 31% of the variation in the slope of the size spectra in 2000, higher fishing pressure being associated with a steeper slope, which is indicative of fewer large-bodied fish and/or more small-bodied fish. Conversely, in 2006 spatial variation in habitat explained 53% of the variation in the size spectra slopes, and the relationship with fishing pressure was much weaker (approximately 12% of variation) than in 2000. Reduced cover of corals and lower structural complexity was associated with less steep size spectra slopes, primarily due to reduced abundance of fish < 20 cm. Habitat degradation will compound effects of fishing on coral reefs as increased fishing reduces large-bodied target species, while habitat loss results in fewer small-bodied juveniles and prey that replenish stocks and provide dietary resources for predatory target species. Effective management of reef resources therefore depends on both reducing fishing pressure and maintaining processes that encourage rapid recovery of coral habitat.

  8. Individual variation in habitat use in two stream fish assemblages

    Directory of Open Access Journals (Sweden)

    Luisa Resende Manna

    2015-12-01

    Full Text Available The habitat use is an individual choice that is influenced by physical conditions such as substrate type, food resources availability and adequate depth. However, habitat use is often measured only through interspecific variability because intraspecific variability is supposed to be low. Here, the differences in habitat use by two stream fish assemblages in two different environments (Brazilian rainforest and semiarid were investigated at both interspecific and intraspecific levels. We performed 55 hours of underwater observation in a 200 meters long stretch in each stream and quantified the following habitat descriptors: (i water velocity, (ii distance from the stream bank, (iii substratum, (iv water column depth, (v aquatic cover, and (vi canopy percentage. To compare intra and interspecific variability we summarized the multivariate habitat use databases using Principal Components Analysis (PCA on Euclidean distance. An Analysis of Similarity (ANOSIM was performed to test the differences in habitat use by the two assemblages. Besides, in each fish community we did an Analysis of Variance (ANOVA to test within vs between species variability for individual position on each PCA axes. To go further than these univariate tests, the differences among the species and assemblages were tested with Permutational Multivariate Analysis of Variance (PERMANOVA. The habitat use between assemblages was significantly different (ANOSIM – R=0.14; p<0.001. PERMANOVA revealed significant differences among species in both assemblages (Rainforest - F=7.25; p<0.001; semiarid - F=4.84; p<0.001. Lower F values in the semiarid assemblage revealed a higher level of intraspecific variability for this assemblage. Our findings showed high intra and interspecific variability in both stream fish assemblages and highlight the importance of measuring individual’s differences for this feature of fish biodiversity. Additionally, the versatility described for tropical

  9. Umatilla River Subbasin Fish Habitat Improvement Program, 2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    St. Hilaire, Danny R. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2006-05-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration agreements, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat conditions. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and re-construction aimed at improving fish habitat, through the restoration of stable channel function. This report provides a summary of Program activities for the 2005 calendar year (January 1 through December 31, 2005), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance (O&M), and (4) Monitoring and Evaluation (M&E). This report also summarizes activities associated with Program Administration, Interagency Coordination, and Public Education.

  10. Habitat loss and gain: Influence on habitat attractiveness for estuarine fish communities

    Science.gov (United States)

    Amorim, Eva; Ramos, Sandra; Elliott, Michael; Franco, Anita; Bordalo, Adriano A.

    2017-10-01

    Habitat structure and complexity influence the structuring and functioning of fish communities. Habitat changes are one of the main pressures affecting estuarine systems worldwide, yet the degree and rate of change and its impact on fish communities is still poorly understood. In order to quantify historical modifications in habitat structure, an ecohydrological classification system using physiotopes, i.e. units with homogenous abiotic characteristics, was developed for the lower Lima estuary (NW Portugal). Field data, aerial imagery, historical maps and interpolation methods were used to map input variables, including bathymetry, substratum (hard/soft), sediment composition, hydrodynamics (current velocity) and vegetation coverage. Physiotopes were then mapped for the years of 1933 and 2013 and the areas lost and gained over the 80 years were quantified. The implications of changes for the benthic and demersal fish communities using the lower estuary were estimated using the attractiveness to those communities of each physiotope, while considering the main estuarine habitat functions for fish, namely spawning, nursery, feeding and refuge areas and migratory routes. The lower estuary was highly affected due to urbanisation and development and, following a port/harbour expansion, its boundary moved seaward causing an increase in total area. Modifications led to the loss of most of its sandy and saltmarsh intertidal physiotopes, which were replaced by deeper subtidal physiotopes. The most attractive physiotopes for fish (defined as the way in which they supported the fish ecological features) decreased in area while less attractive ones increased, producing an overall lower attractiveness of the studied area in 2013 compared to 1933. The implications of habitat alterations for the fish using the estuary include potential changes in the nursery carrying capacity and the functioning of the fish community. The study also highlighted the poor knowledge of the impacts of

  11. Grande Ronde Basin Fish Habitat Enhancement Project : 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Powell, Russ M.; Stennfeld, Scott P.

    2001-04-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of ''The Grande Ronde Basin Fish Habitat Enhancement Project'' is to access, create, improve, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian enclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2000 included: (1) Implementing 2 new projects in the Grande Ronde drainage, and retrofitting one old

  12. Hydropower Production and Fish Habitat Suitability: Impact and Effectiveness of Environmental Flow Prescriptions

    Science.gov (United States)

    Castellarin, A.; Galeati, G.; Ceola, S.; Pugliese, A.; Ventura, M.; Montanari, A.

    2017-12-01

    The anthropogenic alteration of the natural flow regime of a river for hydropower production can significantly modify the processes and functions associated with fluvial ecosystems. In order to preserve the fluvial habitat downstream of dams and diversion structures, environmental flows are commonly defined. Such environmental flows are generally computed from empirical methodologies, which are seldom based on site-specific studies, and may not be representative of local ecological and hydraulic conditions. Here we present the results of a quantitative analysis on the effectiveness of two alternative environmental flow scenarios prescribed in Central Italy (time-invariant experimental and empirically-based flow release versus time-variant hydrogeomorphologically-based flow release) and their impact on hydropower production and fish habitat suitability. The latter is examined by means of several models of habitat suitability curve, which is a well-known approach capable of analysing fluvial species preferences as a function of key eco-hydraulic features, such as water depth, flow velocity and river substrate. The results show an evident loss of hydropower production moving from the time-invariant experimental flow release to the hydrogeomorphological one (nearly 20% at the annual scale). Concerning the effects in terms of fish habitat suitability, our outcomes are less obvious, since they are species- and life stage-specific. The proposed analysis, which can be easily adapted to different riparian habitats and hydrological contexts, is a useful tool to guide the derivation of optimal water resource management strategies in order to ensure both hydropower production and fluvial ecosystem protection.

  13. 1999 international workshop on sustainable riverine fish habitat: proceedings

    International Nuclear Information System (INIS)

    1999-01-01

    The workshop ended April 24, 1999 with attendance by 75 participants from Brazil, Canada, Kenya, Norway, the UK and the US. Sponsors included the World Bank, the US Dept of Energy, the provincial government of British Columbia and the Institute of Hydrology in the UK. The purpose of the workshop was to bring together a multi-disciplinary team of experts concerned with the effect of water management on the sustainability of fish resources in rivers. Those in attendance constituted a mix of scientists, utility engineers, and government regulators. There were presentations on the science and regulatory aspects of riverine fish habitat/instream flow issues from all these countries. Each day was introduced with a key note address: (1) evolution of US instream flow needs; (2) the mission of the World Commission on dams; and (3) fish habitat simulation models, verification studies and applications in multi-objective decision support systems. Three papers of interest are abstracted separately on a unique application of the instream flow incremental methodology to predict impacts on riverine aquatic habitat, total gas pressure and biological responses and fish habitat simulation models and integrated assessment tools

  14. Linking hydroclimate to fish phenology and habitat use with ichthyographs

    Science.gov (United States)

    Rebecca L. Flitcroft; Sarah L. Lewis; Ivan Arismendi; Rachel LovellFord; Mary V. Santelmann; Mohammad Safeeq; Gordon Grant; Kyle A. Young

    2016-01-01

    Streamflow and water temperature (hydroclimate) influence the life histories of aquatic biota. The relationship between streamflow and temperature varies with climate, hydrogeomorphic setting, and season. Life histories of native fishes reflect, in part, their adaptation to regional hydroclimate (flow and water temperature), local habitats, and natural disturbance...

  15. Abundances and Habitat Sensitivities of Some River Fishes in ...

    African Journals Online (AJOL)

    Freshwater fishes from a diverse array of 11 families, some dominated by marine species and others containing only a few species, were collected by electrofishing from 84 locations on small rivers in central Thailand and their abundances related to habitat characteristics. Abundances were largest for Channa gachua, ...

  16. Transferability of habitat suitability criteria for fishes in warmwater streams

    Science.gov (United States)

    Freeman, Mary C.; Bowen, Z.H.; Crance, J.H.

    1997-01-01

    We developed habitat suitability criteria and tested their transferability for nine fishes inhabiting unregulated Piedmont and Coastal Plain streams in Alabama. Cr iteria for optimal habitat were defined as ranges of depth, velocity, substrate type and cover type for which a species' suitability index (proportional abundance divided by proportional habitat availability, scaled from 0 to 1) equalled or exceeded 0.4. We evaluated the transferability of criteria between study sites by testing the null hypothesis that species occurrence in a sample was independent of whether or not the sample was taken in optimal habitat. We also tested criteria transference to a large, flow-regulated river sampled during low flow periods. Depth, velocity and most substrate criteria developed for the bronze darter Percina palmaris successfully transferred between unregulated streams and to the flow-regulated river samples. All criteria developed for a pair of closely related, allopatric darter species, Etheostoma chuckwachattee and E. jordani, transferred sucessfully when applied between species (in the unregulated sites) and to the regulated river samples. In contrast, criteria for the Alabama shiner Cyprinella callistia failed nearly all tests of transferability. Criteria for E. stigmaeum, P. nigrofasciata, an undescribed Percina species, and a pair of related, allopatric Cyprinella species transferred inconsistently. The species with good criteria transference had high suitability indices for shallow depths, fast current velocities and coarse substrates, characteristic of riffle species. We suggest that microhabitat criteria for riffle fishes are more likely to provide a transferable measure of habitat quality than criteria for fishes that, although restricted to fluvial habitats, commonly occupy a variety of pool and riffle habitats.

  17. Hydraulic modeling of mussel habitat at a bridge-replacement site, Allegheny River, Pennsylvania, USA

    Science.gov (United States)

    Fulton, John W.; Wagner, Chad R.; Rogers, Megan E.; Zimmerman, Gregory F.

    2010-01-01

    The Allegheny River in Pennsylvania supports a large and diverse freshwater-mussel community, including two federally listed endangered species, Pleurobema clava(Clubshell) and Epioblasma torulosa rangiana (Northern Riffleshell). It is recognized that river hydraulics and morphology play important roles in mussel distribution. To assess the hydraulic influences of bridge replacement on mussel habitat, metrics such as depth, velocity, and their derivatives (shear stress, Froude number) were collected or computed.

  18. Habits and Habitats of Fishes in the Upper Mississippi River

    Science.gov (United States)

    Norwick, R.; Janvrin, J.; Zigler, S.; Kratt, R.

    2011-01-01

    The Upper Mississippi River consists of 26 navigation pools that provide abundant habitat for a host of natural resources, such as fish, migratory waterfowl, non-game birds, deer, beaver, muskrats, snakes, reptiles, frogs, toads, salamanders, and many others. Of all the many different types of animals that depend on the river, fish are the most diverse with over 140 different species. The sport fishery is very diverse with at least 25 species commonly harvested. Fish species, such as walleyes, largemouth bass, bluegills, and crappies are favorites of sport anglers. Others such as common carp, buffalos, and channel catfish, are harvested by commercial anglers and end up on the tables of families all over the country. Still other fishes are important because they provide food for sport or commercial species. The fishery resources in these waters contribute millions of dollars to the economy annually. Overall, the estimate impact of anglers and other recreational users exceeds $1.2 billion on the Upper Mississippi River. The fisheries in the various reaches of the river of often are adversely affected by pollution, urbanization, non-native fishes, navigation, recreational boating, fishing, dredging, and siltation. However, state and federal agencies expend considerable effort and resources to manage fisheries and restore river habitats. This pamphlet was prepared to help you better understand what fishery resources exist, what the requirements of each pecies are, and how man-induced changes that are roposed or might occur could affect them.

  19. Hydraulic modelling of the spatial and temporal variability in Atlantic salmon parr habitat availability in an upland stream.

    Science.gov (United States)

    Fabris, Luca; Malcolm, Iain Archibald; Buddendorf, Willem Bastiaan; Millidine, Karen Jane; Tetzlaff, Doerthe; Soulsby, Chris

    2017-12-01

    We show how spatial variability in channel bed morphology affects the hydraulic characteristics of river reaches available to Atlantic salmon parr (Salmo salar) under different flow conditions in an upland stream. The study stream, the Girnock Burn, is a long-term monitoring site in the Scottish Highlands. Six site characterised by different bed geometry and morphology were investigated. Detailed site bathymetries were collected and combined with discharge time series in a 2D hydraulic model to obtain spatially distributed depth-averaged velocities under different flow conditions. Available habitat (AH) was estimated for each site. Stream discharge was used according to the critical displacement velocity (CDV) approach. CDV defines a velocity threshold above which salmon parr are not able to hold station and effective feeding opportunities or habitat utilization are reduced, depending on fish size and water temperature. An average value of the relative available habitat () for the most significant period for parr growth - April to May - was used for inter-site comparison and to analyse temporal variations over 40years. Results show that some sites are more able than others to maintain zones where salmon parr can forage unimpeded by high flow velocities under both wet and dry conditions. With lower flow velocities, dry years offer higher values of than wet years. Even though can change considerably across the sites as stream flow changes, the directions of change are consistent. Relative available habitat (RAH) shows a strong relationship with discharge per unit width, whilst channel slope and bed roughness either do not have relevant impact or compensate each other. The results show that significant parr habitat was available at all sites across all flows during this critical growth period, suggesting that hydrological variability is not a factor limiting growth in the Girnock. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  20. Do nursery habitats provide shelter from flow for juvenile fish?

    Directory of Open Access Journals (Sweden)

    Darren M Parsons

    Full Text Available Juvenile fish nurseries are an essential life stage requirement for the maintenance of many fish populations. With many inshore habitats globally in decline, optimising habitat management by increasing our understanding of the relationship between juvenile fish and nursery habitats may be a prudent approach. Previous research on post-settlement snapper (Chrysophrys auratus has suggested that structure may provide a water flow refuge, allowing snapper to access high water flow sites that will also have a high flux of their pelagic prey. We investigated this hypothesis by describing how Artificial Seagrass Units (ASUs modified water flow while also using a multi-camera set up to quantify snapper position in relation to this water flow environment. Horizontal water flow was reduced on the down-current side of ASUs, but only at the height of the seagrass canopy. While the highest abundance of snapper did occur down-current of the ASUs, many snapper also occupied other locations or were too high in the water column to receive any refuge from water flow. The proportion of snapper within the water column was potentially driven by strategy to access zooplankton prey, being higher on the up-current side of ASUs and on flood tides. It is possible that post-settlement snapper alternate position to provide opportunities for both feeding and flow refuging. An alternative explanation relates to an observed interaction between post-settlement snapper and a predator, which demonstrated that snapper can utilise habitat structure when threatened. The nature of this relationship, and its overall importance in determining the value of nursery habitats to post-settlement snapper remains an elusive next step.

  1. Do nursery habitats provide shelter from flow for juvenile fish?

    Science.gov (United States)

    Parsons, Darren M; MacDonald, Iain; Buckthought, Dane; Middleton, Crispin

    2018-01-01

    Juvenile fish nurseries are an essential life stage requirement for the maintenance of many fish populations. With many inshore habitats globally in decline, optimising habitat management by increasing our understanding of the relationship between juvenile fish and nursery habitats may be a prudent approach. Previous research on post-settlement snapper (Chrysophrys auratus) has suggested that structure may provide a water flow refuge, allowing snapper to access high water flow sites that will also have a high flux of their pelagic prey. We investigated this hypothesis by describing how Artificial Seagrass Units (ASUs) modified water flow while also using a multi-camera set up to quantify snapper position in relation to this water flow environment. Horizontal water flow was reduced on the down-current side of ASUs, but only at the height of the seagrass canopy. While the highest abundance of snapper did occur down-current of the ASUs, many snapper also occupied other locations or were too high in the water column to receive any refuge from water flow. The proportion of snapper within the water column was potentially driven by strategy to access zooplankton prey, being higher on the up-current side of ASUs and on flood tides. It is possible that post-settlement snapper alternate position to provide opportunities for both feeding and flow refuging. An alternative explanation relates to an observed interaction between post-settlement snapper and a predator, which demonstrated that snapper can utilise habitat structure when threatened. The nature of this relationship, and its overall importance in determining the value of nursery habitats to post-settlement snapper remains an elusive next step.

  2. Ocean acidification alters fish populations indirectly through habitat modification

    Science.gov (United States)

    Nagelkerken, Ivan; Russell, Bayden D.; Gillanders, Bronwyn M.; Connell, Sean D.

    2016-01-01

    Ocean ecosystems are predicted to lose biodiversity and productivity from increasing ocean acidification. Although laboratory experiments reveal negative effects of acidification on the behaviour and performance of species, more comprehensive predictions have been hampered by a lack of in situ studies that incorporate the complexity of interactions between species and their environment. We studied CO2 vents from both Northern and Southern hemispheres, using such natural laboratories to investigate the effect of ocean acidification on plant-animal associations embedded within all their natural complexity. Although we substantiate simple direct effects of reduced predator-avoidance behaviour by fishes, as observed in laboratory experiments, we here show that this negative effect is naturally dampened when fish reside in shelter-rich habitats. Importantly, elevated CO2 drove strong increases in the abundance of some fish species through major habitat shifts, associated increases in resources such as habitat and prey availability, and reduced predator abundances. The indirect effects of acidification via resource and predator alterations may have far-reaching consequences for population abundances, and its study provides a framework for a more comprehensive understanding of increasing CO2 emissions as a driver of ecological change.

  3. Grande Ronde Basin Fish Habitat Enhancement Project : 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Morton, Winston H.

    2008-12-30

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources are the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and

  4. Headwater Stream Management Dichotomies: Local Amphibian Habitat vs. Downstream Fish Habitat

    Science.gov (United States)

    Jackson, C. R.

    2002-12-01

    Small headwater streams in mountainous areas of the Pacific Northwest often do not harbor fish populations because of low water depth and high gradients. Rather, these streams provide habitat for dense assemblages of stream-dwelling amphibians. A variety of management goals have been suggested for such streams such as encouraging large woody debris recruitment to assist in sediment trapping and valley floor formation, encouraging large woody debris recruitment to provide downstream wood when debris flows occur, providing continuous linear stream buffers within forest harvest areas to provide shade and bank stability, etc. A basic problem with analying the geomorphic or biotic benefits of any of these strategies is the lack of explicit management goals for such streams. Should managers strive to optimize downstream fish habitat, local amphibian habitat, or both? Through observational data and theoretical considerations, it will be shown that these biotic goals will lead to very different geomorphic management recommendations. For instance, woody debris greater than 60 cm diameter may assist in valley floor development, but it is likely to create subsurface channel flow of unknown value to amphibians. Trapping and retention of fine sediments within headwater streams may improve downstream spawning gravels, but degrades stream-dwelling amphibian habitat. In response to the need for descriptive information on habitat and channel morphology specific to small, non-fish-bearing streams in the Pacific Northwest, morphologies and wood frequencies in forty-two first- and second-order forested streams less than four meters wide were surveyed. Frequencies and size distributions of woody debris were compared between small streams and larger fish-bearing streams as well as between second-growth and virgin timber streams. Statistical models were developed to explore dominant factors affecting channel morphology and habitat. Findings suggest geomorphological relationships

  5. Concurrent assessment of fish and habitat in warmwater streams in Wyoming

    Science.gov (United States)

    Quist, M.C.; Hubert, W.A.; Rahel, F.J.

    2006-01-01

    Fisheries research and management in North America have focused largely on sport fishes, but native non-game fishes have attracted increased attention due to their declines. The Warmwater Stream Assessment (WSA) was developed to evaluate simultaneously both fish and habitat in Wyoming streams by a process that includes three major components: (1) stream-reach selection and accumulation of existing information, (2) fish and habitat sampling and (3) summarisation and evaluation of fish and habitat information. Fish are sampled by electric fishing or seining and habitat is measured at reach and channel-unit (i.e. pool, run, riffle, side channel, or backwater) scales. Fish and habitat data are subsequently summarised using a data-matrix approach. Hierarchical decision trees are used to assess critical habitat requirements for each fish species expected or found in the reach. Combined measurements of available habitat and the ecology of individual species contribute to the evaluation of the observed fish assemblage. The WSA incorporates knowledge of the fish assemblage and habitat features to enable inferences of factors likely influencing both the fish assemblage and their habitat. The WSA was developed for warmwater streams in Wyoming, but its philosophy, process and conceptual basis may be applied to environmental assessments in other geographical areas. ?? 2006 Blackwell Publishing Ltd.

  6. Shallow rocky nursery habitat for fish: Spatial variability of juvenile fishes among this poorly protected essential habitat.

    Science.gov (United States)

    Cheminée, Adrien; Rider, Mary; Lenfant, Philippe; Zawadzki, Audrey; Mercière, Alexandre; Crec'hriou, Romain; Mercader, Manon; Saragoni, Gilles; Neveu, Reda; Ternon, Quentin; Pastor, Jérémy

    2017-06-15

    Coastal nursery habitats are essential for the renewal of adult fish populations. We quantified the availability of a coastal nursery habitat (shallow heterogeneous rocky bottoms) and the spatial variability of its juvenile fish populations along 250km of the Catalan coastline (France and Spain). Nurseries were present in 27% of the coastline, but only 2% of them benefited from strict protection status. For nine taxa characteristic of this habitat, total juvenile densities varied significantly between nursery sites along the coastline, with the highest densities being found on the northern sites. Recruitment level (i.e. a proxy of nursery value) was not explained by protection level, but it was moderately and positively correlated with an anthropization index. Patterns of spatial variations were taxa-specific. Exceptional observations of four juveniles of the protected grouper Epinephelus marginatus were recorded. Our data on habitat availability and recruitment levels provides important informations which help to focus MPA management efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Essential coastal habitats for fish in the Baltic Sea

    Science.gov (United States)

    Kraufvelin, Patrik; Pekcan-Hekim, Zeynep; Bergström, Ulf; Florin, Ann-Britt; Lehikoinen, Annukka; Mattila, Johanna; Arula, Timo; Briekmane, Laura; Brown, Elliot John; Celmer, Zuzanna; Dainys, Justas; Jokinen, Henri; Kääriä, Petra; Kallasvuo, Meri; Lappalainen, Antti; Lozys, Linas; Möller, Peter; Orio, Alessandro; Rohtla, Mehis; Saks, Lauri; Snickars, Martin; Støttrup, Josianne; Sundblad, Göran; Taal, Imre; Ustups, Didzis; Verliin, Aare; Vetemaa, Markus; Winkler, Helmut; Wozniczka, Adam; Olsson, Jens

    2018-05-01

    Many coastal and offshore fish species are highly dependent on specific habitat types for population maintenance. In the Baltic Sea, shallow productive habitats in the coastal zone such as wetlands, vegetated flads/lagoons and sheltered bays as well as more exposed rocky and sandy areas are utilized by fish across many life history stages including spawning, juvenile development, feeding and migration. Although there is general consensus about the critical importance of these essential fish habitats (EFH) for fish production along the coast, direct quantitative evidence for their specific roles in population growth and maintenance is still scarce. Nevertheless, for some coastal species, indirect evidence exists, and in many cases, sufficient data are also available to carry out further quantitative analyses. As coastal EFH in the Baltic Sea are often found in areas that are highly utilized and valued by humans, they are subjected to many different pressures. While cumulative pressures, such as eutrophication, coastal construction and development, climate change, invasive species and fisheries, impact fish in coastal areas, the conservation coverage for EFH in these areas remains poor. This is mainly due to the fact that historically, fisheries management and nature conservation are not integrated neither in research nor in management in Baltic Sea countries. Setting joint objectives for fisheries management and nature conservation would hence be pivotal for improved protection of EFH in the Baltic Sea. To properly inform management, improvements in the development of monitoring strategies and mapping methodology for EFH are also needed. Stronger international cooperation between Baltic Sea states will facilitate improved management outcomes across ecologically arbitrary boundaries. This is especially important for successful implementation of international agreements and legislative directives such as the Baltic Sea Action Plan, the Marine Strategy Framework

  8. 77 FR 47356 - North Pacific Fishery Management Council; Essential Fish Habitat Amendments

    Science.gov (United States)

    2012-08-08

    ...-XA500 North Pacific Fishery Management Council; Essential Fish Habitat Amendments AGENCY: National... Pacific Fishery Management Council submitted the following essential fish habitat (EFH) amendments to NMFS... Scallop Fishery off Alaska; and Amendment 1 to the FMP for Fish Resources of the Arctic Management Area...

  9. 77 FR 66564 - North Pacific Fishery Management Council; Essential Fish Habitat Amendments

    Science.gov (United States)

    2012-11-06

    ...-XA500 North Pacific Fishery Management Council; Essential Fish Habitat Amendments AGENCY: National... Scallop Fishery off Alaska (Scallop FMP); and Amendment 1 to the FMP for Fish Resources of the Arctic Management Area (Arctic FMP). These amendments update the existing essential fish habitat (EFH) provisions in...

  10. Proceedings of a workshop on fish habitat suitability index models

    Science.gov (United States)

    Terrell, James W.

    1984-01-01

    One of the habitat-based methodologies for impact assessment currently in use by the U.S. Fish and Wildlife Service is the Habitat Evaluation Procedures (HEP) (U.S. Fish and Wildlife Service 1980). HEP is based on the assumption that the quality of an area as wildlife habitat at a specified target year can be described by a single number, called a Habitat Suitability Index (HSI). An HSI of 1.0 represents optimum habitat: an HSI of 0.0 represents unsuitable habitat. The verbal or mathematical rules by which an HSI is assigned to an area are called an HSI model. A series of Habitat Suitability Index (HSI) models, described by Schamberger et al. (1982), have been published to assist users in applying HEP. HSI model building approaches are described in U.S. Fish and Wildlife Service (1981). One type of HSI model described in detail requires the development of Suitability Index (SI) graphs for habitat variables believed to be important for the growth, survival, standing crop, or other measure of well-being for a species. Suitability indices range from 0 to 1.0, with 1.0 representing optimum conditions for the variable. When HSI models based on suitability indices are used, habitat variable values are measured, or estimated, and converted to SI's through the use of a Suitability Index graph for each variable. Individual SI's are aggregated into an HSI. Standard methods for testing this type of HSI model did not exist at the time the studies reported in this document were performed. A workshop was held in Fort Collins, Colorado, February 14-15, 1983, that brought together biologists experienced in the use, development, and testing of aquatic HSI models, in an effort to address the following objectives: (1) review the needs of HSI model users; (2) discuss and document the results of aquatic HSI model tests; and (3) provide recommendations for the future development, testing, modification, and use of HSI models. Individual presentations, group discussions, and group

  11. Umatilla River subbasin fish habitat improvement project. Annual report 1993

    International Nuclear Information System (INIS)

    Bailey, T.D.; Laws, T.S.

    1994-05-01

    This annual report is in fulfillment of contract obligations with Bonneville Power Administration which is the funding source for the Oregon Department of Fish and Wildlife's Umatilla Basin Habitat Improvement Project. Major activities undertaken during this report period included: (1) procurement of one access easement with a private landowner, (2) design, layout, and implementation of 3.36 miles of instream structure maintenance, (3) inspection and routine maintenance of 15.1 miles of fence, (4) revegetation along 3.36 miles of stream, (5) collection and summarization of physical and biological monitoring data, (6) extensive interagency coordination, and (7) environmental education activities with local high school students

  12. Ensemble forecasting of potential habitat for three invasive fishes

    Science.gov (United States)

    Poulos, Helen M.; Chernoff, Barry; Fuller, Pam L.; Butman, David

    2012-01-01

    Aquatic invasive species pose major ecological and economic threats to aquatic ecosystems worldwide via displacement, predation, or hybridization with native species and the alteration of aquatic habitats and hydrologic cycles. Modeling the habitat suitability of alien aquatic species through spatially explicit mapping is an increasingly important risk assessment tool. Habitat modeling also facilitates identification of key environmental variables influencing invasive species distributions. We compared four modeling methods to predict the potential continental United States distributions of northern snakehead Channa argus (Cantor, 1842), round goby Neogobius melanostomus (Pallas, 1814), and silver carp Hypophthalmichthys molitrix (Valenciennes, 1844) using maximum entropy (Maxent), the genetic algorithm for rule set production (GARP), DOMAIN, and support vector machines (SVM). We used inventory records from the USGS Nonindigenous Aquatic Species Database and a geographic information system of 20 climatic and environmental variables to generate individual and ensemble distribution maps for each species. The ensemble maps from our study performed as well as or better than all of the individual models except Maxent. The ensemble and Maxent models produced significantly higher accuracy individual maps than GARP, one-class SVMs, or DOMAIN. The key environmental predictor variables in the individual models were consistent with the tolerances of each species. Results from this study provide insights into which locations and environmental conditions may promote the future spread of invasive fish in the US.

  13. [Fish community structure and its seasonal change in subtidal sandy beach habitat off southern Gouqi Island].

    Science.gov (United States)

    Wang, Zhen-Hua; Wang, Kai; Zhao, Jing; Zhang, Shou-Yu

    2011-05-01

    To understand the characteristics of fish community structure in sandy beach habitats of island reef water areas, and to evaluate the potential capacity of these habitats in local fish stock maintenance, fishes were monthly collected with multi-mesh trammel nets in 2009 from the subtidal sandy beach habitat off southern Gouqi Island, taking the adjacent rocky reef habitat as the control. alpha and beta species diversity indices, index of relative importance (IRI), relative catch rate, and dominance curve for abundance and biomass (ABC curve) were adopted to compare the fish species composition, diversity, and community pattern between the two habitats, and multivariate statistical analyses such as non-metric multidimensional scaling (nMDS) and cluster were conducted to discuss the fish assemblage patterns. A total of 63 fish species belonging to 11 orders, 38 families, and 56 genera were collected, of which, 46 fish species were appeared in the two habitats. Due to the appearance of more warm water species in sandy bottom, the fishes in subtidal sandy beach habitat showed much higher richness, and the abundance catch rate (ACR) from May to July was higher than that in rocky reef habitat. In most rest months, the ACR in subtidal sandy beach habitat also showed the similar trend. However, the species richness and diversity in spring and summer were significantly lower in subtidal sandy beach habitat than in rocky reef habitat, because of the high species dominance and low evenness in the sandy beach habitat. Japanese tonguefish (Paraplagusia japonica) was the indicator species in the sandy beach habitat, and dominated in early spring, later summer, autumn, and winter when the fishing pressure was not strong. In sandy bottom, a unique community structure was formed and kept in dynamic, due to the nursery use of sandy beach by Japanese anchovy (Engraulis japonicus) from May to July, the gathering of gray mullet (Mugil cephalus) in most months for feeding, and the large

  14. Does coastal lagoon habitat quality affect fish growth rate and their recruitment? Insights from fishing and acoustic surveys

    Science.gov (United States)

    Brehmer, P.; Laugier, T.; Kantoussan, J.; Galgani, F.; Mouillot, D.

    2013-07-01

    Ensuring the sustainability of fish resources necessitates understanding their interaction with coastal habitats, which is becoming ever more challenging in the context of ever increasing anthropogenic pressures. The ability of coastal lagoons, exposed to major sources of disturbance, to provide resources and suitable habitats for growth and survival of juvenile fish is especially important. We analysed three lagoons with different ecological statuses and habitat quality on the basis of their eutrophication and ecotoxicity (Trix test) levels. Fish abundances were sampled using fishing and horizontal beaming acoustic surveys with the same protocols in the same year. The relative abundance of Anguilla anguilla, Dicentrarchus labrax or the Mugilidae group was not an indicator of habitat quality, whereas Atherina boyeri and Sparus aurata appeared to be more sensitive to habitat quality. Fish abundance was higher in the two lagoons with high eutrophication and ecotoxicity levels than in the less impacted lagoon, while fish sizes were significantly higher in the two most severely impacted lagoons. This leads us to suggest low habitat quality may increase fish growth rate (by the mean of a cascading effect), but may reduce lagoon juvenile abundance by increasing larval mortality. Such a hypothesis needs to be further validated using greater investigations which take into account more influences on fish growth and recruitment in such variable environments under complex multi-stressor conditions.

  15. [Species composition, diversity and density of small fishes in two different habitats in Niushan Lake].

    Science.gov (United States)

    Ye, Shao-Wen; Li, Zhong-Jie; Cao, Wen-Xuan

    2007-07-01

    This paper studied the spatial distribution of small fishes in a shallow macrophytic lake, Niushan Lake in spring 2003, and its relations with habitat heterogeneity. Based on the macrophyte cover condition, distance from lake shore and water depth, two representative habitat types in the lake were selected. Habitat A was near the shore with dense submersed macrophyte, while habitat B was far from the shore with sparse submersed macrophyte. Small fishes were sampled quantitatively by block net (180 m2), and their densities within the net area were estimated by multiple mark-recapture or Zippin's removal method. The results showed that there were some differences in species composition, biodiversity measurement, and estimated density of small fishes between the two habitats: 1) the catches in habitat A consisted of 14 small fish species from 5 families, among which, benthopelagic species Rhodeus ocellatus, Paracheilognathus imberbis and Pseudorasbora parva were considered as dominant species, while those in habitat B consisted of 9 small fish species from 3 families, among which, bottom species Rhinogobius giurinus and Micropercops swinhonis were dominant; 2) the Bray-Curtis index between the two small fish communities was 0.222, reflecting their low structure similarity, and no significant difference was observed between their rank/ abundance distributions, both of which belonged to log series distribution; 3) the total density of 9 major species in habitat A was 8.71 ind x m(-2), while that of 5 major species in habitat B was only 3.54 ind x m(-2). The fact that the spatial distribution of the small fishes differed with habitats might be related to their habitat need for escaping predators, feeding, and breeding, and thus, aquatic macrophyte habitat should be of significance in the rational exploitation of small fish resources as well as the conservation of fish resource diversity.

  16. Effects of grade control structures on fish passage, biological assemblages, and hydraulic environments in western Iowa streams: a multidisciplinary review

    Science.gov (United States)

    Thomas, J.T.; Culler, M.E.; Dermisis, D.C.; Pierce, Clay; Papanicolaou, A.N.; Stewart, T.W.; Larson, C.J.

    2011-01-01

    Land use changes and channelization of streams in the deep loess region of western Iowa have led to stream channel incision, altered flow regimes, increased sediment inputs, decreased habitat diversity and reduced lateral connectivity of streams and floodplains. Grade control structures (GCSs) are built in streams to prevent further erosion, protect infrastructure and reduce sediment loads. However, GCS can have a detrimental impact on fisheries and biological communities. We review three complementary biological and hydraulic studies on the effects of GCS in these streams. GCS with steep (≥1:4 rise : run) downstream slopes severely limited fish passage, but GCS with gentle slopes (≤1:15) allowed greater passage. Fish assemblages were dominated by species tolerant of degradation, and Index of Biotic Integrity (IBI) scores were indicative of fair or poor biotic integrity. More than 50% of fish species had truncated distributions. After modification of GCS to reduce slopes and permit increased passage, IBI scores increased and several species were detected further upstream than before modification. Total macroinvertebrate density, biomass and taxonomic diversity and abundance of ecologically sensitive taxa were greater at GCS than in reaches immediately upstream, downstream or ≥1 km from GCS. A hydraulic study confirmed results from fish passage studies; minimum depths and maximum current velocities at GCS with gentle slopes (≤1:15) were more likely to meet minimum criteria for catfish passage than GCS with steeper slopes. Multidisciplinary approaches such as ours will increase understanding of GCS-associated factors influencing fish passage, biological assemblage structure and other ecological relationships in streams.

  17. Defining critical habitats of threatened and endemic reef fishes with a multivariate approach.

    Science.gov (United States)

    Purcell, Steven W; Clarke, K Robert; Rushworth, Kelvin; Dalton, Steven J

    2014-12-01

    Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum-type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat-forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. © 2014 Society for Conservation Biology.

  18. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoverson, Eric D.; Amonette, Alexandra

    2009-02-09

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2008 Fiscal Year (FY) reporting period (February 1, 2008-January 31, 2009) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight primary fisheries habitat enhancement projects were implemented on Meacham Creek, Birch Creek, West Birch Creek, McKay Creek, West Fork Spring Hollow, and the Umatilla River. Specific restoration actions included: (1) rectifying one fish passage barrier on West Birch Creek; (2) participating in six projects planting 10,000 trees and seeding 3225 pounds of native grasses; (3) donating 1000 ft of fencing and 1208 fence posts and associated hardware for 3.6 miles of livestock exclusion fencing projects in riparian areas of West Birch and Meacham Creek, and for tree screens to protect against beaver damage on West Fork Spring Hollow Creek; (4) using biological control (insects) to reduce noxious weeds on three treatment areas covering five acres on Meacham Creek; (5) planning activities for a levee setback project on Meacham Creek. We participated in additional secondary projects as opportunities arose. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at additional easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Proper selection and implementation of

  19. [Estimation of spur dike-affected fish habitat area].

    Science.gov (United States)

    Ray-Shyan, Wu; Yan-Ru, Chen; Yi-Liang, Ge

    2012-04-01

    Based on the HEC-RAS and River 2D modes, and taking 5% change rate of weighted usable area (WUA) as the threshold to define the spur dike- affected area of target fish species Acrossocheilus paradoxus in Fazi River in Taiwan, this paper studied the affected area of the fish habitat by spur dike, and, in combining with the references about the installations of spur dikes in Taiwan in recent 10 years, analyzed the relative importance of related affecting factors such as dike height, dike length (water block rate), average slope gradient of river way, single or double spur dike, and flow discharge. In spite of the length of the dike, the affected area in downstream was farther, and was about 2-6 times as large as that in upstream. The ratio of the affected area in downstream / upstream decreased with increasing slope gradient, but increased with increasing dike length and flow discharge. When the discharge was approximate to 10 years return periods, the ratio of the affected area would be close to a constant of 2. Building double spur dike would produce a better WUA than building single spur dike.

  20. ENERGETIC EXTREMES IN A HOSTILE HABITAT: FISH LOCOMOTION ON WAVE-SWEPT CORAL REEFS

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2010-01-01

    , and wing-like fins that generate lift-based thrust at high speed. Literally flying underwater, Stethojulis and other winged-fin species are the most abundant fish in wave-swept coral reef habitats. We discuss the extreme swimming performance of these reef fishes within the context of other non......-scombrid and scombrid fishes, and illustrate how such performance has contributed to their domination of shallow coral reef habitats worldwide....

  1. Reef fishes of Saba Bank, Netherlands Antilles: assemblage structure across a gradient of habitat types.

    Directory of Open Access Journals (Sweden)

    Wes Toller

    Full Text Available Saba Bank is a 2,200 km(2 submerged carbonate platform in the northeastern Caribbean Sea off Saba Island, Netherlands Antilles. The presence of reef-like geomorphic features and significant shelf edge coral development on Saba Bank have led to the conclusion that it is an actively growing, though wholly submerged, coral reef atoll. However, little information exists on the composition of benthic communities or associated reef fish assemblages of Saba Bank. We selected a 40 km(2 area of the bank for an exploratory study. Habitat and reef fish assemblages were investigated in five shallow-water benthic habitat types that form a gradient from Saba Bank shelf edge to lagoon. Significant coral cover was restricted to fore reef habitat (average cover 11.5% and outer reef flat habitat (2.4% and declined to near zero in habitats of the central lagoon zone. Macroalgae dominated benthic cover in all habitats (average cover: 32.5--48.1% but dominant algal genera differed among habitats. A total of 97 fish species were recorded. The composition of Saba Bank fish assemblages differed among habitat types. Highest fish density and diversity occurred in the outer reef flat, fore reef and inner reef flat habitats. Biomass estimates for commercially valued species in the reef zone (fore reef and reef flat habitats ranged between 52 and 83 g/m(2. The composition of Saba Bank fish assemblages reflects the absence of important nursery habitats, as well as the effects of past fishing. The relatively high abundance of large predatory fish (i.e. groupers and sharks, which is generally considered an indicator of good ecosystem health for tropical reef systems, shows that an intact trophic network is still present on Saba Bank.

  2. Froude Number is the Single Most Important Hydraulic Parameter for Salmonid Spawning Habitat.

    Science.gov (United States)

    Gillies, E.; Moir, H. J.

    2015-12-01

    Many gravel-bed rivers exhibit historic straightening or embanking, reducing river complexity and the available habitat for key species such as salmon. A defensible method for predicting salmonid spawning habitat is an important tool for anyone engaged in assessing a river restoration. Most empirical methods to predict spawning habitat use lookup tables of depth, velocity and substrate. However, natural site selection is different: salmon must pick a location where they can successfully build a redd, and where eggs have a sufficient survival rate. Also, using dimensional variables, such as depth and velocity, is problematic: spawning occurs in rivers of differing size, depth and velocity range. Non-dimensional variables have proven useful in other branches of fluid dynamics, and instream habitat is no different. Empirical river data has a high correlation between observed salmon redds and Froude number, without insight into why. Here we present a physics based model of spawning and bedform evolution, which shows that Froude number is indeed a rational choice for characterizing the bedform, substrate, and flow necessary for spawning. It is familiar for Froude to characterize surface waves, but Froude also characterizes longitudinal bedform in a mobile bed river. We postulate that these bedforms and their hydraulics perform two roles in salmonid spawning: allowing transport of clasts during redd building, and oxygenating eggs. We present an example of this Froude number and substrate based habitat characterization on a Scottish river for which we have detailed topography at several stages during river restoration and subsequent evolution of natural processes. We show changes to the channel Froude regime as a result of natural process and validate habitat predictions against redds observed during 2014 and 2015 spawning seasons, also relating this data to the Froude regime in other, nearby, rivers. We discuss the use of the Froude spectrum in providing an indicator of

  3. Trophic behaviour of juvenile reef fishes inhabiting interlinked mangrove-seagrass habitats in offshore mangrove islets

    Science.gov (United States)

    Mangroves are essential fish habitats acting as shelters and nurseries, but the relative contribution of mangrove resources to fish diets relies on site-specific context and fish life history stage. Stable isotope (δ13C, δ15N) and gut-content analyses were used to investigate siz...

  4. 30 CFR 285.803 - How must I conduct my approved activities to protect essential fish habitats identified and...

    Science.gov (United States)

    2010-07-01

    ... protect essential fish habitats identified and described under the Magnuson-Stevens Fishery Conservation... Act? (a) If, during the conduct of your approved activities, MMS finds that essential fish habitat or... adverse affects on Essential Fish Habitat will be incorporated as terms and conditions in the lease and...

  5. Impact of Alternative Environmental Flow Prescriptions on Hydropower Production and Fish Habitat Suitability

    Science.gov (United States)

    Castellarin, A.; Ceola, S.; Pugliese, A.; Galeati, G. A.

    2015-12-01

    Anthropogenic activities along streams and rivers are increasingly recognized to be a major concern for fluvial ecosystems. The management of water resources, by means of e.g. flow diversions and dams, for industrial, agricultural, water-supply, hydropower production and flood protection purposes induces significant changes to the natural streamflow regime of a river. Indeed, the river flow regime is known to be a major abiotic factor influencing fluvial ecosystems. An established approach aimed at preserving the behaviour and distribution of fluvial species relies on the definition of minimum streamflow requirements (i.e., environmental flows) downstream of dams and diversion structures. Such environmental flows are normally identified through methodologies that have an empirical nature and may not be representative of local ecological and hydraulic conditions. While the effect of imposing a minimum discharge release is easily predictable in terms of e.g. loss of hydropower production, the advantages in terms of species preferences are often poorly understood and seldom assessed. To analyze the interactions between flow releases and the behaviour and distribution of fluvial species (i.e., from periphyton, to benthic invertebrate and fish), one may use a habitat suitability curve, which is a fundamental tool capable of describing species preferences influenced by any generic environmental variable. The outcomes of a real case study applied to several Italian rivers, located in the Marche administrative district in Central Italy (∽10000km2), in which we quantitatively assess the effects of alternative environmental flow scenarios on the existing hydropower network and on two fish species that are quite abundant in the study area (i.e., Leuciscus cephalus cabeda and Barbus barbus plebejus), will be presented and discussed. The proposed analysis, which can be easily adapted to different riparian habitats and hydrological contexts, is a useful tool to guide the

  6. Effects of marine reserves versus nursery habitat availability on structure of reef fish communities.

    Science.gov (United States)

    Nagelkerken, Ivan; Grol, Monique G G; Mumby, Peter J

    2012-01-01

    No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas) for small nursery fish (≤ 25 cm total length). For large-bodied individuals of nursery species (>25 cm total length), an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems.

  7. Effects of marine reserves versus nursery habitat availability on structure of reef fish communities.

    Directory of Open Access Journals (Sweden)

    Ivan Nagelkerken

    Full Text Available No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas for small nursery fish (≤ 25 cm total length. For large-bodied individuals of nursery species (>25 cm total length, an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass than from proximity to nurseries (139% higher. The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems.

  8. Downstream fish passage guide walls: A hydraulic scale model analysis

    Science.gov (United States)

    Mulligan, Kevin; Towler, Brett; Haro, Alexander J.; Ahlfeld, David P.

    2018-01-01

    Partial-depth guide walls are used to improve passage efficiency and reduce the delay of out-migrating anadromous fish species by guiding fish to a bypass route (i.e. weir, pipe, sluice gate) that circumvents the turbine intakes, where survival is usually lower. Evaluation and monitoring studies, however, indicate a high propensity for some fish to pass underneath, rather than along, the guide walls, compromising their effectiveness. In the present study we evaluated a range of guide wall structures to identify where/if the flow field shifts from sweeping (i.e. flow direction primarily along the wall and towards the bypass) to downward-dominant. Many migratory fish species, particularly juveniles, are known to drift with the flow and/or exhibit rheotactic behaviour during their migration. When these behaviours are present, fish follow the path of the flow field. Hence, maintaining a strong sweeping velocity in relation to the downward velocity along a guide wall is essential to successful fish guidance. Nine experiments were conducted to measure the three-dimensional velocity components upstream of a scale model guide wall set at a wide range of depths and angles to flow. Results demonstrated how each guide wall configuration affected the three-dimensional velocity components, and hence the downward and sweeping velocity, along the full length of the guide wall. In general, the velocities produced in the scale model were sweeping dominant near the water surface and either downward dominant or close to the transitional depth near the bottom of the guide wall. The primary exception to this shift from sweeping do downward flow was for the minimum guide wall angle tested in this study (15°). At 15° the flow pattern was fully sweeping dominant for every cross-section, indicating that a guide wall with a relatively small angle may be more likely to produce conditions favorable to efficient guidance. A critical next step is to evaluate the behaviour of migratory fish as

  9. Habitat use by larval fishes in a temperate South African surf zone

    Science.gov (United States)

    Watt-Pringle, Peter; Strydom, Nadine A.

    2003-12-01

    Larval fishes were sampled in the Kwaaihoek surf zone on the south east coast of South Africa. On six occasions between February and May 2002, larval fishes were collected in two habitat types identified in the inner surf zone using a modified beach-seine net. The surf zone habitats were classified as either sheltered trough areas or adjacent exposed surf areas. Temperature, depth and current measurements were taken at all sites. Trough habitats consisted of a depression in surf topography characterised by reduced current velocities and greater average depth than adjacent surf areas. In total, 325 larval fishes were collected. Of these, 229 were collected in trough and 96 in surf habitats. At least 22 families and 37 species were represented in the catch. Dominant families were the Mugilidae, Sparidae, Atherinidae, and Engraulidae. Dominant species included Liza tricuspidens and Liza richardsonii (Mugilidae), Rhabdosargus holubi and Sarpa salpa (Sparidae), Atherina breviceps (Atherinidae) and Engraulis japonicus (Engraulide). Mean CPUE of postflexion larvae of estuary-dependent species was significantly greater in trough areas. The proportion of postflexion larval fishes in trough habitat was significantly greater than that of preflexion stages, a result that was not apparent in surf habitat sampled. CPUE of postflexion larvae of estuary-dependent fishes was negatively correlated with current magnitude and positively correlated with habitat depth. Mean body length of larval fishes was significantly greater in trough than in surf habitats. These results provide evidence that the CPUE of postflexion larvae of estuary-dependent fishes is higher in trough habitat in the surf zone and this may be indicative of active habitat selection for areas of reduced current velocity/wave action. The implications of this behaviour for estuarine recruitment processes are discussed.

  10. Habitat associations of juvenile fish at Ningaloo Reef, Western Australia: the importance of coral and algae.

    Directory of Open Access Journals (Sweden)

    Shaun K Wilson

    2010-12-01

    Full Text Available Habitat specificity plays a pivotal role in forming community patterns in coral reef fishes, yet considerable uncertainty remains as to the extent of this selectivity, particularly among newly settled recruits. Here we quantified habitat specificity of juvenile coral reef fish at three ecological levels; algal meadows vs. coral reefs, live vs. dead coral and among different coral morphologies. In total, 6979 individuals from 11 families and 56 species were censused along Ningaloo Reef, Western Australia. Juvenile fishes exhibited divergence in habitat use and specialization among species and at all study scales. Despite the close proximity of coral reef and algal meadows (10's of metres 25 species were unique to coral reef habitats, and seven to algal meadows. Of the seven unique to algal meadows, several species are known to occupy coral reef habitat as adults, suggesting possible ontogenetic shifts in habitat use. Selectivity between live and dead coral was found to be species-specific. In particular, juvenile scarids were found predominantly on the skeletons of dead coral whereas many damsel and butterfly fishes were closely associated with live coral habitat. Among the coral dependent species, coral morphology played a key role in juvenile distribution. Corymbose corals supported a disproportionate number of coral species and individuals relative to their availability, whereas less complex shapes (i.e. massive & encrusting were rarely used by juvenile fish. Habitat specialisation by juvenile species of ecological and fisheries importance, for a variety of habitat types, argues strongly for the careful conservation and management of multiple habitat types within marine parks, and indicates that the current emphasis on planning conservation using representative habitat areas is warranted. Furthermore, the close association of many juvenile fish with corals susceptible to climate change related disturbances suggests that identifying and

  11. Diet composition of age-0 fishes in created habitats of the Lower Missouri River

    Science.gov (United States)

    Starks, Trevor A.; Long, James M.

    2017-01-01

    Channelization of the Missouri River has greatly reduced the availability of shallow water habitats used by many larval and juvenile fishes and contributed to imperilment of floodplain-dependent biota. Creation of small side channels, or chutes, is being used to restore shallow water habitat and reverse negative environmental effects associated with channelization. In the summer of 2012, the U.S. Army Corps of Engineers collected early life stages of fishes from constructed chutes and nearby unrestored shallow habitats at six sites on the Missouri River between Rulo, Nebraska and St. Louis, Missouri. We compared the diets of two abundant species of fishes to test the hypothesis that created shallow chutes provided better foraging habitat for early life stages than nearby unrestored shallow habitats. Graphical analysis of feeding patterns of freshwater drum indicated specialization on chironomid larvae, which were consumed in greater numbers in unrestored mainstem reaches compared to chutes. Hiodon spp. were more generalist feeders with no differences in prey use between habitat types. Significantly greater numbers of individuals with empty stomachs were observed in chute shallow-water habitats, indicating poor foraging habitat. For these two species, constructed chute shallow-water habitat does not appear to provide the hypothesized benefits of higher quality foraging habitat.

  12. An Adaptive Modeling Technique for Instream Fish Habitat Preference of Japanese Medaka (Oryzias Latipes)

    OpenAIRE

    Fukuda, Shinji; Hiramatsu, Kazuaki; Mori, Makito; Shikasyo, Shiomi

    2005-01-01

    It is widely known that habitat selections of riverine fish differ within and between rivers. In our past study, the preference intensity of Japanese Medaka (Oryzias latipes) to three environmental factors of water depth, current velocity and cover ratio was quantified on laboratory open-channel experiments for developing a general habitat preference model. A simplified fuzzy reasoning method was introduced in consideration of essential vagueness of fish behaviors. The fuzzy preference inten...

  13. Potential impacts of climate change on flow regime and fish habitat in mountain rivers of the south-western Balkans.

    Science.gov (United States)

    Papadaki, Christina; Soulis, Konstantinos; Muñoz-Mas, Rafael; Martinez-Capel, Francisco; Zogaris, Stamatis; Ntoanidis, Lazaros; Dimitriou, Elias

    2016-01-01

    The climate change in the Mediterranean area is expected to have significant impacts on the aquatic ecosystems and particular in the mountain rivers and streams that often host important species such as the Salmo farioides, Karaman 1938. These impacts will most possibly affect the habitat availability for various aquatic species resulting to an essential alteration of the water requirements, either for dams or other water abstractions, in order to maintain the essential levels of ecological flow for the rivers. The main scope of this study was to assess potential climate change impacts on the hydrological patterns and typical biota for a south-western Balkan mountain river, the Acheloos. The altered flow regimes under different emission scenarios of the Intergovernmental Panel on Climate Change (IPCC) were estimated using a hydrological model and based on regional climate simulations over the study area. The Indicators of Hydrologic Alteration (IHA) methodology was then used to assess the potential streamflow alterations in the studied river due to predicted climate change conditions. A fish habitat simulation method integrating univariate habitat suitability curves and hydraulic modeling techniques were used to assess the impacts on the relationships between the aquatic biota and hydrological status utilizing a sentinel species, the West Balkan trout. The most prominent effects of the climate change scenarios depict severe flow reductions that are likely to occur especially during the summer flows, changing the duration and depressing the magnitude of the natural low flow conditions. Weighted Usable Area-flow curves indicated the limitation of suitable habitat for the native trout. Finally, this preliminary application highlighted the potential of science-based hydrological and habitat simulation approaches that are relevant to both biological quality elements (fish) and current EU Water policy to serve as efficient tools for the estimation of possible climate

  14. Use of functional traits to assess changes in stream fish assemblages across a habitat gradient

    Directory of Open Access Journals (Sweden)

    Mariela Domiciano Ribeiro

    Full Text Available Abstract Functional traits are important for understanding the links between species occurrence and environmental conditions. Identifying these links makes it possible to predict changes in species composition within communities under specific environmental conditions. We used functional traits related to habitat use and trophic ecology in order to assess the changes in fish community composition between streams with varying habitat structure. The relationship between the species traits and habitat characteristics was analyzed using an RLQ ordination analysis. Although species were widely distributed in habitats with different structures, physical conditions did favor some species based on their functional characteristics. Eight functional traits were found to be associated with stream habitat structure, allowing us to identify traits that may predict the susceptibility of fish species to physical habitat degradation.

  15. Fish assemblage structure and habitat associations in a large western river system

    Science.gov (United States)

    Smith, C.D.; Quist, Michael C.; Hardy, R. S.

    2016-01-01

    Longitudinal gradients of fish assemblage and habitat structure were investigated in the Kootenai River of northern Idaho. A total of 43 500-m river reaches was sampled repeatedly with several techniques (boat-mounted electrofishing, hoop nets and benthic trawls) in the summers of 2012 and 2013. Differences in habitat and fish assemblage structure were apparent along the longitudinal gradient of the Kootenai River. Habitat characteristics (e.g. depth, substrate composition and water velocity) were related to fish assemblage structure in three different geomorphic river sections. Upper river sections were characterized by native salmonids (e.g. mountain whitefish Prosopium williamsoni), whereas native cyprinids (peamouth Mylocheilus caurinus, northern pikeminnow Ptychocheilus oregonensis) and non-native fishes (pumpkinseed Lepomis gibbosus, yellow perch Perca flavescens) were common in the downstream section. Overall, a general pattern of species addition from upstream to downstream sections was discovered and is likely related to increased habitat complexity and additions of non-native species in downstream sections. Assemblage structure of the upper sections were similar, but were both dissimilar to the lower section of the Kootenai River. Species-specific hurdle regressions indicated the relationships among habitat characteristics and the predicted probability of occurrence and relative abundance varied by species. Understanding fish assemblage structure in relation to habitat could improve conservation efforts of rare fishes and improve management of coldwater river systems.

  16. 76 FR 35408 - Essential Fish Habitat (EFH) Components of Fishery Management Plans (Northeast Multispecies...

    Science.gov (United States)

    2011-06-17

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XR75 Essential Fish Habitat (EFH) Components of Fishery Management Plans (Northeast Multispecies, Atlantic Sea Scallop...: E-mail: Habitat[email protected] . Mail: Paul J. Howard, Executive Director, New England Fishery...

  17. Habitat use by 0+ cyprinid fish in the River Great Ouse, East Anglia

    OpenAIRE

    Garner, Paul

    1997-01-01

    This study was designed to examine the habitat use of several species of 0+ cyprinid in the regulated River Great Ouse and to determine the reasons for specific habitat use. In general, all fish species were found associated with the marginal zone, with little diel variation. Use of shallow habitats in the presence of macrophytes correlated well with the distribution of zooplankton in the river channel, the preferred food source of 0+ cyprinids. During the early to late larval phase, all spec...

  18. Stream habitat or water quality - what influences stronger fish and macrozoobenthos biodiversity?

    Czech Academy of Sciences Publication Activity Database

    Adámek, Z.; Jurajda, Pavel

    2001-01-01

    Roč. 1, č. 3 (2001), s. 305-311 ISSN 1642-3593. [Ecohydrology as a tool for restoration of physically degraded fish habitats. Warsaw, 11.06.2001-13.06.2001] Institutional research plan: CEZ:AV0Z6093917 Keywords : stream ecology * water quality * fish communities Subject RIV: EH - Ecology, Behaviour

  19. The importance of surrogate habitats in lowland river floodplains for fish community composition

    Czech Academy of Sciences Publication Activity Database

    Ryšavá-Nováková, Michaela; Ondračková, Markéta; Jurajda, Pavel

    2009-01-01

    Roč. 16, č. 6 (2009), s. 468-477 ISSN 0969-997X R&D Projects: GA MŠk LC522 Institutional research plan: CEZ:AV0Z60930519 Keywords : fish community * fish recruitment * flood * rehabilitation * substitute habitats Subject RIV: EH - Ecology, Behaviour Impact factor: 1.264, year: 2009

  20. Evolution of the Sensor Fish Device for Measuring Physical Conditions in Severe Hydraulic Environments

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J.; Duncan, Joanne P.

    2003-02-28

    To assist in deriving biological specifications for design of turbine rehabilitation measures, new ''fish-friendly'' turbines, and spillway designs and operations, scientists at the Pacific Northwest National Laboratory (PNNL) have developed and tested an autonomous multi-sensor device called a Sensor Fish that can acquire pressure and tri-axial linear acceleration data during passage through severe hydraulic conditions. The purpose of the Sensor Fish is to characterize physical conditions fish experience during passage through hydro turbines, spill stilling basins, high-discharge outfalls, and other dam passage routes. The Sensor Fish was developed with the support of the U.S. Department of Energy's Advanced Hydropower Turbine System program. Field tests of the Sensor Fish at Rock Island, McNary, The Dalles, Bonneville, and Wanapum dams on the Columbia River and the Prosser Irrigation District on the Yakima River have shown that the device can withstand the severe environments of turbine, spill, and fish bypass passage and provide useful environmental data that can ultimately aid in the design and operation of new and existing turbines, spill, and dam fish bypass facilities.

  1. Influences of recreation influence of forest and rangeland management on anadromous fish habitat in Western North America: influences of recreation.

    Science.gov (United States)

    Roger N. Clark; Dave R. Gibbons; Gilbert B. Pauley

    1985-01-01

    Public and private lands in the United States are used by millions of people for recreational activities. Many of these activities occur in or near streams and coastal areas that produce various species of anadromous fish. A major concern of fishery managers is the possible adverse effect of recreational uses on fish habitat. Conversely, the management of fish habitats...

  2. Computational fluid dynamics-habitat suitability index (CFD-HSI) modelling as an exploratory tool for assessing passability of riverine migratory challenge zones for fish

    Science.gov (United States)

    Haro, Alexander J.; Chelminski, Michael; Dudley, Robert W.

    2015-01-01

    We developed two-dimensional computational fluid hydraulics-habitat suitability index (CFD-HSI) models to identify and qualitatively assess potential zones of shallow water depth and high water velocity that may present passage challenges for five major anadromous fish species in a 2.63-km reach of the main stem Penobscot River, Maine, as a result of a dam removal downstream of the reach. Suitability parameters were based on distribution of fish lengths and body depths and transformed to cruising, maximum sustained and sprint swimming speeds. Zones of potential depth and velocity challenges were calculated based on the hydraulic models; ability of fish to pass a challenge zone was based on the percent of river channel that the contiguous zone spanned and its maximum along-current length. Three river flows (low: 99.1 m3 sec-1; normal: 344.9 m3 sec-1; and high: 792.9 m3 sec-1) were modelled to simulate existing hydraulic conditions and hydraulic conditions simulating removal of a dam at the downstream boundary of the reach. Potential depth challenge zones were nonexistent for all low-flow simulations of existing conditions for deeper-bodied fishes. Increasing flows for existing conditions and removal of the dam under all flow conditions increased the number and size of potential velocity challenge zones, with the effects of zones being more pronounced for smaller species. The two-dimensional CFD-HSI model has utility in demonstrating gross effects of flow and hydraulic alteration, but may not be as precise a predictive tool as a three-dimensional model. Passability of the potential challenge zones cannot be precisely quantified for two-dimensional or three-dimensional models due to untested assumptions and incomplete data on fish swimming performance and behaviours.

  3. Assemblage patterns of fish functional groups relative to habitat connectivity and conditions in floodplain lakes

    Science.gov (United States)

    Miyazono, S.; Aycock, J.N.; Miranda, L.E.; Tietjen, T.E.

    2010-01-01

    We evaluated the influences of habitat connectivity and local environmental factors on the distribution and abundance patterns of fish functional groups in 17 floodplain lakes in the Yazoo River Basin, USA. The results of univariate and multivariate analyses showed that species-environmental relationships varied with the functional groups. Species richness and assemblage structure of periodic strategists showed strong and positive correlations with habitat connectivity. Densities of most equilibrium and opportunistic strategists decreased with habitat connectivity. Densities of certain equilibrium and opportunistic strategists increased with turbidity. Forested wetlands around the lakes were positively related to the densities of periodic and equilibrium strategists. These results suggest that decreases in habitat connectivity, forested wetland buffers and water quality resulting from environmental manipulations may cause local extinction of certain fish taxa and accelerate the dominance of tolerant fishes in floodplain lakes. ?? 2010 John Wiley & Sons A/S.

