Sample records for hydraulic erosion component


    Institute of Scientific and Technical Information of China (English)

    Fen-li ZHENG; Pei-qing XIAO; Xue-tian GAO


    In the rill erosion process,run-on water and sediment from upslope areas,and rill flow hydraulic parameters have significant effects on sediment detachment and transport.However,there is a lack of data to quantify the effects of run-on water and sediment and rill flow hydraulic parameters on rill erosion process at steep hillslopes,especially in the Loess Plateau of China.A dual-box system,consisting of a 2-m-long feeder box and a 5-m-long test box with 26.8% slope gradient was used to quantify the effects of upslope runoff and sediment,and of rill flow hydraulic parameters on the rill erosion process.The results showed that detachment-transport was dominated in rill erosion processes; upslope runoff always caused the net rill detachment at the downslope rill flow channel,and the net rill detachment caused by upslope runoff increased with a decrease of runoff sediment concentration from the feeder box or an increase of rainfall intensity.Upslope runoff discharging into the rill flow channel or an increase of rainfall intensity caused the rill flow to shift from a stratum flow into a turbulent flow.Upslope runoff had an important effect on rill flow hydraulic parameters,such as rill flow velocity,hydraulic radius,Reynolds number,Froude number and the Darcy-Weisbach resistance coefficient.The net rill detachment caused by upslope runoff increased as the relative increments of rill flow velocity,Reynolds number and Froude number caused by upslope runoff increased.In contrast,the net rill detachment decreased with an increase of the relative decrement of the Darcy-Weisbach resistance coefficient caused by upslope runoff.These findings will help to improve the understanding of the effects of run-on water and sediment on the erosion process and to find control strategies to minimize the impact of run-on water.

  2. 14 CFR 35.43 - Propeller hydraulic components. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller hydraulic components. 35.43 Section 35.43 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.43 Propeller hydraulic components....

  3. Biologically-initiated rock crust on sandstone: Mechanical and hydraulic properties and resistance to erosion (United States)

    Slavík, Martin; Bruthans, Jiří; Filippi, Michal; Schweigstillová, Jana; Falteisek, Lukáš; Řihošek, Jaroslav


    Biocolonization on sandstone surfaces is known to play an important role in rock disintegration, yet it sometimes also aids in the protection of the underlying materials from rapid erosion. There have been few studies comparing the mechanical and/or hydraulic properties of the BIRC (Biologically-Initiated Rock Crust) with its subsurface. As a result, the overall effects of the BIRC are not yet well understood. The objective of the present study was to briefly characterize the BIRC from both the mineralogical and biological points of view, and especially to quantify the effect of the BIRC upon the mechanical and hydraulic properties of friable sandstone. The mineralogical investigation of a well-developed BIRC showed that its surface is enriched in kaolinite and clay- to silt-sized quartz particles. Total organic carbon increases with the age of the BIRC. Based on DNA sequencing and microscopy, the BIRC is formed by various fungi, including components of lichens and green algae. Using the method of drilling resistance, by measuring tensile strength, and based on water jet testing, it was determined that a BIRC is up to 12 times less erodible and has 3-35 times higher tensile strength than the subsurface friable sandstone. Saturated hydraulic conductivity of the studied BIRC is 15-300 times lower than the subsurface, and was measured to also decrease in capillary water absorption (2-33 times). Water-vapor diffusion is not significantly influenced by the presence of the BIRC. The BIRC thus forms a hardened surface which protects the underlying material from rain and flowing water erosion, and considerably modifies the sandstone's hydraulic properties. Exposing the material to calcination (550 °C), and experiments with the enzyme zymolyase indicated that a major contribution to the surface hardening is provided by organic matter. In firmer sandstones, the BIRC may still considerably decrease the rate of weathering, as it is capable of providing cohesion to strongly

  4. Potential for monitoring soil erosion features and soil erosion modeling components from remotely sensed data (United States)

    Langran, K. J.


    Accurate estimates of soil erosion and its effects on soil productivity are essential in agricultural decision making and planning from the field scale to the national level. Erosion models have been primarily developed for designing erosion control systems, predicting sediment yield for reservoir design, predicting sediment transport, and simulating water quality. New models proposed are more comprehensive in that the necessary components (hydrology, erosion-sedimentation, nutrient cycling, tillage, etc.) are linked in a model appropriate for studying the erosion-productivity problem. Recent developments in remote sensing systems, such as Landsat Thematic Mapper, Shuttle Imaging Radar (SIR-B), etc., can contribute significantly to the future development and operational use of these models.

  5. Ascribing soil erosion of hillslope components to river sediment yield. (United States)

    Nosrati, Kazem


    In recent decades, soil erosion has increased in catchments of Iran. It is, therefore, necessary to understand soil erosion processes and sources in order to mitigate this problem. Geomorphic landforms play an important role in influencing water erosion. Therefore, ascribing hillslope components soil erosion to river sediment yield could be useful for soil and sediment management in order to decrease the off-site effects related to downstream sedimentation areas. The main objectives of this study were to apply radionuclide tracers and soil organic carbon to determine relative contributions of hillslope component sediment sources in two land use types (forest and crop field) by using a Bayesian-mixing model, as well as to estimate the uncertainty in sediment fingerprinting in a mountainous catchment of western Iran. In this analysis, (137)Cs, (40)K, (238)U, (226)Ra, (232)Th and soil organic carbon tracers were measured in 32 different sampling sites from four hillslope component sediment sources (summit, shoulder, backslope, and toeslope) in forested and crop fields along with six bed sediment samples at the downstream reach of the catchment. To quantify the sediment source proportions, the Bayesian mixing model was based on (1) primary sediment sources and (2) combined primary and secondary sediment sources. The results of both approaches indicated that erosion from crop field shoulder dominated the sources of river sediments. The estimated contribution of crop field shoulder for all river samples was 63.7% (32.4-79.8%) for primary sediment sources approach, and 67% (15.3%-81.7%) for the combined primary and secondary sources approach. The Bayesian mixing model, based on an optimum set of tracers, estimated that the highest contribution of soil erosion in crop field land use and shoulder-component landforms constituted the most important land-use factor. This technique could, therefore, be a useful tool for soil and sediment control management strategies. Copyright

  6. Hydraulic characteristics and sediment generation on slope erosion in the Three Gorges Reservoir Area, China

    Directory of Open Access Journals (Sweden)

    Qian Feng


    Full Text Available Hydrological processes play important roles in soil erosion processes of the hillslopes. This study was conducted to investigate the hydrological processes and the associated erosional responses on the purple soil slope. Based on a comprehensive survey of the Wangjiaqiao watershed in the Three Gorges Reservoir, four typical slope gradients (5°, 10°, 15°and 20° were applied to five rainfall intensities (0.6, 1.1, 1.61, 2.12 and 2.54 mm·min-1. The results showed that both surface and subsurface runoff varied greatly depending on the rainfall intensity and slope gradient. Surface runoff volume was 48.1 to 280.1 times of that for subsurface runoff. The critical slope gradient was about 10°. The sediment yield rate increased with increases in both rainfall intensity and slope gradient, while the effect of rainfall intensity on the sediment yield rate was greater than slope gradient. There was a good linear relationship between sediment yield rate and Reynolds numbers, flow velocity and stream power, while Froude numbers, Darcy-Weisbach and Manning friction coefficients were not good hydraulic indicators of the sediment yield rate of purple soil erosion. Among the three good indicators (Re, v and w, stream power was the best predictor of sediment yield rate (R2 = 0.884. Finally, based on the power regression relationship between sediment yield rate, runoff rate, slope gradient and rainfall intensity, an erosion model was proposed to predict the purple soil erosion (R2 = 0.897. The results can help us to understand the relationship between flow hydraulics and sediment generation of slope erosion and offer useful data for the building of erosion model in purple soil.

  7. Hydro-abrasive erosion of hydraulic turbines caused by sediment - a century of research and development (United States)

    Felix, D.; Albayrak, I.; Abgottspon, A.; Boes, R. M.


    Hydro-abrasive erosion of hydraulic turbines is an economically important issue due to maintenance costs and production losses, in particular at high- and medium-head run-of- river hydropower plants (HPPs) on sediment laden rivers. In this paper, research and development in this field over the last century are reviewed. Facilities for sediment exclusion, typically sand traps, as well as turbine design and materials have been improved considerably. Since the 1980s, hard-coatings have been applied on Francis and Pelton turbine parts of erosion-prone HPPs and became state-of-the-art. These measures have led to increased times between overhauls and smaller efficiency reductions. Analytical, laboratory and field investigations have contributed to a better processes understanding and quantification of sediment-related effects on turbines. More recently, progress has been made in numerical modelling of turbine erosion. To calibrate, validate and further develop prediction models, more measurements from both physical model tests in laboratories and real-scale data from HPPs are required. Significant improvements to mitigate hydro-abrasive erosion have been achieved so far and development is ongoing. A good collaboration between turbine manufacturers, HPP operators, measuring equipment suppliers, engineering consultants, and research institutes is required. This contributes to the energy- and cost-efficient use of the worldwide hydropower potential.

  8. Waterfall formation driven by interacting flow hydraulics, sediment cover, and erosion in an experimental bedrock canyon (United States)

    Scheingross, Joel; Lamb, Michael; Fuller, Brian


    Waterfalls are ubiquitous in steep landscapes and have been documented to retreat upstream at rates far outpacing standard fluvial incision into bedrock. While the formation of waterfalls following changes in climate and base-level lowering have been well-documented, little work has explored the formation of waterfalls via the internal dynamics from interacting flow hydraulics, sediment flux, and evolving channel morphology. Distinguishing between waterfalls formed via external versus internal forcing is important, as waterfall formation and retreat rate is often applied in inverse to determine the timing of external forcing. Here, we present results from a laboratory experiment designed to explore channel incision and waterfall formation. We fed water and sediment at constant rates over an initially planar surface tilted to 19.5% slope. A channel rapidly incised into the artificial bedrock substrate, and small-wavelength variations in erosion rate created steps and pools which grew in amplitude. As pools deepened, sediment cover at the downstream portion of pools locally limited erosion, while erosion in the upstream portion of the pool created steep faces. At the topographic breaks between these steep segments and their upstream treads, water detached from the bed forming ventilated waterfall jets which impacted the plunge pools below. Individual waterfalls were short-lived as pool-deepening promoted alluviation which prevented further pool-incision, while amplified erosion at the waterfall lip incised a new pool into the bedrock previously composing the waterfall face. Repetition of this process in our experiment suggests that interactions between bedrock erosion and sediment cover can result in the formation of a series of plunge pools which retreat upstream.

  9. Hydraulics. (United States)

    Decker, Robert L.; Kirby, Klane

    This curriculum guide contains a course in hydraulics to train entry-level workers for automotive mechanics and other fields that utilize hydraulics. The module contains 14 instructional units that cover the following topics: (1) introduction to hydraulics; (2) fundamentals of hydraulics; (3) reservoirs; (4) lines, fittings, and couplers; (5)…

  10. Experimental study on the bank erosion and interaction with near-bank bed evolution due to fluvial hydraulic force

    Institute of Scientific and Technical Information of China (English)

    Ming-hui YU; Hong-yan WEI; Song-bai WU


    Bank erosion is a typical process of lateral channel migration, which is accompanied by vertical bed evolution. As a main sediment source, the failed bank soil may directly cause the increase of sediment concentration and considerable channel evolution in a short time. The paper presents an experimental study on non-cohesive and cohesive homogenous bank failure processes, influence of the failed bank soil on bank re-collapse, as well as the interaction between bank failure and near-bank bed evolution due to fluvial hydraulic force. A series of experiments were carried out in a 180° bend rectangular flume. The results reveal the iteration cycle between bank erosion and bed deformation: undercutting of the riverbank, slip failure of the submerged zone of the bank, as well as cantilever failure of the overhang, failed bank soil staying at bank toe temporarily or hydraulic transportation, exchange between the failed bank soil and bed material, bed material load being re-transported either as bed load or as suspended load, and bed deformation. Same as bank failure, the mixing of failed bank soil and bed material is more severe near the curved flow apex. Moreover, non-cohesive bank failure tends to occur near the water surface while cohesive bank failure near the bank toe. For non-cohesive dense (sandy) soil, the bank erosion amount and residual amount of failed bank soil on the bed increase with the near-bank velocity or bed erodibility. But for cohesive soil, only bank erosion amount follows the above rule. The results are expected to provide theoretical basis for river management and flood prevention.

  11. Confocal microscopy: A new tool for erosion measurements on large scale plasma facing components in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, E., E-mail: [CEA/DSM/IRFM, CEA Cadarache, Saint-Paul-lez-Durance (France); Brosset, C.; Roche, H.; Tsitrone, E.; Pégourié, B.; Martinez, A. [CEA/DSM/IRFM, CEA Cadarache, Saint-Paul-lez-Durance (France); Languille, P. [PIIM, CNRS-Université de Provence, Centre de St Jérôme, 13397 Marseille, Cedex 20 (France); Courtois, X.; Lallier, Y. [CEA/DSM/IRFM, CEA Cadarache, Saint-Paul-lez-Durance (France); Salami, M. [AVANTIS CONCEPT, 75 Rue Marcelin Berthelot, 13858 Aix en Provence (France)


    A diagnostic based on confocal microscopy was developed at CEA Cadarache in order to measure erosion on large plasma facing components during shutdown in situ in Tore Supra. This paper describes the diagnostic and presents results obtained on Beryllium and Carbon Fibre Composite (CFC) materials. Erosion in the range of 800 μm was found on one sector of the Toroidal Pumped Limiter (TPL) which provides, by integration to the full limiter a net carbon erosion of about 900 g over the period 2002–2007.

  12. Digital Holography for in Situ Real-Time Measurement of Plasma-Facing-Component Erosion

    Energy Technology Data Exchange (ETDEWEB)

    ThomasJr., C. E. [Third Dimension Technologies, LLC, Knoxville, TN; Granstedt, E. M. [Tri-Alpha Energy; Biewer, Theodore M [ORNL; Baylor, Larry R [ORNL; Combs, Stephen Kirk [ORNL; Meitner, Steven J [ORNL; Hillis, Donald Lee [ORNL; Majeski, R. [Princeton Plasma Physics Laboratory (PPPL); Kaita, R. [Princeton Plasma Physics Laboratory (PPPL)


    In situ, real time measurement of net plasma-facing-component (PFC) erosion/deposition in a real plasma device is challenging due to the need for good spatial and temporal resolution, sufficient sensitivity, and immunity to fringe-jump errors. Design of a high-sensitivity, potentially high-speed, dual-wavelength CO2 laser digital holography system (nominally immune to fringe jumps) for PFC erosion measurement is discussed.

  13. Pinhole test for identifying susceptibility of soils to piping erosion: effect water quality and hydraulic head

    Energy Technology Data Exchange (ETDEWEB)

    Nadal Romero, E.; Verachtert, E.; Poesen, J.


    Piping has been observed in both natural and soils, as well as under different types of land uses and vegetation covers. Despite its importance, no standard widely-applied methodology exists to assess susceptibility of soils to piping. This study aims at evaluating the pinhole test for assessing the susceptibility of soils to piping under different conditions. More precisely, the effects of hydraulic head and water quality are being assessed. Topsoil samples (remoulded specimens) with a small range of water contents were taken in Central Belgium (Heverlee) and the susceptibility of these soil samples are investigated under standardized laboratory conditions with a pinhole test device. Three hydraulic heads (50,180 and 380 mm) and two water qualities (tap and distilled water) were used, reflecting dominant field conditions. (Author) 6 refs.

  14. Influence of Erosion Phenomenon on Flow Behavior of Liquid Al-Si Filler Between Brazed Components (United States)

    Izumi, Takahiro; Ueda, Toshiki

    Automotive heat exchangers are predominantly composed of plates, tubes and fins. Each component is brazed by using Al-Si filler. In the plate/tube/fin brazed-structures, the flow of the liquid filler between the components affects the fillet size at each joint. In this study, the influence of the erosion phenomenon, i.e., silicon diffusion from the braze cladding into the core alloy, in the tube on the flow behavior of the liquid filler flowing on the tube from the plate to the fin has been investigated. As a result, the area of the liquid filler not flowing but existing around α phases on the tube during brazing, which is defined as filler flow channel, can change depending on the erosion degree. The flow ability of the liquid filler flowing from the plate to the fin increases as the area increases.

  15. Morphostructural analysis applied for susceptibility assessment of environmental degradation by linear hydraulic erosions in the countryside of São Paulo State

    Directory of Open Access Journals (Sweden)

    Márcia Sayuri Morinaga


    Full Text Available The Westside of the State of São Paulo, in Brazil, is known by its strong agricultural vocation and erosion problems. The natural conditions and the occupation dynamic were propitious to the emergence of this kind of environmental degradation in the soil, resulting in loss of usable area, siltation of water bodies, and demands on infrastructure. Linear hydraulic erosions, such as gullies, have as forming factors the climate, soil, land slope, and usage. In order to enrich the knowledge on this subject, the present work aimed at an analysis of the ductile geologic deformations, and subordinate brittle, and its relations to the accelerated linear hydraulic erosions in the region of Marília, in the State of São Paulo, through the interpretation of the elements of drainage and remote sensing images. In general, there was correspondence between the areas potentially susceptible to erosion diagnosed by morphostructural mapping and topography, with the current state of degradation that is a result from a century of exploitation of the land. The morphostructural and topographic analyses bring the understanding of subsurface water dynamics, and can be applied to territorial planning.

  16. Analytical model for erosion behaviour of impacted fly-ash particles on coal-fired boiler components

    Indian Academy of Sciences (India)

    S K Das; K M Godiwalla; S P Mehrotra; K K M Sastry; P K Dey


    Fly ash particles entrained in the flue gas from boiler furnaces in coal-fired power stations can cause serious erosive wear on steel surfaces along the flow path. Such erosion can significantly reduce the operational life of the boiler components. A mathematical model embodying the mechanisms of erosion on behaviour, has been developed to predict erosion rates of coal-fired boiler components at different temperatures. Various grades of steels used in fabrication of boiler components and published data pertaining to boiler fly ash have been used for the modelling. The model incorporates high temperature tensile properties of the target metal surface at room and elevated temperatures and has been implemented in an user-interactive in-house computer code (EROSIM–1), to predict the erosion rates of various grades of steel. Predictions have been found to be in good agreement with the published data. The model is calibrated with plant and experimental data generated from a high temperature air-jet erosion-testing facility. It is hoped that the calibrated model will be useful for erosion analysis of boiler components.

  17. Analytical model for erosion behaviour of impacted fly-ash particles on coal-fired boiler components

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.K.; Godiwalla, K.M.; Mehrotra, S.P.; Sastry, K.K.M.; Dey, P.K.


    Fly ash particles entrained in the flue gas from boiler furnaces in coal-fired power stations can cause serious erosive wear on steel surfaces along the flow path. Such erosion can significantly reduce the operational life of the boiler components. A mathematical model, embodying the mechanisms of erosion on behaviour, has been developed to predict erosion rates of coal-fired boiler components at different temperatures. Various grades of steels used in fabrication of boiler components and published data pertaining to boiler fly ash have been used for the modelling. The model incorporates high temperature tensile properties of the target metal surface at room and elevated temperatures and has been implemented in an user-interactive in-house computer code (EROSIM-1), to predict the erosion rates of various grades of steel. Predictions have been found to be in good agreement with the published data. The model is calibrated with plant and experimental data generated from a high temperature air-jet erosion-testing facility. It is hoped that the calibrated model will be useful for erosion analysis of boiler components.

  18. Resistance of Silicon Nitride Turbine Components to Erosion and Hot Corrosion/oxidation Attack (United States)

    Strangmen, Thomas E.; Fox, Dennis S.


    Silicon nitride turbine components are under intensive development by AlliedSignal to enable a new generation of higher power density auxiliary power systems. In order to be viable in the intended applications, silicon nitride turbine airfoils must be designed for survival in aggressive oxidizing combustion gas environments. Erosive and corrosive damage to ceramic airfoils from ingested sand and sea salt must be avoided. Recent engine test experience demonstrated that NT154 silicon nitride turbine vanes have exceptional resistance to sand erosion, relative to superalloys used in production engines. Similarly, NT154 silicon nitride has excellent resistance to oxidation in the temperature range of interest - up to 1400 C. Hot corrosion attack of superalloy gas turbine components is well documented. While hot corrosion from ingested sea salt will attack silicon nitride substantially less than the superalloys being replaced in initial engine applications, this degradation has the potential to limit component lives in advanced engine applications. Hot corrosion adversely affects the strength of silicon nitride in the 850 to 1300 C range. Since unacceptable reductions in strength must be rapidly identified and avoided, AlliedSignal and the NASA Lewis Research Center have pioneered the development of an environmental life prediction model for silicon nitride turbine components. Strength retention in flexure specimens following 1 to 3300 hour exposures to high temperature oxidation and hot corrosion has been measured and used to calibrate the life prediction model. Predicted component life is dependent upon engine design (stress, temperature, pressure, fuel/air ratio, gas velocity, and inlet air filtration), mission usage (fuel sulfur content, location (salt in air), and times at duty cycle power points), and material parameters. Preliminary analyses indicate that the hot corrosion resistance of NT154 silicon nitride is adequate for AlliedSignal's initial engine

  19. Examples of oil cavitation erosion in positive displacement pumps (United States)

    Halat, J. A.; Ellis, G. O.


    The effects of cavitation flow on piston type, positive displacement, hydraulic pumps are discussed. The operating principles of the pump and the components which are most subject to erosion effects are described. The mechanisms of cavitation phenomena are identified from photographic records. Curves are developed to show the solubility of air in water, oil-water emulsion, and industrial hydraulic oil.

  20. Research on Erosion Wear of Oilfield Surface Manifold under Hydraulic Fractur-ing Condition%压裂工况下油气田地面管汇的冲蚀磨损研究

    Institute of Scientific and Technical Information of China (English)

    张继信; 康健; 樊建春; 高建村; 欧海


    During the process of hydraulic fracturing, high-speed and high-pressure prop-pant particles in sand-carrying fluid can cause erosive wear on the inner wall of ground high pressure pipe manifolds, where the most serious erosion damage occurs in elbows. In order to accurately obtain the specific erosive wear distribution as well as the multiphase flow mech-anism of the high pressure pipe joints, this paper adopts computational fluid dynamics (CFD) analysis and ANSYS-FLUNT software to build the solid-flow phase mathematical model suitable for hydraulic fracturing working condition base on the erosive wear testing experi-ment for high pressure pipe joint materials, thus obtaining the flow mechanism of solid and liquid particles within the high pressure pipe joint elbows, also the erosive wear distribution mechanism and pressure variation mechanism. Comparing our results with failure samples collected from the field, it confirms the consistency of the proposed research, which will provide references for the safety technology of high pressure pipe joints such as the optimiza-tion design and key component monitoring.%水力压裂施工时,携砂液中的高流速、高强度支撑剂颗粒会对地面高压管汇的内壁产生一定的冲蚀磨损,其中弯管的冲蚀磨损尤其严重.为准确掌握在不同工况下高压管汇内多相流的流动规律以及冲蚀磨损的具体分布情况,在高压管汇材料冲蚀磨损试验的基础上,应用计算流体力学方法及ANSYS-FLUNT软件建立了适合水力压裂工况的固液两相流数学模型,得到了高压管汇弯管内液相及固体粒子的流动规律、压力变化规律以及冲蚀磨损的分布规律,并与现场回收的失效样品进行了对比验证.研究结果可以为高压管汇的设计制造、重点部位的监测等安全防护技术提供参考.


    Directory of Open Access Journals (Sweden)

    Hayrettin AHLATCI


    Full Text Available High pressure turbine components are subjected to a wide variety of thermal and mechanical loading during service. In addition, the components are exposed to a highly oxidizing atmosphere which may contain contaminants such as sulphates, chlorides and sulphuorous gases along with erosive media. So the variety of surface coatings and deposition processes available for the protection of blade and vane components in gas turbines are summarised in this study. Coating types range from simple diffusion aluminides to modified aluminides and a CoCrAlY overlayer. The recommendations for corrosion-resistant coatings (for low temperature and high temperature hot corrosion environments are as follows: silicon aluminide and platinumchromium aluminide for different gas turbine section superalloys substrates. Platinum metal additions are used to improve the properties of coatings on turbine components. Inorganic coatings based on ceramic films which contain aluminium or aluminium and silicon are very effective in engines and gas turbines. Diffusion, overlayer and thermal barrier coatings which are deposited on superalloys gas turbine components by pack cementation, plasma spraying processes and a number of chemical vapour deposition, physical vapour deposition processes (such as electron beam, sputtering, ion plating are described. The principles underlying the development of protective coatings serve as a useful guide in the choice of coatings for other high temperature applications.

  2. Fault detection of excavator's hydraulic system based on dynamic principal component analysis

    Institute of Scientific and Technical Information of China (English)

    HE Qing-hua; HE Xiang-yu; ZHU Jian-xin


    In order to improve reliability of the excavator's hydraulic system, a fault detection approach based on dynamic principal component analysis(PCA) was proposed. Dynamic PCA is an extension of PCA, which can effectively extract the dynamic relations among process variables. With this approach, normal samples were used as training data to develop a dynamic PCA model in the first step. Secondly, the dynamic PCA model decomposed the testing data into projections to the principal component subspace(PCS) and residual subspace(RS). Thirdly, T2 statistic and Q statistic performed as indexes of fault detection in PCS and RS, respectively.Several simulated faults were introduced to validate the approach. The results show that the dynamic PCA model developed is able to detect overall faults by using T2 statistic and Q statistic. By simulation analysis, the proposed approach achieves an accuracy of 95% for 20 test sample sets, which shows that the fault detection approach can be effectively applied to the excavator's hydraulic system.

  3. Characteristics and performance analysis report of the major thermal hydraulic components in the high temperature/high pressure thermal hydraulic test facility (VISTA)

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; Park, Hyun Sik; Cho, Seok; Lee, Sung Jae; Song, Chul Hwa; Park, Chun Kyong; Chung, Moon Ki


    The VISTA (Experimental Verification by Integral Simulation of Transients and Accidents) is an experimental facility to verify the performance and safety issues of the SMART-P (Pilot plant of the System-integrated Modular Advanced Reactor). The basic design of the SMART-P has been completed by KAERI. The present report describes the characteristics and performance of the major thermal hydraulic components in the VISTA Facility.

  4. Erosion-corrosion interactions and their affect on marine and offshore components

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Robert JK [Surface Engineering and Tribology Group, School of Engineering Sciences, University of Southampton, SO17 1BJ (United Kingdom)


    The operation of modern fluid handling systems demands for low costs, reliability, longevity and no loss of fluid containment. All these can be achieved by minimising the material damage caused by the combined attack of solid particle or cavitation impingement and corrosion. This paper will cover the rationale behind the selection of erosion resistance surfaces for fluid handling equipment and highlight the complexities encountered when these surfaces are exposed to environments which contain sand particles or cavitation in a corrosive medium. The erosion and erosion-corrosion performance of a variety of coatings and bulk surfaces will be discussed using volume loss rate versus sand impact energy maps. Recent research into the erosion-corrosion of polymer coatings, PEO and HVOF aluminium and nickel aluminium bronze coatings will be reviewed. Electrochemical techniques designed to monitor the erosion-corrosion mechanisms and coating integrity will be presented and used to quantify the synergistic terms present when both erosion and corrosion act concurrently. (author)

  5. The ecological structures as components of flood and erosion vulnerability analysis in costal landscapes (United States)

    Valentini, E.; Taramelli, A.; Martina, M.; Persichillo, M. G.; Casarotti, C.; Meisina, C.


    The direct and the indirect changes of natural habitats for coastal development can affect the level of exposure to erosion and flooding (inundation). Although engineered structures are still preferred for coastal safety there is an increasing number of applications of ecosystem-based solutions worldwide as the building with nature approaches and the arising natural capital evaluation. A question to which we should respond, is the possibility of using the wide range of satellite data and the already available Earth Observation based products to make a synoptic structural and environmental vulnerability assessment. By answering to this, we could also understand, if and how many markers/signals can be identified in the landscape components, to define transitions to and from nonlinear processes - to and from scale invariant spatial distributions- characterizing the evolution of the environmental patch size mosaic, the landscape. The Wadden Sea, in example, is a productive estuarine area in the south-eastern coastal zone of the North Sea. It is characterized by extensive tidal mud flats, saltmarshes and by the tidal channel network between the mainland and the chain of islands along the North Sea side. The area has a UNESCO World Heritage Status and a Natura 2000 status. Here, we identified thresholds to distinguish spatial and temporal patterns controlled by changes in environmental variables. These patterns are represented by the cover percent and by the structural level of vegetation and sediment/soil in each identified patch. The environmental variables are those able to act on the patch size distribution as the forcing factors from the sea (wind and waves fields) or from the climate and the hydrology drivers. The Bayesian approach defines the dependencies of the spatial patch size distribution from the major flooding and erosion environmental variables. When the analysis is scaled up from the ecosystem units to the landscape level thanks to the satellite

  6. Arc erosion of full metal plasma facing components at the inner baffle region of ASDEX Upgrade

    Directory of Open Access Journals (Sweden)

    V. Rohde


    Full Text Available At the inner baffle of the AUG divertor massive polished inserts of tungsten and P92 steel were installed to measure the erosion by arcing. For tungsten most of the traces are less than 0.4µm deep and a similar amount of tungsten is deposited close to the traces. Few craters up to 4µm resulting in an average erosion rate of 2×1013 at cm−2s−1 are observed. The behaviour for P92 steel is quite different: most of the traces are 4µm deep, up to 80µm were observed. An average erosion rate of 400×1013 at cm−2s−1, i.e. more than a factor of hundred higher compared to tungsten, is found. Therefore, erosion by arcing has to be taken into account to determine the optimal material mix for future fusion devices.

  7. Friction surfacing for enhanced surface protection of marine engineering components: erosion-corrosion study (United States)

    Rajakumar, S.; Balasubramanian, V.; Balakrishnan, M.


    Good mechanical properties combined with outstanding corrosion-resistance properties of cast nickel-aluminum bronze (NAB) alloy lead to be a specific material for many marine applications, including ship propellers. However, the erosion-corrosion resistance of cast-NAB alloy is not as good as wrought NAB alloy. Hence, in this investigation, an attempt has been made to improve the erosion-corrosion resistance of cast NAB alloy by depositing wrought (extruded) NAB alloy applying the friction surfacing (FS) technique. Erosion-corrosion tests were carried out in slurries composed of sand particles of 3.5% NaCl solution. Silica sand having a nominal size range of 250-355 μm is used as an erodent. Specimens were tested at 30° and 90° impingement angles. It is observed that the erosion and erosion-corrosion resistance of friction surfaced NAB alloy exhibited an improvement as compared to cast NAB alloy. Scanning electron microscope (SEM) analysis showed that the erosion tracks developed on the cast NAB alloy were wider and deeper than those formed on the friction surfaced extruded NAB alloy.

  8. Use of laser flow visualization techniques in reactor component thermal-hydraulic studies

    Energy Technology Data Exchange (ETDEWEB)

    Oras, J.J.; Kasza, K.E.


    To properly design reactor components, an understanding of the various thermal hydraulic phenomena, i.e., thermal stratification flow channeling, recirculation regions, shear layers, etc., is necessary. In the liquid metal breeder reactor program, water is commonly used to replace sodium in experimental testing to facilitate the investigations, (i.e., reduce cost and allow fluid velocity measurement or flow pattern study). After water testing, limited sodium tests can be conducted to validate the extrapolation of the water results to sodium. This paper describes a novel laser flow visualization technique being utilized at ANL together with various examples of its use and plans for further development. A 3-watt argon-ion laser, in conjunction with a cylindrical opticallens, has been used to create a thin (approx. 1-mm) intense plane of laser light for the illuminiation of various flow tracers in precisely defined regions of interest within a test article having windows. Both fluorescing dyes tuned to the wavelength of the laser light (to maximize brightness and sharpness of flow image) and small (< 0.038-mm, 0.0015-in. dia.) opaque, nearly neutrally buoyant polystyrene spheres (to ensure that the particles trace out the fluid motion) have been used as flow tracers.

  9. An easily installable groundwater lysimeter to determine waterbalance components and hydraulic properties of peat soils

    Directory of Open Access Journals (Sweden)

    K. Schwaerzel


    Full Text Available A simple method for the installation of groundwater lysimeters in peat soils was developed which reduces both time and financial effort significantly. The method was applied on several sites in the Rhinluch, a fen peat land 60 km northwest of Berlin, Germany. Over a two-year period, upward capillary flow and evapotranspiration rates under grassland with different groundwater levels were measured. The installation of tensiometers and TDR probes additionally allowed the in situ determination of the soil hydraulic properties (water retention and unsaturated hydraulic conductivity. The results of the measurements of the unsaturated hydraulic conductivity demonstrate that more than one single method has to be applied if the whole range of the conductivity function from saturation to highly unsaturated is to be covered. Measuring the unsaturated conductivity can be done only in the lab for an adequately wide range of soil moisture conditions. Keywords: peat soils, soil hydraulic properties, evapotranspiration, capillary flow, root distribution, unsaturated zone

  10. Hydraulic Performance Modifications of a Zeolite Membrane after an Alkaline Treatment: Contribution of Polar and Apolar Surface Tension Components

    Directory of Open Access Journals (Sweden)

    Patrick Dutournié


    Full Text Available Hydraulic permeability measurements are performed on low cut-off Na-mordenite (MOR-type zeolites membranes after a mild alkaline treatment. A decrease of the hydraulic permeability is systematically observed. Contact angle measurements are carried out (with three polar liquids on Na-mordenite films seeded onto alumina plates (flat membranes. A decrease of the contact angles is observed after the alkaline treatment for the three liquids. According to the theory of Lifshitz-van der Waals interactions in condensated state, surface modifications are investigated and a variation of the polar component of the material surface tension is observed. After the alkaline treatment, the electron-donor contribution (mainly due to the two remaining lone electron pairs of the oxygen atoms present in the zeolite extra frameworks decreases and an increase of the electron-receptor contribution is observed and quantified. The contribution of the polar component to the surface tension is attributed to the presence of surface defaults, which increase the surface hydrophilicity. The estimated modifications of the surface interaction energy between the solvent (water and the Na-mordenite active layer are in good agreement with the decrease of the hydraulic permeability observed after a mild alkaline treatment.

  11. Relationship of bone erosion with the urate and soft tissue components of the tophus in gout: a dual energy computed tomography study. (United States)

    Sapsford, Mark; Gamble, Gregory D; Aati, Opetaia; Knight, Julie; Horne, Anne; Doyle, Anthony J; Dalbeth, Nicola


    Imaging and pathology studies have established a close relationship between tophus and bone erosion in gout. The tophus is an organized structure consisting of urate crystals and chronic inflammatory tissue. The aim of this work was to examine the relationship between bone erosion and each component of the tophus. Plain radiographs and dual energy CT scans of the feet were prospectively obtained from 92 people with tophaceous gout. The 10 MTP joints were scored for erosion score, tophus urate and soft tissue volume. Data were analysed using generalized estimating equations and mediation analysis. Tophus was visualized in 80.2% of all joints with radiographic (XR) erosion [odds ratio (OR) = 7.1 (95% CI: 4.8, 10.6)] and urate was visualized in 78.6% of all joints with XR erosion [OR = 6.6 (95% CI: 4.7, 9.3)]. In mediation analysis, tophus urate volume and soft tissue volume were directly associated with XR erosion score. About a third of the association of the tophus urate volume with XR erosion score was indirectly mediated through the strong association between tophus urate volume and tophus soft tissue volume. Urate and soft tissue components of the tophus are strongly and independently associated with bone erosion in gout. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email:

  12. Simulation of erosion and deposition processes of many-component surface layers in fusion devices; Simulation von Erosion- und Depositionsprozessen mehrkomponentiger Oberflaechenschichten in Fusionsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Droste, S.


    The present choice of first wall materials in ITER will unavoidably lead to the formation of mixed carbon, tungsten and beryllium layers. Predictive modelling of erosion processes, impurity transport and deposition processes is important. For this the 3D Monte-Carlo code ERO can be used. In this thesis ERO has been coupled to the existing Monte-Carlo code SDTrimSP to describe material mixing processes in wall components correctly. SDTrimSP describes the surface by calculating the transport of ions in solids. It keeps track of the depth dependent material concentration caused by the implantation of projectiles in the solid. The calculation of movements of the recoil atoms within the solid gives reflection coefficients and sputtering yields. Since SDTrimSP does not consider chemical processes a new method has been developed to implement chemical erosion of carbon by the impact of hydrogen projectiles. The new code ERO-SDTrimSP was compared to TEXTOR experiments which were carried out to study the formation of mixed surface layers. In these experiments methane CH4 was injected through drillings in graphite and tungsten spherical limiters into the plasma. A pronounced substrate dependence was observed. The deposition efficiency, i.e. the ratio of the locally deposited to the injected amount of carbon, was 4% for graphite and 0.3% for tungsten. The deposition-dominated area on the graphite limiter covers a five times larger area than on the tungsten limiter. Modelling of this experiment with ERO-SDTrimSP also showed a clear substrate dependence with 2% deposition efficiency for graphite and less than 0.5% for tungsten. An important result of the comparison between experiment and simulation was that the effective sticking of hydrocarbon radicals hitting the surface must be negligible. Furthermore, it was shown that local re-deposited carbon layers are 10 times more effectively eroded than ordinary graphite. Simulation of the impurity transport in the plasma was checked

  13. Novel wave power analysis linking pressure-flow waves, wave potential, and the forward and backward components of hydraulic power. (United States)

    Mynard, Jonathan P; Smolich, Joseph J


    Wave intensity analysis provides detailed insights into factors influencing hemodynamics. However, wave intensity is not a conserved quantity, so it is sensitive to diameter variations and is not distributed among branches of a junction. Moreover, the fundamental relation between waves and hydraulic power is unclear. We, therefore, propose an alternative to wave intensity called "wave power," calculated via incremental changes in pressure and flow (dPdQ) and a novel time-domain separation of hydraulic pressure power and kinetic power into forward and backward wave-related components (ΠP±and ΠQ±). Wave power has several useful properties:1) it is obtained directly from flow measurements, without requiring further calculation of velocity;2) it is a quasi-conserved quantity that may be used to study the relative distribution of waves at junctions; and3) it has the units of power (Watts). We also uncover a simple relationship between wave power and changes in ΠP±and show that wave reflection reduces transmitted power. Absolute values of ΠP±represent wave potential, a recently introduced concept that unifies steady and pulsatile aspects of hemodynamics. We show that wave potential represents the hydraulic energy potential stored in a compliant pressurized vessel, with spatial gradients producing waves that transfer this energy. These techniques and principles are verified numerically and also experimentally with pressure/flow measurements in all branches of a central bifurcation in sheep, under a wide range of hemodynamic conditions. The proposed "wave power analysis," encompassing wave power, wave potential, and wave separation of hydraulic power provides a potent time-domain approach for analyzing hemodynamics.

  14. Three-component hydraulic penile prosthesis malfunction due to penile fibrolipoma secondary to augmentative phalloplasty: A case report

    Directory of Open Access Journals (Sweden)

    Gabriele Antonini


    Full Text Available Fibrolipomas are an infrequent type of lipomas. We describe a case of a man suffering from subcutaneous penile fibrolipoma, who twelve months earlier has been submitted to augmentative phalloplasty due to aesthetic dysmorphophobia. The same patient three years earlier has been submitted to three-component hydraulic penile prostheses implantation due to erectile dysfunction. After six months from removing of the mass, the penile elongation and penile enlargement were stable, the prostheses were correctly functioning and the patient was satisfied with his sexual intercourse and life. The diagnostics and surgical characteristics of this case are reported.

  15. Partitioning washoff of manure-borne fecal indicators (Escherichia coli and stanols) into splash and hydraulic components: field rainfall simulations in a tropical agro-ecosystem. (United States)

    Ribolzi, Olivier; Rochelle-Newall, Emma J.; Janeau, Jean-Louis; Viguier, Marion; Jardé, Emilie; Latsachack, Keooudone; Henri-Des-Tureaux, Thierry; Thammahacksac, Chanthamousone; Mugler, Claude; Valentin, Christian; Sengtaheuanghoung, Oloth


    Overland flow from manured fields and pastures is known to be an important mechanism by which organisms of faecal origin are transferred to streams in rural watersheds. In the tropical montane areas of South-East Asia, recent changes in land use have induced increased runoff, soil erosion, in-stream suspended sediment loads resulting in increased microbial pathogen dissemination and contamination of stream waters. The majority of enteric and environmental bacteria in aquatic systems are associated with particles such as sediments which can strongly influence their survival and transport characteristics. Escherichia coli (E. coli) has emerged as one of the most appropriate microbial indicators of faecal contamination of natural waters, with the presence of E. coli indicating that faecal contamination is present. In association with E. coli, faecal stanols can also be used as microbial source tracking tool for the identification of the origin of the faecal contamination (e.g. livestock, human, etc). Field rain simulations were used to examine how E.coli and stanols are exported from the surface of upland, agricultural soils during overland flow events. The objectives were to characterize the loss dynamics of these indicators from agricultural soils contaminated with livestock waste, and to partition total detachment into the splash and hydraulic components. Nine 1m2 microplots were divided in triplicated treatment groups: (a) controls with no amendments, (b) amended with pig manure or (c) poultry manure. Each plot was divided into two 0.5m2 rectangular subplots. For each simulation, one subplot was designated as a rain splash treatment; the other was covered with 2-mm grid size wire screen 10 cm above the soil surface to break the raindrops into fine droplets, thus drastically reducing their kinetic energy. E. coli concentrations in overland flow were estimated for both the attached and free living fractions and stanols were measured on the particulate matter washed

  16. Analyzing hydro abrasive erosion in Kaplan turbine:A case study from India

    Institute of Scientific and Technical Information of China (English)

    Anant Kr. RAI; Arun KUMAR


    Sediment flow through hydro turbine causes erosion of hydraulic components resulting in drop of turbine efficiency, parti- cularly in hydropower plants of the Himalayan region. The measurement of erosion and monitoring of sediment flow in turbine are major concerns in erosion study. Attempts have been made to study erosion mainly in Pelton and Francis turbines. In this study, a simple and effective method has been presented to measure erosion in a Kaplan turbine of a run-of-river scheme Chilla hydropower plant in foothills of Himalaya. Recent techniques were used to measure sediment parameters like concentration, size, shape and mineral content. A standard erosion model is applied to estimate the erosion in Kaplan turbine blade, runner chamber and draft tube cone. A calibration factor has been proposed to apply the erosion model for site specific conditions. It has been found that the outer trailing edges of the turbine blade and upper runner chamber are most erosion prone zones. Sediment analysis revealed that effective operation can reduce erosion in turbine components. The estimated erosion values from model are found to be consistent with measu- red values. Finally, suggestions for design improvements and effective operation of erosion affected hydropower plants are given.

  17. Runoff erosion


    Evelpidou, Niki; Cordier, Stephane; Merino, Agustin (Ed.); Figueiredo, Tomás; Centeri, Csaba



  18. Use of High Magnetic Fields to Improve Material Properties for Hydraulics, Automotive and Truck Components

    Energy Technology Data Exchange (ETDEWEB)

    Ludtka, Gerard Michael [ORNL; Ludtka, Gail Mackiewicz- [ORNL; Wilgen, John B [ORNL; Kisner, Roger A [ORNL; Ahmad, Aquil [Eaton Corporation


    In this CRADA, research and development activities were successfully conducted on magnetic processing effects for the purpose of manipulating microstructure and the application specific performance of three alloys provided by Eaton (alloys provided were: carburized steel, plain low carbon steel and medium carbon spring steel). Three specific industrial/commercial application areas were considered where HMFP can be used to provide significant energy savings and improve materials performance include using HMFP to: 1.) Produce higher material strengths enabling higher torque bearing capability for drive shafts and other motor components; 2.) Increase the magnetic response in an iron-based material, thereby improving its magnetic permeability resulting in improved magnetic coupling and power density, and 3.) Improve wear resistance. The very promising results achieved in this endeavor include: 1.) a significant increase in tensile strength and a major reduction in volume percent retained austenite for the carburized alloy, and 2.) a substantial improvement in magnetic perm respect to a no-field processed sample (which also represents a significant improvement over the nominal conventional automotive condition of no heat treatment). The successful completion of these activities has resulted in the current 3-year CRADA No. NFE-09-02522 Prototyping Energy Efficient ThermoMagnetic and Induction Hardening for Heat Treat and Net Shape Forming Applications .

  19. Erosion Control of Scour during Construction. Report 4. Stability of Underlayer Material Placed in Advance of Construction to Prevent Scour; Hydraulic Model Investigation. (United States)


    CONSTRUCTION TO PREVENT SCOUR Hydraulic Model Investigation by Lyndell Z . Hales, James R. Houston S.Hydraulics Laboratory .’, ! 1- N U.S. Army Engineer...hiVeStI9.e e1(_____________________________ 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(ek) 8. CONTRACT OR GRANT NUMBER(.) Lyodlell Z . Hiles James t tO geerate ’ the reIpre-senatativye stonle weight, W it it the itlet-eayt’ tsectiatte. The e-xptressioni tir this- ctiese-rvi v- stabiltity

  20. Study on effect of erosion wear to residual life of coiled tubing for hydraulic fracturing%水力压裂冲蚀磨损对连续管剩余寿命影响研究

    Institute of Scientific and Technical Information of China (English)

    郑华林; 张益维; 刘少胡


    针对水力压裂中连续管内壁冲蚀磨损严重和连续管易失效的问题,基于液-固两相流和冲蚀理论,建立了连续管内部砂砾冲蚀模型.采用Grant和Tabakoff模型求解砂砾冲蚀速率,借助实验数据验证了CFD数值模型.利用该模型研究了连续管在不同弯曲度、砂砾粒度、压裂液注入量、质量流量、压裂液粘度对连续管内壁的冲蚀特性.研究表明:弯曲连续管比直连续管冲蚀磨损严重,且弯曲度对连续管内壁的冲蚀磨损影响较大.随着注入量的增加,壁厚平均损失值和壁厚损失峰值呈现快速递增趋势.支撑剂固体颗粒的粒度对连续管内壁的冲蚀磨损影响较大,粒度为40目时连续管冲蚀速率最大.随质量流量的增加,连续管剩余寿命呈线性下降.随压裂液粘度的增加,连续管内壁冲蚀速率总体呈现下降趋势.%Aiming at the problems that the erosion wear of internal wall in coiled tubing is serious and the coiled tubing is easy to fail in hydraulic fracturing, an internal sand erosion model of coiled tubing was established based on liquid -solid two-phaseflow and erosion theory.The sand erosion rate was solved by using Grant and Tabakoff model , and the CFD numerical model was verified by the experimental data .The erosion characteristics of different curvature , particle size of sand, injection volume, mass flow and viscosity of fracturing fluid on internal wall of coiled tubing were studied by using this model .The re-sultsshowed that the erosion of curving coiled tubing is more serious than that of straight coiled tubing , and the curvature has a larger influence on the erosion wear of internal wall in coiled tubing .With the increase of injection volume, the average loss and peak loss of wall thickness present the trend of rapid increasing .The size of solid particle in support agent has a larger influence on the erosion wear of internal wall in coiled tubing , with the maximum erosion rate

  1. Hydraulic Performance Modifications of a Zeolite Membrane after an Alkaline Treatment: Contribution of Polar and Apolar Surface Tension Components



    Hydraulic permeability measurements are performed on low cut-off Na-mordenite (MOR-type zeolites) membranes after a mild alkaline treatment. A decrease of the hydraulic permeability is systematically observed. Contact angle measurements are carried out (with three polar liquids) on Na-mordenite films seeded onto alumina plates (flat membranes). A decrease of the contact angles is observed after the alkaline treatment for the three liquids. According to the theory of Lifshitz-van der Waals in...

  2. The perfect storm: Unusual synchronisation of the components of wave energy spectra dominates episodic soft-cliff erosion. (United States)

    Hackney, Christopher; Darby, Stephen


    Between December 2013 and February 2014 the United Kingdom experienced the stormiest winter on record. The persistent low pressure systems arriving from the North Atlantic during this period resulted in some of the most energetic maritime conditions ever recorded along the English Channel. The unprotected soft cliffs which comprise the south west Isle of Wight coastline were highly exposed to these conditions, facing the full force of extreme sea-levels and significant wave heights. Although long term rates of soft-cliff erosion have previously been defined for this coastline, the role of such extreme forcings on rates of soft-cliff erosion has not previously been document, and is therefore relatively poorly understood. We employed pre-event LIDAR and post-event RTK-GPS shoreline surveys in tandem with hourly sea-levels and significant wave height records from the English Channel to build an unprecedented data set that we use here to determine the response of this soft-cliff coastline to the extreme forcings of the 2013/2014 winter. It was found that the between October 2013 and March 2014, the south west Isle of Wight eroded, on average 4.25 m (σ = 3.6m). Such a high degree of erosion is approximately a factor of nine times greater than the long term average retreat rate of ~0.5 m/yr for this coastline and is the largest recorded erosion event since the start of reliable records began. The extreme erosion observed is shown to be a result of the synchronisation between sea-levels and wave heights. Indeed, we show that a 7-hour lag of the wave height record relative to background sea-level would have resulted in only half (2.1 m) of the observed erosion. An analysis of the historical record implies that previous extreme erosion events were a function of similar synchronisation between sea-levels and wave heights, thus it is likely that future changes in the timing of peak sea-levels and wave heights have the potential to outweigh changes in magnitude in terms of

  3. 大规模水力压裂过程中超级13Cr 油管冲蚀预测模型建立%Erosion prediction model for super 13Cr tubing during large-scale hydraulic fracturing

    Institute of Scientific and Technical Information of China (English)

    王治国; 杨向同; 窦益华; 罗生俊


    大规模水力压裂过程中,高速流动的携砂压裂液会对油管内壁造成冲蚀,导致油管壁厚减薄,承载能力降低。为了准确预测大规模水力压裂过程中油管的冲蚀速率,利用自制的冲蚀实验装置,采用0.2%胍胶压裂液与40/70目石英砂混合形成的液固两相流体,实验研究了冲蚀角度和流体流速对超级13Cr 油管冲蚀速率的影响,建立了适用于大排量高砂比压裂的冲蚀预测模型,运用新模型,可以比较准确地预测注入总液量和排量对超级13Cr 油管壁厚损失的影响。算例分析结果表明,大规模压裂过程中,超级13Cr油管的壁厚损失范围为0.2~1.3 mm,应该控制排量和砂含量,防止油管壁由于冲蚀而导致安全性降低。%Sand-carrying fracturing fluid flowing at high-speed during large-scale hydraulic fracturing can erode inner walls of tubing, resulting in thinning of tubing sidewall and reduction of tubing loading capacity. To predict erosion rate of tubing during large-scale hydraulic fracturing accurately, the impacts of erosion angle and fluid flow speed on erosion rate of the super 13Cr tubing have been tested with an erosion testing unit made by ourselves, solid-liquid dual-phase fluid made of 0.2 % guar fracturing fluid and quartz sand of 40/70 meshes, and an erosion prediction model for fracturing with large discharging rate and high sand proportion has been constructed. By using the newly constructed model, impact of total fluid volume and discharging rate on wall thickness loss of the super 13Cr tubing can be predicted accurately. Case study results show the super 13Cr tubing may lose sidewall thicknesses of 0.2-1.3 mm during large-scale fracturing. Therefore, cares shall be taken to control discharging rate and sand content properly to maintain necessary safety performance of tubing sidewalls in case of erosion.


    Institute of Scientific and Technical Information of China (English)

    Chih Ted YANG


    @@ The river systems observed today is the cumulative result of surface, rill, and gully erosion, and sediment transport, scour, and deposition. The divisions of approach between these two related areas are man-made, and are not based on sound science. Most of the erosion studies are done by geologists and agricultural engineers who are concerned of the surface, rill, and gully erosion and the loss of agricultural land productivity. Hydraulic engineers are more interested in the study of sediment transport, scour, and deposition, and their impacts on river engineering and hydraulic structures in rivers and reservoirs. Erosion studies are often based on empirical relationships or field data to determinate the annual sediment yield from a watershed. On the other hand, hydraulic engineers focus their attention on solving equations based on assumed initial and boundary conditions with a time scale of days, hours, or seconds. Both approaches have their complementary strengths and weaknesses. It is important to provide a forum for specialists in both areas to communicate, exchange ideas, and learn from each other.

  5. Design and optimization of the WEST ICRH antenna front face components based on thermal and hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhaoxi, E-mail: [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Vulliez, Karl [Laboratoire d’étanchéité, DEN/DTEC/SDTC, Commissariat à l’énergie atomique et aux énergies alternatives, 2 rue James Watt, 26700 Pierrelatte (France); Ferlay, Fabien; Martinez, André; Mollard, Patrick; Hillairet, Julien; Doceul, Louis; Bernard, Jean-Michel; Larroque, Sébastien; Helou, Walid [CEA, IRFM, F-13108, Saint-Paul-Lez-Durance (France); Song, Yuntao; Yang, Qingxi; Wang, Yongsheng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)


    Highlights: • Three ICRH antennas are designed to realize continuous-wave operation. • Fully active cooling structure is designed which takes the balance of structure safety and cooling performance. • High cooling efficiency is achieved for the current cooling circuit design based on the thermal-hydraulic simulation. - Abstract: The WEST (Tungsten (W) Environment in Steady-state Tokamak) is an upgrade of Tore-Supra (TS) which aims it into an X-point magnetic configuration tokamak equipped with an actively cooled tungsten divertor. To be a platform of ITER technologies of high heat flux components testing, three sets of Ion Cyclotron Resonant Heating (ICRH) antennas have been designed to inject 9 MW during 30 s or 3 MW during 1000 s. The antenna design is based on a load resilient prototype successfully tested in Tore Supra in 2007. In order to allow continuous-wave (CW) operations, the mechanical design of the WEST ICRH antenna is emphasized on its cooling performances by designing fully active cooling structure. Two kinds of cooling water loops are used, with temperature and pressure of 70 °C/30 bar and 25 °C/5.2 bar, respectively. The hot water loop is used for the Faraday screen (FS) and the housing box (HB), while the cold water loop is used for the straps, the matching capacitors and the impedance transformer. To enhance the heat removal ability and control the pressure drop, the cooling channels in the FS and HB are drilled directly and parallel connected as much as possible. By performing the hydraulic–thermal analysis, the lack of cooling efficiency was found in the front face of lateral collector where 1 MW/m{sup 2} is imposed and fluid dead zones were found in some of the bars. After optimization, the cooling performance of the cooling circuit increased significantly. With a mass flow rate of 2.5 kg/s, the total pressure drop is 3.1 bar, and the peak temperatures on the FS and HB are 500 °C and 261 °C, respectively. Besides, no cavitation is

  6. 花岗岩矿区水力岩土侵蚀研究初探--以福建省安溪县铁峰山花岗岩矿区为例%Initial Study on the Hydraulic Rock-soil Erosion in the Granite Mine Area-Taking the Tiefeng Mountain Granite Mine of Anxi County as the Example

    Institute of Scientific and Technical Information of China (English)



    以安溪县铁峰山花岗岩矿区为例,以集水区为单元,选取具有代表性的矿点作为研究对象,采用调查分析法、标桩法和侵蚀沟体积量算转换法进行矿区水力岩土侵蚀的研究。结果表明:①花岗岩矿区由于其自身的特点,水力岩土侵蚀以溅蚀、面蚀、沟蚀等形式体现,其土壤侵蚀强度多达到强烈甚至极强烈以上。②由于矿渣的阻滞作用,降雨后土壤多呈泥浆状溅散。雨滴的溅蚀使得土壤多呈现鳞片状侵蚀,降雨过后部分地表土层产生板结。③从研究区面蚀和沟蚀情况看,水力岩土侵蚀多达到极强烈以上侵蚀,且受坡长、坡度、堆体颗粒组成、有无植被覆盖、堆倒年限等因素的综合影响。%Taking the Tiefeng Mountain Granite Mine of Anxi County as the example , it was selected the representa-tive mine site for study based on the catchment as the unit .The study was conducted on the hydraulic rock -soil ero-sion in the mine area in accordance with the methods of investigation , standard stake and measurement conversion of e-rosion gully volume, respectively.The results showed that 1) because of own characteristics , hydraulic rock-soil ero-sion appeared in the forms of sputtering , sheet erosion and gully erosion with the erosion strength reached strong or ex-treme strong;2) due to the retardation of the slag , soil after raining sprayed as muddy .The sputtering erosion of the rain drop made the soil appeared the scaled erosion , that some top soil layers were hardened after raining;3) from the sheet erosion and gully erosion status in the study area , it was found that the hydraulic rock -soil erosion reached ex-treme strength and affected by the factors of the slope length and degree , the particle composition , vegetation cover and mound collapse years, etc.

  7. Simulation of the passive condensation cooling tank of the PASCAL test facility using the component thermal-hydraulic analysis code CUPID

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H. K.; Lee, S. J.; Kang, K. H.; Yoon, H. Y. [Korea Atomic Energy Research Inst., 1045 Daeduk-daero, Daejeon (Korea, Republic of)


    For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics code, named CUPID, has been being developed. In the present study, the CUPID code was applied for the simulation of the PASCAL (PAFS Condensing Heat Removal Assessment Loop) test facility constructed with an aim of validating the cooling and operational performance of the PAFS (Passive Auxiliary Feedwater System). The PAFS is one of the advanced safety features adopted in the APR+ (Advanced Power Reactor +), which is intended to completely replace the conventional active auxiliary feedwater system. This paper presents the preliminary simulation results of the PASCAL facility performed with the CUPID code in order to verify its applicability to the thermal-hydraulic phenomena inside the system. A standalone calculation for the passive condensation cooling tank was performed by imposing a heat source boundary condition and the transient thermal-hydraulic behaviors inside the system, such as the water level, temperature and velocity, were qualitatively investigated. The simulation results verified that the natural circulation and boiling phenomena in the water pool can be well reproduced by the CUPID code. (authors)

  8. Simulation of the Passive Condensation Cooling Tank of the PASCAL Test Facility using the Component Thermal-hydraulic Analysis Code CUPID

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyoung Kyu; Lee, Seung Jun; Yoon, Han Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    The need for a multi-dimensional analysis of transient thermal hydraulic phenomena in a component of a nuclear reactor is increasing with the advanced design features, such as a direct vessel injection system, a gravity-driven safety injection system, and a passive cooling system. Motivated by this, the development of a new thermal-hydraulic analysis code, named CUPID, is in progress at KAERI (Korea Atomic Energy Research Institute). Its numerical solver and two-phase flow models have been verified against standard conceptual problems of single and two-phase flows and validated for thermal-hydraulic experiments in our previous studies. The simulation of the passive secondary cooling system, PAFS (Passive Auxiliary Feedwater System) has been considered as one of the practical applications of CUPID. In the present study, the PCCT (Passive Condensation Cooling Tank) of the PASCAL test facility was analyzed with CUPID prior to simulating the prototype PAFS system. The objectives of the PASCAL simulation were to validate physical models of CUPID and its applicability to the PAFS analysis. This paper presents the two-dimensional transient calculation results and the comparisons with the experimental data

  9. Cavitation Erosion of Cermet-Coated Aluminium Bronzes

    Directory of Open Access Journals (Sweden)

    Ion Mitelea


    Full Text Available The cavitation erosion resistance of CuAl10Ni5Fe2.5Mn1 following plasma spraying with Al2O3·30(Ni20Al powder and laser re-melting was analyzed in view of possible improvements of the lifetime of components used in hydraulic environments. The cavitation erosion resistance was substantially improved compared with the one of the base material. The thickness of the re-melted layer was in the range of several hundred micrometers, with a surface microhardness increasing from 250 to 420 HV 0.2. Compositional, structural, and microstructural explorations showed that the microstructure of the re-melted and homogenized layer, consisting of a cubic Al2O3 matrix with dispersed Ni-based solid solution is associated with the hardness increase and consequently with the improvement of the cavitation erosion resistance.

  10. Adsorption of hydraulic fracturing fluid components 2-butoxyethanol and furfural onto granular activated carbon and shale rock. (United States)

    Manz, Katherine E; Haerr, Gregory; Lucchesi, Jessica; Carter, Kimberly E


    The objective of this study was to understand the adsorption ability of a surfactant and a non-surfactant chemical additive used in hydraulic fracturing onto shale and GAC. Experiments were performed at varying temperatures and sodium chloride concentrations to establish these impacts on the adsorption of the furfural (a non-surfactant) and 2-Butoxyethanol (2-BE) (a surfactant). Experiments were carried out in continuously mixed batch experiments with Langmuir and Freundlich isotherm modeling. The results of the experiments showed that adsorption of these compounds onto shale does not occur, which may allow these compounds to return to the surface in flowback and produced waters. The adsorption potential for these chemicals onto GAC follows the assumptions of the Langmuir model more strongly than those of the Freundlich model. The results show uptake of furfural and 2-BE occurs within 23 h in the presence of DI water, 0.1 mol L(-1) sodium chloride, and in lab synthesized hydraulic fracturing brine. Based on the data, 83% of the furfural and 62% of the 2-BE was adsorbed using GAC.

  11. Estimates of RF-Induced Erosion at Antenna-Connected Beryllium Plasma-Facing Components in JET

    Energy Technology Data Exchange (ETDEWEB)

    Borodin, D. [Association EURATOM-FZJ, Julich, Germany; Groth, M. [Aalto University, Finland; Airila, M. [VTT Technical Research Centre, Finland; Colas, L. [French Atomic Energy Commission (CEA); Jacquet, P. [EURATOM / UKAEA, Abingdon, UK; Kirschner, A. [Forschungszentrum Julich, Germany; Lasa, A. [Oak Ridge National Laboratory (ORNL)


    During high-power, ion cyclotron resonance heating (ICRH), RF sheath rectification and RF induced plasma-wall interactions (RF-PWI) can potentially limit long-pulse operation. With toroidally-spaced ICRH antennas, in an ITER-like wall (ILW) environment, JET provides an ideal environment for ITER-relevant, RF-PWI studies. JET pulses combining sequential toggling of the antennas with q95 (edge safety factor) sweeping were recently used to localize RF-enhanced Be I and Be II spectral line emission at outboard poloidal (beryllium) limiters. These measurements were carried out in the early stages of JET-ILW and in ICRF-only, L-mode discharges. The appearance of enhanced emission spots was explained by their magnetic connection to regions of ICRH antennas associated with higher RF-sheath rectification [1]. The measured emission lines were the same as those already qualified in ERO modelling of inboard limiter beryllium erosion in JET limiter plasmas [2]. In the present work, we revisit this spectroscopic study with the focus on obtaining estimates of the impact of these RF-PWI on sputtering and on net erosion of the affected limiter regions. To do this, the ERO erosion and re-deposition code [2] is deployed with the detailed geometry of a JET outboard limiter. The effect of RF-PWI on sputtering is represented by varying the surface negative biasing, which affects the incidence energy and the resulting sputtering yield. The observed variations in line emission, from [1], for JET pulse 81173 of about factor 3 can be reproduced with ~ 100 200 V bias. ERO simulations show that the influence of the respective E-field on the local Be transport is localized near the surface and relatively small. Still, the distribution of the 3D plasma parameters, shadowing and other geometrical effects are quite important. The plasma parameter simulated by Edge2D-EIRENE [3] are extrapolated towards the surface and mapped in 3D. These initial modelling results are consistent with the range of

  12. Modeling the fluid/soil interface erosion in the Hole Erosion Test

    Directory of Open Access Journals (Sweden)

    Kissi B.


    Full Text Available Soil erosion is a complex phenomenon which yields at its final stage to insidious fluid leakages under the hydraulic infrastructures known as piping and which are the main cause of their rupture. The Hole Erosion Test is commonly used to quantify the rate of piping erosion. In this work, The Hole Erosion Test is modelled by using Fluent software package. The aim is to predict the erosion rate of soil during the hole erosion test. The renormalization group theory – based k–ε turbulence model equations are used. This modelling makes it possible describing the effect of the clay concentration in flowing water on erosion. Unlike the usual one dimensional models, the proposed modelling shows that erosion is not uniform erosion along the hole length. In particular, the concentration of clay is found to increase noticeably the erosion rate.

  13. Exploration on Physical Cleaning of the Hydraulic Cavitation Erosion Effects and the Numerical Simulation%探究水力空蚀物理清洗的清洗效果及数值模拟

    Institute of Scientific and Technical Information of China (English)

    郭玉婷; 郝惠娣; 吴煜斌; 钟雨心


    The principle of cavitation cleaning technology and advantages, and ultra-low permeability ping 42-291 well group in ansai oilfield set tubing by cavitation erosion physical cleaning were introduced, the construction process and cleaning results were discussed in details. Based on the existing theoretical basis and practical application in oilfields to simulate the hydraulic cavitation erosion physical cleaning equipment structure, the washer was provided using CFX software flow field simulation calculation, among them, the pressure and velocity were the main factors influencing the cavitation condition, therefore, change operating parameters, with different speed and different pressure to explore the influence of cavitation effect. The results confirmed that faster, stronger the negative pressure zone, range was larger. Greater the inlet pressure, greater the blade gap flow velocity, the greater the negative pressure was higher. The structure of a cavitation jet cleaning provided the basis for further development.%介绍了空蚀清洗技术的原理及优点,并对安塞油田超低渗坪42-291井组集油管采用空蚀物理清洗,详细说明了施工过程和清洗结果。依据现有的理论依据与油田实际应用情况对水力空蚀物理清洗设备进行结构模拟,使用 CFX软件对该清洗器进行流场的模拟计算,其中,压力和流速是影响空化情况的主要因素,故改变操作参数,对不同速度和不同压力对空化效果的影响进行探究。结果证实了速度越快,负压区越强,范围越大。进口压力越大,叶片缝隙流速越大,负压也越高。对空穴射流清洗结构的进一步发展提供依据。

  14. Cavitation in Hydraulic Machinery

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, M.


    The main purpose of this doctoral thesis on cavitation in hydraulic machinery is to change focus towards the coupling of non-stationary flow phenomena and cavitation. It is argued that, in addition to turbulence, superimposed sound pressure fluctuations can have a major impact on cavitation and lead to particularly severe erosion. For the design of hydraulic devices this finding may indicate how to further limit the cavitation problems. Chapter 1 reviews cavitation in general in the context of hydraulic machinery, emphasizing the initial cavitation event and the role of the water quality. Chapter 2 discusses the existence of pressure fluctuations for situations common in such machinery. Chapter 3 on cavitation dynamics presents an algorithm for calculating the nucleation of a cavity cluster. Chapter 4 describes the equipment used in this work. 53 refs., 55 figs.,10 tabs.

  15. Saliva and dental erosion (United States)

    BUZALAF, Marília Afonso Rabelo; HANNAS, Angélicas Reis; KATO, Melissa Thiemi


    Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. Objective This review discusses the role of salivary factors on the development of dental erosion. Material and Methods A search was undertaken on MEDLINE website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Results Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Conclusions Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects. PMID:23138733

  16. Saliva and dental erosion

    Directory of Open Access Journals (Sweden)

    Marília Afonso Rabelo Buzalaf


    Full Text Available Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. Objective: This review discusses the role of salivary factors on the development of dental erosion. Material and Methods: A search was undertaken on MeDLINe website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Results: Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Conclusions: Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects.