  4. Distribution of mesopredatory fish determined by habitat variables in a predator-depleted coastal system.

    Science.gov (United States)

    Bergström, Lena; Karlsson, Martin; Bergström, Ulf; Pihl, Leif; Kraufvelin, Patrik

    Shallow nearshore habitats are highly valued for supporting marine ecosystems, but are subject to intense human-induced pressures. Mesopredatory fish are key components in coastal food webs, and alterations in their abundance may have evident effects also on other parts of the ecosystem. The aim of this study was to clarify the relationship between the abundance of coastal mesopredatory fish, defined as mid-trophic level demersal and benthic species with a diet consisting predominantly of invertebrates, and ambient environmental variables in a fjord system influenced by both eutrophication and overfishing. A field survey was conducted over a coastal gradient comprising 300 data points sampled consistently for fish community and environmental data. Results from multivariate and univariate analyses supported each other, demonstrating that mesopredatory fish abundance at species and functional group level was positively related to the cover of structurally complex vegetation and negatively related to eutrophication, as measured by water transparency. Contrary to other studies showing an inverse relationship to piscivore abundance over time, the spatial distribution of mesopredatory fish was not locally regulated by the abundance of piscivorous fish, probably attributed to piscivores being at historically low levels due to previous overfishing. Mesopredatory fish abundance was highest in areas with high habitat quality and positively related to the abundance of piscivores, suggesting a predominance of bottom-up processes. We conclude that, in parallel with ongoing regulations of fishing pressure, measures to restore habitat function and food web productivity are important for the recovery of coastal fish communities in the area.

  5. Strong links between metal contamination, habitat modification and estuarine larval fish distributions

    Energy Technology Data Exchange (ETDEWEB)

    McKinley, Andrew C., E-mail: andrew.mckinley@hotmail.com [Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052 (Australia); Miskiewicz, Anthony [Environment and Recreation, Wollongong City Council, 41 Burelli Street, Wollongong, New South Wales 2500 (Australia); Taylor, Matthew D.; Johnston, Emma L. [Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052 (Australia)

    2011-06-15

    Changes to larval fish assemblages may have far reaching ecological impacts. Correlations between habitat modification, contamination and marine larval fish communities have rarely been assessed in situ. We investigated links between the large-scale distribution of stressors and larval fish assemblages in estuarine environments. Larval fish communities were sampled using a benthic sled within the inner and outer zones of three heavily modified and three relatively unmodified estuaries. Larval abundances were significantly greater in modified estuaries, and there were trends towards greater diversity in these systems. Differences in larval community composition were strongly related to sediment metal levels and reduced seagrass cover. The differences observed were driven by two abundant species, Paedogobius kimurai and Ambassis jacksoniensis, which occurred in large numbers almost exclusively in highly contaminated and pristine locations respectively. These findings suggest that contamination and habitat alteration manifest in substantial differences in the composition of estuarine larval fish assemblages. - Highlights: > We examine contamination/habitat modification impacts on larval fish. > Larvae communities differ between modified/unmodified estuaries. > Larvae are more abundant/diverse in modified areas. > Trends are strongly related to sediment metals/seagrass cover. > Larval impacts have wider ecological importance. - We describe strong links between sediment metals contamination, habitat modification and substantial differences in the composition of the estuarine larval fish assemblage.

  6. Strong links between metal contamination, habitat modification and estuarine larval fish distributions

    International Nuclear Information System (INIS)

    McKinley, Andrew C.; Miskiewicz, Anthony; Taylor, Matthew D.; Johnston, Emma L.

    2011-01-01

    Changes to larval fish assemblages may have far reaching ecological impacts. Correlations between habitat modification, contamination and marine larval fish communities have rarely been assessed in situ. We investigated links between the large-scale distribution of stressors and larval fish assemblages in estuarine environments. Larval fish communities were sampled using a benthic sled within the inner and outer zones of three heavily modified and three relatively unmodified estuaries. Larval abundances were significantly greater in modified estuaries, and there were trends towards greater diversity in these systems. Differences in larval community composition were strongly related to sediment metal levels and reduced seagrass cover. The differences observed were driven by two abundant species, Paedogobius kimurai and Ambassis jacksoniensis, which occurred in large numbers almost exclusively in highly contaminated and pristine locations respectively. These findings suggest that contamination and habitat alteration manifest in substantial differences in the composition of estuarine larval fish assemblages. - Highlights: → We examine contamination/habitat modification impacts on larval fish. → Larvae communities differ between modified/unmodified estuaries. → Larvae are more abundant/diverse in modified areas. → Trends are strongly related to sediment metals/seagrass cover. → Larval impacts have wider ecological importance. - We describe strong links between sediment metals contamination, habitat modification and substantial differences in the composition of the estuarine larval fish assemblage.

  7. Evolution of the sensor fish device for measuring physical conditions in sever hydraulic environments

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Duncan, J. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2003-03-01

    To assist in deriving biological specifications for design of turbine rehabilitation measures, new “fish-friendly” turbines, and spillway designs and operations, Pacific Northwest National Laboratory (PNNL) scientists have developed and tested an autonomous multi-sensor device called a Sensor Fish that can acquire pressure and tri-axial linear acceleration data during passage through severe hydraulic conditions. The purpose of the Sensor Fish is to characterize physical conditions fish experience during passage through hydro turbines, spill stilling basins, high-discharge outfalls, and other dam passage routes. This report discusses the development and field tests of the Sensor Fish at Rock Island, McNary, The Dalles, Bonneville, and Wanapum dams on the Columbia River and the Prosser Irrigation District on the Yakima River, which have shown that the device can withstand the severe environments of turbine, spill, and fish bypass passage and provide useful environmental data that can ultimately aid in the design and operation of new and existing turbines, spill, and dam fish bypass facilities.

  8. Marine fish community structure and habitat associations on the Canadian Beaufort shelf and slope

    Science.gov (United States)

    Majewski, Andrew R.; Atchison, Sheila; MacPhee, Shannon; Eert, Jane; Niemi, Andrea; Michel, Christine; Reist, James D.

    2017-03-01

    Marine fishes in the Canadian Beaufort Sea have complex interactions with habitats and prey, and occupy a pivotal position in the food web by transferring energy between lower- and upper-trophic levels, and also within and among habitats (e.g., benthic-pelagic coupling). The distributions, habitat associations, and community structure of most Beaufort Sea marine fishes, however, are unknown thus precluding effective regulatory management of emerging offshore industries in the region (e.g., hydrocarbon development, shipping, and fisheries). Between 2012 and 2014, Fisheries and Oceans Canada conducted the first baseline survey of offshore marine fishes, their habitats, and ecological relationships in the Canadian Beaufort Sea. Benthic trawling was conducted at 45 stations spanning 18-1001 m depths across shelf and slope habitats. Physical oceanographic variables (depth, salinity, temperature, oxygen), biological variables (benthic chlorophyll and integrated water-column chlorophyll) and sediment composition (grain size) were assessed as potential explanatory variables for fish community structure using a non-parametric statistical approach. Selected stations were re-sampled in 2013 and 2014 for a preliminary assessment of inter-annual variability in the fish community. Four distinct fish assemblages were delineated on the Canadian Beaufort Shelf and slope: 1) Nearshore-shelf: 50 and ≤200 m depths, 3) Upper-slope: ≥200 and ≤500 m depths, and 4) Lower-slope: ≥500 m depths. Depth was the environmental variable that best explained fish community structure, and each species assemblage was spatially associated with distinct aspects of the vertical water mass profile. Significant differences in the fish community from east to west were not detected, and the species composition of the assemblages on the Canadian Beaufort Shelf have not changed substantially over the past decade. This community analysis provides a framework for testing hypotheses regarding the trophic

  9. Hydrologic and water-quality rehabilitation of environments for suitable fish habitat

    Science.gov (United States)

    Zhao, C. S.; Yang, S. T.; Xiang, H.; Liu, C. M.; Zhang, H. T.; Yang, Z. L.; Zhang, Y.; Sun, Y.; Mitrovic, S. M.; Yu, Q.; Lim, R. P.

    2015-11-01

    Aquatic ecological rehabilitation is attracting increasing public and research attention, but without knowledge of the responses of aquatic species to their habitats the success of habitat restoration is uncertain. Thus efficient study of species response to habitat, through which to prioritize the habitat factors influencing aquatic ecosystems, is highly important. However many current models have too high requirement for assemblage information and have great bias in results due to consideration of only the species' attribute of presence/absence, abundance or biomass, thus hindering the wider utility of these models. This paper, using fish as a case, presents a framework for identification of high-priority habitat factors based on the responses of aquatic species to their habitats, using presence/absence, abundance and biomass data. This framework consists of four newly developed sub-models aiming to determine weightings for the evaluation of species' contributions to their communities, to quantitatively calculate an integrated habitat suitability index for multi-species based on habitat factors, to assess the suitable probability of habitat factors and to assess the rehabilitation priority of habitat factors. The framework closely links hydrologic, physical and chemical habitat factors to fish assemblage attributes drawn from monitoring datasets on hydrology, water quality and fish assemblages at a total of 144 sites, where 5084 fish were sampled and tested. Breakpoint identification techniques based on curvature in cumulated dominance along with a newly developed weighting calculation model based on theory of mass systems were used to help identify the dominant fish, based on which the presence and abundance of multiple fish were normalized to estimate the integrated habitat suitability index along gradients of various factors, based on their variation with principal habitat factors. Then, the appropriate probability of every principal habitat factor was

  10. Remote-Sensing Hydraulic Characterization of Channel Habitat Units in a Tropical Montane River: Bladen River, Belize

    Directory of Open Access Journals (Sweden)

    Sarah Praskievicz

    2017-12-01

    Full Text Available The physical characteristics of river systems exert significant control on the habitat for aquatic species, including the distribution of in-stream channel habitat units. Most previous studies on channel habitat units have focused on midlatitude rivers, which differ in several substantive ways from tropical rivers. Field delineation of channel habitat units is especially challenging in tropical rivers, many of which are remote and difficult to access. Here, we developed an approach for delineating channel habitat units based on a combination of field measurements, remote sensing, and hydraulic modeling, and applied it to a 4.1-km segment of the Bladen River in southern Belize. We found that the most prevalent channel habitat unit on the study segment was runs, followed by pools and riffles. Average spacing of channel habitat units was up to twice as high on the study segment than the typical values reported for midlatitude rivers, possibly because of high erosion rates in the tropical environment. The approach developed here can be applied to other rivers to build understanding of the controls on and spatial distribution of channel habitat units on tropical rivers and to support river management and conservation goals.

  11. Seasonal and interannual effects of hypoxia on fish habitat quality in central Lake Erie

    Science.gov (United States)

    Arend, Kristin K.; Beletsky, Dmitry; DePinto, Joseph; Ludsin, Stuart A.; Roberts, James J.; Rucinski, Daniel K.; Scavia, Donald; Schwab, David J.; Höök, Tomas O.

    2011-01-01

    1. Hypoxia occurs seasonally in many stratified coastal marine and freshwater ecosystems when bottom dissolved oxygen (DO) concentrations are depleted below 2–3 mg O2 L-1. 2. We evaluated the effects of hypoxia on fish habitat quality in the central basin of Lake Erie from 1987 to 2005, using bioenergetic growth rate potential (GRP) as a proxy for habitat quality. We compared the effect of hypoxia on habitat quality of (i) rainbow smelt, Osmerus mordax mordax Mitchill (young-of-year, YOY, and adult), a cold-water planktivore, (ii) emerald shiner, Notropis atherinoides Rafinesque (adult), a warm-water planktivore, (iii) yellow perch, Perca flavescens Mitchill (YOY and adult), a cool-water benthopelagic omnivore and (iv) round goby Neogobius melanostomus Pallas (adult) a eurythermal benthivore. Annual thermal and DO profiles were generated from 1D thermal and DO hydrodynamics models developed for Lake Erie’s central basin. 3. Hypoxia occurred annually, typically from mid-July to mid-October, which spatially and temporally overlaps with otherwise high benthic habitat quality. Hypoxia reduced the habitat quality across fish species and life stages, but the magnitude of the reduction varied both among and within species because of the differences in tolerance to low DO levels and warm-water temperatures. 4. Across years, trends in habitat quality mirrored trends in phosphorus concentration and water column oxygen demand in central Lake Erie. The per cent reduction in habitat quality owing to hypoxia was greatest for adult rainbow smelt and round goby (mean: -35%), followed by adult emerald shiner (mean: -12%), YOY rainbow smelt (mean: -10%) and YOY and adult yellow perch (mean: -8.5%). 5. Our results highlight the importance of differential spatiotemporally interactive effects of DO and temperature on relative fish habitat quality and quantity. These effects have the potential to influence the performance of individual fish species as well as population dynamics

  12. Heavy Metal Content in Chilean Fish Related to Habitat Use, Tissue Type and River of Origin.

    Science.gov (United States)

    Copaja, S V; Pérez, C A; Vega-Retter, C; Véliz, D

    2017-12-01

    In this study, we analyze the concentration of ten metals in two freshwater fish-the benthic catfish Trichomycterus areolatus and the limnetic silverside Basilichthys microlepidotus-in order to detect possible accumulation differences related to fish habitat (benthic or pelagic), tissue type (gill, liver and muscle), and the river of origin (four different rivers) in central Chile. The MANOVA performed with all variables and metals, revealed independent effects of fish, tissue and river. In the case of the fish factor, Cu, Cr, Mo and Zn showed statistically higher concentrations in catfish compared with silverside for all tissues and in all rivers (p food sources and respiration.

  13. A scientific basis for restoring fish spawning habitat in the St. Clair and Detroit Rivers of the Laurentian Great Lakes

    Science.gov (United States)

    Manny, Bruce A.; Roseman, Edward F.; Kennedy, Gregory W.; Boase, James C.; Craig, Jaquelyn; Bennion, David H.; Read, Jennifer; Vaccaro, Lynn; Chiotti, Justin A.; Drouin, Richard; Ellison, Roseanne

    2015-01-01

    Loss of functional habitat in riverine systems is a global fisheries issue. Few studies, however, describe the decision-making approach taken to abate loss of fish spawning habitat. Numerous habitat restoration efforts are underway and documentation of successful restoration techniques for spawning habitat of desirable fish species in large rivers connecting the Laurentian Great Lakes are reported here. In 2003, to compensate for the loss of fish spawning habitat in the St. Clair and Detroit Rivers that connect the Great Lakes Huron and Erie, an international partnership of state, federal, and academic scientists began restoring fish spawning habitat in both of these rivers. Using an adaptive management approach, we created 1,100 m2 of productive fish spawning habitat near Belle Isle in the Detroit River in 2004; 3,300 m2 of fish spawning habitat near Fighting Island in the Detroit River in 2008; and 4,000 m2 of fish spawning habitat in the Middle Channel of the St. Clair River in 2012. Here, we describe the adaptive-feedback management approach that we used to guide our decision making during all phases of spawning habitat restoration, including problem identification, team building, hypothesis development, strategy development, prioritization of physical and biological imperatives, project implementation, habitat construction, monitoring of fish use of the constructed spawning habitats, and communication of research results. Numerous scientific and economic lessons learned from 10 years of planning, building, and assessing fish use of these three fish spawning habitat restoration projects are summarized in this article.

  14. Climate change expands the spatial extent and duration of preferred thermal habitat for lake Superior fishes.

    Directory of Open Access Journals (Sweden)

    Timothy J Cline

    Full Text Available Climate change is expected to alter species distributions and habitat suitability across the globe. Understanding these shifting distributions is critical for adaptive resource management. The role of temperature in fish habitat and energetics is well established and can be used to evaluate climate change effects on habitat distributions and food web interactions. Lake Superior water temperatures are rising rapidly in response to climate change and this is likely influencing species distributions and interactions. We use a three-dimensional hydrodynamic model that captures temperature changes in Lake Superior over the last 3 decades to investigate shifts in habitat size and duration of preferred temperatures for four different fishes. We evaluated habitat changes in two native lake trout (Salvelinus namaycush ecotypes, siscowet and lean lake trout, Chinook salmon (Oncorhynchus tshawytscha, and walleye (Sander vitreus. Between 1979 and 2006, days with available preferred thermal habitat increased at a mean rate of 6, 7, and 5 days per decade for lean lake trout, Chinook salmon, and walleye, respectively. Siscowet lake trout lost 3 days per decade. Consequently, preferred habitat spatial extents increased at a rate of 579, 495 and 419 km(2 per year for the lean lake trout, Chinook salmon, and walleye while siscowet lost 161 km(2 per year during the modeled period. Habitat increases could lead to increased growth and production for three of the four fishes. Consequently, greater habitat overlap may intensify interguild competition and food web interactions. Loss of cold-water habitat for siscowet, having the coldest thermal preference, could forecast potential changes from continued warming. Additionally, continued warming may render more suitable conditions for some invasive species.

  15. Jellyfish Distribution and Habitat - Fishing Special Regulation Lakes (Polygons)

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This layer contains the lakes that are part of the Pennsylvania Fish and Boat Commission Fisheries Resource Database. These include lakes that are currently or have...

  16. Spawning and nursery habitats of neotropical fish species in the tributaries of a regulated river

    Science.gov (United States)

    Makrakis, Maristela Cavicchioli; da Silva, Patrícia S.; Makrakis, Sergio; de Lima, Ariane F.; de Assumpção, Lucileine; de Paula, Salete; Miranda, Leandro E.; Dias, João Henrique Pinheiro

    2012-01-01

    This chapter provides information on ontogenetic patterns of neotropical fish species distribution in tributaries (Verde, Pardo, Anhanduí, and Aguapeí rivers) of the Porto Primavera Reservoir, in the heavily dammed Paraná River, Brazil, identifying key spawning and nursery habitats. Samplings were conducted monthly in the main channel of rivers and in marginal lagoons from October through March during three consecutive spawning seasons in 2007-2010. Most species spawn in December especially in Verde River. Main river channels are spawning habitats and marginal lagoons are nursery areas for most fish, mainly for migratory species. The tributaries have high diversity of larvae species: a total of 56 taxa representing 21 families, dominated by Characidae. Sedentary species without parental care are more abundant (45.7%), and many long-distance migratory fish species are present (17.4%). Migrators included Prochilodus lineatus, Rhaphiodon vulpinus, Hemisorubim platyrhynchos, Pimelodus maculatus, Pseudoplatystoma corruscans, Sorubim lima, two threatened migratory species: Salminus brasiliensis and Zungaro jahu, and one endangered migratory species: Brycon orbignyanus. Most of these migratory species are vital to commercial and recreational fishing, and their stocks have decreased drastically in the last decades, attributed to habitat alteration, especially impoundments. The fish ladder at Porto Primavera Dam appears to be playing an important role in re-establishing longitudinal connectivity among critical habitats, allowing ascent to migratory fish species, and thus access to upstream reaches and tributaries. Establishment of Permanent Conservation Units in tributaries can help preserve habitats identified as essential spawning and nursery areas, and can be key to the maintenance and conservation of the fish species in the Paraná River basin.

  17. Umatilla River Subbasin Fish Habitat Improvement Program, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    St. Hilaire, Danny R. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2006-02-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and reconstruction aimed at improving fish habitat, by restoring stable channel function. This report provides a summary of Program activities for the 2004 calendar year (January 1 through December 31, 2004), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance, and (4) Monitoring and Evaluation. This report also summarizes Program Administrative, Interagency Coordination, and Public Education activities.

  18. Influence of habitat structure and environmental variables on larval fish assemblage in the Johor Strait, Malaysia.

    Science.gov (United States)

    Ara, Roushon; Arshad, Aziz; Amin, S M Nurul; Idris, M H; Gaffar, Mazlan Abd; Romano, Nicholas

    2016-07-01

    Our previous study demonstrated that among different habitat sites (mangrove, estuary, river, seagrass and Open Sea) in Johor Strait, Malaysia, seagrass showed highest family diversity and abundance of larval fish. However, it is unclear whether this was due to difference in habitat complexity or water quality parameters.? To test this, larval fish were collected by using a bongo net equipped with a flow meter by subsurface horizontal towing from different habitats in Johor Strait between October 2007 and September 2008.? Various physico-chemical parameters were measured and then examined for any relationship to fish larvae diversity and abundance. Among the 24 families identified from the sites, seven families (Blenniidae, Clupeidae, Mullidae, Nemipteridae, Syngnathidae, Terapontidae and Uranoscopeidae) were significantly correlated with the tested waters quality parameters.? Salinity showed a positive and negative significant correlation with Clupeidae (p Johor Strait, Malaysia. This likely indicates that habitat structure was more important in determining larval abundance (highest in the seagrass habitat) as compared to water quality at the tested sites. This study emphasizes the need to conserve seagrass beds as important nursery grounds for various fish larvae to ensure adequate recruitment and ultimately sustainable fisheries management. ?

  19. High-resolution behavioral mapping of electric fishes in Amazonian habitats.

    Science.gov (United States)

    Madhav, Manu S; Jayakumar, Ravikrishnan P; Demir, Alican; Stamper, Sarah A; Fortune, Eric S; Cowan, Noah J

    2018-04-11

    The study of animal behavior has been revolutionized by sophisticated methodologies that identify and track individuals in video recordings. Video recording of behavior, however, is challenging for many species and habitats including fishes that live in turbid water. Here we present a methodology for identifying and localizing weakly electric fishes on the centimeter scale with subsecond temporal resolution based solely on the electric signals generated by each individual. These signals are recorded with a grid of electrodes and analyzed using a two-part algorithm that identifies the signals from each individual fish and then estimates the position and orientation of each fish using Bayesian inference. Interestingly, because this system involves eavesdropping on electrocommunication signals, it permits monitoring of complex social and physical interactions in the wild. This approach has potential for large-scale non-invasive monitoring of aquatic habitats in the Amazon basin and other tropical freshwater systems.

  20. Distribution of mesopredatory fish determined by habitat variables in a predator-depleted coastal system

    OpenAIRE

    Bergstr?m, Lena; Karlsson, Martin; Bergstr?m, Ulf; Pihl, Leif; Kraufvelin, Patrik

    2016-01-01

    Shallow nearshore habitats are highly valued for supporting marine ecosystems, but are subject to intense human-induced pressures. Mesopredatory fish are key components in coastal food webs, and alterations in their abundance may have evident effects also on other parts of the ecosystem. The aim of this study was to clarify the relationship between the abundance of coastal mesopredatory fish, defined as mid-trophic level demersal and benthic species with a diet consisting predominantly of inv...

  1. Fishing on cold water coral reefs : A bioeconomic model of habitat-fishery connections

    OpenAIRE

    Kahui, Viktoria; Armstrong, Claire W.

    2008-01-01

    This paper applies a bioeconomic model in order to study different interactions between a harvested renewable resource and a non-renewable resource without commercial value that is negatively affected by the harvesting activity. This enables the analysis of for instance cold water coral habitats and their importance to commercial fish species. The fish is harvested either in a manner that does not damage coral, such as stationary gear, or in a destructive fashion, such as botto...

  2. Habitat Quality and Anadromous Fish Production on the Warm Springs Reservation. Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, Mark A.

    1995-06-01

    The number of anadromous fish returning to the Columbia River and its tributaries has declined sharply in recent years. Changes in their freshwater, estuarine, and ocean environments and harvest have all contributed to declining runs of anadromous fish. Restoration of aquatic resources is of paramount importance to the Confederated Tribes of the Warm Springs (CTWS) Reservation of Oregon. Watersheds on the Warm Springs Reservation provide spawning and rearing habitat for several indigenous species of resident and anadromous fish. These streams are the only ones in the Deschutes River basin that still sustain runs of wild spring chinook salmon, Oncorhynchus, tshawytscha. Historically, reservation streams supplied over 169 km of anadromous fish habitat. Because of changes in flows, there are now only 128 km of habitat that can be used on the reservation. In 1981, the CTWS began a long-range, 3-phase study of existing and potential fish resources on the reservation. The project, consistent with the Northwest Power Planning Council`s Fish and Wildlife Program, was designed to increase the natural production of anadromous salmonids on the reservation.

  3. The Importance of Providing Multiple-Channel Sections in Dredging Activities to Improve Fish Habitat Environments

    Directory of Open Access Journals (Sweden)

    Hung-Pin Chiu

    2016-01-01

    Full Text Available After Typhoon Morakot, dredging engineering was conducted while taking the safety of humans and structures into consideration, but partial stream reaches were formed in the multiple-channel sections in Cishan Stream because of anthropogenic and natural influences. This study mainly explores the distribution of each fish species in both the multiple- and single-channel sections in the Cishan Stream. Parts of the environments did not exhibit significant differences according to a one-way ANOVA comparing the multiple- and single-channel sections, but certain areas of the multiple-channel sections had more diverse habitats. Each fish species was widely distributed by non-metric multidimensional scaling in the multiple-channel sections as compared to those in the single-channel sections. In addition, according to the principal component analysis, each fish species has a preferred environment, and all of them have a wide choice of habitat environments in the multiple-channel sections. Finally, the existence of multiple-channel sections could significantly affect the existence of the fish species under consideration in this study. However, no environmental factors were found to have an influence on fish species in the single-channel sections, with the exception of Rhinogobius nantaiensis. The results show that providing multiple-channel sections in dredging activities could improve fish habitat environments.

  4. Habitat quality and anadromous fish production on the Warm Springs Reservation. Final report

    International Nuclear Information System (INIS)

    Fritsch, M.A.

    1995-06-01

    The number of anadromous fish returning to the Columbia River and its tributaries has declined sharply in recent years. Changes in their freshwater, estuarine, and ocean environments and harvest have all contributed to declining runs of anadromous fish. Restoration of aquatic resources is of paramount importance to the Confederated Tribes of the Warm Springs (CTWS) Reservation of Oregon. Watersheds on the Warm Springs Reservation provide spawning and rearing habitat for several indigenous species of resident and anadromous fish. These streams are the only ones in the Deschutes River basin that still sustain runs of wild spring chinook salmon, Oncorhynchus, tshawytscha. Historically, reservation streams supplied over 169 km of anadromous fish habitat. Because of changes in flows, there are now only 128 km of habitat that can be used on the reservation. In 1981, the CTWS began a long-range, 3-phase study of existing and potential fish resources on the reservation. The project, consistent with the Northwest Power Planning Council's Fish and Wildlife Program, was designed to increase the natural production of anadromous salmonids on the reservation

  5. Food and habitat resource partitioning between three estuarine fish species on the Swedish west coast

    Science.gov (United States)

    Thorman, Staffan

    1983-12-01

    In 1978 the food and habitat resource partitioning of three small and common fish species, viz. Pomatoschistus microps (Krøyer), Gasterosteus aculeatus (L.) and Pungitius pungitius (L.) were studied in river Broälven estuary on the Swedish west coast (58°22'N, 11°29'E). The area was divided into three habitats, based on environmental features. In July, September, and October stomach contents and size distribution of each species present were analysed. In July there was high food and habitat overlap between the species. Interference interactions probably occurred between some size classes of P. microps and the other two species. P. pungitius was exposed to both intra- and interspecific interactions. In September the food and habitat overlaps between G. aculeatus and P. pungitius were high, while both had low food and habitat overlaps in relation to P. microps. Interactions between G. aculeatus and P. pungitius were probably influenced by more severe abiotic conditions in one habitat, which caused lower abundances there, and higher abundances in the other two habitats. In October no interactions were observed. These results indicate that competition for food at least temporarily determines the species distribution in a temperate estuary, and that estuarine fish populations are sometimes food limited.

  6. Wigwam River juvenile bull trout and fish habitat monitoring program : 2001 data report

    International Nuclear Information System (INIS)

    Cope, R.S.; Morris, K.J.; Bisset, J.E.

    2002-01-01

    The Wigwam River juvenile bull trout and fish habitat monitoring program is a co-operative initiative of the British Columbia Ministry of Water, Land, and Air Protection and Bonneville Power Administration. The Wigwam River has been characterized as the single most important bull trout spawning stream in the Kootenay Region. This report provides a summary of results obtained during the second year (2001) of the juvenile bull trout enumeration and fish habitat assessment program. This project was commissioned in planning for fish habitat protection and forest development within the upper Wigwam River valley. The broad intent is to develop a better understanding of juvenile bull trout and Westslope cutthroat trout recruitment and the ongoing hydrologic and morphologic processes in the upper Wigwam River, especially as they relate to spawning and rearing habitat quality. Five permanent sampling sites were established August 2000 in the Wigwam river drainage (one site on Bighorn Creek and four sites on the mainstem Wigwam River). At each site, juvenile (0(sup+), 1(sup+) and 2(sup+) age classes) fish densities and stream habitat conditions were measured over two stream meander wavelengths. Bull trout represented 95.1% of the catch and the mean density of juvenile bull trout was estimated to be 20.7 fish/100m(sup 2) (range 0.9 to 24.0 fish/100m(sup 2)). This compares to 17.2 fish/100m(sup 2) (+20%) for the previous year. Fry (0(sup+)) dominated the catch and this was a direct result of juvenile bull trout ecology and habitat partitioning among life history stages. Site selection was biased towards sample sites which favored high bull trout fry capture success. Comparison of fry density estimates replicated across both the preliminary survey (1997) and the current study (Cope and Morris 2001) illustrate the stable nature of these high densities. Bull trout populations have been shown to be extremely susceptible to habitat degradation and over-harvest and are ecologically

  7. Models of Marine Fish Biodiversity: Assessing Predictors from Three Habitat Classification Schemes.

    Science.gov (United States)

    Yates, Katherine L; Mellin, Camille; Caley, M Julian; Radford, Ben T; Meeuwig, Jessica J

    2016-01-01

    Prioritising biodiversity conservation requires knowledge of where biodiversity occurs. Such knowledge, however, is often lacking. New technologies for collecting biological and physical data coupled with advances in modelling techniques could help address these gaps and facilitate improved management outcomes. Here we examined the utility of environmental data, obtained using different methods, for developing models of both uni- and multivariate biodiversity metrics. We tested which biodiversity metrics could be predicted best and evaluated the performance of predictor variables generated from three types of habitat data: acoustic multibeam sonar imagery, predicted habitat classification, and direct observer habitat classification. We used boosted regression trees (BRT) to model metrics of fish species richness, abundance and biomass, and multivariate regression trees (MRT) to model biomass and abundance of fish functional groups. We compared model performance using different sets of predictors and estimated the relative influence of individual predictors. Models of total species richness and total abundance performed best; those developed for endemic species performed worst. Abundance models performed substantially better than corresponding biomass models. In general, BRT and MRTs developed using predicted habitat classifications performed less well than those using multibeam data. The most influential individual predictor was the abiotic categorical variable from direct observer habitat classification and models that incorporated predictors from direct observer habitat classification consistently outperformed those that did not. Our results show that while remotely sensed data can offer considerable utility for predictive modelling, the addition of direct observer habitat classification data can substantially improve model performance. Thus it appears that there are aspects of marine habitats that are important for modelling metrics of fish biodiversity that are

  8. Defining fish nursery habitats: an application of otolith elemental fingerprinting in Tampa Bay, Florida

    Science.gov (United States)

    Ley, Janet A.; McIvor, Carole C.; Peebles, Ernst B; Rolls, Holly; Cooper, Suzanne T.

    2009-01-01

    Fishing in Tampa Bay enhances the quality of life of the area's residents and visitors. However, people's desire to settle along the Bay's shorelines and tributaries has been detrimental to the very habitat believed to be crucial to prime target fishery species. Common snook (Centropomus undecimalis) and red drum (Sciaenops ocellatus) are part of the suite of estuarine fishes that 1) are economically or ecologically prominent, and 2) have complex life cycles involving movement between open coastal waters and estuarine nursery habitats, including nursery habitats that are located within upstream, low-salinity portions of the Bay?s tidal tributaries. We are using an emerging microchemical technique -- elemental fingerprinting of fish otoliths -- to determine the degree to which specific estuarine locations contribute to adult fished populations in Tampa Bay. In ongoing monitoring surveys, over 1,000 young-of-the-year common snook and red drum have already been collected from selected Tampa Bay tributaries. Using laser ablation-inductively coupled plasma - mass spectrometry (LA-ICP-MS), we are currently processing a subsample of these archived otoliths to identify location-specific fingerprints based on elemental microchemistry. We will then analyze older fish from the local fishery in order to match them to their probable nursery areas, as defined by young-of-the-year otoliths. We expect to find that some particularly favorable nursery locations contribute disproportionately to the fished population. In contrast, other nursery areas may be degraded, or act as 'sinks', thereby decreasing their contribution to the fish population. Habitat managers can direct strategic efforts to protect any nursery locations that are found to be of prime importance in contributing to adult stocks.

  9. Restoring stream habitat connectivity: a proposed method for prioritizing the removal of resident fish passage barriers.

    Science.gov (United States)

    O'Hanley, Jesse R; Wright, Jed; Diebel, Matthew; Fedora, Mark A; Soucy, Charles L

    2013-08-15

    Systematic methods for prioritizing the repair and removal of fish passage barriers, while growing of late, have hitherto focused almost exclusively on meeting the needs of migratory fish species (e.g., anadromous salmonids). An important but as of yet unaddressed issue is the development of new modeling approaches which are applicable to resident fish species habitat restoration programs. In this paper, we develop a budget constrained optimization model for deciding which barriers to repair or remove in order to maximize habitat availability for stream resident fish. Habitat availability at the local stream reach is determined based on the recently proposed C metric, which accounts for the amount, quality, distance and level of connectivity to different stream habitat types. We assess the computational performance of our model using geospatial barrier and stream data collected from the Pine-Popple Watershed, located in northeast Wisconsin (USA). The optimization model is found to be an efficient and practical decision support tool. Optimal solutions, which are useful in informing basin-wide restoration planning efforts, can be generated on average in only a few minutes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Developing user-friendly habitat suitability tools from regional stream fish survey data

    Science.gov (United States)

    Zorn, T.G.; Seelbach, P.; Wiley, M.J.

    2011-01-01

    We developed user-friendly fish habitat suitability tools (plots) for fishery managers in Michigan; these tools are based on driving habitat variables and fish population estimates for several hundred stream sites throughout the state. We generated contour plots to show patterns in fish biomass for over 60 common species (and for 120 species grouped at the family level) in relation to axes of catchment area and low-flow yield (90% exceedance flow divided by catchment area) and also in relation to axes of mean and weekly range of July temperatures. The plots showed distinct patterns in fish habitat suitability at each level of biological organization studied and were useful for quantitatively comparing river sites. We demonstrate how these plots can be used to support stream management, and we provide examples pertaining to resource assessment, trout stocking, angling regulations, chemical reclamation of marginal trout streams, indicator species, instream flow protection, and habitat restoration. These straightforward and effective tools are electronically available so that managers can easily access and incorporate them into decision protocols and presentations.

  11. Inter-habitat variation in density and size composition of reef fishes from the Cuban Northwestern shelf.

    Science.gov (United States)

    Aguilar, Consuelo; González-Sansón, Gaspar; Cabrera, Yureidy; Ruiz, Alexei; Curry, R Allen

    2014-06-01

    Movement and exchange of individuals among habitats is critical for the dynamics and success of reef fish populations. Size segregation among habitats could be taken as evidence for habitat connectivity, and this would be a first step to formulate hypotheses about ontogenetic inter-habitat migrations. The primary goal of our research was to find evidence of inter-habitat differences in size distributions and density of reef fish species that can be classified a priori as habitat-shifters in an extensive (-600km2) Caribbean shelf area in NW Cuba. We sampled the fish assemblage of selected species using visual census (stationary and transect methods) in 20 stations (sites) located in mangrove roots, patch reefs, inner zone of the crest and fore reef (12-16m depth). In each site, we performed ten censuses for every habitat type in June and September 2009. A total of 11 507 individuals of 34 species were counted in a total of 400 censuses. We found significant differences in densities and size compositions among reef and mangrove habitats, supporting the species-specific use of coastal habitats. Adults were found in all habitats. Reef habitats, mainly patch reefs, seem to be most important for juvenile fish of most species. Mangroves were especially important for two species of snappers (Lutjanus apodus and L. griseus), providing habitat for juveniles. These species also displayed well defined gradients in length composition across the shelf.

  12. Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance

    2003-08-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian exclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2002 included: (1) Implementing 1 new fencing project in the Wallowa subbasin that will protect an additional 0.95 miles of stream

  13. Density-dependent habitat selection and performance by a large mobile reef fish.

    Science.gov (United States)

    Lindberg, William J; Frazer, Thomas K; Portier, Kenneth M; Vose, Frederic; Loftin, James; Murie, Debra J; Mason, Doran M; Nagy, Brian; Hart, Mary K

    2006-04-01

    Many exploited reef fish are vulnerable to overfishing because they concentrate over hard-bottom patchy habitats. How mobile reef fish use patchy habitat, and the potential consequences on demographic parameters, must be known for spatially explicit population dynamics modeling, for discriminating essential fish habitat (EFH), and for effectively planning conservation measures (e.g., marine protected areas, stock enhancement, and artificial reefs). Gag, Mycteroperca microlepis, is an ecologically and economically important warm-temperate grouper in the southeastern United States, with behavioral and life history traits conducive to large-scale field experiments. The Suwannee Regional Reef System (SRRS) was built of standard habitat units (SHUs) in 1991-1993 to manipulate and control habitat patchiness and intrinsic habitat quality, and thereby test predictions from habitat selection theory. Colonization of the SRRS by gag over the first six years showed significant interactions of SHU size, spacing, and reef age; with trajectories modeled using a quadratic function for closely spaced SHUs (25 m) and a linear model for widely spaced SHUs (225 m), with larger SHUs (16 standardized cubes) accumulating significantly more gag faster than smaller 4-cube SHUs (mean = 72.5 gag/16-cube SHU at 225-m spacing by year 6, compared to 24.2 gag/4-cube SHU for same spacing and reef age). Residency times (mean = 9.8 mo), indicative of choice and measured by ultrasonic telemetry (1995-1998), showed significant interaction of SHU size and spacing consistent with colonization trajectories. Average relative weight (W(r)) and incremental growth were greater on smaller than larger SHUs (mean W(r) = 104.2 vs. 97.7; incremental growth differed by 15%), contrary to patterns of abundance and residency. Experimental manipulation of shelter on a subset of SRRS sites (2000-2001) confirmed our hypothesis that shelter limits local densities of gag, which, in turn, regulates their growth and

  14. Extinction Debt and Colonizer Credit on a Habitat Perturbed Fishing Bank.

    Science.gov (United States)

    Duplisea, Daniel E; Frisk, Michael G; Trenkel, Verena M

    2016-01-01

    Temporal changes in occupancy of the Georges Bank (NE USA) fish and invertebrate community were examined and interpreted in the context of systems ecological theory of extinction debt (EDT). EDT posits that in a closed system with a mix of competitor and colonizer species and experiencing habitat fragmentation and loss, the competitor species will show a gradual decline in fitness (occupancy) eventually leading to their extinction (extirpation) over multiple generations. A corollary of this is a colonizer credit, where colonizer species occupancy may increase with fragmentation because the disturbance gives that life history a transient relative competitive advantage. We found that competitor species occupancy decreased in time concomitant with an increase in occupancy of colonizer species and this may be related to habitat fragmentation or loss owing to industrialized bottom trawl fishing. Mean species richness increased over time which suggests less specialization (decreased dominance) of the assemblage that may result from habitat homogenization. These analyses also showed that when abundance of species was decreased by fishing but eventually returned to previous levels, on average it had a lower occupancy than earlier in the series which could increase their vulnerability to depletion by fishing. Changing occupancy and diversity patterns of the community over time is consistent with EDT which can be exacerbated by direct impacts of fishery removals as well as climate change impacts on the fish community assemblage.

  15. Extinction Debt and Colonizer Credit on a Habitat Perturbed Fishing Bank.

    Directory of Open Access Journals (Sweden)

    Daniel E Duplisea

    Full Text Available Temporal changes in occupancy of the Georges Bank (NE USA fish and invertebrate community were examined and interpreted in the context of systems ecological theory of extinction debt (EDT. EDT posits that in a closed system with a mix of competitor and colonizer species and experiencing habitat fragmentation and loss, the competitor species will show a gradual decline in fitness (occupancy eventually leading to their extinction (extirpation over multiple generations. A corollary of this is a colonizer credit, where colonizer species occupancy may increase with fragmentation because the disturbance gives that life history a transient relative competitive advantage. We found that competitor species occupancy decreased in time concomitant with an increase in occupancy of colonizer species and this may be related to habitat fragmentation or loss owing to industrialized bottom trawl fishing. Mean species richness increased over time which suggests less specialization (decreased dominance of the assemblage that may result from habitat homogenization. These analyses also showed that when abundance of species was decreased by fishing but eventually returned to previous levels, on average it had a lower occupancy than earlier in the series which could increase their vulnerability to depletion by fishing. Changing occupancy and diversity patterns of the community over time is consistent with EDT which can be exacerbated by direct impacts of fishery removals as well as climate change impacts on the fish community assemblage.

  16. Identifying selectively important amino acid positions associated with alternative habitat environments in fish mitochondrial genomes.

    Science.gov (United States)

    Xia, Jun Hong; Li, Hong Lian; Zhang, Yong; Meng, Zi Ning; Lin, Hao Ran

    2018-05-01

    Fish species inhabitating seawater (SW) or freshwater (FW) habitats have to develop genetic adaptations to alternative environment factors, especially salinity. Functional consequences of the protein variations associated with habitat environments in fish mitochondrial genomes have not yet received much attention. We analyzed 829 complete fish mitochondrial genomes and compared the amino acid differences of 13 mitochondrial protein families between FW and SW fish groups. We identified 47 specificity determining sites (SDS) that associated with FW or SW environments from 12 mitochondrial protein families. Thirty-two (68%) of the SDS sites are hydrophobic, 13 (28%) are neutral, and the remaining sites are acidic or basic. Seven of those SDS from ND1, ND2 and ND5 were scored as probably damaging to the protein structures. Furthermore, phylogenetic tree based Bayes Empirical Bayes analysis also detected 63 positive sites associated with alternative habitat environments across ten mtDNA proteins. These signatures could be important for studying mitochondrial genetic variation relevant to fish physiology and ecology.

  17. Stream network geomorphology mediates predicted vulnerability of anadromous fish habitat to hydrologic change in southeast Alaska.

    Science.gov (United States)

    Sloat, Matthew R; Reeves, Gordon H; Christiansen, Kelly R

    2017-02-01

    In rivers supporting Pacific salmon in southeast Alaska, USA, regional trends toward a warmer, wetter climate are predicted to increase mid- and late-21st-century mean annual flood size by 17% and 28%, respectively. Increased flood size could alter stream habitats used by Pacific salmon for reproduction, with negative consequences for the substantial economic, cultural, and ecosystem services these fish provide. We combined field measurements and model simulations to estimate the potential influence of future flood disturbance on geomorphic processes controlling the quality and extent of coho, chum, and pink salmon spawning habitat in over 800 southeast Alaska watersheds. Spawning habitat responses varied widely across watersheds and among salmon species. Little variation among watersheds in potential spawning habitat change was explained by predicted increases in mean annual flood size. Watershed response diversity was mediated primarily by topographic controls on stream channel confinement, reach-scale geomorphic associations with spawning habitat preferences, and complexity in the pace and mode of geomorphic channel responses to altered flood size. Potential spawning habitat loss was highest for coho salmon, which spawn over a wide range of geomorphic settings, including steeper, confined stream reaches that are more susceptible to streambed scour during high flows. We estimated that 9-10% and 13-16% of the spawning habitat for coho salmon could be lost by the 2040s and 2080s, respectively, with losses occurring primarily in confined, higher-gradient streams that provide only moderate-quality habitat. Estimated effects were lower for pink and chum salmon, which primarily spawn in unconfined floodplain streams. Our results illustrate the importance of accounting for valley and reach-scale geomorphic features in watershed assessments of climate vulnerability, especially in topographically complex regions. Failure to consider the geomorphic context of stream

  18. Fish habitat preferences in an artificial reservoir system

    Czech Academy of Sciences Publication Activity Database

    Prchalová, Marie; Kubečka, Jan; Hladík, Milan; Hohausová, Eva; Čech, Martin; Frouzová, Jaroslava

    2006-01-01

    Roč. 29, č. 4 (2006), s. 1890-1894 ISSN 0368-0770. [Congress of SIL - International association of theoretical and applied limnology /29./. Lahti, 08.08.2004-14.08.2004] R&D Projects: GA ČR(CZ) GA206/02/0520 Institutional research plan: CEZ:AV0Z60170517 Keywords : multivariate analysis * fish community * reservoirs * spatial distribution Subject RIV: EH - Ecology, Behaviour

  19. Assessing three fish species ecological status in Colorado River, Grand Canyon based on physical habitat and population models.

    Science.gov (United States)

    Yao, Weiwei; Chen, Yuansheng

    2018-04-01

    Colorado River is a unique ecosystem and provides important ecological services such as habitat for fish species as well as water power energy supplies. River management for this ecosystem requires assessment and decision support tools for fish which involves protecting, restoring as well as forecasting of future conditions. In this paper, a habitat and population model was developed and used to determine the levels of fish habitat suitability and population density in Colorado River between Lees Ferry and Lake Mead. The short term target fish populations are also predicted based on native fish recovery strategy. This model has been developed by combining hydrodynamics, heat transfer and sediment transport models with a habitat suitability index model and then coupling with habitat model into life stage population model. The fish were divided into four life stages according to the fish length. Three most abundant and typical native and non-native fish were selected as target species, which are rainbow trout (Oncorhynchus mykiss), brown trout (Salmo trutta) and flannelmouth sucker (Catostomus latipinnis). Flow velocity, water depth, water temperature and substrates were used as the suitability indicators in habitat model and overall suitability index (OSI) as well as weight usable area (WUA) was used as an indicator in population model. A comparison was made between simulated fish population alteration and surveyed fish number fluctuation during 2000 to 2009. The application of this habitat and population model indicates that this model can be accurate present habitat situation and targets fish population dynamics of in the study areas. The analysis also indicates the flannelmouth sucker population will steadily increase while the rainbow trout will decrease based on the native fish recovery scheme. Copyright © 2018. Published by Elsevier Inc.

  20. Assessment of fish populations and habitat on Oculina Bank, a deep-sea coral marine protected area off eastern Florida

    OpenAIRE

    Harter , Stacey L.; Ribera, Marta M.; Shepard, Andrew N.; Reed, John K.

    2009-01-01

    A portion of the Oculina Bank located off eastern Florida is a marine protected area (MPA) preserved for its dense populations of the ivory tree coral (Oculina varicosa), which provides important habitat for fish. Surveys of fish assemblages and benthic habitat were conducted inside and outside the MPA in 2003 and 2005 by using remotely operated vehicle video transects and digital still imagery. Fish species composition, biodiversity, and grouper densities were used to determine w...

  1. Comparison of fish assemblages in two littoral habitats in a Neotropical morichal stream in Venezuela

    Directory of Open Access Journals (Sweden)

    Carmen G. Montaña

    Full Text Available Morichales are lowland streams in South American savannas with riparian forest dominated by the moriche palm (Mauritia flexuosa. We sampled littoral habitats from ten flooded vegetated patches (dominated by Mauritiella aculeate and six sand banks in two months of the dry season (Feb-Mar 2005 in a stream in the savannas of Apure State, Venezuela. We collected samples that compromised 12,407 individual fishes of 107 species. Small-bodied fishes (< 100 mm, representing diverse trophic and life history strategies, were abundant. The most abundant species were in the families Characidae and Cichlidae. Fish assemblages from flooded vegetated patches differed significantly from those on adjacent sand banks. High structural complexity along vegetated shoreline habitats of morichal streams likely contributes to species richness and affects assemblage composition.

  2. Ecological interdependences between fish fauna and habitat structures of the Elbe river; Oekologische Zusammenhaenge zwischen Fischgemeinschafts- und Lebensraumstrukturen der Elbe

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, R. [Institut fuer Hydrobiologie und Fischereiwissenschaft - Elbelabor, Universitaet Hamburg, Hamburg (Germany); Buslovich, R.; Gerkens, M. [and others

    2000-07-01

    Fluvial fishes are good indicators of the habitat quality in river systems. However, no quantitative data about the relationships between the ecomorphology of the Elbe River and its fish community were available. Therefore, fish ecological assessments or predictions of the development of the fish populations were not possible. Since March 1997, a project financed by the Federal Ministry of Education, Science, Research and Technology focuses on mathematical modelling of the habitat used of all life history stages of the fish fauna. The results of the project shall support decisions in the framework of changing ecomorphology in the Elbe River. (orig.)

  3. Impact of habitat diversity on the sampling effort required for the assessment of river fish communities and IBI

    NARCIS (Netherlands)

    Van Liefferinge, C.; Simoens, I.; Vogt, C.; Cox, T.J.S.; Breine, J.; Ercken, D.; Goethals, P.; Belpaire, C.; Meire, P.

    2010-01-01

    The spatial variation in the fish communities of four small Belgian rivers with variable habitat diversity was investigated by electric fishing to define the minimum sampling distance required for optimal fish stock assessment and determination of the Index of Biotic Integrity. This study shows that

  4. Improvement of fish habitat in a Norwegian river channelization scheme

    International Nuclear Information System (INIS)

    Brittain, J.E.; Brabrand, A.; Saltveit, S.J.; Heggenes, J.

    1993-01-01

    Techniques for reducing adverse effects of river and lake regulation are being developed and tested within the framework of the Norwegian Biotope Adjustment Programme. The programme is illustrated by studies of a river flowing through the wetland area, Lesjaleirene, which has been drained and channelized to provide additional agricultural land. The channelized river has a homogeneous sand substrate. Experimental placement of rocks and stones increased brown trout densities, especially in areas in contact with the river banks. The new areas of rocks and stones provide cover for fish as well as a greater variation in depth and flow conditions. (Author)

  5. Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities

    Science.gov (United States)

    Williamson, David H; Ceccarelli, Daniela M; Evans, Richard D; Jones, Geoffrey P; Russ, Garry R

    2014-01-01

    Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community-level phase shifts from coral-to algal-dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No-take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio-economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post-disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post-disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional-scale population persistence and recovery. PMID:24634720

  6. Disturbance of Essential Fish Habitat by Commercial Passive Fishing Gear in the Delaware, Maryland, and Virginia region of the Mid-Atlantic Bight

    Science.gov (United States)

    Schweitzer, C.

    2016-02-01

    Trap fishing is one of the oldest methods utilized to capture fish, and fish traps are currently one of the most dominant fishing gears utilized by commercial fishermen in the DelMarVa (Delaware, Maryland, Virginia) region. Impacts of traps on benthic habitat and emergent epifauna have become an increasing concern since the 1990's, but despite this, there is little published data regarding trap-habitat interactions. Any substrate necessary for fish spawning, breeding, feeding, or growth to maturity is deemed Essential Fish Habitat (EFH) and in order to increase capture success, traps are often deployed near or on EFH. We assessed the degree of trap impacts via video observations from commercial traps at four common fishing sites in the DelMarVa region, 27-36 km off the coast, at depths of 20-30 m. Two traps within a 20 trap rig were customized by attaching GoPro® cameras to give views in front of the trap, toward the trap front, and to the rear of the trap. Analysis of 123 trap deployments shows that traps often drag across the ocean floor and habitats during the retrieval process. Duration of the dragging phase is strongly correlated with trap position on the line (r2=0.6; p<0.001); traps farther down the line drag significantly longer than traps closer to the boat and first retrieved (1st vs last trap: p<0.01). Dragging significantly increases trap-habitat interactions. Traps with minimal drag have <1% chance of contacting EFH but dragging increases the proportion of traps interacting with EFH to 46%. Observed trap-habitat interactions include: damaging and breaking coral, and running over sea stars, anemones, and bryozoans. Essential fish habitats located off the DelMarVa coast are highly fragmented and sparse, and adverse impacts of passive fishing gear probably affect a large portion of the available habitat.

  7. Parasites of forage fishes in the vicinity of Steller sea lion (Eumetopias jubatus) habitat in Alaska.

    Science.gov (United States)

    Moles, A; Heintz, R A

    2007-07-01

    Fish serve as intermediate hosts for a number of larval parasites that have the potential of maturing in marine mammals such as Steller sea lions (Eumetopias jubatus). We examined the prevalence of parasites from 229 fish collected between March and July 2002 near two islands used by Steller sea lions in Southeast Alaska and island habitats in the Aleutian Islands. Sea lion populations have remained steady in Southeast Alaska but have been declining over the last 30 yr in the Aleutian Islands. Even though the fish samples near the Southeast Alaska haul-outs were composed of numerous small species of fish and the Aleutian Islands catch was dominated by juveniles of commercially harvested species, the parasite fauna was similar at all locations. Eleven of the 20 parasite taxa identified were in their larval stage in the fish hosts, several of which have been described from mammalian final hosts. Four species of parasite were more prevalent in Southeast Alaska fish samples, and seven parasite species, including several larval forms capable of infecting marine mammals, were more prevalent in fish from the Aleutian Islands. Nevertheless, parasites available to Steller sea lions from common fish prey are not likely to be a major factor in the decline of this marine mammal species.

  8. Hierarchical faunal filters: An approach to assessing effects of habitat and nonnative species on native fishes

    Science.gov (United States)

    Quist, M.C.; Rahel, F.J.; Hubert, W.A.

    2005-01-01

    Understanding factors related to the occurrence of species across multiple spatial and temporal scales is critical to the conservation and management of native fishes, especially for those species at the edge of their natural distribution. We used the concept of hierarchical faunal filters to provide a framework for investigating the influence of habitat characteristics and normative piscivores on the occurrence of 10 native fishes in streams of the North Platte River watershed in Wyoming. Three faunal filters were developed for each species: (i) large-scale biogeographic, (ii) local abiotic, and (iii) biotic. The large-scale biogeographic filter, composed of elevation and stream-size thresholds, was used to determine the boundaries within which each species might be expected to occur. Then, a local abiotic filter (i.e., habitat associations), developed using binary logistic-regression analysis, estimated the probability of occurrence of each species from features such as maximum depth, substrate composition, submergent aquatic vegetation, woody debris, and channel morphology (e.g., amount of pool habitat). Lastly, a biotic faunal filter was developed using binary logistic regression to estimate the probability of occurrence of each species relative to the abundance of nonnative piscivores in a reach. Conceptualising fish assemblages within a framework of hierarchical faunal filters is simple and logical, helps direct conservation and management activities, and provides important information on the ecology of fishes in the western Great Plains of North America. ?? Blackwell Munksgaard, 2004.

  9. Development of computational fluid dynamics--habitat suitability (CFD-HSI) models to identify potential passage--Challenge zones for migratory fishes in the Penobscot River

    Science.gov (United States)

    Haro, Alexander J.; Dudley, Robert W.; Chelminski, Michael

    2012-01-01

    A two-dimensional computational fluid dynamics-habitat suitability (CFD–HSI) model was developed to identify potential zones of shallow depth and high water velocity that may present passage challenges for five anadromous fish species in the Penobscot River, Maine, upstream from two existing dams and as a result of the proposed future removal of the dams. Potential depth-challenge zones were predicted for larger species at the lowest flow modeled in the dam-removal scenario. Increasing flows under both scenarios increased the number and size of potential velocity-challenge zones, especially for smaller species. This application of the two-dimensional CFD–HSI model demonstrated its capabilities to estimate the potential effects of flow and hydraulic alteration on the passage of migratory fish.

  10. Retention of habitat complexity minimizes disassembly of reef fish communities following disturbance: a large-scale natural experiment.

    Directory of Open Access Journals (Sweden)

    Michael J Emslie

    Full Text Available High biodiversity ecosystems are commonly associated with complex habitats. Coral reefs are highly diverse ecosystems, but are under increasing pressure from numerous stressors, many of which reduce live coral cover and habitat complexity with concomitant effects on other organisms such as reef fishes. While previous studies have highlighted the importance of habitat complexity in structuring reef fish communities, they employed gradient or meta-analyses which lacked a controlled experimental design over broad spatial scales to explicitly separate the influence of live coral cover from overall habitat complexity. Here a natural experiment using a long term (20 year, spatially extensive (∼ 115,000 kms(2 dataset from the Great Barrier Reef revealed the fundamental importance of overall habitat complexity for reef fishes. Reductions of both live coral cover and habitat complexity had substantial impacts on fish communities compared to relatively minor impacts after major reductions in coral cover but not habitat complexity. Where habitat complexity was substantially reduced, species abundances broadly declined and a far greater number of fish species were locally extirpated, including economically important fishes. This resulted in decreased species richness and a loss of diversity within functional groups. Our results suggest that the retention of habitat complexity following disturbances can ameliorate the impacts of coral declines on reef fishes, so preserving their capacity to perform important functional roles essential to reef resilience. These results add to a growing body of evidence about the importance of habitat complexity for reef fishes, and represent the first large-scale examination of this question on the Great Barrier Reef.

  11. Passage and behaviour of cultured Lake Sturgeon in a prototype side-baffle fish ladder: I. Ladder hydraulics and fish ascent

    Science.gov (United States)

    Kynard, B.; Pugh, D.; Parker, T.

    2011-01-01

    Research and development of a fish ladder for sturgeons requires understanding ladder hydraulics and sturgeon behaviour in the ladder to insure the ladder is safe and provides effective passage. After years of research and development, we designed and constructed a full-scale prototype side-baffle ladder inside a spiral flume (38.3m long??1m wide??1m high) on a 6% (1:16.5) slope with a 1.92-m rise in elevation (bottom to top) to test use by sturgeons. Twenty-eight triangular side baffles, each extending part way across the flume, alternated from inside wall to outside wall down the ladder creating two major flow habitats: a continuous, sinusoidal flow down the ladder through the vertical openings of side-baffles and an eddy below each side baffle. Ascent and behaviour was observed on 22 cultured Lake Sturgeon=LS (Acipenser fulvescens) repeatedly tested in groups as juveniles (as small as 105.1cm TL, mean) or as adults (mean TL, 118cm) during four periods (fall 2002 and 2003; spring 2003 and 2007). Percent of juveniles entering the ladder that ascended to the top was greater in spring (72.7%) than in fall (40.9-45.5%) and 90.9% of 11 adults, which ascended as juveniles, ascended to the top. Six LS (27.3%) never swam to the top and seven (31.8%) swam to the top in all tests, indicating great variability among individuals for ascent drive. Some LS swam directly to the top in <1min, but most rested in an eddy during ascent. Juveniles swimming through outside wall baffle slots (mean velocity, 1.2ms-1) swam at 1.8-2.2body lengthss-1 and 3.2-3.3tail beatss-1, either at or approaching prolonged swimming speed. The side-baffle ladder was stream-like and provided key factors for a sturgeon ladder: a continuous flow and no full cross-channel walls, abundant eddies for resting, an acceptable water depth, and a water velocity fish could ascend swimming 2bls-1. A side-baffle ladder passes LS and other moderate-swimming fishes. ?? 2011 Blackwell Verlag, Berlin.

  12. Estimating fish exploitation and aquatic habitat loss across diffuse inland recreational fisheries.

    Science.gov (United States)

    de Kerckhove, Derrick Tupper; Minns, Charles Kenneth; Chu, Cindy

    2015-01-01

    The current state of many freshwater fish stocks worldwide is largely unknown but suspected to be vulnerable to exploitation from recreational fisheries and habitat degradation. Both these factors, combined with complex ecological dynamics and the diffuse nature of inland fisheries could lead to an invisible collapse: the drastic decline in fish stocks without great public or management awareness. In this study we provide a method to address the pervasive knowledge gaps in regional rates of exploitation and habitat degradation, and demonstrate its use in one of North America's largest and most diffuse recreational freshwater fisheries (Ontario, Canada). We estimated that (1) fish stocks were highly exploited and in apparent danger of collapse in management zones close to large population centres, and (2) fish habitat was under a low but constant threat of degradation at rates comparable to deforestation in Ontario and throughout Canada. These findings confirm some commonly held, but difficult to quantify, beliefs in inland fisheries management but also provide some further insights including (1) large anthropogenic projects greater than one hectare could contribute much more to fish habitat loss on an area basis than the cumulative effect of smaller projects within one year, (2) hooking mortality from catch-and-release fisheries is likely a greater source of mortality than the harvest itself, and (3) in most northern management zones over 50% of the fisheries resources are not yet accessible to anglers. While this model primarily provides a framework to prioritize management decisions and further targeted stock assessments, we note that our regional estimates of fisheries productivity and exploitation were similar to broadscale monitoring efforts by the Province of Ontario. We discuss the policy implications from our results and extending the model to other jurisdictions and countries.

  13. Assessing the Effects of Water Right Purchases on Stream Temperatures and Fish Habitat

    Science.gov (United States)

    Elmore, L.; Null, S. E.

    2012-12-01

    Warm stream temperature and low flow conditions are limiting factors for native trout species in Nevada's Walker River. Water rights purchases are being considered to increase instream flow and improve habitat conditions. However, the effect of water rights purchases on stream temperatures and fish habitat have yet to be assessed. Manipulating flow conditions affect stream temperatures by altering water depth, velocity, and thermal mass. This study uses the River Modeling System (RMSv4), an hourly, physically-based hydrodynamic and water quality model, to estimate flows and stream temperatures in the Walker River. The model is developed for two wet years (2010-2011). Study results highlight reaches with cold-water habitat that is suitable for native trout species. Previous research on the Walker River has evaluated instream flow changes with water rights purchases. This study incorporates stream temperatures as a proxy for trout habitat, and thus explicitly incorporates water quality and fish habitat into decision-making regarding water rights purchases. Walker River

  14. Early life history and habitat ecology of estuarine fishes: responses to natural and human induced change

    Directory of Open Access Journals (Sweden)

    Kenneth Able

    2015-12-01

    Full Text Available Our understanding of the early life history of fishes and their habitats has proceeded from basic natural history to ecology, but we often need to return to natural history to address deficiencies in conceptual and quantitative models of ecosystems. This understanding is further limited by the complex life history of fishes and the lack of appreciation of shifting baselines in estuaries. These inadequacies are especially evident when we try to address the effects of human influences, e.g. fishing, urbanization, and climate change. Often our baselines are inadequate or inaccurate. Our work has detected these along the coasts of the U.S. in extensive time series of larval fish ingress into estuaries, studies of the effects of urbanization, and responses to catastrophes such as the BP oil spill. Long-term monitoring, especially, continues to provide critical insights

  15. Explorations on Temperature, Oxygen, Nutrients and Habitat Demands of Fish Species Found in River Coruh

    Directory of Open Access Journals (Sweden)

    Bilal Akbulut

    2009-04-01

    Full Text Available For the protection of our natural resources, fish species being economic and ecological richness of the natural in the basin of the Çoruh to know their request is extremely a vital important issue. In this study, temperature and oxygen demand, food and habitat of 18 fish species in six families found in river Çoruh assessed and discussed with the literature and database. Limiting the impact of water temperature on the reproductive, growth and nutrition emphasized. The fish species in the basin spawn at temperatures between 14-30°C according to database. Three species belonging to a family feed with animal food floating in the water. The species belonging to the other families more feed mixed with plant and animal foods diet in the floor or near the ground. Importance of their environmental demands has clarified for conservation and sustainable use of these fish species inhabiting in Çoruh River.

  16. Simulating mechanisms for dispersal, production and stranding of small forage fish in temporary wetland habitats

    Science.gov (United States)

    Yurek, Simeon; DeAngelis, Donald L.; Trexler, Joel C.; Jopp, Fred; Donalson, Douglas D.