  17. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division


    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition


    Institute of Scientific and Technical Information of China (English)

    Chi-hua HUANG; Fenli ZHENG


    This paper highlights past efforts in developing erosion process concepts that lead to the development of the current process-based erosion prediction model, i.e., WEPP. Recent progress includes the development of a multiple-box system that can simulate hillslope hydrologic conditions. Laboratory procedures enable the quantification of near-surface hydrologic effects, i.e.,artesian seepage vs. drainage, on the soil erosion process and sediment regime, flow hydraulics, and sediment transport and deposition processes. These recent findings improve soil erosion science and provide new erosion control strategies that may have additional environmental benefits relative to the traditional erosion control practices. The paper also discusses the potential impacts of the erosion process on erosion model development and future research directions of soil erosion process research and model development.

  19. On the role of "internal variability" on soil erosion assessment (United States)

    Kim, Jongho; Ivanov, Valeriy; Fatichi, Simone


    Empirical data demonstrate that soil loss is highly non-unique with respect to meteorological or even runoff forcing and its frequency distributions exhibit heavy tails. However, all current erosion assessments do not describe the large associated uncertainties of temporal erosion variability and make unjustified assumptions by relying on central tendencies. Thus, the predictive skill of prognostic models and reliability of national-scale assessments have been repeatedly questioned. In this study, we attempt to reveal that the high variability in soil losses can be attributed to two sources: (1) 'external variability' referring to the uncertainties originating at macro-scale, such as climate, topography, and land use, which has been extensively studied; (2) 'geomorphic internal variability' referring to the micro-scale variations of pedologic properties (e.g., surface erodibility in soils with multi-sized particles), hydrologic properties (e.g., soil structure and degree of saturation), and hydraulic properties (e.g., surface roughness and surface topography). Using data and a physical hydraulic, hydrologic, and erosion and sediment transport model, we show that the geomorphic internal variability summarized by spatio-temporal variability in surface erodibility properties is a considerable source of uncertainty in erosion estimates and represents an overlooked but vital element of geomorphic response. The conclusion is that predictive frameworks of soil erosion should embed stochastic components together with deterministic assessments, if they do not want to largely underestimate uncertainty. Acknowledgement: This study was supported by the Basic Science Research Program of the National Research Foundation of Korea funded by the Ministry of Education (2016R1D1A1B03931886).

  20. Secondary Development Graphic Symbol Library of Hydraulic Components by ACAD%基于ACAD二次开发的液压元件图形符号库

    Institute of Scientific and Technical Information of China (English)

    王盛智; 蓝晓民


    利用AutoCAD提供的二次开发方法,通过建立用户文件夹、用户快捷方式、定义用户菜单文件、修改图像控件菜单格式等,在不需要掌握编程语言的情况下,即可开发出实用的元器件图形符号库.建立的应用图库可以对元器件图形符号进行预览、插入等操作.以开发的液压元件符号库图库为例,详尽介绍建库方法.%Using the method of secondary development from AutoCAD to set up users folder, user shortcuts and define user menu documents, modify the form of graphics' control menu.etc, in the case of master the programming language,can develop practical components graphic symbols library, which can preview, insert for the graphic symbols in the graphic symbols library. Taking hydraulic component symbols library for example to introduce the method in detailed.

  1. Hydraulic structures

    CERN Document Server

    Chen, Sheng-Hong


    This book discusses in detail the planning, design, construction and management of hydraulic structures, covering dams, spillways, tunnels, cut slopes, sluices, water intake and measuring works, ship locks and lifts, as well as fish ways. Particular attention is paid to considerations concerning the environment, hydrology, geology and materials etc. in the planning and design of hydraulic projects. It also considers the type selection, profile configuration, stress/stability calibration and engineering countermeasures, flood releasing arrangements and scouring protection, operation and maintenance etc. for a variety of specific hydraulic structures. The book is primarily intended for engineers, undergraduate and graduate students in the field of civil and hydraulic engineering who are faced with the challenges of extending our understanding of hydraulic structures ranging from traditional to groundbreaking, as well as designing, constructing and managing safe, durable hydraulic structures that are economical ...

  2. HYDRAULIC SERVO (United States)

    Wiegand, D.E.


    A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

  3. 基于AMESim液压元件设计库的液压系统建模与仿真研究%Modeling and Simulation Research of Hydraulic System Based on Hydraulic Component Design Library of AMESim

    Institute of Scientific and Technical Information of China (English)

    张宪宇; 陈小虎; 何庆飞; 万俊盛


    A hydraulic system test-bed was taken as research object, and AMESim was used for simulation analysis. Hie HCD simulation model of the hydraulic system was built. In order to verify the correctness of the model, characteristics simulation was proceeded and compared with physical characteristics. The HCD simulation model was used to analyze the characteristic factors which in- flueneed hydraulic actuator velocity. The quantification contrast curves of hydraulic actuator velocity were gotten, which were influenced by flow, piston diameter, piston rod diameter and leakage. It provides basis for hydraulic system design and fault diagnosis.%以某液压实验台为研究对象,运用AMESim对液压系统进行仿真分析.建立液压系统的HCD仿真模型;进行特性仿真,并与物理特性进行对比,验证了HCD仿真模型的正确性;运用所建立的HCD仿真模型对影响液压缸运动速度的因素进行分析,给出不同的流量、活塞缸直径、活塞杆直径及泄漏影响液压缸运动速度的量化对比曲线,从而为液压系统的设计及故障诊断提供依据.

  4. 土壤水力侵蚀的遥感信息模型研究——以江西省为例%Study on Hydraulic Soil-Erosion with Remote Sensing Information for Jiangxi Province

    Institute of Scientific and Technical Information of China (English)

    刘波; 齐述华; 廖富强; 李贵才


    Rich of quaternary red soil with sticky clay, low water permeability and abundant precipitation caused soil erosion extensive in Jiangxi Province. USLE have been used in eval- uating soil erosion for several decades with a multiplication formula by 5 parameters charac- terizing annual erosion power of precipitation, annual vegetation factor, topography, meas- ure of land management and Soil erodibility respectively. Considering that most of precipita- tion happened during from May to August in Jiangxi Province and the growth of the vegeta- tion show seasonal temporal pattern, improving USLE with a monthly model was attemptedfor Jiangxi Province with the monthly EVI composited from the 8-day MODIS EVI product in 2005. Results showed that.(1)Soil erosion is still serious in Jiangxi Province, serious ero- sion was widely happened over the upper and middle reaches of Ganjiang River, Huhe River, Xinjiang River, Raohe River and Xiuhe River and the amount of soil erosion is about 1. 346×10^9ton p.a. ; (2)about 21.4% of the area in Jiangxi Province is in soil erosion. The region with a area of 14906km^2is in over-moderate soil erosion,in which the area of moderate soil e- rosion is 8374km^2 , of intensive soil erosion is 3089km^2 , of extreme intensive erosion is km^2 and of drastic intensive erosion is 1356km^2 ; (3)though the Monthly-USLE is more reasonable because of the seasonality of precipitation and vegetation growth, the soil erosion happened in Jiangxi Province from Monthly-USLE is not similar with that from Yearly-USLE. The soil loss estimated by Monthly-USLE is smaller than that by Yearly-USLE.%通过利用Terra/Aqua卫星上搭载的MODIS传感器计算获取的16d合成植被指数产品(MOD13A2),进一步按照最大值合成法计算月合成光谱植被指数,按照USLE模型月模式评价江西省2005年土壤侵蚀,并与传统的USLE模型年模式计算的结果进行了比较。

  5. Basic hydraulics

    CERN Document Server

    Smith, P D


    BASIC Hydraulics aims to help students both to become proficient in the BASIC programming language by actually using the language in an important field of engineering and to use computing as a means of mastering the subject of hydraulics. The book begins with a summary of the technique of computing in BASIC together with comments and listing of the main commands and statements. Subsequent chapters introduce the fundamental concepts and appropriate governing equations. Topics covered include principles of fluid mechanics; flow in pipes, pipe networks and open channels; hydraulic machinery;

  6. Mapping monthly rainfall erosivity in Europe

    DEFF Research Database (Denmark)

    Ballabio, C; Meusburger, K; Klik, A


    Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and...

  7. Inhibition of erosive wear by fluoride varnish

    NARCIS (Netherlands)

    Vieira, A.; Jager, D. H. J.; Ruben, J. L.; Huysmans, M. C. D. N. J. M.


    It has been suggested that fluoride products with a protective mechanical component are advantageous in the prevention of erosive wear. The aim of this study was to evaluate in situ the effect of fluoride varnish (FV) in the prevention of wear due to erosion and combined erosion and toothbrush abras

  8. Inhibition of erosive wear by fluoride varnish

    NARCIS (Netherlands)

    Vieira, A.; Jager, D. H. J.; Ruben, J. L.; Huysmans, M. C. D. N. J. M.


    It has been suggested that fluoride products with a protective mechanical component are advantageous in the prevention of erosive wear. The aim of this study was to evaluate in situ the effect of fluoride varnish (FV) in the prevention of wear due to erosion and combined erosion and toothbrush

  9. Hydraulic Structures (United States)

    Department of Homeland Security — This table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the FIRM, channels containing the...

  10. Hydraulics and pneumatics

    CERN Document Server

    Parr, Andrew


    Nearly all industrial processes require objects to be moved, manipulated or subjected to some sort of force. This is frequently accomplished by means of electrical equipment (such as motors or solenoids), or via devices driven by air (pneumatics) or liquids (hydraulics).This book has been written by a process control engineer as a guide to the operation of hydraulic and pneumatic systems for all engineers and technicians who wish to have an insight into the components and operation of such a system.This second edition has been fully updated to include all recent developments su

  11. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG


    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  12. Dynamic Feedbacks Between Flow, Erosion and Evolving River Bank Roughness Revealed Through Repeat High-Resolution Topographic Surveys (United States)

    Leyland, J.; Darby, S. E.; Rinaldi, M.; Teruggi, L. B.; Ostuni, D.


    Bank erosion is a key process in fluvial dynamics, with significant fractions of the total sediment load being sourced from river banks. Studies have shown that hydraulic erosion of the bank toe is a driving factor of long term rates of bank retreat. Fluvial bank erosion rates are often quantified using an excess shear stress model where the erosion rate is a function of the boundary shear stress applied by the flow above a critical threshold. Research has shown that the form roughness induced by natural topographic bank features such as slumps, spurs and embayments, is a major component of the spatially-averaged total shear stress. The skin friction component of this shear stress is typically an order of magnitude less than the total, meaning that the form roughness provides an important control on bank erosion rates. However, measuring the relative components of the total shear stress for a natural system is not straightforward. In this research we apply the method of Kean and Smith [2006, J. Geophys. Res., 111(4), F04009, doi:10.1029/2006JF000467] to partition the form and skin drag components of river bank roughness for an eroding bank of the Cecina River in central Italy. This method approximates the form drag component of the roughness along a longitudinal bank profile as a series of user defined Gaussian curves, with the skin friction component estimated through analysis of the deviations of the data from the fitted curves. For our site, a temporal sequence (2003 - 2011) of high-resolution topographic surveys has been collected through a combination of photogrammetry and Terrestrial Laser Scanning. For each survey five vertically equidistant profiles are extracted and analysed alongside DEMs of difference and associated flow data modelled using the distributed hydrological model MOBIDIC. The data are used to explore the dynamic feedbacks that exist between river discharge, bank erosion processes and bank form roughness, revealing insights into the self

  13. Chapter 12. Pure Tap Water Hydraulic Systems and Applications

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders


    Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications.......Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications....

  14. Soil erosion in China based on the 2000 national remote sensing survey

    Institute of Scientific and Technical Information of China (English)


    This paper discussed the spatial distribution of soil erosion in China at the end of the 20thcentury based on the second national soil erosion survey. The result indicated soil erosion is still theprime environmental problem in China. Soil erosion mainly occurs in the western regions of China,and the slight erosion type, ion the whole, exerts the greatest impact on soil erosion pattern. Thedistribution of water erosion shows the impact of landforms: slight water erosion mainly inmountainous and hilly areas, and half of violent water erosion on the loess landforms. Farmland,forestland and grassland are the major land use types of slight hydraulic erosion distribution, while theserious hydraulic erosion and slight wind erosion mainly occur on grassland. Thus, the conservation ofthe grassland is the key to either hydraulic and wind erosion control. The huangmian soil (a major typeof cultivated soil developed from loess mother material) is the one facing the most serious threat fromsoil erosion in Chinas soil resources. Further discussion on the soil erosion distribution still needs moreresearch on the method and relevant data analysis.

  15. Component

    Directory of Open Access Journals (Sweden)

    Tibor Tot


    Full Text Available A unique case of metaplastic breast carcinoma with an epithelial component showing tumoral necrosis and neuroectodermal stromal component is described. The tumor grew rapidly and measured 9 cm at the time of diagnosis. No lymph node metastases were present. The disease progressed rapidly and the patient died two years after the diagnosis from a hemorrhage caused by brain metastases. The morphology and phenotype of the tumor are described in detail and the differential diagnostic options are discussed.

  16. Erosion sculptures (United States)

    Ristroph, Leif; Moore, M. N. J.; Childress, Stephen; Shelley, Michael; Zhang, Jun


    Erosion by flowing fluids carves the striking landscapes imprinted on the Earth and on the surfaces of our neighboring worlds. In these processes, solid boundaries both influence and are shaped by the surrounding fluid, but the emergence of morphology as a result of this interaction is not well understood. We study the coevolution of shape and flow in the context of clay bodies immersed in fast flowing water. Although commonly viewed as a smoothing process, we discover that erosion sculpts surprisingly sharp points and corners that persist as the body shrinks. These features result from a natural tendency to form surfaces that erode uniformly, and we argue that this principle may also apply to the more complex scenarios that occur in nature.

  17. Numerical simulation of hydrodynamics and bank erosion in a river bend

    NARCIS (Netherlands)

    Rinaldi, M; Mengoni, B.; Luppi, L.; Darby, S.E.; Mosselman, E.


    We present an integrated analysis of bank erosion in a high-curvature bend of the gravel bed Cecina River (central Italy). Our analysis combines a model of fluvial bank erosion with groundwater flow and bank stability analyses to account for the influence of hydraulic erosion on mass failure process

  18. MR imaging of erosions in interphalangeal joint osteoarthritis: is all osteoarthritis erosive?

    Energy Technology Data Exchange (ETDEWEB)

    Grainger, A.J. [Leeds Teaching Hospitals, Department of Radiology, Leeds (United Kingdom); Musculoskeletal Centre, Chapel Allerton Hospital, Department of Radiology, Leeds (United Kingdom); Farrant, J.M.; O' Connor, P.J. [Leeds Teaching Hospitals, Department of Radiology, Leeds (United Kingdom); Tan, A.L.; Emery, P. [Leeds Teaching Hospitals and Leeds University, Department of Rheumatology, Leeds (United Kingdom); Tanner, S. [Leeds University, Department of Medical Physics, Leeds (United Kingdom); McGonagle, D. [Leeds Teaching Hospitals and Leeds University, Department of Rheumatology, Leeds (United Kingdom); Calderdale Royal Hospital, Halifax (United Kingdom)


    Erosive osteoarthritis is usually considered as an inflammatory subset of osteoarthritis (OA). However, an inflammatory component is now recognised in all subsets of OA, so this subgroup of erosive or inflammatory OA is more difficult to conceptualise. The aim of this study was to compare routine CR and MRI to investigate erosion numbers and morphology to determine whether hand OA in general is a more erosive disease than previously recognised. Fifteen patients with clinical (OA) of the small joints of the hand underwent MRI of one of the affected proximal interphalangeal (PIP) or distal interphalangeal (DIP) joints. Conventional radiographs (CR) of the hand were also obtained. The MR images were reviewed by two observers for the presence of central and marginal erosions. The site and morphology of any erosions was recorded. CR images of the same hand joint were scored independently for central and marginal erosions by the same observers. There was 100% agreement between the observers for scoring erosions on CR. Agreement for the MRI scores was also excellent (kappa = 0.84). MRI detected 37 erosions, of which only 9 were seen on CR. The increase in sensitivity using MRI was much greater for marginal erosions (1 detected on CR, 19 on MRI) than for central erosions (8 on CR, 18 on MRI). Using MRI 80% of joints examined showed 1 or more erosions compared with 40% using CR. If only marginal erosions were considered 80% of joints were still considered erosive by MRI criteria, but only 1 showed evidence of erosion on CR. Morphologically central erosions appeared to represent areas of subchondral collapse and pressure atrophy. In contrast, marginal erosions resembled those seen in inflammatory arthritides. Erosions, and particularly marginal erosions typical of those seen in inflammatory arthritis, are a more common feature of small joint OA than conventional radiographs have previously indicated. (orig.)

  19. 对电液比例阀几个基本问题的讨论%Discussion on Some Basic Problems of Electro-hydraulic Proportion Control Component

    Institute of Scientific and Technical Information of China (English)

    李运华; 刘源; 何刘宇


    电液比例阀是机电一体化液压控制系统的重要控制元件.对其基本原理的弄清有助于对其正确使用并提升电液比例控制系统的性能.文中针对电机械转换元件阀口开度控制原理及特性分析和比例放大器控制信号及PWM信号频率大小对阀口性能的影响进行了分析讨论,获得了一些有意义的结论.%Electro-hydraulic proportional control valve is an important control component to be applied to electro-mechanical integration hydraulic control system. To understand its basic principle can help to appropriately use it and to enhance the performance of the electro-hydraulic proportional control system. Addressed the control principle, modeling and simulation for the valve opening of the proportional valve, and the influence of the control signal of proportion amplifier and the frequency of PWM signal on the control performance of the valve opening, the analysis and discussion were carried out in the paper, and some significant conclusions were acquired.

  20. “工业4.0”下的“液压4.0”与智能液压元件技术%'Hydraulic 4.0' and Intelligent Hydraulic Component Technology under 'Industry 4.0'

    Institute of Scientific and Technical Information of China (English)



    根据工业革命的发展规律与液压技术的比照,由于液压技术的发展与历次工业革命高度重合,因此从“工业4.0”引申出“液压4.0”的概念,并有其本身的发展特点。为了让液气密行业更加深入和更加快速地开展“工业4.0”的智能化发展,在这里比较深入地剖析了智能液压元件的原理、构成与功能,与此同时,对于传统液气密行业过去很少涉及的CAN总线的技术基础与概念作了介绍,并涉及一些入门的技术概念,以便行业的企业管理者与工程技术人员能更快运用它们。最后也分析了智能液压元件给用户与生产商带来的效益。%In terms of comparison, we found that the historic development of hydraulic industry development is total-ly as same as the historic development of whole industry. Therefore, we propose 'Hydraulic 4.0' to represent 'Indus-try 4.0' in our hydraulic industry with its own feature. In order to expedite the development of 'Hydraulic 4.0' in Chi-na, the author introduces about structure, schematic and function of intelligent hydraulic components. It involves CAN bus and its fundament which is seldom introduced in our industry. Finally, the benefits gained from applying hydraulic intelligent product and its technology by customers as well as manufactures are analyzed in this paper al-so. This paper is to contribute to entrepreneurs and engineers for them to use such techonology and develop such products.

  1. Enhanced Droplet Erosion Resistance of Laser Treated Nano Structured TWAS and Plasma Ion Nitro-Carburized Coatings for High Rating Steam Turbine Components (United States)

    Pant, B. K.; Arya, Vivek; Mann, B. S.


    This article deals with surface modification of twin wire arc sprayed (TWAS) and plasma ion nitro-carburized X10CrNiMoV1222 steel using high power diode laser (HPDL) to overcome water droplet erosion occurring in low pressure steam turbine (LPST) bypass valves and LPST moving blades used in high rating conventional, critical, and super critical thermal power plants. The materials commonly used for high rating steam turbines blading are X10CrNiMoV1222 steel and Ti6Al4V titanium alloy. The HPDL surface treatment on TWAS coated X10CrNiMoV1222 steel as well as on plasma ion nitro-carburized steel has improved water droplet resistance manifolds. This may be due to combination of increased hardness and toughness as well as the formation of fine grained structure due to rapid heating and cooling rates associated with the laser surface treatment. The water droplet erosion test results along with their damage mechanism are reported in this article.

  2. Hydraulically Driven Grips For Hot Tensile Specimens (United States)

    Bird, R. Keith; Johnson, George W.


    Pair of grips for tensile and compressive test specimens operate at temperatures up to 1,500 degrees F. Grips include wedges holding specimen inside furnace, where heated to uniform temperature. Hydraulic pistons drive wedges, causing them to exert clamping force. Hydraulic pistons and hydraulic fluid remain outside furnace, at room temperature. Cooling water flows through parts of grips to reduce heat transferred to external components. Advantages over older devices for gripping specimens in high-temperature tests; no need to drill holes in specimens, maintains constant gripping force on specimens, and heated to same temperature as that of specimen without risk of heating hydraulic fluid and acuator components.

  3. Lubrication and tribology in seawater hydraulic piston pump

    Institute of Scientific and Technical Information of China (English)

    WANG Dong; LI Zhuang-yun; ZHU Yu-quan


    Water hydraulic systems have provoked major interest because of the human friendly and environmental safety aspects. Piston pump is one of the most frequently used hydraulic units in recent engineering technique. In water hydraulic piston pump, poor lubrication is more likely to happen than in oil hydraulic one because of difference in properties between water and oil. So there are some key problems such as corrosive wear and erosion, which are investigated briefly. Many new materials have been developed, which give longer life expectancies with water without corrosion and erosion. A new type of seawater hydraulic piston pumps with better suction characteristics had been developed at HUST. Much of this research has concentrated on new materials, structure and experiments, which are also specially introduced.

  4. Process fluids of aero-hydraulic systems and their properties

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov


    Full Text Available The article considers process fluids, which are presently applied to aviation hydraulic systems in domestic and world practice. Aviation practice deals with rather wide list of fluids. Based on the technical specification a designer makes the choice of specific fluid for the specific aircraft. Process fluids have to possess the specified properties presented in the article, namely: lubricating properties; stability of physical and chemical characteristics at operation and storage; lowtemperature properties; acceptable congelation temperature; compatibility with materials of units and components of hydraulic systems; heat conductivity; high rigidity; minimum low coefficient of volume expansion; fire-explosion safety; low density. They should also have good dielectric properties, be good to resist to destruction of molecules, have good anticorrosion and antierosion properties, as well as not create conditions for emerging electro-kinetic erosion of spooltype and other precision devices, and a number of other properties.The article presents materials on the oil-based process fluids with + (200-320 °C boiling temperature, gelled by a polymer of vinyl butyl ether, with aging inhibitor and dye for hydraulic systems of the subsonic and transonic aircraft which are combustible, with a temperature interval of use from — 60oС до +125oС. It also describes materials on process fluids, which are based on the mix of polydialkylsiloxane oligomers with organic diester aging inhibitors, and wear-resistant additive to be applied to the hydraulic systems of supersonic aircrafts using a fluid within the temperature interval from - 6О oС to +175oС for a long duration. The fire-explosion safety process fluids representing a mix of phosphoric esters with additives to improve viscous, anti-oxidizing, anticorrosive and anti-erosive properties are considered as well. They are used within the temperature range from - 60оС to +125оС with overheats up to +150


    Institute of Scientific and Technical Information of China (English)


    Traditionally gully erosion has been identified with the dissection of the landscape in agricultural settings but it is also recognized as a prevalent erosion feature in earthen dam auxiliary spillways and embankments. Flows through earthen spillways and over dam embankments, due to large rainfall events, have the potential to erode and breach the dam or spillway and result in catastrophic releases from the reservoir. The gully erosion process in an earthen spillway or on an embankment can be characterized by stages of initiation, development, and migration of a headcut. A headcut is defined as a near vertical drop at the upstream end of a gully. The rate of headcut migration is important in determining the breach potential of an earthen spillway and dam embankment. A research program is being conducted to examine the gully erosion processes of earthen dam auxiliary spillways and embankments. This paper describes: 1) the unique test facilities constructed to examine the dominant factors affecting the erosion of earthen spillways and embankments; 2) the observations of the erosion processes and results to date; and 3) the predictive relationships that have been developed for dam gully erosion research at the ARS Hydraulic Engineering Research Unit laboratory in Stillwater, OK.

  6. Simulating the Fluvial Erosion of Fine-Grained River Banks (United States)

    Darby, S. E.; Sarkkula, J.; Koponen, J.; Kummu, M.


    River bank erosion is the product of a suite of specific processes that together contribute significantly to the sediment yielded from river catchments. Many studies have emphasised that hydraulic erosion of bank-toe materials may exert a dominant influence on the long term rate of river bank retreat. Fluvial bank erosion rates are normally quantified using an excess shear stress model of the form E = k(τb-τc)a, where E is the erosion rate per unit time and unit bank area, τb is the boundary shear stress applied by the flow, k and τc are erodibility parameters (erodibility coefficient, k, and critical shear stress, τc), and a is an empirically derived exponent (equated to unity in bank erosion studies). This model has the advantage of simplicity, but in practice difficulties in estimating the values of the erodibility and shear stress parameters seriously inhibit its accuracy. We are seeking to improve the parameterization of the excess shear stress model through the use of field measurements and analytical modelling, at field sites on the Mekong River in Laos. Specifically, τb is estimated using a new model [Kean and Smith, 2006, J. Geophys. Res., 111(4), F04009, doi:10.1029/2006JF000467] of flow over irregular bank topography. Data from our study sites indicate that the form roughness induced by natural topographic bank features (slumps, embayments, etc) is a major component of the spatially-averaged total shear stress, with the skin friction component (i.e, τb) typically an order of magnitude less than the total stress. This indicates that previous bank erosion investigations, that employ estimates of the total shear stress, may grossly misparameterize the true value of τb. To estimate τc, we have employed a Cohesive Strength Meter [CSM, Tolhurst et al., 1999, Estuarine, Coastal & Shelf Sci., 49, 281-294], a jet-testing device that is normally used in studies of the stability of cohesive sediments on inter-tidal flats, but which has not previously been

  7. The cavitational erosion resistance of the B2-type Fe-Al casting alloys

    Directory of Open Access Journals (Sweden)

    R. Jasionowski


    Full Text Available The problem of the destruction of turbo-machinery components is very complex, because it consists of processes of erosion and corrosion. The most dangerous factor is the cavitation phenomenon, which is very difficult to eliminate through the use of design solutions. It causes deterioration of the operating characteristics of machinery and equipment, such as water turbines, steam turbines, centrifugal pumps, screw vessels, cylinder liners with water-cooled engines, acoustic probe. The most commonly used method of limiting the destruction of cavitation phenomenon is the optimum choice of parameters of geometric and hydraulic machines, the appropriate design of elements and streamlined flow and providing working conditions of flow devices. The above-mentioned methods by design, the size of flow devices are limited, so better action to prevent the flow of erosion may use the material for greater resistance to erosion and cavitation corrosion is the alloy of intermetallic FeAl phase, which production costs are low compared to cast steel and cast iron alloy based on chromium and nickel.The paper presents results of an investigation carried out for cavitational resistance of the B2-type Fe-Al casting alloys using a flux-impact measuring device. The intermetallic FeAl alloys proved to have good resistance to this type of erosion in comparison to other construction materials, investigated by flux-impact device.

  8. An Experimental Simulation Method of Erosion Process on Gully Erosion in Loess Plateau in China (United States)

    Gao, Jianen; Zhang, Yuanxing


    In view of simulation difficultment of the field gully erosion process because of complex of rainfall runoff erosion mechanism and gully geometry a design means and experimentation technology and its verification test were given based on similarity theory and hydrodynamic principles. The basic ideas was that the erosion process of the field erosion gully was forecast by constructing similar model. The model and antetype should be in obedience to the same physical equations of rainfall, runoff, erosion, sediment transport, bed deformation and Soil water transport. The geometric, kinematical and dynamic similarity must be obeyed for these models. The primary similarity scale relation expressions were the ones of the geometric, rainfall, flow, erosion sediment transport and soil water movement similarity etc. The similarity of the hydraulic boundary was the necessary and sufficient condition between the model and the prototype. The gully prototype is one of Majiagou of Ansai county of Yanan City of Shaanxi Province in China. Its location is 36°53'55.75"N and 109°13'39.08"E. The model experiment wan carried out in State Key Laboratory of Soil Erosion and Dry land Farming On the Loess Plateau in Institute of Soil and Water Conservation of Northwest A&F University. First soil was selected by starting velocity similar. Second, the normal and scale 10 experiment model was built under complying with the similarities of geometric, rainfall, flow, erosion production sediment transport and bed deformation etc. The model hydraulic boundary from the prototype was the factor of the test process of rainfall. The experiment results indicated that the extreme rainstorm gully erosion process of the prototype could be reappeared. The equivalent rainfall process of gully prototype were that the rainfall intensity was 1.25 mm/min and the lasting time was 508 min and precipitation was 636mmn. Both the erosion amount and the erosion gully topography of the scale model were successfully

  9. Hydraulic Actuators with Autonomous Hydraulic Supply for the Mainline Aircrafts

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov


    pipelines, as well as their increasing reliability. It is also possible, in addition, in addition to increase reliability of the remained pipelines, having applied the last developments, e.g. introduction of one-piece connections (thermo-mechanical ones, high-strength steels for pipelines with σв˃85 кг/мм 2 σ to increase control of residual assembly tension, and so on;- to eliminate essentially all the shortcomings of hydraulic actuators, which constrain their introduction in aircraft industry;- to simplify essentially steering drive structures and designs, which allow to apply the tried and tested components and principles;- to simplify essentially a solution for cooling of working liquid;- to simplify essentially a solution for the steering drive configuration in a zone of control vanes;- to simplify essentially a solution for meeting requirements for dynamic rigidity and dynamic sensitivity of hydraulic actuators;- to simplify essentially a solution for the aircraft fire safety, etc.

  10. Experimental study of erosion by suffusion at the micro-macro scale (United States)

    Nguyen, Cong Doan; Benahmed, Nadia; Philippe, Pierre; Diaz Gonzalez, Elizabeth Victoria


    Internal erosion is a complex phenomenon which represents one of the main sources of risk to the safety of earth hydraulic structures such as embankment dams, dikes and levees. Its occurrence may cause instability and failure of these structures with consequences that can be dramatic. Erosion by suffusion corresponds to the process of detachment and transport, under the action of hydraulic flow, of the finest soil particles within the porous media formed mainly of large grains. Its occurrence usually causes change of the initial microstructure and hence a change in the physical, hydraulic and mechanical characteristics of the soil. In this study, we present first an experimental characterization of the erosion mechanism during its occurrence within a granular soil. Particular emphasis was put on the role of hydraulic conditions in triggering of fines migration. Thereafter, we present a preliminary microstructural characterization of the erosion process through direct visualization by optical techniques of particles migration using crushed glass samples as model materials.

  11. Cavitation erosion of NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, A. [Powertech Labs. Inc., Surrey, British Columbia (Canada)]|[Univ. of British Columbia (Canada). Metals and Materials Engineering Dept.; Salvi, R. [Univ. of British Columbia (Canada). Metals and Materials Engineering Dept.; Sikka, V.K. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.


    Vibratory cavitation erosion tests were carried out on as-cast NiAl intermetallic compounds containing 46.5 to 62.1 at. pct Ni. The erosion rate decreased with increasing nickel content by over two orders of magnitude, from a high of 16.4 to 0.11 mg{center_dot}h{sup {minus}1}. These low erosion rates exhibited by the nickel-rich alloys containing 58 and 62.1 at. pct Ni, the interruptions in their mass loss with time, and the unusual effects associated with surface finish and intensity of cavitation were found to be associated with the stress-induced martensitic transformation. Alloys containing 58 to 62 at. pct Ni have the potential for use as materials for the cavitation protection of hydraulic machinery.

  12. Robotic weld overlay coatings for erosion control (United States)

    The erosion of materials by the impact of solid particles has received increasing attention during the past twenty years. Recently, research has been initiated with the event of advanced coal conversion processes in which erosion plays an important role. The resulting damage, termed Solid Particle Erosion (SPE), is of concern primarily because of the significantly increased operating costs which result in material failures. Reduced power plant efficiency due to solid particle erosion of boiler tubes and waterfalls has led to various methods to combat SPE. One method is to apply coatings to the components subjected to erosive environments. Protective weld overlay coatings are particularly advantageous in terms of coating quality. The weld overlay coatings are essentially immune to spallation due to a strong metallurgical bond with the substrate material. By using powder mixtures, multiple alloys can be mixed in order to achieve the best performance in an erosive environment. However, a review of the literature revealed a lack of information on weld overlay coating performance in erosive environments which makes the selection of weld overlay alloys a difficult task. The objective of this project is to determine the effects of weld overlay coating composition and microstructure on erosion resistance. These results will lead to a better understanding of erosion mitigation in CFB's.

  13. Emergency wind erosion control (United States)

    February through May is the critical time for wind erosion in Kansas, but wind erosion can happen any time when high winds occur on smooth, wide fields with low vegetation and poor soil structure. The most effective wind erosion control is to ensure a protective cover of residue or growing crop thro...

  14. Erosion and Errors

    NARCIS (Netherlands)

    Huisman, H.; Heeres, Glenn; Os, van Bertil; Derickx, Willem; Schoorl, J.M.


    Slope soil erosion is one of the main threats to archaeological sites. Several methods were applied to establish the erosion rates at archaeological sites. Digital elevation models (DEMs) from three different dates were used. We compared the elevations from these three models to estimate erosion. We

  15. Technology of load-sensitivity used in the hydraulic system of an all-hydraulic core rig

    Institute of Scientific and Technical Information of China (English)

    XIN De-zhong; CHEN Song-ling; WANG Qing-feng


    The existing hydraulic system always have problems of temperature rise, run-ning stability and anti-interference of the implementation components, reliability of hydrau-lic components, maintenance difficulties, and other issues. With high efficiency, energy saving, reliability, easy operating, stable running, anti-interference ability, and other ad-vantages, the load-sensitive hydraulic system is more suitable for coal mine all-hydraulic core rig. Therefore, for the technical development of the coal mine all-hydraulic core rig, the load-sensitive technology employed by the rig should be of great significance.

  16. Sand erosion at the toe of a gabion-protected dune face

    NARCIS (Netherlands)

    Chapman, A.


    The purpose of this research project was to study the manner in which erosion takes place the the toe of a dune slope protected by gabions, and to examine the response of the gabions to this erosion. A sand slope overlaid by model gabions was subjected to wave attack in a hydraulic flume, and period

  17. Thermal-hydraulic modeling and analysis of hydraulic system by pseudo-bond graph

    Institute of Scientific and Technical Information of China (English)

    胡均平; 李科军


    To increase the efficiency and reliability of the thermodynamics analysis of the hydraulic system, the method based on pseudo-bond graph is introduced. According to the working mechanism of hydraulic components, they can be separated into two categories: capacitive components and resistive components. Then, the thermal-hydraulic pseudo-bond graphs of capacitive C element and resistance R element were developed, based on the conservation of mass and energy. Subsequently, the connection rule for the pseudo-bond graph elements and the method to construct the complete thermal-hydraulic system model were proposed. On the basis of heat transfer analysis of a typical hydraulic circuit containing a piston pump, the lumped parameter mathematical model of the system was given. The good agreement between the simulation results and experimental data demonstrates the validity of the modeling method.

  18. Dental erosion, summary. (United States)

    ten Cate, J M; Imfeld, T


    Although reports on dental erosion have always appeared in the dental literature, there is currently a growing interest among researchers and clinicians. Potential risk factors for dental erosion are changed lifestyle and eating patterns, with increased consumption of acidic foods and beverages. Various gastrointestinal and eating disorders expose the dentition to frequent contacts with very acidic gastric content, which may lead to erosion. Whether these factors indeed lead, on a population scale, to a higher prevalence and incidence of erosion is yet to be established. This article summarizes the different aspects of the prevalence, pathology, etiology, assessment, prevention and treatment of dental erosion, and concludes with recommendations for future research.

  19. Bank erosion events and processes in the Upper Severn basin

    Directory of Open Access Journals (Sweden)

    D. M. Lawler


    Full Text Available This paper examines river bank retreat rates, individual erosion events, and the processes that drive them in the Upper Severn basin, mid-Wales, UK. Traditional erosion pin networks were used to deliver information on patterns of downstream change in erosion rates. In addition, the novel automatic Photo-Electronic Erosion Pin (PEEP monitoring system was deployed to generate near-continuous data on the temporal distribution of bank erosion and accretion: this allowed focus on the magnitude and timing of individual erosional and depositional events in relation to specific flow episodes. Erosion dynamics data from throughout the Upper Severn basin are combined with detailed information on bank material properties and spatial change in channel hydraulics derived from direct field survey, to assess the relationships between flow properties and bank erosion rates. Results show that bank erosion rates generally increase downstream, but relate more strongly to discharge than to reach-mean shear stress, which peaks near the basin head. Downstream changes in erosion mechanisms and boundary materials, across the upland/lowland transition (especially the degree of development of composite bank material profiles, are especially significant. Examples of sequences of bank erosion events show how the PEEP system can (a quantify the impact of individual, rather than aggregated, forcing events, (b reveal the full complexity of bank response to given driving agents, including delayed erosion events, and (c establish hypotheses of process-control in bank erosion systems. These findings have important implications for the way in which bank erosion problems are researched and managed. The complex responses demonstrated have special significance for the way in which bank processes and channel-margin sediment injections should be handled in river dynamics models.

  20. Water Impingement Erosion of Deep-Rolled Ti64

    Directory of Open Access Journals (Sweden)

    Dina Ma


    Full Text Available In this work, the Liquid Impingement Erosion (LIE performances of deep-rolling (DR treated and non-treated Ti64 were investigated. Various erosion stages, from the incubation to the terminal erosion stages, could be observed. A full factorial design of experiments was used to study the effect of DR process parameters (Feed Rate, Spindle Velocity, Number of Passes, Pressure on the residual stress distribution, microhardness and surface roughness of the treated Ti64 specimens. The DR-treated Ti64 specimens exhibited improved surface microhardness, surface roughness, and large magnitude of compressive residual stresses, which were attributed to the amount of cold work induced by the DR process. Although DR improved the mechanical properties of the Ti64, the results showed that the treatment has little or no effect on the LIE performance of Ti64 but different damage modes were observed in these two cases. Evolution of the erosion stages was described based on water-hammer pressure, stress waves, radial wall jetting, and hydraulic penetration modes. The initial erosion stages were mainly influenced by water-hammer pressure and stress waves, whereas the intermediate erosion stages were influenced by the combination of the four modes together. The final erosion stages contain the four modes, however the erosion was greatly driven by the radial jetting and hydraulic penetration modes, where more material was removed. The failure mechanism of the final stages of the LIE test of both DR-treated and non-treated Ti64 was characterized as fatigue fracture. However, a brittle fracture behavior was observed in the initial and intermediate erosion stages of the DR-treated Ti64, whereas a ductile fracture behavior was observed in the non-treated Ti64. This was concluded from the micrographs of the LIE damage through different erosion stages.

  1. A new methodology for hydro-abrasive erosion tests simulating penstock erosive flow (United States)

    Aumelas, V.; Maj, G.; Le Calvé, P.; Smith, M.; Gambiez, B.; Mourrat, X.


    Hydro-abrasive resistance is an important property requirement for hydroelectric power plant penstock coating systems used by EDF. The selection of durable coating systems requires an experimental characterization of coating performance. This can be achieved by performing accelerated and representative laboratory tests. In case of severe erosion induced by a penstock flow, there is no suitable method or standard representative of real erosive flow conditions. The presented study aims at developing a new methodology and an associated laboratory experimental device. The objective of the laboratory apparatus is to subject coated test specimens to wear conditions similar to the ones generated at the penstock lower generatrix in actual flow conditions. Thirteen preselected coating solutions were first been tested during a 45 hours erosion test. A ranking of the thirteen coating solutions was then determined after characterisation. To complete this first evaluation and to determine the wear kinetic of the four best coating solutions, additional erosion tests were conducted with a longer duration of 216 hours. A comparison of this new method with standardized tests and with real service operating flow conditions is also discussed. To complete the final ranking based on hydro-abrasive erosion tests, some trial tests were carried out on penstock samples to check the application method of selected coating systems. The paper gives some perspectives related to erosion test methodologies for materials and coating solutions for hydraulic applications. The developed test method can also be applied in other fields.


    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydraulic analysis for estimating flood stages for a flood insurance study. It...

  3. Hydraulic Hybrid Vehicles (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  4. Characteristics of concentrated flow hydraulics for rangeland ecosystems: implications for hydrologic modeling (United States)

    Concentrated flow is often the dominant source of water erosion following disturbance on rangeland. Because of the lack of studies that explain the hydraulics of concentrated flow on rangelands, cropland-based equations have typically been used for rangeland hydrology and erosion modeling, leading t...

  5. Experiments on Component Effects for Performance of SMART PRHRS using the High Temperature/High Pressure Thermal-Hydraulic Test Facility (VISTA)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Sik; Choi, Ki Yong; Cho, Seok; Lee, Sung Jae; Choi, Nam Hyun; Min, Kyong Ho; Song, Chul Hwa; Park, Chun Kyong; Chung, Moon Ki


    The VISTA (Experimental Verification by Integral Simulation of Transients and Accidents) is an experimental facility to verify the performance and safety issues of the SMART-P (Pilot plant of the System-integrated Modular Advanced Reactor). The basic design of the SMART-P has been completed by KAERI. The present report describes the experimental results on the effects of several components for the performance of SMART PRHRS. Four experiments are performed separately without gas cylinder system, without PRHRS compensation tank, without initial filling of PRHRS loop, and without heat loss compensation of primary system. For all four cases a stable flow occurs in a natural circulation loop which is composed of a steam generator secondary side, a secondary system, and a PRHRS, which shows the similar trend of the reference case. Especially for cases without gas cylinder system and without initial filling of PRHRS loop the unsteady flow instability, which is occurred during the reference test, does not occur. The experimental results show that the overall performance of PRHRS is enhanced without PRHRS compensation tank, without initial filling of PRHRS loop, and without heat loss compensation.

  6. Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Mørkholt, M.

    As wind turbines increase in size, combined with increased lifetime demands, new methods for load reduction needs to be examined. One method is to make the yaw system of the turbine soft/flexible and hereby dampen the loads to the system, which is the focus of the current paper. By utilizing...... the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized to reduce loading in critical components. Results shows that a significant reduction in fatigue and extreme loads to the yaw...... system and rotor shaft when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. Based on the extrapolated loads, the duty cycles show that it is possible to construct...

  7. A novel energy recovery system for parallel hybrid hydraulic excavator. (United States)

    Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan


    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented.

  8. A Simplified Analytical Modeling of the Hole Erosion Test

    Directory of Open Access Journals (Sweden)

    Mohammed Bezzazi


    Full Text Available Problem statement: Internal erosion occurs in soils containing fine particles under the action of high pressure gradients that could result from water discharge. This phenomenon can yield in its final stage to the formation of piping which constitutes a real threat for hydraulics infrastructures as it can precipitate their entire rupture in very short time. In order to mitigate this insidious hazard, it is important to characterize piping dynamics. In this context, the Hole Erosion Test was introduced to assess the erosive features of soils by means of two parameters, the erosion rate and the critical shear stress indicating the beginning of erosion. Modeling this test can enable to understand more comprehensibly the piping phenomenology. Approach: A simplified analytical modeling of the Hole Erosion Test was considered in this study. A closed form solution of erosion taking place during piping was derived without resorting to the habitual cumbersome developments that are needed to achieve complete solution of the rational equations describing this highly coupled problem. This was achieved by assuming formal analogy between the erosive shear stress and the friction shear that develops at a cylindrical piping wall under an axial viscous flow. The flow was assumed to be uniform along the tube. Results: A closed form analytical formula describing erosion dynamics associated to piping was derived. Theoretical predictions were compared with experimental results and the simplified model was found to predict accurately the increase of flow rate that results from piping erosion. Conclusion/Recommendations: The one-dimensional modeling that was proposed for the Hole Erosion Test under strong simplifying assumptions was found to yield the same features as those obtained in the literature by using other approaches. It gives furthermore the dynamics as function of the fluid regime existing inside the tube. In order to get further insight

  9. Erosion-corrosion; Erosionkorrosion

    Energy Technology Data Exchange (ETDEWEB)

    Aghili, B


    A literature study on erosion-corrosion of pipings in the nuclear industry was performed. Occurred incidents are reviewed, and the mechanism driving the erosion-corrosion is described. Factors that influence the effect in negative or positive direction are treated, as well as programs for control and inspection. Finally, examples of failures from databases on erosion-corrosion are given in an attachment 32 refs, 16 figs, tabs

  10. Hydraulics and pneumatics a technician's and engineer's guide

    CERN Document Server

    Parr, Andrew


    Hydraulics and Pneumatics: A Technician's and Engineer's Guide provides an introduction to the components and operation of a hydraulic or pneumatic system. This book discusses the main advantages and disadvantages of pneumatic or hydraulic systems.Organized into eight chapters, this book begins with an overview of industrial prime movers. This text then examines the three different types of positive displacement pump used in hydraulic systems, namely, gear pumps, vane pumps, and piston pumps. Other chapters consider the pressure in a hydraulic system, which can be quickly and easily controlled

  11. Fire Resistant Aircraft Hydraulic System. (United States)


    and compounds based on new experimental elastomers as well as most commercially available elastomers were screened in seeking seals that were both...for hydraulic component testing. All of the available E6.5 stock was purchased for the screening tests. However, DuPont stated that other homologs of...with the lubricity and anti-wear additive olyvan A (molybdenum oxysulphide dithiocarbamate ) added in the quantity of less than one percent by weight

  12. Analysis of Hydraulic Conductance Components in Field Grown, Mature Sweet Cherry Trees Análisis de los Componentes de Conductancia Hidráulica en Árboles Maduros de Cerezo Dulce en Condiciones de Campo

    Directory of Open Access Journals (Sweden)

    Ricardo Oyarzún


    Full Text Available As a necessary step towards understanding soil water extraction and plant water relationships, the components of hydraulic conductance (K of mature sweet cherry (Prunus avium L. trees were evaluated in situ based on a Ohm´s law analog method. In June 2004, K was determined for 10-yr-old ‘Bing’/‘Gisela® 5’ trees, from simultaneous measurements of whole canopy gas exchange and leaf (sunlit and shaded and stem water potentials (Ψ. Leaf water potential of sunlit leaves was lower than shaded leaves, reaching minimum values of ca. -2.3 MPa around 14:00 h (solar time. Average total hydraulic conductance was 60 ± 6 mmol s-1 MPa-1, presenting a slight decreasing trend as the season progressed. The analysis of tree K components showed that it was higher on the stem-leaf pathway (150 ± 50 mmol s-1 MPa-1, compared to the root-stem component (100 ± 20 mmol s-1 MPa-1, which is in agreement with literature reports for other fruit trees. A weak hysteresis pattern in the daily relationship between whole-canopy transpiration (weighted sunlit and shaded leaves vs. Ψ was observed, suggesting that water storage within the tree is not a significant component of sweet cherry water balance.Como un paso necesario para la comprensión de la extracción de agua desde el suelo y las relaciones suelo-agua-planta, los componentes de la conductancia hidráulica (K en árboles adultos de cerezo (Prunus avium L. fue evaluada in situ con un método basado en una analogía de la Ley de Ohm. En Junio de 2004, K fue determinada para árboles ‘Bing’/‘Gisela® 5’ de 10 años de edad, a partir de mediciones simultáneas de intercambio gaseoso del follaje en forma integrada y potenciales hídricos (Ψ de hojas individuales (soleadas y sombreadas y del xilema. Los potenciales hídricos de las hojas soleadas fueron menores que los de las hojas sombreadas, alcanzando valores mínimos de ca. -2.3 MPa alrededor de 14:00 h (hora solar. La conductancia hidr

  13. Erosion resistance of bionic functional surfaces inspired from desert scorpions. (United States)

    Zhiwu, Han; Junqiu, Zhang; Chao, Ge; Li, Wen; Ren, Luquan


    In this paper, a bionic method is presented to improve the erosion resistance of machine components. Desert scorpion (Androctonus australis) is a typical animal living in sandy deserts, and may face erosive action of blowing sand at a high speed. Based on the idea of bionics and biologic experimental techniques, the mechanisms of the sand erosion resistance of desert scorpion were investigated. Results showed that the desert scorpions used special microtextures such as bumps and grooves to construct the functional surfaces to achieve the erosion resistance. In order to understand the erosion resistance mechanisms of such functional surfaces, the combination of computational and experimental research were carried out in this paper. The Computational Fluid Dynamics (CFD) method was applied to predict the erosion performance of the bionic functional surfaces. The result demonstrated that the microtextured surfaces exhibited better erosion resistance than the smooth surfaces. The further erosion tests indicated that the groove surfaces exhibited better erosion performance at 30° injection angle. In order to determine the effect of the groove dimensions on the erosion resistance, regression analysis of orthogonal multinomials was also performed under a certain erosion condition, and the regression equation between the erosion rate and groove distance, width, and height was established.

  14. Simplified analytical modeling of the normal hole erosion test; Modelado analitico simplificado del ensayo normal de ersoion de tubo

    Energy Technology Data Exchange (ETDEWEB)

    Khamlichi, A.; Bezzazi, M.; El Bakkali, L.; Jabbouri, A.; Kissi, B.; Yakhlef, F.; Parron Vera, M. A.; Rubio Cintas, M. D.; Castillo Lopez, O.


    The role erosion test was developed in order to study erosion phenomenon which occurs in cracks appearing in hydraulic infrastructures such as dams. This test enables describing experimentally the erosive characteristics of soils by means of an index which is called erosion rate and a critical tension which indicates the threshold of surface erosion initiation. The objective of this work is to five modelling of this experiment by means of a simplified analytical approach. The erosion law is derived by taking into account the flow regime. This law shows that the erosion occurring in the tube is controlled by a first order dynamics where only two parameters are involved: the characteristic's time linked to the erosion rate and the stress shear threshold for which erosion begins to develop. (Author) 5 refs.

  15. Design of a laboratory hydraulic device for testing of hydraulic pumps

    Directory of Open Access Journals (Sweden)

    Pavel Máchal


    Full Text Available The present contribution deals with solves problem of research of testing device to monitor of hydrostatic pumps durability about dynamic loading under laboratory conditions. When carrying out the design of testing device are based on load characteristics of tractor hydraulic circuit, the individual characteristics of hydraulic components and performed calculations. Load characteristics on the tractors CASE IH Magnum 310, JOHN DEERE 8100, ZETOR FORTERRA 114 41 and Fendt 926 Vario were measured. Design of a hydraulic laboratory device is based on the need for testing new types of hydraulic pumps or various types of hydraulic fluids. When creating of hydraulic device we focused on testing hydraulic pumps used in agricultural and forestry tractors. Proportional pressure control valve is an active member of the hydraulic device, which provides change of a continuous control signal into relative pressure of operating fluid. The advantage of a designed hydraulic system is possibility of simulation of dynamic operating loading, which is obtained by measurement under real conditions, and thereby creates laboratory conditions as close to real conditions as possible. The laboratory device is constructed at the Department of Transport and Handling, Faculty of Engineering, Slovak University of Agriculture in Nitra.

  16. Rill erosion on an oxisol influenced by a thin compacted layer

    Directory of Open Access Journals (Sweden)

    Edivaldo Lopes Thomaz


    Full Text Available The presence of compacted layers in soils can induce subprocesses (e.g., discontinuity of water flow and induces soil erosion and rill development. This study assesses how rill erosion in Oxisols is affected by a plow pan. The study shows that changes in hydraulic properties occur when the topsoil is eroded because the compacted layer lies close below the surface. The hydraulic properties that induce sediment transport and rill formation (i.e., hydraulic thresholds at which these processes occur are not the same. Because of the resistance of the compacted layer, the hydraulic conditions leading to rill incision on the soil surface differed from the conditions inducing rill deepening. The Reynolds number was the best hydraulic predictor for both processes. The formed rills were shallow and could easily be removed by tillage between crops. However, during rill development, large amounts of soil and contaminants could also be transferred.

  17. Mapping monthly rainfall erosivity in Europe. (United States)

    Ballabio, Cristiano; Borrelli, Pasquale; Spinoni, Jonathan; Meusburger, Katrin; Michaelides, Silas; Beguería, Santiago; Klik, Andreas; Petan, Sašo; Janeček, Miloslav; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Tadić, Melita Perčec; Diodato, Nazzareno; Kostalova, Julia; Rousseva, Svetla; Banasik, Kazimierz; Alewell, Christine; Panagos, Panos


    Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and seasonal R-factor maps and assess rainfall erosivity both spatially and temporally. During winter months, significant rainfall erosivity is present only in part of the Mediterranean countries. A sudden increase of erosivity occurs in major part of European Union (except Mediterranean basin, western part of Britain and Ireland) in May and the highest values are registered during summer months. Starting from September, R-factor has a decreasing trend. The mean rainfall erosivity in summer is almost 4 times higher (315MJmmha(-1)h(-1)) compared to winter (87MJmmha(-1)h(-1)). The Cubist model has been selected among various statistical models to perform the spatial interpolation due to its excellent performance, ability to model non-linearity and interpretability. The monthly prediction is an order more difficult than the annual one as it is limited by the number of covariates and, for consistency, the sum of all months has to be close to annual erosivity. The performance of the Cubist models proved to be generally high, resulting in R(2) values between 0.40 and 0.64 in cross-validation. The obtained months show an increasing trend of erosivity occurring from winter to summer starting from western to Eastern Europe. The maps also show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced by cluster analysis. The monthly erosivity maps can be used to develop composite indicators that map both intra-annual variability and concentration of erosive events. Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be

  18. Erosion Negril Beach

    NARCIS (Netherlands)

    Ten Ham, D.; Henrotte, J.; Kraaijeveld, R.; Milosevic, M.; Smit, P.


    The ongoing erosion of the Negril Beach has become worse the past decade. In most places along the coast line, the beach will be gone in approximately 10 years. This will result in a major decrease of incomes that are made by the local tourist sector. To prevent the erosion this study has been perfo

  19. Effect of biocrust: study of mechanical and hydraulic properties and erodibility (United States)

    Slavík, Martin; Bruthans, Jiří; Schweigstillová, Jana


    It is well-known that lichens and other organisms forming crust on soil or rock surface play important role in weathering but may also protect underlying material from fast erosion. So far, there have been only few measurements comparing mechanical or hydraulic properties of biocrust with its subsurface on locked sand and friable sandstones, so the overall effect of the biocrust is not well-understood. Objective of our study is to quantify the effect of the biocrust on mechanical and hydraulic properties of friable sandstone and locked sand of Cretaceous age in six different localities with varying aspect and inclination and age of exposure in sandpit Strelec (Czech Rep.). On the artificial exposures, biocrust developed within last 10-30 years. Beside measurements of mechanical and hydraulic properties, SEM and mercury intrusion porosimetry in crust and subsurface was performed. Drilling resistance technique was found an excellent method to distinguish the biocrust from its subsurface (~3 mm thick biocrust has up to 12 times higher drilling resistance than underlying material). Surface zone with the biocrust has 3 - 25 times higher tensile strength than the subsurface material (1 - 25 kPa). In comparison with the subsurface, the biocrust is considerably less erodible (based on water jet testing). Biocrust saturated hydraulic conductivity is 15 - 240 times lower than the subsurface (6*10 -5 - 1*10 -4 m/s) and its permeability for water vapor is 4 - 9 times lower than subsurface. Presence of the biocrust slows down capillary absorption of water 4 - 25 times. The biocrust is thus forming firm surface which protects underlying material from rain and flowing water erosion and which considerably modifies its hydraulic properties. Material with crust exposed to calcination, leaching by concentrated peroxide and experiments with zymoliase enzyme strongly indicate that major contribution to crust hardening is provided by organic matter. Based on DNA sequencing the crust is

  20. Parameter Designing for Heave Compensation Hydraulic System Installed in Deepwater

    Directory of Open Access Journals (Sweden)

    Zhao Teng


    Full Text Available The function diagram of active heave compensation hydraulic system has been given, besides, the mathematics model for the principal hydraulic components of the compensation system has been built, and the input-output relation between components has been made clear. Aimed at compensating work capacity for the system, design and research on parameters as the bearing pressure, the initial state and the maximum flow of hydraulic cylinder, accumulator and other principal components have been made separately, and standardized design has been accomplished in accordance with relevant standards. Furthermore, calculus and verification for the capacity of the hydraulic system in different working stages have been made in order to calculate the pressure lose of the system and provide objective data for the hardware system design of the hydraulic components of the heave compensation system.

  1. Polyanhydride degradation and erosion. (United States)

    Göpferich, A; Tessmar, J


    It was the intention of this paper to give a survey on the degradation and erosion of polyanhydrides. Due to the multitude of polymers that have been synthesized in this class of material in recent years, it was not possible to discuss all polyanhydrides that have gained in significance based on their application. It was rather the intention to provide a broad picture on polyanhydride degradation and erosion based on the knowledge that we have from those polymers that have been intensively investigated. To reach this goal this review contains several sections. First, the foundation for an understanding of the nomenclature are laid by defining degradation and erosion which was deemed necessary because many different definitions exist in the current literature. Next, the properties of major classes of anhydrides are reviewed and the impact of geometry on degradation and erosion is discussed. A complicated issue is the control of drug release from degradable polymers. Therefore, the aspect of erosion-controlled release and drug stability inside polyanhydrides are discussed. Towards the end of the paper models are briefly reviewed that describe the erosion of polyanhydrides. Empirical models as well as Monte-Carlo-based approaches are described. Finally it is outlined how theoretical models can help to answer the question why polyanhydrides are surface eroding. A look at the microstructure and the results from these models lead to the conclusion that polyanhydrides are surface eroding due to their fast degradation. However they switch to bulk erosion once the device dimensions drop below a critical limit.

  2. Enhanced Bank-Stability Modeling With Coupled Geotechnical, Hydraulic and Near-Bank Groundwater Sub-Models: Development and Validation (United States)

    Thomas, R. E.; Simon, A.; Bankhead, N.


    the components are validated both separately and in unison. Case studies are presented including those from previously published lysimeter experiments and an actively eroding meander bend on Goodwin Creek, Mississippi. The examples illustrate the use of the model suite to: 1. Understand the rates and importance of geotechnical and hydraulic processes in streambank erosion; 2. Estimate the absolute and relative contribution of geotechnical failures and hydraulic scour to volumetric fluvial sediment loads; and 3. Estimate the impact of potential streambank-erosion management and river restoration strategies.

  3. Sets resilient to erosion

    CERN Document Server

    Pegden, Wesley


    The erosion of a set in Euclidean space by a radius r>0 is the subset of X consisting of points at distance >/-r from the complement of X. A set is resilient to erosion if it is similar to its erosion by some positive radius. We give a somewhat surprising characterization of resilient sets, consisting in one part of simple geometric constraints on convex resilient sets, and, in another, a correspondence between nonconvex resilient sets and scale-invariant (e.g., 'exact fractal') sets.

  4. Bedload transport controls bedrock erosion under sediment-starved conditions (United States)

    Beer, A. R.; Turowski, J. M.


    Fluvial bedrock incision constrains the pace of mountainous landscape evolution. Bedrock erosion processes have been described with incision models that are widely applied in river-reach and catchment-scale studies. However, so far no linked field data set at the process scale had been published that permits the assessment of model plausibility and accuracy. Here, we evaluate the predictive power of various incision models using independent data on hydraulics, bedload transport and erosion recorded on an artificial bedrock slab installed in a steep bedrock stream section for a single bedload transport event. The influence of transported bedload on the erosion rate (the "tools effect") is shown to be dominant, while other sediment effects are of minor importance. Hence, a simple temporally distributed incision model, in which erosion rate is proportional to bedload transport rate, is proposed for transient local studies under detachment-limited conditions. This model can be site-calibrated with temporally lumped bedload and erosion data and its applicability can be assessed by visual inspection of the study site. For the event at hand, basic discharge-based models, such as derivatives of the stream power model family, are adequate to reproduce the overall trend of the observed erosion rate. This may be relevant for long-term studies of landscape evolution without specific interest in transient local behavior. However, it remains to be seen whether the same model calibration can reliably predict erosion in future events.

  5. Thermally Actuated Hydraulic Pumps (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi


    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  6. Metabolic syndrome is associated with erosive esophagitis

    Institute of Scientific and Technical Information of China (English)

    Jung Ho Park; Dong IL Park; Hong Joo Kim; Yong Kyun Cho; Chong IL Sohn; Woo Kyu Jeon; Byung Ik Kim


    AIM: To clarify whether insulin resistance and metabolic syndrome are risk factors for erosive esophagitis.METHODS: A case-control study was performed using the database of the Kangbuk Semsung Hospital Medical Screening Center.RESULTS: A total of 1679 cases of erosive esophagitis and 3358 randomly selected controls were included.Metabolic syndrome was diagnosed in 21% of the cases and 12% of the controls (P<0.001).Multiple logistic regressions confirmed the association between erosive esophagitis and metabolic syndrome (Odds ratio,1.25; 95% CI,1.04-1.49).Among the components of metabolic syndrome,increased waist circumference,elevated serum triglyceride levels and hypertension were significant risk factors for erosive esophagitis (allP<0.01).Furthermore,increased insulin resistance (Odds ratio,0.91; 95% CI,0.85-0.98)and fatty liver,as diagnosed by ultrasonography (odds ratio,1.39; 95% CI,1.20-1.60),were also related to erosive esophagitis even after adjustment for a series of confounding factors.CONCLUSION: Metabolic syndrome and increased insulin resistance are associated with an increased risk of developing erosive esophagitis.

  7. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong


    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  8. Actinides, accelerators and erosion


    Fifield L. K.; Tims S.G.


    Fallout isotopes can be used as artificial tracers of soil erosion and sediment accumulation. The most commonly used isotope to date has been 137Cs. Concentrations of 137Cs are, however, significantly lower in the Southern Hemisphere, and furthermore have now declined to 35% of original values due to radioactive decay. As a consequence the future utility of 137Cs is limited in Australia, with many erosion applications becoming untenable within the next 20 years, and there is a need to replace...

  9. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E


    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  10. Measurement of erosion: Is it possible?

    NARCIS (Netherlands)

    Stroosnijder, L.


    Reasons for erosion measurements are: (1) to determine the environmental impact of erosion and conservation practices, (2) scientific erosion research; (3) development and evaluation of erosion control technology; (4) development of erosion prediction technology and (5) allocation of conservation

  11. Measurement of erosion: Is it possible?

    NARCIS (Netherlands)

    Stroosnijder, L.


    Reasons for erosion measurements are: (1) to determine the environmental impact of erosion and conservation practices, (2) scientific erosion research; (3) development and evaluation of erosion control technology; (4) development of erosion prediction technology and (5) allocation of conservation re

  12. Water droplet erosion mechanisms of Ti-6Al-4V (United States)

    Kamkar Zahmatkesh, Niloofar

    Water impingement erosion of materials can be a life-limiting phenomenon for the components in many erosive environments. For example, aircraft body exposed to rain, steam turbine blade, and recently in gas turbine coupled with inlet fogging system. The last is the focus of this study. Inlet fogging system is the most common method used to augment gas turbine output during hot days; high ambient temperature causes strong deterioration of the engine performance. Micro-scaled droplets introduced into the inlet airflow allow the cooling of entering air as well as intercooling the compressor (overspray) and thus optimizes the output power. However, erosion damage of the compressor blades in overspray stage is one of the major concerns associated with the inlet fogging system. The main objective of this research work (CRIAQ MANU419 project) is to understand the erosion induced by water droplets on Titanium alloy to eventually optimize the erosion resistance of the Ti-based compressor blade. Therefore, characterization of the water droplet erosion damage on Ti-6Al-4V receives the major importance. The influence of base material microstructure and impact parameters were considered in erosion evaluation in present study. This work covers the characterization of the erosion damage on Ti-6Al-4V alloy in two parts: - The water droplet erosion damage through a novel experimental approach. The collected data were processed both qualitatively and quantitatively for multi-aspects damage study. - The influence of impact velocity on erosion in an attempt to represent the in-service conditions.

  13. Can we manipulate root system architecture to control soil erosion? (United States)

    Ola, A.; Dodd, I. C.; Quinton, J. N.


    Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above-ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to specifically manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We demonstrate the importance of root system architecture for the control of soil erosion. We also show that some plant species respond to nutrient-enriched patches by increasing lateral root proliferation. The erosional response to root proliferation will depend upon its location: at the soil surface dense mats of roots may reduce soil erodibility but block soil pores thereby limiting infiltration, enhancing runoff. Additionally, in nutrient-deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilizing nutrient placement at specific depths may represent a potentially new, easily implemented, management strategy on nutrient-poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.

  14. Riverbank erosion induced by gravel bar accretion (United States)

    Klösch, Mario; Habersack, Helmut


    Riverbank erosion is known to be strongly fluvially controlled and determination of shear stresses at the bank surface and at the bank toe is a crucial point in bank erosion modeling. In many modeling attempts hydraulics are simulated separately in a hydrodynamic-numerical model and the simulated shear stresses are further applied onto the bank surface in a bank erosion model. Hydrodynamics are usually simulated at a constant geometry. However, in some cases bed geometry may vary strongly during the event, changing the conditions for hydrodynamics along the bank. This research seeks to investigate the effect of gravel bar accretion during high discharges on final bank retreat. At a restored section of the Drava River bed widenings have been implemented to counter bed degradation. There, in an initiated side-arm, self-dynamic widening strongly affects bed development and long-term connectivity to the main channel. Understanding the riverbank erosion processes there would help to improve planning of future restoration measures. At one riverbank section in the side-arm large bank retreat was measured repeatedly after several flow events. This section is situated between two groins with a distance of 60 m, which act as lateral boundaries to the self-widening channel. In front of this bank section a gravel bar developed. During low flow condition most discharge of the side-arm flows beside the gravel bar along the bank, but shear stresses are too low for triggering bank erosion. For higher discharges results from a two-dimensional hydrodynamic-numerical model suggested shear stresses there to be generally low during the entire events. At some discharges the modeled flow velocities even showed to be recirculating along the bank. These results didn't explain the observed bank retreat. Based on the modeled shear stresses, bank erosion models would have greatly underestimated the bank retreat induced by the investigated events. Repeated surveys after events applying

  15. Coastal Erosion Control Methods (United States)

    Greene, V.