    2013-01-01

    Movement strategies of small forage fish (wetland habitats affect their overall population growth and biomass concentrations, i.e., availability to predators. These fish are often the key energy link between primary producers and top predators, such as wading birds, which require high concentrations of stranded fish in accessible depths. Expansion and contraction of seasonal wetlands induce a sequential alternation between rapid biomass growth and concentration, creating the conditions for local stranding of small fish as they move in response to varying water levels. To better understand how landscape topography, hydrology, and fish behavior interact to create high densities of stranded fish, we first simulated population dynamics of small fish, within a dynamic food web, with different traits for movement strategy and growth rate, across an artificial, spatially explicit, heterogeneous, two-dimensional marsh slough landscape, using hydrologic variability as the driver for movement. Model output showed that fish with the highest tendency to invade newly flooded marsh areas built up the largest populations over long time periods with stable hydrologic patterns. A higher probability to become stranded had negative effects on long-term population size, and offset the contribution of that species to stranded biomass. The model was next applied to the topography of a 10 km × 10 km area of Everglades landscape. The details of the topography were highly important in channeling fish movements and creating spatiotemporal patterns of fish movement and stranding. This output provides data that can be compared in the future with observed locations of fish biomass concentrations, or such surrogates as phosphorus ‘hotspots’ in the marsh.

  17. Solutions to the Impacts of Roads and Other Barriers on Fish and Fish Habitat

    NARCIS (Netherlands)

    Ottburg, Fabrice; Blank, Matt

    2015-01-01

    As with all wildlife, fish need to move throughout their range in order to complete their life cycles. Unlike other animals, fish cannot leave the stream or river that they are living in or migrating through to bypass a barrier. Structures under roads that facilitate the flow of water,

  18. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd

    1993-04-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program Measure 704 (d) (1) 34.02 and targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation (hereafter referred to as Reservation) from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River (downstream of the Meacham Creek confluence upstream to the Reservation East Boundary). In 1993, the project shifted emphasis to a comprehensive watershed approach consistent with other basin efforts and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. Maintenance of existing habitat improvement projects was included under this comprehensive approach. Maintenance of existing gravel traps, instream and bank stabilization structures was required within project areas during the reporting period due to spring flooding damage and high bedload movement. Maintenance activities were completed between river mile (RM) 0.0 and RM 0.25 Boston Canyon Creek, between RM 0.0 and RM 4 Meacham Creek and between RM 78.5 and RM 79 Umatilla River. Habitat enhancement areas were seeded with native grass, legume, shrub and wildflower mixes and planted with willow cuttings to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. Water quality monitoring continued for temperature and turbidity throughout the upper Umatilla River Watershed. Survey of cross sections and

  19. Potential of Pigeon Creek, San Salvador, Bahamas, as Nursery Habitat for Juvenile Reef Fish

    Directory of Open Access Journals (Sweden)

    Conboy, Ian Christopher

    2011-10-01

    Full Text Available This project assessed the significance of Pigeon Creek, San Salvador, Bahamas as a nursery habitat for coral reef fishes. Pigeon Creek’s perimeter is lined with mangrove and limestone bedrock. The bottom is sand or seagrass and ranges in depth from exposed at low tide to a 3-m deep, tide-scoured channel. In June 2006 and January 2007, fish were counted and their maturity was recorded while sampling 112 of 309 possible 50-m transects along the perimeter of the Pigeon Creek. Excluding silversides (Atherinidae, 52% of fish counted, six families each comprised >1% of the total abundance (Scaridae/parrotfishes, 35.3%; Lutjanidae/snappers, 23.9%; Haemulidae/grunts, 21.0%; Gerreidae/mojarras, 8.5%; Pomacentridae/damselfishes, 6.1%; Labridae/wrasses, 2.4%. There were few differences in effort-adjusted counts among habitats (mangrove, bedrock, mixed, sections (north, middle, southwest and seasons (summer 2006 and winter 2007. Red Mangrove (Rhizophora mangle, covering 68% of the perimeter was where 62% of the fish were counted. Snappers, grunts and parrotfishes are important food fishes and significant families in terms of reef ecology around San Salvador. Mangrove was the most important habitat for snappers and grunts; bedrock was most important for parrotfishes. The southwest section was important for snappers, grunts and parrotfishes, the north section for grunts and parrotfishes, and the middle section for snappers. Among the non-silverside fish counted, 91.2% were juveniles. These results suggest that Pigeon Creek is an important nursery for the coral reefs surrounding San Salvador and should be protected from potential disturbances.

  20. Habitat characteristics and environmental parameters influencing fish assemblages of karstic pools in southern Mexico

    Directory of Open Access Journals (Sweden)

    María Eugenia Vega-Cendejas

    Full Text Available Fish assemblage structure was evaluated and compared among 36 karstic pools located within protected areas of the Calakmul Biosphere Reserve (southern Mexico and unprotected adjacent areas beyond the Reserve. Nonmetric multidimensional scaling (MDS, indicator species analysis (ISA, and canonical correspondence analysis (CCA were used to identify which environmental factors reflected local influences and to evaluate the correlation of these variables with fish assemblages structure. Thirty-one species were encountered in these karstic pools, some for the first time within the Reserve. These aquatic environments were separated into three groups based on physico-chemical characteristics. Although CCA identified significant associations between several fish species (based on their relative abundance and environmental variables (K, NH4, NO3, and conductivity, the most abundant species (Astyanax aeneus, Poecilia mexicana, and Gambusia sexradiata occur in most pools and under several environmental conditions. Baseline data on fish diversity along with a continued monitoring program are essential in order to evaluate the conservation status of fish assemblages and their habitats, as well as to measure the influence of anthropogenic impacts on pristine habitats such as the karstic pools of the Calakmul Biosphere Reserve.

  1. High-resolution mapping of European fishing pressure on the benthic habitats

    DEFF Research Database (Denmark)

    Eigaard, Ole Ritzau; Bastardie, Francois; Hintzen, Niels T.

    effort. Consequently, most logbook information is not well suited for quantitative estimation of seafloor impact (swept area and impact severity) of the different gears and trips. We present a method to overcome this information deficiency of official statistics and develop high-resolution large......) and gear width estimates were assigned to individual interpolated vessel tracks based on VMS data. The outcome was European wide highresolution fishing intensity maps (total yearly swept area within grid cells of 1*1 minutes longitude and latitude) for 2010, 2011 and 2012. Finally the high-resolution...... fishing pressure maps were overlaid with existing marine habitat maps to identify areas of potential ecosystem service conflicts...

  2. Flat and complex temperate reefs provide similar support for fish: Evidence for a unimodal species-habitat relationship.

    Directory of Open Access Journals (Sweden)

    Avery B Paxton

    Full Text Available Structural complexity, a form of habitat heterogeneity, influences the structure and function of ecological communities, generally supporting increased species density, richness, and diversity. Recent research, however, suggests the most complex habitats may not harbor the highest density of individuals and number of species, especially in areas with elevated human influence. Understanding nuances in relationships between habitat heterogeneity and ecological communities is warranted to guide habitat-focused conservation and management efforts. We conducted fish and structural habitat surveys of thirty warm-temperate reefs on the southeastern US continental shelf to quantify how structural complexity influences fish communities. We found that intermediate complexity maximizes fish abundance on natural and artificial reefs, as well as species richness on natural reefs, challenging the current paradigm that abundance and other fish community metrics increase with increasing complexity. Naturally occurring rocky reefs of flat and complex morphologies supported equivalent abundance, biomass, species richness, and community composition of fishes. For flat and complex morphologies of rocky reefs to receive equal consideration as essential fish habitat (EFH, special attention should be given to detecting pavement type rocky reefs because their ephemeral nature makes them difficult to detect with typical seafloor mapping methods. Artificial reefs of intermediate complexity also maximized fish abundance, but human-made structures composed of low-lying concrete and metal ships differed in community types, with less complex, concrete structures supporting lower numbers of fishes classified largely as demersal species and metal ships protruding into the water column harboring higher numbers of fishes, including more pelagic species. Results of this study are essential to the process of evaluating habitat function provided by different types and shapes of

  3. Fish habitat regression under water scarcity scenarios in the Douro River basin

    Science.gov (United States)

    Segurado, Pedro; Jauch, Eduardo; Neves, Ramiro; Ferreira, Teresa

    2015-04-01

    Climate change will predictably alter hydrological patterns and processes at the catchment scale, with impacts on habitat conditions for fish. The main goals of this study are to identify the stream reaches that will undergo more pronounced flow reduction under different climate change scenarios and to assess which fish species will be more affected by the consequent regression of suitable habitats. The interplay between changes in flow and temperature and the presence of transversal artificial obstacles (dams and weirs) is analysed. The results will contribute to river management and impact mitigation actions under climate change. This study was carried out in the Tâmega catchment of the Douro basin. A set of 29 Hydrological, climatic, and hydrogeomorphological variables were modelled using a water modelling system (MOHID), based on meteorological data recorded monthly between 2008 and 2014. The same variables were modelled considering future climate change scenarios. The resulting variables were used in empirical habitat models of a set of key species (brown trout Salmo trutta fario, barbell Barbus bocagei, and nase Pseudochondrostoma duriense) using boosted regression trees. The stream segments between tributaries were used as spatial sampling units. Models were developed for the whole Douro basin using 401 fish sampling sites, although the modelled probabilities of species occurrence for each stream segment were predicted only for the Tâmega catchment. These probabilities of occurrence were used to classify stream segments into suitable and unsuitable habitat for each fish species, considering the future climate change scenario. The stream reaches that were predicted to undergo longer flow interruptions were identified and crossed with the resulting predictive maps of habitat suitability to compute the total area of habitat loss per species. Among the target species, the brown trout was predicted to be the most sensitive to habitat regression due to the

  4. An anchoring system for fish habitat structures: field technique, evaluation, and application.

    Science.gov (United States)

    Barbara L. Fontaine; Thomas D. Merritt

    1988-01-01

    Steel cable can be used to bind rocks and logs together to construct fish habitat structures in streams. Cables must be securely anchored if structures are to withstand floods. This paper describes a way to anchor cables into bedrock or ballast boulders. Anchor tensile strength ranged from 7,500 to 36,500 pounds and was related to type of resin and embedment depth....

  5. Patterns in diel habitat use of fish covering the littoral and pelagic zones in a reservoir

    Czech Academy of Sciences Publication Activity Database

    Říha, Milan; Ricard, Daniel; Vašek, Mojmír; Prchalová, Marie; Mrkvička, Tomáš; Jůza, Tomáš; Čech, Martin; Draštík, Vladislav; Muška, Milan; Kratochvíl, Michal; Peterka, Jiří; Tušer, Michal; Seďa, Jaromír; Blabolil, Petr; Bláha, M.; Wanzenbock, J.; Kubečka, Jan

    2015-01-01

    Roč. 747, č. 1 (2015), s. 111-131 ISSN 0018-8158 R&D Projects: GA MŠk(CZ) EE2.3.20.0204; GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : habitat use * diel period * distribution * fish diet * littoral * pelagial * reservoir Subject RIV: EG - Zoology Impact factor: 2.051, year: 2015

  6. Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn (Nez Perce Soil and Conservation District, Lewiston, ID)

    2006-07-01

    The ''Restoring Anadromous Fish Habitat in the Big Canyon Creek Watershed'' is a multi-phase project to enhance steelhead trout in the Big Canyon Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District. Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period September 1, 2004 through October 31, 2005 include; 2.7 riparian miles treated, 3.0 wetland acres treated, 5,263.3 upland acres treated, 106.5 riparian acres treated, 76,285 general public reached, 3,000 students reached, 40 teachers reached, 18 maintenance plans completed, temperature data collected at 6 sites, 8 landowner applications received and processed, 14 land inventories completed, 58 habitat improvement project designs completed, 5 newsletters published, 6 habitat plans completed, 34 projects installed, 2 educational workshops, 6 displays, 1 television segment, 2 public service announcements, a noxious weed GIS coverage, and completion of NEPA, ESA, and cultural resources requirements.

  7. Walla Walla River Basin Fish Habitat Enhancement Project, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed; Sexton, Amy D. (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2001-01-01

    In 2000, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of these efforts is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. Six projects, two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and one property on the mainstem Walla Walla River were part of the exercise. Several thousand native plants as bare-root stock and cuttings were reintroduced to the sites and 18 acres of floodplain corridor was seeded with native grass seed. Pre and post-project monitoring efforts were included for all projects, incorporating methodologies from CTUIR's Draft Monitoring Plan.

  8. Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed, Technical Report 2003-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn

    2007-02-01

    The Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed is a multi-phase project to enhance steelhead trout in the Lapwai Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District (District). Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period December 1, 2003 through February 28, 2004 include; seven grade stabilization structures, 0.67 acres of wetland plantings, ten acres tree planting, 500 linear feet streambank erosion control, two acres grass seeding, and 120 acres weed control.

  9. Walla Walla River Basin Fish Habitat Enhancement Project, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2005-12-01

    In 2002 and 2003, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts on private properties in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of this effort is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled nine properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and four properties on the mainstem Walla Walla River. Major accomplishments during the reporting period include the following: (1) Secured approximately $229,000 in project cost share; (2) Purchase of 46 acres on the mainstem Walla Walla River to be protected perpetually for native fish and wildlife; (3) Developed three new 15 year conservation easements with private landowners; (4) Installed 3000 feet of weed barrier tarp with new plantings within project area on the mainstem Walla Walla River; (5) Expanded easement area on Couse Creek to include an additional 0.5 miles of stream corridor and 32 acres of upland habitat; (6) Restored 12 acres on the mainstem Walla Walla River and 32 acres on Couse Creek to native perennial grasses; and (7) Installed 50,000+ new native plants/cuttings within project areas.

  10. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R.Todd

    1996-05-01

    During the 1995 - 96 project period, four new habitat enhancement projects were implemented under the Umatilla River Basin Anadromous Fish Habitat Enhancement Project by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) in the upper Umatilla River Basin. A total of 38,644 feet of high tensile smooth wire fencing was constructed along 3.6 miles of riparian corridor in the Meacham Creek, Wildhorse Creek, Greasewood Creek, West Fork of Greasewood Creek and Mission Creek watersheds. Additional enhancements on Wildhorse Creek and the lower Greasewood Creek System included: (1) installation of 0.43 miles of smooth wire between river mile (RM) 10.25 and RM 10.5 Wildhorse Creek (fence posts and structures had been previously placed on this property during the 1994 - 95 project period), (2) construction of 46 sediment retention structures in stream channels and maintenance to 18 existing sediment retention structures between RM 9.5 and RM 10.25 Wildhorse Creek, and (3) revegetation of stream corridor areas and adjacent terraces with 500 pounds of native grass seed or close species equivalents and 5,000 native riparian shrub/tree species to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. U.S. Fish and Wildlife Service (USFWS), Bureau of Indian Affairs (BIA) and Environmental Protection Agency (EPA) funds were cost shared with Bonneville Power Administration (BPA) funds, provided under this project, to accomplish habitat enhancements. Water quality monitoring continued and was expanded for temperature and turbidity throughout the upper Umatilla River Watershed. Physical habitat surveys were conducted on the lower 13 river miles of Wildhorse Creek and within the Greasewood Creek Project Area to characterize habitat quality and to quantify various habitat types by area.

  11. Fish and aquatic habitat conservation in South America: a continental overview with emphasis on neotropical systems.

    Science.gov (United States)

    Barletta, M; Jaureguizar, A J; Baigun, C; Fontoura, N F; Agostinho, A A; Almeida-Val, V M F; Val, A L; Torres, R A; Jimenes-Segura, L F; Giarrizzo, T; Fabré, N N; Batista, V S; Lasso, C; Taphorn, D C; Costa, M F; Chaves, P T; Vieira, J P; Corrêa, M F M

    2010-06-01

    Fish conservation in South America is a pressing issue. The biodiversity of fishes, just as with all other groups of plants and animals, is far from fully known. Continuing habitat loss may result in biodiversity losses before full species diversity is known. In this review, the main river basins of South America (Magdalena, Orinoco, Amazon and Paraná-La Plata system), together with key aquatic habitats (mangrove-fringed estuaries of the tropical humid, tropical semi-arid and subtropical regions) are analysed in terms of their characteristics and main concerns. Habitat loss was the main concern identified for all South American ecosystems. It may be caused by damming of rivers, deforestation, water pollution, mining, poor agricultural practice or inadequate management practice. Habitat loss has a direct consequence, which is a decrease in the availability of living resources, a serious social and economic issue, especially for South American nations which are all developing countries. The introduction of exotic species and overfishing were also identified as widespread across the continent and its main freshwater, coastal and marine ecosystems. Finally, suggestions are made to find ways to overcome these problems. The main suggestion is a change of paradigm and a new design for conservation actions, starting with integrated research and aiming at the co-ordinated and harmonized management of the main transboundary waters of the continent. The actions would be focused on habitat conservation and social rescue of the less well-off populations of indigenous and non-indigenous peoples. Energy and freshwater demands will also have to be rescaled in order to control habitat loss.

  12. Variable responses of fish assemblages, habitat, and stability to natural-channel-design restoration in Catskill Mountain streams

    Science.gov (United States)

    Baldigo, Barry P.; Ernst, Anne G.; Warren, Dana R.; Miller, Sarah J.

    2010-01-01

    Natural-channel-design (NCD) restorations were recently implemented within large segments of five first- and second-order streams in the Catskill Mountains of New York in an attempt to increase channel stability, reduce bed and bank erosion, and sustain water quality. In conjunction with these efforts, 54 fish and habitat surveys were done from 1999 to 2007 at six restored reaches and five stable control reaches to evaluate the effects of NCD restoration on fish assemblages, habitat, and bank stability. A before–after–control–impact study design and two-factor analysis of variance were used to quantify the net changes in habitat and fish population and community indices at treatment reaches relative to those at unaltered control reaches. The density and biomass of fish communities were often dominated by one or two small prey species and no or few predator species before restoration and by one or more trout (Salmonidae) species after restoration. Significant increases in community richness (30%), diversity (40%), species or biomass equitability (32%), and total biomass (up to 52%) in at least four of the six restored reaches demonstrate that NCD restorations can improve the health and sustainability of fish communities in geomorphically unstable Catskill Mountain streams over the short to marginally long term. Bank stability, stream habitat, and trout habitat suitability indices (HSIs) generally improved significantly at the restored reaches, but key habitat features and trout HSIs did not change or decreased at two of them. Fish communities and trout populations at these two reaches were not positively affected by NCD restorations. Though NCD restorations often had a positive effect on habitat and fish communities, our results show that the initial habitat conditions limit the relative improvements than can be achieved, habitat quality and stability do not necessarily respond in unison, and biotic and abiotic responses cannot always be generalized.

  13. Importance of the habitat choice behavior assumed when modeling the effects of food and temperature on fish populations

    Science.gov (United States)

    Wildhaber, Mark L.; Lamberson, Peter J.

    2004-01-01

    Various mechanisms of habitat choice in fishes based on food and/or temperature have been proposed: optimal foraging for food alone; behavioral thermoregulation for temperature alone; and behavioral energetics and discounted matching for food and temperature combined. Along with development of habitat choice mechanisms, there has been a major push to develop and apply to fish populations individual-based models that incorporate various forms of these mechanisms. However, it is not known how the wide variation in observed and hypothesized mechanisms of fish habitat choice could alter fish population predictions (e.g. growth, size distributions, etc.). We used spatially explicit, individual-based modeling to compare predicted fish populations using different submodels of patch choice behavior under various food and temperature distributions. We compared predicted growth, temperature experience, food consumption, and final spatial distribution using the different models. Our results demonstrated that the habitat choice mechanism assumed in fish population modeling simulations was critical to predictions of fish distribution and growth rates. Hence, resource managers who use modeling results to predict fish population trends should be very aware of and understand the underlying patch choice mechanisms used in their models to assure that those mechanisms correctly represent the fish populations being modeled.

  14. Coalbed gas environmental resource information project : fish population and habitat study review : Similkameen and Tulameen coalfields : final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-03-15

    This paper provided an overview of fish and fish habitats in the Similkameen and Tulameen coalfields area. The report consisted of a literature review as well as the examination of a regional-specific database. Discussions and interviews were conducted with First Nations, members of the oil and gas industry, and various governmental and non-governmental organizations. The report identified fish species in the region, and provided details of fish distribution and habitat, and obstructions and constraints to fish populations. Information on sensitive species was also provided. Watershed and hydrological overviews were provided, as well as summary tables for all relevant data. Online mapping and resource databases were used to prepare a profile of fish and fish habitat studies. Sensitive species information was obtained from online governmental mapping resources. The acquired data were then used to produce resource lists and habitat tables for streams and rivers residing within or transiting through the area. Four fish species were identified as species at risk, and an additional fish species was considered to be endangered. It was concluded that a centralized and mandatory reporting system must be developed to ensure that all documents are deposited within a single central library. Approximately 80 per cent of the information gathered for the report did not exist in the Environmental Resources Information Project (ERIP) database. 16 refs., 11 tabs., 1 fig.

  15. Simple measures of channel habitat complexity predict transient hydraulic storage in streams

    Science.gov (United States)

    Stream thalweg depth profiles (along path of greatest channel depth) and woody debris tallies have recently become components of routine field procedures for quantifying physical habitat in national stream monitoring efforts. Mean residual depth, standard deviation of thalweg dep...

  16. Spatially explicit measures of production of young alewives in Lake Michigan: Linkage between essential fish habitat and recruitment

    Science.gov (United States)

    Hook, Tomas O.; Rutherford, Edward S.; Brines, Shannon J.; Mason, Doran M.; Schwab, David J.; McCormick, Michael; Desorcie, Timothy J.

    2003-01-01

    The identification and protection of essential habitats for early life stages of fishes are necessary to sustain fish stocks. Essential fish habitat for early life stages may be defined as areas where fish densities, growth, survival, or production rates are relatively high. To identify critical habitats for young-of-year (YOY) alewives (Alosa pseud oharengus) in Lake Michigan, we integrated bioenergetics models with GIS (Geographic Information Systems) to generate spatially explicit estimates of potential population production (an index of habitat quality). These estimates were based upon YOY alewife bioenergetic growth rate potential and their salmonine predators’ consumptive demand. We compared estimates of potential population production to YOY alewife yield (an index of habitat importance). Our analysis suggested that during 1994–1995, YOY alewife habitat quality and yield varied widely throughout Lake Michigan. Spatial patterns of alewife yield were not significantly correlated to habitat quality. Various mechanisms (e.g., predator migrations, lake circulation patterns, alternative strategies) may preclude YOY alewives from concentrating in areas of high habitat quality in Lake Michigan.

  17. Analysis of habitat characteristics of small pelagic fish based on generalized additive models in Kepulauan Seribu Waters

    Science.gov (United States)

    Rivai, A. A.; Siregar, V. P.; Agus, S. B.; Yasuma, H.

    2018-03-01

    One of the required information for sustainable fisheries management is about the habitat characteristics of a fish species. This information can be used to map the distribution of fish and map the potential fishing ground. This study aimed to analyze the habitat characteristics of small pelagic fishes (anchovy, squid, sardine and scads) which were mainly caught by lift net in Kepulauan Seribu waters. Research on habitat characteristics had been widely done, but the use of total suspended solid (TSS) parameters in this analysis is still lacking. TSS parameter which was extracted from Landsat 8 along with five other oceanographic parameters, CPUE data and location of fishing ground data from lift net fisheries in Kepulauan Seribu were included in this analysis. This analysis used Generalized Additive Models (GAMs) to evaluate the relationship between CPUE and oceanographic parameters. The results of the analysis showed that each fish species had different habitat characteristics. TSS and sea surface height had a great influence on the value of CPUE from each species. All the oceanographic parameters affected the CPUE of each species. This study demonstrated the effective use of GAMs to identify the essential habitat of a fish species.

  18. Colonization and extinction in dynamic habitats: an occupancy approach for a Great Plains stream fish assemblage.

    Science.gov (United States)

    Falke, Jeffrey A; Bailey, Larissa L; Fausch, Kurt D; Bestgen, Kevin R

    2012-04-01

    Despite the importance of habitat in determining species distribution and persistence, habitat dynamics are rarely modeled in studies of metapopulations. We used an integrated habitat-occupancy model to simultaneously quantify habitat change, site fidelity, and local colonization and extinction rates for larvae of a suite of Great Plains stream fishes in the Arikaree River, eastern Colorado, USA, across three years. Sites were located along a gradient of flow intermittency and groundwater connectivity. Hydrology varied across years: the first and third being relatively wet and the second dry. Despite hydrologic variation, our results indicated that site suitability was random from one year to the next. Occupancy probabilities were also independent of previous habitat and occupancy state for most species, indicating little site fidelity. Climate and groundwater connectivity were important drivers of local extinction and colonization, but the importance of groundwater differed between periods. Across species, site extinction probabilities were highest during the transition from wet to dry conditions (range: 0.52-0.98), and the effect of groundwater was apparent with higher extinction probabilities for sites not fed by groundwater. Colonization probabilities during this period were relatively low for both previously dry sites (range: 0.02-0.38) and previously wet sites (range: 0.02-0.43). In contrast, no sites dried or remained dry during the transition from dry to wet conditions, yielding lower but still substantial extinction probabilities (range: 0.16-0.63) and higher colonization probabilities (range: 0.06-0.86), with little difference among sites with and without groundwater. This approach of jointly modeling both habitat change and species occupancy will likely be useful to incorporate effects of dynamic habitat on metapopulation processes and to better inform appropriate conservation actions.

  19. Using otolith microchemistry and shape to assess the habitat value of oil structures for reef fish.

    Science.gov (United States)

    Fowler, Ashley M; Macreadie, Peter I; Bishop, David P; Booth, David J

    2015-05-01

    Over 7500 oil and gas structures (e.g. oil platforms) are installed in offshore waters worldwide and many will require decommissioning within the next two decades. The decision to remove such structures or turn them into reefs (i.e. 'rigs-to-reefs') hinges on the habitat value they provide, yet this can rarely be determined because the residency of mobile species is difficult to establish. Here, we test a novel solution to this problem for reef fishes; the use of otolith (earstone) properties to identify oil structures of residence. We compare the otolith microchemistry and otolith shape of a site-attached coral reef fish (Pseudanthias rubrizonatus) among four oil structures (depth 82-135 m, separated by 9.7-84.2 km) on Australia's North West Shelf to determine if populations developed distinct otolith properties during their residency. Microchemical signatures obtained from the otolith edge using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) differed among oil structures, driven by elements Sr, Ba and Mn, and to a lesser extent Mg and Fe. A combination of microchemical data from the otolith edge and elliptical Fourier (shape) descriptors allowed allocation of individuals to their 'home' structure with moderate accuracy (overall allocation accuracy: 63.3%, range: 45.5-78.1%), despite lower allocation accuracies for each otolith property in isolation (microchemistry: 47.5%, otolith shape: 45%). Site-specific microchemical signatures were also stable enough through time to distinguish populations during 3 separate time periods, suggesting that residence histories could be recreated by targeting previous growth zones in the otolith. Our results indicate that reef fish can develop unique otolith properties during their residency on oil structures which may be useful for assessing the habitat value of individual structures. The approach outlined here may also be useful for determining the residency of reef fish on artificial reefs, which would

  20. Influences of spatial and temporal variation on fish-habitat relationships defined by regression quantiles

    Science.gov (United States)

    Dunham, J.B.; Cade, B.S.; Terrell, J.W.

    2002-01-01

    We used regression quantiles to model potentially limiting relationships between the standing crop of cutthroat trout Oncorhynchus clarki and measures of stream channel morphology. Regression quantile models indicated that variation in fish density was inversely related to the width:depth ratio of streams but not to stream width or depth alone. The spatial and temporal stability of model predictions were examined across years and streams, respectively. Variation in fish density with width:depth ratio (10th-90th regression quantiles) modeled for streams sampled in 1993-1997 predicted the variation observed in 1998-1999, indicating similar habitat relationships across years. Both linear and nonlinear models described the limiting relationships well, the latter performing slightly better. Although estimated relationships were transferable in time, results were strongly dependent on the influence of spatial variation in fish density among streams. Density changes with width:depth ratio in a single stream were responsible for the significant (P 80th). This suggests that stream-scale factors other than width:depth ratio play a more direct role in determining population density. Much of the variation in densities of cutthroat trout among streams was attributed to the occurrence of nonnative brook trout Salvelinus fontinalis (a possible competitor) or connectivity to migratory habitats. Regression quantiles can be useful for estimating the effects of limiting factors when ecological responses are highly variable, but our results indicate that spatiotemporal variability in the data should be explicitly considered. In this study, data from individual streams and stream-specific characteristics (e.g., the occurrence of nonnative species and habitat connectivity) strongly affected our interpretation of the relationship between width:depth ratio and fish density.

  1. Fish habitat considerations associated with hydro-electric developments in Quebec region

    International Nuclear Information System (INIS)

    Bain, H.; Stoneman, M.

    2005-01-01

    Alternative approaches for evaluating the effects of 2 large Hydro Quebec proposed facilities on fish habitats were presented. The proposed projects will convert long stretches of river into water reservoirs and reduce the flow in the rivers below the impoundments for parts of the year. Rivers will be transformed into water reservoirs upstream by the dams, and a moderately large river will be transformed downstream into a much smaller river with a regulated flow. Productive capacity of fish populations is difficult to measure in large water bodies, and complications in the evaluation process have posed problems in the application of a traditional no-net-loss policy. It was suggested that estimates of biomass and productivity should be obtained from established methods of electrofishing combined with maps of the river and stream characteristics. For lakes and reservoirs, biomass and production will be estimated from models using a morphoedaphic index and measures of lake reservoir areas. Productivity will be partitioned among species according to surveys of existing lakes and reservoirs. It was also proposed that mitigation and compensation should be considered on a case-by-case basis related to importance of impact on fish production; geographic range of the impacts; regional fisheries management objectives for commercial, recreational, and subsistence fisheries and biodiversity conservation. Special attention will be given to listed species such as Atlantic salmon and lake sturgeon. Additional field sampling was recommended in areas impacted by the developments. Concerns about the technical methods used in sampling and monitoring data were reviewed, as well as issues concerning protected and unprotected species. It was suggested that predictive models of fish population characteristics will need to be parameterized for temperature ranges associated with the projects. It was noted that habitat suitability index methods do not consider the ecological flexibility

  2. Science evaluation of the environmental impact statement for the lower Churchill hydroelectric generation project to identify deficiencies with respect to fish and fish habitat

    International Nuclear Information System (INIS)

    Clarke, K.

    2009-01-01

    This report evaluated an environmental impact statement (EIS) submitted by a company proposing to develop a hydroelectric generation project in the lower Churchill River in Labrador. Construction of the facilities will alter the aquatic environment of the river as well as the receiving environment of lakes. The alterations are expected to have an impact on fish and fish habitats. The study evaluated the methods used to describe and predict impacts in the aquatic environment and examined models used for predictions in order to assess uncertainty levels. Results of the evaluation demonstrated that additional efforts are needed to document local knowledge of fish use and fish habitat, and that the magnitude of expected changes to fish habitat must be considered relative to the loss of fish habitat. The study also highlighted areas within the EIS that will require further clarification. A number of the studies used in the EIS had small sample sizes that increased the uncertainty of predictions made using the data. Uncertainties related to potential changes in flushing rates and morphological features was also needed. The impact of direct fish mortality from turbine operations was not addressed in a population context, and further information is needed to evaluate potential project-related effects on a species-by-species basis. 3 refs., 4 tabs.

  3. Distribution and habitat use of the Missouri River and Lower Yellowstone River benthic fishes from 1996 to 1998: A baseline for fish community recovery

    Science.gov (United States)

    Wildhaber, M.L.; Gladish, D.W.; Arab, A.

    2011-01-01

    Past and present Missouri River management practices have resulted in native fishes being identified as in jeopardy. In 1995, the Missouri River Benthic Fishes Study was initiated to provide improved information on Missouri River fish populations and how alterations might affect them. The study produced a baseline against which to evaluate future changes in Missouri River operating criteria. The objective was to evaluate population structure and habitat use of benthic fishes along the entire mainstem Missouri River, exclusive of reservoirs. Here we use the data from this study to provide a recent-past baseline for on-going Missouri River fish population monitoring programmes along with a more powerful method for analysing data containing large percentages of zero values. This is carried out by describing the distribution and habitat use of 21 species of Missouri River benthic fishes based on catch-per-unit area data from multiple gears. We employ a Bayesian zero-inflated Poisson model expanded to include continuous measures of habitat quality (i.e. substrate composition, depth, velocity, temperature, turbidity and conductivity). Along with presenting the method, we provide a relatively complete picture of the Missouri River benthic fish community and the relationship between their relative population numbers and habitat conditions. We demonstrate that our single model provides all the information that is often obtained by a myriad of analytical techniques. An important advantage of the present approach is reliable inference for patterns of relative abundance using multiple gears without using gear efficiencies.

  4. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd; Sexton, Amy D.

    2003-02-01

    The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2001 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla Subbasin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Projects continued to be maintained on 49 private properties, one 25-year Non-Exclusive Bureau of Indian Affairs' Easement was secured, six new projects implemented and two existing project areas improved to enhance anadromous fish habitat. New project locations included sites on the mid Umatilla River, upper Umatilla River, Mission Creek, Cottonwood Creek and Buckaroo Creek. New enhancements included: (1) construction of 11,264 feet of fencing between River Mile 43.0 and 46.5 on the Umatilla River, (2) a stream bank stabilization project implemented at approximately River Mile 63.5 Umatilla River to stabilize 330 feet of eroding stream bank and improve instream habitat diversity, included construction of eight root wad revetments and three boulder J-vanes, (3) drilling a 358-foot well for off-stream livestock watering at approximately River Mile 46.0 Umatilla River, (4) installing a 50-foot bottomless arch replacement culvert at approximately River Mile 3.0 Mission Creek, (5) installing a Geoweb stream ford crossing on Mission Creek (6) installing a 22-foot bottomless arch culvert at approximately River Mile 0.5 Cottonwood Creek, and (7) providing fence materials for construction of 21,300 feet of livestock exclusion fencing in the Buckaroo Creek Drainage. An approximate total of 3,800 native willow cuttings and 350 pounds of native grass seed was planted at new upper Umatilla River, Mission Creek and Cottonwood Creek project sites. Habitat improvements implemented at existing project sites included

  5. Linking hydrologic, physical and chemical habitat environments for the potential assessment of fish community rehabilitation in a developing city

    Science.gov (United States)

    Zhao, C. S.; Yang, S. T.; Liu, C. M.; Dou, T. W.; Yang, Z. L.; Yang, Z. Y.; Liu, X. L.; Xiang, H.; Nie, S. Y.; Zhang, J. L.; Mitrovic, S. M.; Yu, Q.; Lim, R. P.

    2015-04-01

    Aquatic ecological rehabilitation is increasingly attracting considerable public and research attention. An effective method that requires less data and expertise would help in the assessment of rehabilitation potential and in the monitoring of rehabilitation activities as complicated theories and excessive data requirements on assemblage information make many current assessment models expensive and limit their wide use. This paper presents an assessment model for restoration potential which successfully links hydrologic, physical and chemical habitat factors to fish assemblage attributes drawn from monitoring datasets on hydrology, water quality and fish assemblages at a total of 144 sites, where 5084 fish were sampled and tested. In this model three newly developed sub-models, integrated habitat index (IHSI), integrated ecological niche breadth (INB) and integrated ecological niche overlap (INO), are established to study spatial heterogeneity of the restoration potential of fish assemblages based on gradient methods of habitat suitability index and ecological niche models. To reduce uncertainties in the model, as many fish species as possible, including important native fish, were selected as dominant species with monitoring occurring over several seasons to comprehensively select key habitat factors. Furthermore, a detrended correspondence analysis (DCA) was employed prior to a canonical correspondence analysis (CCA) of the data to avoid the "arc effect" in the selection of key habitat factors. Application of the model to data collected at Jinan City, China proved effective reveals that three lower potential regions that should be targeted in future aquatic ecosystem rehabilitation programs. They were well validated by the distribution of two habitat parameters: river width and transparency. River width positively influenced and transparency negatively influenced fish assemblages. The model can be applied for monitoring the effects of fish assemblage restoration

  6. Avoiding conflicts and protecting coral reefs: Customary management benefits marine habitats and fish biomass

    KAUST Repository

    Campbell, Stuart J.

    2012-10-01

    Abstract One of the major goals of coral reef conservation is to determine the most effective means of managing marine resources in regions where economic conditions often limit the options available. For example, no-take fishing areas can be impractical in regions where people rely heavily on reef fish for food. In this study we test whether coral reef health differed among areas with varying management practices and socio-economic conditions on Pulau Weh in the Indonesian province of Aceh. Our results show that gear restrictions, in particular prohibiting the use of nets, were successful in minimizing habitat degradation and maintaining fish biomass despite ongoing access to the fishery. Reef fish biomass and hard-coral cover were two- to eight-fold higher at sites where fishing nets were prohibited. The guiding principle of the local customary management system, Panglima Laot, is to reduce conflict among community members over access to marine resources. Consequently, conservation benefits in Aceh have arisen from a customary system that lacks a specific environmental ethic or the means for strong resource-based management. Panglima Laot includes many of the features of successful institutions, such as clearly defined membership rights and the opportunity for resource users to be involved in making, enforcing and changing the rules. Such mechanisms to reduce conflict are the key to the success of marine resource management, particularly in settings that lack resources for enforcement. © 2012 Fauna & Flora International.

  7. Fish assemblages, connectivity, and habitat rehabilitation in a diked Great Lakes coastal wetland complex

    Science.gov (United States)

    Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.

    2014-01-01

    Fish and plant assemblages in the highly modified Crane Creek coastal wetland complex of Lake Erie were sampled to characterize their spatial and seasonal patterns and to examine the implications of the hydrologic connection of diked wetland units to Lake Erie. Fyke netting captured 52 species and an abundance of fish in the Lake Erie–connected wetlands, but fewer than half of those species and much lower numbers and total masses of fish were captured in diked wetland units. Although all wetland units were immediately adjacent to Lake Erie, there were also pronounced differences in water quality and wetland vegetation between the hydrologically isolated and lake-connected wetlands. Large seasonal variations in fish assemblage composition and biomass were observed in connected wetland units but not in disconnected units. Reestablishment of hydrologic connectivity in diked wetland units would allow coastal Lake Erie fish to use these vegetated habitats seasonally, although connectivity does appear to pose some risks, such as the expansion of invasive plants and localized reductions in water quality. Periodic isolation and drawdown of the diked units could still be used to mimic intermediate levels of disturbance and manage invasive wetland vegetation.

  8. Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary.

    Directory of Open Access Journals (Sweden)

    Mark Y Stoeckle

    Full Text Available The difficulty of censusing marine animal populations hampers effective ocean management. Analyzing water for DNA traces shed by organisms may aid assessment. Here we tested aquatic environmental DNA (eDNA as an indicator of fish presence in the lower Hudson River estuary. A checklist of local marine fish and their relative abundance was prepared by compiling 12 traditional surveys conducted between 1988-2015. To improve eDNA identification success, 31 specimens representing 18 marine fish species were sequenced for two mitochondrial gene regions, boosting coverage of the 12S eDNA target sequence to 80% of local taxa. We collected 76 one-liter shoreline surface water samples at two contrasting estuary locations over six months beginning in January 2016. eDNA was amplified with vertebrate-specific 12S primers. Bioinformatic analysis of amplified DNA, using a reference library of GenBank and our newly generated 12S sequences, detected most (81% locally abundant or common species and relatively few (23% uncommon taxa, and corresponded to seasonal presence and habitat preference as determined by traditional surveys. Approximately 2% of fish reads were commonly consumed species that are rare or absent in local waters, consistent with wastewater input. Freshwater species were rarely detected despite Hudson River inflow. These results support further exploration and suggest eDNA will facilitate fine-scale geographic and temporal mapping of marine fish populations at relatively low cost.

  9. Global ecological success of Thalassoma fishes in extreme coral reef habitats

    KAUST Repository

    Fulton, Christopher J.

    2016-12-20

    Phenotypic adaptations can allow organisms to relax abiotic selection and facilitate their ecological success in challenging habitats, yet we have relatively little data for the prevalence of this phenomenon at macroecological scales. Using data on the relative abundance of coral reef wrasses and parrotfishes (f. Labridae) spread across three ocean basins and the Red Sea, we reveal the consistent global dominance of extreme wave-swept habitats by fishes in the genus Thalassoma, with abundances up to 15 times higher than any other labrid. A key locomotor modification-a winged pectoral fin that facilitates efficient underwater flight in high-flow environments-is likely to have underpinned this global success, as numerical dominance by Thalassoma was contingent upon the presence of high-intensity wave energy. The ecological success of the most abundant species also varied with species richness and the presence of congeneric competitors. While several fish taxa have independently evolved winged pectoral fins, Thalassoma appears to have combined efficient high-speed swimming (to relax abiotic selection) with trophic versatility (to maximize exploitation of rich resources) to exploit and dominate extreme coral reef habitats around the world.

  10. Global ecological success of Thalassoma fishes in extreme coral reef habitats.

    Science.gov (United States)

    Fulton, Christopher J; Wainwright, Peter C; Hoey, Andrew S; Bellwood, David R

    2017-01-01

    Phenotypic adaptations can allow organisms to relax abiotic selection and facilitate their ecological success in challenging habitats, yet we have relatively little data for the prevalence of this phenomenon at macroecological scales. Using data on the relative abundance of coral reef wrasses and parrotfishes (f. Labridae) spread across three ocean basins and the Red Sea, we reveal the consistent global dominance of extreme wave-swept habitats by fishes in the genus Thalassoma , with abundances up to 15 times higher than any other labrid. A key locomotor modification-a winged pectoral fin that facilitates efficient underwater flight in high-flow environments-is likely to have underpinned this global success, as numerical dominance by Thalassoma was contingent upon the presence of high-intensity wave energy. The ecological success of the most abundant species also varied with species richness and the presence of congeneric competitors. While several fish taxa have independently evolved winged pectoral fins, Thalassoma appears to have combined efficient high-speed swimming (to relax abiotic selection) with trophic versatility (to maximize exploitation of rich resources) to exploit and dominate extreme coral reef habitats around the world.

  11. Habitat use and food partitioning of the fishes in a coastal stream of Atlantic Forest, Brazil

    Directory of Open Access Journals (Sweden)

    J. M. R. Aranha

    1998-12-01

    Full Text Available We analysed the fish assemblage in the "Mergulhão" stream (southern Brazil with underwater observations for habitat use, considering water depth, current velocity, bottom type, shadow from vegetation cover, distance of stream-edge, and vertical position. Stomach contents or foregut content samples of the most abundant species were collected from 26 species (10 families. The fish assemblage occupied the bottom stream. The similarity analysis of spatial occupation of species grouped four habitat use guilds: A "lambaris" (Astyanax sp. and Deuterodon langei, Characidium spp. (C. lanei and C. pterostictum and Rineloricaria kronei used the bottom in deep sites and waters with middle current; B Pimelodella pappenheimi and Corydoras barbatus used the bottom in sites with lower current; C Mimagoniates microlepis used the surface of the water column; and D Phalloceros caudimaculatus used shallow sites and waters without current. Species with few records were analysed descriptively. Diet similarity suggested seven trophic guilds: Microglanis sp. and Pimelodella pappenheimi: omnivorous/carnivorous guild; Corydoras barbatus: omnivorous/insectivorous guild; Characidium lanei: aquatic insectivorous guild, mainly aquatic insects; Mimagoniates microlepis: terrestrial insectivorous guild, mainly terrestrial insects; Deuterodon langei and Astyanax sp.: omnivorous/herbivorous guild; Rineloricaria kronei, Kronichthys subteres, Schizolecis guntheri, Hisonotus leucofrenatus and Pseudotothyris obtusa: herbivorous guild; and Phalloceros caudimaculatus: algivorous guild. When the guilds were similar, the species were generalists in diet and in habitat use.

  12. N-mix for fish: estimating riverine salmonid habitat selection via N-mixture models

    Science.gov (United States)

    Som, Nicholas A.; Perry, Russell W.; Jones, Edward C.; De Juilio, Kyle; Petros, Paul; Pinnix, William D.; Rupert, Derek L.

    2018-01-01

    Models that formulate mathematical linkages between fish use and habitat characteristics are applied for many purposes. For riverine fish, these linkages are often cast as resource selection functions with variables including depth and velocity of water and distance to nearest cover. Ecologists are now recognizing the role that detection plays in observing organisms, and failure to account for imperfect detection can lead to spurious inference. Herein, we present a flexible N-mixture model to associate habitat characteristics with the abundance of riverine salmonids that simultaneously estimates detection probability. Our formulation has the added benefits of accounting for demographics variation and can generate probabilistic statements regarding intensity of habitat use. In addition to the conceptual benefits, model application to data from the Trinity River, California, yields interesting results. Detection was estimated to vary among surveyors, but there was little spatial or temporal variation. Additionally, a weaker effect of water depth on resource selection is estimated than that reported by previous studies not accounting for detection probability. N-mixture models show great promise for applications to riverine resource selection.

  13. Global ecological success of Thalassoma fishes in extreme coral reef habitats

    KAUST Repository

    Fulton, Christopher J.; Wainwright, Peter C.; Hoey, Andrew; Bellwood, David R.

    2016-01-01

    Phenotypic adaptations can allow organisms to relax abiotic selection and facilitate their ecological success in challenging habitats, yet we have relatively little data for the prevalence of this phenomenon at macroecological scales. Using data on the relative abundance of coral reef wrasses and parrotfishes (f. Labridae) spread across three ocean basins and the Red Sea, we reveal the consistent global dominance of extreme wave-swept habitats by fishes in the genus Thalassoma, with abundances up to 15 times higher than any other labrid. A key locomotor modification-a winged pectoral fin that facilitates efficient underwater flight in high-flow environments-is likely to have underpinned this global success, as numerical dominance by Thalassoma was contingent upon the presence of high-intensity wave energy. The ecological success of the most abundant species also varied with species richness and the presence of congeneric competitors. While several fish taxa have independently evolved winged pectoral fins, Thalassoma appears to have combined efficient high-speed swimming (to relax abiotic selection) with trophic versatility (to maximize exploitation of rich resources) to exploit and dominate extreme coral reef habitats around the world.

  14. Contrasting habitat associations of imperilled endemic stream fishes from a global biodiversity hot spot

    Directory of Open Access Journals (Sweden)

    Chakona Albert

    2012-09-01

    Full Text Available Abstract Background Knowledge of the factors that drive species distributions provides a fundamental baseline for several areas of research including biogeography, phylogeography and biodiversity conservation. Data from 148 minimally disturbed sites across a large drainage system in the Cape Floristic Region of South Africa were used to test the hypothesis that stream fishes have similar responses to environmental determinants of species distribution. Two complementary statistical approaches, boosted regression trees and hierarchical partitioning, were used to model the responses of four fish species to 11 environmental predictors, and to quantify the independent explanatory power of each predictor. Results Elevation, slope, stream size, depth and water temperature were identified by both approaches as the most important causal factors for the spatial distribution of the fishes. However, the species showed marked differences in their responses to these environmental variables. Elevation and slope were of primary importance for the laterally compressed Sandelia spp. which had an upstream boundary below 430 m above sea level. The fusiform shaped Pseudobarbus ‘Breede’ was strongly influenced by stream width and water temperature. The small anguilliform shaped Galaxias ‘nebula’ was more sensitive to stream size and depth, and also penetrated into reaches at higher elevation than Sandelia spp. and Pseudobarbus ‘Breede’. Conclusions The hypothesis that stream fishes have a common response to environmental descriptors is rejected. The contrasting habitat associations of stream fishes considered in this study could be a reflection of their morphological divergence which may allow them to exploit specific habitats that differ in their environmental stressors. Findings of this study encourage wider application of complementary methods in ecological studies, as they provide more confidence and deeper insights into the variables that should be

  15. Nursery use of shallow habitats by epibenthic fishes in Maine nearshore waters

    Science.gov (United States)

    Lazzari, M. A.; Sherman, S.; Kanwit, J. K.

    2003-01-01

    Species richness and abundance of epibenthic fishes were quantified with daytime beam trawl tows in shallow water habitats during April-November 2000 of three mid-coast Maine estuaries: Casco Bay, Muscongus Bay and the Weskeag River. Five shallow (Gasterosteus aculeatus, Apeltes quadracus, Pungitius pungitius, Myoxocephalus aenaeus, and Cylcopterus lumpus. The fish community of mid-coast estuaries was dominated by young-of-the-year (YOY) and juvenile fishes and all of the habitat types function as nursery areas. Twelve species (38%) of commercial and recreational importance were collected in the three estuaries, but the percentage was higher in Casco Bay (44%) and the Weskeag River (46%). These species included Anguilla rostrata, Clupea harengus, Gadus morhua, Microgadus tomcod, Pollachius virens, Urophycis chuss, Urophycis regia, Urophycis tenuis, Osmerus mordax, Macrozoarces americanus, Tautogolabrus adspersus, and Pleuronectes americanus. Four species, G. morhua, M. tomcod, P. virens, and U. tenuis were more common in spring than summer or autumn. P. americanus was most abundant in summer followed by spring and autumn. This study documents the importance of shallow estuarine areas in Maine as nurseries for these species.

  16. Hypoxia tolerance and air-breathing ability correlate with habitat preference in coral-dwelling fishes

    Science.gov (United States)

    Nilsson, G. E.; Hobbs, J.-P. A.; Östlund-Nilsson, S.; Munday, P. L.

    2007-06-01

    Hypoxia tolerance and air-breathing occur in a range of freshwater, estuarine and intertidal fishes. Here it is shown for the first time that coral reef fishes from the genera Gobiodon, Paragobiodon and Caracanthus, which all have an obligate association with living coral, also exhibit hypoxia tolerance and a well-developed air-breathing capacity. All nine species maintained adequate respiration in water at oxygen concentrations down to 15-25% air saturation. This hypoxia tolerance is probably needed when the oxygen levels in the coral habitat drops sharply at night. Air-breathing abilities of the species correlated with habitat association, being greatest (equaling oxygen uptake in water) in species that occupy corals extending into shallow water, where they may become air exposed during extreme low tides. Air-breathing was less well-developed or absent in species inhabiting corals from deeper waters. Loss of scales and a network of subcutaneous capillaries appear to be key adaptations allowing cutaneous respiration in air. While hypoxia tolerance may be an ancestral trait in these fishes, air-breathing is likely to be a more recent adaptation exemplifying convergent evolution in the unrelated genera Gobiodon and Caracanthus in response to coral-dwelling lifestyles.

  17. Hungry Horse Dam fisheries mitigation program: Fish passage and habitat improvement in the Upper Flathead River basin

    International Nuclear Information System (INIS)

    Knotek, W.L.; Deleray, M.; Marotz, B.

    1997-08-01

    In the past 50 years, dramatic changes have occurred in the Flathead Lake and River system. Degradation of fishery resources has been evident, in part due to deterioration of aquatic habitat and introduction of non-endemic fish and invertebrate species. Habitat loss has been attributed to many factors including the construction and operation of Hungry Horse Dam, unsound land use practices, urban development, and other anthropogenic and natural disturbances. Fish migration has also been limited by barriers such as dams and impassible culverts. Cumulatively, these factors have contributed to declines in the distribution and abundance of native fish populations. Recovery of fish populations requires that a watershed approach be developed that incorporates long-term aquatic habitat needs and promotes sound land use practices and cooperation among natural resource management agencies. In this document, the authors (1) describe completed and ongoing habitat improvement and fish passage activities under the Hungry Horse Fisheries Mitigation Program, (2) describe recently identified projects that are in the planning stage, and (3) develop a framework for identifying prioritizing, implementing, and evaluating future fish habitat improvement and passage projects

  18. Artificial marine habitats favour a single fish species on a long-term scale: the dominance of Boops boops around off-shore fish cages

    Directory of Open Access Journals (Sweden)

    Rodrigo Riera

    2014-12-01

    Full Text Available Off-shore fish cages are new artificial habitats that can affect pelagic fish assemblages and constitute an important food source for wild fish assemblages. This aggregation has noticeable ecological consequences in cage areas in impoverished ecosystems such as those in the Canary archipelago (NE Atlantic Ocean. However, this new habitat could be dominated by a single species, reducing its positive ecological effects. Wild fish assemblages associated with an off-shore fish lease on the northeastern coast of Tenerife (Canary Islands were sampled for six years. Fish assemblage structure beneath fish cages and at controls ( > 500 m from cages differed significantly between locations, with 13 times greater abundance at cage locations. These differences were mainly explained by the dominance of bogue (Boops boops around fish cages. This trend was consistent in the long-term throughout the study period (2004-2009, affecting local fisheries. The presence of fish cages significantly altered wild fish assemblages in the study area, enhancing mainly biomass and abundance of one species, bogue, and causing shifts in species composition.

  19. Trace elements in Antarctic fish species and the influence of foraging habitats and dietary habits on mercury levels

    Energy Technology Data Exchange (ETDEWEB)

    Goutte, Aurélie, E-mail: aurelie.goutte@ephe.sorbonne.fr [École Pratique des Hautes Études (EPHE), SPL, UPMC Univ Paris 06, UMR 7619 METIS, F-75005, 4 place Jussieu, Paris (France); Cherel, Yves [Centre d' Etudes Biologiques de Chizé, UMR 7372, CNRS-Université de La Rochelle, 79360 Villiers-en-Bois (France); Churlaud, Carine [Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France); Ponthus, Jean-Pierre [École Pratique des Hautes Études (EPHE), SPL, UPMC Univ Paris 06, UMR 7619 METIS, F-75005, 4 place Jussieu, Paris (France); Massé, Guillaume [Unité Mixte Internationale Takuvik, Pavillon Alexandre-Vachon, Université Laval, QC, Québec (Canada); Bustamante, Paco [Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France)

    2015-12-15

    This study aims at describing and interpreting concentration profiles of trace elements in seven Antarctic fish species (N = 132 specimens) off Adélie Land. Ichthyofauna plays a key role in the Antarctic ecosystem, as they occupy various ecological niches, including cryopelagic (ice-associated), pelagic, and benthic habitats. Firstly, trace element levels in the studied specimens were similar to those previously observed in fish from the Southern Ocean. Apart from manganese and zinc, concentrations of arsenic, cadmium, copper, iron, mercury (Hg), nickel, selenium and silver differed among fish species. Muscle δ{sup 13}C and δ{sup 15}N values were determined to investigate whether the fish foraging habitats and dietary habits could explain Hg levels. Species and foraging habitat (δ{sup 13}C) were strong predictors for variations of Hg concentrations in muscle tissues. The highest Hg contamination was found in shallow benthic fish compared to cryopelagic and pelagic fish. This pattern was likely due to the methylation of Hg in the coastal sediment and the photodemethylation by ultraviolet radiation in surface waters. - Highlights: • Trace elements and stable isotopes were analyzed in seven Antarctic fish species. • Levels of trace elements in liver and in muscle differed among species. • Hg load was higher in benthic fish than in cryopelagic and pelagic fish. • These findings could be due to the high methylation rate of Hg in the sediment.

  20. Trace elements in Antarctic fish species and the influence of foraging habitats and dietary habits on mercury levels

    International Nuclear Information System (INIS)

    Goutte, Aurélie; Cherel, Yves; Churlaud, Carine; Ponthus, Jean-Pierre; Massé, Guillaume; Bustamante, Paco

    2015-01-01

    This study aims at describing and interpreting concentration profiles of trace elements in seven Antarctic fish species (N = 132 specimens) off Adélie Land. Ichthyofauna plays a key role in the Antarctic ecosystem, as they occupy various ecological niches, including cryopelagic (ice-associated), pelagic, and benthic habitats. Firstly, trace element levels in the studied specimens were similar to those previously observed in fish from the Southern Ocean. Apart from manganese and zinc, concentrations of arsenic, cadmium, copper, iron, mercury (Hg), nickel, selenium and silver differed among fish species. Muscle δ"1"3C and δ"1"5N values were determined to investigate whether the fish foraging habitats and dietary habits could explain Hg levels. Species and foraging habitat (δ"1"3C) were strong predictors for variations of Hg concentrations in muscle tissues. The highest Hg contamination was found in shallow benthic fish compared to cryopelagic and pelagic fish. This pattern was likely due to the methylation of Hg in the coastal sediment and the photodemethylation by ultraviolet radiation in surface waters. - Highlights: • Trace elements and stable isotopes were analyzed in seven Antarctic fish species. • Levels of trace elements in liver and in muscle differed among species. • Hg load was higher in benthic fish than in cryopelagic and pelagic fish. • These findings could be due to the high methylation rate of Hg in the sediment.

  1. Community structure of age-0 fishes in paired mainstem and created shallow-water habitats in the Lower Missouri River

    Science.gov (United States)

    Starks, Trevor A.; Long, James M.; Dzialowski, Andrew R.

    2016-01-01

    Anthropogenic alterations to aquatic ecosystems have greatly reduced and homogenized riverine habitat, especially those used by larval and juvenile fishes. Creation of shallow-water habitats is used as a restoration technique in response to altered conditions in several studies globally, but only recently in the USA. In the summer of 2012, the U.S. Army Corps of Engineers sampled larval and juvenile fishes at six paired sites (mainstem and constructed chute shallow-water habitats) along a section of the Missouri River between Rulo, NE and St. Louis, MO, USA. From those samples, we enumerated and identified a total of 7622 fishes representing 12 families. Community responses of fishes to created shallow-water habitats were assessed by comparisons of species richness and diversity measures between paired sites and among sampling events. Shannon entropy measures were transformed, and gamma diversity (total diversity) was partitioned into two components, alpha (within community) and beta (between community) diversity using a multiplicative decomposition method. Mantel test results suggest site location, time of sampling event and habitat type were drivers of larval and juvenile community structure. Paired t-test results indicated little to no differences in beta diversity between habitat types; however, chute habitats had significantly higher alpha and gamma diversity as well as increased abundances of Asian carp larvae when compared with mainstem shallow-water habitat. Our results not only show the importance of created shallow-water habitat in promoting stream fish diversity but also highlight the role space and time may play in future restoration and management efforts. 

  2. Umatilla River Basin Anadromus Fish Habitat Enhancement Project. 1994 Annual report

    International Nuclear Information System (INIS)

    Shaw, R.T.

    1994-05-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing cooperative instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River in the vicinity of Gibbon, Oregon. In 1993, the project shifted emphasis to a comprehensive watershed approach, consistent with other basin efforts, and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. During the 1994--95 project period, a one river mile demonstration project was implemented on two privately owned properties on Wildhorse Creek. This was the first watershed improvement project to be implemented by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) off of the Reservation

  3. Walla Walla River Basin Fish Habitat Enhancement Project, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed; Sexton, Amy D. (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2003-04-01

    In 2001, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of these efforts is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled six properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and one property on the mainstem Walla Walla River. Since 1997, approximately 7 miles of critical salmonid habitat has been secured for restoration and protection under this project. Major accomplishments to date include the following: Secured approximately $250,000 in cost share; Secured 7 easements; Planted 30,000+ native plants; Installed 50,000+ cuttings; and Seeded 18 acres to native grass. Pre and post-project monitoring efforts were included for all projects, incorporating methodologies from CTUIR's Draft Monitoring Plan. Basin-wide monitoring also included the deployment of 6 thermographs to collect summer stream temperatures.

  4. Influence of discharge on fish habitat suitability curves in mountain watercourses in IFIM methodology

    Directory of Open Access Journals (Sweden)

    Macura Viliam

    2018-03-01

    Full Text Available In this study, the quality of the aquatic habitats of mountain and piedmont streams was evaluated using the ‘Instream Flow Incremental Methodology (IFIM’ decision-making tool. The quality of habitats was interpreted from the behaviour of bioindicators in the form of habitat suitability curves (HSCs. From 1995 until the present, 59 different reaches of 43 mountain streams in Slovakia and 3 validation reaches were evaluated, and the results analysed. The aim of this study was to generalize the parameters of the HSCs for the brown trout. The generalized curves will be useful for water management planning. It is difficult and time-consuming to take hydrometrical and ichthyological measurements at different water levels. Therefore, we developed a methodology for modifying suitability curves based on an ichthyological survey during a low flow and a flow at which fish lose the ability to resist the flow velocity. The study provides the information how such curves can be modified for a wider flow range. In summary, this study shows that generalized HSCs provide representative data that can be used to support both the design of river restoration and the assessment of the impacts of the water use or of climate change on stream habitat quality.

  5. Lethal effects of habitat degradation on fishes through changing competitive advantage.

    Science.gov (United States)

    McCormick, Mark I

    2012-10-07

    Coral bleaching has caused catastrophic changes to coral reef ecosystems around the world with profound ecological, social and economic repercussions. While its occurrence is predicted to increase in the future, we have little understanding of mechanisms that underlie changes in the fish community associated with coral degradation. The present study uses a field-based experiment to examine how the intensity of interference competition between juveniles of two species of damselfish changes as healthy corals degrade through thermal bleaching. The mortality of a damselfish that is a live coral specialist (Pomacentrus moluccensis) increased on bleached and dead coral in the presence of the habitat generalist (Pomacentrus amboinensis). Increased mortality of the specialist was indirectly owing to enhanced aggression by the generalist forcing the specialist higher up and further away from shelter on bleached and dead coral. Evidence from this study stresses the importance of changing interspecific interactions to community dynamics as habitats change.

  6. Identification of potential essential fish habitats for skates based on fishers' knowledge.

    Science.gov (United States)

    Serra-Pereira, Bárbara; Erzini, Karim; Maia, Catarina; Figueiredo, Ivone

    2014-05-01

    Understanding of spatio-temporal patterns of sensitive fish species such as skates (Rajidae) is essential for implementation of conservation measures. With insufficient survey data available for these species in Portuguese Continental waters, this study shows that fishery-dependent data associated with fishers' knowledge can be used to identify potential Essential Fish Habitats (EFH) for seven skate species. Sites with similar geomorphology were associated with the occurrence of juveniles and/or adults of the same group of species. For example, sites deeper than 100 m with soft sediment include predominantly adults of Raja clavata, and are the habitat for egg deposition of this species. Raja undulata and R. microocellata are the more coastal species, preferring sand or gravel habitats, while coastal areas with rocks and sand seabed are potential nursery areas for R. brachyura, R. montagui and R. clavata. The main output of this study is the identification of preferential fishing sites enclosing potential EFH for some species, associated with egg-laying and nursery grounds. The location of these areas will be considered for future seasonal closures, and studies will be conducted to evaluate the biological and socio-economic impacts of such measures. As in the past, fishermen will collaborate in the process of evaluating those impacts, since they have practical and applied knowledge that is extremely valuable for evaluating the advantages and disadvantages of such closures. In conclusion, this study is a first contribution to the understanding and identification of EFH for skate species, associated with nursery and egg deposition sites, with direct application to management.

  7. Identification of Potential Essential Fish Habitats for Skates Based on Fishers' Knowledge

    Science.gov (United States)

    Serra-Pereira, Bárbara; Erzini, Karim; Maia, Catarina; Figueiredo, Ivone

    2014-05-01

    Understanding of spatio-temporal patterns of sensitive fish species such as skates (Rajidae) is essential for implementation of conservation measures. With insufficient survey data available for these species in Portuguese Continental waters, this study shows that fishery-dependent data associated with fishers' knowledge can be used to identify potential Essential Fish Habitats (EFH) for seven skate species. Sites with similar geomorphology were associated with the occurrence of juveniles and/or adults of the same group of species. For example, sites deeper than 100 m with soft sediment include predominantly adults of Raja clavata, and are the habitat for egg deposition of this species. Raja undulata and R. microocellata are the more coastal species, preferring sand or gravel habitats, while coastal areas with rocks and sand seabed are potential nursery areas for R. brachyura, R. montagui and R. clavata. The main output of this study is the identification of preferential fishing sites enclosing potential EFH for some species, associated with egg-laying and nursery grounds. The location of these areas will be considered for future seasonal closures, and studies will be conducted to evaluate the biological and socio-economic impacts of such measures. As in the past, fishermen will collaborate in the process of evaluating those impacts, since they have practical and applied knowledge that is extremely valuable for evaluating the advantages and disadvantages of such closures. In conclusion, this study is a first contribution to the understanding and identification of EFH for skate species, associated with nursery and egg deposition sites, with direct application to management.