    Coastal erosion is bad because the ecosystem there will be washed away and the animals could drown or be displaced and have to adapt to a new ecosystem that they are not prepared for. I'm interested in this problem because if there aren't beaches when I grow up I won't be able to do the things I would really like to do. I would like to be a marine biologist. Secondly, I don't want to see beach houses washed away. I would like to see people live in harmony with their environment. So, to study ways in which to preserve beaches I will make and use models that test different erosion controls. Two different ideas for erosion control I tested are using seaweed or a rock berm. I think the rock berm will work better than the model of seaweed because the seaweed is under water and the waves can carry the sand over the seaweed, and the rock berm will work better because the rocks will help break the waves up before they reach the shore and the waves can not carry the sand over the rocks that are above the water. To investigate this I got a container to use to model the Gulf of Mexico coastline. I performed several test runs using sand and water in the container to mimic the beach and waves from the Gulf of Mexico hitting the shoreline. I did three trials for the control (no erosion control), seaweed and a rock berm. Rock berms are a border of a raised area of rock. The model for seaweed that I used was plastic shopping bags cut into strips and glued to the bottom of my container to mimic seaweed. My results were that the control had the most erosion which ranged from 2.75 - 3 inches over 3 trials. The seaweed was a little better than the control but was very variable and ranged from 1.5 - 3 inches over 3 trials. The rock berm worked the best out of all at controlling erosion with erosion ranging from 1.5 - 2 inches. My hypothesis was correct because the rock berm did best to control erosion compared to the control which had no erosion control and the model with seaweed.

  16. FEMA DFIRM Hydraulic Structures (United States)

    Minnesota Department of Natural Resources — This layer and accompanying attribute table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the...

  17. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn


    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  18. Constant-Pressure Hydraulic Pump (United States)

    Galloway, C. W.


    Constant output pressure in gas-driven hydraulic pump would be assured in new design for gas-to-hydraulic power converter. With a force-multiplying ring attached to gas piston, expanding gas would apply constant force on hydraulic piston even though gas pressure drops. As a result, pressure of hydraulic fluid remains steady, and power output of the pump does not vary.

  19. Erosion by shallow concentrated flow - experimental model deconstruction (United States)

    Seeger, M.; Wirtz, S.; Ali, M.


    The force of the flowing water is considered to be the main determinant factor for soil particle detachment and transport. The flow of water is described with flow velocity and discharge, and is often summarised in different composite parameters such as shear stress, stream power etc. The entrainment and transport of soil particles is then expressed as a threshold problem, where a soil specific critical value of shear stress, stream power etc. has to be trespassed. Thereafter, the increase of erosion is considered to be lineal. Despite considerable efforts, the process based model concepts have not been able to produce more reliable and accurate reproduction and forecast of soil erosion than "simple" empirical models such as the USLE and its derivates. Therefore, there still remain some unanswered fundamental questions about soil erosion modelling: 1. What are the main parameters of soils and flowing water influencing soil erosion? 2. What relationship do these parameters have with the intensity and different types of soil erosion? 3. Are the present concepts suitable to describe and quantify soil erosion accurately? For approaching these questions, laboratory flume and field experiments were set up. The aim of the laboratory experiments was to elucidate the influence of basic parameters as grain size, slope, flow and flow velocity on sediment transport by shallow flowing water. Therefore, variable flow was applied under different slopes on moveable beds of non-coherent sands of different grain sizes. The field experiments were designed to quantify the hydraulic and erosive functionality of small rills in the field. Here, small existing rills were flushed with defined flows, and flow velocity, flow depth, discharge at the end of the rill as well as transported sediments were quantified. The laboratory flume experiments clearly show a strong influence of flow velocity on sediment transport, depending this at the same time on the size of the transported grains, and

  20. 77 FR 41457 - Aging Management Associated With Wall Thinning Due to Erosion Mechanisms (United States)


    ... COMMISSION Aging Management Associated With Wall Thinning Due to Erosion Mechanisms AGENCY: Nuclear... Interim Staff Guidance (LR-ISG), LR-ISG-2012-01, ``Wall Thinning Due to Erosion Mechanisms.'' The draft LR... erosion mechanisms for piping and components within the scope of the Requirements for Renewal of Operating...

  1. Spatial distribution of wind erosion and its driving factors in China

    Institute of Scientific and Technical Information of China (English)


    Based on remote sensing and geographic information system, the spatial distribution of nation-wide wind erosion is studied, and the 1:100 000 national map of soil erosion by wind in China is made. Wind speed, soil dryness, NDVI, soil texture and the slope of land surface are the key factors to wind erosion. The relations between wind erosion and each factor are discussed. The method of principal component is used to pick up the information included in the five factors, and the wind erosion dynamic index (WEDI) is established. Its comparison with the RS/GIS derived data shows that WEDI can reflect the potential capacity of soil erosion by wind. The dynamic process of the wind erosion is studied to reveal the distribution of the most intense wind erosion regions and the dominant factors in these regions. All these studies may greatly help the mitigation of wind erosion of soil.

  2. Hydro-abrasive erosion: Problems and solutions (United States)

    Winkler, K.


    The number of hydro power plants with hydro-abrasive erosion is increasing worldwide. An overall approach is needed to minimize the impact of this phenomenon. Already at the start of the planning phase an evaluation should be done to quantify the erosion and the impact on the operation. For this, the influencing parameters and their impact on the erosion have to be known. The necessary information for the evaluation comprises among others the future design, the particle parameters of the water, which will pass the turbine, and the power plant owner's framework for the future operation like availability or maximum allowable efficiency loss, before an overhaul needs to be done. Based on this evaluation of the erosion, an optimised solution can then be found, by analysing all measures in relation to investments, energy production and maintenance costs as decision parameters. Often a more erosion-resistant design, instead of choosing the turbine design with the highest efficiency, will lead to higher revenue. The paper will discuss the influencing parameters on hydro-abrasive erosion and the problems to acquire this information. There are different optimisation possibilities, which will be shown in different case studies. One key aspect to reduce the erosion and prolong the operation time of the components is to coat all relevant parts. But it is very important that this decision is taken early in the design stage, as the design has to be adapted to the requirements of the coating process. The quality of coatings and their impact on the operation will be discussed in detail in the paper as due to the non-availability of standards many questions arise in projects.

  3. Metal of cavitation erosion of a hydrodynamic reactor (United States)

    Zakirzakov, A. G.; Brand, A. E.; Petryakov, V. A.; Gordievskaya, E. F.


    Cavitation erosion is a major cause of the petroleum equipment hydraulic erosion, which leads to the metal weight loss of the equipment and its breakdown, which can be followed by the full stop of the plant or company work. The probability of the metal weight loss and equipment failure can be reduced by the use of special protective coatings or rivets, made of the sacrificial metals, the use of which significantly increases the service life and the production equipment reliability. The article investigates the cavitation erosion effect, occurred under the condition of the advanced hydrodynamic cavitation on the hydrodynamic cavitation reactor. This article presents the results of the experiments and recommendations for increasing the operational resource.


    Institute of Scientific and Technical Information of China (English)

    CHEN Yun-liang; WU Chao; YE Mao; JU Xiao-ming


    The trace of vertical vortex flow at hydraulic intakes is of the shape of spiral lines, which was observed in the presented experiments with the tracer technique. It represents the fluid particles flow spirally from the water surface to the underwater and rotate around the vortex-axis multi-cycle. This process is similar to the movement of screw. To describe the multi-circle spiral characteristics under the axisymmetric condition, the vertical vortex would change not only in the radial direction but also in the axial direction. The improved formulae for three velocity components for the vertical vortex flow were deduced by using the method of separation of variables in this article. In the improved formulae, the velocity components are the functions of the radial and axial coordinates, so the multi-circle spiral flow of vertical vortex could be simulated. The calculated and measured results for the vertical vortex flow were compared and the causes of errors were analyzed.

  5. 46 CFR 128.240 - Hydraulic or pneumatic power and control-materials and pressure design. (United States)


    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hydraulic or pneumatic power and control-materials and... Hydraulic or pneumatic power and control—materials and pressure design. (a) Each standard piping component (such as pipe runs, fittings, flanges, and standard valves) for hydraulic or pneumatic power and...

  6. Clinical studies of dental erosion and erosive wear

    National Research Council Canada - National Science Library

    Huysmans, M.C.D.N.J.M; Chew, H.P; Ellwood, R.P


    We define erosion as a partial demineralisation of enamel or dentine by intrinsic or extrinsic acids and erosive tooth wear as the accelerated loss of dental hard tissue through the combined effect...

  7. Grinding efficiency improvement of hydraulic cylinders parts for mining equipment

    National Research Council Canada - National Science Library

    Aleksandr Korotkov; Vitaliy Korotkov; Leonid Mametyev; Lidia Korotkova; Tatiana Terjaeva


    The aim of the article is to find out ways to improve parts treatment and components of mining equipment on the example of hydraulic cylinders parts, used as pillars for mine roof supports, and other actuator mechanisms...

  8. Embankment erosion process model (United States)

    The USDA, Agricultural Research Service (ARS) Hydraulic Engineering Research Unit (HERU) laboratory’s conducts research in support of the USDA NRCS Small Watershed Program by addressing dam safety issues. This presentation describes research on improving methods for predicting earthen embankment er...

  9. Bentonite erosion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Birgersson, Martin; Boergesson, Lennart; Hedstroem, Magnus; Karnland, Ola; Nilsson, Ulf (Clay Technology AB, Lund (Sweden))


    Low saline water may reach KBS-3 repository depth, e.g. during periods of glaciation. Under such aqueous conditions, the montmorillonite part of the bentonite buffer might transform into a sol and thereby be transported away with flowing water in fractures. The primary aim with this report is to improve the understanding of the basic principles for this possible montmorillonite particle release. The report includes experimental and theoretical work performed at Clay Technology. Natural bentonite and ion-exchanged purified montmorillonite from three different geographical origins, Wyoming (U.S.), Milos (Greece) and Kutch (India) have been studied. Experimental and/or theoretical investigations have been performed with respect to: - Free swelling ability; - Rheological properties; - Rate of bentonite loss into fractures; - Filtering; - Ion exchange; - Sol formation ability; - Ion diffusion; - Mass loss due to erosion. The performed erosion experiments show that erosion does not occur in a mixed calcium/sodium montmorillonite with at least 20% calcium in exchange positions, when the external solution contains above 4 mM charge equivalents. This result is in agreement with the presented conceptual view of sol formation and measured equilibrium properties in mixed calcium/sodium montmorillonite. The findings imply that the buffer will be stable for non-glacial conditions. However, erosion due to sol formation cannot be ruled out for glacial conditions.

  10. Erosion of dust aggregates

    CERN Document Server

    Seizinger, Alexander; Kley, Wilhelm


    Aims: The aim of this work is to gain a deeper insight into how much different aggregate types are affected by erosion. Especially, it is important to study the influence of the velocity of the impacting projectiles. We also want to provide models for dust growth in protoplanetary disks with simple recipes to account for erosion effects. Methods: To study the erosion of dust aggregates we employed a molecular dynamics approach that features a detailed micro-physical model of the interaction of spherical grains. For the first time, the model has been extended by introducing a new visco-elastic damping force which requires a proper calibration. Afterwards, different sample generation methods were used to cover a wide range of aggregate types. Results: The visco-elastic damping force introduced in this work turns out to be crucial to reproduce results obtained from laboratory experiments. After proper calibration, we find that erosion occurs for impact velocities of 5 m/s and above. Though fractal aggregates as ...

  11. Dune erosion above revetments

    NARCIS (Netherlands)

    Van Thiel de Vries, J.S.M.


    In a situation with a narrow dune, the dune base can be protected with a revetment to reduce dune erosion during extreme events. To quantify the effects of a revetment on storm impact, the functionality of the numerical storm impact model XBeach (Roelvink et al., 2009) is extended to account for the

  12. Prediction of potential failures in hydraulic gear pumps


    E. Lisowski(Cracow Tech. U); J. Fabiś


    Hydraulic gear pumps are used in many machines and devices. In hydraulic systems of machines gear pumps are main component ofsupply unit or perform auxiliary function. Gear pumps opposite to vane pumps are less complicated. They consists of such components as:housing, gear wheels, bearings, shaft, seal for rotation motion which are not very sensitive for damage and that is why they are using veryoften. However, gear pumps are break down from time to time. Usually damage of pump cause shutting...

  13. Erosion by an Alpine glacier. (United States)

    Herman, Frédéric; Beyssac, Olivier; Brughelli, Mattia; Lane, Stuart N; Leprince, Sébastien; Adatte, Thierry; Lin, Jiao Y Y; Avouac, Jean-Philippe; Cox, Simon C


    Assessing the impact of glaciation on Earth's surface requires understanding glacial erosion processes. Developing erosion theories is challenging because of the complex nature of the erosion processes and the difficulty of examining the ice/bedrock interface of contemporary glaciers. We demonstrate that the glacial erosion rate is proportional to the ice-sliding velocity squared, by quantifying spatial variations in ice-sliding velocity and the erosion rate of a fast-flowing Alpine glacier. The nonlinear behavior implies a high erosion sensitivity to small variations in topographic slope and precipitation. A nonlinear rate law suggests that abrasion may dominate over other erosion processes in fast-flowing glaciers. It may also explain the wide range of observed glacial erosion rates and, in part, the impact of glaciation on mountainous landscapes during the past few million years. Copyright © 2015, American Association for the Advancement of Science.

  14. Severe Environmental Corrosion Erosion Facility (United States)

    Federal Laboratory Consortium — NETL’s Severe Environment Corrosion Erosion Facility in Albany, OR, allows researchers to safely examine the performance of materials in highly corrosive or erosive...

  15. Trend of hydraulic units

    Energy Technology Data Exchange (ETDEWEB)

    Deshimaru, Jun' ichi


    The gear, vane and piston pumps occupy a more then 90% share in the hydraulic pumps. Comparatively large pumps are mainly variable delivery piston pumps. The piston pumps are comparatively high in output density (output per unit weight), indicating the hydraulic pump in performance, and tend to become higher and higher in it. Though they are mainly 210 to 350kgf/cm/sup 2/ in rated pressure, some of them come to surpass 400kgf/cm/sup 3/ in it. While the progress in computation also requires the high speed operation, high accuracy and other severe conditions for the hydraulic units, which accordingly and increasingly intensify the requirement for hydraulic oil in abrasion resistibility, oxidation stability and response characteristics. While cavitation comes to easily occur, which considerably and disadvantageously influences hydraulic oil in life through degradation, noise level and respondingness. From now on, the development of high performance oil and study of mechanical structure are important. 19 references, 9 figures, 2 tables.

  16. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen


    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  17. Assessment of a numerical model to reproduce event‐scale erosion and deposition distributions in a braided river (United States)

    Measures, R.; Hicks, D. M.; Brasington, J.


    Abstract Numerical morphological modeling of braided rivers, using a physics‐based approach, is increasingly used as a technique to explore controls on river pattern and, from an applied perspective, to simulate the impact of channel modifications. This paper assesses a depth‐averaged nonuniform sediment model (Delft3D) to predict the morphodynamics of a 2.5 km long reach of the braided Rees River, New Zealand, during a single high‐flow event. Evaluation of model performance primarily focused upon using high‐resolution Digital Elevation Models (DEMs) of Difference, derived from a fusion of terrestrial laser scanning and optical empirical bathymetric mapping, to compare observed and predicted patterns of erosion and deposition and reach‐scale sediment budgets. For the calibrated model, this was supplemented with planform metrics (e.g., braiding intensity). Extensive sensitivity analysis of model functions and parameters was executed, including consideration of numerical scheme for bed load component calculations, hydraulics, bed composition, bed load transport and bed slope effects, bank erosion, and frequency of calculations. Total predicted volumes of erosion and deposition corresponded well to those observed. The difference between predicted and observed volumes of erosion was less than the factor of two that characterizes the accuracy of the Gaeuman et al. bed load transport formula. Grain size distributions were best represented using two φ intervals. For unsteady flows, results were sensitive to the morphological time scale factor. The approach of comparing observed and predicted morphological sediment budgets shows the value of using natural experiment data sets for model testing. Sensitivity results are transferable to guide Delft3D applications to other rivers. PMID:27708477

  18. Assessment of a numerical model to reproduce event-scale erosion and deposition distributions in a braided river. (United States)

    Williams, R D; Measures, R; Hicks, D M; Brasington, J


    Numerical morphological modeling of braided rivers, using a physics-based approach, is increasingly used as a technique to explore controls on river pattern and, from an applied perspective, to simulate the impact of channel modifications. This paper assesses a depth-averaged nonuniform sediment model (Delft3D) to predict the morphodynamics of a 2.5 km long reach of the braided Rees River, New Zealand, during a single high-flow event. Evaluation of model performance primarily focused upon using high-resolution Digital Elevation Models (DEMs) of Difference, derived from a fusion of terrestrial laser scanning and optical empirical bathymetric mapping, to compare observed and predicted patterns of erosion and deposition and reach-scale sediment budgets. For the calibrated model, this was supplemented with planform metrics (e.g., braiding intensity). Extensive sensitivity analysis of model functions and parameters was executed, including consideration of numerical scheme for bed load component calculations, hydraulics, bed composition, bed load transport and bed slope effects, bank erosion, and frequency of calculations. Total predicted volumes of erosion and deposition corresponded well to those observed. The difference between predicted and observed volumes of erosion was less than the factor of two that characterizes the accuracy of the Gaeuman et al. bed load transport formula. Grain size distributions were best represented using two φ intervals. For unsteady flows, results were sensitive to the morphological time scale factor. The approach of comparing observed and predicted morphological sediment budgets shows the value of using natural experiment data sets for model testing. Sensitivity results are transferable to guide Delft3D applications to other rivers.

  19. Numerical modelling of the erosion and deposition of sand inside a filter layer

    DEFF Research Database (Denmark)

    Jacobsen, Niels Gjøl; van Gent, Marcel R. A.; Fredsøe, Jørgen


    prediction method to assure that the amount of erosion remains within acceptable limits. This work presents a numerical model that is capable of describing the erosion and deposition patterns inside of an open filter of rock on top of sand. The hydraulic loading is that of incident irregular waves...... additional data sets on the erosion and deposition patterns inside of an open filter. A few cases are defined to study the effect of the sinking of the filter into the erosion hole. The numerical model is also applied to several application cases. The response of the core material (sand) to changes......This paper treats the numerical modelling of the behaviour of a sand core covered by rocks and exposed to waves. The associated displacement of the rock is also studied. A design that allows for erosion and deposition of the sand core beneath a rock layer in a coastal structure requires an accurate...

  20. Numerical simulation of hydrodynamics and bank erosion in a river bend (United States)

    Rinaldi, Massimo; Mengoni, Beatrice; Luppi, Laura; Darby, Stephen E.; Mosselman, Erik


    We present an integrated analysis of bank erosion in a high-curvature bend of the gravel bed Cecina River (central Italy). Our analysis combines a model of fluvial bank erosion with groundwater flow and bank stability analyses to account for the influence of hydraulic erosion on mass failure processes, the key novel aspect being that the fluvial erosion model is parameterized using outputs from detailed hydrodynamic simulations. The results identify two mechanisms that explain how most bank retreat usually occurs after, rather than during, flood peaks. First, in the high curvature bend investigated here the maximum flow velocity core migrates away from the outer bank as flow discharge increases, reducing sidewall boundary shear stress and fluvial erosion at peak flow stages. Second, bank failure episodes are triggered by combinations of pore water and hydrostatic confining pressures induced in the period between the drawdown and rising phases of multipeaked flow events.

  1. Popeye Project: Hydraulic umbilical

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, K.G.; Williams, V.T.


    For the Popeye Project, the longest super-duplex hydraulic umbilical in the world was installed in the Gulf of Mexico. This paper reports on its selection and project implementation. Material selection addresses corrosion in seawater, water-based hydraulic fluid, and methanol. Five alternatives were considered: (1) carbon-steel with traditional coating and anodes, (2) carbon-steel coated with thermally sprayed aluminum, (3) carbon-steel sheathed in aluminum, (4) super-duplex, and (5) titanium. The merits and risks associated with each alternative are discussed. The manufacture and installation of the selected umbilical are also reported.

  2. Does WEPP meet the specificity of soil erosion in steep mountain regions?

    Directory of Open Access Journals (Sweden)

    N. Konz


    Full Text Available We chose the WEPP model (Water Erosion Prediction Project to describe soil erosion in the Urseren Valley (central Switzerland as it seems to be one of the most promising models for steep mountain environments. Crucial model parameters were determined in the field (slope, plant species, fractional vegetation cover, initial saturation level, by laboratory analyses (grain size, organic matter or by the WEPP manual (rill- and interrill erodibility, effective hydraulic conductivity, cation exchange capacity. The quantification of soil erosion was performed on hill slope scale for three different land use types: meadows, pastures with dwarf shrubs and pastures without dwarf shrubs. Erosion rates for the vegetation period were measured with sediment traps between June 2006 and November 2007. Long-term soil erosion rates were estimated by measuring Cs-137 redistribution, deposited after the Chernobyl accident. In addition to the erosion rates, soil moisture and surface flow was additionally measured during the vegetation period in the field and compared to model output. Short-term erosion rates are simulated well whereas long term erosion rates were underestimated by the model. Simulated soil moisture has a parallel development compared to measured data from April onwards but a converse dynamic in early spring (simulated increase and measured decrease in March and April. The discrepancy in soil water during springtime was explained by delayed simulated snow cover melting. The underestimation of simulated long term erosion rates is attributed to alpine processes other than overland flow and splash. Snow gliding processes might dominate erosion processes during winter time. We assume that these differences lead to the general simulated underestimation of erosion rates. Thus, forcing erosion processes which dominate erosion rates in mountainous regions have to be implemented to WEPP for a successful application in the future.

  3. Hydraulic Arm Modeling via Matlab SimHydraulics


    Věchet, Stanislav; Krejsa, Jiří


    System modeling is a vital tool for cost reduction and design process speed up in most engineering fields. The paper is focused on modeling of hydraulic arm as a part of intelligent prosthesis project, in the form of 2DOF open kinematic chain. The arm model combines mechanical, hydraulic and electric subsystems and uses Matlab as modeling tool. SimMechanics Matlab extension is used for mechanical part modeling, SimHydraulics toolbox is used for modeling of hydraulic circuit used for actuating...

  4. Hydraulic elements in reduction of vibrations in mechanical systems (United States)

    Białas, K.; Buchacz, A.


    This work presents non-classical method of design of mechanic systems with subsystem reducing vibrations. The purpose of this paper is also introduces synthesis of mechanic system with reducing vibrations understand as design of this type of systems. The synthesis may be applied to modify the already existing systems in order to achieve a desired result. Elements which reduce vibrations can be constructed with passive, semi-active or active components. These considerations systems have selected active items. A hallmark of active elements it is possible to change the parameters on time of these elements and their power from an external source. The implementation of active elements is very broad. These elements can be implemented through the use of components of electrical, pneumatic, hydraulic, etc. The system was consisted from mechanical and hydraulic elements. Hydraulic elements were used as subsystem reducing unwanted vibration of mechanical system. Hydraulic elements can be realized in the form of hydraulic cylinder. In the case of an active vibration reduction in the form of hydraulic cylinder it is very important to find the corresponding values of hydraulic components. The values of these elements affect the frequency of vibrations of this sub-system which is related to the effective vibration reduction [7,11].

  5. The discussion about the stability of the automobile hydraulic components detection equipment%汽车液压零件检测设备稳定性的探讨

    Institute of Scientific and Technical Information of China (English)

    李蓉; 曾鑫


    Flow by changing the hydraulic test equipment, this paper discusses the different flow's influence on the stability of the testing equipment.And to find out whether the product is qualified for manufacturing enterprise to provide the reference and help.%文章通过改变液压检测设备的流量,讨论了不同流量对检测设备的稳定性的影响。从而为生产企业找出产品是否合格提供参考和帮助。

  6. Particle erosion of infrared materials

    Institute of Scientific and Technical Information of China (English)


    Erosion test of some infrared (IR) optical crystals (Ge,ZnS,MgF2,and quartz) was conducted with a number of different erodents (glass bead,and angular SiC,SiO2,Al2O3 by a homemade gas-blasting erosion tester.The influence of impact angle,impact velocity,erodent,and erosion time on the erosion rate and the effect of erosion on their IR transmittance were studied.The damaged surface morphology was characterized by scanning electron microscopy,and the erosion mechanism was explored.All of the materials show the maximum in wear versus impact angle at 90°,confirming their brittle failure behavior.It is found that the erosion rate is dependent on the erodent velocity by a power law,and it is highly correlated to the hardness of the erodent.The erosion rate-time curves do not show an incubation state,but an accelerated erosion period followed a maximum erosion (steady state).The decrease of IR transmittance is direct proportion to the erosion rate.Although the material loss occurs primarily by brittle process,ductile behavior is clearly an important feature,especially for MgF2 and ZnS.

  7. Actinides, accelerators and erosion (United States)

    Tims, S. G.; Fifield, L. K.


    Fallout isotopes can be used as artificial tracers of soil erosion and sediment accumulation. The most commonly used isotope to date has been 137Cs. Concentrations of 137Cs are, however, significantly lower in the Southern Hemisphere, and furthermore have now declined to 35% of original values due to radioactive decay. As a consequence the future utility of 137Cs is limited in Australia, with many erosion applications becoming untenable within the next 20 years, and there is a need to replace it with another tracer. Plutonium could fill this role, and has the advantages that there were six times as many atoms of Pu as of 137Cs in fallout, and any loss to decay has been negligible due to the long half-lives of the plutonium isotopes. Uranium-236 is another long-lived fallout isotope with significant potential for exploitation as a tracer of soil and sediment movement. Uranium is expected to be more mobile in soils than plutonium (or caesium), and hence the 236U/Pu ratio will vary with soil depth, and so could provide an independent measure of the amount of soil loss. In this paper we discuss accelerator based ultra-sensitive measurements of plutonium and 236U isotopes and their advantages over 137Cs as tracers of soil erosion and sediment movement.

  8. Actinides, accelerators and erosion

    Directory of Open Access Journals (Sweden)

    Fifield L.K.


    Full Text Available Fallout isotopes can be used as artificial tracers of soil erosion and sediment accumulation. The most commonly used isotope to date has been 137Cs. Concentrations of 137Cs are, however, significantly lower in the Southern Hemisphere, and furthermore have now declined to 35% of original values due to radioactive decay. As a consequence the future utility of 137Cs is limited in Australia, with many erosion applications becoming untenable within the next 20 years, and there is a need to replace it with another tracer. Plutonium could fill this role, and has the advantages that there were six times as many atoms of Pu as of 137Cs in fallout, and any loss to decay has been negligible due to the long half-lives of the plutonium isotopes. Uranium-236 is another long-lived fallout isotope with significant potential for exploitation as a tracer of soil and sediment movement. Uranium is expected to be more mobile in soils than plutonium (or caesium, and hence the 236U/Pu ratio will vary with soil depth, and so could provide an independent measure of the amount of soil loss. In this paper we discuss accelerator based ultra-sensitive measurements of plutonium and 236U isotopes and their advantages over 137Cs as tracers of soil erosion and sediment movement.

  9. Review on hidden trouble detection and health diagnosis of hydraulic concrete structures

    Institute of Scientific and Technical Information of China (English)

    WU; ZhongRu; LI; Ji; GU; ChongShi; SU; HuaiZhi


    A large number of hydraulic concrete structures have hidden defects such as cracks,erosion,freeze and thaw,thermal fatigue,carbonization.These hidden defects seriously affect the strength,stability and durability of structures.These problems are studied mainly by single monitoring or diagnosis methods at present.The integration of multiple monitoring and diagnosis methods is not applied widely.Besides,the analysis theory on these problems is not developed very well.The systemic study on the aging mechanism of hydraulic concrete structures,timevariation model and health diagnosis is still not enough.The support for engineering practice is limited.Aimed at these major scientific and technological problems and combined with specific projects,study on detection of hidden defects and health diagnosis of hydraulic concrete structure has been carried out.This study includes the following content: field non-destructive examination of hidden defects of hydraulic concrete structures,seepage detection,the construction of in-situ sensing system,the combination of field detection and in-situ monitoring,the mechanism of crack,freeze and thaw,erosion and carbonization of hydraulic concrete structure,mechanism of combination aging; time-variation model of hydraulic concrete structure,theories and methods for health diagnosis of hydraulic concrete structures.

  10. Cavitation-erosion resistance of arc ion-plated (Ti, Cr) N coatings

    Institute of Scientific and Technical Information of China (English)


    The cavitation-erosion behavior of (Ti,Cr)N multi-component coatings produced by arcion-plating on grey cast iron was studied by using an ultrasonic cavitation -erosion testing appara-tus and scanning electron microscopy. The test results indicated that surface roughness of thesubstrate, surface morphology of the coating, substrate bias voltage and the thickness of the coat-ing had certain influence on the erosion rate. Arc ion-plated (Ti,Cr)N multi-component coatingsshowed better cavitation -erosion resistance than single component coatings because of highermicrohardness and good adhesion.


    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydraulic procedures for estimating flood discharges for a flood insurance...

  12. Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.


    Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

  13. Microfluidic parallel circuit for measurement of hydraulic resistance. (United States)

    Choi, Sungyoung; Lee, Myung Gwon; Park, Je-Kyun


    We present a microfluidic parallel circuit that directly compares the test channel of an unknown hydraulic resistance with the reference channel with a known resistance, thereby measuring the unknown resistance without any measurement setup, such as standard pressure gauges. Many of microfluidic applications require the precise transport of fluid along a channel network with complex patterns. Therefore, it is important to accurately characterize and measure the hydraulic resistance of each channel segment, and determines whether the device principle works well. However, there is no fluidic device that includes features, such as the ability to diagnose microfluidic problems by measuring the hydraulic resistance of a microfluidic component in microscales. To address the above need, we demonstrate a simple strategy to measure an unknown hydraulic resistance, by characterizing the hydraulic resistance of microchannels with different widths and defining an equivalent linear channel of a microchannel with repeated patterns of a sudden contraction and expansion.

  14. Investigation of Valve Plate in Water Hydraulic Axial Piston Motor

    Institute of Scientific and Technical Information of China (English)

    聂松林; 李壮云; 等


    This paper has introduced the developments of water hydraulic axial piston equipments.According to the effects of physicochemical properties of water on water hydraulic components,a novel valve plate for water hydraulic axial motor has been put forward,whose moment exerted by the fluid field between valve plate and bearing plate is balanced entirely.The material screening experiment of valve plate is done on the test rig.Through numerical simulation the effects of some geometry parameters on the performance of water hydraulic motor have been studied.The silencing grooves on the valve plate in water hydraulic motor can reduce the pressure shock and the occurrence of cavitation effectively.It is evident that the appropriate structure should change the wear status between matching paris and reduces the wear and specific pressure of the matching pairs.The specimen with the new type valve plate is used in a tool system.

  15. Hydraulic hoist-press

    Energy Technology Data Exchange (ETDEWEB)

    Babayev, Z.B.; Abashev, Z.V.


    The efficiency expert of the Angrenskiy production-technological administration of the production association Sredazugol A. V. Bubnov has suggested a hydraulic hoist-press for repairing road equipment which is a device consisting of lifting mechanism, press and test stand for verifying the high pressure hoses and pumps.

  16. Modelling of Hydraulic Robot

    DEFF Research Database (Denmark)

    Madsen, Henrik; Zhou, Jianjun; Hansen, Lars Henrik


    This paper describes a case study of identifying the physical model (or the grey box model) of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application...

  17. Water Treatment Technology - Hydraulics. (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on hydraulics provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: head loss in pipes in series, function loss in…

  18. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn


    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on-going...

  19. Erosion protection conferred by whole human saliva, dialysed saliva, and artificial saliva


    Baumann, T; J. Kozik; Lussi, A.; T. S. Carvalho


    During dental erosion, tooth minerals are dissolved, leading to a softening of the surface and consequently to irreversible surface loss. Components from human saliva form a pellicle on the tooth surface, providing some protection against erosion. To assess the effect of different components and compositions of saliva on the protective potential of the pellicle against enamel erosion, we prepared four different kinds of saliva: human whole stimulated saliva (HS), artificial saliva containing ...

  20. DLC coatings for hydraulic applications

    Institute of Scientific and Technical Information of China (English)



    Replacement of lubricating oils with water or low-viscosity fluids is highly desirable in many industrial fields, on account of the environmental and economical advantages. Low lubricity of water might be insufficient for proper operation of hydraulic components, and diamond-like carbon(DLC) coatings are very attractive as solid lubricant films. A remote-plasma PACVD process was utilized to deposit hydrogenated DLC coatings (a-C:H) on different substrates. Microindentation measurements show that the coating hardness is around 35 GPa. Tribological behavior was evaluated by block-on-ring tests performed in water and water with alumina. The wear rate was calculated after measuring the wear volume by a laser profilemeter. Morphological and compositional analysis of the wear tracks reveal that coating failure may occur by abrasive wear or delamination, depending on the substrate properties. Hard and smooth substrates give the best results and dispersed alumina particles increase the wear rate.


    Institute of Scientific and Technical Information of China (English)


    Modeling and digital simulation is an effective method to analyze the dynamic characteristics of hydraulic system. It is difficult to determine some performance parameters in the hydraulic system by means of currently used modeling methods. The "gray-box" modeling method for large-scale hydraulic system is introduced. The principle of the method, the submodels of some components and the parameters identification of components or subsystem are researched.

  2. Effect of root density on erosion and erodibility of a loamy soil under simulated rain

    DEFF Research Database (Denmark)

    Katuwal, Sheela; Vermang, J.; Cornelis, W. M.


    Though both above- and belowground components of vegetation act together in reducing soil erosion, mainly the aboveground component has received attention in past research. Therefore, the aim of this research was to evaluate the contribution of roots in soil erosion control. Perennial ryegrass (L...

  3. A terminological matter: paragenesis, antigravitative erosion or antigravitational erosion ?

    Directory of Open Access Journals (Sweden)

    Pasini G.


    Full Text Available In the speleological literature three terms are utilized to designate the “ascending erosion”: paragenesis (= paragénésis, coined in1968, antigravitative erosion (= erosione antigravitativa, coined in 1966 and antigravitational erosion (wrong English translation ofthe Italian term erosione antigravitativa, utilized later on. The term paragenesis should be abandoned because of the priority of theterm erosione antigravitativa - on the ground of the “law of priority” – and because of its ambiguous etimology. On the other hand,the term antigravitational erosion should be forsaken in favour of the term antigravitative erosion, given the meaning that the termsgravitation and gravity have in Physics. Therefore, to designate the phenomenon of the “ascending erosion” there would be nothingleft but the term antigravitative erosion.The antigravitative erosion process and its recognizability are illustrated.Examples of caves with evident antigravitative erosion phenomena, developed in different karstifiable rocks and in several partsof the world, are given.It is recalled that the antigravitative erosion is a phenomenon well-known since 1942 and widely proven and supported, and that it isrelatively easy – in many cases - to recognize the antigravitative origin of karstic passages.It is stressed that the antigravitative erosion is an important phenomenon, exclusive of the karstic caves and unique in nature.

  4. Hydraulic manipulator research at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States); Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States)


    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.

  5. Effects of aridity in controlling the magnitude of runoff and erosion after wildfire (United States)

    Noske, Philip J.; Nyman, Petter; Lane, Patrick N. J.; Sheridan, Gary J.


    This study represents a uniquely high-resolution observation of postwildfire runoff and erosion from dry forested uplands of SE Australia. We monitored runoff and sediment load, and temporal changes in soil surface properties from two (0.2-0.3 ha) dry forested catchments burned during the 2009 Black Saturday wildfire. Event-based surface runoff to rainfall ratios approached 0.45 during the first year postwildfire, compared to reported values forests were attributed to wildfire-induced soil water repellency and inherently low hydraulic conductivity. Mean ponded hydraulic conductivity ranged from 3 to 29 mm h-1, much lower than values commonly reported for wetter forest. Annual sediment yields peaked at 10 t ha-1 during the first year before declining dramatically to background levels, suggesting high-magnitude erosion processes may become limited by sediment availability on hillslopes. Small differences in aridity between equatorial and polar-facing catchments produced substantial differences in surface runoff and erosion, most likely due to higher infiltration and surface roughness on polar-facing slopes. In summary, the results show that postwildfire erosion processes in Eucalypt forests in south-east Australia are highly variable and that distinctive response domains within the region exist between different forest types, therefore regional generalizations are problematic. The large differences in erosion processes with relatively small changes in aridity have large implications for predicting hydrologic-driven geomorphic changes, land degradation, and water contamination through erosion after wildfire across the landscape.

  6. Stability of Hydraulic Systems with Focus on Cavitating Pumps


    Brennen, C. E.; Braisted, D. M.


    Increasing use is being made of transmission matrices to characterize unsteady flows in hydraulic system components and to analyze the stability of such systems. This paper presents some general characteristics which should be examined in any experimentally measured transmission matrices and a methodology for the analysis of the stability of transmission matrices in hydraulic systems of order 2. These characteristics are then examined for cavitating pumps and the predicted instabilities (kn...

  7. River channel morphology and hydraulics properties due to introduction of plant basket hydraulic structures for river channel management (United States)

    Kałuża, Tomasz; Radecki-Pawlik, Artur; Plesiński, Karol; Walczak, Natalia; Szoszkiewicz, Krzysztof; Radecki-Pawlik, Bartosz


    In the present time integrated water management is directly connected with management and direct works in river channels themselves which are taking into account morphological processes in rivers and improve flow conditions. Our work focused on the hydraulic and hydrodynamic consequences upon the introduction of the concept of the improvement of the hydromorphological conditions of the Flinta River in a given reach following river channel management concept. Based on a comprehensive study of the hydromorphological state of the river, four sections were selected where restoration measures can efficiently improve river habitat conditions in the river. For each section a set of technical and biological measures were proposed and implemented in practice. One of the proposed solutions was to construct plant basket hydraulic structures (PBHS) within the river channel, which are essentially plant barriers working as sediment traps, changing river channel morphology and are in line with concepts of Water Framework Directive. These relatively small structures work as crested weirs and unquestionably change the channel morphology. Along our work we show the results of three-year long (2013-2015) systematic measurements that provided information on the morphological consequences of introducing such structures into a river channel. Our main conclusions are as follows: 1. Plant basket hydraulic structures cause changes in hydrodynamic conditions and result in sediment accumulation and the formation of river backwaters upstream and downstream the obstacle; 2. The introduced plant basket hydraulic structures cause plant debris accumulation which influences the hydrodynamic flow conditions; 3. The installation of plant basket hydraulic structures on the river bed changes flow pattern as well as flow hydrodynamic conditions causing river braiding process; 4. The erosion rate below the plant basket hydraulic structures is due to the hydraulic work conditions of the PBHS and its

  8. Power Management in Mobile Hydraulic Applications - An Approach for Designing Hydraulic Power Supply Systems

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen


    in a project to develop rules and methods for designing and controlling mobile hydraulic systems in the most energy efficient way, when also considering the operational aspects of the system. The paper first describes the thoughts and ideas behind the project and then focus on an automated approach to design......Throughout the last three decades energy consumption has become one of the primary design aspects in hydraulic systems, especially for mobile hydraulic systems, as power and cooling capacity here is at limited disposal. Considering the energy usage, this is dependent on component efficiency......, but even more important is the system topology. However, there are no rules or guidelines for what system topology to choose for a given application, in order to obtain the most energy efficient system, nor for how the energy should be distributed in the system. This paper describes the approach taken...

  9. Experimental study on bank erosion and protection using submerged vane placed at an optimum angle in a 180° laboratory channel bend (United States)

    Dey, Litan; Barbhuiya, Abdul Karim; Biswas, Piya


    Unsteadiness of the vertical velocity profile and secondary flow in open channel bends poses serious problems in hydraulic engineering design. Insertion of vertical submerged vanes in the channel bend at an optimum angle with the tangential component of flow can minimize the unsteadiness and generation of secondary flow resulting in the reduction of scour depth at the outer bank. A series of experiments were conducted in a 180° bend laboratory channel to study flow erosion and effective ness of the submerged vane in reducing scour depth. The average approach to flow velocity at 0.20 m flow depth above the lowest initial bed level was 25 cm/s. An Acoustic Doppler Velocimeter (ADV) was used to measure the three-dimensional time-averaged velocity components at different azimuthal sections on stabilized nonscoured beds without vane. Scour bed profile without vanes shows that bank erosion in a 180° parabolic-shaped bed channel occurs mostly at the zone from bend angles 120° to 140°. Vanes were installed at angles of 10°, 15°, 20°, 30°, and 40° to the tangential flow component maintaining a spacingof 75 cm distance from one vane to another. Experimental results show that a 15° vane angle produces best result in reducing outer bank scour in a parabolic-shaped channel. The data presented in this paper can also be used for validating three-dimensional turbulence models for simulating flows in a curved channel.

  10. Remotely Adjustable Hydraulic Pump (United States)

    Kouns, H. H.; Gardner, L. D.


    Outlet pressure adjusted to match varying loads. Electrohydraulic servo has positioned sleeve in leftmost position, adjusting outlet pressure to maximum value. Sleeve in equilibrium position, with control land covering control port. For lowest pressure setting, sleeve shifted toward right by increased pressure on sleeve shoulder from servovalve. Pump used in aircraft and robots, where hydraulic actuators repeatedly turned on and off, changing pump load frequently and over wide range.

  11. Undular Hydraulic Jump

    Directory of Open Access Journals (Sweden)

    Oscar Castro-Orgaz


    Full Text Available The transition from subcritical to supercritical flow when the inflow Froude number Fo is close to unity appears in the form of steady state waves called undular hydraulic jump. The characterization of the undular hydraulic jump is complex due to the existence of a non-hydrostatic pressure distribution that invalidates the gradually-varied flow theory, and supercritical shock waves. The objective of this work is to present a mathematical model for the undular hydraulic jump obtained from an approximate integration of the Reynolds equations for turbulent flow assuming that the Reynolds number R is high. Simple analytical solutions are presented to reveal the physics of the theory, and a numerical model is used to integrate the complete equations. The limit of application of the theory is discussed using a wave breaking condition for the inception of a surface roller. The validity of the mathematical predictions is critically assessed using physical data, thereby revealing aspects on which more research is needed

  12. The Development of Water Hydraulic Transmission and Water Hydraulic Axial Piston Pump (Motor)%水压传动及柱塞泵(马达)的现状和发展

    Institute of Scientific and Technical Information of China (English)

    聂松林; 张铁华; 李壮云


    介绍了国内外水压传动技术及其水压轴向柱塞泵(马达)的设计制造和发展。%Introduces the developments of Water Hydraulic transmission and Water Hydraulic Axial Piston Pump (Motor). The challenges for designing water hydraulic components and analyzed.

  13. Rill erosion rates in burned forests (United States)

    Joseph W. Wagenbrenner; Peter R. Robichaud


    Introduction Wildfires often produce large increases in runoff and erosion rates (e.g., Moody and Martin, 2009), and land managers need to predict the frequency and magnitude of postfire erosion to determine the needs for hazard response and possible erosion mitigation to reduce the impacts of increased erosion on public safety and valued resources. The Water Erosion...

  14. Morphopedologic approach for diagnosis and control of erosion

    Directory of Open Access Journals (Sweden)

    Thiago de Oliveira Faria


    Full Text Available This paper describes a morphopedological approach applied to the Sapo River sub-basin to support territorial management for soil and water conservation. The approach follows the conception of the morphopedological compartment presented by Salomão (1994, which considers terrain homogenous units based on soil, relief and geological substrate. Three thematic maps of 1:50,000 scale were made to characterize the morphopedology. Afterwards, spatial analyses techniques were developed in GIS to outline the morphopedological compartments considering the hydraulic functions of the relief inclination. As a result, 11 compartments of the physical environment with specific characteristics have been identified. Relatively smooth terrains predominated, formed by sandy soils in 76.41% of the studied area, represented by the MP-06 and MP-08 morphopedological compartments. These two units, together with the Quartzarenic Neosol, the MP-10 compartment with erosive amphitheaters of drainage head waters, the colluvial slopes and slope talus from the MP-07, and the median and low mountain sides of median hills of the MP-05 compartment, constitute the regions most vulnerable to erosion. Erosion occurs predominantly at the bottom of fluvial valleys from MP-05 and MP-06 and at drainage head waters, resulting in direct impacts on soil and waters of the basin due to silt build-up, hydromorphism losses and decrease of the water level. It was concluded that preventive actions are necessary to control erosion, especially in the most fragile areas.

  15. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves


    HUANG, Ye; Liu, Changsheng; Shiongur Bamed


    Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under...

  16. High temperature erosion of coated superalloys for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Restall, J.E.; Stephenson, D.J.


    Particulate materials ingested with the intake air, together with other solids generated within the gas turbine, are known to have the potential of degrading the hot oxidized or corroded surfaces of static and rotating aerofoil components. The nature of the degradation may be primarily by oxidation, corrosion or erosion or through some form of interaction between these processes. These regimes are illustrated by reference to the metallurgical assessment of components withdrawn from a marine gas turbine and a turbine used for pressurized fluidized-bed combustion trials. The conditions under which surface coatings may be expected to enhance the erosion-corrosion resistance of hot-end turbine components are discussed. From laboratory erosion experiments, particular attention is directed towards the importance of oxide scale plasticity and the ductile-to-brittle transition temperature of the coating under various particle-loading conditions.

  17. Solid Particle Erosion response of fiber and particulate filled polymer based hybrid composites: A review

    Directory of Open Access Journals (Sweden)

    Yogesh M


    Full Text Available The solid particle erosion behaviour of fiber and particulate filled polymer composites has been reviewed. An overview of the problem of solid particle erosion was given with respect to the processes and modes during erosion with focus on polymer matrix composites. The new aspects in the experimental studies of erosion of fiber and particulate filled polymer composites were emphasized in this paper. Various predictions and models proposed to describe the erosion rate were listed and their suitability was mentioned. Implementation of design of experiments and statistical techniques in analyzing the erosion behaviour of composites was discussed. Recent findings on erosion response of multi-component hybrid composites were also presented. Recommendations were given on how to solve some open questions related to the structureerosion resistance relationships for polymers and polymer based hybrid composites.

  18. Erosion--Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, B.


    The deterioration of materials by corrosion or erosion by itself presents a formidable problem and for this reason investigators have studied these two phenomena independently. In fact, there are very few systematic studies on E-C and the majority of references mention it only in passing. In most real systems, however, the two destructive processes take place simultaneously, hence the purpose of this review is to present the various interactions between the chemical and mechanical agents leading to accelerated degradation of the material. The papers cited in the review are those that lead to a better understanding of the process involved in the accelerated rate of material loss under E-C conditions.

  19. Dune erosion under climate change

    NARCIS (Netherlands)

    de Winter, R.C.|info:eu-repo/dai/nl/341476935


    This PhD-thesis investigated the effect of future climate change on dune erosion in the Netherlands. At present, dune erosion occurs under a combination of large storm surge and high waves, which are both generated by a storm event. Therefore to investigate the affect of future climate change on dun

  20. Nocturnal lagophthalmos and recurrent erosion. (United States)

    Sturrock, G. D.


    The symptoms and corneal changes caused by sleeping with one or both eyes open are described in 102 patients. The clinical picture is identical to that of the microform recurrent erosion. The close relationship between the micro- and macro-forms of recurrent corneal erosion suggests that the latter condition is also precipitated by nocturnal lagophthalmos. Images PMID:1268178

  1. Dune erosion under climate change

    NARCIS (Netherlands)

    de Winter, R.C.


    This PhD-thesis investigated the effect of future climate change on dune erosion in the Netherlands. At present, dune erosion occurs under a combination of large storm surge and high waves, which are both generated by a storm event. Therefore to investigate the affect of future climate change on dun

  2. Dune erosion during storm surges

    NARCIS (Netherlands)

    Van Thiel de Vries, J.S.M.


    Large parts of The Netherlands are protected from flooding by a narrow strip of sandy beaches and dunes. The aim of this thesis is to extend the existing knowledge of dune erosion during storm surges as it occurs along the Dutch coast. The thesis discusses: • A large scale dune erosion experiment to

  3. The erosive potential of lollipops

    NARCIS (Netherlands)

    Brand, H.S.; Gambon, D.L.; Paap, A.; Bulthuis, M.S.; Veerman, E.C.I.; Nieuw Amerongen, A.V.


    Aim: To determine the erosive potential of several commercially available lollipops and the protective effect of saliva. Methods: The erosive potential of lollipops was determined in vitro by measuring the pH and neutralisable acidity. Subsequently, 10 healthy volunteers tested different types of lo

  4. A 6-DOF vibration isolation system for hydraulic hybrid vehicles (United States)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul


    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of

  5. Improved similarity criterion for seepage erosion using mesoscopic coupled PFC-CFD model

    Institute of Scientific and Technical Information of China (English)

    倪小东; 王媛; 陈珂; 赵帅龙


    Conventional model tests and centrifuge tests are frequently used to investigate seepage erosion. However, the centrifugal test method may not be efficient according to the results of hydraulic conductivity tests and piping erosion tests. The reason why seepage deformation in model tests may deviate from similarity was first discussed in this work. Then, the similarity criterion for seepage deformation in porous media was improved based on the extended Darcy-Brinkman-Forchheimer equation. Finally, the coupled particle flow code–computational fluid dynamics (PFC−CFD) model at the mesoscopic level was proposed to verify the derived similarity criterion. The proposed model maximizes its potential to simulate seepage erosion via the discrete element method and satisfy the similarity criterion by adjusting particle size. The numerical simulations achieved identical results with the prototype, thus indicating that the PFC−CFD model that satisfies the improved similarity criterion can accurately reproduce the processes of seepage erosion at the mesoscopic level.

  6. Tap Water Hydraulic Control Systems - Design and Industrial Applications. Chapter 7 in Advances in Hydraulic Control Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    Deals with development and design of modern tap water hydraulic components and systems, in particalar the Danfoss Nessie-family of components and systems working with pure tap water without any kind of additives. Typical industrial applications are presented and the perspectives of new industrial...

  7. Remote sensing and spatially distributed erosion models as a tool to really understand biocrust effects on soil erosion (United States)

    Rodriguez-Caballero, Emilio; Chamizo, Sonia; Román, Raul; Roncero, Beatriz; Weber, Bettina; Jetten, Victor; Cantón, Yolanda


    Since publication of the first Ecological Stides volume on biological soil crusts (biocrusts) in 2003, numerous studies have been conducted trying to understand the role of biocrusts in runoff generation and water erosion. Most of them considered these communities as one of the most important stabilizing factors dryland regions. However, these studies were concentrated only on patch or hillslope scales, and there is a lack of information on biocrust interactions with other surface components at catchment scale. Even on fine textured soils, where biocrusts increase water infiltration, they act as runoff source when compared to vegetation. Run-on from biocrusted areas may be harvested by downslope vegetation, but sometimes it may promote downslope erosion. Thus, to really understand the effect of biocrusts on soil erosion, studies on larger scales, preferably on a catchment scale are needed. For this we developed a new approach, based on field measurements and remote sensing techniques, to include biocrust effects in physically-based runoff and erosion modeling. Doing this we were able to analyze how runoff generated in biocrust areas is redistributed within the landscape and its effect on catchment water erosion. The Limburg Soil Erosion Model (LISEM) was used to parameterize and simulate the effects of biocrusts on soil erosion in a small badlands catchment, where biocrusts represent one of the main surface components. Biocrust stability and cohesion were measured in the field, their hydrological properties were obtained from runoff plots, and their cover and spatial distribution was estimated from a hyperspectral image by linear mixture analysis. Then, the model was run under different rainfall intensities and final runoff and erosion rates were compared with field data measured at the catchment outlet. Moreover, these results were compared with the hypothetical scenario in which biocrusts were removed, simulating human disturbances or climatic change effects on

  8. Modelling of Hydraulic Robot

    DEFF Research Database (Denmark)

    Madsen, Henrik; Zhou, Jianjun; Hansen, Lars Henrik


    This paper describes a case study of identifying the physical model (or the grey box model) of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application...... of the laws of physics on the system. The unknown (or uncertain) parameters are estimated with Maximum Likelihood (ML) parameter estimation. The identified model has been evaluated by comparing the measurements with simulation of the model. The identified model was much more capable of describing the dynamics...... of the system than the deterministic model....

  9. Hydraulic mining method (United States)

    Huffman, Lester H.; Knoke, Gerald S.


    A method of hydraulically mining an underground pitched mineral vein comprising drilling a vertical borehole through the earth's lithosphere into the vein and drilling a slant borehole along the footwall of the vein to intersect the vertical borehole. Material is removed from the mineral vein by directing a high pressure water jet thereagainst. The resulting slurry of mineral fragments and water flows along the slant borehole into the lower end of the vertical borehole from where it is pumped upwardly through the vertical borehole to the surface.

  10. Spinning hydraulic jump (United States)

    Abderrahmane, Hamid; Kasimov, Aslan


    We report an experimental observation of a new symmetry breaking of circular hydraulic jump into a self-organized structure that consists of a spinning polygonal jump and logarithmic-spiral waves of fluid elevation downstream. The waves are strikingly similar to spiral density waves in galaxies. The fluid flow exhibits counterparts of salient morphological features of galactic flows, in particular the outflow from the center, jets, circum-nuclear rings, gas inflows toward the galactic center, and vortices. The hydrodynamic instability revealed here may have a counterpart that plays a role in the formation and sustainability of spiral arms in galaxies.

  11. Using REE Tracers to Measure Sheet Erosion Changing to Rill Erosion

    Institute of Scientific and Technical Information of China (English)

    宋炜; 刘普灵; 杨明义; 薛亚洲


    Rare earth element(REE) tracer method was used to study sheet erosion changing to rill erosion on slope land. By placing different REE on different soil depth across a slope in an indoor plot, two simulated rainfalls were applied to study the change of erosion type and the rill erosion process. The results indicate that the main erosion type is sheet erosion at the beginning of the rainfalls, and serious erosion happens after rill erosion appears. Accumulated sheet and rill erosion amount increases with the rainfalls time. The percentage of sheet erosion amount decreases and rill erosion percentage increases with time. At the end of the rainfalls, the total rill erosion amounts are 4.3 and 5 times more than sheet erosion. In this paper, a new REE tracer method was used to quantitatively distinguish sheet and rill erosion amount. The new REE tracer method should be useful to future studying of erosion processes on slope lands.

  12. Trends in Design of Water Hydraulics

    DEFF Research Database (Denmark)

    Conrad, Finn


    The paper presents and discusses a R&D-view on trends in development and best practise in design of both low-pressure and high-pressure tap water hydraulic components and systems for motion control as well as open-ended solutions various industrial applications. The focus is on the advantages using...... ordinary tap water and the range of application areas are illustrated with examples, in particular within the food processing industry, humidification operations, water mist systems for fire fighting, high water pressure cleaners, water moisturising systems for wood processing, lumber drying process...... operate with pure water from the tap without additives of any kind. Hence water hydraulics takes the benefit of pure water as fluid being environmentally friendly, easy to clean sanitary design, non-toxic, non-flammable, inexpensive, readily available and easily disposable. The low-pressure tap water...

  13. New parameters influencing hydraulic runner lifetime (United States)

    Sabourin, M.; Thibault, D.; Bouffard, D. A.; Lévesque, M.


    Traditionally, hydraulic runner mechanical design is based on calculation of static stresses. Today, validation of hydraulic runner design in terms of reliability requires taking into account the fatigue effect of dynamics loads. A damage tolerant approach based on fracture mechanics is the method chosen by Alstom and Hydro-Québec to study fatigue damage in runners. This requires a careful examination of all factors influencing material fatigue behavior. Such material behavior depends mainly on the chemical composition, microstructure and thermal history of the component, and on the resulting residual stresses. Measurement of fracture mechanics properties of various steels have demonstrated that runner lifetime can be significantly altered by differences in the manufacturing process, although remaining in accordance with agreed practices and standards such as ASTM. Carbon content and heat treatment are suspected to influence fatigue lifetime. This will have to be investigated by continuing the current research.

  14. The Monitoring Erosion of Agricultural Land and spatial database of erosion events (United States)

    Kapicka, Jiri; Zizala, Daniel


    In 2011 originated in The Czech Republic The Monitoring Erosion of Agricultural Land as joint project of State Land Office (SLO) and Research Institute for Soil and Water Conservation (RISWC). The aim of the project is collecting and record keeping information about erosion events on agricultural land and their evaluation. The main idea is a creation of a spatial database that will be source of data and information for evaluation and modeling erosion process, for proposal of preventive measures and measures to reduce negative impacts of erosion events. A subject of monitoring is the manifestations of water erosion, wind erosion and slope deformation in which cause damaged agriculture land. A website, available on, is used as a tool for keeping and browsing information about monitored events. SLO employees carry out record keeping. RISWC is specialist institute in the Monitoring Erosion of Agricultural Land that performs keeping the spatial database, running the website, managing the record keeping of events, analysis the cause of origins events and statistical evaluations of keeping events and proposed measures. Records are inserted into the database using the user interface of the website which has map server as a component. Website is based on database technology PostgreSQL with superstructure PostGIS and MapServer UMN. Each record is in the database spatial localized by a drawing and it contains description information about character of event (data, situation description etc.) then there are recorded information about land cover and about grown crops. A part of database is photodocumentation which is taken in field reconnaissance which is performed within two days after notify of event. Another part of database are information about precipitations from accessible precipitation gauges. Website allows to do simple spatial analysis as are area calculation, slope calculation, percentage representation of GAEC etc.. Database structure was designed

  15. 46 CFR 28.880 - Hydraulic equipment. (United States)


    ... hydraulic equipment and the adjacent work area. Protection shall be afforded to the operator of hydraulic... 46 Shipping 1 2010-10-01 2010-10-01 false Hydraulic equipment. 28.880 Section 28.880 Shipping... INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.880 Hydraulic equipment. (a) Each hydraulic system must...

  16. Multifractal Model of Soil Water Erosion (United States)

    Oleshko, Klaudia


    Breaking of solid surface symmetry during the interaction between the rainfall of high erosivity index and internally unstable volcanic soil/vegetation systems, results in roughness increasing as well as fertile horizon loosing. In these areas, the sustainability of management practices depends on the ability to select and implement the precise indicators of soil erodibility and vegetation capacity to protect the system against the extreme damaging precipitation events. Notwithstanding, the complex, non-linear and scaling nature of the phenomena involved in the interaction among the soil, vegetation and precipitation is still not taken into account by the numerous commonly used empirical, mathematical and computer simulation models: for instance, by the universal soil loss equation (USLE). The soil erodibility factor (K-factor) is still measuring by a set of empirical, dimensionless parameters and indexes, without taking into account the scaling (frequently multifractal) origin of a broad range of heterogeneous, anisotropic and dynamical phenomena involved in hydric erosion. Their mapping is not representative of this complex system spatial variability. In our research, we propose to use the toolbox of fractals and multifractals techniques in vista of its ability to measure the scale invariance and type/degree of soil, vegetation and precipitation symmetry breaking. The hydraulic units are chosen as the precise measure of soil/vegetation stability. These units are measured and modeled for soils with contrasting architecture, based on their porosity/permeability (Poroperm) as well as retention capacity relations. The simple Catalog of the most common Poroperm relations is proposed and the main power law relations among the elements of studied system are established and compared for some representative agricultural and natural Biogeosystems of Mexico. All resulted are related with the Mandelbrot' Baby Theorem in order to construct the universal Phase Diagram which


    Institute of Scientific and Technical Information of China (English)

    Dong Longlei; Yan Guirong; Li Ronglin


    The mechanical characteristics of the electro-hydraulic servo system in the centrifuge field are analyzed.The hydraulic pressure law in the centrifuge field indicates the existence of the centrifuge hydraulic pressure.The mechanical characteristics of the slide-valve and the dual nozzle flapper valve are studied,and it is found that the centrifuge field can not only increase the driving force or moment of the function units,but also decrease the stability of the components.Finally by applying Gauss minimum constraint principle,the dynamic model of the electro-hydraulic vibrator in the centrifuge field is established,and the mechanical restriction of the system is also presented.The study will be helpful for the realization of the combined vibration and centrifuge test system.

  18. Anti-rebound Cushion Device for Hydraulic Breaker

    Institute of Scientific and Technical Information of China (English)

    Zhao Hongqiang


    This paper analyzes the phenomenon of rebound impact and its negative influence on the present hydraulic breaker. To get over its shortcomings, a new anti-rebound cushion device has been designed to prevent the phenomenon of rebound impact. A hydraulic cushion is used to absorb the rebound impact energy, which can be released for the next stroke of the hydraulic breaker. Thus, there is little loss of energy, and the efficiency of the impact system can be increased by 5 %. The absorption effect of the hydraulic anti-rebound cushion increases the service life of breaker components by up to twice as long as in the current breaker. A dynamic model and a motion equation of the anti-rebound cushion device are presented, and the optimum frequency and damping ratio are obtained, providing optimum design parameters for the anti-rebound cushion device.

  19. Automated Hydraulic System Design and Power Management in Mobile Applications

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    a presentation of the used graph theory representation that is developed to represent a hydraulic open-circuit system and which is based on a numerical formulation that uniquely describe the system in terms of five set of design variables that describe respectively the topology, the components and the operating...... are found on most medium and high-end mobile hydraulic machinery. Despite the energy saving potentials that these systems posses, compared to the other open-circuit hydraulic system topologies, LS-system may still be subject to very low system efficiencies if not designed correctly. This is typically...... machines if operated in the intended and optimal work area, but due to an inappropriate system layout. Most of the power lost in open circuit hydraulic system systems is in this regard in the transmission part, i.e. hoses and fittings, and the valves used to control the system. A large part of the design...


    Directory of Open Access Journals (Sweden)

    Hennadii Zaionchkovskyi


    Full Text Available In aviation hydraulic drive of high power as a power supply the axial-piston variable displacement pumps became wide spreaded. The pump operational modes with air isolation and cavitation are accompanied by increased noise, delivery reduction and intensive pressure oscillations. The negative results of such phenomena are hydraulic elements erosion, pipeline fatigue failure, working fluid viscosity reduction and its contamination by wear products. The mechanism of cavitation rising in axial-piston pumps is considered, and factors which influence the cavitation rising and working fluid aeration are specified. The features of transient processes in aircraft hydraulic systems with variable displacement pumps are considered. It has been showed that as the pump delivery changes from its minimum to maximum great pressure oscillations in the aircraft pressure pipeline of the hydraulic system takes place, and have a negative influence on the pump service life. The recommendations concerning such pressure oscillation reduction are given.

  1. Applied hydraulic transients

    CERN Document Server

    Chaudhry, M Hanif


    This book covers hydraulic transients in a comprehensive and systematic manner from introduction to advanced level and presents various methods of analysis for computer solution. The field of application of the book is very broad and diverse and covers areas such as hydroelectric projects, pumped storage schemes, water-supply systems, cooling-water systems, oil pipelines and industrial piping systems. Strong emphasis is given to practical applications, including several case studies, problems of applied nature, and design criteria. This will help design engineers and introduce students to real-life projects. This book also: ·         Presents modern methods of analysis suitable for computer analysis, such as the method of characteristics, explicit and implicit finite-difference methods and matrix methods ·         Includes case studies of actual projects ·         Provides extensive and complete treatment of governed hydraulic turbines ·         Presents design charts, desi...

  2. Mesh convergence study for hydraulic turbine draft-tube (United States)

    Devals, C.; Vu, T. C.; Zhang, Y.; Dompierre, J.; Guibault, F.


    Computational flow analysis is an essential tool for hydraulic turbine designers. Grid generation is the first step in the flow analysis process. Grid quality and solution accuracy are strongly linked. Even though many studies have addressed the issue of mesh independence, there is still no definitive consensus on mesh best practices, and research on that topic is still needed. This paper presents a mesh convergence study for turbulence flow in hydraulic turbine draft- tubes which represents the most challenging turbine component for CFD predictions. The findings from this parametric study will be incorporated as mesh control rules in an in-house automatic mesh generator for turbine components.

  3. Hydraulic rams; a comparative investigation

    NARCIS (Netherlands)

    Tacke, J.H.P.M.


    A mathematical model describing the essential features of hydraulic ram operation is developed in order to clarify the possibilities and limitations of the ram relative to its site and its adjustments. The model distinguishes three different periods in the pumping cycle of the hydraulic ram: acceler

  4. Hydraulics. FOS: Fundamentals of Service. (United States)

    John Deere Co., Moline, IL.

    This manual on hydraulics is one of a series of power mechanics texts and visual aids for training in the servicing of agricultural and industrial machinery. Focus is on oil hydraulics. Materials provide basic information and illustrations for use by vocational students and teachers as well as shop servicemen and laymen. The twelve chapters focus…

  5. Modeling Overland Erosion on Disturbed Rangeland (United States)

    Al-Hamdan, O. Z.; Hernandez, M.; Pierson, F. B.; Nearing, M.; Stone, J. J.; Williams, C. J.; Boll, J.; Weltz, M.


    The Rangeland Hydrology and Erosion Model (RHEM) is a new process-based model developed by the USDA-ARS primarily for undisturbed rangeland. Greater sediment detachment rates are usually generated by concentrated flow rather than by sheet flow. Disturbance on rangeland such as fire and tree encroachment can increase overland flow erosion rate by increasing the likelihood of concentrated flow formation on a more erodible surface. In this study, we made advancement to RHEM by developing a new version of the model to predict concentrated flow erosion rate from disturbed rangelands. The model was conceptualized based on observations and results of experimental studies on rangelands disturbed by fire and/or by tree encroachment. A logistic equation was used to partition overland flow into concentrated flow and sheet flow. The equation predicts the probability of overland flow to become concentrated based on slope angle, percentage bare soil, and flow discharge per unit width. Sediment detachment rate from concentrated flow was calculated using soil erodibility of the site and hydraulic parameters of the flow such as flow width and stream power. Soil detachment was assumed to start when concentrated flow starts (i.e. no threshold concept for initiating detachment was used). Width of concentrated flow was determined by flow discharge and slope using an equation which was developed specifically for rangeland. A dynamic erodibility concept was used where concentrated flow erodibility was set to be high at the beginning of the event and then decrease exponentially due to the reduction of availability of disturbance-source-sediment. Initial erodibility was estimated using an empirical parameterization equation as a function of readily available vegetation cover and surface soil texture data. Detachment rate from rain splash and sheet flow was determined by rainfall intensity and sheet flow discharge. A dynamic partial differential sediment continuity equation was used to

  6. Hydraulic Stability of Accropode Armour

    DEFF Research Database (Denmark)

    Jensen, T.; Burcharth, H. F.; Frigaard, Peter

    , and to assess the influence of core permeability on the hydraulic stability of Accropodes. Two structures were examined, one with a relatively permeable core and one with a relatively impermeable core. In November/December 1995, Ph.D.-student Marten Christensen carried out the model tests on the structure...... with permeable core (crushed granite with a gradation of 5-8 mm). The outcome of this study is described in "Hydraulic Stability of Single-Layer Dolos and Accropode Armour Layers" by Christensen & Burcharth (1995). In January/February 1996, Research Assistant Thomas Jensen carried out a similar study......The present report describes the hydraulic model tests of Accropode armour layers carried out at the Hydraulics Laboratory at Aalborg University from November 1995 through March 1996. The objective of the model tests was to investigate the hydraulic stability of Accropode armour layers...

  7. Hydraulic Stability of Accropode Armour

    DEFF Research Database (Denmark)

    Jensen, T.; Burcharth, H. F.; Frigaard, Peter

    , and to assess the influence of core permeability on the hydraulic stability of Accropodes. Two structures were examined, one with a relatively permeable core and one with a relatively impermeable core. In November/December 1995, Ph.D.-student Marten Christensen carried out the model tests on the structure...... with permeable core (crushed granite with a gradation of 5-8 mm). The outcome of this study is described in "Hydraulic Stability of Single-Layer Dolos and Accropode Armour Layers" by Christensen & Burcharth (1995). In January/February 1996, Research Assistant Thomas Jensen carried out a similar study......The present report describes the hydraulic model tests of Accropode armour layers carried out at the Hydraulics Laboratory at Aalborg University from November 1995 through March 1996. The objective of the model tests was to investigate the hydraulic stability of Accropode armour layers...