  8. John Day River Subbasin Fish Habitat Enhancement Project, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Russ M.; Delano, Kenneth H.

    2004-04-01

    Work undertaken in 2003 included: (1) Seven new fence projects were completed thereby protecting 7.6 miles of stream (2) Completion of 0.7 miles of dredge tail leveling on Granite Creek. (3) Maintenance of all active project fences (66.14 miles), watergaps (66), spring developments (33) and plantings were checked and repairs performed. (4) Since the initiation of the Fish Habitat Project in 1984 we have 72.94 miles of stream protected using 131.1 miles of fence. With the addition of the Restoration and Enhancement Projects we have 205.96 miles of fence protecting 130.3 miles of stream.

  9. Effects of geomorphology, habitat, and spatial location on fish assemblages in a watershed in Ohio, USA.

    Science.gov (United States)

    D'Ambrosio, Jessica L; Williams, Lance R; Witter, Jonathan D; Ward, Andy

    2009-01-01

    In this paper, we evaluate relationships between in-stream habitat, water chemistry, spatial distribution within a predominantly agricultural Midwestern watershed and geomorphic features and fish assemblage attributes and abundances. Our specific objectives were to: (1) identify and quantify key environmental variables at reach and system wide (watershed) scales; and (2) evaluate the relative influence of those environmental factors in structuring and explaining fish assemblage attributes at reach scales to help prioritize stream monitoring efforts and better incorporate all factors that influence aquatic biology in watershed management programs. The original combined data set consisted of 31 variables measured at 32 sites, which was reduced to 9 variables through correlation and linear regression analysis: stream order, percent wooded riparian zone, drainage area, in-stream cover quality, substrate quality, gradient, cross-sectional area, width of the flood prone area, and average substrate size. Canonical correspondence analysis (CCA) and variance partitioning were used to relate environmental variables to fish species abundance and assemblage attributes. Fish assemblages and abundances were explained best by stream size, gradient, substrate size and quality, and percent wooded riparian zone. Further data are needed to investigate why water chemistry variables had insignificant relationships with IBI scores. Results suggest that more quantifiable variables and consideration of spatial location of a stream reach within a watershed system should be standard data incorporated into stream monitoring programs to identify impairments that, while biologically limiting, are not fully captured or elucidated using current bioassessment methods.

  10. Effects of extreme habitat conditions on otolith morphology: a case study on extremophile live bearing fishes (Poecilia mexicana, P. sulphuraria).

    Science.gov (United States)

    Schulz-Mirbach, Tanja; Riesch, Rüdiger; García de León, Francisco J; Plath, Martin

    2011-12-01

    Our study was designed to evaluate if, and to what extent, restrictive environmental conditions affect otolith morphology. As a model, we chose two extremophile livebearing fishes: (i) Poecilia mexicana, a widespread species in various Mexican freshwater habitats, with locally adapted populations thriving in habitats characterized by the presence of one (or both) of the natural stressors hydrogen sulphide and darkness, and (ii) the closely related Poecilia sulphuraria living in a highly sulphidic habitat (Baños del Azufre). All three otolith types (lapilli, sagittae, and asterisci) of P. mexicana showed a decrease in size ranging from the non-sulphidic cave habitat (Cueva Luna Azufre), to non-sulphidic surface habitats, to the sulphidic cave (Cueva del Azufre), to sulphidic surface habitats (El Azufre), to P. sulphuraria. Although we found a distinct differentiation between ecotypes with respect to their otolith morphology, no clear-cut pattern of trait evolution along the two ecological gradients was discernible. Otoliths from extremophiles captured in the wild revealed only slight similarities to aberrant otoliths found in captive-bred fish. We therefore hypothesize that extremophile fishes have developed coping mechanisms enabling them to avoid aberrant otolith growth - an otherwise common phenomenon in fishes reared under stressful conditions. Copyright © 2011 Elsevier GmbH. All rights reserved.

  11. Separate and combined effects of habitat-specific fish predation on the survival of invasive and native gammarids

    Science.gov (United States)

    Kotta, Jonne; Orav-Kotta, Helen; Herkül, Kristjan

    2010-10-01

    The North-American amphipod Gammarus tigrinus was observed for the first time in the northern Baltic Sea in 2003. The invasive amphipod has been particularly successful in some habitats (e.g. on pebbles) where it has become one of the most abundant gammarid species. We studied experimentally if the dominant fish Gasterosteus aculeatus preyed differentially on the exotic G. tigrinus and the native Gammarus salinus, if predation differed among habitats, and if one gammarid species facilitated predation on the other. The experiment demonstrated that (1) fish preyed more on the exotic G. tigrinus than the native G. salinus. (2) Predation did not differ among habitats. (3) Gammarus tigrinus facilitated the predation on G. salinus and this facilitation varied among habitats with significant effects on pebbles. Thus, the combined effect of habitat-specific fish predation and competition between gammarid amphipods is a possible explanation of the current range of G. tigrinus in the northern Baltic Sea. G. tigrinus seems to establish in habitats where it can significantly increase fish predation on the native gammarids.

  12. A novel approach to assessing environmental disturbance based on habitat selection by zebra fish as a model organism.

    Science.gov (United States)

    Araújo, Cristiano V M; Griffith, Daniel M; Vera-Vera, Victoria; Jentzsch, Paul Vargas; Cervera, Laura; Nieto-Ariza, Beatriz; Salvatierra, David; Erazo, Santiago; Jaramillo, Rusbel; Ramos, Luis A; Moreira-Santos, Matilde; Ribeiro, Rui

    2018-04-01

    Aquatic ecotoxicity assays used to assess ecological risk assume that organisms living in a contaminated habitat are forcedly exposed to the contamination. This assumption neglects the ability of organisms to detect and avoid contamination by moving towards less disturbed habitats, as long as connectivity exists. In fluvial systems, many environmental parameters vary spatially and thus condition organisms' habitat selection. We assessed the preference of zebra fish (Danio rerio) when exposed to water samples from two western Ecuadorian rivers with apparently distinct disturbance levels: Pescadillo River (highly disturbed) and Oro River (moderately disturbed). Using a non-forced exposure system in which water samples from each river were arranged according to their spatial sequence in the field and connected to allow individuals to move freely among samples, we assayed habitat selection by D. rerio to assess environmental disturbance in the two rivers. Fish exposed to Pescadillo River samples preferred downstream samples near the confluence zone with the Oro River. Fish exposed to Oro River samples preferred upstream waters. When exposed to samples from both rivers simultaneously, fish exhibited the same pattern of habitat selection by preferring the Oro River samples. Given that the rivers are connected, preference for the Oro River enabled us to predict a depression in fish populations in the Pescadillo River. Although these findings indicate higher disturbance levels in the Pescadillo River, none of the physical-chemical variables measured was significantly correlated with the preference pattern towards the Oro River. Non-linear spatial patterns of habitat preference suggest that other environmental parameters like urban or agricultural contaminants play an important role in the model organism's habitat selection in these rivers. The non-forced exposure system represents a habitat selection-based approach that can serve as a valuable tool to unravel the factors

  13. High-predation habitats affect the social dynamics of collective exploration in a shoaling fish.

    Science.gov (United States)

    Ioannou, Christos C; Ramnarine, Indar W; Torney, Colin J

    2017-05-01

    Collective decisions play a major role in the benefits that animals gain from living in groups. Although the mechanisms of how groups collectively make decisions have been extensively researched, the response of within-group dynamics to ecological conditions is virtually unknown, despite adaptation to the environment being a cornerstone in biology. We investigate how within-group interactions during exploration of a novel environment are shaped by predation, a major influence on the behavior of prey species. We tested guppies ( Poecilia reticulata ) from rivers varying in predation risk under controlled laboratory conditions and find the first evidence of differences in group interactions between animals adapted to different levels of predation. Fish from high-predation habitats showed the strongest negative relationship between initiating movements and following others, which resulted in less variability in the total number of movements made between individuals. This relationship between initiating movements and following others was associated with differentiation into initiators and followers, which was only observed in fish from high-predation rivers. The differentiation occurred rapidly, as trials lasted 5 min, and was related to shoal cohesion, where more diverse groups from high-predation habitats were more cohesive. Our results show that even within a single species over a small geographical range, decision-making in a social context can vary with local ecological factors.

  14. Vegetated Riprap Installation Techniques for Steambank Protection, Fish and Wildlife Habitat Creation

    Science.gov (United States)

    Raymond, Pierre

    2014-05-01

    Vegetated riprap is a cost effective alternative to conventional riprap erosion protection. Terra Erosion Control has experimented with the vegetation of riprap over the past ten years. As a result we have adapted a technique that can successfully establish vegetation during the installation of riprap structures. This presentation will demonstrate innovative ways of installing vegetated riprap for the protection of access roads on industrial sites and urban infrastructure such as storm water outfalls, bridge approaches and pedestrian pathways within public areas. This vegetation will provide additional bank protection, soften the rock appearance and enhance fish, wildlife and urban habitat along the shoreline. Vegetated riprap incorporates a combination of rock and native vegetation in the form of live cuttings. These are planted in conjunction with the placement of rock used to armour the banks of watercourses. Establishment of native vegetation will improve fish habitat by creating shade, cover and an input of small organic debris to stream banks. In most cases it will negate the need for the regulator (Canadian Department of Fisheries and Oceans) to require habitat alteration compensation. It will also provide added bank protection through the development of root mass. Adding vegetation to riprap provides a softer, more natural appearance to the installed rocks. This presentation will detail the processes involved in the installation of vegetated riprap such as the harvesting and soaking of live material, site preparation of the stream bank, placement of riprap in conjunction with live material and the use of burlap/coir fabric and soil amendments. It will also discuss the innovative method of using wooden boards to protect live cuttings during construction and to direct precipitation and/or irrigation water to the root zone during the establishment phase of the vegetation. These boards will eventually biodegrade within the rock. This approach was applied over

  15. Habitat degradation negatively affects auditory settlement behavior of coral reef fishes.

    Science.gov (United States)

    Gordon, Timothy A C; Harding, Harry R; Wong, Kathryn E; Merchant, Nathan D; Meekan, Mark G; McCormick, Mark I; Radford, Andrew N; Simpson, Stephen D

    2018-05-15

    Coral reefs are increasingly degraded by climate-induced bleaching and storm damage. Reef recovery relies on recruitment of young fishes for the replenishment of functionally important taxa. Acoustic cues guide the orientation, habitat selection, and settlement of many fishes, but these processes may be impaired if degradation alters reef soundscapes. Here, we report spatiotemporally matched evidence of soundscapes altered by degradation from recordings taken before and after recent severe damage on Australia's Great Barrier Reef. Postdegradation soundscapes were an average of 15 dB re 1 µPa quieter and had significantly reduced acoustic complexity, richness, and rates of invertebrate snaps compared with their predegradation equivalents. We then used these matched recordings in complementary light-trap and patch-reef experiments to assess responses of wild fish larvae under natural conditions. We show that postdegradation soundscapes were 8% less attractive to presettlement larvae and resulted in 40% less settlement of juvenile fishes than predegradation soundscapes; postdegradation soundscapes were no more attractive than open-ocean sound. However, our experimental design does not allow an estimate of how much attraction and settlement to isolated postdegradation soundscapes might change compared with isolated predegradation soundscapes. Reductions in attraction and settlement were qualitatively similar across and within all trophic guilds and taxonomic groups analyzed. These patterns may lead to declines in fish populations, exacerbating degradation. Acoustic changes might therefore trigger a feedback loop that could impair reef resilience. To understand fully the recovery potential of coral reefs, we must learn to listen. Copyright © 2018 the Author(s). Published by PNAS.

  16. Development and assessment of indices to determine stream fish vulnerability to climate change and habitat alteration

    Science.gov (United States)

    Sievert, Nicholas A.; Paukert, Craig P.; Tsang, Yin-Phan; Infante, Dana M.

    2016-01-01

    Understanding the future impacts of climate and land use change are critical for long-term biodiversity conservation. We developed and compared two indices to assess the vulnerability of stream fish in Missouri, USA based on species environmental tolerances, rarity, range size, dispersal ability and on the average connectivity of the streams occupied by each species. These two indices differed in how environmental tolerance was classified (i.e., vulnerability to habitat alteration, changes in stream temperature, and changes to flow regimes). Environmental tolerance was classified based on measured species responses to habitat alteration, and extremes in stream temperatures and flow conditions for one index, while environmental tolerance for the second index was based on species’ traits. The indices were compared to determine if vulnerability scores differed by index or state listing status. We also evaluated the spatial distribution of species classified as vulnerable to habitat alteration, changes in stream temperature, and change in flow regimes. Vulnerability scores were calculated for all 133 species with the trait association index, while only 101 species were evaluated using the species response index, because 32 species lacked data to analyze for a response. Scores from the trait association index were greater than the species response index. This is likely due to the species response index's inability to evaluate many rare species, which generally had high vulnerability scores for the trait association index. The indices were consistent in classifying vulnerability to habitat alteration, but varied in their classification of vulnerability due to increases in stream temperature and alterations to flow regimes, likely because extremes in current climate may not fully capture future conditions and their influence on stream fish communities. Both indices showed higher mean vulnerability scores for listed species than unlisted species, which provided a coarse

  17. Assessing predation risks for small fish in a large river ecosystem between contrasting habitats and turbidity conditions

    Science.gov (United States)

    Dodrill, Michael J.; Yard, Mike; Pine, William E.

    2016-01-01

    This study examined predation risk for juvenile native fish between two riverine shoreline habitats, backwater and debris fan, across three discrete turbidity levels (low, intermediate, high) to understand environmental risks associated with habitat use in a section of the Colorado River in Grand Canyon, AZ. Inferences are particularly important to juvenile native fish, including the federally endangered humpback chub Gila cypha. This species uses a variety of habitats including backwaters which are often considered important rearing areas. Densities of two likely predators, adult rainbow trout Oncorhynchus mykiss and adult humpback chub, were estimated between habitats using binomial mixture models to examine whether higher predator density was associated with patterns of predation risk. Tethering experiments were used to quantify relative predation risk between habitats and turbidity conditions. Under low and intermediate turbidity conditions, debris fan habitat showed higher relative predation risk compared to backwaters. In both habitats the highest predation risk was observed during intermediate turbidity conditions. Density of likely predators did not significantly differ between these habitats. This information can help managers in Grand Canyon weigh flow policy options designed to increase backwater availability or extant turbidity conditions.

  18. Morphological divergence and flow-induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats.

    Science.gov (United States)

    Franssen, Nathan R; Stewart, Laura K; Schaefer, Jacob F

    2013-11-01

    Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic-level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population-level differences in morphology persisted in offspring but morphological variation compared with field-collected individuals was limited to the head region. Populations demonstrated dissimilar flow-induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change.

  19. Fish Distribution in Far Western Queensland, Australia: The Importance of Habitat, Connectivity and Natural Flows

    Directory of Open Access Journals (Sweden)

    Adam Kerezsy

    2014-06-01

    Full Text Available The endorheic Lake Eyre Basin drains 1.2 million square kilometres of arid central Australia, yet provides habitat for only 30 species of freshwater fish due to the scarcity of water and extreme climate. The majority are hardy riverine species that are adapted to the unpredictable flow regimes, and capable of massive population booms following heavy rainfall and the restoration of connectivity between isolated waterholes. The remainder are endemic specialists from isolated springs with very restricted ranges, and many are listed under relevant state and national endangered species legislation and also by the International Union for Conservation of Nature (IUCN. For these spring communities, which are sustained by water from the Great Artesian Basin, survival is contingent on suitable habitat persisting alongside extractive mining, agriculture and the imposition of alien species. For the riverine species, which frequently undertake long migrations into ephemeral systems, preservation of the natural flow regime is paramount, as this reinstates riverine connectivity. In this study, fish were sampled from the Bulloo River in the east to the Mulligan River in the west, along a temporal timeframe and using a standard set of sampling gears. Fish presence was influenced by factors such as natural catchment divides, sampling time, ephemerality and the occurrence of connection flows and flooding. Despite the comparatively low diversity of species, the aquatic systems of this isolated region remain in good ecological condition, and as such they offer excellent opportunities to investigate the ecology of arid water systems. However, the presence of both endangered species (in the springs and invasive and translocated species more widely indicates that active protection and management of this unique area is essential to maintain biodiversity and ecosystem integrity.

  20. The impacts of mobile fishing gear on seafloor habitats in the Gulf of Maine (Northwest Atlantic): implications for conservation of fish populations

    Science.gov (United States)

    Auster, Peter J.; Malatesta, Richard J.; Langton, Richard W.; Watting, Les; Valentine, Page C.; Donaldson, Carol Lee S.; Langton, Elizabeth W.; Shepard, Andrew N.; Babb, War G.

    1997-01-01

    Fishing gear alters seafloor habitats, but the extent of these alterations, and their effects, have not been quantified extensively in the northwest Atlantic. Understanding the extent of these impacts, and their effects on populations of living marine resources, is needed to properly manage current and future levels of fishing effort and fishing power. For example, the entire U.S. side of the Gulf of Maine was impacted annually by mobile fishing gear between 1984 and 1990, based on calculations of area swept by trawl and dredge gear. Georges Bank was imparted three to nearly four times annually during the same period. Studies at three sites in the Gulf of Maine (off Swans Island, Jeffreys Bank, and Stellwagen Bank) showed that mobile fishing gear altered the physical structure (=complexity) of benthic habitats. Complexity was reduced by direct removal of biogenic (e.g., sponges, hydrozoans, bryozoans, amphipod tubes, holothurians, shell aggregates) and‐ sedimentary (e.g., sand waves, depressions) structures. Also, removal of organisms that create.structures (e.g., crabs, scallops) indirectly reduced complexity. Reductions in habitat complexity may lead to increased predation on juveniles of harvested species and ultimately recruitment to the harvestable stock. Because of a lack of reference sites, where use of mobile fishing is prohibited, no empirical studies have yet been conducted on a scale that could demonstrate population level effects of habitat‐management options. If marine fisheries management is to evolve toward an ecosystem or habitat management approach, experiments are required on the effects of habitat change, both anthropogenic and natural.

  1. Disentangling the influences of habitat structure and limnological predictors on stream fish communities of a coastal basin, southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Fabio Cop Ferreira

    Full Text Available In stream environments habitat structure and limnological factors interact regulating patterns of energy and material transfer and affecting fish communities. In the coastal basins of Southeastern Brazil, limnological and structural characteristics differ between clear and blackwaters streams. The former have a diversity of substrate types, higher water velocities, and lower water conductivity, while the latter have sandy substrate, tea-colored and acidic waters, and low water velocities. In this study, we verified the relative importance of habitat structure and limnological variables in predicting patterns of variation in stream fish communities. Eight first to third order streams were sampled in the coastal plain of Itanhaém River basin. We captured 34 fish species and verified that community structure was influenced by physical habitat and limnology, being the former more important. A fraction of the variation could not be totally decomposed, and it was assigned to the joint influence of limnology and habitat structure. Some species that were restricted to blackwater streams, may have physiological and behavioral adaptations to deal with the lower pH levels. When we examined only the clearwater streams, all the explained variation in fish community composition was assigned to structural factors, which express specific preferences for different types of habitats.

  2. Fitness consequences of habitat variability, trophic position, and energy allocation across the depth distribution of a coral-reef fish

    Science.gov (United States)

    Goldstein, E. D.; D'Alessandro, E. K.; Sponaugle, S.

    2017-09-01

    Environmental clines such as latitude and depth that limit species' distributions may be associated with gradients in habitat suitability that can affect the fitness of an organism. With the global loss of shallow-water photosynthetic coral reefs, mesophotic coral ecosystems ( 30-150 m) may be buffered from some environmental stressors, thereby serving as refuges for a range of organisms including mobile obligate reef dwellers. Yet habitat suitability may be diminished at the depth boundary of photosynthetic coral reefs. We assessed the suitability of coral-reef habitats across the majority of the depth distribution of a common demersal reef fish ( Stegastes partitus) ranging from shallow shelf (SS, restrict foraging. Fish in MP environments had a broader diet niche, higher trophic position, and higher muscle C:N ratios compared to shallower environments. High C:N ratios suggest increased tissue lipid content in fish in MP habitats that coincided with higher investment in reproduction based on gonado-somatic index. These results suggest that peripheral MP reefs are suitable habitats for demersal reef fish and may be important refuges for organisms common on declining shallow coral reefs.

  3. Longitudinal patterns of fish assemblages, aquatic habitat, and water temperature in the Lower Crooked River, Oregon

    Science.gov (United States)

    Torgersen, Christian E.; Hockman-Wert, David P.; Bateman, Douglas S.; Leer, David W.; Gresswell, Robert E.

    2007-01-01

    The Lower Crooked River is a remarkable groundwater-fed stream flowing through vertical basalt canyons in the Deschutes River Valley ecoregion in central Oregon (Pater and others, 1998). The 9-mile section of the river between the Crooked River National Grasslands boundary near Ogden Wayside and river mile (RM) 8 is protected under the National Wild and Scenic Rivers Act (16 U.S.C. 1271-1287) for its outstandingly remarkable scenic, recreational, geologic, hydrologic, wildlife, and botanical values (ORVs), and significant fishery and cultural values. Groundwater springs flow directly out of the canyon walls into the Lower Crooked River and create a unique hydrologic setting for native coldwater fish, such as inland Columbia Basin redband trout (Oncorhynchus mykiss gairdneri). To protect and enhance the ORVs that are the basis for the wild and scenic designation, the Bureau of Land Management (BLM) has identified the need to evaluate, among other conditions, fish presence and habitat use of the Lower Crooked River. The results of this and other studies will provide a scientific basis for communication and cooperation between the BLM, Oregon Water Resources Department, Oregon Department of Fish and Wildlife (ODFW) and all water users within the basin. These biological studies initiated by the BLM in the region reflect a growing national awareness of the impacts of agricultural and municipal water use on the integrity of freshwater ecosystems.

  4. IMPACT OF FISHING AND HABITAT DEGRADATION ON THE DENSITY OF BANGGAI CARDINAL FISH (Pterapogon kauderni, Koumans 1933 IN BANGGAI ARCHIPELAGO, INDONESIA

    Directory of Open Access Journals (Sweden)

    Kamaluddin Kasim

    2014-06-01

    Full Text Available Banggai cardinal fish (Pterapogonkauderni, Koumans 1933 is uncommon example of a marine fish with distributed in small range area while being in highly exploited. This fish is in high demand as an ornamental fish. However, the information on the number of density is limited. An underwater visual fish census survey was conducted in June to July 2010 at 18 fishing sites around Banggai archipelago to estimate the density of the stock and assess the impact of fishing and habitat on density. The areas are divided into three main islands, namely Banggai Island, Peleng Island, Toropot-Tumbak-Labobo Island. The lowest density index of the P. kauderni recorded at Kindandal village on Peleng Island, 0.014 fish/m2while the highest abundance index of 3.0 fish/m2 found at Toropot village at Toropot Island. In three survey sites (Bonebaru and Toropot villages where the fishing activities are still ongoing, the density has declined compared to the survey conducted in 2004. Majority of the villages in Peleng Island have lower density compared with the other islands probably due to the degradation of microhabitat of P. kauderni. In many cases, microhabitat degradation might be as a result of collection of sea urchins and sea anemone for consumption by local community.

  5. Pollution, habitat loss, fishing, and climate change as critical threats to penguins.

    Science.gov (United States)

    Trathan, Phil N; García-Borboroglu, Pablo; Boersma, Dee; Bost, Charles-André; Crawford, Robert J M; Crossin, Glenn T; Cuthbert, Richard J; Dann, Peter; Davis, Lloyd Spencer; De La Puente, Santiago; Ellenberg, Ursula; Lynch, Heather J; Mattern, Thomas; Pütz, Klemens; Seddon, Philip J; Trivelpiece, Wayne; Wienecke, Barbara

    2015-02-01

    Cumulative human impacts across the world's oceans are considerable. We therefore examined a single model taxonomic group, the penguins (Spheniscidae), to explore how marine species and communities might be at risk of decline or extinction in the southern hemisphere. We sought to determine the most important threats to penguins and to suggest means to mitigate these threats. Our review has relevance to other taxonomic groups in the southern hemisphere and in northern latitudes, where human impacts are greater. Our review was based on an expert assessment and literature review of all 18 penguin species; 49 scientists contributed to the process. For each penguin species, we considered their range and distribution, population trends, and main anthropogenic threats over the past approximately 250 years. These threats were harvesting adults for oil, skin, and feathers and as bait for crab and rock lobster fisheries; harvesting of eggs; terrestrial habitat degradation; marine pollution; fisheries bycatch and resource competition; environmental variability and climate change; and toxic algal poisoning and disease. Habitat loss, pollution, and fishing, all factors humans can readily mitigate, remain the primary threats for penguin species. Their future resilience to further climate change impacts will almost certainly depend on addressing current threats to existing habitat degradation on land and at sea. We suggest protection of breeding habitat, linked to the designation of appropriately scaled marine reserves, including in the High Seas, will be critical for the future conservation of penguins. However, large-scale conservation zones are not always practical or politically feasible and other ecosystem-based management methods that include spatial zoning, bycatch mitigation, and robust harvest control must be developed to maintain marine biodiversity and ensure that ecosystem functioning is maintained across a variety of scales. © 2014 The Authors. Conservation Biology

  6. Fatty acid composition indicating diverse habitat use in coral reef fishes in the Malaysian South China Sea

    Directory of Open Access Journals (Sweden)

    Takaomi Arai

    2015-01-01

    Full Text Available BACKGROUND: In order to understand feeding ecology and habitat use of coral reef fish, fatty acid composition was examined in five coral reef fishes, Thalassoma lunare, Lutjanus lutjanus, Abudefduf bengalensis, Scarus rivulatus and Scolopsis affinis collected in the Bidong Island of Malaysian South China Sea. RESULTS: Proportions of saturated fatty acids (SAFA ranged 57.2% 74.2%, with the highest proportions in fatty acids, the second highest was monounsaturated fatty acids (MUFA ranged from 21.4% to 39.0% and the proportion of polyunsaturated fatty acids (PUFA was the lowest ranged from 2.8% to 14.1%. Each fatty acid composition differed among fishes, suggesting diverse feeding ecology, habitat use and migration during the fishes' life history in the coral reef habitats. CONCLUSIONS: Diets of the coral fish species might vary among species in spite of that each species are living sympatrically. Differences in fatty acid profiles might not just be considered with respect to the diets, but might be based on the habitat and migration.

  7. Fatty acid composition indicating diverse habitat use in coral reef fishes in the Malaysian South China Sea.

    Science.gov (United States)

    Arai, Takaomi; Amalina, Razikin; Bachok, Zainudin

    2015-02-22

    In order to understand feeding ecology and habitat use of coral reef fish, fatty acid composition was examined in five coral reef fishes, Thalassoma lunare, Lutjanus lutjanus, Abudefduf bengalensis, Scarus rivulatus and Scolopsis affinis collected in the Bidong Island of Malaysian South China Sea. Proportions of saturated fatty acids (SAFA) ranged 57.2% 74.2%, with the highest proportions in fatty acids, the second highest was monounsaturated fatty acids (MUFA) ranged from 21.4% to 39.0% and the proportion of polyunsaturated fatty acids (PUFA) was the lowest ranged from 2.8% to 14.1%. Each fatty acid composition differed among fishes, suggesting diverse feeding ecology, habitat use and migration during the fishes' life history in the coral reef habitats. Diets of the coral fish species might vary among species in spite of that each species are living sympatrically. Differences in fatty acid profiles might not just be considered with respect to the diets, but might be based on the habitat and migration.

  8. Evaluation of the hydraulic and biological performance of the portable floating fish collector at Cougar Reservoir and Dam, Oregon, 2014

    Science.gov (United States)

    Beeman, John W.; Evans, Scott D.; Haner, Philip V.; Hansel, Hal C.; Hansen, Amy C.; Hansen, Gabriel S.; Hatton, Tyson W.; Sprando, Jamie M.; Smith, Collin D.; Adams, Noah S.

    2016-01-12

    The biological and hydraulic performance of a new portable floating fish collector (PFFC) located in a cul-de-sac within the forebay of Cougar Dam, Oregon, was evaluated during 2014. The purpose of the PFFC was to explore surface collection as a means to capture juvenile salmonids at one or more sites using a small, cost-effective, pilot-scale device. The PFFC used internal pumps to draw attraction flow over an inclined plane about 3 meters (m) deep, through a flume at a design velocity of as much as 6 feet per second (ft/s), and to empty a small amount of water and any entrained fish into a collection box. Performance of the PFFC was evaluated at 64 cubic feet per second (ft3/s) (Low) and 109 ft3/s (High) inflow rates alternated using a randomized-block schedule from May 27 to December 16, 2014. The evaluation of the biological performance was based on trap catch; behaviors, locations, and collection of juvenile Chinook salmon (Oncorhynchus tshawytscha) tagged with acoustic transmitters plus passive integrated transponder (PIT) tags; collection of juvenile Chinook salmon implanted with only PIT tags; and untagged fish monitored near and within the PFFC using acoustic cameras. The evaluation of hydraulic performance was based on measurements of water velocity and direction of flow in the PFFC.

  9. Coral reef fish predator maintains olfactory acuity in degraded coral habitats.

    Directory of Open Access Journals (Sweden)

    Michael Natt

    Full Text Available Coral reefs around the world are rapidly degrading due to a range of environmental stressors. Habitat degradation modifies the sensory landscape within which predator-prey interactions occur, with implications for olfactory-mediated behaviours. Predator naïve settlement-stage damselfish rely on conspecific damage-released odours (i.e., alarm odours to inform risk assessments. Yet, species such as the Ambon damselfish, Pomacentrus amboinensis, become unable to respond appropriately to these cues when living in dead-degraded coral habitats, leading to increased mortality through loss of vigilance. Reef fish predators also rely on odours from damaged prey to locate, assess prey quality and engage in prey-stealing, but it is unknown whether their responses are also modified by the change to dead-degraded coral habitats. Implications for prey clearly depend on how their predatory counterparts are affected, therefore the present study tested whether olfactory-mediated foraging responses in the dusky dottyback, Pseudochromis fuscus, a common predator of P. amboinensis, were similarly affected by coral degradation. A y-maze was used to measure the ability of Ps. fuscus to detect and move towards odours, against different background water sources. Ps. fuscus were exposed to damage-released odours from juvenile P. amboinensis, or a control cue of seawater, against a background of seawater treated with either healthy or dead-degraded hard coral. Predators exhibited an increased time allocation to the chambers of y-mazes injected with damage-released odours, with comparable levels of response in both healthy and dead-degraded coral treated waters. In control treatments, where damage-released odours were replaced with a control seawater cue, fish showed no increased preference for either chamber of the y-maze. Our results suggest that olfactory-mediated foraging behaviours may persist in Ps. fuscus within dead-degraded coral habitats. Ps. fuscus may

  10. Spatial Scaling of Environmental Variables Improves Species-Habitat Models of Fishes in a Small, Sand-Bed Lowland River.

    Directory of Open Access Journals (Sweden)

    Johannes Radinger

    Full Text Available Habitat suitability and the distinct mobility of species depict fundamental keys for explaining and understanding the distribution of river fishes. In recent years, comprehensive data on river hydromorphology has been mapped at spatial scales down to 100 m, potentially serving high resolution species-habitat models, e.g., for fish. However, the relative importance of specific hydromorphological and in-stream habitat variables and their spatial scales of influence is poorly understood. Applying boosted regression trees, we developed species-habitat models for 13 fish species in a sand-bed lowland river based on river morphological and in-stream habitat data. First, we calculated mean values for the predictor variables in five distance classes (from the sampling site up to 4000 m up- and downstream to identify the spatial scale that best predicts the presence of fish species. Second, we compared the suitability of measured variables and assessment scores related to natural reference conditions. Third, we identified variables which best explained the presence of fish species. The mean model quality (AUC = 0.78, area under the receiver operating characteristic curve significantly increased when information on the habitat conditions up- and downstream of a sampling site (maximum AUC at 2500 m distance class, +0.049 and topological variables (e.g., stream order were included (AUC = +0.014. Both measured and assessed variables were similarly well suited to predict species' presence. Stream order variables and measured cross section features (e.g., width, depth, velocity were best-suited predictors. In addition, measured channel-bed characteristics (e.g., substrate types and assessed longitudinal channel features (e.g., naturalness of river planform were also good predictors. These findings demonstrate (i the applicability of high resolution river morphological and instream-habitat data (measured and assessed variables to predict fish presence, (ii the

  11. An ecological model of the habitat mosaic in estuarine nursery areas: Part II – Projecting effects of sea level rise on fish production

    Science.gov (United States)

    Understanding the response of fish populations to habitat change mediated by sea level rise (SLR) is a key component of ecosystem-based management. Yet, no direct link has been established between habitat change due to SLR and fish population production. Here we take a coupled ...

  12. Applications of genetic data to improve management and conservation of river fishes and their habitats

    Science.gov (United States)

    Scribner, Kim T.; Lowe, Winsor H.; Landguth, Erin L.; Luikart, Gordon; Infante, Dana M.; Whelan, Gary; Muhlfeld, Clint C.

    2015-01-01

    Environmental variation and landscape features affect ecological processes in fluvial systems; however, assessing effects at management-relevant temporal and spatial scales is challenging. Genetic data can be used with landscape models and traditional ecological assessment data to identify biodiversity hotspots, predict ecosystem responses to anthropogenic effects, and detect impairments to underlying processes. We show that by combining taxonomic, demographic, and genetic data of species in complex riverscapes, managers can better understand the spatial and temporal scales over which environmental processes and disturbance influence biodiversity. We describe how population genetic models using empirical or simulated genetic data quantify effects of environmental processes affecting species diversity and distribution. Our summary shows that aquatic assessment initiatives that use standardized data sets to direct management actions can benefit from integration of genetic data to improve the predictability of disturbance–response relationships of river fishes and their habitats over a broad range of spatial and temporal scales.

  13. John Day River Subbasin Fish Habitat Enhancement Project, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Russ M.; Jerome, James P.; Delano, Kenneth H.

    2003-03-01

    Work undertaken in 2002 included: (1) Seven new fence projects were completed thereby protecting 6.0 miles of stream (2) Completion of 0.7 miles of dredge tail leveling on Granite Creek. (3) New fence construction (300ft) plus one watergap on Indian Creek/ Kuhl property. (4) Maintenance of all active project fences (58.76 miles), watergaps (56), spring developments (32) and plantings were checked and repairs performed. (5) Restoration and Enhancement projects protected 3 miles of stream within the basin. (6) Since the initiation of the Fish Habitat Project in 1984 we have 67.21 miles of stream protected using 124.2 miles of fence. With the addition of the Restoration and Enhancement Projects we have 199.06 miles of fence protecting 124.57 miles of stream.

  14. John Day River Subbasin Fish Habitat Enhancement Project, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Russ M.; Delano, Kenneth H.; Jerome, James P.

    2002-07-01

    Work undertaken in 2001 included: (1) 3335 structure posts were pounded on six new projects thereby protecting 10 miles of stream (2) Completion of 1000 ft. of barbed wire fence and one watergap on the Middle Fork of the John Day River/ Forrest property. (3) Fence removal of 5010 ft. of barbed wire fence on the Meredith project. (4) Maintenance of all active project fences (66 miles), watergaps (76), spring developments (32) and plantings were checked and repairs performed. (5) Since the initiation of the Fish Habitat Project in 1984 we have 63.74 miles of stream protected using 106.78 miles of fence. With the addition of the Restoration and Enhancement Projects we have 180.64 miles of fence protecting 120.6 miles of stream.

  15. Functional diversity measures revealed impacts of non-native species and habitat degradation on species-poor freshwater fish assemblages.

    Science.gov (United States)

    Colin, Nicole; Villéger, Sébastien; Wilkes, Martin; de Sostoa, Adolfo; Maceda-Veiga, Alberto

    2018-06-01

    Trait-based ecology has been developed for decades to infer ecosystem responses to stressors based on the functional structure of communities, yet its value in species-poor systems is largely unknown. Here, we used an extensive dataset in a Spanish region highly prone to non-native fish invasions (15 catchments, N=389 sites) to assess for the first time how species-poor communities respond to large-scale environmental gradients using a taxonomic and functional trait-based approach in riverine fish. We examined total species richness and three functional trait-based indices available when many sites have ≤3 species (specialization, FSpe; originality, FOri and entropy, FEnt). We assessed the responses of these taxonomic and functional indices along gradients of altitude, water pollution, physical habitat degradation and non-native fish biomass. Whilst species richness was relatively sensitive to spatial effects, functional diversity indices were responsive across natural and anthropogenic gradients. All four diversity measures declined with altitude but this decline was modulated by physical habitat degradation (richness, FSpe and FEnt) and the non-native:total fish biomass ratio (FSpe and FOri) in ways that varied between indices. Furthermore, FSpe and FOri were significantly correlated with Total Nitrogen. Non-native fish were a major component of the taxonomic and functional structure of fish communities, raising concerns about potential misdiagnosis between invaded and environmentally-degraded river reaches. Such misdiagnosis was evident in a regional fish index widely used in official monitoring programs. We recommend the application of FSpe and FOri to extensive datasets from monitoring programs in order to generate valuable cross-system information about the impacts of non-native species and habitat degradation, even in species-poor systems. Scoring non-native species apart from habitat degradation in the indices used to determine ecosystem health is

  16. Influence of forest and rangeland management on anadromous fish habitat in Western North America: impacts of natural events.

    Science.gov (United States)

    Douglas N. Swanston

    1980-01-01

    Natural events affecting vegetative cover and the hydrology and stability of a stream and its parent watershed are key factors influencing the quality of anadromous fish habitat. High intensity storms, drought, soil mass movement, and fire have the greatest impacts. Wind, stream icing, and the influence of insects and disease are important locally...

  17. Habitat relationships and larval drift of native and nonindigenous fishes in neighboring tributaries of a coastal California river

    Science.gov (United States)

    Bret C. Harvey; Jason L. White; Rodney J. Nakamoto

    2002-01-01

    Abstract - Motivated by a particular interest in the distribution of the nonindigenous, piscivorous Sacramento pikeminnow, Ptychocheilus grandis, we examined fish-habitat relationships in small tributaries (draining 20-200 km 2 )in the Eel River drainage of northwestern California.We sampled juvenile and adult fish in 15 tributaries in both the summer and...

  18. [Dietary composition and food competition of six main fish species in rocky reef habitat off Gouqi Island].

    Science.gov (United States)

    Wang, Kai; Zhang, Shou-Yu; Wang, Zhen-Hua; Zhao, Jing; Xu, Min; Lin, Jun

    2012-02-01

    Based on the monthly investigation data of fish resources in the rocky reef habitat off Gouqi Island from March 2009 to February 2010, this paper studied the dietary composition of three native fish species (Sebasticus marmoratus, Hexagrammos otakii and Hexagrammos agrammus) and three non-native fish species (Lateolabrax japonica, Nibea albiflora and Larimichthys polyactis). The analysis of gut content indicated that the main prey items of these six dominant fish species were Caprellidae, Gammaridea, juvenile S. marmoratus, Engraulis japonicas and Acetes chinensis and the dietary composition of each of the 6 fish species had obvious seasonal variation. There was an intense food competition between native species H. otakii and H. agrammus in autumn, between non-native species N. albiflora and L. polyactis in summer, between non-native species N. albiflora and native species S. marmoratus in autumn, and between non-native species N. albiflora and native species H. otakii in winter. It was suggested the non-native species N. albiflora was the key species in the food competition among the six dominant fish species in this rocky reef habitat, and thus the feeding behaviors of these six fish species could have definite effects on the resource capacity of juvenile S. marmoratus.

  19. Emergent Sandbar Construction for Least Terns on the Missouri River: Effects on Forage Fishes in Shallow-Water Habitats

    Science.gov (United States)

    Stucker, J.H.; Buhl, D.A.; Sherfy, M.H.

    2011-01-01

    Emergent sandbars on the Missouri River are actively managed for two listed bird species, piping plovers and interior least terns. As a plunge-diving piscivore, endangered least terns rely on ready access to appropriately sized slender-bodied fish: nesting habitat for plovers and terns, the U.S. Army Corps of Engineers mechanically created several emergent sandbars on the Missouri River. However, it was unknown whether sandbar construction is a benefit or a detriment to forage abundance for least terns. Therefore, we studied the shallowwater (nesting seasons (2006-2008). We sampled every 2 weeks each year from late May to July within 15-16 areas to document the relative abundance, species richness and size classes of fish. Fish relative abundance was negatively related to depth. Catches were dominated by schooling species, including emerald shiner, sand shiner, spotfin shiner and bigmouth buffalo. Significant inter-annual differences in relative abundance were observed, with generally increasing trends in intra-seasonal relative abundance of shiners and the smallest size classes of fish (<34 mm). Significant differences in the fish communities between the sandbar types were not detected in this study. Results suggest that mechanical sandbar habitats host comparable fish communities at similar levels of relative abundance. Further analyses are required to evaluate if the levels of fish relative abundance are adequate to support least tern foraging and reproduction.

  20. Life in the Mosaic: Predicting changes in estuarine nursery production for juvenile fishes in response to sea-level rise with a landscape-based habitat production model

    Science.gov (United States)

    Identification of critical habitat in estuarine fish nursery areas is an important conservation and management objective, yet response to changes in critical habitat is both equally important and harder to predict. Habitat can be viewed as a mosaic of both temporally variable en...

  1. Structure-forming corals and sponges and their use as fish habitat in Bering Sea submarine canyons.

    Directory of Open Access Journals (Sweden)

    Robert J Miller

    Full Text Available Continental margins are dynamic, heterogeneous settings that can include canyons, seamounts, and banks. Two of the largest canyons in the world, Zhemchug and Pribilof, cut into the edge of the continental shelf in the southeastern Bering Sea. Here currents and upwelling interact to produce a highly productive area, termed the Green Belt, that supports an abundance of fishes and squids as well as birds and marine mammals. We show that in some areas the floor of these canyons harbors high densities of gorgonian and pennatulacean corals and sponges, likely due to enhanced surface productivity, benthic currents and seafloor topography. Rockfishes, including the commercially important Pacific ocean perch, Sebastes alutus, were associated with corals and sponges as well as with isolated boulders. Sculpins, poachers and pleuronectid flounders were also associated with corals in Pribilof Canyon, where corals were most abundant. Fishes likely use corals and sponges as sources of vertical relief, which may harbor prey as well as provide shelter from predators. Boulders may be equivalent habitat in this regard, but are sparse in the canyons, strongly suggesting that biogenic structure is important fish habitat. Evidence of disturbance to the benthos from fishing activities was observed in these remote canyons. Bottom trawling and other benthic fishing gear has been shown to damage corals and sponges that may be very slow to recover from such disturbance. Regulation of these destructive practices is key to conservation of benthic habitats in these canyons and the ecosystem services they provide.

  2. Structure-forming corals and sponges and their use as fish habitat in Bering Sea submarine canyons.

    Science.gov (United States)

    Miller, Robert J; Hocevar, John; Stone, Robert P; Fedorov, Dmitry V

    2012-01-01

    Continental margins are dynamic, heterogeneous settings that can include canyons, seamounts, and banks. Two of the largest canyons in the world, Zhemchug and Pribilof, cut into the edge of the continental shelf in the southeastern Bering Sea. Here currents and upwelling interact to produce a highly productive area, termed the Green Belt, that supports an abundance of fishes and squids as well as birds and marine mammals. We show that in some areas the floor of these canyons harbors high densities of gorgonian and pennatulacean corals and sponges, likely due to enhanced surface productivity, benthic currents and seafloor topography. Rockfishes, including the commercially important Pacific ocean perch, Sebastes alutus, were associated with corals and sponges as well as with isolated boulders. Sculpins, poachers and pleuronectid flounders were also associated with corals in Pribilof Canyon, where corals were most abundant. Fishes likely use corals and sponges as sources of vertical relief, which may harbor prey as well as provide shelter from predators. Boulders may be equivalent habitat in this regard, but are sparse in the canyons, strongly suggesting that biogenic structure is important fish habitat. Evidence of disturbance to the benthos from fishing activities was observed in these remote canyons. Bottom trawling and other benthic fishing gear has been shown to damage corals and sponges that may be very slow to recover from such disturbance. Regulation of these destructive practices is key to conservation of benthic habitats in these canyons and the ecosystem services they provide.

  3. Cold-water corals and large hydrozoans provide essential fish habitat for Lappanella fasciata and Benthocometes robustus

    Science.gov (United States)

    Gomes-Pereira, José Nuno; Carmo, Vanda; Catarino, Diana; Jakobsen, Joachim; Alvarez, Helena; Aguilar, Ricardo; Hart, Justin; Giacomello, Eva; Menezes, Gui; Stefanni, Sergio; Colaço, Ana; Morato, Telmo; Santos, Ricardo S.; Tempera, Fernando; Porteiro, Filipe

    2017-11-01

    Many fish species are well-known obligatory inhabitants of shallow-water tropical coral reefs but such associations are difficult to study in deep-water environments. We address the association between two deep-sea fish with low mobility and large sessile invertebrates using a compilation of 20 years of unpublished in situ observations. Data were collected on Northeast Atlantic (NEA) island slopes and seamounts, from the Azores to the Canary Islands, comprising 127 new records of the circalittoral Labridae Lappanella fasciata and 15 of the upper bathyal Ophiididae Benthocometes robustus. Observations by divers, remote operated vehicles (ROV SP, Luso, Victor, Falcon Seaeye), towed vehicles (Greenpeace) and manned submersibles (LULA, Nautile) validated the species association to cold water corals (CWC) and large hydrozoans. L. fasciata occurred from lower infralittoral (41 m) throughout the circalittoral, down to the upper bathyal at 398 m depth. Smaller fishes (fishes (10-15 cm) occurring alone or in smaller groups at greater depths. The labrids favoured areas with large sessile invertebrates (> 10 cm) occurring at habitat and this predator. Gathered evidence renders CWC and hydroid gardens as Essential Fish Habitats for both species, being therefore sensitive to environmental and anthropogenic impacts on these Vulnerable Marine Ecosystems. The Mediterranean distribution of L. fasciata is extended to NEA seamounts and island slopes and the amphi-Atlantic distribution of B. robustus is bridged with molecular data support. Both species are expected to occur throughout the Macaronesia and Mediterranean island slopes and shallow seamounts on habitats with large sessile invertebrates.

  4. Invasive species and habitat degradation in Iberian streams: an analysis of their role in freshwater fish diversity loss.

    Science.gov (United States)

    Hermoso, Virgilio; Clavero, Miguel; Blanco-Garrido, Francisco; Prenda, José

    2011-01-01

    Mediterranean endemic freshwater fish are among the most threatened biota in the world. Distinguishing the role of different extinction drivers and their potential interactions is crucial for achieving conservation goals. While some authors argue that invasive species are a main driver of native species declines, others see their proliferation as a co-occurring process to biodiversity loss driven by habitat degradation. It is difficult to discern between the two potential causes given that few invaded ecosystems are free from habitat degradation, and that both factors may interact in different ways. Here we analyze the relative importance of habitat degradation and invasive species in the decline of native fish assemblages in the Guadiana River basin (southwestern Iberian Peninsula) using an information theoretic approach to evaluate interaction pathways between invasive species and habitat degradation (structural equation modeling, SEM). We also tested the possible changes in the functional relationships between invasive and native species, measured as the per capita effect of invasive species, using ANCOVA. We found that the abundance of invasive species was the best single predictor of natives' decline and had the highest Akaike weight among the set of predictor variables examined. Habitat degradation neither played an active role nor influenced the per capita effect of invasive species on natives. Our analyses indicated that downstream reaches and areas close to reservoirs had the most invaded fish assemblages, independently of their habitat degradation status. The proliferation of invasive species poses a strong threat to the persistence of native assemblages in highly fluctuating environments. Therefore, conservation efforts to reduce native freshwater fish diversity loss in Mediterranean rivers should focus on mitigating the effect of invasive species and preventing future invasions.

  5. Seasonal Variations in the Use of Profundal Habitat among Freshwater Fishes in Lake Norsjø, Southern Norway, and Subsequent Effects on Fish Mercury Concentrations

    Directory of Open Access Journals (Sweden)

    Tom Robin Olk

    2016-11-01

    Full Text Available This study is based on monthly sampling of fish from grates mounted at an industrial water intake, located at a depth of 50 m in Lake Norsjø (Southern Norway during the year 2014, to investigate seasonal variations in the use of the profundal habitat and subsequent variations in total Hg-concentrations in profundal fish. Data on various fish present in a cold and dark hypolimnion of a large, deep, dimictic lake within the upper temperate zone of the Northern Hemisphere are rare. While predominant species such as A. charr (Salvelinus alpinus and E. smelt (Osmerus eperlanus were continuously present in this habitat, whitefish (Coregonus lavaretus occupied this habitat primarily during wintertime, while other common species like brown trout (Salmo trutta, perch (Perca fluviatilis and northern pike (Esox lucius were almost absent. Besides stomach analyses (diet and biometry, stable isotope analyses (δ15N and δ13C and total mercury (Tot-Hg analyses were carried out on the caught fish. The δ13C signature and stomach analyses revealed a combined profundal-pelagic diet for all three species, A. charr with the most profundal-based diet. Length was the strongest predictor for Hg in whitefish and A. charr, while age was the strongest explanatory variable for Hg in E. smelt. A. charr was the only species exhibiting seasonal variation in Hg, highest during winter and spring.

  6. Wigwam River juvenile bull trout and fish habitat monitoring program: 2000 data report; TOPICAL

    International Nuclear Information System (INIS)

    Cope, R.S.; Morris, K.J.

    2001-01-01

    The Wigwam River bull trout (Salvelinus confluentus) and fish habitat monitoring program is a trans-boundary initiative implemented by the British Columbia Ministry of Environment, Lands and Parks (MOE), in cooperation with Bonneville Power Administration (BPA). The Wigwam River is an important fisheries stream located in southeastern British Columbia that supports healthy populations of both bull trout and Westslope cutthroat trout (Figure 1.1). This river has been characterized as the single most important bull trout spawning stream in the Kootenay Region (Baxter and Westover 2000, Cope 1998). In addition, the Wigwam River supports some of the largest Westslope cutthroat trout (Oncorhynchus clarki lewisi) in the Kootenay Region. These fish are highly sought after by anglers (Westover 1999a, 1999b). Bull trout populations have declined in many areas of their range within Montana and throughout the northwest including British Columbia. Bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Center (Cannings 1993) and although there are many healthy populations of bull trout in the East Kootenays they remain a species of special concern. Bull trout in the United States portion of the Columbia River were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. The upper Kootenay River is within the Kootenai sub-basin of the Mountain Columbia Province, one of the eleven Eco-provinces that make up the Columbia River Basin. MOE applied for and received funding from BPA to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. This task is one of many that was undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00)

  7. Wigwam River Juvenile Bull Trout and Fish Habitat Monitoring Program : 2002 Data Report.

    Energy Technology Data Exchange (ETDEWEB)

    Cope, R.S. [Westslope Fisheries, Cranbrook, BC, Canada

    2003-03-01

    The Wigwam River bull trout (Salvelinus confluentus) and fish habitat monitoring program is a trans-boundary initiative implemented by the British Columbia Ministry of Water, Land, and Air Protection (MWLAP), in cooperation with Bonneville Power Administration (BPA). The Wigwam River is an important fisheries stream located in southeastern British Columbia that supports healthy populations of both bull trout and Westslope cutthroat trout (Figure 1). This river has been characterized as the single most important bull trout spawning stream in the Kootenay Region (Baxter and Westover 2000, Cope 1998). In addition, the Wigwam River supports some of the largest Westslope cutthroat trout (Oncorhynchus clarki lewisi) in the Kootenay Region. These fish are highly sought after by anglers (Westover 1999a, 1999b). Bull trout populations have declined in many areas of their range within Montana and throughout the northwest including British Columbia. Bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Center (Cannings 1993) and although there are many healthy populations of bull trout in the East Kootenay they remain a species of special concern. Bull trout in the United States portion of the Columbia River were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. The upper Kootenay River is within the Kootenai sub-basin of the Mountain Columbia Province, one of the eleven Eco-provinces that make up the Columbia River Basin. MWLAP applied for and received funding from BPA to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. This task is one of many that were undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00).

  8. Introduction of geospatial perspective to the ecology of fish-habitat relationships in Indonesian coral reefs: A remote sensing approach

    Science.gov (United States)

    Sawayama, Shuhei; Nurdin, Nurjannah; Akbar AS, Muhammad; Sakamoto, Shingo X.; Komatsu, Teruhisa

    2015-06-01

    Coral reef ecosystems worldwide are now being harmed by various stresses accompanying the degradation of fish habitats and thus knowledge of fish-habitat relationships is urgently required. Because conventional research methods were not practical for this purpose due to the lack of a geospatial perspective, we attempted to develop a research method integrating visual fish observation with a seabed habitat map and to expand knowledge to a two-dimensional scale. WorldView-2 satellite imagery of Spermonde Archipelago, Indonesia obtained in September 2012 was analyzed and classified into four typical substrates: live coral, dead coral, seagrass and sand. Overall classification accuracy of this map was 81.3% and considered precise enough for subsequent analyses. Three sub-areas (CC: continuous coral reef, BC: boundary of coral reef and FC: few live coral zone) around reef slopes were extracted from the map. Visual transect surveys for several fish species were conducted within each sub-area in June 2013. As a result, Mean density (Ind. / 300 m2) of Chaetodon octofasciatus, known as an obligate feeder of corals, was significantly higher at BC than at the others (p < 0.05), implying that this species' density is strongly influenced by spatial configuration of its habitat, like the "edge effect." This indicates that future conservation procedures for coral reef fishes should consider not only coral cover but also its spatial configuration. The present study also indicates that the introduction of a geospatial perspective derived from remote sensing has great potential to progress conventional ecological studies on coral reef fishes.

  9. Analysis of fish movements between Great Lakes coastal wetlands and near shore habitat via otolith microchemistry

    Science.gov (United States)

    Great Lakes coastal wetlands are unique habitats with physical connections with near shore environments. This facilitates the exchange of energy between habitats in a principle known as habitat coupling. Coupling can be facilitated by movements of consumers; however, wetland us...

  10. Hydraulic conditions of water flow in seminatural fish pass, A case study of the Skórka barrage on the Głomia river

    Directory of Open Access Journals (Sweden)

    Mateusz Hämmerling

    2017-06-01

    Full Text Available The article presents results of a field study of the fish pass located within the Skórka barrage on the Głomia river. The aim of the study was to identify water flow conditions in particular chambers of the fish pass. On the basis of results of the field study, the hydraulic conditions of water flow through the fish pass were determined and referred to the optimum performance parameters of the construction. The results obtained make a basis for discussion of possible problems related to construction and operation of the fish passes resembling „close to nature” structures.

  11. Hydraulic, geomorphic, and trout habitat conditions of the Lake Fork of the Gunnison River in Hinsdale County, Lake City, Colorado, Water Years 2010-2011

    Science.gov (United States)

    Williams, Cory A.; Richards, Rodney J.; Schaffrath, Keelin R.

    2015-01-01

    Channel rehabilitation, or reconfiguration, to mitigate a variety of riverine problems has become a common practice in the western United States. However, additional work to monitor and assess the channel response to, and the effectiveness of, these modifications over longer periods of time (decadal or longer) is still needed. The Lake Fork of the Gunnison River has been an area of active channel modification to accommodate the needs of the Lake City community since the 1950s. The Lake Fork Valley Conservancy District began a planning process to assess restoration options for a reach of the Lake Fork in Lake City to enhance hydraulic and ecologic characteristics of the reach. Geomorphic channel form is affected by land-use changes within the basin and geologic controls within the reach. The historic channel was defined as a dynamic, braided channel with an active flood plain. This can result in a natural tendency for the channel to braid. A braided channel can affect channel stability of reconfigured reaches when a single-thread meandering channel is imposed on the stream. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and Colorado River Water Conservation District, began a study in 2010 to quantify existing hydraulic and habitat conditions for a reach of the Lake Fork of the Gunnison River in Lake City, Colorado. The purpose of this report is to quantify existing Lake Fork hydraulic and habitat conditions and establish a baseline against which post-reconfiguration conditions can be compared. This report (1) quantifies the existing hydraulic and geomorphic conditions in a 1.1-kilometer section of the Lake Fork at Lake City that has been proposed as a location for future channel-rehabilitation efforts, (2) characterizes the habitat suitability of the reach for two trout species based on physical conditions within the stream, and (3) characterizes the current riparian canopy density.

  12. FishVis, A regional decision support tool for identifying vulnerabilities of riverine habitat and fishes to climate change in the Great Lakes Region

    Science.gov (United States)

    Stewart, Jana S.; Covert, S. Alex; Estes, Nick J.; Westenbroek, Stephen M.; Krueger, Damon; Wieferich, Daniel J.; Slattery, Michael T.; Lyons, John D.; McKenna, James E.; Infante, Dana M.; Bruce, Jennifer L.

    2016-10-13

    Climate change is expected to alter the distributions and community composition of stream fishes in the Great Lakes region in the 21st century, in part as a result of altered hydrological systems (stream temperature, streamflow, and habitat). Resource managers need information and tools to understand where fish species and stream habitats are expected to change under future conditions. Fish sample collections and environmental variables from multiple sources across the United States Great Lakes Basin were integrated and used to develop empirical models to predict fish species occurrence under present-day climate conditions. Random Forests models were used to predict the probability of occurrence of 13 lotic fish species within each stream reach in the study area. Downscaled climate data from general circulation models were integrated with the fish species occurrence models to project fish species occurrence under future climate conditions. The 13 fish species represented three ecological guilds associated with water temperature (cold, cool, and warm), and the species were distributed in streams across the Great Lakes region. Vulnerability (loss of species) and opportunity (gain of species) scores were calculated for all stream reaches by evaluating changes in fish species occurrence from present-day to future climate conditions. The 13 fish species included 4 cold-water species, 5 cool-water species, and 4 warm-water species. Presently, the 4 cold-water species occupy from 15 percent (55,000 kilometers [km]) to 35 percent (130,000 km) of the total stream length (369,215 km) across the study area; the 5 cool-water species, from 9 percent (33,000 km) to 58 percent (215,000 km); and the 4 warm-water species, from 9 percent (33,000 km) to 38 percent (141,000 km).Fish models linked to projections from 13 downscaled climate models projected that in the mid to late 21st century (2046–65 and 2081–2100, respectively) habitats suitable for all 4 cold-water species and 4

  13. Habitats as surrogates of taxonomic and functional fish assemblages in coral reef ecosystems: a critical analysis of factors driving effectiveness.

    Directory of Open Access Journals (Sweden)

    Simon Van Wynsberge

    Full Text Available Species check-lists are helpful to establish Marine Protected Areas (MPAs and protect local richness, endemicity, rarity, and biodiversity in general. However, such exhaustive taxonomic lists (i.e., true surrogate of biodiversity require extensive and expensive censuses, and the use of estimator surrogates (e.g., habitats is an appealing alternative. In truth, surrogate effectiveness appears from the literature highly variable both in marine and terrestrial ecosystems, making it difficult to provide practical recommendations for managers. Here, we evaluate how the biodiversity reference data set and its inherent bias can influence effectiveness. Specifically, we defined habitats by geomorphology, rugosity, and benthic cover and architecture criteria, and mapped them with satellite images for a New-Caledonian site. Fish taxonomic and functional lists were elaborated from Underwater Visual Censuses, stratified according to geomorphology and exposure. We then tested if MPA networks designed to maximize habitat richness, diversity and rarity could also effectively maximize fish richness, diversity, and rarity. Effectiveness appeared highly sensitive to the fish census design itself, in relation to the type of habitat map used and the scale of analysis. Spatial distribution of habitats (estimator surrogate's distribution, quantity and location of fish census stations (target surrogate's sampling, and random processes in the MPA design all affected effectiveness to the point that one small change in the data set could lead to opposite conclusions. We suggest that previous conclusions on surrogacy effectiveness, either positive or negative, marine or terrestrial, should be considered with caution, except in instances where very dense data sets were used without pseudo-replication. Although this does not rule out the validity of using surrogates of species lists for conservation planning, the critical joint examination of both target and estimator

  14. Fish thermal habitat current use and simulation of thermal habitat availability in lakes of the Argentine Patagonian Andes under climate change scenarios RCP 4.5 and RCP 8.5.

    Science.gov (United States)

    Vigliano, Pablo H; Rechencq, Magalí M; Fernández, María V; Lippolt, Gustavo E; Macchi, Patricio J

    2018-09-15

    Habitat use in relation to the thermal habitat availability and food source as a forcing factor on habitat selection and use of Percichthys trucha (Creole perch), Oncorhynchus mykiss (rainbow trout), Salmo trutta (brown trout) and Salvelinus fontinalis (brook trout) were determined as well as future potential thermal habitat availability for these species under climate change scenarios Representative Concentration Pathways 4.5 and 8.5. This study was conducted in three interconnected lakes of Northern Patagonia (Moreno Lake system). Data on fish abundance was obtained through gill netting and hydroacoustics, and thermal profiles and fish thermal habitat suitability index curves were used to identify current species-specific thermal habitat use. Surface air temperatures from the (NEX GDDP) database for RCP scenarios 4.5 and 8.5 were used to model monthly average temperatures of the water column up to the year 2099 for all three lakes, and to determine potential future habitat availability. In addition, data on fish diet were used to determine whether food could act as a forcing factor in current habitat selection. The four species examined do not use all the thermally suitable habitats currently available to them in the three lakes, and higher fish densities are not necessarily constrained to their "fundamental thermal niches" sensu Magnuson et al. (1979), as extensive use is made of less suitable habitats. This is apparently brought about by food availability acting as a major forcing factor in habitat selection and use. Uncertainties related to the multidimensionality inherent to habitat selection and climate change imply that fish resource management in Patagonia will not be feasible through traditional incremental policies and strategic adjustments based on short-term predictions, but will have to become highly opportunistic and adaptive. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Hydraulic structures

    CERN Document Server

    Chen, Sheng-Hong

    2015-01-01

    This book discusses in detail the planning, design, construction and management of hydraulic structures, covering dams, spillways, tunnels, cut slopes, sluices, water intake and measuring works, ship locks and lifts, as well as fish ways. Particular attention is paid to considerations concerning the environment, hydrology, geology and materials etc. in the planning and design of hydraulic projects. It also considers the type selection, profile configuration, stress/stability calibration and engineering countermeasures, flood releasing arrangements and scouring protection, operation and maintenance etc. for a variety of specific hydraulic structures. The book is primarily intended for engineers, undergraduate and graduate students in the field of civil and hydraulic engineering who are faced with the challenges of extending our understanding of hydraulic structures ranging from traditional to groundbreaking, as well as designing, constructing and managing safe, durable hydraulic structures that are economical ...

  16. Physiology-based modelling approaches to characterize fish habitat suitability: Their usefulness and limitations

    Science.gov (United States)

    Teal, Lorna R.; Marras, Stefano; Peck, Myron A.; Domenici, Paolo

    2018-02-01

    Models are useful tools for predicting the impact of global change on species distribution and abundance. As ectotherms, fish are being challenged to adapt or track changes in their environment, either in time through a phenological shift or in space by a biogeographic shift. Past modelling efforts have largely been based on correlative Species Distribution Models, which use known occurrences of species across landscapes of interest to define sets of conditions under which species are likely to maintain populations. The practical advantages of this correlative approach are its simplicity and the flexibility in terms of data requirements. However, effective conservation management requires models that make projections beyond the range of available data. One way to deal with such an extrapolation is to use a mechanistic approach based on physiological processes underlying climate change effects on organisms. Here we illustrate two approaches for developing physiology-based models to characterize fish habitat suitability. (i) Aerobic Scope Models (ASM) are based on the relationship between environmental factors and aerobic scope (defined as the difference between maximum and standard (basal) metabolism). This approach is based on experimental data collected by using a number of treatments that allow a function to be derived to predict aerobic metabolic scope from the stressor/environmental factor(s). This function is then integrated with environmental (oceanographic) data of current and future scenarios. For any given species, this approach allows habitat suitability maps to be generated at various spatiotemporal scales. The strength of the ASM approach relies on the estimate of relative performance when comparing, for example, different locations or different species. (ii) Dynamic Energy Budget (DEB) models are based on first principles including the idea that metabolism is organised in the same way within all animals. The (standard) DEB model aims to describe

  17. Confederated Tribes Umatilla Indian Reservation (CTUIR) Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project : Annual Report Fiscal Year 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Hoverson, Eric D.; Amonette, Alexandra

    2008-12-02

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2007 Fiscal Year (FY) reporting period (February 1, 2007-January 31, 2008) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight fisheries habitat enhancement projects were implemented on Meacham Creek, Camp Creek, Greasewood Creek, Birch Creek, West Birch Creek, and the Umatilla River. Specific restoration actions included: (1) rectifying five fish passage barriers on four creeks, (2) planting 1,275 saplings and seeding 130 pounds of native grasses, (3) constructing two miles of riparian fencing for livestock exclusion, (4) coordinating activities related to the installation of two off-channel, solar-powered watering areas for livestock, and (5) developing eight water gap access sites to reduce impacts from livestock. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at all existing easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Monitoring plans will continue throughout the life of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a variety

  18. Benthic habitat and fish assemblage structure from shallow to mesophotic depths in a storm-impacted marine protected area

    Science.gov (United States)

    Abesamis, Rene A.; Langlois, Tim; Birt, Matthew; Thillainath, Emma; Bucol, Abner A.; Arceo, Hazel O.; Russ, Garry R.

    2018-03-01

    Baseline ecological studies of mesophotic coral ecosystems are lacking in the equatorial Indo-West Pacific region where coral reefs are highly threatened by anthropogenic and climate-induced disturbances. Here, we used baited remote underwater video to describe benthic habitat and fish assemblage structure from 10 to 80 m depth at Apo Island, a well-managed marine protected area in the Philippines. We conducted surveys 2 yr after two storms (in 2011 and 2012) caused severe damage to shallow coral communities within the no-take marine reserve (NTMR) of Apo Island, which led to declines in fish populations that had built up over three decades. We found that hard coral cover was restricted to the storm-impacted NTMR and a nearby fished area not impacted by storms. Benthic cover at mesophotic depths (> 30 m) was dominated by sand/rubble and rock (dead coral) with low cover of soft corals, sponges and macroalgae. Storm damage appeared to have reached the deepest limit of the fringing reef (40 m) and reduced variability in benthic structure within the NTMR. Species richness and/or abundance of most trophic groups of fish declined with increasing depth regardless of storm damage. There were differences in taxonomic and trophic structure and degree of targeting by fisheries between shallow and mesophotic fish assemblages. Threatened shark species and a fish species previously unreported in the Philippines were recorded at mesophotic depths. Our findings provide a first glimpse of the benthic and fish assemblage structure of Philippine coral reef ecosystems across a wide depth gradient. This work also underscores how a combination of limited coral reef development at mesophotic depths close to shallow reefs and severe habitat loss caused by storms would result in minimal depth refuge for reef fish populations.

  19. Influence of Green Tides in Coastal Nursery Grounds on the Habitat Selection and Individual Performance of Juvenile Fish.

    Science.gov (United States)

    Le Luherne, Emilie; Le Pape, Olivier; Murillo, Laurence; Randon, Marine; Lebot, Clément; Réveillac, Elodie

    2017-01-01

    Coastal ecosystems, which provide numerous essential ecological functions for fish, are threatened by the proliferation of green macroalgae that significantly modify habitat conditions in intertidal areas. Understanding the influence of green tides on the nursery function of these ecosystems is essential to determine their potential effects on fish recruitment success. In this study, the influence of green tides on juvenile fish was examined in an intertidal sandy beach area, the Bay of Saint-Brieuc (Northwestern France), during two annual cycles of green tides with varying levels of intensity. The responses of three nursery-dependent fish species, the pelagic Sprattus sprattus (L.), the demersal Dicentrarchus labrax (L.) and the benthic Pleuronectes platessa L., were analysed to determine the effects of green tides according to species-specific habitat niche and behaviour. The responses to this perturbation were investigated based on habitat selection and a comparison of individual performance between a control and an impacted site. Several indices on different integrative scales were examined to evaluate these responses (antioxidant defence capacity, muscle total lipid, morphometric condition and growth). Based on these analyses, green tides affect juvenile fish differently according to macroalgal density and species-specific tolerance, which is linked to their capacity to move and to their distribution in the water column. A decreasing gradient of sensitivity was observed from benthic to demersal and pelagic fish species. At low densities of green macroalgae, the three species stayed at the impacted site and the growth of plaice was reduced. At medium macroalgal densities, plaice disappeared from the impacted site and the growth of sea bass and the muscle total lipid content of sprat were reduced. Finally, when high macroalgal densities were reached, none of the studied species were captured at the impacted site. Hence, sites affected by green tides are less

  20. Comparing relative abundance, lengths, and habitat of temperate reef fishes using simultaneous underwater visual census, video, and trap sampling

    KAUST Repository

    Bacheler, NM

    2017-04-28

    Unbiased counts of individuals or species are often impossible given the prevalence of cryptic or mobile species. We used 77 simultaneous multi-gear deployments to make inferences about relative abundance, diversity, length composition, and habitat of the reef fish community along the southeastern US Atlantic coast. In total, 117 taxa were observed by underwater visual census (UVC), stationary video, and chevron fish traps, with more taxa being observed by UVC (100) than video (82) or traps (20). Frequency of occurrence of focal species was similar among all sampling approaches for tomtate Haemulon aurolineatum and black sea bass Centropristis striata, higher for UVC and video compared to traps for red snapper Lutjanus campechanus, vermilion snapper Rhomboplites aurorubens, and gray triggerfish Balistes capriscus, and higher for UVC compared to video or traps for gray snapper L. griseus and lionfish Pterois spp. For 6 of 7 focal species, correlations of relative abundance among gears were strongest between UVC and video, but there was substantial variability among species. The number of recorded species between UVC and video was correlated (ρ = 0.59), but relationships between traps and the other 2 methods were weaker. Lengths of fish visually estimated by UVC were similar to lengths of fish caught in traps, as were habitat characterizations from UVC and video. No gear provided a complete census for any species in our study, suggesting that analytical methods accounting for imperfect detection are necessary to make unbiased inferences about fish abundance.

  1. A hierarchical spatial framework and database for the national river fish habitat condition assessment

    Science.gov (United States)

    Wang, L.; Infante, D.; Esselman, P.; Cooper, A.; Wu, D.; Taylor, W.; Beard, D.; Whelan, G.; Ostroff, A.

    2011-01-01

    Fisheries management programs, such as the National Fish Habitat Action Plan (NFHAP), urgently need a nationwide spatial framework and database for health assessment and policy development to protect and improve riverine systems. To meet this need, we developed a spatial framework and database using National Hydrography Dataset Plus (I-.100,000-scale); http://www.horizon-systems.com/nhdplus). This framework uses interconfluence river reaches and their local and network catchments as fundamental spatial river units and a series of ecological and political spatial descriptors as hierarchy structures to allow users to extract or analyze information at spatial scales that they define. This database consists of variables describing channel characteristics, network position/connectivity, climate, elevation, gradient, and size. It contains a series of catchment-natural and human-induced factors that are known to influence river characteristics. Our framework and database assembles all river reaches and their descriptors in one place for the first time for the conterminous United States. This framework and database provides users with the capability of adding data, conducting analyses, developing management scenarios and regulation, and tracking management progresses at a variety of spatial scales. This database provides the essential data needs for achieving the objectives of NFHAP and other management programs. The downloadable beta version database is available at http://ec2-184-73-40-15.compute-1.amazonaws.com/nfhap/main/.

  2. Plasticity in habitat use determines metabolic response of fish to global warming in stratified lakes.

    Science.gov (United States)

    Busch, Susan; Kirillin, Georgiy; Mehner, Thomas

    2012-09-01

    We used a coupled lake physics and bioenergetics-based foraging model to evaluate how the plasticity in habitat use modifies the seasonal metabolic response of two sympatric cold-water fishes (vendace and Fontane cisco, Coregonus spp.) under a global warming scenario for the year 2100. In different simulations, the vertically migrating species performed either a plastic strategy (behavioral thermoregulation) by shifting their population depth at night to maintain the temperatures occupied at current in-situ observations, or a fixed strategy (no thermoregulation) by keeping their occupied depths at night but facing modified temperatures. The lake physics model predicted higher temperatures above 20 m and lower temperatures below 20 m in response to warming. Using temperature-zooplankton relationships, the density of zooplankton prey was predicted to increase at the surface, but to decrease in hypolimnetic waters. Simulating the fixed strategy, growth was enhanced only for the deeper-living cisco due to the shift in thermal regime at about 20 m. In contrast, simulating the plastic strategy, individual growth of cisco and young vendace was predicted to increase compared to growth currently observed in the lake. Only growth rates of older vendace are reduced under future global warming scenarios irrespective of the behavioral strategy. However, performing behavioral thermoregulation would drive both species into the same depth layers, and hence will erode vertical microhabitat segregation and intensify inter-specific competition between the coexisting coregonids.

  3. Natural Propagation and Habitat Improvement, Volume 1, Oregon, Supplement B, White River Falls Fish Passage, 1983 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1984-04-01

    White River Falls are located in north central Oregon approximately 25 miles south of the City of The Dalles. The project site is characterized by a series of three natural waterfalls with a combined fall of 180 ft. In the watershed above the falls are some 120 miles of mainstem habitat and an undetermined amount of tributary stream habitat that could be opened to anadromous fish, if passage is provided around the falls. The purpose of this project is to determine feasibility of passage, select a passage scheme, and design and construct passage facilities. This report provides information on possible facilities that would pass adult anadromous fish over the White River Falls. 25 references, 29 figures, 12 tables. (ACR)

  4. Fish distribution and abundance in mediterranean streams:the role of habitat quality, spatial context, and movement patterns

    OpenAIRE

    Pires, Daniel Filipe Carvalho Miranda, 1977-

    2012-01-01

    Tese de doutoramento, Biologia (Ecologia), Universidade de Lisboa, Faculdade de Ciências, 2012 Patterns of fish distribution and abundance in streams are currently thought of as a product of multi-scale factors. Local habitats, spatial relationships and movement are increasingly emerging as drivers of population and assemblage dynamics, though the way in which these factors may interplay remains poorly addressed, particularly in temporary streams. This dissertation addressed the role of mu...

  5. Local and regional effects of reopening a tidal inlet on estuarine water quality, seagrass habitat, and fish assemblages

    Science.gov (United States)

    Milbrandt, Eric C.; Bartleson, Richard D.; Coen, Loren D.; Rybak, Olexandr; Thompson, Mark A.; DeAngelo, Jacquelyn A.; Stevens, Philip W.

    2012-06-01

    Blind Pass is an inlet that separates Sanibel and Captiva Islands in southwest Florida but has historically closed and opened by both anthropogenic and natural processes. In July 2010, a dredging project to open the small inlet between the two barrier islands was completed. The objective of this study was to use and supplement ongoing estuary-monitoring programs to examine the responses of water quality, seagrass habitat metrics, and fish assemblages both in the immediate vicinity of the inlet and at broader scales (up to 40 km2). As far as we are aware, there are no previous studies with this intensity of sampling, both before and after an inlet opening. Significant increases in salinity and turbidity were observed inside Blind Pass, with significant decreases in CDOM and chlorophyll a, however, the effects were not far-reaching and limited to less than 1.7 km from the inlet within Pine Island Sound. Seagrass habitat metrics were expected to respond rapidly after the inlet was opened given the reduced light attenuation. However, there were no changes in shoot densities, species composition, and epiphytic algae within the approximately one-year duration of the study. The reopening of the pass did not substantially change fish assemblage structure, except for those from deeper habitats. Although immediate increases in the abundances of estuarine-dependent species were predicted in shallow habitats post opening, this did not occur. In conclusion, the effects of reopening a relatively small ocean inlet on water quality were apparent in the immediate vicinity of the inlet (within 1.7 km), but far-reaching effects on water quality, seagrass metrics, and fish assemblages were not immediately apparent in this well-flushed estuary. If subtle changes in tidal exchange and circulation affect productivity of seagrasses or its fish assemblages at broad scales, it may take several years to reach a steady state.

  6. Habitat use of the European mudminnow Umbra krameri and association with other fish species in a disconnected Danube side arm.

    Science.gov (United States)

    Sehr, M; Keckeis, H

    2017-10-01

    Fish assemblages along the longitudinal course of an old, disconnected and modified side arm of the Danube floodplain downstream of Vienna, Austria, as well as habitat structure, hydro-morphological and hydro-chemical factors, were investigated in order to analyse the key environmental determinants of the European mudminnow Umbra krameri. Generally, U. krameri was the most abundant species in the system. It occurred in disconnected ditches, ponds and pools with dense reed belts and comparatively low nutrient content, indicating its natural association with marsh habitats. At infrequently disturbed sites it was associated with a small group of stagnophilious and highly specialized species with adaptations to strong oxygen fluctuations. At frequently flooded sites, the species was absent or occurred in low abundances, indicating its adaptation to water bodies in older successional stages and its low competitive power in permanently connected floodplain habitats. © 2017 The Fisheries Society of the British Isles.

  7. THE POSSIBILITIES OF USING HEC-RAS SOFTWARE FOR MODELLING HYDRAULIC CONDITIONS OF WATER FLOW IN THE FISH PASS EXAMPLED BY THE POMIŁOWO BARRAGE ON THE WIEPRZA RIVER

    Directory of Open Access Journals (Sweden)

    Mateusz Hammerling

    2016-04-01

    Full Text Available The aim of the article is to analyse hydraulic conditions of water flow in a fish pass. The test facility is part of the Pomiłowo barrage in the commune of Sławno, Poland. The authors applied HEC-RAS software for modelling hydraulic parameters of the water flow in the fish pass. The data from field measurements was implemented in the software and calculations of changes in the water table in the fish pass were made. The results confirmed the usefulness of HEC-RAS software for estimating hydraulic parameters of water flow in a fish pass. HEC-RAS software enables to take into account the parameters responsible for the phenomena accompanying the flow through a fish pass. Selecting mathematical model parameters (coefficients should be preceded by a multidimensional analysis of the facility. More precise information on hydraulics, hydrology and biology of the test fish pass are also required.

  8. Effects of trap fishing on coral reefs and associated habitats in the Florida Keys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We conducted surveys of trap distributions, targeted habitats, trap damage to coral reefs and associated habitats, and spatial/temporal distribution of catches....

  9. Effects of trap fishing on coral reefs and associated habitats in the US Caribbean

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are conducting surveys of trap distributions, targeted habitats, trap damage to coral reefs and associated habitats, and spatial/temporal distribution of catches....

  10. Habitat and Recreational Fishing Opportunity in Tampa Bay: Linking Ecological and Ecosystem Services to Human Beneficiaries

    Science.gov (United States)

    Estimating value of estuarine habitat to human beneficiaries requires that we understand how habitat alteration impacts function through both production and delivery of ecosystem goods and services (EGS). Here we expand on the habitat valuation technique of Bell (1997) with an es...

  11. The use of IFIM for evaluating effects of a flow alternative on fish habitat in a river system with competing water demands

    International Nuclear Information System (INIS)

    Miller, W.J.; Chadwick, J.W.; Canton, S.P.; Conklin, D.J. Jr.; Chrisp, E.Y.

    1991-01-01

    This paper reports on the Instream Flow Incremental Methodology (IFIM) which was used to evaluate instream fish habitat in the Platte River in central Nebraska. The IFIM analysis presented herein incorporates water temperature modeling and water quality, fish species composition and distribution, physical habitat data and 43 years of flow records. The Platte River system has competing water demands from hydropower, agricultural irrigation, municipal uses, recreation and most recently from recommended instream flows for fish and wildlife resources. IFIM was the tool used to develop the data base required for a comprehensive instream flow analysis of the system. When compared to the baseline flow regime, and alternative flow regime significantly increased modelled fish habitat area during critical periods of the year. The time series results demonstrated that the flow alternative would be beneficial to the existing fish resources, while still providing water for power production and irrigation

  12. Fish assemblages associated with natural and anthropogenically-modified habitats in a marine embayment: comparison of baited videos and opera-house traps.

    Directory of Open Access Journals (Sweden)

    Corey B Wakefield

    Full Text Available Marine embayments and estuaries play an important role in the ecology and life history of many fish species. Cockburn Sound is one of a relative paucity of marine embayments on the west coast of Australia. Its sheltered waters and close proximity to a capital city have resulted in anthropogenic intrusion and extensive seascape modification. This study aimed to compare the sampling efficiencies of baited videos and fish traps in determining the relative abundance and diversity of temperate demersal fish species associated with naturally occurring (seagrass, limestone outcrops and soft sediment and modified (rockwall and dredge channel habitats in Cockburn Sound. Baited videos sampled a greater range of species in higher total and mean abundances than fish traps. This larger amount of data collected by baited videos allowed for greater discrimination of fish assemblages between habitats. The markedly higher diversity and abundances of fish associated with seagrass and limestone outcrops, and the fact that these habitats are very limited within Cockburn Sound, suggests they play an important role in the fish ecology of this embayment. Fish assemblages associated with modified habitats comprised a subset of species in lower abundances when compared to natural habitats with similar physical characteristics. This suggests modified habitats may not have provided the necessary resource requirements (e.g. shelter and/or diet for some species, resulting in alterations to the natural trophic structure and interspecific interactions. Baited videos provided a more efficient and non-extractive method for comparing fish assemblages and habitat associations of smaller bodied species and juveniles in a turbid environment.

  13. Monitoring habitat restoration projects: U.S. Fish and Wildlife Service Pacific Region Partners for Fish and Wildlife Program and Coastal Program Protocol

    Science.gov (United States)

    Woodward, Andrea; Hollar, Kathy

    2011-01-01

    The U.S. Fish and Wildlife Service's (FWS) Pacific Region (Region 1) includes more than 158 million acres (almost 247,000 square miles) of land base in Idaho, Oregon, Washington, Hawai`i, the Commonwealth of the Northern Mariana Islands, American Samoa, Guam, the Republic of Palau, the Federated States of Micronesia, and the Republic of the Marshall Islands. Region 1 is ecologically diverse with landscapes that range from coral reefs, broadleaf tropical forests, and tropical savannahs in the Pacific Islands, to glacial streams and lakes, lush old-growth rainforests, inland fjords, and coastal shoreline in the Pacific Northwest, to the forested mountains, shrub-steppe desert, and native grasslands in the Inland Northwest. Similarly, the people of the different landscapes perceive, value, and manage their natural resources in ways unique to their respective regions and cultures. The Partners for Fish and Wildlife Program (Partners Program) and Coastal Program work with a variety of partners in Region 1 including individual landowners, watershed councils, land trusts, Soil and Water Conservation Districts, non-governmental organizations, Tribal governments, Native Hawaiian organizations, and local, State, and Federal agencies. The Partners Program is the FWS's vanguard for working with private landowners to voluntarily restore and conserve fish and wildlife habitat. Using non-regulatory incentives, the Partners Program engages willing partners to conserve and protect valuable fish and wildlife habitat on their property and in their communities. This is accomplished by providing the funding support and technical and planning tools needed to make on-the-ground conservation affordable, feasible, and effective. The primary goals of the Pacific Region Partners Program are to: Promote citizen and community-based stewardship efforts for fish and wildlife conservation Contribute to the recovery of at-risk species, Protect the environmental integrity of the National Wildlife

  14. The relationship between habitat complexity and nursery provision for an estuarine-dependent fish species in a permanently open South African Estuary

    Science.gov (United States)

    Leslie, Timothy; James, Nicola C.; Potts, Warren M.; Rajkaran, Anusha

    2017-11-01

    Estuarine-dependent marine fish species rely on shallow, sheltered and food rich habitats for protection from predators, growth and ultimately recruitment to adult populations. Hence, habitats within estuaries function as critical nursery areas for an abundance of fish species. However, these habitats vary in the degree of nursery function they provide and few studies have quantitatively assessed the relative nursery value of different habitat types within estuaries, particularly in the context of habitat complexity. This study aimed to assess the nursery value of the dominant vegetated habitats, namely the submergent Zostera capensis (Setch.) (seagrass) beds and emergent Spartina maritima (Curtis) Fernald (salt marsh) beds in the Bushmans Estuary, South Africa. Biomass and stem density were sampled seasonally in order to gain insight into the vegetation dynamics of seagrass and salt marsh beds. Aerial cover, canopy height and underwater camera imagery were used to develop multiple complexity indices for prioritizing habitat complexity. The relatively consistent results of the dimensionless indices (interstitial space indices and fractal geometry) suggest that Z. capensis exhibits an overall greater degree of complexity than S. maritima, and hence it can be expected that fish abundance is likely to be higher in Z. capensis beds than in S. maritima habitats. Underwater video cameras were deployed in seagrass, salt marsh and sand flat habitats to assess the relative abundance and behaviour of the estuarine-dependent sparid Rhabosargus holubi (Steindachner 1881) in different habitats. The relative abundance of R. holubi was significantly higher in Z. capensis seagrass than S. maritima salt marsh and sand flats, whilst the behaviour of R. holubi indicated a high degree of habitat use in structured habitats (both Z. capensis and S. martima) and a low degree of habitat use in unstructured sand flat habitats.

  15. A Hydropower Biological Evaluation Toolset (HBET) for Characterizing Hydraulic Conditions and Impacts of Hydro-Structures on Fish

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Hongfei; Deng, Zhiqun; Martinez, Jayson; Fu, Tao; Duncan, Joanne; Johnson, Gary; Lu, Jun; Skalski, John; Townsend, Richard; Tan, Li

    2018-04-01

    Currently, approximately 16% of the world’s electricity and over 80% of the world’s renewable electricity is generated from hydropower resources, and there is potential for development of a significant amount of new hydropower capacity. However, in practice, realizing all the potential hydropower resource is limited by various factors, including environmental effects and related mitigation requirements. That is why hydropower regulatory requirements frequently call for targets to be met regarding fish injury and mortality rates. Hydropower Biological Evaluation Toolset (HBET), an integrated suite of software tools, is designed to characterize hydraulic conditions of hydropower structures and provide quantitative estimates of fish injury and mortality rates due to various physical stressors including strike, pressure, and shear. HBET enables users to design new studies, analyze data, perform statistical analyses, and evaluate biological responses. In this paper, we discuss the features of the HBET software and describe a case study that illustrates its functionalities. HBET can be used by turbine manufacturers, hydropower operators, and regulators to design and operate hydropower systems that minimize ecological impacts in a cost-effective manner.

  16. Attractiveness of food and avoidance from contamination as conflicting stimuli to habitat selection by fish.

    Science.gov (United States)

    Araújo, Cristiano V M; Rodríguez, Elizabeth N V; Salvatierra, David; Cedeño-Macias, Luis A; Vera-Vera, Victoria C; Moreira-Santos, Matilde; Ribeiro, Rui

    2016-11-01

    Habitat selection by fish is the outcome of a choice between different stimuli. Typically, the presence of food tends to attract organisms, while contamination triggers an avoidance response to prevent toxic effects. Given that both food and contaminants are not homogeneously distributed in the environment and that food can be available in contaminated zones, a key question has been put forward in the present study: does a higher availability of food in contaminated areas interfere in the avoidance response to contaminants regardless of the contamination level? Tilapia fry (Oreochromis sp.; 2.5-3.0 cm and 0.5-0.8 g) were exposed to two different effluent samples, diluted along a free-choice, non-forced exposure system simulating a contamination gradient. Initially, avoidance to the effluents was checked during a one hour exposure. Afterwards, food was added to the system so that the availability of food increased with the increase in the level of contamination, and the avoidance response to contamination was checked during another hour. Results clearly showed a concentration-dependent avoidance response for both effluents during the first hour (i.e., with no food). However, in presence of the food, the avoidance pattern was altered: organisms were propelled to intermittently move towards contaminated areas where food availability was higher. The incursions were taken regardless of the potential risk linked to the toxic effects. In conclusion, even when the risk of toxicity was imminent, tilapia fry were more intensively stimulated by the attractiveness of the food than by repulsion to the contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Fuzzy modelling of Atlantic salmon physical habitat

    Science.gov (United States)

    St-Hilaire, André; Mocq, Julien; Cunjak, Richard

    2015-04-01

    Fish habitat models typically attempt to quantify the amount of available river habitat for a given fish species for various flow and hydraulic conditions. To achieve this, information on the preferred range of values of key physical habitat variables (e.g. water level, velocity, substrate diameter) for the targeted fishs pecies need to be modelled. In this context, we developed several habitat suitability indices sets for three Atlantic salmon life stages (young-of-the-year (YOY), parr, spawning adults) with the help of fuzzy logic modeling. Using the knowledge of twenty-seven experts, from both sides of the Atlantic Ocean, we defined fuzzy sets of four variables (depth, substrate size, velocity and Habitat Suitability Index, or HSI) and associated fuzzy rules. When applied to the Romaine River (Canada), median curves of standardized Weighted Usable Area (WUA) were calculated and a confidence interval was obtained by bootstrap resampling. Despite the large range of WUA covered by the expert WUA curves, confidence intervals were relatively narrow: an average width of 0.095 (on a scale of 0 to 1) for spawning habitat, 0.155 for parr rearing habitat and 0.160 for YOY rearing habitat. When considering an environmental flow value corresponding to 90% of the maximum reached by WUA curve, results seem acceptable for the Romaine River. Generally, this proposed fuzzy logic method seems suitable to model habitat availability for the three life stages, while also providing an estimate of uncertainty in salmon preferences.

  18. Does Habitat Restoration Increase Coexistence of Native Stream Fishes with Introduced Brown Trout: A Case Study on the Middle Provo River, Utah, USA

    OpenAIRE

    Mark C. Belk; Eric J. Billman; Craig Ellsworth; Brock R. McMillan

    2016-01-01

    Restoration of altered or degraded habitats is often a key component in the conservation plan of native aquatic species, but introduced species may influence the response of the native community to restoration. Recent habitat restoration of the middle section of the Provo River in central Utah, USA, provided an opportunity to evaluate the effect of habitat restoration on the native fish community in a system with an introduced, dominant predator—brown trout (Salmo trutta). To determine the ch...

  19. The importance of benchmarking habitat structure and composition for understanding the extent of fishing impacts in soft sediment ecosystems

    Science.gov (United States)

    Handley, Sean J.; Willis, Trevor J.; Cole, Russell G.; Bradley, Anna; Cairney, Daniel J.; Brown, Stephen N.; Carter, Megan E.

    2014-02-01

    Trawling and dredge fisheries remove vulnerable fauna, homogenise sediments and assemblages, and break down biogenic habitats, but the full extent of these effects can be difficult to quantify in the absence of adequate control sites. Our study utilised rare control sites containing biogenic habitat, the Separation Point exclusion zone, formally protected for 28 years, as the basis for assessing the degree of change experienced by adjacent areas subject to benthic fishing. Sidescan sonar surveys verified that intensive trawling and dredging occurred in areas adjacent to, but not inside, the exclusion area. We compared sediment composition, biogenic cover, macrofaunal assemblages, biomass, and productivity of the benthos, inside and outside the exclusion zone. Disturbed sites were dominated by fine mud, with little or no shell-gravel, reduced number of species, and loss of large bodied animals, with concomitant reductions in biomass and productivity. At protected sites, large, rarer molluscs were more abundant and contributed the most to size-based estimates of productivity and biomass. Functional changes in fished assemblages were consistent with previously reported relative increases in scavengers, predators and deposit feeders at the expense of filter feeders and a grazer. We propose that the colonisation of biogenic species in protected sites was contingent on the presence of shell-gravel atop these soft sediments. The process of sediment homogenisation by bottom fishing and elimination of shell-gravels from surficial sediments appeared to have occurred over decades - a ‘shifting baseline’. Therefore, benchmarking historical sediment structure at control site like the Separation Point exclusion zone is necessary to determine the full extent of physical habitat change wrought by contact gears on sheltered soft sediment habitats to better underpin appropriate conservation, restoration or fisheries management goals.

  20. User's guide to FBASE: Relational database software for managing R1/R4 (Northern/Intermountain Regions) fish habitat inventory data

    Science.gov (United States)

    Sherry P. Wollrab

    1999-01-01

    FBASE is a microcomputer relational database package that handles data collected using the R1/R4 Fish and Fish Habitat Standard Inventory Procedures (Overton and others 1997). FBASE contains standard data entry screens, data validations for quality control, data maintenance features, and summary report options. This program also prepares data for importation into an...

  1. Habitat Requirements and Foraging Ecology of the Madagascar Fish-Eagle

    OpenAIRE

    Berkelman, James

    1997-01-01

    With a population estimate of 99 pairs, the Madagascar fish-eagle (Haliaeetus vociferoides) is one of the rarest birds of prey in the world. I investigated the ecological requirements of the Madagascar fish-eagle in 1994 and 1995 to help determine management action to prevent its extinction. I investigated fish-eagle foraging ecology in 1996 to determine its prey preference and whether fish abundance and availabi...

  2. A preliminary survey of the cichlid fishes of rocky habitats in Lake ...

    African Journals Online (AJOL)

    given on some of the other rocky shore fishes particularly in the genus Cyrtocara. ... biology, numerical abundance and distribution. Indeed, ... some species have very limited distributions. Exporters of ..... Fishelson (1974) to describe the diversity of fishes at par- ..... zooplankton, phytoplankton, benthic Invertebrata, fish fry.

  3. Investigating phenology of larval fishes in St. Louis River estuary shallow water habitats

    Science.gov (United States)

    As part of the development of an early detection monitoring strategy for non-native fishes, larval fish surveys have been conducted since 2012 in the St. Louis River estuary. Survey data demonstrates there is considerable variability in fish abundance and species assemblages acro...

  4. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems

    Science.gov (United States)

    Cohen, Andrew S.; Gergurich, Elizabeth L.; Kraemer, Benjamin M.; McGlue, Michael M.; McIntyre, Peter B.; Russell, James M.; Simmons, Jack D.; Swarzenski, Peter W.

    2016-01-01

    Warming climates are rapidly transforming lake ecosystems worldwide, but the breadth of changes in tropical lakes is poorly documented. Sustainable management of freshwater fisheries and biodiversity requires accounting for historical and ongoing stressors such as climate change and harvest intensity. This is problematic in tropical Africa, where records of ecosystem change are limited and local populations rely heavily on lakes for nutrition. Here, using a ∼1,500-y paleoecological record, we show that declines in fishery species and endemic molluscs began well before commercial fishing in Lake Tanganyika, Africa’s deepest and oldest lake. Paleoclimate and instrumental records demonstrate sustained warming in this lake during the last ∼150 y, which affects biota by strengthening and shallowing stratification of the water column. Reductions in lake mixing have depressed algal production and shrunk the oxygenated benthic habitat by 38% in our study areas, yielding fish and mollusc declines. Late-20th century fish fossil abundances at two of three sites were lower than at any other time in the last millennium and fell in concert with reduced diatom abundance and warming water. A negative correlation between lake temperature and fish and mollusc fossils over the last ∼500 y indicates that climate warming and intensifying stratification have almost certainly reduced potential fishery production, helping to explain ongoing declines in fish catches. Long-term declines of both benthic and pelagic species underscore the urgency of strategic efforts to sustain Lake Tanganyika’s extraordinary biodiversity and ecosystem services.

  5. Shining the light on the loss of rheophilic fish habitat in lowland rivers as a forgotten consequence of barriers and its implications for management

    DEFF Research Database (Denmark)

    Birnie-Gauvin, Kim; Aarestrup, Kim; Riis, Torsten M. O.

    2017-01-01

    modified by agriculture and other human activities for centuries, leaving management practitioners wondering how much change is acceptable to maintain sustainable fish populations and fisheries practices. 4. With examples from Denmark, this paper attempts to conceptualize the loss in habitat as a result...... of barriers in lowland streams and rivers, and the repercussions that such alterations may have on rheophilic fish populations. Furthermore, the need for management to address habitat loss and its related consequences concurrently with the improvement of fish passage is emphasized...

  6. Influences of forest and rangeland management on salmonid fishes and their habitats

    National Research Council Canada - National Science Library

    Meehan, William R

    1991-01-01

    Contents : Stream ecosystems - Salmonid distributions and life histories - Habitat requirements of salmonids in streams - Natural processes - Timber harvesting, silvicultrue and watershed processes - Forest...

  7. Extent of mangrove nursery habitats determines the geographic distribution of a coral reef fish in a South-Pacific archipelago.

    Directory of Open Access Journals (Sweden)

    Christelle Paillon

    Full Text Available Understanding the drivers of species' geographic distribution has fundamental implications for the management of biodiversity. For coral reef fishes, mangroves have long been recognized as important nursery habitats sustaining biodiversity in the Western Atlantic but there is still debate about their role in the Indo-Pacific. Here, we combined LA-ICP-MS otolith microchemistry, underwater visual censuses (UVC and mangrove cartography to estimate the importance of mangroves for the Indo-Pacific coral reef fish Lutjanus fulviflamma in the archipelago of New Caledonia. Otolith elemental compositions allowed high discrimination of mangroves and reefs with 83.8% and 98.7% correct classification, respectively. Reefs were characterized by higher concentrations of Rb and Sr and mangroves by higher concentrations of Ba, Cr, Mn and Sn. All adult L. fulviflamma collected on reefs presented a mangrove signature during their juvenile stage with 85% inhabiting mangrove for their entire juvenile life (about 1 year. The analysis of 2942 UVC revealed that the species was absent from isolated islands of the New Caledonian archipelago where mangroves were absent. Furthermore, strong positive correlations existed between the abundance of L. fulviflamma and the area of mangrove (r = 0.84 for occurrence, 0.93 for density and 0.89 for biomass. These results indicate that mangrove forest is an obligatory juvenile habitat for L. fulviflamma in New Caledonia and emphasize the potential importance of mangroves for Indo-Pacific coral reef fishes.

  8. Effects of habitat and substrate complexity on shallow sublittoral fish assemblages in the Cyclades Archipelago, North-eastern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    S. GIAKOUMI

    2013-02-01

    Full Text Available This is the first study to explore fish community structure and its relations to habitat and topographic complexity in the shallow coastal waters of the Cyclades Archipelago, North-eastern Mediterranean Sea. In situ visual surveys were carried out at 233 sampling sites in 26 islands of the Cyclades Archipelago. Fish community parameters and biomass were estimated across seven substrate types: sand, seagrass, vertical walls, boulders, horizontal/subhorizontal continuous rock, rocky substrate with patches of sand, and rocky substrate with patches of sand and Posidonia oceanica. Topographic complexity and percentage of algal cover were estimated on hard substrate. Substrate type was found to be a determining factor affecting the structure and composition of fish assemblages. Species number, abundance and biomass were significantly lower in sandy areas and always higher on hard substrates, with seagrass habitats presenting intermediate values. Topographic complexity in rocky bottoms did not seem to affect species richness, density or biomass. This study provides a baseline for future evaluation of changes produced by potential management actions such as the creation of marine protected areas in the study region.

  9. The Camera-Based Assessment Survey System (C-BASS): A towed camera platform for reef fish abundance surveys and benthic habitat characterization in the Gulf of Mexico

    Science.gov (United States)

    Lembke, Chad; Grasty, Sarah; Silverman, Alex; Broadbent, Heather; Butcher, Steven; Murawski, Steven

    2017-12-01

    An ongoing challenge for fisheries management is to provide cost-effective and timely estimates of habitat stratified fish densities. Traditional approaches use modified commercial fishing gear (such as trawls and baited hooks) that have biases in species selectivity and may also be inappropriate for deployment in some habitat types. Underwater visual and optical approaches offer the promise of more precise and less biased assessments of relative fish abundance, as well as direct estimates of absolute fish abundance. A number of video-based approaches have been developed and the technology for data acquisition, calibration, and synthesis has been developing rapidly. Beginning in 2012, our group of engineers and researchers at the University of South Florida has been working towards the goal of completing large scale, video-based surveys in the eastern Gulf of Mexico. This paper discusses design considerations and development of a towed camera system for collection of video-based data on commercially and recreationally important reef fishes and benthic habitat on the West Florida Shelf. Factors considered during development included potential habitat types to be assessed, sea-floor bathymetry, vessel support requirements, personnel requirements, and cost-effectiveness of system components. This regional-specific effort has resulted in a towed platform called the Camera-Based Assessment Survey System, or C-BASS, which has proven capable of surveying tens of kilometers of video transects per day and has the ability to cost-effective population estimates of reef fishes and coincident benthic habitat classification.

  10. Hungry Horse Dam Fisheries Mitigation : Fish Passage and Habitat Improvement in the Upper Flathead River Basin, 1991-1996 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, W.Ladd; Deleray, Mark; Marotz, Brian L.

    1997-08-01

    In the past 50 years, dramatic changes have occurred in the Flathead Lake and River system. Degradation of fishery resources has been evident, in part due to deterioration of aquatic habitat and introduction of non-endemic fish and invertebrate species. Habitat loss has been attributed to many factors including the construction and operation of Hungry Horse Dam, unsound land use practices, urban development, and other anthropogenic and natural disturbances. Fish migration has also been limited by barriers such as dams and impassible culverts. Cumulatively, these factors have contributed to declines in the distribution and abundance of native fish populations. Recovery of fish populations requires that a watershed approach be developed that incorporates long-term aquatic habitat needs and promotes sound land use practices and cooperation among natural resource management agencies. In this document, the authors (1) describe completed and ongoing habitat improvement and fish passage activities under the Hungry Horse Fisheries Mitigation Program, (2) describe recently identified projects that are in the planning stage, and (3) develop a framework for identifying prioritizing, implementing, and evaluating future fish habitat improvement and passage projects.

  11. Experimental evaluation of imprinting and the role innate preference plays in habitat selection in a coral reef fish.

    Science.gov (United States)

    Dixson, Danielle L; Jones, Geoffrey P; Munday, Philip L; Planes, Serge; Pratchett, Morgan S; Thorrold, Simon R

    2014-01-01

    When facing decisions about where to live, juveniles have a strong tendency to choose habitats similar to where their parents successfully bred. Developing larval fishes can imprint on the chemical cues from their natal habitat. However, to demonstrate that imprinting is ecologically important, it must be shown that settlers respond and distinguish among different imprinted cues, and use imprinting for decisions in natural environments. In addition, the potential role innate preferences play compared to imprinted choices also needs to be examined. As environmental variability increases due to anthropogenic causes these two recognition mechanisms, innate and imprinting, could provide conflicting information. Here we used laboratory rearing and chemical choice experiments to test imprinting in larval anemonefish (Amphiprion percula). Individuals exposed to a variety of benthic habitat or novel olfactory cues as larvae either developed a preference for (spent >50% of their time in the cue) or increased their attraction to (increased preference but did not spend >50% of their time in the cue) the cue when re-exposed as settlers. Results indicate not only the capacity for imprinting but also the ability to adjust innate preferences after early exposure to a chemical cue. To test ecological relevance in the natural system, recruits were collected from anemones and related to their parents, using genetic parentage analysis, providing information on the natal anemone species and the species chosen at settlement. Results demonstrated that recruits did not preferentially return to their natal species, conflicting with laboratory results indicating the importance imprinting might have in habitat recognition.

  12. Identifying a breeding habitat of a critically endangered fish, Acheilognathus typus, in a natural river in Japan

    Science.gov (United States)

    Sakata, Masayuki K.; Maki, Nobutaka; Sugiyama, Hideki; Minamoto, Toshifumi

    2017-12-01

    Freshwater biodiversity has been severely threatened in recent years, and to conserve endangered species, their distribution and breeding habitats need to be clarified. However, identifying breeding sites in a large area is generally difficult. Here, by combining the emerging environmental DNA (eDNA) analysis with subsequent traditional collection surveys, we successfully identified a breeding habitat for the critically endangered freshwater fish Acheilognathus typus in the mainstream of Omono River in Akita Prefecture, Japan, which is one of the original habitats of this species. Based on DNA cytochrome B sequences of A. typus and closely related species, we developed species-specific primers and a probe that were used in real-time PCR for detecting A. typus eDNA. After verifying the specificity and applicability of the primers and probe on water samples from known artificial habitats, eDNA analysis was applied to water samples collected at 99 sites along Omono River. Two of the samples were positive for A. typus eDNA, and thus, small fixed nets and bottle traps were set out to capture adult fish and verify egg deposition in bivalves (the preferred breeding substrate for A. typus) in the corresponding regions. Mature female and male individuals and bivalves containing laid eggs were collected at one of the eDNA-positive sites. This was the first record of adult A. typus in Omono River in 11 years. This study highlights the value of eDNA analysis to guide conventional monitoring surveys and shows that combining both methods can provide important information on breeding sites that is essential for species' conservation.

  13. Identifying a breeding habitat of a critically endangered fish, Acheilognathus typus, in a natural river in Japan.

    Science.gov (United States)

    Sakata, Masayuki K; Maki, Nobutaka; Sugiyama, Hideki; Minamoto, Toshifumi

    2017-11-14

    Freshwater biodiversity has been severely threatened in recent years, and to conserve endangered species, their distribution and breeding habitats need to be clarified. However, identifying breeding sites in a large area is generally difficult. Here, by combining the emerging environmental DNA (eDNA) analysis with subsequent traditional collection surveys, we successfully identified a breeding habitat for the critically endangered freshwater fish Acheilognathus typus in the mainstream of Omono River in Akita Prefecture, Japan, which is one of the original habitats of this species. Based on DNA cytochrome B sequences of A. typus and closely related species, we developed species-specific primers and a probe that were used in real-time PCR for detecting A. typus eDNA. After verifying the specificity and applicability of the primers and probe on water samples from known artificial habitats, eDNA analysis was applied to water samples collected at 99 sites along Omono River. Two of the samples were positive for A. typus eDNA, and thus, small fixed nets and bottle traps were set out to capture adult fish and verify egg deposition in bivalves (the preferred breeding substrate for A. typus) in the corresponding regions. Mature female and male individuals and bivalves containing laid eggs were collected at one of the eDNA-positive sites. This was the first record of adult A. typus in Omono River in 11 years. This study highlights the value of eDNA analysis to guide conventional monitoring surveys and shows that combining both methods can provide important information on breeding sites that is essential for species' conservation.

  14. Oxygen limitation and tissue metabolic potential of the African fish Barbus neumayeri: roles of native habitat and acclimatization

    Directory of Open Access Journals (Sweden)

    Rees Bernard B

    2011-01-01

    Full Text Available Abstract Background Oxygen availability in aquatic habitats is a major environmental factor influencing the ecology, behaviour, and physiology of fishes. This study evaluates the contribution of source population and hypoxic acclimatization of the African fish, Barbus neumayeri, in determining growth and tissue metabolic enzyme activities. Individuals were collected from two sites differing dramatically in concentration of dissolved oxygen (DO, Rwembaita Swamp (annual average DO 1.35 mgO2 L-1 and Inlet Stream West (annual average DO 5.58 mgO2 L-1 in Kibale National Park, Uganda, and reciprocally transplanted using a cage experiment in the field, allowing us to maintain individuals under natural conditions of oxygen, food availability, and flow. Fish were maintained under these conditions for four weeks and sampled for growth rate and the activities of phosphofructokinase (PFK, lactate dehydrogenase (LDH, citrate synthase (CS, and cytochrome c oxidase (CCO in four tissues, liver, heart, brain, and skeletal muscle. Results Acclimatization to the low DO site resulted in lower growth rates, lower activities of the aerobic enzyme CCO in heart, and higher activities of the glycolytic enzyme PFK in heart and skeletal muscle. The activity of LDH in liver tissue was correlated with site of origin, being higher in fish collected from a hypoxic habitat, regardless of acclimatization treatment. Conclusions Our results suggest that the influence of site of origin and hypoxic acclimatization in determining enzyme activity differs among enzymes and tissues, but both factors contribute to higher glycolytic capacity and lower aerobic capacity in B. neumayeri under naturally-occurring conditions of oxygen limitation.

  15. Functional composition of epifauna in the south-eastern North Sea in relation to habitat characteristics and fishing effort

    Science.gov (United States)

    Neumann, Hermann; Diekmann, Rabea; Kröncke, Ingrid

    2016-02-01

    Analysis of ecosystem functioning is essential to describe the ecological status of ecosystems and is therefore directly requested in international directives. There is a lack of knowledge regarding functional aspects of benthic communities and their environmental and anthropogenic driving forces in the southern North Sea. This study linked functional composition of epibenthic communities to environmental conditions and fishing effort and investigated spatial correlations between habitat characteristics to gain insight into potential synergistic and/or cumulative effects. Functional composition of epifauna was assessed by using biological trait analysis (BTA), which considered 15 ecological traits of 54 species. Functional composition was related to ten predictor variables derived from sediment composition, bottom temperature and salinity, hydrodynamics, annual primary production and fishing effort. Our results revealed significantly different functional composition between the Dogger Bank, the Oyster Ground, the West and North Frisian coast. Mobility, feeding type, size and adult longevity were the most important traits differentiating the communities. A high proportion of trait modalities related to an opportunistic life mode were obvious in coastal areas especially at the West Frisian coast and in the area of the Frisian Front indicating disturbed communities. In contrast, functional composition in the Dogger Bank area indicated undisturbed communities with prevalence of large, long-lived and permanently attached species being sensitive towards disturbance such as fishing. Tidal stress, mud content of sediments, salinity, stratification and fishing effort were found to be the most important habitat characteristics shaping functional composition. Strong correlations were found between variables, especially between those which changed gradually from the coast to offshore areas including fishing effort. Unfavourable extremes of these factors in coastal areas

  16. What is the impact on fish recruitment of anthropogenic physical and structural habitat change in shallow nearshore areas in temperate systems? A systematic review protocol

    DEFF Research Database (Denmark)

    MacUra, B.; Lönnstedt, O.M.; Byström, P.

    2016-01-01

    and spawning habitats of many fish and other aquatic species. Several coastal fish populations have seen marked declines in abundance and diversity during the past two decades. A systematic review on the topic would clarify if anthropogenic physical and structural changes of near-shore areas have effects...... on fish recruitment and which these effects are. Methods: The review will examine how various physical and structural anthropogenic changes of nearshore fish habitats affect fish recruitment. Relevant studies include small- and large-scale field studies in marine and brackish systems or large lakes......Background: Shallow nearshore marine ecosystems are changing at an increasing rate due to a range of human activities such as urbanisation and commercial development. The growing numbers of constructions and other physical and structural alterations of the shoreline often take place in nursery...

  17. Biodiversity and spatial patterns of benthic habitat and associated demersal fish communities at two tropical submerged reef ecosystems

    Science.gov (United States)

    Abdul Wahab, Muhammad Azmi; Radford, Ben; Cappo, Mike; Colquhoun, Jamie; Stowar, Marcus; Depczynski, Martial; Miller, Karen; Heyward, Andrew

    2018-06-01

    Submerged reef ecosystems can be very diverse and may serve as important refugia for shallow-water conspecifics. This study quantified the benthic and fish communities of two proximate, predominantly mesophotic coral ecosystems (MCEs), Glomar Shoal and Rankin Bank, which are geographically isolated from other similar features in the region. Glomar Shoal is identified as a key ecological feature (KEF) in the North West Marine Region of Australia. Multibeam surveys were performed to characterise the seafloor and to derive secondary environmental variables, used to explain patterns in benthic and fish communities. Towed video surveys quantified benthic cover, and stereo baited remote underwater stations were used to survey fish abundance and diversity. Surveys were completed in depths of 20-115 m. The two MCEs exhibited distinct communities; Rankin Bank consistently had higher cover (up to 30×) of benthic taxa across depths, and fish communities that were twice as abundant and 1.5× more diverse than Glomar Shoal. The location of the MCEs, depth and rugosity were most influential in structuring benthic communities. Phototrophic taxa, specifically macroalgae and hard corals, had up to 22 × higher cover at Rankin Bank than at Glomar Shoal and were dominant to 80 m (compared to 60 m at Glomar Shoal), presumably due to greater light penetration (lower turbidity) and lower sand cover at greater depths. The 20% coral cover at Rankin Bank was comparable to that reported for shallow reefs. The cover of sand, hard corals and sponges influenced fish communities, with higher abundance and diversity of fish associated with shallow hard coral habitats. This study demonstrated that the two MCEs were unique within the local context, and when coupled with their geographical isolation and biodiversity, presents compelling support for the additional recognition of Rankin Bank as a KEF.

  18. Freshwater fish faunas, habitats and conservation challenges in the Caribbean river basins of north-western South America.

    Science.gov (United States)

    Jiménez-Segura, L F; Galvis-Vergara, G; Cala-Cala, P; García-Alzate, C A; López-Casas, S; Ríos-Pulgarín, M I; Arango, G A; Mancera-Rodríguez, N J; Gutiérrez-Bonilla, F; Álvarez-León, R

    2016-07-01

    The remarkable fish diversity in the Caribbean rivers of north-western South America evolved under the influences of the dramatic environmental changes of neogene northern South America, including the Quechua Orogeny and Pleistocene climate oscillations. Although this region is not the richest in South America, endemism is very high. Fish assemblage structure is unique to each of the four aquatic systems identified (rivers, streams, floodplain lakes and reservoirs) and community dynamics are highly synchronized with the mono-modal or bi-modal flooding pulse of the rainy seasons. The highly seasonal multispecies fishery is based on migratory species. Freshwater fish conservation is a challenge for Colombian environmental institutions because the Caribbean trans-Andean basins are the focus of the economic development of Colombian society, so management measures must be directed to protect aquatic habitat and their connectivity. These two management strategies are the only way for helping fish species conservation and sustainable fisheries. © 2016 The Fisheries Society of the British Isles.

  19. The diet of otters ( Lutra lutra L.) in Danish freshwater habitats : comparisons of prey fish populations

    DEFF Research Database (Denmark)

    Taastrom, H.M.; Jacobsen, Lene

    1999-01-01

    Otter spraints from five Danish freshwater localities were analysed. In all localities fish was the main prey (76-99% of estimated bulk), especially in winter. Depending on locality, the prey fish mainly consisted of cyprinids (Cyprinidae), percids (Percidae) or salmonids (Salmonidae). Seasonal v...

  20. Habitat use and trophic position effects on contaminant bioaccumulation in fish indicated by stable isotope composition

    Science.gov (United States)

    The objective of our study was to determine the relationship between fish tissue stable isotope composition and total mercury or polychlorinated biphenyl (PCB) concentrations in a Great Lakes coastal food web. We sampled two resident fishes, Yellow Perch (Perca flavescens) and Bl...

  1. Landscape-scale food webs of fish nursery habitat along a river-coast mixing zone

    Science.gov (United States)

    We used carbon and nitrogen stable isotope analysis to study connections between allochthonous energy use and ecological connectivity of fish larvae in a complex coastal mosaic. We quantified fish larvae support by autochthonous and allochthonous material in three coastal river-w...

  2. Echinoid associations with coral habitats differ with taxon in the deep sea and the influence of other echinoids, depth, and fishing history on their distribution

    Science.gov (United States)

    Stevenson, Angela; Davies, Jaime S.; Williams, Alan; Althaus, Franziska; Rowden, Ashley A.; Bowden, David A.; Clark, Malcolm R.; Mitchell, Fraser J. G.

    2018-03-01

    Patterns of habitat use by animals and knowledge of the environmental factors affecting these spatial patterns are important for understanding the structure and dynamics of ecological communities. Both aspects are poorly known for deep-sea habitats. The present study investigates echinoid distributions within cold water coral (CWC) habitats on continental margins off France, Australia, and New Zealand. It further examines the influence of habitat-related variables that might help explain the observed distribution of echinoid taxa. Six echinoid taxa were examined from video and photographic transects to reveal taxon-specific distribution patterns and habitat-related influences. The Echinoidea were found in all habitats studied, but tended to aggregate in architecturally complex habitats associated with living cold-water corals. However, a taxon-specific investigation found that such associations were largely an artefact of the dominant taxa observed in a specific region. Despite the food and shelter resources offered to echinoids by matrix-forming coral habitats, not all taxa were associated with these habitats, and some had a random association with the habitats examined, while others displayed non-random associations. Echinoid distribution was correlated with several variables; the presence of other echinoids, depth, and fishing history were the most influential factors. This study indicates that image data can be a useful tool to detect trends in echinoid habitat associations. It also suggests that refinement of the methods, in particular with studies conducted at a more precise taxon and habitat scale, would facilitate better quantitative analyses of habitat associations and paint a more realistic picture of a population's ecology. Most deep-sea ecological studies to date have been conducted at a relatively coarse taxonomic and habitat resolution, and lack sufficient resolution to provide useful information for the conservation of vulnerable deep-sea habitats.

  3. Population trends, bend use relative to available habitat and within-river-bend habitat use of eight indicator species of Missouri and Lower Kansas River benthic fishes: 15 years after baseline assessment

    Science.gov (United States)

    Wildhaber, Mark L.; Yang, Wen-Hsi; Arab, Ali

    2016-01-01

    A baseline assessment of the Missouri River fish community and species-specific habitat use patterns conducted from 1996 to 1998 provided the first comprehensive analysis of Missouri River benthic fish population trends and habitat use in the Missouri and Lower Yellowstone rivers, exclusive of reservoirs, and provided the foundation for the present Pallid Sturgeon Population Assessment Program (PSPAP). Data used in such studies are frequently zero inflated. To address this issue, the zero-inflated Poisson (ZIP) model was applied. This follow-up study is based on PSPAP data collected up to 15 years later along with new understanding of how habitat characteristics among and within bends affect habitat use of fish species targeted by PSPAP, including pallid sturgeon. This work demonstrated that a large-scale, large-river, PSPAP-type monitoring program can be an effective tool for assessing population trends and habitat usage of large-river fish species. Using multiple gears, PSPAP was effective in monitoring shovelnose and pallid sturgeons, sicklefin, shoal and sturgeon chubs, sand shiner, blue sucker and sauger. For all species, the relationship between environmental variables and relative abundance differed, somewhat, among river segments suggesting the importance of the overall conditions of Upper and Middle Missouri River and Lower Missouri and Kansas rivers on the habitat usage patterns exhibited. Shoal and sicklefin chubs exhibited many similar habitat usage patterns; blue sucker and shovelnose sturgeon also shared similar responses. For pallid sturgeon, the primary focus of PSPAP, relative abundance tended to increase in Upper and Middle Missouri River paralleling stocking efforts, whereas no evidence of an increasing relative abundance was found in the Lower Missouri River despite stocking.

  4. Avoiding conflicts and protecting coral reefs: Customary management benefits marine habitats and fish biomass

    KAUST Repository

    Campbell, Stuart J.; Cinner, Joshua E.; Ardiwijaya, Rizya L.; Pardede, Shinta T.; Kartawijaya, Tasrif; Mukmunin, Ahmad; Herdiana, Yudi; Hoey, Andrew; Pratchett, Morgan S.; Baird, Andrew Hamilton

    2012-01-01

    Abstract One of the major goals of coral reef conservation is to determine the most effective means of managing marine resources in regions where economic conditions often limit the options available. For example, no-take fishing areas can

  5. West Coast Estuaries for Groundfish Essential Fish Habitat (EFH) Environmental Impact Statement

    Data.gov (United States)

    Pacific States Marine Fisheries Commission — These data depict the boundaries of estuaries along the West Coast of the United States. The estuary boundaries are delineated according to the U.S. Fish and...

  6. Longitudinal habitat disruption in Neotropical streams: fish assemblages under the influence of culverts

    Directory of Open Access Journals (Sweden)

    José Roberto Mariano

    Full Text Available This study assessed differences in fish assemblages existing upstream and downstream two types of culverts, one on each of two different Neotropical streams. We analyzed the composition and structure of the ichthyofauna and tested for spatial patterns. Fish sampling was carried out monthly between November 2009 and October 2010 using different fishing gears. We collected 2,220 fish of 33 species; 901 in stretches of the Lopeí stream - circular culvert and 1,310 in stretches of the Pindorama stream - box culvert. Fish abundance was similar in upstream and downstream stretches of the circular culvert, whereas it was slightly higher in the upstream than downstream stretch for the box culvert. Characiformes predominated in the upstream stretch of both culverts. On the other hand, Siluriformes was abundant in the downstream stretch of the circular culvert, with similar abundance in the stretches of the box culvert. Species richness and diversity (Shannon-Weiner Index were higher in the downstream stretch of the circular culvert, but they were similar in both stretches of the box culvert. The most abundant species were Astyanax altiparanae, A. paranae, A. fasciatus, Ancistrus sp., and Hypostomus sp. The last two species were more abundant in the downstream stretch of the circular culvert, and similar in stretches of the box culvert. Our study indicated variations in the species abundance, richness, and diversity between upstream and downstream stretches in particular of the circular culvert in the Lopeí stream, suggesting that fish movements are restrained more intensively in this culvert, especially for Siluriformes. The drop in the circular culvert outlet probably created passage barriers especially for those fish that has no ability to jump, where downstream erosion could lead to culvert perching. Studies on appropriate road crossing design or installation are fundamental whereas improvements in these structures can restore the connectivity of

  7. Biodiversity of freshwater fish of a protected river in India: comparison with unprotected habitat

    Directory of Open Access Journals (Sweden)

    Uttam Kumar Sarkar

    2013-03-01

    Full Text Available In India, freshwater environments are experiencing serious threats to biodiversity, and there is an urgent priority for the search of alternative techniques to promote fish biodiversity conservation and management. With this aim, the present study was undertaken to assess the fish biodiversity within and outside a river protected area, and to evaluate whether the protected river area provides some benefits to riverine fish biodiversity. To assess this, the pattern of freshwater fish diversity was studied in river Gerua, along with some physicochemical conditions, from April 2000 to March 2004. For this, a comparison was made between a 15km stretch of a protected area (Katerniaghat Wildlife Sanctuary, and an unprotected one 85km downstream. In each site some physicochemical conditions were obtained, and fish were caught by normal gears and the diversity per site described. Our results showed that water temperature resulted warmest during the pre-monsoon season (25ºC and low during the winter (14-15ºC; turbidity considerably varied by season. In the protected area, a total of 87 species belonging to eight orders, 22 families and 52 genera were collected; while a maximum of 59 species belonging to six orders, 20 families and 42 genera were recorded from the unprotected areas. Cyprinids were found to be the most dominant genera and Salmostoma bacaila was the most numerous species in the sanctuary area. Other numerous species were Eutropiichthys vacha, Notopterus notopterus, Clupisoma garua and Bagarius bagarius. The results indicated more species, greater abundances, larger individuals, and higher number of endangered fishes within the sanctuary area when compared to the unprotected area. Analysis on the mean abundance of endangered and vulnerable species for the evaluated areas in the sanctuary versus unprotected ones indicated significant differences in fish abundance (p<0.05. These results showed that this riverine protected area could be

  8. Ecological relations between fish assemblages and their habitats in the Elbe River (ELFI). Final report; Oekologische Zusammenhaenge zwischen Fischgemeinschafts- und Lebensraumstrukturen der Elbe (ELFI). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Nellen, W.; Kausch, H.; Thiel, R.; Ginter, R. (eds.)

    2002-12-01

    In the framework of the joint project, extensive data were obtained with regard to ecomorphology and hydro-dynamics of fish habitats, species diversity, age structure, abundance, habitat quality, habitat use, larval drift, migrations, growth, health status and population genetics of the fish fauna of the middle Elbe River. The data were stored in data banks and were used as basis to assess the middle Elbe River, to formulate a fish-ecological guiding view, and to develop predictive habitat models for different life stages of indicatory fish species. The data and results of the joint project will be stored in fish data banks of the ARGE Elbe and of the Federal Institute of Hydrology. The information is useful for the development of decision support systems. (orig.) [German] Im Rahmen des Verbundprojekts wurden umfangreiche Daten zu Oekomorphologie und Hydrodynamik von Fischhabitaten, zu Artendiversitaet, Altersstruktur, Abundanz, Habitatqualitaet und -nutzung, Larvendrift, Wanderungen, Wachstum, Gesundheitsstatus und Populationsgenetik der Fischfauna in der Mittelelbe erhoben und in Datenbanken abgelegt. Darauf aufbauend wurde die Mittelelbe fischoekologisch bewertet, ein fischoekologisches Leitbild formuliert und prognosefaehige Habitatmodelle fuer verschiedene Lebensstadien von Indikatorfischarten entwickelt. Die Daten und Ergebnisse des Verbundprojekts fliessen in die Fischdatenbanken der ARGE Elbe und der Bundesanstalt fuer Gewaesserkunde ein und stehen fuer die Entwicklung von DSS (Decision Support Systems) zur Verfuegung. (orig.)

  9. Modelling population effects of juvenile offshore fish displacement towards adult habitat

    DEFF Research Database (Denmark)

    van de Wolfshaar, K.E.; Tulp, I.; Wennhage, H.

    2015-01-01

    consequences on population dynamics through changes in resource use and competition. To explore this, a conceptual stage-structured model was developed with 3 stages and 2 resources and allowing a move of large juveniles from the shallow to the deep habitat. Large juveniles compete with small juveniles...... in shallow waters and with adults in deeper waters. Alternative stable states occur, with one state dominated by small juvenile biomass and the other dominated by adult biomass. The model results show for both states that while large juvenile biomass responds to a change in time spent in the deep habitat...

  10. Hydrogeomorphic and hydraulic habitats of the Niobrara River, Nebraska-with special emphasis on the Niobrara National Scenic River

    Science.gov (United States)

    Alexander, Jason S.; Zelt, Ronald B.; Schaepe, Nathan J.