  8. Erosion evaluation capability of the IVVS for ITER applications

    Energy Technology Data Exchange (ETDEWEB)

    Pollastrone, Fabio, E-mail: [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Ferri de Collibus, Mario; Florean, Marco; Francucci, Massimo; Mugnaini, Giampiero; Neri, Carlo; Rossi, Paolo [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Dubus, Gregory; Damiani, Carlo [Fusion For Energy c/Josep Pla, 2 Torres Diagonal Litoral, 08019 Barcelona (Spain)


    Highlights: •High resolution laser radar range images for hostile environment (IVVS). •Evaluation of the erosion on the surface scanned by IVVS laser radar. •Erosion evaluation procedure and software. •Test and results of the erosion evaluation procedure. -- Abstract: In ITER it is foreseen the use of the In Vessel Viewing System (IVVS), whose scanning head is a 3D laser imaging system able to obtain high-resolution intensity and range images in hostile environments. The IVVS will be permanently installed into a port extension, therefore it has to be compliant with ITER primary vacuum requirements. In the frame of a Fusion for Energy Grant, an investigation of the expected IVVS metrology performances was required to evaluate the device capability to detect erosions on ITER first wall and divertor and to estimate the amount of eroded material. In ENEA Frascati laboratories, an IVVS probe prototype was developed along with a method and a computational procedure applied to a reference erosion plate target simulating ITER vessel components and their possible erosions. Experimental tests were carried out by this system performing several scans of the reference target with different incidence angles, estimating the eroded volume and comparing this volume with its true value. A dedicated study has been also done by changing the power of the laser source; a discussion about the quality of the 3D laser images is reported. The main results obtained during laboratory tests and data processing are presented and discussed.

  9. Solid particle erosion of plasma sprayed ceramic coatings

    Directory of Open Access Journals (Sweden)

    Branco José Roberto Tavares


    Full Text Available Thermal spraying allows the production of overlay protective coatings of a great variety of materials, almost without limitations as to its components, phases and constituents on a range of substrates. Wear and corrosion resistant coatings account for significant utilization of thermal spray processes. Besides being a means to evaluate the coating tribological performance, erosion testing allows also an assessment of the coating toughness and adhesion. Nevertheless, the relationship between the erosion behavior of thermal sprayed coatings and its microstructural features is not satisfactorily understood yet. This paper examines room temperature solid particle erosion of zirconia and alumina-based ceramic coatings, with different levels of porosity and varying microstrucutre and mechanical properties. The erosion tests were carried out by a stream of alumina particles with an average size of 50 µm at 70 m/s, carried by an air jet with impingement angle 90°. The results indicate that current erosion models based on hardness alone cannot account for experimental results, and, that there is a strong relationship between the erosion rate and the porosity.

  10. Erosion-resistant composite material (United States)

    Finch, C.B.; Tennery, V.J.; Curlee, R.M.

    A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.

  11. Electro Hydraulic Hitch Control

    DEFF Research Database (Denmark)

    Hansen, M. R.; Andersen, T. O.; Nielsen, B.


    system for agricultural applications and driving for transportation. During tranport phases, the lack of suspension causes the vehicle to bounce and pitch, and makes it difficalt to control. Many systems have been proposed to cope with the oscillatory behavior, and different solutions exist. Common......This paper present and discusses R&D results on electro hydraulic hitch control for off-road vehicle, in particular active damping of oscillation occuring on tractors. The research deals with analysis and control of the oscillations occuring on tractors which are design without any susspection...... for most of the systems are that they operate on the hydrailc actuators generally providing the motive forces for moving the implement and/or attachment, typically a plough. The basic idea and physical working principle are to use the implement, moveable relative to the vehicle, as a damper mass. The paper...

  12. Fractal Tectonics and Erosion (United States)

    Turcotte, Donald L.

    Tectonic processes build landforms that are subsequently destroyed by erosional processes. Landforms exhibit fractal statistics in a variety of ways; examples include (1) lengths of coast lines; (2) number-size statistics of lakes and islands; (3) spectral behavior of topography and bathymetry both globally and locally; and (4) branching statistics of drainage networks. Erosional processes are dominant in the development of many landforms on this planet, but similar fractal statistics are also applicable to the surface of Venus where minimal erosion has occurred. A number of dynamical systems models for landforms have been proposed, including (1) cellular automata; (2) diffusion limited aggregation; (3) self-avoiding percolation; and (4) advective-diffusion equations. The fractal statistics and validity of these models will be discussed. Earthquakes also exhibit fractal statistics. The frequency-magnitude statistics of earthquakes satisfy the fractal Gutenberg-Richter relation both globally and locally. Earthquakes are believed to be a classic example of self-organized criticality. One model for earthquakes utilizes interacting slider-blocks. These slider block models have been shown to behave chaotically and to exhibit self-organized criticality. The applicability of these models will be discussed and alternative approaches will be presented. Fragmentation has been demonstrated to produce fractal statistics in many cases. Comminution is one model for fragmentation that yields fractal statistics. It has been proposed that comminution is also responsible for much of the deformation in the earth's crust. The brittle disruption of the crust and the resulting earthquakes present an integrated problem with many fractal aspects.

  13. Wind erosion of soils burned by wildfire (United States)

    N. S. Wagenbrenner; M. J. Germino; B. K. Lamb; R. B. Foltz; P. R. Robichaud


    Wind erosion and aeolian transport processes are largely unstudied in the post-wildfire environment, but recent studies have shown that wind erosion can play a major role in burned landscapes. A wind erosion monitoring system was installed immediately following a wildfire in southeastern Idaho, USA to measure wind erosion from the burned area (Figure 1). This paper...

  14. Understanding soil erosion process within herbaceous vegetative hedges using plant functional traits approach in North-West Europe (United States)

    Kervroëdan, Léa; Armand, Romain; Saunier, Mathieu; Faucon, Michel-Pierre


    Runoff and soil erosion induce major environmental and economic damages. Concentrated runoff control by aboveground plant biomass in upstream areas constitutes a key feature to reduce runoff and soil erosion in Western Europe (WE). Indeed, aboveground plant biomass can reduce runoff and soil erosion respectively by increasing hydraulic roughness and trapping sediments. However, studies of plant effect on runoff reduction are usually based on the taxonomical characterisation of species and do not refer to effect of aboveground plant functional traits. Plant functional traits approach allows to understand ecosystem processes and quantify services. Traits effect could vary depending on hydrological processes (i.e., discharge) and their aggregation could have a synergetic effect on hydraulic roughness and erosion reduction. In this study, objectives are to i) examine effects of aboveground plant functional traits of herbaceous hedges on hydraulic roughness; ii) test the effects of their aggregation on hydraulic roughness. Seven aboveground functional traits were measured on 14 indigenous plant species from North-West Europe with a high morphological variability (stem and leaf densities; stem diameter, stiffness and dry matter content; leaf area and specific leaf area (SLA)). Those species are perennial herbaceous caespitose or comprising dry biomass in winter. Effects of plant functional traits and their abundance within the community on hydraulic roughness were examined using a runoff simulator at four discharges. Furthermore, the effect of plant functional diversity was analysed using four monospecific (mono-trait) conditions compared to multispecific (multi-traits) conditions. Results showed traits and their abundance influence hydraulic roughness. Indeed, leaf density and leaf area (traits), as well as plant community weighted stem, leaf and shoot areas, stem diameter and SLA are significantly correlated to hydraulic roughness. Moreover, leaf density and leaf area

  15. Indian River Inlet: An Evaluation by the Committee on Tidal Hydraulics (United States)


    Bay Tidal Ranges and Inlet Velocities lipient Maxmkum Veedty csea -seeuenad Am Tikdl Range Keulegan WIlMZ Year aq ft ft fpsf 1950 6,690 0.71 3.1 3.2 1960...34 Journal of the Hydraulics Division, American Society of Civil Engineers, HY 11. Ariathurai, R., MacArthur, R. C., and Krone, R. B. (1977...and Arulalandan, K. (1978). "Erosion rates of cohesive soils," Journal of the Hydraulics Division, American Society of Civil Engineers, HY 2, 279

  16. Mechanics of Interrill Erosion with Wind-Driven Rain (WDR) (United States)

    This article provides an evaluation analysis for the performance of the interrill component of the Water Erosion Prediction Project (WEPP) model for Wind-Driven Rain (WDR) events. The interrill delivery rates (Di) were collected in the wind tunnel rainfall simulator facility of the International Cen...

  17. Identifying and Mitigating Sources of School Revenue Erosion (United States)

    Prombo, Michael; Dalianis, Ares G.; Metcalf, Scott R.


    Preserving existing revenues is an essential component of the work of school business officials. The broad ranges of activities that can affect school district revenues make identifying potential threats difficult. By understanding the issues that affect school district revenue, school business officials are better able to diminish its erosion--a…

  18. Soil hydraulic properties affected by topsoil thickness in cultivated switchgrass and corn-soybean rotation production systems (United States)

    Loss of productive topsoil by soil erosion over time can reduce the productive capacity of soil and can significantly affect soil hydraulic properties. This study evaluated the effects of reduced topsoil thickness and perennial switchgrass (Panicum virgatum L.) versus corn (Zea mays L.)/soybean [Gly...

  19. Hydraulic conductivity of compacted zeolites. (United States)

    Oren, A Hakan; Ozdamar, Tuğçe


    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  20. Hydraulic characteristics of HANARO fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S.; Chung, H. J.; Chun, S. Y.; Yang, S. K.; Chung, M. K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    This paper presents the hydraulic characteristics measured by using LDV (Laser Doppler Velocimetry) in subchannels of HANARO, KAERI research reactor, fuel bundle. The fuel bundle consists of 18 axially finned rods with 3 spacer grids, which are arranged in cylindrical configuration. The effects of the spacer grids on the turbulent flow were investigated by the experimental results. Pressure drops for each component of the fuel bundle were measured, and the friction factors of fuel bundle and loss coefficients for the spacer grids were estimated from the measured pressure drops. Implications regarding the turbulent thermal mixing were discussed. Vibration test results measured by using laser vibrometer were presented. 9 refs., 12 figs. (Author)

  1. Theory of Geoinformatic Mapping of Erosive Geomorphological System

    Directory of Open Access Journals (Sweden)

    Rulev A.S.


    Full Text Available The geoinformatic mapping of erosion geomorphologic systems is based on both traditional methods of cartographic representation of information and specific opportunities of computer mapping complexes, including those for analytical processing of data of different types. The study of the characteristics of the erosion geomorphological systems is carried out with the use of aerial and satellite imagery and is based on the results of their geomorphological, geobotanical, soil reclamation, erosion and other surveys. Spatially distributed input data of landscape model should be set as raster electronic maps that characterize relief, soil cover, type of agriculture, vegetation on the catchment area, as well as, morphometry and hydraulic resistance of the channel and floodplain, and also as a set of the attributes describing their characteristics. The use of digital model of relief (DMR while geoinformatic mapping provides the determination of both planning characteristics of the relief and profile ones, including the values of slope angles, inclination, expositions, slopes configuration, etc. As the result of the modelling, the digital maps of flow, outwash and accumulation, and table data defining the process of flow, outwash and water turbidity, as well as, their final values with the use of large-scale topographic and soil maps, and space imaging of high resolution, are developed.

  2. Hydraulic conductivity of organomodified soil

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, R.B.; Grant, J.M.; Voice, T.C.; Rakhshandehroo, G.; Xu, S.; Boyd, S.A. [Michigan State Univ., East Lansing, MI (United States)


    The effects of organomodification on soil hydraulic conductivity were investigated. Hydraulic conductivity and porosity of treated and untreated samples of a sandy loam were measured as a function of effective stress. Batch treatment with hexadecyltrimethyl ammonium (HDTMA) and dry packing produced organomodified samples that were 79% less conducive than untreated samples prior to loading. Treated samples lost less hydraulic conductivity as a result of loading than untreated samples so that treated samples had higher conductivity at high loads. Observed differences in conductivity are explained in terms of the role of the treated and untreated clay in controlling initial effective pore size and its change during consolidation.

  3. Tolerable soil erosion in Europe (United States)

    Verheijen, Frank; Jones, Bob; Rickson, Jane; Smith, Celina


    Soil loss by erosion has been identified as an important threat to soils in Europe* and is recognised as a contributing process to soil degradation and associated deterioration, or loss, of soil functioning. From a policy perspective, it is imperative to establish well-defined baseline values to evaluate soil erosion monitoring data against. For this purpose, accurate baseline values - i.e. tolerable soil loss - need to be differentiated at appropriate scales for monitoring and, ideally, should take soil functions and even changing environmental conditions into account. The concept of tolerable soil erosion has been interpreted in the scientific literature in two ways: i) maintaining the dynamic equilibrium of soil quantity, and ii) maintaining biomass production, at a location. The first interpretation ignores soil quality by focusing only on soil quantity. The second approach ignores many soil functions by focusing only on the biomass (particularly crop) production function of soil. Considering recognised soil functions, tolerable soil erosion may be defined as 'any mean annual cumulative (all erosion types combined) soil erosion rate at which a deterioration or loss of one or more soil functions does not occur'. Assumptions and problems of this definition will be discussed. Soil functions can generally be judged not to deteriorate as long as soil erosion does not exceed soil formation. At present, this assumption remains largely untested, but applying the precautionary principle appears to be a reasonable starting point. Considering soil formation rates by both weathering and dust deposition, it is estimated that for the majority of soil forming factors in most European situations, soil formation rates probably range from ca. 0.3 - 1.4 t ha-1 yr-1. Although the current agreement on these values seems relatively strong, how the variation within the range is spatially distributed across Europe and how this may be affected by climate, land use and land management

  4. Rill erosion of mudstone slope-a case study of southern Taiwan (United States)

    Yang, Ci-Jian; Lin, Jiun-chuan; Cheng, Yuan-Chang


    Soil erosion has been studied by many scientists for decades (Zingg, 1940; Meyer & Wischmeier, 1969; Foster, 1982; Luk, 1988) and many soil erosion prediction equations have already been developed, such as USLE, RUSLE. In spite of WEEP is based on hydrological physical model, all of the above models are restricted to predict concentrate flow. On the other hand, rill erosion is not understood completely. The amounts of rill erosion are always underestimated. Rill Erosion correlate closely to gradient (Cerda & Garcia-Fayos, 1997; Fox & Bryan, 1999; Fu,et al., 2011; Clarke & Rendell, 2006), slope length (Gabriel, 1999; Yair, 2004), particle distribution (Gabriel, 1999), proportion of clay (Luk,1977; Bryan2000), rainfall intensity (Römkens et al. 2001), and land use (Dotterweich, 2008). However, the effect of micromorphology of mud rock surface, such as mud-cracks, could be studied in more details. This research aims to simulate rill development by hydraulic flume to observe the morphological change caused by rill/erosion process. Mudstone specimens sampled from the mudstone area of Long-Chi, southern Taiwan. The results show that: (1) The erosion pattern of mudstone slope can be divided into four steps: (a) inter-rill erosion, ( b) rill erosion, (c) rill development, (d) slope failure. (2) Slopes with mud-cracks caused 125% soil loss than smooth slopes. (3) Mud-cracks affect spatial distribution of rill development (4) The sediment concentration decreased sharply in the beginning of experiments, however increased due to rill development. This paper demonstrated such a rill development. 1: Department of Geography, National Taiwan University.

  5. Interstitial hydraulic conductivity and interstitial fluid pressure for avascular or poorly vascularized tumors. (United States)

    Liu, L J; Schlesinger, M


    A correct description of the hydraulic conductivity is essential for determining the actual tumor interstitial fluid pressure (TIFP) distribution. Traditionally, it has been assumed that the hydraulic conductivities both in a tumor and normal tissue are constant, and that a tumor has a much larger interstitial hydraulic conductivity than normal tissue. The abrupt transition of the hydraulic conductivity at the tumor surface leads to non-physical results (the hydraulic conductivity and the slope of the TIFP are not continuous at tumor surface). For the sake of simplicity and the need to represent reality, we focus our analysis on avascular or poorly vascularized tumors, which have a necrosis that is mostly in the center and vascularization that is mostly on the periphery. We suggest that there is an intermediary region between the tumor surface and normal tissue. Through this region, the interstitium (including the structure and composition of solid components and interstitial fluid) transitions from tumor to normal tissue. This process also causes the hydraulic conductivity to do the same. We introduce a continuous variation of the hydraulic conductivity, and show that the interstitial hydraulic conductivity in the intermediary region should be monotonically increasing up to the value of hydraulic conductivity in the normal tissue in order for the model to correspond to the actual TIFP distribution. The value of the hydraulic conductivity at the tumor surface should be the lowest in value.

  6. An experimental study on cavitation erosion-corrosion performance of ANSI 1020 and ANSI 4135 steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Leqin; Qiu, Ning [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Hellmann, Dieter-Heinz [KSB Aktiengesellschaft, Frankenthal (Germany); Zhu, Xiaowen [Zhejiang Keer Pump Stock Co., Ltd, Whenzhou (China)


    Cavitation erosion is quite complex, containing corrosion-erosion interaction effect. High temperature oxidization may be aroused after bubble collapse, accompanied by hot gas contacting with the pump component surface. The analysis of the erosion pits can be an effective way to know the mechanism of cavitation erosion. In present paper, the cavitation erosion resistance of carbon steel (ANSI 1020) and alloy steel (ANSI 4135) were tested in an ultrasonic vibration apparatus. By using energy dispersive X-ray spectroscope and three dimensional laser microscope, the chemical composition around erosion pits and the oxidation film structure were analyzed. By using metallographic microscope and scanning electronic microscope, the metallographic structure of specimens (e.g., carbon steel and alloy steel), the nano structured iron oxide and corresponding influence on specimen's anti-erosion performance were discussed. Based on the comparison between the different tests performed in distilled water and tap water respectively, results can be obtained that erosion rate of carbon steel and alloy steel varies with the component of water which had close correlation to the oxidation effect. Erosion rate of alloy steel 4135 was much lower in distilled water compared to tap water while the difference of carbon steel 1020 was not that large. The remarkable different responses of these two materials had close relationship with oxidation effect. The oxidation effect transferred the original structure of alloy steel surface which had high anti-erosion capability, into newly generated iron oxide structure, which was preferentially to be attacked. The pumping of slightly corrosive fluids frequently leads to erosion-corrosion damage on impellers, and corrosion can further amplify the erosion process.

  7. Nonlinear, Adaptive and Fault-tolerant Control for Electro-hydraulic Servo Systems

    DEFF Research Database (Denmark)

    Choux, Martin

    Fluid power systems have been in use since 1795 with the rst hydraulic press patented by Joseph Bramah and today form the basis of many industries. Electro hydraulic servo systems are uid power systems controlled in closed-loop. They transform reference input signals into a set of movements...... in hydraulic actuators (cylinders or motors) by the means of hydraulic uid under pressure. With the development of computing power and control techniques during the last few decades, they are used increasingly in many industrial elds which require high actuation forces within limited space. However, despite...... numerous attractive properties, hydraulic systems are always subject to potential leakages in their components, friction variation in their hydraulic actuators and deciency in their sensors. These violations of normal behaviour reduce the system performances and can lead to system failure...

  8. Analysis of an controller design for an electro-hydraulic servo pressure regulator

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Madsen, A. M.;


    of the existing hydraulic components there are, however, still a need for being able to generate a hydraulic pilot pressure, as e.g. almost all open-circuit pumps are hydraulically controlled. The focus of the current paper is therefore on the analysis and controller design an electro-hydraulic servo pressure...... regulator, which generates a hydraulic LS-pressure based on an electrical reference, hereby synergistically integrating knowledge from all parts of the mechatronics area. The servo pressure regulator is used to generate the LS-signal for a variable displacement pump, and the paper rst presents...... to generate a controlled leakage  ow that aids in stabilising the system. The robustness of the system is then discussed in relation to dierent pilot line volumes and pump dynamics. Finally experimental results are presented, where the performance is compared to that of a similar hydraulic reference system...

  9. Safety estimation of high-pressure hydraulic cylinder using FSI method

    Institute of Scientific and Technical Information of China (English)

    KIM J.H.; HAN S.M.; KIM Y.J.


    Hydraulic cylinder is a primary component of the hydraulic valve systems.The numerical study of hydraulic cylinder to evaluate the stress analysis,the life assessment and the performance of operation characteristics in hydraulic cylinder were described.The calculation of safety factor,fatigue life,piston chamber pressure,rod chamber pressure and the change of velocity of piston with flow time after the beginning of hydraulic cylinder were incorporated.Numerical analysis was performed using the commercial CFD code,ANSYS with unsteady,dynamic mesh model,two-way FSI (fluid-struc-ture interaction)method and k-εturbulent model.The internal pressure in hydraulic cylinder through stress analysis show higher than those of the yield strength.

  10. Analysis and control of flows in pressurized hydraulic networks

    NARCIS (Netherlands)

    Gupta, R.K.


    Analysis, design and flow control problems in pressurized hydraulic networks such as water transmission and distribution systems consisting of pipes and other appurtenant components such as reservoirs, pumps, valves and surge devices are dealt with from the prospective of network synthesis aiming at

  11. Analysis and control of flows in pressurized hydraulic networks

    NARCIS (Netherlands)

    Gupta, R.K.


    Analysis, design and flow control problems in pressurized hydraulic networks such as water transmission and distribution systems consisting of pipes and other appurtenant components such as reservoirs, pumps, valves and surge devices are dealt with from the prospective of network synthesis aiming at

  12. International Space Station power module thermal control system hydraulic performance

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, V. [Boeing North American, Inc., Canoga Park, CA (United States). Rocketdyne Div.


    The International Space Station (ISS) uses four photovoltaic power modules (PVMs) to provide electric power for the US On-Orbit Segment. The PVMs consist of photovoltaic arrays (PVAs), orbit replaceable units (ORUs), photovoltaic radiators (PVRs), and a thermal control system (TCS). The PVM TCS function is to maintain selected PVM components within their specified operating ranges. The TCS consists of the pump flow control subassembly (PFCS), piping system, including serpentine tubing for individual component heat exchangers, headers/manifolds, fluid disconnect couplings (FQDCs), and radiator (PVR). This paper describes the major design requirements for the TCS and the results of the system hydraulic performance predictions in regard to these requirements and system component sizing. The system performance assessments were conducted using the PVM TCS fluid network hydraulic model developed for predicting system/component pressure losses and flow distribution. Hardy-Cross method of iteration was used to model the fluid network configuration. Assessments of the system hydraulic performance were conducted based on an evaluation of uncertainties associated with the manufacturing and design tolerances. Based on results of the analysis, it was concluded that all design requirements regarding system performance could be met. The hydraulic performance range, enveloping possible system operating parameter variations was determined.

  13. The Development of Erosion and Impact Resistant Turbine Airfoil Thermal Barrier Coatings (United States)

    Zhu, Dongming; Miller, Robert A.


    Thermal barrier coatings are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments and extend component lifetimes. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Advanced erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the doped thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion and impact damage mechanisms of the thermal barrier coatings will also be discussed.


    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — This Hydraulic data was reviewed and approved by FEMA during the initial MT-2 processing. Recent developments in digital terrain and geospatial database management...


    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data in this submittal include spatial datasets and model outputs necessary for computation of the 1-percent flooding extent. The minimum requirement for...

  18. Hydraulic wind energy conversion system

    Energy Technology Data Exchange (ETDEWEB)


    The purpose of this research was to design, build and test a hydraulic wind energy system. This design used a three bladed turbine, which drove a hydraulic pump. The energy is transmitted from the pump through a long hose and into a hydraulic motor, where the energy is used. This wind system was built and tested during the winter of 1980-1981. The power train included a five meter, three bladed wind turbine, a 9.8:1 ratio gearbox, a 1.44 cubic inch displacement pump with a small supercharge gear pump attached. The hydraulic fluid was pumped through a 70', 3/4'' I-D-high pressure flexhose, then through a volume control valve and into a 1.44 cubic inch displacement motor. The fluid was returned through a 70', 1'' I-D-flexhose.

  19. 14 CFR 29.1435 - Hydraulic systems. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 29.1435 Section 29.1435... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1435 Hydraulic systems. (a) Design. Each hydraulic system must be designed as follows: (1) Each element of the hydraulic system...

  20. 14 CFR 23.1435 - Hydraulic systems. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 23.1435 Section 23.1435... § 23.1435 Hydraulic systems. (a) Design. Each hydraulic system must be designed as follows: (1) Each hydraulic system and its elements must withstand, without yielding, the structural loads expected...

  1. 46 CFR 28.405 - Hydraulic equipment. (United States)


    ... 46 Shipping 1 2010-10-01 2010-10-01 false Hydraulic equipment. 28.405 Section 28.405 Shipping... Operate With More Than 16 Individuals on Board § 28.405 Hydraulic equipment. (a) Each hydraulic system... than four times the system maximum operating pressure. (c) Each hydraulic system must be equipped...

  2. Micromechanical Aspects of Hydraulic Fracturing Processes (United States)

    Galindo-torres, S. A.; Behraftar, S.; Scheuermann, A.; Li, L.; Williams, D.


    A micromechanical model is developed to simulate the hydraulic fracturing process. The model comprises two key components. Firstly, the solid matrix, assumed as a rock mass with pre-fabricated cracks, is represented by an array of bonded particles simulated by the Discrete Element Model (DEM)[1]. The interaction is ruled by the spheropolyhedra method, which was introduced by the authors previously and has been shown to realistically represent many of the features found in fracturing and communition processes. The second component is the fluid, which is modelled by the Lattice Boltzmann Method (LBM). It was recently coupled with the spheropolyhedra by the authors and validated. An advantage of this coupled LBM-DEM model is the control of many of the parameters of the fracturing fluid, such as its viscosity and the injection rate. To the best of the authors' knowledge this is the first application of such a coupled scheme for studying hydraulic fracturing[2]. In this first implementation, results are presented for a two-dimensional situation. Fig. 1 shows one snapshot of the LBM-DEM coupled simulation for the hydraulic fracturing where the elements with broken bonds can be identified and the fracture geometry quantified. The simulation involves a variation of the underground stress, particularly the difference between the two principal components of the stress tensor, to explore the effect on the fracture path. A second study focuses on the fluid viscosity to examine the effect of the time scales of different injection plans on the fracture geometry. The developed tool and the presented results have important implications for future studies of the hydraulic fracturing process and technology. references 1. Galindo-Torres, S.A., et al., Breaking processes in three-dimensional bonded granular materials with general shapes. Computer Physics Communications, 2012. 183(2): p. 266-277. 2. Galindo-Torres, S.A., A coupled Discrete Element Lattice Boltzmann Method for the

  3. Bentonite erosion. Laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Mats (Div. of Nuclear Chemistry, Royal Inst. of Technology, Stockholm (Sweden), School of Chemical Science and Engineering)


    This report covers the laboratory studies that have been performed at Nuclear Chemistry, KTH in the project 'Bentonite Erosion'. Many of the experiments in this report were performed to support the work of the modelling group and were often relatively simple. One of the experiment series was performed to see the impact of gravity and concentration of mono- and di-valent cations. A clay suspension was prepared in a test tube. A net was placed in contact with the suspension, the test tube was filled with solutions of different concentrations and the system was left overnight to settle. The tube was then turned upside down and the behaviour was visually observed. Either the clay suspension fell through the net or stayed on top. By using this method surprisingly sharp determinations of the Critical Coagulation (Flocculation) Concentration (CCC/CFC) could be made. The CCC/CFC of Ca2+ was for sodium montmorillonite determined to be between 1 and 2 mM. An artificial fracture was manufactured in order to simulate the real case scenario. The set-up was two Plexiglas slabs separated by 1 mm thick spacers with a bentonite container at one side of the fracture. Water was pumped with a very low flow rate perpendicular to bentonite container and the water exiting the fracture was sampled and analyzed for colloid content. The bentonite used was treated in different ways. In the first experiment a relatively montmorillonite rich clay was used while in the second bentonite where only the readily soluble minerals had been removed was used. Since Plexiglas was used it was possible to visually observe the bentonite dispersing into the fracture. After the compacted bentonite (1,000 kg/m3) had been water saturated the clay had expanded some 12 mm out into the fracture. As the experiment progressed the clay expanded more out into the fracture and seemed to fractionate in two different phases with less material in the outmost phase. A dark rim which was later analyzed to contain

  4. Advanced Performance Hydraulic Wind Energy (United States)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.


    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  5. Exploring the relationship between gully erosion and rainfall erosivity (United States)

    Campo, Miguel; Casalí, Javier; Giménez, Rafael


    Rainfall erosivity plays and important role in gully erosion. However, there are few studies that explore this relationship. The main purpose of this work is to analyse the link between observed gully erosion rates and rainfall erosivity. However, in order to get a suitable and comparable set of daily rainfall erosivity data, we firstly evaluate the performance of several daily rainfall erosivity models to estimate the daily accumulated RUSLE EI30 index. One 300 ha watershed (El Cantalar) located in Navarre (Spain) was selected to carry out field studies. A meteorological station located 10 km appart from the experimental site provided daily precipitation records since 1930 to 2009 and also 10min records since 1991 to 2009. In this watershed a total of 35 gully headcuts developed in cohesive soil were monitored. Aerial photographic stereo-pairs covering the study area were used for the survey. These were taken in five different years and at different spatial scales each time: 1956 (1: 34,000), 1967 (1:17,500), 1982 (1:13,500), 2003 (1:20,000) and 2006 (1:2000). Manual restitution of photographs was carried out. 1m resolution DEMs were obtained by triangular interpolation (Triangular Irregular Network) and then used to characterize gully headcuts. Moreover, from the aerial photos and the DEMs, ortho-photographs with a final resolution of 0.40 m were created. The geocoding of the scenes had a Root Mean Square error of less than 0.5 m both in planimetry and altimetry. Furthermore, using the DEMs and the ortho-photographs, volumetric headcut retreat rates for each period were calculated as the product of the lineal retreat and a representative section of the headcut. Daily accumulated RUSLE EI30 index was calculated in a conventional way from records of precipitation every 10 minutes for the period 1991-2009; these results were used as reference data. In addition, for the same period, this index was estimated with daily precipitation records through several models

  6. Erosion Associated with Seismically-Induced Landslides in the Middle Longmen Shan Region, Eastern Tibetan Plateau, China

    Directory of Open Access Journals (Sweden)

    Zhikun Ren


    Full Text Available The 2008 Wenchuan earthquake and associated co-seismic landslide was the most recent expression of the rapid deformation and erosion occurring in the eastern Tibetan Plateau. The erosion associated with co-seismic landslides balances the long-term tectonic uplift in the topographic evolution of the region; however, the quantitative relationship between earthquakes, uplift, and erosion is still unknown. In order to quantitatively distinguish the seismically-induced erosion in the total erosion, here, we quantify the Wenchuan earthquake-induced erosion using the digital elevation model (DEM differential method and previously-reported landslide volumes. Our results show that the seismically-induced erosion is comparable with the pre-earthquake short-term erosion. The seismically-induced erosion rate contributes ~50% of the total erosion rate, which suggests that the local topographic evolution of the middle Longmen Shan region may be closely related to tectonic events, such as the 2008 Wenchuan earthquake. We propose that seismically-induced erosion is a very important component of the total erosion, particularly in active orogenic regions. Our results demonstrate that the remote sensing technique of differential DEM provides a powerful tool for evaluating the volume of co-seismic landslides produced in intermountain regions by strong earthquakes.

  7. Interfacial Instability during Granular Erosion. (United States)

    Lefebvre, Gautier; Merceron, Aymeric; Jop, Pierre


    The complex interplay between the topography and the erosion and deposition phenomena is a key feature to model granular flows such as landslides. Here, we investigated the instability that develops during the erosion of a wet granular pile by a dry dense granular flow. The morphology and the propagation of the generated steps are analyzed in relation to the specific erosion mechanism. The selected flowing angle of the confined flow on a dry heap appears to play an important role both in the final state of the experiment, and for the shape of the structures. We show that the development of the instability is governed by the inertia of the flow through the Froude number. We model this instability and predict growth rates that are in agreement with the experiment results.