    2010-01-01

    The Niobrara River is an ecologically and economically important resource in Nebraska. The Nebraska Department of Natural Resources' recent designation of the hydraulically connected surface- and groundwater resources of the Niobrara River Basin as ?fully appropriated? has emphasized the importance of understanding linkages between the physical and ecological dynamics of the Niobrara River so it can be sustainably managed. In cooperation with the Nebraska Game and Parks Commission, the U.S. Geological Survey investigated the hydrogeomorphic and hydraulic attributes of the Niobrara River in northern Nebraska. This report presents the results of an analysis of hydrogeomorphic segments and hydraulic microhabitats of the Niobrara River and its valley for the approximately 330-mile reach from Dunlap Diversion Dam to its confluence with the Missouri River. Two spatial scales were used to examine and quantify the hydrogeomorphic segments and hydraulic microhabitats of the Niobrara River: a basin scale and a reach scale. At the basin scale, digital spatial data and hydrologic data were analyzed to (1) test for differences between 36 previously determined longitudinal hydrogeomorphic segments; (2) quantitatively describe the hydrogeomorphic characteristics of the river and its valley; and (3) evaluate differences in hydraulic microhabitat over a range of flow regimes among three fluvial geomorphic provinces. The statistical analysis of hydrogeomorphic segments resulted in reclassification rates of 3 to 28 percent of the segments for the four descriptive geomorphic elements. The reassignment of classes by discriminant analysis resulted in a reduction from 36 to 25 total hydrogeomorphic segments because several adjoining segments shared the same ultimate class assignments. Virtually all of the segment mergers were in the Canyons and Restricted Bottoms (CRB) fluvial geomorphic province. The most frequent classes among hydrogeomorphic segments, and the dominant classes per unit

  11. Fishes and aquatic habitats of the Orinoco River Basin: diversity and conservation.

    Science.gov (United States)

    Lasso, C A; Machado-Allison, A; Taphorn, D C

    2016-07-01

    About 1000 freshwater fishes have been found so far in the Orinoco River Basin of Venezuela and Colombia. This high ichthyological diversity reflects the wide range of landscapes and aquatic ecosystems included in the basin. Mountain streams descend from the high Andes to become rapid-flowing foothill rivers that burst out upon vast savannah flatlands where they slowly make their way to the sea. These white-water rivers are heavily laden with sediments from the geologically young Andes. Because their sediment deposits have formed the richest soils of the basin, they have attracted the highest density of human populations, along with the greatest levels of deforestation, wildfires, agricultural biocides and fertilizers, sewage and all the other impacts associated with urban centres, agriculture and cattle ranching. In the southern portion of the basin, human populations are much smaller, where often the only inhabitants are indigenous peoples. The ancient rocks and sands of the Guiana Shield yield clear and black water streams of very different quality. Here, sediment loads are miniscule, pH is very acid and fish biomass is only a fraction of that observed in the rich Andean tributaries to the north. For each region of the basin, the current state of knowledge about fish diversity is assessed, fish sampling density evaluated, the presence of endemic species and economically important species (for human consumption or ornamental purposes) described and gaps in knowledge are pointed out. Current trends in the fishery for human consumption are analysed, noting that stocks of many species are in steep decline, and that current fishing practices are not sustainable. Finally, the major impacts and threats faced by the fishes and aquatic ecosystems of the Orinoco River Basin are summarized, and the creation of bi-national commissions to promote standardized fishing laws in both countries is recommended. © 2016 The Fisheries Society of the British Isles.

  12. Stream network geomorphology mediates predicted vulnerability of anadromous fish habitat to hydrologic change in southeast Alaska

    Science.gov (United States)

    Matthew R. Sloat; Gordon H. Reeves; Kelly R. Christiansen

    2016-01-01

    In rivers supporting Pacific salmon in southeast Alaska, USA, regional trends toward a warmer, wetter climate are predicted to increase mid- and late-21st-century mean annual flood size by 17% and 28%, respectively. Increased flood size could alter stream habitats used by Pacific salmon for reproduction, with negative consequences for the substantial economic, cultural...

  13. Beaver dams maintain fish biodiversity by increasing habitat heterogeneity throughout a low-gradient stream network

    Science.gov (United States)

    Smith, Joseph M.; Mather, Martha E.

    2013-01-01

    Understanding the relationship between heterogeneity and biodiversity is an active focus of ecological research. Although habitat heterogeneity is conceptually linked to biodiversity, the amount and configuration of heterogeneity that maintains biodiversity within ecosystems is not well understood, especially for an entire stream network.

  14. Geographic coupling of juvenile and adult habitat shapes spatial population dynamics of a coral reef fish

    NARCIS (Netherlands)

    Huijbers, C.M.; Nagelekerken, I.; Debrot, A.O.; Jongejans, E.

    2013-01-01

    Marine spatial population dynamics are often addressed with a focus on larval dispersal, without taking into account movement behavior of individuals in later life stages. Processes occurring during demersal life stages may also drive spatial population dynamics if habitat quality is perceived

  15. Can natural variability trigger effects on fish and fish habitat as defined in environment Canada's metal mining environmental effects monitoring program?

    Science.gov (United States)

    Mackey, Robin; Rees, Cassandra; Wells, Kelly; Pham, Samantha; England, Kent

    2013-01-01

    The Metal Mining Effluent Regulations (MMER) took effect in 2002 and require most metal mining operations in Canada to complete environmental effects monitoring (EEM) programs. An "effect" under the MMER EEM program is considered any positive or negative statistically significant difference in fish population, fish usability, or benthic invertebrate community EEM-defined endpoints. Two consecutive studies with the same statistically significant differences trigger more intensive monitoring, including the characterization of extent and magnitude and investigation of cause. Standard EEM study designs do not require multiple reference areas or preexposure sampling, thus results and conclusions about mine effects are highly contingent on the selection of a near perfect reference area and are at risk of falsely labeling natural variation as mine related "effects." A case study was completed to characterize the natural variability in EEM-defined endpoints during preexposure or baseline conditions. This involved completing a typical EEM study in future reference and exposure lakes surrounding a proposed uranium (U) mine in northern Saskatchewan, Canada. Moon Lake was sampled as the future exposure area as it is currently proposed to receive effluent from the U mine. Two reference areas were used: Slush Lake for both the fish population and benthic invertebrate community surveys and Lake C as a second reference area for the benthic invertebrate community survey. Moon Lake, Slush Lake, and Lake C are located in the same drainage basin in close proximity to one another. All 3 lakes contained similar water quality, fish communities, aquatic habitat, and a sediment composition largely comprised of fine-textured particles. The fish population survey consisted of a nonlethal northern pike (Esox lucius) and a lethal yellow perch (Perca flavescens) survey. A comparison of the 5 benthic invertebrate community effect endpoints, 4 nonlethal northern pike population effect endpoints

  16. Water-quality models to assess algal community dynamics, water quality, and fish habitat suitability for two agricultural land-use dominated lakes in Minnesota, 2014

    Science.gov (United States)

    Smith, Erik A.; Kiesling, Richard L.; Ziegeweid, Jeffrey R.

    2017-07-20

    Fish habitat can degrade in many lakes due to summer blue-green algal blooms. Predictive models are needed to better manage and mitigate loss of fish habitat due to these changes. The U.S. Geological Survey (USGS), in cooperation with the Minnesota Department of Natural Resources, developed predictive water-quality models for two agricultural land-use dominated lakes in Minnesota—Madison Lake and Pearl Lake, which are part of Minnesota’s sentinel lakes monitoring program—to assess algal community dynamics, water quality, and fish habitat suitability of these two lakes under recent (2014) meteorological conditions. The interaction of basin processes to these two lakes, through the delivery of nutrient loads, were simulated using CE-QUAL-W2, a carbon-based, laterally averaged, two-dimensional water-quality model that predicts distribution of temperature and oxygen from interactions between nutrient cycling, primary production, and trophic dynamics.The CE-QUAL-W2 models successfully predicted water temperature and dissolved oxygen on the basis of the two metrics of mean absolute error and root mean square error. For Madison Lake, the mean absolute error and root mean square error were 0.53 and 0.68 degree Celsius, respectively, for the vertical temperature profile comparisons; for Pearl Lake, the mean absolute error and root mean square error were 0.71 and 0.95 degree Celsius, respectively, for the vertical temperature profile comparisons. Temperature and dissolved oxygen were key metrics for calibration targets. These calibrated lake models also simulated algal community dynamics and water quality. The model simulations presented potential explanations for persistently large total phosphorus concentrations in Madison Lake, key differences in nutrient concentrations between these lakes, and summer blue-green algal bloom persistence.Fish habitat suitability simulations for cool-water and warm-water fish indicated that, in general, both lakes contained a large

  17. Measuring fish and their physical habitats: Versatile 2D and 3D video techniques with user-friendly software

    Science.gov (United States)

    Neuswanger, Jason R.; Wipfli, Mark S.; Rosenberger, Amanda E.; Hughes, Nicholas F.

    2017-01-01

    Applications of video in fisheries research range from simple biodiversity surveys to three-dimensional (3D) measurement of complex swimming, schooling, feeding, and territorial behaviors. However, researchers lack a transparently developed, easy-to-use, general purpose tool for 3D video measurement and event logging. Thus, we developed a new measurement system, with freely available, user-friendly software, easily obtained hardware, and flexible underlying mathematical methods capable of high precision and accuracy. The software, VidSync, allows users to efficiently record, organize, and navigate complex 2D or 3D measurements of fish and their physical habitats. Laboratory tests showed submillimetre accuracy in length measurements of 50.8 mm targets at close range, with increasing errors (mostly competitors, out to a distance of 1.0 to 2.9 body lengths. This system makes 3D video measurement a practical tool for laboratory and field studies of aquatic or terrestrial animal behavior and ecology.

  18. Thermal habitat restricts patterns of occurrence in multiple life-stages of a headwater fish

    Science.gov (United States)

    Mischa P. Turschwell; Stephen R. Balcombe; E. Ashley Steel; Fran Sheldon; Erin E. Peterson

    2017-01-01

    Our lack of knowledge on the spatiotemporal drivers of the distribution of many freshwater fishes, particularly as they differ among life-history stages, is a challenge to conservation of these species. We used 2-stage hurdle models to investigate drivers of occurrence and abundance of locally threatened adult and juvenile Northern River Blackfish in the upper...

  19. Fishes, mussels, crayfishes, and aquatic habitats of the Hoosier-Shawnee ecological assessment area

    Science.gov (United States)

    M. Burr Brooks; Justin T. Sipiorski; Matthew R. Thomas; Kevin S. Cummings; Christopher A. Taylor

    2004-01-01

    The Hoosier-Shawnee Ecological Assessment Area, part of the Coastal Plain and Interior Low Plateau physiographic provinces, includes 194 native fish species, 76 native mussel species, and 34 native crayfish species. Five of the subregions (e.g., Mississippi Embayment) that make up the assessment area were recently ranked as either globally or bioregionally outstanding...

  20. Habitat associations of fish and aquatic turtles in an East Texas Stream

    Directory of Open Access Journals (Sweden)

    Riedle J.D.

    2016-01-01

    Full Text Available The community structure of stream communities are treated as bioassays of stream ecosystems and changes to species patterns within those communities reflect response to multiple stressors including natural fluctuations in environmental variables. Research has focused on the structure of fish assemblages and there is increasing interest in environmental factors structuring turtle communities. Both fishes and turtles can be sampled using common methods, but are rarely studied together. Our objective was to compare distribution of fish and turtle species based on measured environmental variables in East Texas, USA. Species distributions were influenced by flow, substrate, and emergent vegetation. Results from Monte Carlo permutation tests suggest that downed woody debris and water temperature also had a strong influence on species distributions. Co-correspondence analysis showed considerable overlap of species scores in the absence of environmental variables. The five macrohabitats sampled exhibited varying degrees of connectivity and thus species mixing, which is driven by annual fluctuations in precipitation. Results from this study suggest that turtles and fishes can be considered simultaneously and exhibit similar patterns of species distribution across the landscape, at least at local scales.

  1. Managing fish and wildlife habitat in the face of climate change: USDA Forest Service perspective

    Science.gov (United States)

    Gregory D. Hayward; Curtis H. Flather; Erin Uloth; Hugh D. Safford; David A. Cleaves

    2009-01-01

    The spatial and temporal scope of environmental change anticipated during the next century as a result of climate change presents unprecedented challenges for fish and wildlife management. The Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC 2007) suggested impacts from climate change on natural systems will be more grave than earlier...

  2. A Multiple Watershed Approach to Assessing the Effects of Habitat Restoration Actions on Anadromous and Resident Fish Populations, Technical Report 2003-2004.

    Energy Technology Data Exchange (ETDEWEB)

    Marmorek, David

    2004-03-01

    Habitat protection and restoration is a cornerstone of current strategies to restore ecosystems, recover endangered fish species, and rebuild fish stocks within the Columbia River Basin. Strategies featuring habitat restoration include the 2000 Biological Opinion on operation of the Federal Columbia River Power System (FCRPS BiOp) developed by the National Marine Fisheries Service (NMFS), the 2000 Biological Opinion on Bull Trout developed by the US Fish and Wildlife Service (USFWS), and Sub-Basin Plans developed under the Fish and Wildlife Program of the Northwest Power and Conservation Council (NWPCC). There is however little quantitative information about the effectiveness of different habitat restoration techniques. Such information is crucial for helping scientists and program managers allocate limited funds towards the greatest benefits for fish populations. Therefore, it is critical to systematically test the hypotheses underlying habitat restoration actions for both anadromous and resident fish populations. This pilot project was developed through a proposal to the Innovative Projects fund of the NWPCC (ESSA 2002). It was funded by the Bonneville Power Administration (BPA) following reviews by the Independent Scientific Review Panel (ISRP 2002), the Columbia Basin Fish and Wildlife Authority (CBFWA 2002), the NWPCC and BPA. The study was designed to respond directly to the above described needs for information on the effectiveness of habitat restoration actions, including legal measures specified in the 2000 FCRPS BiOp (RPA 183, pg. 9-133, NMFS 2000). Due to the urgency of addressing these measures, the timeline of the project was accelerated from a duration of 18 months to 14 months. The purpose of this pilot project was to explore methods for evaluating past habitat restoration actions and their effects on fish populations. By doing so, the project will provide a foundation of retrospective analyses, on which to build prospective, multi-watershed designs

  3. Associations of fish with various types of littoral habitats in reservoirs

    Czech Academy of Sciences Publication Activity Database

    Šmejkal, Marek; Prchalová, Marie; Čech, Martin; Vašek, Mojmír; Říha, Milan; Jůza, Tomáš; Blabolil, Petr; Kubečka, Jan

    2014-01-01

    Roč. 23, č. 3 (2014), s. 405-413 ISSN 0906-6691 R&D Projects: GA MŠk(CZ) EE2.3.20.0204; GA ČR(CZ) GPP505/12/P647 Institutional support: RVO:60077344 Keywords : habitat associations * gillnet * reservoir * structural complexity * slope steepness * community structure Subject RIV: EH - Ecology, Behaviour Impact factor: 1.701, year: 2014

  4. A protocol using coho salmon to monitor Tongass National Forest Land and Resource Management Plan standards and guidelines for fish habitat.

    Science.gov (United States)

    M.D. Bryant; Trent McDonald; R. Aho; B.E. Wright; Michelle Bourassa Stahl

    2008-01-01

    We describe a protocol to monitor the effectiveness of the Tongass Land Management Plan (TLMP) management standards for maintaining fish habitat. The protocol uses juvenile coho salmon (Oncorhynchus kisutch) in small tributary streams in forested watersheds. We used a 3-year pilot study to develop detailed methods to estimate juvenile salmonid...

  5. Aquatic Habitat Studies on the Lower Mississippi River, River Mile 480 to 530. Report 6. Larval Fish Studies-Pilot Report.

    Science.gov (United States)

    1981-04-01

    larval fish were collected: unidentified clupeids, unidentified cyprinids, Carpiodes spp., Menidia audens , Lepomis spp., unidentified centrarchids, and...bars, was rare in both abandoned channels and oxbow lakes. 69. Menidia audens and Morone spp. were common in the abandoned channel habitat and rare in

  6. Habitat loss as the main cause of the slow recovery of fish faunas of regulated large rivers in Europe: The transversal floodplain gradient

    NARCIS (Netherlands)

    Aarts, B.G.W.; Van den Brink, F.W.B.; Nienhuis, P.H.

    2004-01-01

    In large European rivers the chemical water quality has improved markedly in recent decades, yet the recovery of the fish fauna is not proceeding accordingly. Important causes are the loss of habitats in the main river channels and their floodplains, and the diminished hydrological connectivity

  7. Modelação bidimensional de habitats fluviais para espécies piscícolas. Aplicação do Modelo CasimirFish2D

    OpenAIRE

    Dias, Verónica Raquel Barroso

    2013-01-01

    Mestrado em Engenharia Florestal e dos Recursos Naturais - Instituto Superior de Agronomia Habitat degradation associated with river regulation, consequence increasing human demands on water resources, and result is changed richness and diversity fish species. Projects ecological habitat to improve becomes a priority for authorities in many countries. In the present study, a methodology based on the relationship between fish habitat and stream flows, is applied in order to determine imp...

  8. Dual impact of temperature on growth and mortality of marine fish larvae in a shallow estuarine habitat

    Science.gov (United States)

    Arula, Timo; Laur, Kerli; Simm, Mart; Ojaveer, Henn

    2015-12-01

    High individual growth and mortality rates of herring Clupea harengus membras and goby Pomatoschistus spp. larvae were observed in the estuarine habitat of the Gulf of Riga, Baltic Sea. Both instantaneous mortality (0.76-1.05) as well as growth rate (0.41-0.82 mm day-1) of larval herring were amongst highest observed elsewhere previously. Mortality rates of goby larvae were also high (0.57-1.05), while first ever data on growth rates were provided in this study (0.23-0.35 mm day-1). Our study also evidenced that higher growth rate of marine fish larvae did not result in lower mortalities. We suggest that high growth and mortality rates primarily resulted from a rapidly increasing and high (>18 °C) water temperature that masked potential food-web effects. The explanation for observed patterns lies in the interactive manner temperature contributed: i) facilitating prey production, which supported high growth rate and decreased mortalities; ii) exceeding physiological thermal optimum of larvae, which resulted in decreased growth rate and generally high mortalities. Our investigation suggests that the projected climate warming may have significant effect on early life history stages of the dominating marine fish species inhabiting shallow estuaries.

  9. Determination of selenium in fish from designated critical habitat in the Gunnison River, Colorado, March through October, 2012

    Science.gov (United States)

    May, Thomas W.; Walther, Michael J.

    2013-01-01

    This report presents results for the summer 2012 sam-pling of muscle plugs from common carp (Cyprinus carpio), bonytail chub (Gila elegans), Colorado pikeminnow (Ptycho-cheilus lucius), and razorback suckers (Xyrauchen texanus) inhabiting critical habitat in the Gunnison River in western Colorado. Total selenium in fish muscle plugs was determinedby instrumental neutron activation analysis. Total selenium concentrations (range and mean ± standard deviation) in micrograms per gram dry weight were 6.0 to 10.7, 8.8 ± 1.3 for common carp; 2.9 to 8.7, 5.6 ± 2.4 for Colorado pikemin-now; and 1.4 to 7.3, 3.4 ± 2.7 for razorback sucker. The selenium concentration for one bonytail chub sample was 0.8 micrograms per gram dry weight. Selenium concentrations in muscle plugs from 1 Colorado pikeminnow and 12 common carp exceeded the 8 micrograms per gram dry weight toxicity guideline for selenium in fish muscle tissue.

  10. Biodiversity and Habitat Characteristics of the Bycatch Assemblages in Fish Aggregating Devices (FADs and School Sets in the Eastern Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Nerea Lezama-Ochoa

    2017-08-01

    Full Text Available This study examined diversity and habitat characteristics for bycatch assemblages in two different types of fishing (drifting fish aggregating devices sets and sets made on school of tunas in the eastern Pacific Ocean (20°S–30°N and 70°–150°W between 2005 and 2011 using biodiversity metrics and Generalized Additive Models. Bycatch information was based on data collected by onboard observers covering more than 80% of the purse seine fishing trips. Our results suggest that diversity and habitat characteristics of the bycatch assemblages differ depending of the fishing mode. Thus, diversity was mostly explained by area and set type; being higher in fish aggregating devices (FAD sets than School sets. Concretely, diversity seems to be directly related with the equatorial upwelling and the front system in FAD sets and with the Costa Rica Dome and the coastal upwelling of Panama induced by wind jets in School sets. Among environmental variables, temperature and chlorophyll were the most important predictors to describe the diversity of the bycatch assemblages. This work has investigated multiple indicators related to the bycatch assemblages and their habitat, which could be helpful for the development of an Ecosystem Approach to Fishery Management (EAFM.

  11. Habitat fragmentation and extinction rates within freshwater fish communities : a faunal relaxation approach

    OpenAIRE

    Hugueny, Bernard; Movellan, A.; Belliard, J.

    2011-01-01

    Aim To estimate population extinction rates within freshwater fish communities since the fragmentation of palaeo-rivers due to sea level rise at the end of the Pleistocene; to combine this information with rates estimated by other approaches (population surveys, fossil records); and to build an empirical extinction-area relationship. Location Temperate rivers from the Northern Hemisphere, with a special focus on rivers discharging into the English Channel, in north-western France. Methods (1)...

  12. Habitat Use and Trophic Structure in a Highly Migratory Predatory Fish Identified with Geochemical Proxies in Scales

    Science.gov (United States)

    Seeley, M.; Walther, B. D.

    2016-02-01

    Atlantic tarpon, Megalops atlanticus, are highly migratory euryhaline predators that occupy different habitats throughout ontogeny. Specifically, Atlantic tarpon are known to inhabit oligohaline waters, although the frequency and duration of movements across estuarine gradients into these waters are relatively unknown. This species supports over a two billion dollar industry within the Gulf of Mexico and is currently listed as vulnerable under the International Union for the Conservation of Nature (IUCN). A new non-lethal method for reconstructing migrations across estuaries relies on trace element and stable isotope compositions of growth increments in scales. We analyzed Atlantic tarpon scales from the Texas coast to validate this method using inductively coupled plasma mass spectrometry (ICP-MS) for trace elements and isotope ratio mass spectrometry (IR-MS) for stable isotope ratios. Multiple scales were also taken from the same individual to confirm the consistency of elemental uptake within the same individual. Results show that scale Ba:Ca, Sr:Ca and δ13C are effective proxies for salinity, while enrichments in δ15N are consistent with known ontogenetic trophic shifts. In addition, chemical transects across multiple scales from the same individual were highly consistent, suggesting that any non-regenerated scale removed from a fish can provide equivalent time series. Continuous life history profiles of scales were obtained via laser ablation transects of scale cross-sections to quantify trace element concentrations from the core (youngest increments) to the edge (oldest increments). Stable isotope and trace element results together indicate that behavior is highly variable between individuals, with some but not all fish transiting estuarine gradients into oligohaline waters. Our findings will provide novel opportunities to investigate alternative non-lethal methods to monitor fish migrations across chemical gradients.

  13. Spatially explicit habitat models for 28 fishes from the Upper Mississippi River System (AHAG 2.0)

    Science.gov (United States)

    Ickes, Brian S.; Sauer, J.S.; Richards, N.; Bowler, M.; Schlifer, B.

    2014-01-01

    Environmental management actions in the Upper Mississippi River System (UMRS) typically require pre-project assessments of predicted benefits under a range of project scenarios. The U.S. Army Corps of Engineers (USACE) now requires certified and peer-reviewed models to conduct these assessments. Previously, habitat benefits were estimated for fish communities in the UMRS using the Aquatic Habitat Appraisal Guide (AHAG v.1.0; AHAG from hereon). This spreadsheet-based model used a habitat suitability index (HSI) approach that drew heavily upon Habitat Evaluation Procedures (HEP; U.S. Fish and Wildlife Service, 1980) by the U.S. Fish and Wildlife Service (USFWS). The HSI approach requires developing species response curves for different environmental variables that seek to broadly represent habitat. The AHAG model uses species-specific response curves assembled from literature values, data from other ecosystems, or best professional judgment. A recent scientific review of the AHAG indicated that the model’s effectiveness is reduced by its dated approach to large river ecosystems, uncertainty regarding its data inputs and rationale for habitat-species response relationships, and lack of field validation (Abt Associates Inc., 2011). The reviewers made two major recommendations: (1) incorporate empirical data from the UMRS into defining the empirical response curves, and (2) conduct post-project biological evaluations to test pre-project benefits estimated by AHAG. Our objective was to address the first recommendation and generate updated response curves for AHAG using data from the Upper Mississippi River Restoration-Environmental Management Program (UMRR-EMP) Long Term Resource Monitoring Program (LTRMP) element. Fish community data have been collected by LTRMP (Gutreuter and others, 1995; Ratcliff and others, in press) for 20 years from 6 study reaches representing 1,930 kilometers of river and >140 species of fish. We modeled a subset of these data (28 different

  14. The micro-habitat methodology. Application protocols

    Energy Technology Data Exchange (ETDEWEB)

    Sabaton, C; Valentin, S; Souchon, Y

    1995-06-01

    A strong need has been felt for guidelines to help various entities in applying the micro-habitat methodology, particularly in impact studies on hydroelectric installations. CEMAGREF and Electricite de France have developed separately two protocols with five major steps: reconnaissance of the river, selection of representative units to be studied in greater depth, morpho-dynamic measurements at one or more rates of discharge and hydraulic modeling, coupling of hydraulic and biological models, calculation of habitat-quality scores for fish, analysis of results. The two approaches give very comparable results and are essentially differentiated by the hydraulic model used. CEMAGREF uses a one-dimensional model requiring measurements at only one discharge rate. Electricite de France uses a simplified model based on measurements at several rates of discharge. This approach is possible when discharge can be controlled in the study area during data acquisition, as is generally the case downstream of hydroelectric installations. The micro-habitat methodology is now a fully operational tool with which to study changes in fish habitat quality in relation to varying discharge. It provides an element of assessment pertinent to the choice of instreaming flow to be maintained downstream of a hydroelectric installation; this information is essential when the flow characteristics (velocity, depth) and the nature of the river bed are the preponderant factors governing habitat suitability for trout or salmon. The ultimate decision must nonetheless take into account any other potentially limiting factors for the biocenoses on the one hand, and the target water use objectives on the other. In many cases, compromises must be found among different uses, different species and different stages in the fish development cycle. (Abstract Truncated)

  15. Genetic and morphological support for possible sympatric origin of fish from subterranean habitats.

    Science.gov (United States)

    Hashemzadeh Segherloo, Iraj; Normandeau, Eric; Benestan, Laura; Rougeux, Clément; Coté, Guillaume; Moore, Jean-Sébastien; Ghaedrahmati, NabiAllah; Abdoli, Asghar; Bernatchez, Louis

    2018-02-13

    Two blind Iran cave barbs, Garra typhlops and Garra lorestanensis, exist in sympatry in a single subterranean habitat, raising the hypothesis that they may represent a case of sympatric speciation following a colonization event. Their different mental disc forms have prompted some authors to propose the alternative hypothesis of two separate colonization events. In this study, we analysed a genome-wide panel of 11,257 SNPs genotyped by means of genotyping-by-sequencing combined with mitochondrial cytochrome c oxidase sub-unit I sequence data, field observations and morphological traits to test these two hypotheses. Field data suggest some degree of ecological divergence despite some possible niche overlap such that hybridization is possible. According to both nuclear and mtDNA data, the cave barb species are monophyletic with close phylogenetic relationships with Garra gymnothorax from the Karun-Dez and Karkheh river basins. The historical demography analysis revealed that a model of Isolation-with-Migration (IM) best fitted the data, therefore better supporting a scenario of sympatric origin than that of allopatric isolation followed by secondary contact. Overall, our results offer stronger support to the hypothesis that speciation in the subterranean habitat could have occurred in sympatry following a colonization event from the Karun-Dez-Karkheh basins in the Zagros Mountains of Iran.

  16. Assessing Thermally Stressful Events in a Rhode Island Coldwater Fish Habitat Using the SWAT Model

    Directory of Open Access Journals (Sweden)

    Britta Chambers

    2017-09-01

    Full Text Available It has become increasingly important to recognize historical water quality trends so that the future impacts of climate change may be better understood. Climate studies have suggested that inland stream temperatures and average streamflow will increase over the next century in New England, thereby putting aquatic species sustained by coldwater habitats at risk. In this study we evaluated two different approaches for modeling historical streamflow and stream temperature in a Rhode Island, USA, watershed with the Soil and Water Assessment Tool (SWAT, using (i original SWAT and (ii SWAT plus a hydroclimatological model component that considers both hydrological inputs and air temperature. Based on daily calibration results with six years of measured streamflow and four years of stream temperature data, we examined occurrences of stressful conditions for brook trout (Salvelinus fontinalis using the hydroclimatological model. SWAT with the hydroclimatological component improved modestly during calibration (NSE of 0.93, R2 of 0.95 compared to the original SWAT (NSE of 0.83, R2 of 0.93. Between 1980–2009, the number of stressful events, a moment in time where high or low flows occur simultaneously with stream temperatures exceeding 21 °C, increased by 55% and average streamflow increased by 60%. This study supports using the hydroclimatological SWAT component and provides an example method for assessing stressful conditions in southern New England’s coldwater habitats.

  17. Fish Community Composition and Habitat Use in the Eg-Uur River System, Mongolia

    Directory of Open Access Journals (Sweden)

    Norman Mercado-Silva

    2008-06-01

    Full Text Available Mongolian rivers and their fi sh communities have suffered severe impacts from anthropogenic activities. However, the remoteness of some systems has allowed for the conservation of unique fi sh faunas, including robust populations of Hucho taimen . Conservation of H. taimen requires understanding the composition and ecology of other fi shes in the community. Using multiple sampling techniques, direct observation, and existing literature, we assessed the composition, relative abundance, and ecological attributes of fi shes in the Eg-Uur watershed (Selenge basin. We collected 6 of 12 species known in the watershed. Phoxinus cf. phoxinus and Lota lota were the most and least abundant species, respectively. We failed to detect H. taimen , indicating low abundance or unknown habitat requirements for juveniles. We compared the effectiveness of different sampling techniques (with electro fi shing producing the highest species richness, constructed length-weight relationships for four species , and identi fi ed ecological attributes (i.e., trophic guild, preferred habitat for resident fi shes.

  18. Assessment of Fluctuating Reservoir Elevations Using Hydraulic Models and Impacts to Larval Pacific Lamprey Rearing Habitat in the Bonneville Pool

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Robert P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rakowski, Cynthia L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Perkins, William A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, Marshall C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-02-24

    This report presents the results of a modeling assessment of likely lamprey larval habitat that may be impacted by dewatering of the major tributary delta regions in the Bonneville Pool of the Columbia River. This assessment was conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers Portland District (CENWP). The goal of the study was to provide baseline data about how the regions of interest would potentially be impacted at three river flows (10, 50, and 90 percent exceedance flow) for four different forebay elevations at Bonneville Dam. Impacts of unsteady flows at The Dalles Dam and changing forebay elevation at Bonneville Dam for a 2-week period were also assessed. The area of dewatered regions was calculated by importing modeled data outputs into a GIS and then calculating the change in inundated area near tributary deltas for the four Bonneville forebay surface elevations. From the modeled output we determined that the overall change in area is less sensitive to elevations changes during higher river discharges. Changing the forebay elevation at Bonneville and the resulting impact to total dewatered regions was greater at the lowest modeled river flow (97 kcfs) and showed the greatest variation at the White Salmon/Hood River delta regions followed by the Wind, Klickitat and the Little White Salmon rivers. To understand how inundation might change on a daily and hourly basis. Unsteady flow models were run for a 2-week period in 2002 and compared to 2014. The water surface elevation in the upstream pool closely follows that of the Bonneville Dam forebay with rapid changes of 1 to 2-ft possible. The data shows that 2.5-ft variation in water surface elevation occurred during this period in 2002 and a 3.7-ft change occurred in 2014. The duration of these changes were highly variable and generally did not stay constant for more than a 5-hr period.

  19. Following a Foraging Fish-Finder: Diel Habitat Use of Blainville's Beaked Whales Revealed by Echolocation

    Science.gov (United States)

    Arranz, Patricia; de Soto, Natacha Aguilar; Madsen, Peter T.; Brito, Alberto; Bordes, Fernando; Johnson, Mark P.

    2011-01-01

    Simultaneous high resolution sampling of predator behavior and habitat characteristics is often difficult to achieve despite its importance in understanding the foraging decisions and habitat use of predators. Here we tap into the biosonar system of Blainville's beaked whales, Mesoplodon densirostris, using sound and orientation recording tags to uncover prey-finding cues available to echolocating predators in the deep-sea. Echolocation sounds indicate where whales search and encounter prey, as well as the altitude of whales above the sea-floor and the density of organisms around them, providing a link between foraging activity and the bio-physical environment. Tagged whales (n = 9) hunted exclusively at depth, investing most of their search time either in the lower part of the deep scattering layer (DSL) or near the sea-floor with little diel change. At least 43% (420/974) of recorded prey-capture attempts were performed within the benthic boundary layer despite a wide range of dive depths, and many dives included both meso- and bentho-pelagic foraging. Blainville's beaked whales only initiate searching when already deep in the descent and encounter prey suitable for capture within 2 min of the start of echolocation, suggesting that these whales are accessing prey in reliable vertical strata. Moreover, these prey resources are sufficiently dense to feed the animals in what is effectively four hours of hunting per day enabling a strategy in which long dives to exploit numerous deep-prey with low nutritional value require protracted recovery periods (average 1.5 h) between dives. This apparent searching efficiency maybe aided by inhabiting steep undersea slopes with access to both the DSL and the sea-floor over small spatial scales. Aggregations of prey in these biotopes are located using biosonar-derived landmarks and represent stable and abundant resources for Blainville's beaked whales in the otherwise food-limited deep-ocean. PMID:22163295

  20. Following a foraging fish-finder: diel habitat use of Blainville's beaked whales revealed by echolocation.

    Directory of Open Access Journals (Sweden)

    Patricia Arranz

    Full Text Available Simultaneous high resolution sampling of predator behavior and habitat characteristics is often difficult to achieve despite its importance in understanding the foraging decisions and habitat use of predators. Here we tap into the biosonar system of Blainville's beaked whales, Mesoplodon densirostris, using sound and orientation recording tags to uncover prey-finding cues available to echolocating predators in the deep-sea. Echolocation sounds indicate where whales search and encounter prey, as well as the altitude of whales above the sea-floor and the density of organisms around them, providing a link between foraging activity and the bio-physical environment. Tagged whales (n = 9 hunted exclusively at depth, investing most of their search time either in the lower part of the deep scattering layer (DSL or near the sea-floor with little diel change. At least 43% (420/974 of recorded prey-capture attempts were performed within the benthic boundary layer despite a wide range of dive depths, and many dives included both meso- and bentho-pelagic foraging. Blainville's beaked whales only initiate searching when already deep in the descent and encounter prey suitable for capture within 2 min of the start of echolocation, suggesting that these whales are accessing prey in reliable vertical strata. Moreover, these prey resources are sufficiently dense to feed the animals in what is effectively four hours of hunting per day enabling a strategy in which long dives to exploit numerous deep-prey with low nutritional value require protracted recovery periods (average 1.5 h between dives. This apparent searching efficiency maybe aided by inhabiting steep undersea slopes with access to both the DSL and the sea-floor over small spatial scales. Aggregations of prey in these biotopes are located using biosonar-derived landmarks and represent stable and abundant resources for Blainville's beaked whales in the otherwise food-limited deep-ocean.

  1. Characterizing the diversity of coral reef habitats and fish communities found in a UNESCO World Heritage Site: the strategy developed for Lagoons of New Caledonia.

    Science.gov (United States)

    Andréfouët, S; Wantiez, L

    2010-01-01

    Since 1972, the UNESCO "World Heritage Convention" offers an international canvas for conservation and management that targets areas of high cultural and environmental significance. To support the designation of areas within the 36.000 km(2) of New Caledonia coral reefs and lagoons as a World Heritage Site, the natural value and diversity of the proposed zones needed to be demonstrated. To exhaustively identify each configuration of shallow habitats, high resolution remote sensing images were used to select the sampling sites. This optimal scheme resulted in the selection of nearly 1300 sampling sites, and was then simplified to render its application realistic. In the final sampling plan, only the most common or the most remarkable coral zones were selected. Following this selection, in situ habitat and fish surveys were conducted in 2006-2008 in five large areas spanning a 600 km-long latitudinal gradient. Habitats were described using line-intercept transects in parallel with underwater visual census of indicator and commercial coral reef fish species. We report here on the results achieved in terms of: (i) the actual diversity of coral habitats captured by the remote sensing based sampling strategy, (ii) the different reef fish communities captured from the different sites, and (iii) how well they represent New Caledonia diversity. We discuss the possible generalization of this scheme to other sites, in the context of World Heritage Site selection and for other large-scale conservation planning activities. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Delta smelt habitat in the San Francisco Estuary: A reply to Manly, Fullerton, Hendrix, and Burnham’s “Comments on Feyrer et al. Modeling the effects of future outflow on the abiotic habitat of an imperiled estuarine fish"

    Science.gov (United States)

    Feyrer, Frederick V.; Newman, Ken B.; Nobriga, Matthew; Sommer, Ted

    2016-01-01

    Manly et al. (2015) commented on the approach we (Feyrer et al. 2011) used to calculate an index of the abiotic habitat of delta smelt Hypomesus transpacificus. The delta smelt is an annual fish species endemic to the San Francisco Estuary (SFE) in California, USA. Conserving the delta smelt population while providing reliability to California’s water supply with water diverted from the SFE ecosystem is a major management and policy issue. Feyrer et al. (2011) evaluated historic and projected future abiotic habitat conditions for delta smelt. Manly et al. (2015) specifically commented regarding the following: (1) use of an independent abundance estimate, (2) spatial bias in the habitat index, and (3) application of the habitat index to future climate change projections. Here, we provide our reply to these three topics. While we agree that some of the concepts raised by Manly et al. (2015) have the potential to improve habitat assessments and their application to climate change scenarios as knowledge is gained, we note that the Feyrer et al. (2011) delta smelt habitat index is essentially identical to one reconstructed using Manly et al.’s (2015) preferred approach (their model 8), as shown here in Fig. 1.

  3. Biodiversity of freshwater fish of a protected river in India: comparison with unprotected habitat

    Directory of Open Access Journals (Sweden)

    Uttam Kumar Sarkar

    2013-03-01

    Full Text Available In India, freshwater environments are experiencing serious threats to biodiversity, and there is an urgent priority for the search of alternative techniques to promote fish biodiversity conservation and management. With this aim, the present study was undertaken to assess the fish biodiversity within and outside a river protected area, and to evaluate whether the protected river area provides some benefits to riverine fish biodiversity. To assess this, the pattern of freshwater fish diversity was studied in river Gerua, along with some physicochemical conditions, from April 2000 to March 2004. For this, a comparison was made between a 15km stretch of a protected area (Katerniaghat Wildlife Sanctuary, and an unprotected one 85km downstream. In each site some physicochemical conditions were obtained, and fish were caught by normal gears and the diversity per site described. Our results showed that water temperature resulted warmest during the pre-monsoon season (25ºC and low during the winter (14-15ºC; turbidity considerably varied by season. In the protected area, a total of 87 species belonging to eight orders, 22 families and 52 genera were collected; while a maximum of 59 species belonging to six orders, 20 families and 42 genera were recorded from the unprotected areas. Cyprinids were found to be the most dominant genera and Salmostoma bacaila was the most numerous species in the sanctuary area. Other numerous species were Eutropiichthys vacha, Notopterus notopterus, Clupisoma garua and Bagarius bagarius. The results indicated more species, greater abundances, larger individuals, and higher number of endangered fishes within the sanctuary area when compared to the unprotected area. Analysis on the mean abundance of endangered and vulnerable species for the evaluated areas in the sanctuary versus unprotected ones indicated significant differences in fish abundance (pEn India los ambientes de agua dulce están experimentando una grave amenaza

  4. Inferred fish behavior its implications for hydroacoustic surveys in nearshore habitats

    Science.gov (United States)

    DuFour, Mark R.; Mayer, Christine M.; Qian, Song S.; Vandergoot, Christopher; Kraus, Richard T.; Kocovsky, Patrick; Warner, David M.

    2018-01-01

    Population availability and vessel avoidance effects on hydroacoustic abundance estimates may be scale dependent; therefore, it is important to evaluate these biases across systems. We performed an inter-ship comparison survey to determine the effect of vessel size, day-night period, depth, and environmental gradients on walleye (Sander vitreus) density estimates in Lake Erie, an intermediate-scaled system. Consistent near-bottom depth distributions coupled with horizontal fish movements relative to vessel paths indicated avoidance behavior contributed to higher walleye densities from smaller vessels in shallow water (i.e., abundance estimates. Quantifying availability and avoidance behavior effects and partitioning sources of variation provides informed flexibility for designing future hydroacoustic surveys in shallow-water nearshore environments.

  5. Habitat complexity and fish size affect the detection of Indo-Pacific lionfish on invaded coral reefs

    Science.gov (United States)

    Green, S. J.; Tamburello, N.; Miller, S. E.; Akins, J. L.; Côté, I. M.

    2013-06-01

    A standard approach to improving the accuracy of reef fish population estimates derived from underwater visual censuses (UVCs) is the application of species-specific correction factors, which assumes that a species' detectability is constant under all conditions. To test this assumption, we quantified detection rates for invasive Indo-Pacific lionfish ( Pterois volitans and P. miles), which are now a primary threat to coral reef conservation throughout the Caribbean. Estimates of lionfish population density and distribution, which are essential for managing the invasion, are currently obtained through standard UVCs. Using two conventional UVC methods, the belt transect and stationary visual census (SVC), we assessed how lionfish detection rates vary with lionfish body size and habitat complexity (measured as rugosity) on invaded continuous and patch reefs off Cape Eleuthera, the Bahamas. Belt transect and SVC surveys performed equally poorly, with both methods failing to detect the presence of lionfish in >50 % of surveys where thorough, lionfish-focussed searches yielded one or more individuals. Conventional methods underestimated lionfish biomass by ~200 %. Crucially, detection rate varied significantly with both lionfish size and reef rugosity, indicating that the application of a single correction factor across habitats and stages of invasion is unlikely to accurately characterize local populations. Applying variable correction factors that account for site-specific lionfish size and rugosity to conventional survey data increased estimates of lionfish biomass, but these remained significantly lower than actual biomass. To increase the accuracy and reliability of estimates of lionfish density and distribution, monitoring programs should use detailed area searches rather than standard visual survey methods. Our study highlights the importance of accounting for sources of spatial and temporal variation in detection to increase the accuracy of survey data from

  6. Genomic architecture of habitat-related divergence and signature of directional selection in the body shapes of Gnathopogon fishes.

    Science.gov (United States)

    Kakioka, Ryo; Kokita, Tomoyuki; Kumada, Hiroki; Watanabe, Katsutoshi; Okuda, Noboru

    2015-08-01

    Evolution of ecomorphologically relevant traits such as body shapes is important to colonize and persist in a novel environment. Habitat-related adaptive divergence of these traits is therefore common among animals. We studied the genomic architecture of habitat-related divergence in the body shape of Gnathopogon fishes, a novel example of lake-stream ecomorphological divergence, and tested for the action of directional selection on body shape differentiation. Compared to stream-dwelling Gnathopogon elongatus, the sister species Gnathopogon caerulescens, exclusively inhabiting a large ancient lake, had an elongated body, increased proportion of the caudal region and small head, which would be advantageous in the limnetic environment. Using an F2 interspecific cross between the two Gnathopogon species (195 individuals), quantitative trait locus (QTL) analysis with geometric morphometric quantification of body shape and restriction-site associated DNA sequencing-derived markers (1622 loci) identified 26 significant QTLs associated with the interspecific differences of body shape-related traits. These QTLs had small to moderate effects, supporting polygenic inheritance of the body shape-related traits. Each QTL was mostly located on different genomic regions, while colocalized QTLs were detected for some ecomorphologically relevant traits that are proxy of body and caudal peduncle depths, suggesting different degree of modularity among traits. The directions of the body shape QTLs were mostly consistent with the interspecific difference, and QTL sign test suggested a genetic signature of directional selection in the body shape divergence. Thus, we successfully elucidated the genomic architecture underlying the adaptive changes of the quantitative and complex morphological trait in a novel system. © 2015 John Wiley & Sons Ltd.

  7. Habitat use and diel vertical migration of bigeye thresher shark: Overlap with pelagic longline fishing gear.

    Science.gov (United States)

    Coelho, Rui; Fernandez-Carvalho, Joana; Santos, Miguel N

    2015-12-01

    Pelagic longliners targeting swordfish and tunas in oceanic waters regularly capture sharks as bycatch, including currently protected species as the bigeye thresher, Alopias superciliosus. Fifteen bigeye threshers were tagged with pop-up satellite archival tags (PSATs) in 2012-2014 in the tropical northeast Atlantic, with successful transmissions received from 12 tags for a total of 907 tracking days. Marked diel vertical movements were recorded on all specimens, with most of the daytime spent in deeper colder water (mean depth = 353 m, SD = 73; mean temperature = 10.7 °C, SD = 1.8) and nighttime spent in warmer water closer to the surface (mean depth = 72 m, SD = 54; mean temperature = 21.9 °C, SD = 3.7). The operating depth of the pelagic longline gear was measured with Minilog Temperature and Depth Recorders (TDRs), and the overlap with habitat utilization was calculated. Overlap is taking place mainly during the night and is higher for juveniles. The results presented herein can be used as inputs for Ecological Risk Assessments for bigeye threshers captured in oceanic tuna fisheries, and serve as a basis for efficient management and conservation of this vulnerable shark species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Evaluating habitat associations of a fish assemblage at multiple spatial scales in a minimally disturbed stream using low-cost remote sensing

    Science.gov (United States)

    Cheek, Brandon D.; Grabowski, Timothy B.; Bean, Preston T.; Groeschel, Jillian R.; Magnelia, Stephan J.

    2016-01-01

    Habitat heterogeneity at multiple scales is a major factor affecting fish assemblage structure. However, assessments that examine these relationships at multiple scales concurrently are lacking. The lack of assessments at these scales is a critical gap in understanding as conservation and restoration efforts typically work at these levels.A combination of low-cost side-scan sonar surveys, aerial imagery using an unmanned aerial vehicle, and fish collections were used to evaluate the relationship between physicochemical and landscape variables at various spatial scales (e.g. micro-mesohabitat, mesohabitat, channel unit, stream reach) and stream–fish assemblage structure and habitat associations in the South Llano River, a spring-fed second-order stream on the Edwards Plateau in central Texas during 2012–2013.Low-cost side-scan sonar surveys have not typically been used to generate data for riverscape assessments of assemblage structure, thus the secondary objective was to assess the efficacy of this approach.The finest spatial scale (micro-mesohabitat) and the intermediate scale (channel unit) had the greatest explanatory power for variation in fish assemblage structure.Many of the fish endemic to the Edwards Plateau showed similar associations with physicochemical and landscape variables suggesting that conservation and restoration actions targeting a single endemic species may provide benefits to a large proportion of the endemic species in this system.Low-cost side-scan sonar proved to be a cost-effective means of acquiring information on the habitat availability of the entire river length and allowed the assessment of how a full suite of riverscape-level variables influenced local fish assemblage structure.

  9. Climatic forcing and larval dispersal capabilities shape the replenishment of fishes and their habitat-forming biota on a tropical coral reef.

    Science.gov (United States)

    Wilson, Shaun K; Depcyznski, Martial; Fisher, Rebecca; Holmes, Thomas H; Noble, Mae M; Radford, Ben T; Rule, Michael; Shedrawi, George; Tinkler, Paul; Fulton, Christopher J

    2018-02-01

    Fluctuations in marine populations often relate to the supply of recruits by oceanic currents. Variation in these currents is typically driven by large-scale changes in climate, in particular ENSO (El Nino Southern Oscillation). The dependence on large-scale climatic changes may, however, be modified by early life history traits of marine taxa. Based on eight years of annual surveys, along 150 km of coastline, we examined how ENSO influenced abundance of juvenile fish, coral spat, and canopy-forming macroalgae. We then investigated what traits make populations of some fish families more reliant on the ENSO relationship than others. Abundance of juvenile fish and coral recruits was generally positively correlated with the Southern Oscillation Index (SOI), higher densities recorded during La Niña years, when the ENSO-influenced Leeuwin Current is stronger and sea surface temperature higher. The relationship is typically positive and stronger among fish families with shorter pelagic larval durations and stronger swimming abilities. The relationship is also stronger at sites on the coral back reef, although the strongest of all relationships were among the lethrinids ( r  = .9), siganids ( r  = .9), and mullids ( r  = .8), which recruit to macroalgal meadows in the lagoon. ENSO effects on habitat seem to moderate SOI-juvenile abundance relationship. Macroalgal canopies are higher during La Niña years, providing more favorable habitat for juvenile fish and strengthening the SOI effect on juvenile abundance. Conversely, loss of coral following a La Niña-related heat wave may have compromised postsettlement survival of coral dependent species, weakening the influence of SOI on their abundance. This assessment of ENSO effects on tropical fish and habitat-forming biota and how it is mediated by functional ecology improves our ability to predict and manage changes in the replenishment of marine populations.

  10. Spatial transferability of habitat suitability models of Nephrops norvegicus among fished areas in the Northeast Atlantic: sufficiently stable for marine resource conservation?

    Directory of Open Access Journals (Sweden)

    Valentina Lauria

    Full Text Available Knowledge of the spatial distribution and habitat associations of species in relation to the environment is essential for their management and conservation. Habitat suitability models are useful in quantifying species-environment relationships and predicting species distribution patterns. Little is known, however, about the stability and performance of habitat suitability models when projected into new areas (spatial transferability and how this can inform resource management. The aims of this study were to model habitat suitability of Norway lobster (Nephrops norvegicus in five fished areas of the Northeast Atlantic (Aran ground, Irish Sea, Celtic Sea, Scotland Inshore and Fladen ground, and to test for spatial transferability of habitat models among multiple regions. Nephrops burrow density was modelled using generalised additive models (GAMs with predictors selected from four environmental variables (depth, slope, sediment and rugosity. Models were evaluated and tested for spatial transferability among areas. The optimum models (lowest AICc for different areas always included depth and sediment as predictors. Burrow densities were generally greater at depth and in finer sediments, but relationships for individual areas were sometimes more complex. Aside from an inclusion of depth and sediment, the optimum models differed between fished areas. When it came to tests of spatial transferability, however, most of the models were able to predict Nephrops density in other areas. Furthermore, transferability was not dependent on use of the optimum models since competing models were also able to achieve a similar level of transferability to new areas. A degree of decoupling between model 'fitting' performance and spatial transferability supports the use of simpler models when extrapolating habitat suitability maps to different areas. Differences in the form and performance of models from different areas may supply further information on the processes

  11. Does resolution of flow field observation influence apparent habitat use and energy expenditure in juvenile coho salmon?

    Science.gov (United States)

    Tullos, Desiree D.; Walter, Cara; Dunham, Jason B.

    2016-01-01

    This study investigated how the resolution of observation influences interpretation of how fish, juvenile Coho Salmon (Oncorhynchus kisutch), exploit the hydraulic environment in streams. Our objectives were to evaluate how spatial resolution of the flow field observation influenced: (1) the velocities considered to be representative of habitat units; (2) patterns of use of the hydraulic environment by fish; and (3) estimates of energy expenditure. We addressed these objectives using observations within a 1:1 scale physical model of a full-channel log jam in an outdoor experimental stream. Velocities were measured with Acoustic Doppler Velocimetry at a 10 cm grid spacing, whereas fish locations and tailbeat frequencies were documented over time using underwater videogrammetry. Results highlighted that resolution of observation did impact perceived habitat use and energy expenditure, as did the location of measurement within habitat units and the use of averaging to summarize velocities within a habitat unit. In this experiment, the range of velocities and energy expenditure estimates increased with coarsening resolution (grid spacing from 10 to 100 cm), reducing the likelihood of measuring the velocities locally experienced by fish. In addition, the coarser resolutions contributed to fish appearing to select velocities that were higher than what was measured at finer resolutions. These findings indicate the need for careful attention to and communication of resolution of observation in investigating the hydraulic environment and in determining the habitat needs and bioenergetics of aquatic biota.

  12. Does resolution of flow field observation influence apparent habitat use and energy expenditure in juvenile coho salmon?

    Science.gov (United States)

    Tullos, D. D.; Walter, C.; Dunham, J.

    2016-12-01

    This study investigated how the resolution of observation influences interpretation of how fish, juvenile Coho Salmon (Oncorhynchus kisutch), exploit the hydraulic environment in streams. Our objectives were to evaluate how spatial resolution of the flow field observation influenced: 1) the velocities considered to be representative of habitat units; 2) patterns of use of the hydraulic environment by fish; and 3) estimates of energy expenditure. We addressed these objectives using observations within a 1:1 scale physical model of a full-channel log jam in an outdoor experimental stream. Velocities were measured with Acoustic Doppler Velocimetry at a 10 cm grid spacing, whereas fish locations and tailbeat frequencies were documented over time using underwater videogrammetry. Results highlighted that resolution of observation did impact perceived habitat use and energy expenditure, as did the location of measurement within habitat units and the use of averaging to summarize velocities within a habitat unit. In this experiment, the range of velocities and energy expenditure estimates increased with coarsening resolution, reducing the likelihood of measuring the velocities locally experienced by fish. In addition, the coarser resolutions contributed to fish appearing to select velocities that were higher than what was measured at finer resolutions. These findings indicate the need for careful attention to and communication of resolution of observation in investigating the hydraulic environment and in determining the habitat needs and bioenergetics of aquatic biota.

  13. Inferred fish behavior its implications for hydroacoustic surveys in nearshore habitats

    Science.gov (United States)

    DuFour, Mark R.; Mayer, Christine M.; Qian, Song S.; Vandergoot, Christopher; Kraus, Richard T.; Kocovsky, Patrick; Warner, David M.

    2018-01-01

    Population availability and vessel avoidance effects on hydroacoustic abundance estimates may be scale dependent; therefore, it is important to evaluate these biases across systems. We performed an inter-ship comparison survey to determine the effect of vessel size, day-night period, depth, and environmental gradients on walleye (Sander vitreus) density estimates in Lake Erie, an intermediate-scaled system. Consistent near-bottom depth distributions coupled with horizontal fish movements relative to vessel paths indicated avoidance behavior contributed to higher walleye densities from smaller vessels in shallow water (i.e., <15 m), although the difference decreased with increasing depth. Diel bank migrations in response to seasonally varying onshore-to-offshore environmental gradients likely contributed to day-night differences in densities between sampling locations and seasons. Spatial and unexplained variation accounted for a high proportion of total variation; however, increasing sampling intensity can mitigate effects on precision. Therefore, researchers should minimize systematic avoidance and availability related biases (i.e., vessel and day-night period) to improve population abundance estimates. Quantifying availability and avoidance behavior effects and partitioning sources of variation provides informed flexibility for designing future hydroacoustic surveys in shallow-water nearshore environments.

  14. Coupled Downscaled Climate Models and Ecophysiological Metrics Forecast Habitat Compression for an Endangered Estuarine Fish.

    Directory of Open Access Journals (Sweden)

    Larry R Brown

    Full Text Available Climate change is driving rapid changes in environmental conditions and affecting population and species' persistence across spatial and temporal scales. Integrating climate change assessments into biological resource management, such as conserving endangered species, is a substantial challenge, partly due to a mismatch between global climate forecasts and local or regional conservation planning. Here, we demonstrate how outputs of global climate change models can be downscaled to the watershed scale, and then coupled with ecophysiological metrics to assess climate change effects on organisms of conservation concern. We employed models to estimate future water temperatures (2010-2099 under several climate change scenarios within the large heterogeneous San Francisco Estuary. We then assessed the warming effects on the endangered, endemic Delta Smelt, Hypomesus transpacificus, by integrating localized projected water temperatures with thermal sensitivity metrics (tolerance, spawning and maturation windows, and sublethal stress thresholds across life stages. Lethal temperatures occurred under several scenarios, but sublethal effects resulting from chronic stressful temperatures were more common across the estuary (median >60 days above threshold for >50% locations by the end of the century. Behavioral avoidance of such stressful temperatures would make a large portion of the potential range of Delta Smelt unavailable during the summer and fall. Since Delta Smelt are not likely to migrate to other estuaries, these changes are likely to result in substantial habitat compression. Additionally, the Delta Smelt maturation window was shortened by 18-85 days, revealing cumulative effects of stressful summer and fall temperatures with early initiation of spring spawning that may negatively impact fitness. Our findings highlight the value of integrating sublethal thresholds, life history, and in situ thermal heterogeneity into global change impact

  15. Coupled downscaled climate models and ecophysiological metrics forecast habitat compression for an endangered estuarine fish

    Science.gov (United States)

    Brown, Larry R.; Komoroske, Lisa M; Wagner, R Wayne; Morgan-King, Tara; May, Jason T.; Connon, Richard E; Fangue, Nann A.

    2016-01-01

    Climate change is driving rapid changes in environmental conditions and affecting population and species’ persistence across spatial and temporal scales. Integrating climate change assessments into biological resource management, such as conserving endangered species, is a substantial challenge, partly due to a mismatch between global climate forecasts and local or regional conservation planning. Here, we demonstrate how outputs of global climate change models can be downscaled to the watershed scale, and then coupled with ecophysiological metrics to assess climate change effects on organisms of conservation concern. We employed models to estimate future water temperatures (2010–2099) under several climate change scenarios within the large heterogeneous San Francisco Estuary. We then assessed the warming effects on the endangered, endemic Delta Smelt, Hypomesus transpacificus, by integrating localized projected water temperatures with thermal sensitivity metrics (tolerance, spawning and maturation windows, and sublethal stress thresholds) across life stages. Lethal temperatures occurred under several scenarios, but sublethal effects resulting from chronic stressful temperatures were more common across the estuary (median >60 days above threshold for >50% locations by the end of the century). Behavioral avoidance of such stressful temperatures would make a large portion of the potential range of Delta Smelt unavailable during the summer and fall. Since Delta Smelt are not likely to migrate to other estuaries, these changes are likely to result in substantial habitat compression. Additionally, the Delta Smelt maturation window was shortened by 18–85 days, revealing cumulative effects of stressful summer and fall temperatures with early initiation of spring spawning that may negatively impact fitness. Our findings highlight the value of integrating sublethal thresholds, life history, and in situ thermal heterogeneity into global change impact assessments. As

  16. Measuring fish and their physical habitats: Versatile 2D and 3D video techniques with user-friendly software

    Science.gov (United States)

    Neuswanger, Jason R.; Wipfli, Mark S.; Rosenberger, Amanda E.; Hughes, Nicholas F.

    2017-01-01

    Applications of video in fisheries research range from simple biodiversity surveys to three-dimensional (3D) measurement of complex swimming, schooling, feeding, and territorial behaviors. However, researchers lack a transparently developed, easy-to-use, general purpose tool for 3D video measurement and event logging. Thus, we developed a new measurement system, with freely available, user-friendly software, easily obtained hardware, and flexible underlying mathematical methods capable of high precision and accuracy. The software, VidSync, allows users to efficiently record, organize, and navigate complex 2D or 3D measurements of fish and their physical habitats. Laboratory tests showed submillimetre accuracy in length measurements of 50.8 mm targets at close range, with increasing errors (mostly <1%) at longer range and for longer targets. A field test on juvenile Chinook salmon (Oncorhynchus tshawytscha) feeding behavior in Alaska streams found that individuals within aggregations avoided the immediate proximity of their competitors, out to a distance of 1.0 to 2.9 body lengths. This system makes 3D video measurement a practical tool for laboratory and field studies of aquatic or terrestrial animal behavior and ecology.

  17. Hydro-power production and fish habitat suitability: Assessing impact and effectiveness of ecological flows at regional scale

    Science.gov (United States)

    Ceola, Serena; Pugliese, Alessio; Ventura, Matteo; Galeati, Giorgio; Montanari, Alberto; Castellarin, Attilio

    2018-06-01

    Anthropogenic activities along streams and rivers may be of major concern for fluvial ecosystems, e.g. abstraction and impoundment of surface water resources may profoundly alter natural streamflow regimes. An established approach aimed at preserving the behavior and distribution of fluvial species relies on the definition of ecological flows (e-flows) downstream of dams and diversion structures. E-flow prescriptions are usually set by basin authorities at regional scale, often without a proper assessment of their impact and effectiveness. On the contrary, we argue that e-flows should be identified on the basis of (i) regional and (ii) quantitative assessments. We focus on central Italy and evaluate the effects on habitat suitability of two near-threatened fish species (i.e. Barbel and Chub) and an existing hydro-power network when shifting from the current time-invariant e-flow policy to a tighter and seasonally-varying soon-to-be-enforced one. Our example clearly shows that: (a) quantitative regional scale assessments are viable even when streamflow observations are entirely missing at study sites; (b) aprioristic e-flows policies may impose releases that exceed natural streamflows for significantly long time intervals (weeks, or months); (c) unduly tightening e-flow policies may heavily impact regional hydro-power productivity (15% and 42% losses on annual and seasonal basis, respectively), yet resulting in either marginal or negligible improvements of fluvial ecosystem.

  18. The mangrove as a temporary habitat for fish: the Eucinostomus Species at Guaratuba Bay, Brazil (25º 52'S;48º 39'W)

    OpenAIRE

    Chaves,Paulo de Tarso C.; Otto,Gislaine

    1999-01-01

    Several coastal fish use the estuarine habitat during a part of their life cycle. These sites are considered good for the reproductive activity, as well as for the growth of larvae and juveniles. Concerning the Gerreidae, however, many studies reveal that most species leave the estuaries to reproduce at sea. At Guaratuba Bay, southern Brazil, this family is represented by three genera and five species, which make an important fraction of the local assemblage. The present study investigated th...

  19. Stable carbon and nitrogen isotopes as indicators of habitat selection by cultured and natural fish preferences. A case study of ayu

    International Nuclear Information System (INIS)

    Wei Huang; Kyushu University, Fukuoka; Xixi Chen; Xiaobo Liu; Shinichiro Yano

    2017-01-01

    Reliable indicators on whether natural and cultured fish exhibit differences in habitat preferences are lacking. In this study, δ 13 C and δ 15 N were used to distinguish the habitat preferences of cultured versus natural ayu and their prey (periphyton) in a typical riffle-pool river reach. It found that the δ 13 C of natural ayu (-13.747‰) was consistent with that of periphyton in riffles (-14.611‰), while the δ 13 C of cultured ayu (-19.088‰) was consistent with that of periphyton (-19.711‰) in pools. The results indicated that cultured ayu appear to favor pools whereas natural ayu favor riffles, and δ 13 C and δ 15 N represent potential reliable indicators of habitat preferences of cultured ayu. (author)

  20. The nonindigenous fish Perccottus glenii in the Tisza River drainage, Eastern Slovakia – I. part: history of invasion, habitat associations and genetic characteristics (results up to the year 2006)

    Czech Academy of Sciences Publication Activity Database

    Lusk, S.; Koščo, J.; Lusková, V.; Halačka, Karel; Mendel, Jan; Košúth, P.

    2017-01-01

    Roč. 8, č. 8 (2017), s. 127-143 ISSN 1212-1312 Institutional support: RVO:68081766 Keywords : invasive fishes * Odontobutidae * Perccottus glenii * dispersal * habitat * genetics Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology

  1. Influence of forest and rangeland management on anadromous fish habitat in Western North America: processing mills and camps.

    Science.gov (United States)

    Donald C. Schmiege

    1980-01-01

    For nearly 50 years, effluents from pulp and paper mills have been known to be toxic to fish and other aquatic animals. Lethal concentrations have been determined for several species of fish and other organisms. Many factors- -such as water temperature, age of fish, and additional stresses—affect the ability of fish to withstand pollution. Kraft mill wastes...

  2. REPRODUCTION, HABITAT UTILIZATION, AND MOVEMENTS OF HOGFISH (LACHNOLAIMUS MAXIMUS) IN THE FLORIDA KEYS, U.S.A.: COMPARISONS FROM FISHED VERSUS UNFISHED HABITATS (CRCP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — in situ visual surveys of hogfish reproductive behavior, spawning and courtship events, movements estimates of habitat composition of the seafloor

  3. FBSAB Recruit Fish Habitat Use Surveys at Hawaii Island (Big Island), Main Hawaiian Islands, 2009 (NODC Accession 0073870)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Recruit-habitat relations (habitat use by recruits) were surveyed at 1 to ~5 m depths based on all "Encounters" of singletons and "groups" (where a group comprised...

  4. Communities of gastrointestinal helminths of fish in historically connected habitats: habitat fragmentation effect in a carnivorous catfish Pelteobagrus fulvidraco from seven lakes in flood plain of the Yangtze River, China

    Directory of Open Access Journals (Sweden)

    Yao Wei J

    2009-04-01

    Full Text Available Abstract Background Habitat fragmentation may result in the reduction of diversity of parasite communities by affecting population size and dispersal pattern of species. In the flood plain of the Yangtze River in China, many lakes, which were once connected with the river, have become isolated since the 1950s from the river by the construction of dams and sluices, with many larger lakes subdivided into smaller ones by road embankments. These artificial barriers have inevitably obstructed the migration of fish between the river and lakes and also among lakes. In this study, the gastrointestinal helminth communities were investigated in a carnivorous fish, the yellowhead catfish Pelteobagrus fulvidraco, from two connected and five isolated lakes in the flood plain in order to detect the effect of lake fragmentation on the parasite communities. Results A total of 11 species of helminths were recorded in the stomach and intestine of P. fulvidraco from seven lakes, including two lakes connected with the Yangtze River, i.e. Poyang and Dongting lakes, and five isolated lakes, i.e. Honghu, Liangzi, Tangxun, Niushan and Baoan lakes. Mean helminth individuals and diversity of helminth communities in Honghu and Dongting lakes was lower than in the other five lakes. The nematode Procamallanus fulvidraconis was the dominant species of communities in all the seven lakes. No significant difference in the Shannon-Wiener index was detected between connected lakes (0.48 and isolated lakes (0.50. The similarity of helminth communities between Niushan and Baoan lakes was the highest (0.6708, and the lowest was between Tangxun and Dongting lakes (0.1807. The similarity was low between Dongting and the other lakes, and the similarity decreased with the geographic distance among these lakes. The helminth community in one connected lake, Poyang Lake was clustered with isolated lakes, but the community in Dongting Lake was separated in the tree. Conclusion The

  5. Synergistic interactions within disturbed habitats between temperature, relative humidity and UVB radiation on egg survival in a diadromous fish.

    Directory of Open Access Journals (Sweden)

    Michael J H Hickford

    Full Text Available Anthropogenic impacts, including urbanization, deforestation, farming, and livestock grazing have altered riparian margins worldwide. One effect of changes to riparian vegetation is that the ground-level light, temperature, and humidity environment has also been altered. Galaxias maculatus, one of the most widely distributed fishes of the southern hemisphere, lays eggs almost exclusively beneath riparian vegetation in tidally influenced reaches of rivers. We hypothesized that the survival of these eggs is greatly affected by the micro-environment afforded by vegetation, particularly relating to temperature, humidity and UVB radiation. We experimentally reduced riparian vegetation height and altered shading characteristics, tracked egg survival, and used small ground-level temperature, humidity and UVB sensors to relate survival to ground-level effects around egg masses. The ground-level physical environment was markedly different from the surrounding ambient conditions. Tall dense riparian vegetation modified ambient conditions to produce a buffered temperature regime with constant high relative humidity, generally above 90%, and negligible UVB radiation at ground-level. Where vegetation height was reduced, frequent high temperatures, low humidity, and high UVB irradiances reduced egg survival by up to 95%. Temperature effects on egg survival were probably indirect, through reduced humidity, because developing eggs are known to survive in a wide range of temperatures. In this study, it was remarkable how such small variations in relatively small sites could have such a large effect on egg survival. It appears that modifications to riparian vegetation and the associated changes in the physical conditions of egg laying sites are major mechanisms affecting egg survival. The impacts associated with vegetational changes through human-induced disturbances are complex yet potentially devastating. These effects are particularly important because they

  6. Improvement of Anadromous Fish Habitat and Passage in Omak Creek, 2008 Annual Report : February 1, 2008 to January 31, 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Dasher, Rhonda; Fisher, Christopher [Colville Confederated Tribes

    2009-06-09

    During the 2008 season, projects completed under BPA project 2000-100-00 included installation of riparian fencing, maintenance of existing riparian fencing, monitoring of at-risk culverts and installation of riparian vegetation along impacted sections of Omak Creek. Redd and snorkel surveys were conducted in Omak Creek to determine steelhead production. Canopy closure surveys were conducted to monitor riparian vegetation recovery after exclusion of cattle since 2000 from a study area commonly known as the Moomaw property. Additional redd and fry surveys were conducted above Mission Falls and in the lower portion of Stapaloop Creek to try and determine whether there has been successful passage at Mission Falls. Monitoring adult steelhead trying to navigate the falls resulted in the discovery of shallow pool depth at an upper pool that is preventing many fish from successfully navigating the entire falls. The Omak Creek Habitat and Passage Project has worked with NRCS to obtain additional funds to implement projects in 2009 that will address passage at Mission Falls, culvert replacement, as well as additional riparian planting. The Omak Creek Technical Advisory Group (TAG) is currently revising the Omak Creek Watershed Assessment. In addition, the group is revising strategy to focus efforts in targeted areas to provide a greater positive impact within the watershed. In 2008 the NRCS Riparian Technical Team was supposed to assess areas within the watershed that have unique problems and require special treatments to successfully resolve the issues involved. The technical team will be scheduled for 2009 to assist the TAG in developing strategies for these special areas.

  7. Ecological response of a multi-purpose river development project using macro-invertebrates richness and fish habitat value

    International Nuclear Information System (INIS)

    Pellaud, M.

    2007-05-01

    SYNERGIE project optimizer taking into account all the project poles. The system of interest is composed of a buffering reservoir of ca. 1 km 2 , a run-off-the- river dam, a hydro power-plant, and an artificial river ensuring longitudinal continuum. The primary part of the work consisted in an extensive literature review on system understanding, anthropic alterations and quality assessment / prediction tool available. The approach consisted of two levels (1) the general ecological considerations to be followed at the project reservoir scale and (2) the measure of the downstream ecological response through modeling. General ecological considerations at the reservoir scale were the implementation of an artificial river ensuring longitudinal connectivity, implementation of artificial ecotonal boosters and the allocation of a sanctuary zone with limited public access. The downstream measure of ecological integrity was based on the choice of three taxonomic groups of macroinvertebrates and four ecological guilds (groups) of fish. Mayflies (Ephemeroptera), stoneflies (Plecoptera) and caddisflies (Trichoptera) richness were predicted using simple hydrological and morphological covariates (i.e. substrate, current speed,...) coupled to system specific faunistic surveys. Bank, riffle, pool and midstream fish guilds habitat values were determined using existing methods. By using the simulation results of river development project scenarios as inputs, the ecological response (i.e. the measure of ecological integrity) was computed following the assumptions that high predicted macro-invertebrate richness and high guilds habitat values were linked to a high ecological integrity. An emphasis on the hydro peaking effect in relation with river morphology was performed on macroinvertebrates. They were found to respond well to hydrological and morphological changes induced by river development projects while the approach by fish habitat value encountered limitations in its applicability. Four

  8. Identifying temporal bottlenecks for the conservation of large-bodied fishes: Lake Sturgeon (Acipenser fulvescens show highly restricted movement and habitat use over-winter

    Directory of Open Access Journals (Sweden)

    Donnette Thayer

    2017-04-01

    Full Text Available The relationship between species’ size and home range size has been well studied. In practice, home range may provide a good surrogate of broad spatial coverage needed for species conservation, however, many species can show restricted movement during critical life stages, such as breeding and over-wintering. This suggests the existence of either a behavioral or habitat mediated ‘temporal bottleneck,’ where restricted or sedentary movement can make populations more susceptible to harm during specific life stages. Here, we study over-winter movement and habitat use of Lake Sturgeon (Acipenser fulvescens, the largest freshwater fish in North America. We monitored over-winter movement of 86 fish using a hydro-acoustic receiver array in the South Saskatchewan River, Canada. Overall, 20 fish remained within our study system throughout the winter. Lake Sturgeon showed strong aggregation and sedentary movement over-winter, demonstrating a temporal bottleneck. Movement was highly restricted during ice-on periods (ranging from 0.9 km/day in November and April to 0.2 km/day in mid-November to mid-March, with Lake Sturgeon seeking deeper, slower pools. We also show that Lake Sturgeon have strong aggregation behavior, where distance to conspecifics decreased (from 575 to 313 m in preparation for and during ice-on periods. Although the Lake Sturgeon we studied had access to 1100 kilometers of unfragmented riverine habitat, we show that during the over-winter period Lake Sturgeon utilized a single, deep pool (<0.1% of available habitat. The temporal discrepancy between mobile and sedentary behaviors in Lake Sturgeon suggest adaptive management is needed with more localized focus during periods of temporal bottlenecks, even for large-bodied species.

  9. Fish population and habitat analysis in Buck Creek, Washington, prior to recolonization by anadromous salmonids after the removal of Condit Dam

    Science.gov (United States)

    Allen, M. Brady; Burkhardt, Jeanette; Munz, Carrie; Connolly, Patrick J.

    2012-01-01

    We assessed the physical and biotic conditions in the part of Buck Creek, Washington, potentially accessible to anadromous fishes. This creek is a major tributary to the White Salmon River upstream of Condit Dam, which was breached in October 2011. Habitat and fish populations were characterized in four stream reaches. Reach breaks were based on stream gradient, water withdrawals, and fish barriers. Buck Creek generally was confined, with a single straight channel and low sinuosity. Boulders and cobble were the dominant stream substrate, with limited gravel available for spawning. Large-cobble riffles were 83 percent of the available fish habitat. Pools, comprising 15 percent of the surface area, mostly were formed by bedrock with little instream cover and low complexity. Instream wood averaged 6—10 pieces per 100 meters, 80 percent of which was less than 50 centimeters in diameter. Water temperature in Buck Creek rarely exceeded 16 degrees Celsius and did so for only 1 day at river kilometer (rkm) 3 and 11 days at rkm 0.2 in late July and early August 2009. The maximum temperature recorded was 17.2 degrees Celsius at rkm 0.2 on August 2, 2009. Minimum summer discharge in Buck Creek was 3.3 cubic feet per second downstream of an irrigation diversion (rkm 3.1) and 7.7 cubic feet per second at its confluence with the White Salmon River. Rainbow trout (Oncorhynchus mykiss) was the dominant fish species in all reaches. The abundance of age-1 or older rainbow trout was similar between reaches. However, in 2009 and 2010, the greatest abundance of age-0 rainbow trout (8 fish per meter) was in the most downstream reach. These analyses in Buck Creek are important for understanding the factors that may limit fish abundance and productivity, and they will help identify and prioritize potential restoration actions. The data collected constitute baseline information of pre-dam removal conditions that will allow assessment of changes in fish populations now that Condit Dam has

  10. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir; Skookumchuck Creek Juvenile Bull Trout and Fish Habitat Monitoring Program, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Cope, R.

    2003-06-01

    The Skookumchuck Creek juvenile bull trout (Salvelinus confluentus) and fish habitat-monitoring program is a co-operative initiative of the British Columbia Ministry of Water, Land, and Air Protection and Bonneville Power Administration. This project was commissioned in planning for fish habitat protection and forest development within the Skookumchuck Creek watershed and was intended to expand upon similar studies initiated within the Wigwam River from 2000 to 2002. The broad intent is to develop a better understanding of juvenile bull trout and Westslope cutthroat trout recruitment and the ongoing hydrologic and morphologic processes, especially as they relate to spawning and rearing habitat quality. The 2002 project year represents the first year of a long-term bull trout-monitoring program with current studies focused on collecting baseline information. This report provides a summary of results obtained to date. Bull trout represented 72.4% of the catch. Fry dominated the catch because site selection was biased towards electrofishing sample sites which favored high bull trout fry capture success. The mean density of all juvenile bull trout was estimated to be 6.6 fish/100m{sup 2}. This represents one-half the densities reported for the 2002 Wigwam River enumeration program, even though enumeration of bull trout redds was an order of magnitude higher for the Wigwam River. Typically, areas with combined fry and juvenile densities greater than 1.5 fish per 100 m{sup 2} are cited as critical rearing areas. Trends in abundance appeared to be related to proximity to spawning areas, bed material size, and water depth. Cover components utilized by juvenile and adult bull trout and cutthroat trout were interstices, boulder, depth, overhead vegetation and LWD. The range of morphological stream types encompass the stable and resilient spectrum (C3(1), C3 and B3c). The Skookumchuck can be generalized as a slightly entrenched, meandering, riffle-pool, cobble dominated

  11. Development of habitat suitability criteria for Neotropical stream fishes and an assessment of their transferability to streams with different conservation status

    Directory of Open Access Journals (Sweden)

    Fabrício Barreto Teresa

    Full Text Available We assessed the preference of 10 fish species for depth and velocity conditions in forested streams from southeastern Brazil using habitat suitability criteria (HSC curves. We also tested whether preference patterns observed in forested streams can be transferred to deforested streams. We used data from fish sampled in 62 five-meter sites in three forested streams to construct preference curves. Astyanax altiparanae, A. fasciatus, Knodus moenkhausii, and Piabina argentea showed a preference for deep slow habitats, whereas Aspidoras fuscoguttatus, Characidium zebra, Cetopsorhamdia iheringi, Pseudopimelodus pulcher, and Hypostomus nigromaculatus showed an opposite pattern: preference for shallow fast habitats. Hypostomus ancistroides showed a multimodal pattern of preference for depth and velocity. To evaluate whether patterns observed in forested streams may be transferred to deforested streams, we sampled 64 five-meters sites in three deforested streams using the same methodology. The preference for velocity was more consistent than for depth, as success in the transferability criterion was 86% and 29% of species, respectively. This indicates that velocity is a good predictor of species abundance in streams, regardless of their condition

  12. Habitat partitioning, habits and convergence among coastal nektonic fish species from the São Sebastião Channel, southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Fernando Zaniolo Gibran

    Full Text Available Based on a fish survey and preliminary underwater observations, 17 "morphotypes" were identified that characterize the morphological diversity found within 27 nektonic fish species sampled at São Sebastião Channel. Such "morphotypes" were studied using an ecomorphological approach, with the intention to investigate similarities and differences in shape and habits. Underwater field observations were also performed, to verify if the lifestyle of these species, such as vertical occupation of the water column and the habitat use, are in accordance with their distribution in the morphospace. The results, complemented with data from scientific literature on the taxonomy and phylogenies of these species, allowed discussing some of the typical cases of convergent and divergent evolution. Some of the ecomorphological clusters had no phylogenetic support although this is probably due to the environmental conditions in which theirs members have evolved. The body shape and fins positions of a fish clearly influence its ecological performance and habitat use, corroborating the ecomorphological hypothesis on the intimate link between phenotype and ecology.

  13. Fish breeding and habitat

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.

    stream_size 2 stream_content_type text/plain stream_name Biodiversity_Western_Ghats_Inf_Kit_1994_3.11_1.pdf.txt stream_source_info Biodiversity_Western_Ghats_Inf_Kit_1994_3.11_1.pdf.txt Content-Encoding ISO-8859-1 Content-Type... text/plain; charset=ISO-8859-1 ...

  14. Fish Habitat Utilization Patterns and Evaluation of the Efficacy of Marine Protected Areas in Hawaii: Integration of NOAA Digital Benthic Habitat Mapping and Coral Reef Ecological Studies

    OpenAIRE

    Friedlander, Alan M.; Brown, Eric; Monaco, Mark E.; Clarke, Athline

    2006-01-01

    Over the past four decades, the state of Hawaii has developed a system of eleven Marine Life Conservation Districts (MLCDs) to conserve and replenish marine resources around the state. Initially established to provide opportunities for public interaction with the marine environment, these MLCDs vary in size, habitat quality, and management regimes, providing an excellent opportunity to test hypotheses concerning marine protected area (MPA) design and function using multiple discreet sampling ...

  15. Assessing the distribution, origins, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in the habitat of Medaka fish at Keramat Kebo River and Estuary, Tangerang, Banten

    Science.gov (United States)

    Falahudin, D.; Yogaswara, D.; Khozanah; Edward

    2018-02-01

    Indonesia has a variety of coastal systems such as coral reef, mangrove, seagrass, mudflat, and dune, each of which has high biodiversity of species. The primary concern in Indonesia is that rapid economic growth would endanger some essential natural ecosystems and resources, and cause deterioration of environmental condition. As a part of bioindicator development to recognize pollutants with small fish of the genus Oryzias, this study was conducted to assess baseline status of PAHs distribution and sources in seawater, sediments and Oryzias fish. The ecological risk of PAHs in sediments was also evaluated. Concentrations of fifteen USEPA PAH based on GCMS analysis in seawater, sediments, and Oryzias fish vary from 0.00 to 30,600 ng/l, 6.7 to 138.6 ng/g dry weight (dw) and 25.2 to 30.5 ng/g dw, respectively. Based on the diagnostic ratio of PAH compounds, the potential sources of PAHs originated mainly from pyrogenic sources. The status of sediment from this Oryzias fish habitat was considered to be low polluted with PAHs.

  16. Spatial pattern of a fish assemblage in a seasonal tropical wetland: effects of habitat, herbaceous plant biomass, water depth, and distance from species sources

    Directory of Open Access Journals (Sweden)

    Izaias M Fernandes

    Full Text Available The influence of habitat, biomass of herbaceous vegetation, depth and distance from permanent water bodies on the structure of fish assemblages of a seasonal floodplain was evaluated using data collected along 22 transects in an area of 25 km² in the floodplain of Cuiabá River, Pantanal, Brazil. Each transect was sampled for fish using throw traps and gillnets during the flood period of 2006. Multivariate multiple regression analysis and multivariate analysis of covariance indicated that depth was the only variable that affected the structure of the fish assemblage, both for quantitative data (abundance and qualitative data (presence-absence. Species such as Neofundulus parvipinnis and Laetacara dorsigera were more abundant in shallower sites (below 25 cm, while Serrasalmus maculatus and Metynnis mola were found mostly in the deepest areas (over 55 cm. However, species such as Hoplias malabaricus and Hoplerythrinus unitaeniatus occurred at all sampled depths. Although the distribution of most species was restricted to a few sites, there was a positive relationship between species richness and depth of the water body. Surprisingly, the replacement of native vegetation by exotic pasture did not affect the fish assemblage in the area, at the probability level considered.

  17. Landscape-scale Habitat Templates and Life Histories of Endangered and Invasive Fish Species in Large Rivers of the Mid-Continent USA (Invited)

    Science.gov (United States)

    Jacobson, R. B.; Braaten, P. J.; Chapman, D.; DeLonay, A. J.

    2013-12-01

    Many fish species migrate through river systems to complete their life cycles, occupying specific habitats during specific life stages. Regional geomorphology sets a template for their habitat-use patterns and ontogenetic development. In large rivers of the Mid-continent USA, understanding of relations of fish life histories to landscape-scale habitat templates informs recovery of endangered species and prevention of spread of invasive species. The endangered pallid sturgeon has evolved in the Missouri-Mississippi river system over 150 Ma. Its present-day distribution probably results from extensive drainage re-arrangements during the Pleistocene, followed by contemporary fragmentation. The reproductive and early life-stage needs of pallid sturgeon encompass hundreds of km, as adults migrate upstream to spawn and free embryos and larvae disperse downstream. Spawning requires coarse, hard substrate for incubation of adhesive eggs but adult pallid sturgeon are found predominately over sand, indicating that coarse substrate is a critical but transient habitat need. Once hatched, free-embryos initiate 9-17 days of downstream dispersal that distributes them over several hundreds of km. Lotic conditions at the dispersal terminus are required for survival. Persistent recruitment failure has been attributed to dams and channelization, which have fragmented migration and dispersal corridors, altered flow regimes, and diminished rearing habitats. Key elements of the natural history of this species remain poorly understood because adults are rare and difficult to observe, while the earliest life stages are nearly undetectable. Recent understanding has been accelerated using telemetry and hydroacoustics, but such assessments occur in altered systems and may not be indicative of natural behaviors. Restoration activities attempt - within considerable uncertainty -- to restore elements of the habitat template where they are needed. In comparison, invasive Asian carps have been

  18. Comparing relative abundance, lengths, and habitat of temperate reef fishes using simultaneous underwater visual census, video, and trap sampling

    KAUST Repository

    Bacheler, NM; Geraldi, NR; Burton, ML; Muñ oz, RC; Kellison, GT

    2017-01-01

    of the reef fish community along the southeastern US Atlantic coast. In total, 117 taxa were observed by underwater visual census (UVC), stationary video, and chevron fish traps, with more taxa being observed by UVC (100) than video (82) or traps (20

  19. FBSAD Reef Fish-Habitat Quadrat Surveys at Hawaii Island (Big Island), Main Hawaiian Islands, 2005 (NODC Accession 0046935)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Habitat quadrats were surveyed at 8-13 m depths using shore-based transects swum at 3 longshore sites on the leeward coast (North and South Kohala districts) of the...

  20. Spatial patterns and GIS habitat modelling of Solea solea, Pleuronectes flesus and Limanda limanda fish larvae in the eastern English Channel during the spring

    Directory of Open Access Journals (Sweden)

    Philippe Koubbi

    2006-10-01

    Full Text Available The spring distribution of larval fish stages of flatfishes in the Dover Strait (eastern English Channel was studied in 1995 and 1999. Fish larvae were identified and sorted according to developmental stages in order to study their ontogenic distribution. The French coastal waters are characterised by an unstable tide-dependent front, which influences larval dispersion. In spring, the French coastal waters have a high phytoplanktonic production. They have higher temperatures, lower salinities and differences in current intensity compared with the central English Channel waters. Generalised Additive Models (GAM combined with Geographic Information Systems (GIS were used to model the potential habitats of life stages considering data from three major surveys in this area. The models were developed by coupling presence-absence models with non-null abundance models. The potential habitat of larval stages was then mapped using a geostatistical method (kriging. This revealed different species strategies in which young stages were abundant in central waters and older ones were distributed mainly along the French and Belgian coasts. It is concluded that the central English waters are important for young stages after hatching and that coastal waters are essential nurseries for future juveniles. The models of three flatfish species having similar life cycle strategies are presented here: Limanda limanda, Platichthys flesus and Solea solea.

  1. Iskuulpa Watershed Management Plan : A Five-Year Plan for Protecting and Enhancing Fish and Wildlife Habitats in the Iskuulpa Watershed.

    Energy Technology Data Exchange (ETDEWEB)

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    2003-01-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to protect, enhance, and mitigate wildlife and wildlife habitat and watershed resources in the Iskuulpa Watershed. The Iskuulpa Watershed Project was approved as a Columbia River Basin Wildlife Fish and Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1998. Iskuulpa will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the John Day and McNary Hydroelectric facilities on the Columbia River. By funding the enhancement and operation and maintenance of the Iskuulpa Watershed, BPA will receive credit towards their mitigation debt. The purpose of the Iskuulpa Watershed management plan update is to provide programmatic and site-specific standards and guidelines on how the Iskuulpa Watershed will be managed over the next three years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management.

  2. Assimilation of temperature and hydraulic gradients for quantifying the spatial variability of streambed hydraulics

    Science.gov (United States)

    Huang, Xiang; Andrews, Charles B.; Liu, Jie; Yao, Yingying; Liu, Chuankun; Tyler, Scott W.; Selker, John S.; Zheng, Chunmiao

    2016-08-01

    the result of heterogeneous streambed hydraulic characteristics in these areas. Our results have significant implications for hyporheic micro-habitats, fish spawning and other wildlife incubation, regional flow and hyporheic solute transport models in the Heihe River Basin, as well as in other similar hydrologic settings.

  3. Diel pattern of utilization of shallow sandy habitats by fishes in temperate lowland rivers of various size

    Directory of Open Access Journals (Sweden)

    Michał Nowak

    2015-12-01

    This suggests that overall changeover of fish assemblage reflects interspecific interactions ongoing in a given stream section and species composition might explain differences observed between various rivers better than the river discharge.

  4. Can north american fish passage tools work for South american migratory fishes?

    Directory of Open Access Journals (Sweden)

    Claudio Rafael Mariano Baigún

    Full Text Available In North America, the Numerical Fish Surrogate (NFS is used to design fish bypass systems for emigrating juvenile salmon as they migrate from hatchery outfalls and rearing habitats to adult habitat in the oceans. The NFS is constructed of three linked modules: 1 a computational fluid dynamics model describes the complex flow fields upstream of dams at a scale sufficiently resolved to analyze, understand and forecast fish movement, 2 a particle tracking model interpolates hydraulic information from the fixed nodes of the computational fluid model mesh to multiple locations relevant to migrating fish, and 3 a behavior model simulates the cognition and behavior of individual fish in response to the fluid dynamics predicted by the computational fluid dynamics model. These three modules together create a virtual reality where virtual fish exhibit realistic dam approach behaviors and can be counted at dam exits in ways similar to the real world. Once calibrated and validated with measured fish movement and passage data, the NFS can accurately predict fish passage proportions with sufficient precision to allow engineers to select one optimum alternative from among many competing structural or operational bypass alternatives. Although South American fish species are different from North American species, it is likely that the basic computational architecture and numerical methods of the NFS can be used for fish conservation in South America. Consequently, the extensive investment made in the creation of the NFS need not be duplicated in South America. However, its use in South America will require that the behavioral response of the continent's unique fishes to hydrodynamic cues must be described, codified and tested before the NFS can be used to conserve fishes by helping design efficient South American bypass systems. To this end, we identify studies that could be used to describe the movement behavior of South American fishes of sufficient detail

  5. Physical habitat classification and instream flow modeling to determine habitat availability during low-flow periods, North Fork Shenandoah River, Virginia

    Science.gov (United States)

    Krstolic, Jennifer L.; Hayes, Donald C.; Ruhl, Peter M.

    2006-01-01

    Increasing development and increasing water withdrawals for public, industrial, and agricultural water supply threaten to reduce streamflows in the Shenandoah River basin in Virginia. Water managers need more information to balance human water-supply needs with the daily streamflows necessary for maintaining the aquatic ecosystems. To meet the need for comprehensive information on hydrology, water supply, and instream-flow requirements of the Shenandoah River basin, the U.S. Geological Survey and the Northern Shenandoah Valley Regional Commission conducted a cooperative investigation of habitat availability during low-flow periods on the North Fork Shenandoah River. Historic streamflow data and empirical data on physical habitat, river hydraulics, fish community structure, and recreation were used to develop a physical habitat simulation model. Hydraulic measurements were made during low, medium, and high flows in six reaches at a total of 36 transects that included riffles, runs, and pools, and that had a variety of substrates and cover types. Habitat suitability criteria for fish were developed from detailed fish-community sampling and microhabitat observations. Fish were grouped into four guilds of species and life stages with similar habitat requirements. Simulated habitat was considered in the context of seasonal flow regimes to show the availability of flows that sustain suitable habitat during months when precipitation and streamflow are scarce. The North Fork Shenandoah River basin was divided into three management sections for analysis purposes: the upper section, middle section, and lower section. The months of July, August, and September were chosen to represent a low-flow period in the basin with low mean monthly flows, low precipitation, high temperatures, and high water withdrawals. Exceedance flows calculated from the combined data from these three months describe low-flow periods on the North Fork Shenandoah River. Long-term records from three

  6. Incipient sympatric speciation in Midas cichlid fish from the youngest and one of the smallest crater lakes in Nicaragua due to differential use of the benthic and limnetic habitats?

    Science.gov (United States)

    Kautt, Andreas F; Machado-Schiaffino, Gonzalo; Torres-Dowdall, Julian; Meyer, Axel

    2016-08-01

    Understanding how speciation can occur without geographic isolation remains a central objective in evolutionary biology. Generally, some form of disruptive selection and assortative mating are necessary for sympatric speciation to occur. Disruptive selection can arise from intraspecific competition for resources. If this competition leads to the differential use of habitats and variation in relevant traits is genetically determined, then assortative mating can be an automatic consequence (i.e., habitat isolation). In this study, we caught Midas cichlid fish from the limnetic (middle of the lake) and benthic (shore) habitats of Crater Lake Asososca Managua to test whether some of the necessary conditions for sympatric speciation due to intraspecific competition and habitat isolation are given. Lake As. Managua is very small (Midas cichlids, Amphilophus tolteca. We found that fish from the limnetic habitat were more elongated than fish collected from the benthic habitat, as would be predicted from ecomorphological considerations. Stable isotope analyses confirmed that the former also exhibit a more limnetic lifestyle than the latter. Furthermore, split-brood design experiments in the laboratory suggest that phenotypic plasticity is unlikely to explain much of the observed differences in body elongation that we observed in the field. Yet, neutral markers (microsatellites) did not reveal any genetic clustering in the population. Interestingly, demographic inferences based on RAD-seq data suggest that the apparent lack of genetic differentiation at neutral markers could simply be due to a lack of time, as intraspecific competition may only have begun a few hundred generations ago.

  7. Increased Levels of Harvest and Habitat Law Enforcement and Public Awareness for Anadromous Salmonids and Resident Fish in the Columbia River Basin -- Demonstration Period, 1992--1994, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    NeSmith, Frank (Idaho Department of Fish and Game, Boise, ID); Long, Mack (Montana Department of Fish, Wildlife and Paks, Kalispell, MT); Matthews, Dayne (Washington Department of Fish and Wildlife, Olympia, WA)

    1995-06-01

    This report was funded by the Bonneville Power Administration (BPA), US Department of Energy, as part of BPA`s program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. Illegal harvest and violation of habitat protection regulations are factors affecting the survival of many native species of anadromous and resident fish in the Columbia Basin.

  8. Increased levels of harvest and habitat law enforcement and public awareness for anadromous salmonids and resident fish in the Columbia River Basin - Demonstration period, 1992-1994. Final report

    International Nuclear Information System (INIS)

    1995-06-01

    This report was funded by the Bonneville Power Administration (BPA), US Department of Energy, as part of BPA's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. Illegal harvest and violation of habitat protection regulations are factors affecting the survival of many native species of anadromous and resident fish in the Columbia Basin

  9. Influence of forest and rangeland management on anadromous fish habitat in Western North America: water transportation and storage of logs.

    Science.gov (United States)

    J.R. Sedell; W.S. Duval

    1985-01-01

    Environmental effects of water transportation of logs in western North America include the historical driving of logs in rivers and streams, and the current dumping, sorting, transportation, and storage of logs in rivers and estuaries in British Columbia and southeastern Alaska. The historical discussion focuses on habitat losses and volumes of...

  10. Development of habitat suitability criteria for Neotropical stream fishes and an assessment of their transferability to streams with different conservation status

    Directory of Open Access Journals (Sweden)

    Fabrício Barreto Teresa

    Full Text Available We assessed the preference of 10 fish species for depth and velocity conditions in forested streams from southeastern Brazil using habitat suitability criteria (HSC curves. We also tested whether preference patterns observed in forested streams can be transferred to deforested streams. We used data from fish sampled in 62 five-meter sites in three forested streams to construct preference curves. Astyanax altiparanae, A. fasciatus, Knodus moenkhausii, and Piabina argentea showed a preference for deep slow habitats, whereas Aspidoras fuscoguttatus, Characidium zebra, Cetopsorhamdia iheringi, Pseudopimelodus pulcher, and Hypostomus nigromaculatus showed an opposite pattern: preference for shallow fast habitats. Hypostomus ancistroides showed a multimodal pattern of preference for depth and velocity. To evaluate whether patterns observed in forested streams may be transferred to deforested streams, we sampled 64 five-meters sites in three deforested streams using the same methodology. The preference for velocity was more consistent than for depth, as success in the transferability criterion was 86% and 29% of species, respectively. This indicates that velocity is a good predictor of species abundance in streams, regardless of their conditionNeste estudo avaliamos a preferência de 10 espécies de peixes por condições de profundidade e fluxo em riachos florestados do sudeste do Brasil por meio do critério de adequabilidade de habitat (habitat suitability criteria - curvas HSC. Testamos também se os padrões de preferência observados nos riachos florestados podem ser transferidos para riachos desmatados. Foram realizadas amostragens da ictiofauna em 62 trechos de cinco metros de extensão em três riachos florestados para a construção das curvas de preferência. Astyanax altiparanae, A. fasciatus, Knodus moenkhausii e Piabina argentea apresentaram preferência por habitats lentos e profundos, enquanto Aspidoras fuscoguttatus, Characidium zebra

  11. Dynamics of fish assemblages on a continuous rocky reef and adjacent unconsolidated habitats at Fernando de Noronha Archipelago, tropical western Atlantic

    Directory of Open Access Journals (Sweden)

    Paulo R. Medeiros

    2011-01-01

    Full Text Available In recent years, many studies investigated how density-dependent factors, such as shortages in microhabitat and food availability influence the structure of reef fish assemblages. Most of what is currently known, however, comes from comparisons of isolated patch reefs and from correlations between fish abundance and one or few microhabitat variables. In addition, most studies were done in the Caribbean and Indo-Pacific regions, whereas the South Atlantic region has been, to date, understudied. The present study evaluated spatial and temporal variations in reef fish abundance and species richness in a continuous rocky reef and adjacent unconsolidated habitats in a Southwestern Atlantic reef, using underwater techniques to assess both fish numbers and microhabitat variables (depth, rugosity, number of crevices and percent cover of live benthic organisms, bare rock, sand, and limestone. Higher species richness was observed at consolidated substratum stations on both sampling periods (May and October, but fish abundance did not show a significant spatial variation. Topographical complexity and percent cover of algae (except coralline algae were amongst the most important determinants of species richness, and correlations between fish size and refuge crevice size were observed. The non-random patterns of spatial variation in species richness, and to a lesser extent, fish abundance, were related to differences in substratum characteristics and the inherent characteristics of fishes (i.e. habitat preferences and not to geographical barriers restraining fish movement. This study highlights the importance of concomitantly assessing several microhabitat variables to determine their relative influence in reef fish assemblages.Em anos recentes, vários estudos investigaram como os fatores dependentes da densidade, por exemplo, a diminuição na disponibilidade de microhabitats e alimento, influenciam a estrutura das assembleias de peixes. A maior parte do

  12. Shesher and Welala Floodplain Wetlands (Lake Tana, Ethiopia: Are They Important Breeding Habitats for Clarias gariepinus and the Migratory Labeobarbus Fish Species?

    Directory of Open Access Journals (Sweden)

    Wassie Anteneh

    2012-01-01

    Full Text Available This study aims at investigating the spawning migration of the endemic Labeobarbus species and C. gariepinus from Lake Tana, through Ribb River, to Welala and Shesher wetlands. The study was conducted during peak spawning months (July to October, 2010. Fish were collected through overnight gillnet settings. A total of 1725 specimens of the genus Labeobarbus (13 species and 506 specimens of C. gariepinus were collected. Six species of Labeobarbus formed prespawning aggregation at Ribb River mouth. However, no Labeobarbus species was found to spawn in the two wetlands. More than 90% of the catch in Welala and Shesher wetlands was contributed by C. gariepinus. This implies that these wetlands are ideal spawning and nursery habitats for C. gariepinus but not for the endemic Labeobarbus species. Except L. intermedius, all the six Labeobarbus species (aggregated at Ribb River mouth and C. gariepinus (spawning at Shesher and Welala wetlands were temporally segregated.

  13. Seasonal and environmental influences on recruitment patterns and habitat usage among resident and transient fishes in a World Heritage Site subtropical estuary.

    Science.gov (United States)

    Pichler, H A; Gray, C A; Broadhurst, M K; Spach, H L; Nagelkerken, I

    2017-01-01

    This study investigated whether the fish communities inhabiting shallow non-vegetated habitats in two divergent bays in a subtropical World Heritage Site estuarine system differed according to wet (spring-summer) and dry (autumn-winter) seasons or polyhaline and mesohaline zones, within the broader objective of facilitating spatio-temporal management. Species richness (total of 74 taxa; total length, L T  = 11-552 mm) and abundance (51 109 individuals) were mostly greater in the wet than dry season and in polyhaline than mesohaline areas. There was a major effect of rainfall on recruitment, particularly among transient fishes, which could be the result of enhanced survival of young via greater productivity (food resources) and protection from predators (via turbidity reducing visual cues). Salinity had strong interactive effects with rainfall and temperature in one bay, with greater species richness and overall abundances as well as large abundances of four key species [Anchoa januaria and Atherinella brasiliensis (pelagic residents), Cetengraulis edentulus (pelagic transient) and Diapterus rhombeus (demersal transient)] during the wet season in polyhaline areas; possibly reflecting a biodiversity hotspot that might be affected by distance to the estuary mouth and convergence hydrology. Regionally, the results support enforcing spatio-temporal restrictions to minimize anthropogenic activities within statutory (but not always enforced) protected areas. Globally, the data reiterate the need to identify and understand biotic and abiotic effects on estuarine ichthyofaunal distributions and abundances as a precursor to their management. © 2016 The Fisheries Society of the British Isles.

  14. Heat transfer in fish: are short excursions between habitats a thermoregulatory behaviour to exploit resources in an unfavourable thermal environment?

    Science.gov (United States)

    Pépino, Marc; Goyer, Katerine; Magnan, Pierre

    2015-11-01

    Temperature is the primary environmental factor affecting physiological processes in ectotherms. Heat-transfer models describe how the fish's internal temperature responds to a fluctuating thermal environment. Specifically, the rate coefficient (k), defined as the instantaneous rate of change in body temperature in relation to the difference between ambient and body temperature, summarizes the combined effects of direct thermal conduction through body mass, passive convection (intracellular and intercellular fluids) and forced convective heat transfer (cardiovascular system). The k-coefficient is widely used in fish ecology to understand how body temperature responds to changes in water temperature. The main objective of this study was to estimate the k-coefficient of brook charr equipped with internal temperature-sensitive transmitters in controlled laboratory experiments. Fish were first transferred from acclimation tanks (10°C) to tanks at 14, 19 or 23°C (warming experiments) and were then returned to the acclimation tanks (10°C; cooling experiments), thus producing six step changes in ambient temperature. We used non-linear mixed models to estimate the k-coefficient. Model comparisons indicated that the model incorporating the k-coefficient as a function of absolute temperature difference (dT: 4, 9 and 13°C) best described body temperature change. By simulating body temperature in a heterogeneous thermal environment, we provide theoretical predictions of maximum excursion duration between feeding and resting areas. Our simulations suggest that short (i.e. behaviour adopted by cold freshwater fish species to sustain body temperature below a critical temperature threshold, enabling them to exploit resources in an unfavourable thermal environment. © 2015. Published by The Company of Biologists Ltd.

  15. The opportunistic feeding and reproduction strategies of the annual fish Cynopoecilus melanotaenia (Cyprinodontiformes: Rivulidae inhabiting ephemeral habitats on southern Brazil

    Directory of Open Access Journals (Sweden)

    Cristina da Silva Gonçalves

    Full Text Available Most Rivulidae fishes are popularly known as annual fishes which live in ephemeral environments such as pools, that obligatorily dry out seasonally causing the death of adult individuals. They have unique biological characteristics such as small body size, early sexual maturation, continuous reproduction, an elaborated courtship behavior, and a great reproductive capacity among fishes. The rivulids are widely distributed in North, Central and South America. In this study, the diet and reproductive biology of Cynopoecilus melanotaenia was analyzed. A total of 263 specimens were collected and the analysis of 233 gastrointestinal contents revealed an invertivorous diet composed mainly of small crustaceans (Cladocera, Amphipoda, and Ostracoda and immature insects (Chaoboridae, Culicidae, Syrphidae, but mainly Chironomidae larvae. Lepidophagy on male's diet was also registered. Fecundity was estimated by analyzing 59 pairs of mature ovaries and ranged from 2 to 157 oocytes (mean, 19 ± 26[SD]. The species has fractional spawning, a strategy to increase the chance of survival to prolonged depletions. This study is the first to investigate the reproductive biology of C. melanotaenia. The results confirmed the opportunistic character of the rivulid C. melanotaenia and provided unreported reproductive information that may aid conservation of the species.

  16. Thermoregulation of fish and turtles in thermally stressed habitats. Annual progress report, October 1, 1977--September 30, 1978

    International Nuclear Information System (INIS)

    Spotila, J.R.

    1978-06-01

    Morphometric and heating and cooling studies on over 100 largemouth bass, Micropterus salmoides, have provided the data needed to refine the time-dependent body temperature model for fish. The model can now track the changes in body temperature of a bass if its weight and water temperature are known. The model is most sensitive to body diameter, body wall thickness, and tissue conductivity. Doubling tissue conductivity is equivalent to decreasing body diameter by a factor or two. Turtles, Chrysemys scripta, living in the heated portion of a cooling reservoir facultatively exploit the warmed water (ΔT = 4 to 10 0 C) as an auxiliary heat source for behavioral thermoregulation. Turtles in the heated arm of PAR pond have a smaller home range (200 m) than turtles in an ambient portion of the reservoir (507 m). The ability of animals to thermoregulate at a high constant body temperature depends upon the constraints imposed on them by their body size and physical characteristics and those of their environment. The net heat production required to maintain a specific body temperature changes as the size of an ectotherm increases. Operative environmental temperature is an appropriate measure of environmental heat loading and can be used as a predictor of turtle behavior. This concept may become very valuable in quantifying the effect of thermal effluents on turtle and fish behavior

  17. Hood River and Pelton Ladder monitoring and evaluation project and Hood River fish habitat project : annual progress report 1999-2000.; ANNUAL

    International Nuclear Information System (INIS)

    Lambert, Michael B.; McCanna, Joseph P.; Jennings, Mick

    2001-01-01

    The Hood River subbasin is home to four species of anadromous salmonids: chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), steelhead (Oncorhynchus mykiss), and sea run cutthroat trout (Salmo clarki). Indigenous spring chinook salmon were extirpated during the late 1960's. The naturally spawning spring chinook salmon currently present in the subbasin are progeny of Deschutes stock. Historically, the Hood River subbasin hatchery steelhead program utilized out-of-basin stocks for many years. Indigenous stocks of summer and winter steelhead were listed in March 1998 by National Marine Fisheries Service (NMFS) under the Endangered Species Act (ESA) as a ''Threatened'' Species along with similar genetically similar steelhead in the Lower Columbia Basin. This annual report summarizes work for two consecutive contract periods: the fiscal year (FY) 1999 contract period was 1 October, 1998 through 30 September, 1999 and 1 October, 1999 through 30 September, 2000 for FY 2000. Work implemented during FY 1999 and FY 2000 included (1) acclimation of hatchery spring chinook salmon and hatchery summer and winter steelhead smolts, (2) spring chinook salmon spawning ground surveys on the West Fork Hood River (3) genetic analysis of steelhead and cutthroat[contractual service with the ODFW], (4) Hood River water temperature studies, (5) Oak Springs Hatchery (OSH) and Round Butte Hatchery (RBH) coded-wire tagging and clipping evaluation, (6) preparation of the Hood River Watershed Assessment (Coccoli et al., December 1999) and the Fish Habitat Protection, Restoration, and Monitoring Plan (Coccoli et al., February 2000), (7) project implementation of early action habitat protection and restoration projects, (8) Pelton Ladder evaluation studies, (9) management oversight and guidance to BPA and ODFW engineering on HRPP facilities, and (10) preparation of an annual report summarizing project objectives for FY 1999 and FY 2000

  18. Waning habitats due to climate change: the effects of changes in streamflow and temperature at the rear edge of the distribution of a cold-water fish

    Directory of Open Access Journals (Sweden)

    J. M. Santiago

    2017-08-01

    Full Text Available Climate changes affect aquatic ecosystems by altering temperatures and precipitation patterns, and the rear edges of the distributions of cold-water species are especially sensitive to these effects. The main goal of this study was to predict in detail how changes in air temperature and precipitation will affect streamflow, the thermal habitat of a cold-water fish (the brown trout, Salmo trutta, and the synergistic relationships among these variables at the rear edge of the natural distribution of brown trout. Thirty-one sites in 14 mountain rivers and streams were studied in central Spain. Models of streamflow were built for several of these sites using M5 model trees, and a non-linear regression method was used to estimate stream temperatures. Nine global climate models simulations for Representative Concentration Pathways RCP4.5 and RCP8.5 scenarios were downscaled to the local level. Significant reductions in streamflow were predicted to occur in all of the basins (max. −49 % by the year 2099, and seasonal differences were noted between the basins. The stream temperature models showed relationships between the model parameters, geology and hydrologic responses. Temperature was sensitive to streamflow in one set of streams, and summer reductions in streamflow contributed to additional stream temperature increases (max. 3.6 °C, although the sites that are most dependent on deep aquifers will likely resist warming to a greater degree. The predicted increases in water temperatures were as high as 4.0 °C. Temperature and streamflow changes will cause a shift in the rear edge of the distribution of this species. However, geology will affect the extent of this shift. Approaches like the one used herein have proven to be useful in planning the prevention and mitigation of the negative effects of climate change by differentiating areas based on the risk level and viability of fish populations.

  19. Waning habitats due to climate change: the effects of changes in streamflow and temperature at the rear edge of the distribution of a cold-water fish

    Science.gov (United States)

    María Santiago, José; Muñoz-Mas, Rafael; Solana-Gutiérrez, Joaquín; García de Jalón, Diego; Alonso, Carlos; Martínez-Capel, Francisco; Pórtoles, Javier; Monjo, Robert; Ribalaygua, Jaime

    2017-08-01

    Climate changes affect aquatic ecosystems by altering temperatures and precipitation patterns, and the rear edges of the distributions of cold-water species are especially sensitive to these effects. The main goal of this study was to predict in detail how changes in air temperature and precipitation will affect streamflow, the thermal habitat of a cold-water fish (the brown trout, Salmo trutta), and the synergistic relationships among these variables at the rear edge of the natural distribution of brown trout. Thirty-one sites in 14 mountain rivers and streams were studied in central Spain. Models of streamflow were built for several of these sites using M5 model trees, and a non-linear regression method was used to estimate stream temperatures. Nine global climate models simulations for Representative Concentration Pathways RCP4.5 and RCP8.5 scenarios were downscaled to the local level. Significant reductions in streamflow were predicted to occur in all of the basins (max. -49 %) by the year 2099, and seasonal differences were noted between the basins. The stream temperature models showed relationships between the model parameters, geology and hydrologic responses. Temperature was sensitive to streamflow in one set of streams, and summer reductions in streamflow contributed to additional stream temperature increases (max. 3.6 °C), although the sites that are most dependent on deep aquifers will likely resist warming to a greater degree. The predicted increases in water temperatures were as high as 4.0 °C. Temperature and streamflow changes will cause a shift in the rear edge of the distribution of this species. However, geology will affect the extent of this shift. Approaches like the one used herein have proven to be useful in planning the prevention and mitigation of the negative effects of climate change by differentiating areas based on the risk level and viability of fish populations.

  20. Differences between groundwater fauna in shallow and in deep intergranular aquifers as an indication of different characteristics of habitats and hydraulic connections

    Directory of Open Access Journals (Sweden)

    Anton Brancelj

    2016-03-01

    Full Text Available The fauna in the hyporheic zones of rivers has been relatively well studied but that from the phreatic zone remains comparatively unknown and there are few investigations into deeper intergranular aquifers (over 30 m in depth due to technical difficulties. Two shallow boreholes of 29 m depth and two deep boreholes of 100 m depth, both near Ljubljana (Slovenia, were sampled more than 30 times between 14 January 2008 and 3 March 2009.  On each occasion 14.4 to 18.0 m3 of water were abstracted using a high-capacity pump, then filtered by means of a plankton net with a mesh size of 60 µm. Organisms larger than 2 mm were damaged by the pump rotors, but their identification was still possible, while smaller representatives of the Copepoda (Crustacea passed the rotors without  damage. A near-by artesian borehole was sampled on 6 occasions. Water chemistry, physical properties and faunal composition analyses were carried out for each borehole. A total of 32 taxa, 24 of which were stygobites, were identified. Copepoda alone were represented by 16 species, 15 of which were stygobites. The shallow boreholes differ from the deep boreholes in their higher temperatures and higher concentrations of K+, Na+, Ca2+, Mg2+ and SO42- ions. The copepod communities in samples from the shallow boreholes differ sharply from those from the deep boreholes. There were also clear differences between shallow boreholes in two aquifers located a few kilometres apart, in physical and chemical characteristics as well as in fauna composition. Taxa with different ecological affinities, collected from groundwater, are indicators of hydraulic connections between different parts of an aquifer as well as of communication between surface and subsurface water bodies. The present study suggests that subterranean fauna, as well as epigean fauna, can provide effective support for classical dye/salt tracing experiments.

  1. The mangrove as a temporary habitat for fish: the Eucinostomus Species at Guaratuba Bay, Brazil (25º 52'S;48º 39'W

    Directory of Open Access Journals (Sweden)

    Paulo de Tarso C. Chaves

    1999-01-01

    Full Text Available Several coastal fish use the estuarine habitat during a part of their life cycle. These sites are considered good for the reproductive activity, as well as for the growth of larvae and juveniles. Concerning the Gerreidae, however, many studies reveal that most species leave the estuaries to reproduce at sea. At Guaratuba Bay, southern Brazil, this family is represented by three genera and five species, which make an important fraction of the local assemblage. The present study investigated the populational structure and breeding habits of three Eucinostomus species, in order to know what relationship exists between them and the mangrove. It was found that the Guaratuba mangrove represents a transitory habitat for the life cycle of the Eucinostomus species. The sub-adults grow in the mangrove throughout the year and leave this milieu in spring or summer, when they complete the gonadal maturation and presumably spawn. E. argenteus and E. gula do not return to the mangrove after spawning. The three species feed mainly on polychaetes, but differences occur with respect to the secondary components of the diet.No manguezal da Baía de Guaratuba, litoral sul do Brasil, os Gerreidae são representados por 3 gêneros e 5 espécies, compondo uma parcela numericamente importante da ictiofauna local. Este trabalho descreve a estrutura populacional e os hábitos reprodutivos de Eucinostomus argenteus, E. gula e E. melanopterus, reconhecendo as relações que mantêm com o manguezal. Os resultados indicam que o manguezal representa para elas um habitat transitório. Os subadultos crescem na área ao longo do ano, deixando-na na primavera ou no verão, quando completam a maturação e desovam, no mar ou em outra região da Baía. E. argenteus e E. gula não retornam ao manguezal após a desova, mas E. melanopterus provavelmente sim. As três espécies alimentam-se sobretudo de poliquetos, apresentando diferenças nos itens secundários da dieta.

  2. Hydraulic turbines

    International Nuclear Information System (INIS)

    Meluk O, G.

    1998-01-01

    The hydraulic turbines are defined according to the specific speed, in impulse turbines and in reaction turbines. Currently, the Pelton turbines (of impulse) and the Francis and Kaplan turbines (of reaction), they are the most important machines in the hydroelectric generation. The hydraulic turbines are capable of generating in short times, large powers, from its loads zero until the total load and reject the load instantly without producing damages in the operation. When the hydraulic resources are important, the hydraulic turbines are converted in the axle of the electric system. Its combination with thermoelectric generation systems, it allow the continuing supply of the variations in demand of energy system. The available hydraulic resource in Colombia is of 93085 MW, of which solely 9% is exploited, become 79% of all the electrical country generation, 21% remaining is provided by means of the thermoelectric generation

  3. Basic hydraulics

    CERN Document Server

    Smith, P D

    1982-01-01

    BASIC Hydraulics aims to help students both to become proficient in the BASIC programming language by actually using the language in an important field of engineering and to use computing as a means of mastering the subject of hydraulics. The book begins with a summary of the technique of computing in BASIC together with comments and listing of the main commands and statements. Subsequent chapters introduce the fundamental concepts and appropriate governing equations. Topics covered include principles of fluid mechanics; flow in pipes, pipe networks and open channels; hydraulic machinery;

  4. Hydraulic Structures

    Data.gov (United States)

    Department of Homeland Security — This table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the FIRM, channels containing the...

  5. Small scale hydraulic power. Hydraulics: the wheel spins. Power producers: times are getting better; MWh are negotiating with fishes; Inspection: game of drones; Moulin de Courteron: a true environment-friendly renovation

    International Nuclear Information System (INIS)

    Piro, Patrick; Bongrain, Timothee

    2017-01-01

    This document addresses the evolution of small-scale hydraulic power in France. It contains 5 articles which concern the small-scale hydro-electric power sector which is gaining confidence, thanks to new regulations (notably about financial incentives and 'call for tender' procedures) and new technologies such as smart drones for site inspection. However, the sector is increasingly faced with environmental issues and oppositions. Presentation of the 'Moulin de Courteron' project, an ancient water mill that has been renovated (installation of 3 x 45 kW turbines) in an exemplary way from the environmental and social points of view (the project has been crowd-funded)

  6. Performance of maximum likelihood mixture models to estimate nursery habitat contributions to fish stocks: a case study on sea bream Sparus aurata

    Directory of Open Access Journals (Sweden)

    Edwin J. Niklitschek

    2016-10-01

    Full Text Available Background Mixture models (MM can be used to describe mixed stocks considering three sets of parameters: the total number of contributing sources, their chemical baseline signatures and their mixing proportions. When all nursery sources have been previously identified and sampled for juvenile fish to produce baseline nursery-signatures, mixing proportions are the only unknown set of parameters to be estimated from the mixed-stock data. Otherwise, the number of sources, as well as some/all nursery-signatures may need to be also estimated from the mixed-stock data. Our goal was to assess bias and uncertainty in these MM parameters when estimated using unconditional maximum likelihood approaches (ML-MM, under several incomplete sampling and nursery-signature separation scenarios. Methods We used a comprehensive dataset containing otolith elemental signatures of 301 juvenile Sparus aurata, sampled in three contrasting years (2008, 2010, 2011, from four distinct nursery habitats. (Mediterranean lagoons Artificial nursery-source and mixed-stock datasets were produced considering: five different sampling scenarios where 0–4 lagoons were excluded from the nursery-source dataset and six nursery-signature separation scenarios that simulated data separated 0.5, 1.5, 2.5, 3.5, 4.5 and 5.5 standard deviations among nursery-signature centroids. Bias (BI and uncertainty (SE were computed to assess reliability for each of the three sets of MM parameters. Results Both bias and uncertainty in mixing proportion estimates were low (BI ≤ 0.14, SE ≤ 0.06 when all nursery-sources were sampled but exhibited large variability among cohorts and increased with the number of non-sampled sources up to BI = 0.24 and SE = 0.11. Bias and variability in baseline signature estimates also increased with the number of non-sampled sources, but tended to be less biased, and more uncertain than mixing proportion ones, across all sampling scenarios (BI < 0.13, SE < 0

  7. Performance of maximum likelihood mixture models to estimate nursery habitat contributions to fish stocks: a case study on sea bream Sparus aurata

    Science.gov (United States)

    Darnaude, Audrey M.

    2016-01-01

    Background Mixture models (MM) can be used to describe mixed stocks considering three sets of parameters: the total number of contributing sources, their chemical baseline signatures and their mixing proportions. When all nursery sources have been previously identified and sampled for juvenile fish to produce baseline nursery-signatures, mixing proportions are the only unknown set of parameters to be estimated from the mixed-stock data. Otherwise, the number of sources, as well as some/all nursery-signatures may need to be also estimated from the mixed-stock data. Our goal was to assess bias and uncertainty in these MM parameters when estimated using unconditional maximum likelihood approaches (ML-MM), under several incomplete sampling and nursery-signature separation scenarios. Methods We used a comprehensive dataset containing otolith elemental signatures of 301 juvenile Sparus aurata, sampled in three contrasting years (2008, 2010, 2011), from four distinct nursery habitats. (Mediterranean lagoons) Artificial nursery-source and mixed-stock datasets were produced considering: five different sampling scenarios where 0–4 lagoons were excluded from the nursery-source dataset and six nursery-signature separation scenarios that simulated data separated 0.5, 1.5, 2.5, 3.5, 4.5 and 5.5 standard deviations among nursery-signature centroids. Bias (BI) and uncertainty (SE) were computed to assess reliability for each of the three sets of MM parameters. Results Both bias and uncertainty in mixing proportion estimates were low (BI ≤ 0.14, SE ≤ 0.06) when all nursery-sources were sampled but exhibited large variability among cohorts and increased with the number of non-sampled sources up to BI = 0.24 and SE = 0.11. Bias and variability in baseline signature estimates also increased with the number of non-sampled sources, but tended to be less biased, and more uncertain than mixing proportion ones, across all sampling scenarios (BI nursery signatures improved reliability

  8. Ecological response of a multi-purpose river development project using macro-invertebrates richness and fish habitat value[Dissertation 3807

    Energy Technology Data Exchange (ETDEWEB)

    Pellaud, M.

    2007-05-15

    ) general SYNERGIE project optimizer taking into account all the project poles. The system of interest is composed of a buffering reservoir of ca. 1 km{sup 2}, a run-off-the- river dam, a hydro power-plant, and an artificial river ensuring longitudinal continuum. The primary part of the work consisted in an extensive literature review on system understanding, anthropic alterations and quality assessment / prediction tool available. The approach consisted of two levels (1) the general ecological considerations to be followed at the project reservoir scale and (2) the measure of the downstream ecological response through modeling. General ecological considerations at the reservoir scale were the implementation of an artificial river ensuring longitudinal connectivity, implementation of artificial ecotonal boosters and the allocation of a sanctuary zone with limited public access. The downstream measure of ecological integrity was based on the choice of three taxonomic groups of macroinvertebrates and four ecological guilds (groups) of fish. Mayflies (Ephemeroptera), stoneflies (Plecoptera) and caddisflies (Trichoptera) richness were predicted using simple hydrological and morphological covariates (i.e. substrate, current speed,...) coupled to system specific faunistic surveys. Bank, riffle, pool and midstream fish guilds habitat values were determined using existing methods. By using the simulation results of river development project scenarios as inputs, the ecological response (i.e. the measure of ecological integrity) was computed following the assumptions that high predicted macro-invertebrate richness and high guilds habitat values were linked to a high ecological integrity. An emphasis on the hydro peaking effect in relation with river morphology was performed on macroinvertebrates. They were found to respond well to hydrological and morphological changes induced by river development projects while the approach by fish habitat value encountered limitations in its

  9. Relationship of stream ecological conditions to simulated hydraulic metrics across a gradient of basin urbanization

    Science.gov (United States)

    Steuer, J.J.; Bales, J.D.; Giddings, E.M.P.

    2009-01-01

    The relationships among urbanization, stream hydraulics, and aquatic biology were investigated across a gradient of urbanization in 30 small basins in eastern Wisconsin, USA. Simulation of hydraulic metrics with 1-dimensional unsteady flow models was an effective means for mechanistically coupling the effects of urbanization with stream ecological conditions (i.e., algae, invertebrates, and fish). Urbanization, characterized by household, road, and urban land density, was positively correlated with the lowest shear stress for 2 adjacent transects in a reach for the low-flow summer (p stress observed in our study is consistent with a higher concentration of water-column particulates available for filtration. The strength of correlations between hydraulic and biological metrics is related to the time period (annual, seasonal, or monthly) considered. The hydraulic modeling approach, whether based on hourly or daily flow data, allowed documentation of the effects of a spatially variable response within a reach, and the results suggest that stream response to urbanization varies with hydraulic habitat type. ?? North American Benthological Society.

  10. Effect of a Recently Completed Habitat Rehabilitation and Enhancement Project on Fish Abundance in La Grange Pool of the Illinois River Using Long Term Resource Monitoring Program Data

    National Research Council Canada - National Science Library

    O'Hara, Timothy M; McClelland, Michael A; Irons, Kevin S; Cook, Thad R; Sass, Greg G

    2008-01-01

    The Long Term Resource Monitoring Program (LTRMP) fish component monitors fish communities to test for changes in abundances and species composition in six regional trend areas of the Upper Mississippi River System...

  11. Effects of Mine Waste Contamination on Fish and Wildlife Habitat at Multiple Levels of Biological Organization in the Methow River, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Peplow, Dan; Edmonds, Robert.

    2002-06-01

    A three-year multidisciplinary study was conducted on the relationship between mine waste contamination and the effects on aquatic and terrestrial habitats in the Methow River below abandoned mines near Twisp in Okanogan County, Washington (U.S.A.). Ore deposits in the area were mined for gold, silver, copper and zinc until the early 1950's. An above-and-below-mine approach was used to study potentially impacted sites. Although the dissolved metal content of water in the Methow River was below the limits of detection, eleven chemicals of potential environmental concern were identified in the tailings, mine effluents, groundwater, streamwater and sediments (Al, As, B, Ba, Cd, Cr, Cu, Mn, Pb, Se and Zn). The potential for ecosystem level impacts was reflected in the risk of contamination in the mine waste to communities and populations that are valued for their functional properties related to energy storage and nutrient cycling. Dissolved and sediment metal contamination changed the benthic insect community structure in a tributary of the Methow River below Alder Mine, and at the population level, caddisfly larval development in the Methow River was delayed. Arsenic accumulation in bear hair and Cd in fish liver suggest top predators are effected. In situ exposure of juvenile triploid trout (Oncorhynchus mykiss) to conditions at the downstream site resulted in reduced growth and increased mortality among exposed individuals. Histopathological studies of their tissues revealed extensive glycogen inclusions suggesting food is being converted into glycogen and stored in the liver but the glycogen is not being converted back normally into glucose for distribution to other tissues in the body. Subcellular observations revealed mitochondrial changes including a decrease in the number and increase in the size of electron-dense metrical granules, the presence of glycogen bodies in the cytoplasm, and glycogen nuclei in exposed trout hepatocytes, which are signs that

  12. Hydraulic and biological analysis of the passability of select fish species at the U.S. Geological Survey streamgaging weir at Blackwells Mills, New Jersey

    Science.gov (United States)

    Haro, Alexander J.; Mulligan, Kevin; Suro, Thomas P.; Noreika, John; McHugh, Amy

    2017-10-16

    Recent efforts to advance river connectivity for the Millstone River watershed in New Jersey have led to the evaluation of a low-flow gauging weir that spans the full width of the river. The methods and results of a desktop modelling exercise were used to evaluate the potential ability of three anadromous fish species (Alosa sapidissima [American shad], Alosa pseudoharengus [alewife], and Alosa aestivalis [blueback herring]) to pass upstream over the U.S. Geological Survey Blackwells Mills streamgage (01402000) and weir on the Millstone River, New Jersey, at various streamflows, and to estimate the probability that the weir will be passable during the spring migratory season. Based on data from daily fishway counts downstream from the Blackwells Mills streamgage and weir between 1996 and 2014, the general migratory period was defined as April 14 to May 28. Recorded water levels and flow data were used to theoretically estimate water depths and velocities over the weir, as well as flow exceedances occurring during the migratory period.Results indicate that the weir is a potential depth barrier to fish passage when streamflows are below 200 cubic feet per second using a 1-body-depth criterion for American shad (the largest fish among the target species). Streamflows in that range occur on average 35 percent of the time during the migratory period. An increase of the depth criterion to 2 body depths causes the weir to become a possible barrier to passage when flows are below 400 cubic feet per second. Streamflows in that range occur on average 73 percent of the time during the migration season. Average cross-sectional velocities at several points along the weir do not seem to be limiting to the fish migration, but maximum theoretical velocities estimated without friction loss over the face of the weir could be potentially limiting.

  13. Two-dimensional physical habitat modeling of effects of habitat structures on urban stream restoration

    Directory of Open Access Journals (Sweden)

    Dongkyun Im

    2011-12-01

    Full Text Available River corridors, even if highly modified or degraded, still provide important habitats for numerous biological species, and carry high aesthetic and economic values. One of the keys to urban stream restoration is recovery and maintenance of ecological flows sufficient to sustain aquatic ecosystems. In this study, the Hongje Stream in the Seoul metropolitan area of Korea was selected for evaluating a physically-based habitat with and without habitat structures. The potential value of the aquatic habitat was evaluated by a weighted usable area (WUA using River2D, a two-dimensional hydraulic model. The habitat suitability for Zacco platypus in the Hongje Stream was simulated with and without habitat structures. The computed WUA values for the boulder, spur dike, and riffle increased by about 2%, 7%, and 131%, respectively, after their construction. Also, the three habitat structures, especially the riffle, can contribute to increasing hydraulic heterogeneity and enhancing habitat diversity.

  14. Fine-scale habitat preference of green sturgeon (Acipenser medirostris) within three spawning locations in the Sacramento River, California

    Science.gov (United States)

    Wyman, Megan T.; Thomas, Michael J.; McDonald, Richard R.; Hearn, Alexander R.; Battleson, Ryan D.; Chapman, Eric D.; Kinzel, Paul J.; Minear, J. Tobey; Mora, Ethan A.; Nelson, Jonathan M.; Pagel, Matthew D.; Klimley, A. Peter

    2018-01-01

    Vast sections of the Sacramento River have been listed as critical habitat by the National Marine Fisheries Service for green sturgeon spawning (Acipenser medirostris), yet spawning is known to occur at only a few specific locations. This study reveals the range of physical habitat variables selected by adult green sturgeon during their spawning period. We integrated fine-scale fish positions, physical habitat characteristics, discharge, bathymetry, and simulated velocity and depth using a 2-dimensional hydraulic model (FaSTMECH). The objective was to create habitat suitability curves for depth, velocity, and substrate type within three known spawning locations over two years. An overall cumulative habitat suitability score was calculated that averaged the depth, velocity, and substrate scores over all fish, sites, and years. A weighted usable area (WUA) index was calculated throughout the sampling periods for each of the three sites. Cumulative results indicate that the microhabitat characteristics most preferred by green sturgeon in these three spawning locations were velocities between 1.0-1.1 m/s, depths of 8-9 m, and gravel and sand substrate. This study provides guidance for those who may in the future want to increase spawning habitat for green sturgeon within the Sacramento River.

  15. Satellite-based remote sensing of running water habitats at large riverscape scales: Tools to analyze habitat heterogeneity for river ecosystem management

    Science.gov (United States)

    Hugue, F.; Lapointe, M.; Eaton, B. C.; Lepoutre, A.

    2016-01-01

    (V) over the 17-km Kiamika reach. The joint distribution of D and V variables over wetted zones then is used to reveal structural patterns in hydraulic habitat availability at patch, reach, and segment scales. Here we analyze 156 bivariate (D, V) density function plots estimated over moving reach windows along the satellite scene extent to extract 14 physical habitat metrics (such as river width, mean and modal depths and velocity, variances and covariance in D and V over 1-m pixels, HMID, entropy). A principal component analysis on the set of metrics is then used to cluster river reaches in regard to similarity in their hydraulic habitat composition and heterogeneity. Applications of this approach can include (i) specific fish habitat detection at riverscape scales (e.g., large areas of riffle spawning beds, deeper pools) for regional management, (ii) studying how river habitat heterogeneity is correlated to fish distribution and (iii) guidance for site location for restoration of key habitats or for post regulation monitoring of representative reaches of various types.

  16. Longitudinal patterns in fish and macrozoobenthos assemblages reflect degradation of water quality and physical habitat in the Bílina river basin

    Czech Academy of Sciences Publication Activity Database

    Jurajda, Pavel; Adámek, Zdeněk; Janáč, Michal; Valová, Zdenka

    2010-01-01

    Roč. 55, č. 3 (2010), s. 123-136 ISSN 1212-1819 R&D Projects: GA MŠk LC522 Institutional research plan: CEZ:AV0Z60930519 Keywords : fish community * macroinvertebrates * pollution * channelization * Elbe basin Subject RIV: GL - Fishing Impact factor: 1.190, year: 2010 http://www.agriculturejournals.cz/publicFiles/17674.pdf

  17. 50 CFR 17.94 - Critical habitats.

    Science.gov (United States)

    2010-10-01

    ... habitats. (a) The areas listed in § 17.95 (fish and wildlife) and § 17.96 (plants) and referred to in the... physical constituent elements within the defined area of Critical Habitat that are essential to the... 50 Wildlife and Fisheries 2 2010-10-01 2010-10-01 false Critical habitats. 17.94 Section 17.94...

  18. Turbine related fish mortality

    International Nuclear Information System (INIS)

    Eicher, G.J.

    1993-01-01

    A literature review was conducted to assess the factors affecting turbine-related fish mortality. The mechanics of fish passage through a turbine is outlined, and various turbine related stresses are described, including pressure and shear effects, hydraulic head, turbine efficiency, and tailwater level. The methodologies used in determining the effects of fish passage are evaluated. The necessity of adequate controls in each test is noted. It is concluded that mortality is the result of several factors such as hardiness of study fish, fish size, concentrations of dissolved gases, and amounts of cavitation. Comparisons between Francis and Kaplan turbines indicate little difference in percent mortality. 27 refs., 5 figs

  19. Bioeffects Assessment in Kvichak and Nushagak Bay, Alaska: Characterization of Soft Bottom Benthic Habitats, Fish Body Burdens and Contaminant Baseline Assessment

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of this project is to assess habitat conditions that influence biodiversity and distribution of benthic infaunal communities, contaminants, and chemical...

  20. A habitat suitability model for Chinese sturgeon determined using the generalized additive method

    Science.gov (United States)

    Yi, Yujun; Sun, Jie; Zhang, Shanghong

    2016-03-01

    The Chinese sturgeon is a type of large anadromous fish that migrates between the ocean and rivers. Because of the construction of dams, this sturgeon's migration path has been cut off, and this species currently is on the verge of extinction. Simulating suitable environmental conditions for spawning followed by repairing or rebuilding its spawning grounds are effective ways to protect this species. Various habitat suitability models based on expert knowledge have been used to evaluate the suitability of spawning habitat. In this study, a two-dimensional hydraulic simulation is used to inform a habitat suitability model based on the generalized additive method (GAM). The GAM is based on real data. The values of water depth and velocity are calculated first via the hydrodynamic model and later applied in the GAM. The final habitat suitability model is validated using the catch per unit effort (CPUEd) data of 1999 and 2003. The model results show that a velocity of 1.06-1.56 m/s and a depth of 13.33-20.33 m are highly suitable ranges for the Chinese sturgeon to spawn. The hydraulic habitat suitability indexes (HHSI) for seven discharges (4000; 9000; 12,000; 16,000; 20,000; 30,000; and 40,000 m3/s) are calculated to evaluate integrated habitat suitability. The results show that the integrated habitat suitability reaches its highest value at a discharge of 16,000 m3/s. This study is the first to apply a GAM to evaluate the suitability of spawning grounds for the Chinese sturgeon. The study provides a reference for the identification of potential spawning grounds in the entire basin.

  1. Coeur d'Alene Tribe Fish and Wildlife Program Habitat Protection Plan; Implementation of Fisheries Enhancement Opportunities on the Coeur d'Alene Reservation, 1997-2002 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, Angelo; Roberts, Frank; Peters, Ronald

    2002-06-01

    Throughout the last century, the cumulative effects of anthropogenic disturbances have caused drastic watershed level landscape changes throughout the Reservation and surrounding areas (Coeur d'Alene Tribe 1998). Changes include stream channelization, wetland draining, forest and palouse prairie conversion for agricultural use, high road density, elimination of old growth timber stands, and denuding riparian communities. The significance of these changes is manifested in the degradation of habitats supporting native flora and fauna. Consequently, populations of native fish, wildlife, and plants, which the Tribe relies on as subsistence resources, have declined or in some instances been extirpated (Apperson et al. 1988; Coeur d'Alene Tribe 1998; Lillengreen et al. 1996; Lillengreen et al. 1993; Gerry Green Coeur d'Alene Tribe wildlife Biologist, personal communication 2002). For example, bull trout (Salvelinus confluentus) are not present at detectable levels in Reservation tributaries, westslope cutthroat trout (Oncorhynchus clarki lewisi) are not present in numbers commensurate with maintaining harvestable fisheries (Lillengreen et al. 1993, 1996), and the Sharp-tailed grouse (Tympanuchus phasianellus) are not present at detectable levels on the Reservation (Gerry Green, Coeur d'Alene Tribe wildlife biologist, personal communication). The Coeur d'Alene Tribe added Fisheries and Wildlife Programs to their Natural Resources Department to address these losses and protect important cultural, and subsistence resources for future generations. The Tribal Council adopted by Resolution 89(94), the following mission statement for the Fisheries Program: 'restore, protect, expand and re-establish fish populations to sustainable levels to provide harvest opportunities'. This mission statement, focused on fisheries restoration and rehabilitation, is a response to native fish population declines throughout the Tribe's aboriginal territory

  2. Salmon River Habitat Enhancement, Part 1, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Konopacky, Richard C.

    1985-06-01

    This volume contains reports on subprojects involving the determining of alternatives to enhance salmonid habitat on patented land in Bear Valley Creek, Idaho, coordination activities for habitat projects occurring on streams within fishing areas of the Shoshone-Bannock Indian Tribes, and habitat and fish inventories in the Salmon River. Separate abstracts have been prepared for individual reports. (ACR)

  3. Sensitivity Analysis of Hydraulic Methods Regarding Hydromorphologic Data Derivation Methods to Determine Environmental Water Requirements

    Directory of Open Access Journals (Sweden)

    Alireza Shokoohi

    2015-07-01

    Full Text Available This paper studies the accuracy of hydraulic methods in determining environmental flow requirements. Despite the vital importance of deriving river cross sectional data for hydraulic methods, few studies have focused on the criteria for deriving this data. The present study shows that the depth of cross section has a meaningful effect on the results obtained from hydraulic methods and that, considering fish as the index species for river habitat analysis, an optimum depth of 1 m should be assumed for deriving information from cross sections. The second important parameter required for extracting the geometric and hydraulic properties of rivers is the selection of an appropriate depth increment; ∆y. In the present research, this parameter was found to be equal to 1 cm. The uncertainty of the environmental discharge evaluation, when allocating water in areas with water scarcity, should be kept as low as possible. The Manning friction coefficient (n is an important factor in river discharge calculation. Using a range of "n" equal to 3 times the standard deviation for the study area, it is shown that the influence of friction coefficient on the estimation of environmental flow is much less than that on the calculation of river discharge.

  4. Numerical analysis of the performance of rock weirs: Effects of structure configuration on local hydraulics

    Science.gov (United States)

    Holmquist-Johnson, C. L.

    2009-01-01

    River spanning rock structures are being constructed for water delivery as well as to enable fish passage at barriers and provide or improve the aquatic habitat for endangered fish species. Current design methods are based upon anecdotal information applicable to a narrow range of channel conditions. The complex flow patterns and performance of rock weirs is not well understood. Without accurate understanding of their hydraulics, designers cannot address the failure mechanisms of these structures. Flow characteristics such as jets, near bed velocities, recirculation, eddies, and plunging flow govern scour pool development. These detailed flow patterns can be replicated using a 3D numerical model. Numerical studies inexpensively simulate a large number of cases resulting in an increased range of applicability in order to develop design tools and predictive capability for analysis and design. The analysis and results of the numerical modeling, laboratory modeling, and field data provide a process-based method for understanding how structure geometry affects flow characteristics, scour development, fish passage, water delivery, and overall structure stability. Results of the numerical modeling allow designers to utilize results of the analysis to determine the appropriate geometry for generating desirable flow parameters. The end product of this research will develop tools and guidelines for more robust structure design or retrofits based upon predictable engineering and hydraulic performance criteria. ?? 2009 ASCE.

  5. AFSC/ABL: ACES-SHELFZ (Arctic Coastal Ecosystem Survey AND Shelf Habitat and EcoLogy of Fish and Zooplankton) Catch Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objectives of these Arctic nearshore fish surveys is to measure seasonal changes in the distribution, demographics, trophic position and nutritional status of...

  6. Habitat connectivity as a metric for aquatic microhabitat quality: Application to Chinook salmon spawning habitat

    Science.gov (United States)

    Ryan Carnie; Daniele Tonina; Jim McKean; Daniel Isaak

    2016-01-01

    Quality of fish habitat at the scale of a single fish, at the metre resolution, which we defined here as microhabitat, has been primarily evaluated on short reaches, and their results have been extended through long river segments with methods that do not account for connectivity, a measure of the spatial distribution of habitat patches. However, recent...

  7. Coldwater fish in wadeable streams [Chapter 8

    Science.gov (United States)

    Jason B. Dunham; Amanda E. Rosenberger; Russell F. Thurow; C. Andrew Dolloff; Philip J. Howell

    2009-01-01

    Small, wadeable streams comprise the majority of habitats available to fishes in fluvial networks. Wadeable streams are generally less than 1 m deep, and fish can be sampled without the use of water craft. Cold waters are defined as having mean 7-d summer maximum water temperatures of less than 20°C and providing habitat for coldwater fishes.

  8. Hydraulic manipulator

    International Nuclear Information System (INIS)

    Sinha, A.K.; Srikrishnamurty, G.

    1990-01-01

    Successful operation of nuclear plant is largely dependent on safe handling of radio-active material. In order to reduce this handling problem and minimise the exposure of radiation, various handling equipment and manipulators have been developed according to the requirements. Manufacture of nuclear fuel, which is the most important part of the nuclear industry, involves handling of uranium ingots weighing approximately 250 kg. This paper describes a specially designed hydraulic manipulator for handling of the ingots in a limited space. It was designed to grab and handle the ingots in any position. This has following drive motions: (1)gripping and releasing, (2)lifting and lowering (z-motion), (3)rotation about the horizontal axis (azimuth drive), (4)rotation about the job axis, and (5)rotation about the vertical axis. For horizontal motion (X and Y axis motion) this equipment is mounted on a motorised trolley, so that it can move inside the workshop. For all drives except the rotation about the job axis, hydraulic cylinders have been used with a battery operated power pack. Trolley drive is also given power from same battery. This paper describes the design aspects of this manipulator. (author). 4 figs

  9. A Modelling Framework to Assess the Effect of Pressures on River Abiotic Habitat Conditions and Biota.

    Directory of Open Access Journals (Sweden)

    Jochem Kail

    Full Text Available River biota are affected by global reach-scale pressures, but most approaches for predicting biota of rivers focus on river reach or segment scale processes and habitats. Moreover, these approaches do not consider long-term morphological changes that affect habitat conditions. In this study, a modelling framework was further developed and tested to assess the effect of pressures at different spatial scales on reach-scale habitat conditions and biota. Ecohydrological and 1D hydrodynamic models were used to predict discharge and water quality at the catchment scale and the resulting water level at the downstream end of a study reach. Long-term reach morphology was modelled using empirical regime equations, meander migration and 2D morphodynamic models. The respective flow and substrate conditions in the study reach were predicted using a 2D hydrodynamic model, and the suitability of these habitats was assessed with novel habitat models. In addition, dispersal models for fish and macroinvertebrates were developed to assess the re-colonization potential and to finally compare habitat suitability and the availability/ability of species to colonize these habitats. Applicability was tested and model performance was assessed by comparing observed and predicted conditions in the lowland Treene River in northern Germany. Technically, it was possible to link the different models, but future applications would benefit from the development of open source software for all modelling steps to enable fully automated model runs. Future research needs concern the physical modelling of long-term morphodynamics, feedback of biota (e.g., macrophytes on abiotic habitat conditions, species interactions, and empirical data on the hydraulic habitat suitability and dispersal abilities of macroinvertebrates. The modelling framework is flexible and allows for including additional models and investigating different research and management questions, e.g., in climate impact

  10. Influencia del hábitat en las asociaciones nictimerales de peces en una laguna costera tropical Influence of habitat type on diel fish associations in a tropical costal lagoon

    Directory of Open Access Journals (Sweden)

    Daniel Arceo-Carranza

    2010-12-01

    Full Text Available Se evaluó la abundancia y recambio de las especies ícticas que habitan en la laguna de Celestún en función de los ciclos de luz y oscuridad y del tipo de hábitats. Para ello se realizaron 6 muestreos bimestrales en una red de 4 estaciones; 2 localizadas en la boca y 2 en la zona interna de la laguna. Los sitios de cada zona comprenden un fondo con vegetación acuática y otro sin ésta (VAS, FSV. En cada sitio se registraron parámetros hidrológicos para determinar su relación con la estructura de la comunidad. Los peces se recolectaron con un chinchorro (15 × 1.5 m, 2.5cm luz de malla en un periodo diurno (10:00-3:00, crepuscular (18:00-21:00 y nocturno (02:00-05:00. Para su análisis se utilizaron diferentes estadísticos multivariados no parámetricos (NPMANOVA, NMDS, betadisper. Se encontraron diferencias en composición de especies de peces entre hábitats con VAS y FSV (F=2.6108, p=0.0114. La tasa de recambio de especies es baja entre hábitats y entre ciclos de luz-oscuridad. Los ensamblajes de peces entre hábitats son más dinámicos que nictimeralmente, debido a que las praderas de vegetación sumergida soportan un mayor número de especies por su función en la alimentación y/o como protección.The abundance and turnover of fish species inhabiting Celestún lagoon were evaluated according to day-night cycles, as well as habitat type. Bimonthly sampling was done at 4 sites of the lagoon, 2 at the mouth and 2 at the inner zone. The sites for each zone include bottoms with and without submerged aquatic vegetation (VAS, FSV. At each site hydrologic parameters were registered to determine their relationship with fish community structure. Fish specimens were collected using a beach seine (15 ×1.5 m, 2.5cm mesh at day (10:00-13:00, twilight (18:00-21:00 and night (02:00-05:00. Multivariate non-parametric (NPMANOVA, NMDS, betadisper statistics were used for the analysis. Difference in fish species were found between habitats with

  11. Stream fish, water and habitat quality in a pasture dominated basin, southeastern Brazil Ictiofauna de riachos, qualidade da água e do hábitat em uma bacia hidrográfica dominada por pastagens, Sudeste do Brasil

    Directory of Open Access Journals (Sweden)

    L. Casatti

    2006-05-01

    Full Text Available A fish survey in 35 stream reaches (from 1st to 3rd order with physicochemical and habitat assessment in the São José dos Dourados system, southeastern Brazil, was conducted. Most of the basin land cover (77.4% is used for pasture. From the sampled stream reaches, 24 were of good physicochemical quality, 10 of fair quality, and only one of poor quality. A habitat assessment showed that 10 stream reaches were considered fair, 22 were poor, and 3 were very poor. Fifty species were collected and their abundances showed strong correlation with habitat descriptors. In addition to the correlation between fish abundance and habitat, some species also showed optimal distribution related to the degree of physical habitat conservation. Streams located in this region experience organic pollution, but the most important aspect is the decline of the instream physical habitat condition, especially in first order streams, which negatively affects coarse substrates and water column dependent fish species. Effluent control, riparian vegetation restoration programs, siltation control and adequate sustainable soil use are practices which could mitigate such impacts.A ictiofauna de 35 trechos de riachos (de 1ª a 3ª ordem no sistema do Rio São José dos Dourados, Sudeste do Brasil, foi estudada juntamente com a avaliação físico-química e física do hábitat. Na região estudada, 77,4% do solo é utilizado para pastagens. Quanto à avaliação físico-química da água, 24 trechos foram classificados como bons, 10 como regulares e um como pobre; quanto à avaliação física do hábitat, 10 foram considerados regulares, 22 como pobres e 3 como muito pobres. Cinqüenta espécies foram coletadas e suas abundâncias apresentaram forte correlação com descritores do hábitat. Em adição a esta correlação, observou-se que algumas espécies também demonstraram sua distribuição ótima coincidente com o grau de conservação do hábitat físico. Os riachos

  12. The sociological perspective in coastal management and geoengineering approach: effects of hydraulic structures on the resilience of fishing communities (NW Portugal)

    Science.gov (United States)

    Rocha, Fernando; Pires, Ana; Chamine, Helder

    2014-05-01

    The coast plays an important role in global transportation and is the most popular tourist destination around the world. During the years coastal scientists "walking on the shore", have tried to understand the shoreline in relation to the processes that shape it, and its interrelationships with the contiguous superficial marine and terrestrial hinterland environments. Those factors encourage the need for Integrated Coastal Zone Management (ICZM), because of its possible use in identifying coastal management issues to take into account in policy strategies, measures and planning. Therefore this research presents an integrated strategy and a holistic approach to researching and studying coastal areas involving a wide number of sciences including sociology. Because of the numerous types of hazards in coastal areas the only possible response involves a holistic, integrated and long term approach. Combining marine sociological research, resilience and flexibility of a particular coastal community with other scientific fields will help to understand and manage marine social problems. This study also shows an integrative and "eclectic" methodology and adapts it to coastal management. Hence a new integrated coastal geoengineering approach for maritime environments was proposed, which is the core foundation of this approach. Also it was important to incorporate in a broader sense coastal geosciences and geoengineering GIS mapping to this final equation resulting in conceptual models. In Portugal there are several areas buffeted by sea invasions, coastal erosion and severe storms. The Portuguese coastal zone is one of Europe's most vulnerable regarding coastal erosion. The case study presented herein is an example of one of the most vulnerable sites in Portugal in terms of coastal erosion and sea invasions and how the meeting of local fishing community and coastal projects are extremely important. The coastal stretch between Figueira da Foz and Espinho (Centre and NW

  13. FBSAD Reef Fish-HABITAT Quadrat Surveys at Hawaii Island (Big Island, Main Hawaiian Islands), 2008; and Midway Atoll (Northwestern Hawaiian Islands), 2008 (NODC Accession 0067519)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Habitat quadrats were surveyed at 1 to ~5 m depths using transects conducted at a total four (4) sites: (1-2) at 2 longshore sites on the leeward coast (South Kohala...

  14. The application of a hydraulic biotope matrix to the assessment of ...

    African Journals Online (AJOL)

    The application of a hydraulic biotope matrix to the assessment of available habitat: Potential application to IFRs and river health monitoring. ... This paper presents a technique that aims to address qualitative and quantitative changes in instream habitat in response to changing flow discharge. A hydraulic biotope ...

  15. Possibilities of the fish pass restoration

    Science.gov (United States)

    Čubanová, Lea

    2018-03-01

    According to the new elaborated methodology of the Ministry of Environment of the Slovak Republic: Identification of the appropriate fish pass types according to water body typology (2015) each barrier on the river must be passable. On the barriers or structures without fish passes new ones should be design and built and on some water structures with existed but nonfunctional fish passes must be realized reconstruction or restoration of such objects. Assessment should be done in terms of the existing migratory fish fauna and hydraulic conditions. Fish fauna requirements resulting from the ichthyological research of the river section with barrier. Hydraulic conditions must than fulfil these requirements inside the fish pass body.

  16. Habitat modeling for brown trout population in alpine region of Slovenia with focus on determination of preference functions, fuzzy rules and fuzzy sets

    Science.gov (United States)

    Santl, Saso; Carf, Masa; Preseren, Tanja; Jenic, Aljaz

    2013-04-01

    Water withdrawals and consequently reduction of discharges in river streams for different water uses (hydro power, irrigation, etc.) usually impoverish habitat suitability for naturally present river fish fauna. In Slovenia reduction of suitable habitats resulting from water abstractions frequently impacts local brown trout (Salmo truta) populations. This is the reason for establishment of habitat modeling which can qualitatively and quantitatively support decision making for determination of the environmental flow and other mitigation measures. Paper introduces applied methodology for habitat modeling where input data preparation and elaboration with required accuracy has to be considered. For model development four (4) representative and heterogeneous sampling sites were chosen. Two (2) sampling sections were located within the sections with small hydropower plants and were considered as sections affected by water abstractions. The other two (2) sampling sections were chosen where there are no existing water abstractions. Precise bathymetric mapping for chosen river sections has been performed. Topographic data and series of discharge and water level measurements enabled establishment of calibrated hydraulic models, which provide data on water velocities and depths for analyzed discharges. Brief field measurements were also performed to gather required data on dominant and subdominant substrate size and cover type. Since the accuracy of fish distribution on small scale is very important for habitat modeling, a fish sampling method had to be selected and modified for existing river microhabitats. The brown trout specimen's locations were collected with two (2) different sampling methods. A method of riverbank observation which is suitable for adult fish in pools and a method of electro fishing for locating small fish and fish in riffles or hiding in cover. Ecological and habitat requirements for fish species vary regarding different fish populations as well as eco

  17. Protecting Marine Biodiversity: A Comparison of Individual Habitat Quotas (IHQs) and Marine Protected Areas

    OpenAIRE

    Kurt Schnier; Dan Holland

    2005-01-01

    Fisheries managers in the United States are required to identify and mitigate the adverse impacts of fishing activity on essential fish habitat (EFH). There are additional concerns that the viability of noncommercial species, animals that are habitat dependent and/or are themselves constituents of fishery habitat may still be threatened. We consider a cap-and-trade system for habitat conservation, individual habitat quotas for fisheries, to achieve habitat conservation and species protection ...

  18. Influence of artificially induced light pollution on the hormone system of two common fish species, perch and roach, in a rural habitat.

    Science.gov (United States)

    Brüning, Anika; Kloas, Werner; Preuer, Torsten; Hölker, Franz

    2018-01-01

    Almost all life on earth has adapted to natural cycles of light and dark by evolving circadian and circannual rhythms to synchronize behavioural and physiological processes with the environment. Artificial light at night (ALAN) is suspected to interfere with these rhythms. In this study we examined the influence of ALAN on nocturnal melatonin and sex steroid blood concentrations and mRNA expression of gonadotropins in the pituitary of European perch ( Perca fluviatilis ) and roach ( Rutilus rutilus ). In a rural experimental setting, fish were held in net cages in drainage channels experiencing either additional ALAN of ~15 lx at the water surface or natural light conditions at half-moon. No differences in melatonin concentrations between ALAN and natural conditions were detected. However, blood concentration of sex steroids (17β-estradiol; 11-ketotestosterone) as well as mRNA expression of gonadotropins (luteinizing hormone, follicle stimulating hormone) was reduced in both fish species. We conclude that ALAN can disturb biological rhythms in fish in urban waters. However, impacts on melatonin rhythm might have been blurred by individual differences, sampling methods and moonlight. The effect of ALAN on biomarkers of reproduction suggests a photo-labile period around the onset of gonadogenesis, including the experimental period (August). Light pollution therefore has a great potential to influence crucial life history traits with unpredictable outcome for fish population dynamics.

  19. Role of parasite load and differential habitat preferences in maintaining the coexistence of sexual and asexual competitors in fish of the Cobitis taenia hybrid complex

    Czech Academy of Sciences Publication Activity Database

    Kotusz, J.; Popiolek, M.; Drozd, P.; de Gelas, K.; Šlechtová, V.; Janko, Karel

    2014-01-01

    Roč. 113, č. 1 (2014), s. 220-235 ISSN 0024-4066 R&D Projects: GA ČR GBP505/12/G112 Institutional support: RVO:68081766 Keywords : diploid-polyploid complexes * European distribution * habitat partitioning * niche shift * parasite-mediated coexistence * Red Queen hypothesis * spined loach * unisexuality Subject RIV: EG - Zoology Impact factor: 2.264, year: 2014

  20. Continuation of studies on thermoregulation of fish and turtles in thermally stressed habitats. Annual progress report, 1 October 1978-30 September 1979

    Energy Technology Data Exchange (ETDEWEB)

    Spotila, J.R.

    1979-06-01

    A time dependent mathematical model accurately predicts heart, brain, and gut temperatures of largemouth bass. Body diameter, insulation thickness, and tissue thermal conductivity are controlling variables in the transfer of heat between a fish and water. Fish metabolic rate and water velocity across fish surfaces do not appreciably affect heat transfer rates. Multichannel temperature transmitters telemeter body temperatures of free swimming bass in Pond C on the Savannah River Plant while the behavior of those fish and other bass is recorded by an observer. Field studies of the home ranges and movements of turtles in Par Pond on the Savannah River Plant are completed. We have recorded the movements of 30 individuals fitted with radio transmitters. Distinct differences are apparent in the behavior of turtles in areas affected by heated effluents as compared to those in control areas. Calculations and theoretical analysis of the transient energy exchange of turtles are continuing. Laboratory experiments using /sup 133/Xe indicate that blood flow in the muscles and skin of alligators increases 2 to 6 fold during movement. Relative variation is similar in magnitude to that seen in human muscle. Evaporative water loss from alligators decreases as body size increases. The ratios of respiratory to cutaneous water loss are 1.80 at 5/sup 0/C, 1.18 at 25/sup 0/C and 0.85 at 35/sup 0/C. Boundary layer resistances to evaporative water loss are 6 fold less than predicted by calculations of aerodynamic boundary layers. Body size is a primary factor in determining the thermoregulatory strategy that is to be used by a given animal.Operative environmental temperatures (T/sub e/) are as high as 60/sup 0/C for a turtle basking on a log in the sun. In a rainstorm T/sub e/ drops to 18/sup 0/C. Experiments to measure T/sub e/ for turtles in normal and thermally affected areas are now continuing on the Savannah River Plant. (ERB)

  1. Deep-Sea Soft Coral Habitat Suitability

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Deep-sea corals, also known as cold water corals, create complex communities that provide habitat for a variety of invertebrate and fish species, such as grouper,...

  2. Movements and habitat utilization of nembwe, Serranochromis ...

    African Journals Online (AJOL)

    distance migrations onto the floodplains. It is concluded that although staying within relatively small home ranges, nembwe appears as a species with a variable and flexible habitat utilization. Keywords: fish, radio-tagging, telemetry, home range ...

  3. Deep-Sea Stony Coral Habitat Suitability

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Deep-sea corals, also known as cold water corals, create complex communities that provide habitat for a variety of invertebrate and fish species, such as grouper,...

  4. Habitat Suitability Index Models: Red-winged blackbird

    Science.gov (United States)

    Short, Henry L.

    1985-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the red-winged blackbird (Agelaius phoeniceus L.). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  5. Continuation of studies on thermoregulation of fish and turtles in thermally stressed habitats. Annual progress report, 1 October 1979-30 September 1980

    International Nuclear Information System (INIS)

    Spotila, J.R.

    1980-05-01

    Fundamental and realized climate spaces were calculated for the turtle Chrysemys scripta. These allow predictions about the effect of microclimate and thermal effluents on the behavior of these animals to be made. A conceptual model to define the biophysical-behavioral thermoregulatory mechanisms employed by this turtle is being finalized. Operative environmental temperature (T/sub e/) is a good predictor of the basking behavior of turtles. T/sub e/ is positively related to visible and thermal radiation and air temperature. Turtles generally do not bask until T/sub e/ exceeds 28 0 C, thus implicating thermoregulation as a major factor in determining the basking behavior of C. scripta. Water temperature was very important in determining the distribution of largemouth bass, Micropterus salmoides, in a South Carolina reservoir receiving thermal effluent from a nuclear reactor. Bass were restricted in movement by lethal water temperatures, selecting temperatures close to 30 0 C and avoiding temperatures above 31 0 C. Under normal, unheated conditions, bass dispersed throughout the reservoir. During reactor operation, hot water at temperatures lethal to fish (approx. 55 0 C), forced bass to retreat to refuges in two coves and a deep spring. Distribution of bass varied seasonally. Multichannel radio transmitters were surgically implanted in free ranging fish, permitting the telemetry of temperatures from five parts of the body and from surrounding water. In general, body temperatures followed water temperatures closely, but rapidly changing temperatures produced lags between body temperatures and water of as much as 3.5 0 C

  6. Role of habitat complexity in predator-prey dynamics between an introduced fish and larval Long-toed Salamanders (Ambystoma macrodactylum)

    Science.gov (United States)

    Kenison, Erin K; Litt, Andrea R.; Pilliod, David S.; McMahon, Tom E

    2016-01-01

    Predation by nonnative fishes has reduced abundance and increased extinction risk for amphibian populations worldwide. Although rare, fish and palatable amphibians have been observed to coexist where aquatic vegetation and structural complexity provide suitable refugia. We examined whether larval long-toed salamanders (Ambystoma macrodactylum Baird, 1849) increased use of vegetation cover in lakes with trout and whether adding vegetation structure could reduce predation risk and nonconsumptive effects (NCEs), such as reductions in body size and delayed metamorphosis. We compared use of vegetation cover by larval salamanders in lakes with and without trout and conducted a field experiment to investigate the influence of added vegetation structure on salamander body morphology and life history. The probability of catching salamanders in traps in lakes with trout was positively correlated with the proportion of submerged vegetation and surface cover. Growth rates of salamanders in enclosures with trout cues decreased as much as 85% and the probability of metamorphosis decreased by 56%. We did not find evidence that adding vegetation reduced NCEs in experimental enclosures, but salamanders in lakes with trout utilized more highly-vegetated areas which suggests that adding vegetation structure at the scale of the whole lake may facilitate coexistence between salamanders and introduced trout.

  7. Pine Bluff Arsenal Fish Survey

    National Research Council Canada - National Science Library

    Peacock, Lance

    2000-01-01

    Arkansas has a diverse ichthyofauna of over 215 species of fishes distributed in sixty-three genera and twenty-seven families which occupy a myriad of different aquatic habitats within its poltical boundaries...

  8. SE Asian freshwater fish population and networks: the impacts of climatic and environmental change on a vital resource

    Science.gov (United States)

    Santos, Rita; Parsons, Daniel; Cowx, Ian

    2016-04-01

    The Mekong River is the 10th largest freshwater river in the world, with the second highest biodiversity wealth, behind the much larger Amazon basin. The fisheries activity in the Lower Mekong countries counts for 2.7 million tons of fish per year, with an estimated value worth up to US 7 billion. For the 60 million people living in the basin, fish represent their primary source of economic income and protein intake, with an average per capita consumption estimated at 45.4 Kg. The proposed hydropower development in the basin is threatening its sustainability and resilience. Such developments affect fish migration patterns, hydrograph flood duration and magnitudes and sediment flux. Climate change is also likely to impact the basin, exacerbating the issues created by development. As a monsoonal system, the Mekong River's pronounced annual flood pulse cycle is important in creating variable habitat for fish productivity. Moreover, the annual flood also triggers fish migration and provides vital nutrients carried by the sediment flux. This paper examines the interactions between both dam development and climate change scenarios on fish habitat and habitat connectivity, with the aim of predicting how these will affect fish species composition and fisheries catch. The project will also employ Environmental DNA (eDNA) to quantify and understand the species composition of this complex and large freshwater system. By applying molecular analysis, it is possible to trace species abundance and migration patterns of fish and evaluate the ecological networks establish between an inland system. The aim of this work is to estimate, using process-informed models, the impacts of the proposed dam development and climate change scenarios on the hydrological and hydraulic conditions of habitat availability for fish. Furthermore, it will evaluate the connectivity along the Mekong and its tributaries, and the importance of maintaining these migration pathways, used by a great diversity

  9. Continuation of studies on thermoregulation of fish and turtles in thermally stressed habitats. Annual progress report, 1 October 1979-30 September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Spotila, J.R.

    1980-05-01

    Fundamental and realized climate spaces were calculated for the turtle Chrysemys scripta. These allow predictions about the effect of microclimate and thermal effluents on the behavior of these animals to be made. A conceptual model to define the biophysical-behavioral thermoregulatory mechanisms employed by this turtle is being finalized. Operative environmental temperature (T/sub e/) is a good predictor of the basking behavior of turtles. T/sub e/ is positively related to visible and thermal radiation and air temperature. Turtles generally do not bask until T/sub e/ exceeds 28/sup 0/C, thus implicating thermoregulation as a major factor in determining the basking behavior of C. scripta. Water temperature was very important in determining the distribution of largemouth bass, Micropterus salmoides, in a South Carolina reservoir receiving thermal effluent from a nuclear reactor. Bass were restricted in movement by lethal water temperatures, selecting temperatures close to 30/sup 0/C and avoiding temperatures above 31/sup 0/C. Under normal, unheated conditions, bass dispersed throughout the reservoir. During reactor operation, hot water at temperatures lethal to fish (approx. 55/sup 0/C), forced bass to retreat to refuges in two coves and a deep spring. Distribution of bass varied seasonally. Multichannel radio transmitters were surgically implanted in free ranging fish, permitting the telemetry of temperatures from five parts of the body and from surrounding water. In general, body temperatures followed water temperatures closely, but rapidly changing temperatures produced lags between body temperatures and water of as much as 3.5/sup 0/C. (ERB)

  10. Kalispel Resident Fish Project : Annual Report, 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Todd; Olson, Jason

    2003-03-01

    In 2002 the Kalispel Natural Resource Department (KNRD) continued monitoring enhancement projects (implemented from 1996 to 1998) for bull trout (Salvelinus confluentus), westslope cutthroat (Oncorhynchus clarki lewisi) and largemouth bass (Micropterus salmoides). Additional baseline fish population and habitat assessments were conducted, in 2002, in tributaries to the Pend Oreille River. Further habitat and fish population enhancement projects were also implemented in 2002.

  11. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  12. Continuation of studies on thermoregulation of fish and turtles in thermally stressed habitats. Summary progress report, 1 October 1977-30 September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Spotila, J.R.

    1980-05-01

    Biophysical-behavioral-ecological models have been completed to explain the behavioral thermoregulation of largemouth bass (Micropterus salmoides) and turtles (Chrysemys scripta). Steady state and time dependent mathematical models accurately predict the body temperatures of largemouth bass. Field experiments using multichannel radio transmitters have provided temperatures of several body compartments of free ranging bass in their natural habitat. Initial studies have been completed to describe the behavioral thermoregulation of bass in a reactor cooling reservoir. Energy budgets, fundamental climate spaces, and realized climate spaces have been completed for the turtle, C. scripta. We have described the behavioral thermoregulation of C. scripta in Par Pond, S.C. and have measured its movements, home ranges and population levels in heated and unheated arms of the reservoir. Operative environmental temperature is a good predictor of the basking behavior of this turtle. A new synthesis explained the evolution of thermoregulatory strategies among animals. Laboratory experiments clarified the effects of movement, diving and temperature on the blood flow of alligators. Other experiments defined the role of boundary layers in controlling the evaporation of water from the surfaces of turtles and alligators in still and moving air. Nutritional status may be an important factor affecting the thermoregulatory behavior of turtles.

  13. 36 CFR 241.23 - Taking of fish and wildlife.

    Science.gov (United States)

    2010-07-01

    ... habitat in accordance with recognized scientific management principles, local rural residents who depend... FISH AND WILDLIFE Conservation of Fish, Wildlife, and Their Habitat, Chugach National Forest, Alaska... habitat, the continuation of existing uses and the future establishment and use of temporary campsites...

  14. Salmon River Habitat Enhancement, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Konopacky, Richard C.

    1986-04-01

    This report has four volumes: a Tribal project annual report (Part 1) and three reports (Parts 2, 3, and 4) prepared for the Tribes by their engineering subcontractor. The Tribal project annual report contains reports for four subprojects within Project 83-359. Subproject I involved habitat and fish inventories in Bear Valley Creek, Valley County, Idaho that will be used to evaluate responses to ongoing habitat enhancement. Subproject II is the coordination/planning activities of the Project Leader in relation to other BPA-funded habitat enhancement projects that have or will occur within the traditional Treaty (Fort Bridger Treaty of 1868) fishing areas of the Shoshone-Bannock Tribes, Fort Hall Reservation, Idaho. Subproject III involved habitat and fish inventories (pretreatment) and habitat problem identification on the Yankee Fork of the Salmon River (including Jordan Creek). Subproject IV during 1985 involved habitat problem identification in the East Fork of the Salmon River and habitat and fish inventories (pretreatment) in Herd Creek, a tributary to the East Fork.

  15. Remotely Sensed Predictions and In Situ Observations of Lower Congo River Dynamics in Support of Fish Evolutionary Biology

    Science.gov (United States)

    Gardiner, N.; Bjerklie, D. M.

    2011-12-01

    Ongoing research into the evolution of fishes in the lower Congo River suggests a close tie between diversity and hydraulic complexity of flow in the channel. For example, fish populations on each side of the rapids at the head of the lower Congo are within 1.5 km of one another, a distance normally allowing for interbreeding in river systems of comparable size, yet these fish populations show about 5% divergence in their mitochondrial DNA signatures. The proximal reason for this divergence is hydraulic complexity: the speed and turbulence of water moving through the thalweg is a barrier to dispersal for these fishes. Further examination of fish diversity suggests additional correlations of evolutionary divergence of fish clades in association with geomorphic and hydraulic features such as deep pools, extensive systems of rapids, alternating sections of fast and slow current, and recurring whirlpools. Due to prohibitive travel costs, limited field time, and the large geographic domain (approximately 400 river km) of the study area, we undertook a nested set of remote sensing analyses to extract habitat features, geomorphic descriptors, and hydraulic parameters including channel forming velocity, depth, channel roughness, slope, and shear stress. Each of these estimated parameters is mapped for each 1 km segment of the river from the rapids described above to below Inga Falls, a massive cataract where several endemic fish species have been identified. To validate remote sensing estimates, we collected depth and velocity data within the river using gps-enabled sonar measurements from a kayak and Doppler profiling from a motor-driven dugout canoe. Observations corroborate remote sensing estimates of geomorphic parameters. Remote sensing-based estimates of channel-forming velocity and depth were less than the observed maximum channel depth but correlated well with channel properties within 1 km reach segments. This correspondence is notable. The empirical models used

  16. Protocols for collection of streamflow, water-quality, streambed-sediment, periphyton, macroinvertebrate, fish, and habitat data to describe stream quality for the Hydrobiological Monitoring Program, Equus Beds Aquifer Storage and Recovery Program, city of Wichita, Kansas

    Science.gov (United States)

    Stone, Mandy L.; Rasmussen, Teresa J.; Bennett, Trudy J.; Poulton, Barry C.; Ziegler, Andrew C.

    2012-01-01

    The city of Wichita, Kansas uses the Equus Beds aquifer, one of two sources, for municipal water supply. To meet future water needs, plans for artificial recharge of the aquifer have been implemented in several phases. Phase I of the Equus Beds Aquifer Storage and Recovery (ASR) Program began with injection of water from the Little Arkansas River into the aquifer for storage and subsequent recovery in 2006. Construction of a river intake structure and surface-water treatment plant began as implementation of Phase II of the Equus Beds ASR Program in 2010. An important aspect of the ASR Program is the monitoring of water quality and the effects of recharge activities on stream conditions. Physical, chemical, and biological data provide the basis for an integrated assessment of stream quality. This report describes protocols for collecting streamflow, water-quality, streambed-sediment, periphyton, macroinvertebrate, fish, and habitat data as part of the city of Wichita's hydrobiological monitoring program (HBMP). Following consistent and reliable methods for data collection and processing is imperative for the long-term success of the monitoring program.

  17. Diet, abundance and distribution as indices of turbot ( Psetta maxima L.) release habitat suitability

    DEFF Research Database (Denmark)

    Sparrevohn, Claus Reedtz; Støttrup, Josianne

    2008-01-01

    , natural abundance, and depth distribution within the habitats. A marked difference was found among habitats in the timing of the diet change from the suboptimal exoskeleton carrying prey items such as crustaceans to fish. The habitat where the wild turbot had the lowest occurrence of fish in their diet...

  18. Natural Propagation and Habitat Improvement, Volume I, Oregon, Supplement C, White River Habitat Inventory, 1983 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Heller, David

    1984-04-01

    More than 130 miles of stream fish habitat was inventoried and evaluated on the Mt. Hood National Forest during the first year of this multi-year project. First year tasks included field inventory and evaluation of habitat conditions on the White River and tributary streams thought to have the highest potential for supporting anadromous fish populations. All streams inventoried were located on the Mt. Hood National Forest. The surveyed area appears to contain most of the high quality anadromous fish habitat in the drainage. Habitat conditions appear suitable for steelhead, coho, and chinook salmon, and possibly sockeye. One hundred and twenty-four miles of potential anadromous fish habitat were identifed in the survey. Currently, 32 miles of this habitat would be readily accessible to anadromous fish. An additional 72 miles of habitat could be accessed with only minor passage improvement work. About 20 miles of habitat, however, will require major investment to provide fish passage. Three large lakes (Boulder, 14 acres; Badger, 45 acres; Clear, 550 acres) appear to be well-suited for rearing anadromous fish, although passage enhancement would be needed before self-sustaining runs could be established in any of the lakes.

  19. Engineered channel controls limiting spawning habitat rehabilitation success on regulated gravel-bed rivers

    Science.gov (United States)

    Brown, Rocko A.; Pasternack, Gregory B.

    2008-05-01

    In efforts to rehabilitate regulated rivers for ecological benefits, the flow regime has been one of the primary focal points of management strategies. However, channel engineering can impact channel geometry such that hydraulic and geomorphic responses to flow reregulation do not yield the sought for benefits. To illustrate and assess the impacts of structural channel controls and flow reregulation on channel processes and fish habitat quality in multiple life stages, a highly detailed digital elevation model was collected and analyzed for a river reach right below a dam using a suite of hydrologic, hydraulic, geomorphic, and ecological methods. Results showed that, despite flow reregulation to produce a scaled-down natural hydrograph, anthropogenic boundary controls have severely altered geomorphic processes associated with geomorphic self-sustainability and instream habitat availability in the case study. Given the similarity of this stream to many others, we concluded that the potential utility of natural flow regime reinstatement in regulated gravel-bed rivers is conditional on concomitant channel rehabilitation.

  20. Assessment of Hydraulic Conditions Supporting the Recruitment of Asian Carp in the Illinois Waterway - A Case Study Using Known Spawning Events of 2015

    Science.gov (United States)

    Soong, D. T.; Garcia, T.; Duncker, J.; Zhu, Z.; Butler, S.; Diana, M.; Wahl, D.

    2016-12-01

    The upstream movement of Asian carp in the Illinois Waterway poses a potential threat to the Great Lakes. If established within the Great Lakes, Asian carp may disrupt the food web and harm the ecosystems of the Great Lakes. Understanding the Asian carp reproduction, including the timing and locations of adult spawning and the transport and dispersal of eggs and larvae, is essential information for managing the Asian carp population in the Illinois Waterway. The Fluvial Egg Drift Simulator (FluEgg) model, a Lagrangian particle tracking model, has been used to study the transport and dispersal of eggs and larvae. The FluEgg model inputs are water temperature and hydraulic properties. At present, field measured or modeled hydraulics from steady-state simulations have been used in FluEgg modeling and the applications have shown useful results for evaluating Asian carp reproduction in the Illinois Waterway. However, there is a need to use data based on more representative time-variable hydraulic conditions from spawning to the time larvae reach the Gas Bladder Inflation Stage (GBI). The GBI stage is critical because that is the stage when the young fish seek nursery habitat. In June 2015, Asian carp spawning was observed at two locations along the Illinois Waterway, one below Starved Rock Lock and Dam near Utica, and the one in the La Grange Pool near Havana, Illinois. This study analyzes how hydraulic modeling can improve the predictability of the FluEgg model. An unsteady HEC-RAS hydraulic model of the Illinois Waterway from Brandon Road Lock and Dam to Grafton, Illinois was used to reproduce the June 2015 flood event. Hydraulic data from HEC-RAS modeling, including predicted spatial and temporal discharge, water depth, and shear velocity; and measured water temperature data were used as input to the FluEgg model. FluEgg simulation results illustrate the downstream drifting of eggs and larvae until reaching the GBI stage. These simulation results can be analyzed

  1. Anticipating impacts of climate change on fish habitat to support decisionmaking in hydropower licensing: a climate risk study for the Hiram Dam, Saco River, ME

    Science.gov (United States)

    Lagron, C. S.; Ray, A. J.; Barsugli, J. J.

    2016-12-01

    The Federal Energy Regulatory Commission (FERC) issues licenses for non-federal hydropower projects through its Integrated Licensing Process (ILP). Through this multi-stage, multi-year decision process, NOAA National Marine Fisheries Service (NMFS) can request studies needed to prescribe license conditions to mitigate dams' effects on trust resources, e.g. fish passages and flow requirements. NMFS must understand the combined effects of hydropower projects and climate change to fulfill its mandates to maintain fisheries and protected species. Although 30-50 year hydropower licenses and renewals are within the time frame of anticipated risks from changing climate, FERC has consistently rejected NMFS' climate study requests, stating climate science is "too uncertain," and therefore not actionable. The ILP is an opportunity to incorporate climate change risks in this decision process, and to make decisions now to avoid failures later in the system regarding both hydropower reliability (the concern of FERC and the applicant) and ecosystem health (NMFS's concern). NMFS has partnered with climate scientists at the ESRL Physical Sciences Division to co-produce a climate study request for the relicensing of the Hiram Project on the Saco River in Southern Maine. The Saco hosts Atlantic salmon (Salmo salar) runs which are not currently self-sustaining. This presentation will describe basin-to-basin variability in both historic river analyses (Hydro-Climate Data Network, HCDN) and projected hydrologic responses of New England rivers to climate forcings using statewide Precipitation-Runoff Modeling System (PRMS) demonstrate the need to develop Saco-specific watershed models. Furthermore, although methods for projecting fishery-relevant metrics (heat waves, flood annual exceedance probabilities) have been proven in nearby basins, this modeling has not been conducted at fishery-relevant thresholds. Climate study requests are an example of bridging between science and

  2. Caribbean mangroves and seagrass beds as daytime feeding habitats for juvenile French grunts, Haemulon flavolineatum

    NARCIS (Netherlands)

    Verweij, M.C.; Nagelkerken, I.; Wartenbergh, S.L.J.; Pen, I.R.; Van der Velde, G.

    Caribbean seagrass beds are important feeding habitats for so-called nocturnally active zoobenthivorous fish, but the extent to which these fishes use mangroves and seagrass beds as feeding habitats during daytime remains unclear. We hypothesised three feeding strategies: (1) fishes feed

  3. Caribbean mangroves and seagrass beds as diurnal feeding habitats for juvenile French grunts, Haemulon flavolineatum.

    NARCIS (Netherlands)

    Verwey, M.C.; Nagelkerken, I.; Wartenbergh, S.L.J.; Pen, I.R.; Velde, G. van der

    2006-01-01

    Abstract Caribbean seagrass beds are important feeding habitats for so-called nocturnally active zoobenthivorous fish, but the extent to which these fishes use mangroves and seagrass beds as feeding habitats during daytime remains unclear. We hypothesised three feeding strategies: (1) fishes feed

  4. Fish Allergy

    Science.gov (United States)

    ... Cause Blog Vision Awards Common Allergens Fish Allergy Fish Allergy Learn about fish allergy, how to read ... that you must avoid both. Allergic Reactions to Fish Finned fish can cause severe and potentially life- ...

  5. Coho Salmon Habitat in a Changing Environment-Green Valley Creek, Graton, California

    Science.gov (United States)

    O'Connor, M. D.; Kobor, J. S.; Sherwood, M. N.

    2013-12-01

    induced a cycle of channel incision in upper GVC, deepening and widening channels. The headward extent of incision is identified, and upstream remnant valley surfaces remain undissected. Remnant valleys preserve a substantial alluvial aquifer that may be another source of summer stream flow. Sedimentation has occurred downstream, caused or compounded by the dense growth of riparian vegetation on the lower floodplain which we believe has significantly altered the base level of the valley. The evidence of rapid ongoing environmental change is significant, and could affect coho salmon both positively and negatively. Our research using spatially-distributed, physically-based hydrologic and hydraulic models incorporating the interaction of surface water with ground water (MIKE FLOOD and MIKE SHE) seeks to identify controlling factors and predict the trajectory of environmental change. LiDAR topographic data have enabled modeling floodplain flows in two-dimensions and is used to evaluate over-winter habitat for coho in the floodplain. As we learn more about current and future habitat conditions we will be investigating whether on-going environmental change represents a reversion to prior conditions or a shift to new conditions that may or may not prove favorable to native fish populations in the long term.

  6. Field Testing Of An Expert Model: Can The Model Predict Habitat Potential For Saltmarsh Birds?

    Science.gov (United States)

    Salt marshes are valuable resources, which provide numerous ecosystem services, including flood protection, fish nursery habitat, and nesting habitat for a number of threatened and endangered species. At the present time, due primarily to coastal development and sea level rise,...

  7. Effects of human population density and proximity to markets on coral reef fishes vulnerable to extinction by fishing.

    Science.gov (United States)

    Brewer, T D; Cinner, J E; Green, A; Pressey, R L

    2013-06-01

    Coral reef fisheries are crucial to the livelihoods of tens of millions of people; yet, widespread habitat degradation and unsustainable fishing are causing severe depletion of stocks of reef fish. Understanding how social and economic factors, such as human population density, access to external markets, and modernization interact with fishing and habitat degradation to affect fish stocks is vital to sustainable management of coral reef fisheries. We used fish survey data, national social and economic data, and path analyses to assess whether these factors explain variation in biomass of coral reef fishes among 25 sites in Solomon Islands. We categorized fishes into 3 groups on the basis of life-history characteristics associated with vulnerability to extinction by fishing (high, medium, and low vulnerability). The biomass of fish with low vulnerability was positively related to habitat condition. The biomass of fishes with high vulnerability was negatively related to fishing conducted with efficient gear. Use of efficient gear, in turn, was strongly and positively related to both population density and market proximity. This result suggests local population pressure and external markets have additive negative effects on vulnerable reef fish. Biomass of the fish of medium vulnerability was not explained by fishing intensity or habitat condition, which suggests these species may be relatively resilient to both habitat degradation and fishing. © 2012 Society for Conservation Biology.

  8. Coupling habitat suitability and ecosystem health with AEHRA to estimate E-flows under intensive human activities

    Science.gov (United States)

    Zhao, C. S.; Yang, S. T.; Zhang, H. T.; Liu, C. M.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Dong, B. E.; Lim, R. P.

    2017-08-01

    Sustaining adequate environmental flows (e-flows) is a key principle for maintaining river biodiversity and ecosystem health, and for supporting sustainable water resource management in basins under intensive human activities. But few methods could correctly relate river health to e-flows assessment at the catchment scale when they are applied to rivers highly impacted by human activities. An effective method is presented in this study to closely link river health to e-flows assessment for rivers at the catchment scale. Key fish species, as indicators of ecosystem health, were selected by using the foodweb model. A multi-species-based habitat suitability model (MHSI) was improved, and coupled with dominance of the key fish species as well as the Index of Biological Integrity (IBI) to enhance its accuracy in determining the fish-preferred key hydrologic habitat variables related to ecosystem health. Taking 5964 fish samples and concurrent hydrological habitat variables as the basis, the combination of key variables of flow-velocity and water-depth were determined and used to drive the Adapted Ecological Hydraulic Radius Approach (AEHRA) to study e-flows in a Chinese urban river impacted by intensive human activities. Results showed that upstream urbanization resulted in abnormal river-course geomorphology and consequently abnormal e-flows under intensive human activities. Selection of key species based on the foodweb and trophic levels of aquatic ecosystems can reflect a comprehensive requirement on e-flows of the whole aquatic ecosystem, which greatly increases its potential to be used as a guidance tool for rehabilitation of degraded ecosystems at large spatial scales. These findings have significant ramifications for catchment e-flows assessment under intensive human activities and for river ecohealth restoration in such rivers globally.

  9. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  10. Habitat connectivity and ecosystem productivity: implications from a simple model.

    Science.gov (United States)

    Cloern, James E

    2007-01-01

    The import of resources (food, nutrients) sustains biological production and food webs in resource-limited habitats. Resource export from donor habitats subsidizes production in recipient habitats, but the ecosystem-scale consequences of resource translocation are generally unknown. Here, I use a nutrient-phytoplankton-zooplankton model to show how dispersive connectivity between a shallow autotrophic habitat and a deep heterotrophic pelagic habitat can amplify overall system production in metazoan food webs. This result derives from the finite capacity of suspension feeders to capture and assimilate food particles: excess primary production in closed autotrophic habitats cannot be assimilated by consumers; however, if excess phytoplankton production is exported to food-limited heterotrophic habitats, it can be assimilated by zooplankton to support additional secondary production. Transport of regenerated nutrients from heterotrophic to autotrophic habitats sustains higher system primary production. These simulation results imply that the ecosystem-scale efficiency of nutrient transformation into metazoan biomass can be constrained by the rate of resource exchange across habitats and that it is optimized when the transport rate matches the growth rate of primary producers. Slower transport (i.e., reduced connectivity) leads to nutrient limitation of primary production in autotrophic habitats and food limitation of secondary production in heterotrophic habitats. Habitat fragmentation can therefore impose energetic constraints on the carrying capacity of aquatic ecosystems. The outcomes of ecosystem restoration through habitat creation will be determined by both functions provided by newly created aquatic habitats and the rates of hydraulic connectivity between them.

  11. Use of sand wave habitats by silver hake

    Science.gov (United States)

    Auster, P.J.; Lindholm, J.; Schaub, S.; Funnell, G.; Kaufman, L.S.; Valentine, P.C.

    2003-01-01

    Silver hake Merluccius bilinearis are common members of fish communities in sand wave habitats on Georges Bank and on Stellwagen Bank in the Gulf of Maine. Observations of fish size v. sand wave period showed that silver hake are not randomly distributed within sand wave landscapes. Regression analyses showed a significant positive relationship between sand wave period and fish length. Correlation coefficients, however, were low, suggesting other interactions with sand wave morphology, the range of current velocities, and available prey may also influence their distribution. Direct contact with sand wave habitats varied over diel periods, with more fish resting on the seafloor during daytime than at night. Social foraging, in the form of polarized groups of fish swimming in linear formations during crepuscular and daytime periods, was also observed. Sand wave habitats may provide shelter from current flows and mediate fish-prey interactions. ?? 2003 The Fisheries Society of the British Isles.

  12. Digital switched hydraulics

    Science.gov (United States)

    Pan, Min; Plummer, Andrew

    2018-06-01

    This paper reviews recent developments in digital switched hydraulics particularly the switched inertance hydraulic systems (SIHSs). The performance of SIHSs is presented in brief with a discussion of several possible configurations and control strategies. The soft switching technology and high-speed switching valve design techniques are discussed. Challenges and recommendations are given based on the current research achievements.

  13. Hydraulic Structures : Caissons

    NARCIS (Netherlands)

    Voorendt, M.Z.; Molenaar, W.F.; Bezuyen, K.G.

    These lecture notes on caissons are part of the study material belonging to the course 'Hydraulic Structures 1' (code CTB3355), part of the Bachelor of Science education and the Hydraulic Engineering track of the Master of Science education for civil engineering students at Delft University of

  14. Use of Ecohydraulic-Based Mesohabitat Classification and Fish Species Traits for Stream Restoration Design

    Directory of Open Access Journals (Sweden)

    John S. Schwartz

    2016-11-01

    Full Text Available Stream restoration practice typically relies on a geomorphological design approach in which the integration of ecological criteria is limited and generally qualitative, although the most commonly stated project objective is to restore biological integrity by enhancing habitat and water quality. Restoration has achieved mixed results in terms of ecological successes and it is evident that improved methodologies for assessment and design are needed. A design approach is suggested for mesohabitat restoration based on a review and integration of fundamental processes associated with: (1 lotic ecological concepts; (2 applied geomorphic processes for mesohabitat self-maintenance; (3 multidimensional hydraulics and habitat suitability modeling; (4 species functional traits correlated with fish mesohabitat use; and (5 multi-stage ecohydraulics-based mesohabitat classification. Classification of mesohabitat units demonstrated in this article were based on fish preferences specifically linked to functional trait strategies (i.e., feeding resting, evasion, spawning, and flow refugia, recognizing that habitat preferences shift by season and flow stage. A multi-stage classification scheme developed under this premise provides the basic “building blocks” for ecological design criteria for stream restoration. The scheme was developed for Midwest US prairie streams, but the conceptual framework for mesohabitat classification and functional traits analysis can be applied to other ecoregions.

  15. Fishing activities

    Science.gov (United States)

    Oberle, Ferdinand; Puig, Pere; Martin, Jacobo; Micallef, Aaron; Krastel, Sebastian; Savini, Alessandra

    2018-01-01

    Unlike the major anthropogenic changes that terrestrial and coastal habitats underwent during the last centuries such as deforestation, river engineering, agricultural practices or urbanism, those occurring underwater are veiled from our eyes and have continued nearly unnoticed. Only recent advances in remote sensing and deep marine sampling technologies have revealed the extent and magnitude of the anthropogenic impacts to the seafloor. In particular, bottom trawling, a fishing technique consisting of dragging a net and fishing gear over the seafloor to capture bottom-dwelling living resources has gained attention among the scientific community, policy makers and the general public due to its destructive effects on the seabed. Trawling gear produces acute impacts on biota and the physical substratum of the seafloor by disrupting the sediment column structure, overturning boulders, resuspending sediments and imprinting deep scars on muddy bottoms. Also, the repetitive passage of trawling gear over the same areas creates long-lasting, cumulative impacts that modify the cohesiveness and texture of sediments. It can be asserted nowadays that due to its recurrence, mobility and wide geographical extent, industrial trawling has become a major force driving seafloor change and affecting not only its physical integrity on short spatial scales but also imprinting measurable modifications to the geomorphology of entire continental margins.

  16. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  17. Considering direct and indirect habitat influences on stream biota in eco-geomorphology research to better understand, model, and manage riverine ecosystems

    Science.gov (United States)

    Cienciala, P.; Nelson, A. D.

    2017-12-01

    The field of fluvial eco-geomorphology strives to improve the understanding of interactions between physical and biological processes in running waters. This body of research has greatly contributed to the advancement of integrated river science and management. Arguably, the most popular research themes in eco-geomorphology include hydrogemorphic controls of habitat quality and effects of disturbances such as floods, sediment transport events or sediment accumulation. However, in contrast to the related field of ecology, the distinction between direct and indirect mechanisms which may affect habitat quality and biotic response to disturbance has been poorly explored in eco-geomorphic research. This knowledge gap poses an important challenge for interpretations of field observations and model development. In this research, using the examples of benthic invertebrates and fish, we examine the importance of direct and indirect influences that geomorphic and hydraulic processes may exert on stream biota. We also investigate their implications for modeling of organism-habitat relationships. To achieve our goal, we integrate field and remote sensing data from montane streams in the Pacific Northwest region with habitat models. Preliminary results indicate that indirect hydrogeomorphic influences of stream organisms, such as those mediated by altered availability of food resources, can be as important as direct influences (e.g. phy