  8. FOREWORD: 26th IAHR Symposium on Hydraulic Machinery and Systems (United States)

    Wu, Yulin; Wang, Zhengwei; Liu, Shuhong; Yuan, Shouqi; Luo, Xingqi; Wang, Fujun


    was molded into a polytechnic institute focusing on engineering in the nationwide restructuring of universities and colleges undertaken in 1952. At present, the university has 14 schools and 56 departments with faculties in science, engineering, humanities, law, medicine, history, philosophy, economics, management, education and art. The University now has over 25 900 students, including 13 100 undergraduates and 12 800 graduate students. As one of China's most renowned universities, Tsinghua has become an important institution for fostering talents and scientific research. The International Association of Hydro-Environment Engineering and Research (IAHR) particularly promotes the advancement and exchange of knowledge through working groups, specialty symposia, congresses, and publications on water resources, river and coastal hydraulics, risk analysis, energy, environment, disaster prevention, and industrial processes. The IAHR Committee on Hydraulic Machinery and Systems deals with the advancement of technology associated with the understanding of steady and unsteady flow characteristics in hydraulic machinery and conduit systems connected to the machinery. The technology elements include the fluid behaviour within machine components, hydro-elastic behaviour of machine components, cavitation and two phase flow in turbines and pumps, hydraulic machine and plant control systems, the use of hydraulic machines to improve water quality, and even considerations to improve fish survival in their passage through hydro plants. The main emphases of the IAHR Committee on Hydraulic Machinery and Systems are to stimulate research and understanding of the technologies associated with hydraulic machinery and to promote interaction between the machine designers, machine users, the academic community, and the community as a whole. Hydraulic machinery is both cost effective and environmentally friendly. The goals of the IAHR Committee on Hydraulic Machinery and Systems are to improve

  9. Soil erosion in Slovene Istria

    Directory of Open Access Journals (Sweden)

    Matjaž Mikoš


    Full Text Available From the end of nineties of the 20th century, intense hydrologic and geomorphologic research is taking place in the Slovene Istria. As a part of this research also studies on soil erosion were undertaken in the period from 2005 to 2008. The field measurements were under taken onclosed 1m2 large erosion plots under three different land uses (on bare soils in an olive grove, on an overgrown meadow, in a forest, placed south of the Marezige village in the Rokava River basin.We show weekly measurements of surface erosion (interrill erosion for the period of 13 months (the end of March 2005 – the end of April 2006, as well as monthly and seasonal averages together with selected linear statistical correlations between soil erosion and weather parameters.From May 2005 to April 2006 the interrill erosion on bare soils in an olive grove with an inclination of 5.5° amounted to 9013 g/m2 (90 t/ha that corresponds to surface lowering rate of 8.5 mm/yr; on an overgrown meadow with an inclination of 9.4° it amounted to 168 g/m2 (1,68 t/ha that corresponds to surface lowering rate of 0.16 mm//yr; and in a forest with an inclination of 7.8° it amounted to 391 g/m2 (3,91 t/ha and in a forest with an inclination of 21.4° it amounted to 415 g/m2 (4,15 t/ha, respectively, that corresponds to surface lowering rate of 0.4 mm/yr.

  10. Numerical simulation of cavitation erosion on a NACA0015 hydrofoil based on bubble collapse strength (United States)

    Hidalgo, V.; Luo, X.; Escaler, X.; Huang, R.; Valencia, E.


    The prediction of erosion under unsteady cavitation is crucial to prevent damage in hydraulic machinery. The present investigation deals with the numerical simulation of erosive partial cavitation around a NACA0015 hydrofoil. The study presents the calculation of the bubble collapse strength, Sb, based on the bubble potential energy to identify the surface areas with highest risk of damage. The results are obtained with a numerical scheme assuming homogeneous mixture flow, implicit LES and Zwart cavitation model. The 3D unsteady flow simulation has been solved using OpenFOAM. Python language and OpenFOAM calculator (foamCalcEx) have been used to obtain and represent Sb. The obtained results clearly show the instants of erosive bubble collapse and the affected surface areas.

  11. Technologies and Innovations for Hydraulic Pumps


    Ivantysynova, Monika


    Positive displacement machines working as hydraulic pumps or hydraulic motors have always been, are and will be an essential part of any hydraulic system. Current trends and future demands on energy efficient systems will not only drastically increase the number of positive displacement machines needed for modern efficient hydraulic circuits but will significantly change the performance requirements of pumps and motors. Throttleless system configurations will change the landscape of hydraulic...

  12. An important erosion process on steep burnt hillslopes (United States)

    Langhans, Christoph; Nyman, Petter; Noske, Philip; Lane, Patrick; Sheridan, Gary


    Steep forested hillslopes often display a high degree of armouring where diffusive erosion processes preferentially remove the fine fraction of the surface soil. High infiltration capacities, hydraulic resistance to overland flow and physical anchoring by cover plants and litter mean that even the most extreme rainfall events usually do not erode the armouring substantially. We argue that fire (wild or planned) is essential to the mobilization and transport of the armouring by increasing the rates of overland flow and decreasing trapping opportunities. We present evidence of the types of erosion that lead to the stripping of the surface armouring using post-event surveys and high-rate overland flow experiments. The type of erosion depends on the relative abundance of non-cohesive surface material to overland flow, but we found that a particular type of transport dominates that has no representation in current erosion models: On steep slopes overland flow can lead to incipient motion of individual stones that transfer their momentum to other stones leading to a rapid mobilization of the whole non-cohesive, armoured surface layer. Once in motion, the layer quickly separates out into a granular flow front and liquefied body, akin to debris flows in channels. Depending on the size of the event, these hillslope debris flows (HDF) either get trapped or enter into the channel, stripping the hillslope of most armouring on their way. They provide channels with the material and shear stress needed to erode into the channel bed, increasing the risk of channel debris flows. We present a simple physical model of HDF initiation, movement, and possible re-mobilization on hillslopes that was derived from debris flow theory. Understanding this process, its frequency, and magnitude are important for assessing the role of fire in landscape evolution and risk to humans through debris flow impacts.

  13. Seasonal variation and climate change impact in Rainfall Erosivity across Europe (United States)

    Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine; Ballabio, Cristiano


    Rainfall erosivity quantifies the climatic effect on water erosion and is of high importance for soil scientists, land use planners, agronomists, hydrologists and environmental scientists in general. The rainfall erosivity combines the influence of rainfall duration, magnitude, frequency and intensity. Rainfall erosivity is calculated from a series of single storm events by multiplying the total storm kinetic energy with the measured maximum 30-minute rainfall intensity. This estimation requests high temporal resolution (e.g. 30 minutes) rainfall data for sufficiently long time periods (i.e. 20 years). The European Commission's Joint Research Centr(JRC) in collaboration with national/regional meteorological services and Environmental Institutions made an extensive data collection of high resolution rainfall data in the 28 Member States of the European Union plus Switzerland to estimate rainfall erosivity in Europe. This resulted in the Rainfall Erosivity Database on the European Scale (REDES) which included 1,675 stations. The interpolation of those point erosivity values with a Gaussian Process Regression (GPR) model has resulted in the first Rainfall Erosivity map of Europe (Science of the Total Environment, 511: 801-815). In 2016, REDES extended with a monthly component, which allowed developing monthly and seasonal erosivity maps and assessing rainfall erosivity both spatially and temporally for European Union and Switzerland. The monthly erosivity maps have been used to develop composite indicators that map both intra-annual variability and concentration of erosive events (Science of the Total Environment, 579: 1298-1315). Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be applied in different seasons of the year. Finally, the identification of the most erosive month allows recommending certain agricultural management practices (crop


    Institute of Scientific and Technical Information of China (English)


    The finite element method of computational fluid dynamics was applied to simulate the internal flow field in hydraulic spool valve which is one of the most important components in hydraulic technique. The formation of the vortexes with time was investigated under two different flow conditions. Two kinds of flow descriptions including streamline patterns and velocity vector plots were given to show the flow field inside the spool valve clearly, which is of theoretical significance and of practical values to analyze energy loss and fluid noise in the valve and to optimize the intermal flow structure of the valve.

  15. Numerical Analysis of Erosion Caused by Biomimetic Axial Fan Blade

    Directory of Open Access Journals (Sweden)

    Jun-Qiu Zhang


    Full Text Available Damage caused by erosion has been reported in several industries for a wide range of situations. In the present work, a new method is presented to improve the erosion resistance of machine components by biomimetic method. A numerical investigation of solid particle erosion in the standard and biomimetic configuration blade of axial fan is presented. The analysis consists in the application of the discrete phase model, for modeling the solid particles flow, and the Eulerian conservation equations to the continuous phase. The numerical study employs computational fluid dynamics (CFD software, based on a finite volume method. User-defined function was used to define wear equation. Gas/solid flow axial fan was simulated to calculate the erosion rate of the particles on the fan blades and comparatively analyzed the erosive wear of the smooth surface, the groove-shaped, and convex hull-shaped biomimetic surface axial flow fan blade. The results show that the groove-shaped biomimetic blade antierosion ability is better than that of the other two fan blades. Thoroughly analyze of antierosion mechanism of the biomimetic blade from many factors including the flow velocity contours and flow path lines, impact velocity, impact angle, particle trajectories, and the number of collisions.

  16. Rainfall erosivity in New Zealand (United States)

    Klik, Andreas; Haas, Kathrin; Dvorackova, Anna; Fuller, Ian


    Rainfall and its kinetic energy expressed by the rainfall erosivity is the main driver of soil erosion processes by water. The Rainfall-Runoff Erosivity Factor (R) of the Revised Universal Soil Loss Equation is one oft he most widely used parameters describing rainfall erosivity. This factor includes the cumulative effects of the many moderate-sized storms as well as the effects oft he occasional severe ones: R quantifies the effect of raindrop impact and reflects the amopunt and rate of runoff associated with the rain. New Zealand is geologically young and not comparable with any other country in the world. Inordinately high rainfall and strong prevailing winds are New Zealand's dominant climatic features. Annual rainfall up to 15000 mm, steep slopes, small catchments and earthquakes are the perfect basis for a high rate of natural and accelerated erosion. Due to the multifacted landscape of New Zealand its location as island between the Pacific and the Tasmanian Sea there is a high gradient in precipitation between North and South Island as well as between West and East Coast. The objective of this study was to determine the R-factor for the different climatic regions in New Zealand, in order to create a rainfall erosivity map. We used rainfall data (breakpoint data in 10-min intervals) from 34 gauging stations for the calcuation of the rainfall erosivity. 15 stations were located on the North Island and 19 stations on the South Island. From these stations, a total of 397 station years with 12710 rainstorms were analyzed. The kinetic energy for each rainfall event was calculated based on the equation by Brown and Foster (1987), using the breakpoint precipitation data for each storm. On average, a mean annual precipitation of 1357 mm was obtained from the 15 observed stations on the North Island. Rainfall distribution throughout the year is relatively even with 22-24% of annual rainfall occurring in spring , fall and winter and 31% in summer. On the South Island

  17. Physical Model Study: Rill Erosion Morphology and Flow Conditions (United States)

    Strohmeier, S.; Klik, A.; Nouwakpo, S. K.


    Using common catchment size erosion model software either lack of knowledge or lack in process ability of watershed characteristics leads to increasing simplifications in model assumptions. Referring to open channel hydraulics, erosion model equations are prevalently based on stepwise uniform flow condition requirements. Approaching balance of gravitational and frictional resistance forces, channel roughness is fundamental model input. The fusion of simplified model assumptions and the use of lumped roughness determination cause ambivalence in model calibration. By means of a physical model experiment at the National Soil Erosion Laboratory (NSERL), West Lafayette, USA, channel roughness was itemized into skin friction and channel shape friction due to rill morphology. Particularly the Manning-Strickler equation was analyzed concerning the applicability of constant and holistic factors describing boundary friction impacts. The insufficiency in using the Manning-Strickler equation for non-uniform flow conditions is widely advised, whereas lack in predictability in rill erosion development inhibits proper model adoptions. The aim of the present study is to determine the impact of channel morphology on roughness assessment in rill erosion scale. Therefore a 1.9 meter long, 0.6 meter wide and 0.3 meter deep flume with an inclination of 10 % was filled with a loamy soil representing a section of a hill slope. The soil was prepared and saturated by simulated rainfall before each model run. A single erosion channel was enforced to develop by means of steady state runoff. Two different erosion channel types were initiated and observed: I.) a Straight Constrained Rill (SCR) shape by concentration of the runoff into a prepared straight initial rill and II.) a Free Developing Rill (FDR) by back-cut erosion through the plain soil body. Discharge of the outflow was measured in 5 minute interval and outflow sediment concentration was measured every minute. A top view stereo

  18. Computation and analysis of cavitating flow in Francis-class hydraulic turbines (United States)

    Leonard, Daniel J.

    can occur more abruptly in the model than the prototype, due to lack of Froude similitude between the two. When severe cavitation occurs, clear differences are observed in vapor content between the scales. A stage-by-stage performance decomposition is conducted to analyze the losses within individual components of each scale of the machine. As cavitation becomes more severe, the losses in the draft tube account for an increasing amount of the total losses in the machine. More losses occur in the model draft tube as cavitation formation in the prototype draft tube is prevented by the larger hydrostatic pressure gradient across the machine. Additionally, unsteady Detached Eddy Simulations of the fully-coupled cavitating hydroturbine are performed for both scales. Both mesh and temporal convergence studies are provided. The temporal and spectral content of fluctuations in torque and pressure are monitored and compared between single-phase, cavitating, model, and prototype cases. A shallow draft tube induced runner imbalance results in an asymmetric vapor distribution about the runner, leading to more extensive growth and collapse of vapor on any individual blade as it undergoes a revolution. Unique frequency components manifest and persist through the entire machine only when cavitation is present in the hub vortex. Large maximum pressure spikes, which result from vapor collapse, are observed on the blade surfaces in the multiphase simulations, and these may be a potential source of cavitation damage and erosion. Multiphase CFD is shown to be an accurate and effective technique for simulating and analyzing cavitating flow in Francis-class hydraulic turbines. It is recommended that it be used as an industrial tool to supplement model cavitation experiments for all types of hydraulic turbines. Moreover, multiphase CFD can be equally effective as a research tool, to investigate mechanisms of cavitating hydraulic turbines that are not understood, and to uncover unique new

  19. Contributions and Concerns of Concentrated Flow Erosion and Assessment Technologies in Watershed Systems (United States)

    Bingner, R. L.; Momm, H. G.; Wells, R. R.; Dabney, S. M.


    Concentrated runoff increases erosion and efficiently transfers sediment and associated agrichemicals from upland areas to stream channels. Ephemeral gully erosion on cropland in the U.S. may contribute 40% of the sediment delivered to the edge of the field. Typically, conservation practices developed for sheet and rill erosion are also expected to treat ephemeral gully erosion, but technology and tools do not exist to account for the separate benefits and effects of practices on various sediment sources. Practices specifically developed to treat ephemeral gully erosion need further testing, when used in conjunction with sheet and rill erosion control practices. Without improved research studies, subjective observations will continue to be used to satisfy quality criteria in lieu of scientifically defensible, quantitative methods to estimate the impact of gully erosion. Some of the more important limiting components are the identification of and relationships for: (1) ephemeral gully width; (2) soil resistance to gully erosion including a definition for non-erosive layers; (3) the effect of root mass and above ground vegetation on erosion resistance; (4) ephemeral gully networks; and (5) the effect of subsurface flow on ephemeral gullies. Currently, these components are represented through widely divergent to non-existent algorithms. The U.S. Department of Agriculture's AnnAGNPS pollutant loading model has been developed to determine the effects of conservation management plans and provide sediment tracking from all sources within the watershed, including ephemeral gullies. Enhanced technology is also needed to identify where ephemeral gullies may form in the watershed using remote sensing technology. Developing enhanced technology and research for concentrated flow assessments is critical for developing and testing conservation practices specifically designed for gully erosion control. This study will describe the current state of concentrated flow assessment and

  20. Hydraulic Power Plant Machine Dynamic Diagnosis

    Directory of Open Access Journals (Sweden)

    Hans Günther Poll


    Full Text Available A method how to perform an entire structural and hydraulic diagnosis of prototype Francis power machines is presented and discussed in this report. Machine diagnosis of Francis units consists on a proper evaluation of acquired mechanical, thermal and hydraulic data obtained in different operating conditions of several rotary and non rotary machine components. Many different physical quantities of a Francis machine such as pressure, strains, vibration related data, water flow, air flow, position of regulating devices and displacements are measured in a synchronized way so that a relation of cause an effect can be developed for each operating condition and help one to understand all phenomena that are involved with such kind of machine. This amount of data needs to be adequately post processed in order to allow correct interpretation of the machine dynamics and finally these data must be compared with the expected calculated data not only to fine tuning the calculation methods but also to accomplish fully understanding of the influence of the water passages on such machines. The way how the power plant owner has to operate its Francis machines, many times also determined by a central dispatcher, has a high influence on the fatigue life time of the machine components. The diagnostic method presented in this report helps one to understand the importance of adequate operation to allow a low maintenance cost for the entire power plant. The method how to acquire these quantities is discussed in details together with the importance of correct sensor balancing, calibration and adequate correlation with the physical quantities. Typical results of the dynamic machine behavior, with adequate interpretation, obtained in recent measurement campaigns of some important hydraulic turbines were presented. The paper highlights the investigation focus of the hydraulic machine behavior and how to tailor the measurement strategy to accomplish all goals. Finally some


    Directory of Open Access Journals (Sweden)

    O. M. Pshinko


    Full Text Available Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic–viscous–plastic bodies. The system of canonical equations consists of the equations for concrete strength, absolute volume, concrete mix consistency as well as the equation for optimal concrete saturation with aggregates while minimizing cement content. The joint solution of these four equations related to composition allows determining for the materials the concrete composition of required strength, concrete workability with minimum cement content. The procedure for calculation of hydraulic concrete composition according to the physico-analytical method consists of two parts: 1 physical, which is laboratory testing of concrete mix components in different concrete compositions; 2 analytical, which represents the calculation algorithm for concrete compositions equivalent in concrete strength and workability that comply with the specific conditions of concrete placing. Findings. To solve the problem of designing the concrete composition with the desired properties for railway structures and buildings it was proposed to use the information technology in the form of a developed computer program whose algorithm includes the physico-analytical method for hydraulic concrete composition determination. Originality. The developed concrete composition design method takes into account the basic properties of raw materials, concrete mix and concrete, which are pre-determined. The distinctive feature of physico-analytical method is obtaining of a set of equivalent compositions with a certain concrete mix

  2. Effect of flexible vegetation on localized erosion processes (United States)

    Termini, Donatella


    The knowledge of the hydraulic characteristics of flow over vegetation is very important to support the management of fluvial processes. The effects of vegetation on flow velocity are significant and of crucial importance for stabilizing sediments and reducing erosion along the channel. But, because of the temporal changing of roughness due to natural vegetative growth, the response of vegetation to the flow can change in time. Thus, vegetation has a complex effect on walls roughness and the study of the hydrodynamic conditions of flow is difficult. Many theoretical and experimental investigations have been performed in order to analyze both the mean flow and turbulence structure of open-channel flow (Nezu and Rodi 1986; Ghisalberti and Nepf, 2002). Recent experimental runs carried out in laboratory channels with flexible vegetation, realized by using artificial filaments (Kutija and Hong 1996; Ikeda and Kanazawa 1996), investigated some peculiar characteristics of flow turbulence structure and revealed the generation of periodic organized vortices whose center is located slightly above the top of the vegetation layer. Ghisalberti and Nepf (2002) confirmed the formation of such vortices, highlighting that, in the case of flexible vegetation, the vortex-driven oscillation of velocity drives coherent vegetation waving, producing a spatially and temporally variable drag force. In this paper, attention is paid to the influence of vegetation on the erosion processes both on the bed and on the channel banks. Experiments were carried out both in a straight channel and in a meandering channel, both constructed at the Department of Civil, Environmental, Aerospatial and of Materials (DICAM) - University of Palermo (Italy). The formation of turbulence structures inside the vegetated layer is verified, providing some insight into the mechanisms of sediment transport. Nezu, I. & Rodi, W. 1986. Open-channel flow measurements with a Laser Doppler Anemometer. Journal of Hydraulic

  3. Automated Hydraulic System Design and Power Management in Mobile Applications

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    machines if operated in the intended and optimal work area, but due to an inappropriate system layout. Most of the power lost in open circuit hydraulic system systems is in this regard in the transmission part, i.e. hoses and fittings, and the valves used to control the system. A large part of the design...... are working under the most optimal operating conditions. The above in this way constitute the background for the work that is the basis of this report, which deals with how to design and control open-circuit hydraulic systems with multiple consumers to obtain the largest energy utilization, when also...... a presentation of the used graph theory representation that is developed to represent a hydraulic open-circuit system and which is based on a numerical formulation that uniquely describe the system in terms of five set of design variables that describe respectively the topology, the components and the operating...

  4. Creating new life for hydraulic turbines by upgrading and rehabilitation

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, G.F.


    Methods by which to extend the life of aging hydraulic turbines which are still in operation today are discussed. Upgrading some of these turbines which were built as far back as 80 years ago may be feasible with current rehabilitation technology and advanced computer aided hydraulic mechanical design analysis techniques. The benefits achieved with many hydraulic turbine upgrade and rehabilitation programs include: (1) increased performance, (2) extended service life, (3) stopping accelerated deterioration due to cavitation, (4) reducing detrimental symptoms such as unit vibration, component cracking and excessive wearing ring clearances, (5) reducing the possibility of major failures, and (6) reducing unscheduled forced outages. Increased usage of a non-polluting, renewable energy source is an additional benefit of rehabilitation and upgrading of hydro power generating units.2 refs., 2 tabs., 7 figs.

  5. Concept Design of Movable Beam of Hydraulic Press

    Directory of Open Access Journals (Sweden)

    Li Yancong


    Full Text Available The hydraulic press movable beam is one of the key components of the hydraulic press; its design quality impacts the accuracy of the workpiece that the press suppressed. In this paper, first, with maximum deflection and material strength as constraints, mechanical model of the movable beam is established; next, the concept design model of the moveable beam structure is established; the relationship among the force of the side cylinder, the thickness of the inclined plate, outer plate is established also. Taking movable beam of the 100MN type THP10-10000 isothermal forging hydraulic press as an example, the conceptual design result is given. This concept design method mentoned in the paper has general meaning and can apply to other similar product design.

  6. Graffiti for science: Qualitative detection of erosional patterns through bedrock erosion painting (United States)

    Beer, Alexander R.; Kirchner, James W.; Turowski, Jens M.


    Bedrock erosion is a crucial constraint on stream channel incision, and hence whole landscape evolution, in steep mountainous terrain and tectonically active regions. Several interacting processes lead to bedrock erosion in stream channels, with hydraulic shear detachment, plucking, and abrasion due to sediment impacts generally being the most efficient. Bedrock topography, together with the sediment tools and cover effects, regulate the rate and spatial pattern of in situ surface change. Measurements of natural bedrock erosion rates are valuable for understanding the underlying process physics, as well as for modelling landscape evolution and designing engineered structures. However, quantifying spatially distributed bedrock erosion rates in natural settings is challenging and few such measurements exist. We studied spatial bedrock erosion in a 30m-long bedrock gorge in the Gornera, a glacial meltwater stream above Zermatt. This stream is flushed episodically with sediment-laden streamflow due to hydropower operations upstream, with negligible discharge in the gorge in between these flushing events. We coated several bedrock surface patches with environmentally safe, and water-insoluble outdoor paint to document the spatial pattern of surface abrasion, or to be more precise, to document its driving forces. During four consecutive years, the change of the painted areas was recorded repeatedly with photographs before the painting was renewed. These photographs visually documented the spatial patterns of vertical erosion (channel incision), of lateral erosion (channel widening) and of downstream-directed erosion (channel clearance). The observed qualitative patterns were verified through comparison to quantitative change detection analyses based on annual high-resolution terrestrial laser scanning surveys of the bedrock surfaces. Comparison of repeated photographs indicated a temporal cover effect and a general height limit of the tools effect above the streambed

  7. Profile constructing and elevation design of soil reclaimed by hydraulic dredge pump in mining areas

    Energy Technology Data Exchange (ETDEWEB)

    Longqian, C.; Aiqin, S.; Tianjian, Z. [China Univ. of Mining and Technology, Xuzhou, Jiangsu (China). School of Environmental Science and Spatial Informatics; Mei, L. [China Univ. of Mining and Technology, Xuzhou, Jiangsu (China)


    Underground coal mining is the main method of coal mining in China. The hydraulic dredge pump reclamation method is the basic method used for repairing hydraulic erosion. This paper reviewed land reclamation by hydraulic dredge pump in the Yi'an coal mine of Xuzhou mining area in the east of China, and analyzed the constructing theory of soil profiling. It examined factors such as the height of the ground-water table; the thickness of plough horizon; the length of crops root and the state of soil erosion; and the methods of profile construction and elevation design of soil reclaimed by hydraulic dredge pump. A relevant mathematical model was also developed. The paper discussed the general situation of the study site as well as the basic theory of profile constructing and the profile constructing method. The paper also discussed the elevation design of the reclaimed land. It was concluded that the practice has proved that the methods can make the reclaimed soil keep a similar characteristics to that of original cropped soil, and meet the requirements for elevation of reclaimed land. 8 refs., 1 tab., 2 figs.

  8. Biogeochemistry: The soil carbon erosion paradox (United States)

    Sanderman, Jonathan; Berhe, Asmeret Asefaw


    Erosion is typically thought to degrade soil resources. However, the redistribution of soil carbon across the landscape, caused by erosion, can actually lead to a substantial sink for atmospheric CO2.

  9. Tube erosion in bubbling fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E.K. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center; Stallings, J.W. [Electric Power Research Inst., Palo Alto, CA (United States)


    This paper reports on experimental and theoretical studies that were preformed of the interaction between bubbles and tubes and tube erosion in fluidized beds. The results are applicable to the erosion of horizontal tubes in the bottom row of a tube bundle in a bubbling bed. Cold model experimental data show that erosion is caused by the impact of bubble wakes on the tubes, with the rate of erosion increasing with the velocity of wake impact with the particle size. Wake impacts resulting from the vertical coalescence of pairs of bubbles directly beneath the tube result in particularly high rates of erosion damage. Theoretical results from a computer simulation of bubbling and erosion show very strong effects of the bed geometry and bubbling conditions on computed rates of erosion. These results show, for example, that the rate of erosion can be very sensitive to the vertical location of the bottom row of tubes with respect to the distributor.

  10. Hydraulic evaluation of the hypogenic karst area in Budapest (Hungary) (United States)

    Erhardt, Ildikó; Ötvös, Viktória; Erőss, Anita; Czauner, Brigitta; Simon, Szilvia; Mádl-Szőnyi, Judit


    The Buda Thermal Karst area, in central Hungary, is in the focus of research interest because of its thermal water resources and the on-going hypogenic karstification processes at the boundary of unconfined and confined carbonates. Understanding of the discharge phenomena and the karstification processes requires clarification of the groundwater flow conditions in the area. Accordingly, the aim of the present study was to present a hydraulic evaluation of the flow systems based on analyses of the archival measured hydraulic data of wells. Pressure vs. elevation profiles, tomographic fluid-potential maps and hydraulic cross sections were constructed, based on the data distribution. As a result, gravitational flow systems, hydraulic continuity, and the modifying effects of aquitard units and faults were identified in the karst area. The location of natural discharge areas could be explained and the hydraulic behavior of the Northeastern Margin Fault of the Buda Hills could be determined. The flow pattern determines the differences in the discharge distribution (one- and two-component) and related cave-forming processes between the Central System (Rózsadomb area) and Southern System (Gellért Hill area) natural discharge areas. Among the premises of hypogenic karstification, regional upward flow conditions were confirmed along the main discharge zone of the River Danube.

  11. Hydraulic evaluation of the hypogenic karst area in Budapest (Hungary) (United States)

    Erhardt, Ildikó; Ötvös, Viktória; Erőss, Anita; Czauner, Brigitta; Simon, Szilvia; Mádl-Szőnyi, Judit


    The Buda Thermal Karst area, in central Hungary, is in the focus of research interest because of its thermal water resources and the on-going hypogenic karstification processes at the boundary of unconfined and confined carbonates. Understanding of the discharge phenomena and the karstification processes requires clarification of the groundwater flow conditions in the area. Accordingly, the aim of the present study was to present a hydraulic evaluation of the flow systems based on analyses of the archival measured hydraulic data of wells. Pressure vs. elevation profiles, tomographic fluid-potential maps and hydraulic cross sections were constructed, based on the data distribution. As a result, gravitational flow systems, hydraulic continuity, and the modifying effects of aquitard units and faults were identified in the karst area. The location of natural discharge areas could be explained and the hydraulic behavior of the Northeastern Margin Fault of the Buda Hills could be determined. The flow pattern determines the differences in the discharge distribution (one- and two-component) and related cave-forming processes between the Central System (Rózsadomb area) and Southern System (Gellért Hill area) natural discharge areas. Among the premises of hypogenic karstification, regional upward flow conditions were confirmed along the main discharge zone of the River Danube.

  12. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baek, W. P.; Song, C. H.; Kim, Y. S. and others


    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8{approx}2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4{approx}2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure.

  13. A Multidirectional Wind Erosion Model for Western Saxony (United States)

    Schmidt, Simon; Meusburger, Katrin; de Figueiredo, Tomás; Alewell, Christine


    Wind erosion can trigger a non-visible loss of fine soil up to 40 t ha-1 per single event and is as such a major soil threat and environmental concern in areas susceptible to wind erosion. Western Saxony was assessed to be among the most susceptible landscapes not only within Germany but even within Europe (Borelli et al., 2015; Borelli et al., 2014). Moreover, wind erosion events in eastern Germany cause very severe off-site effects with impacts on road traffic. So far the wind erosion model that is normally applied in Germany is based on the norm DIN standard 19706. The DIN standard 19706 was revised by new controlling factors and fuzzy logic to consider the multi-directionality of wind and make it more realistic to wind erosion processes. The new factors are based on different datasets like (i) wind and temperature data (1hr resolution) for 9 gauging stations and interpolated long-term wind speed (1981-2000, 200m resolution) provided by the German Weather Service, (ii) soil erodibility extracted from the digital soil map 1:50,000, (iii) landscape components from different data sources (ATKIS, OpenStreetMap and others), and (iv) a DEM (20m resolution) for local orographic modeling. For a risky sub-region, local wind speeds and directions were modelled based on the Wind Atlas Analysis and Application Programs (WAsP) orography-model to assess road bodies for priority actions. Major improvements of the proposed model are the consideration of changing wind directions and the implementation of factors on soil cover and field length. An estimation of the long-term spatiotemporal variability under changing climate is possible with the model conception. The revised model assesses 3.6% of western Saxonies agricultural fields under very high risk to wind erosion. Larger fields (greater than 116 ha) are connected to a higher frequency (51.7%) of very high risk. Only a small proportion (5.2%) of the high risk class was found in small fields (smaller than 21 ha). Fields under

  14. Improving hydraulic excavator performance through in line hydraulic oil contamination monitoring (United States)

    Ng, Felix; Harding, Jennifer A.; Glass, Jacqueline


    It is common for original equipment manufacturers (OEMs) of high value products to provide maintenance or service packages to customers to ensure their products are maintained at peak efficiency throughout their life. To quickly and efficiently plan for maintenance requirements, OEMs require accurate information about the use and wear of their products. In recent decades, the aerospace industry in particular has become expert in using real time data for the purpose of product monitoring and maintenance scheduling. Significant quantities of real time usage data from product monitoring are commonly generated and transmitted back to the OEMs, where diagnostic and prognostic analysis will be carried out. More recently, other industries such as construction and automotive, are also starting to develop capabilities in these areas and condition based maintenance (CBM) is increasing in popularity as a means of satisfying customers' demands. CBM requires constant monitoring of real time product data by the OEMs, however the biggest challenge for these industries, in particular construction, is the lack of accurate and real time understanding of how their products are being used possibly because of the complex supply chains which exist in construction projects. This research focuses on current dynamic data acquisition techniques for mobile hydraulic systems, in this case the use of a mobile inline particle contamination sensor; the aim was to assess suitability to achieve both diagnostic and prognostic requirements of Condition Based Maintenance. It concludes that hydraulic oil contamination analysis, namely detection of metallic particulates, offers a reliable way to measure real time wear of hydraulic components.

  15. Soil erosion dynamics response to landscape pattern. (United States)

    Ouyang, Wei; Skidmore, Andrew K; Hao, Fanghua; Wang, Tiejun


    Simulating soil erosion variation with a temporal land use database reveals long-term fluctuations in landscape patterns, as well as priority needs for soil erosion conservation. The application of a multi-year land use database in support of a Soil Water Assessment Tool (SWAT) led to an accurate assessment, from 1977 to 2006, of erosion in the upper watershed of the Yellow River. At same time, the impacts of land use and landscape service features on soil erosion load were assessed. A series of supervised land use classifications of Landsat images characterized variations in land use and landscape patterns over three decades. The SWAT database was constructed with soil properties, climate and elevation data. Using water flow and sand density data as parameters, regional soil erosion load was simulated. A numerical statistical model was used to relate soil erosion to land use and landscape. The results indicated that decadal decrease of grassland areas did not pose a significant threat to soil erosion, while the continual increase of bare land, water area and farmland increased soil erosion. Regional landscape variation also had a strong relationship with erosion. Patch level landscape analyses demonstrated that larger water area led to more soil erosion. The patch correlation indicated that contagious grassland patches reduced soil erosion yield. The increased grassland patches led to more patch edges, in turn increasing the sediment transportation from the patch edges. The findings increase understanding of the temporal variation in soil erosion processes, which is the basis for preventing local pollution.

  16. Soil Erosion. LC Science Tracer Bullet. (United States)

    Buydos, John F., Comp.

    Soil erosion is the detachment and movement of topsoil or soil material from the upper part of the soil profile. It may occur in the form of rill, gully, sheet, or wind erosion. Agents of erosion may be water, wind, glacial ice, agricultural implements, machinery, and animals. Soil conservation measures require a thorough understanding of the…

  17. Soil Erosion Risk Assessment and Modelling (United States)

    Fister, Wolfgang; Kuhn, Nikolaus J.; Heckrath, Goswin


    Soil erosion is a phenomenon with relevance for many research topics in the geosciences. Consequently, PhD students with many different backgrounds are exposed to soil erosion related questions during their research. These students require a compact, but detailed introduction to erosion processes, the risks associated with erosion, but also tools to assess and study erosion related questions ranging from a simple risk assessment to effects of climate change on erosion-related effects on geochemistry on various scales. The PhD course on Soil Erosion Risk Assessment and Modelling offered by the University of Aarhus and conducted jointly with the University of Basel is aimed at graduate students with degrees in the geosciences and a PhD research topic with a link to soil erosion. The course offers a unique introduction to erosion processes, conventional risk assessment and field-truthing of results. This is achieved by combing lectures, mapping, erosion experiments, and GIS-based erosion modelling. A particular mark of the course design is the direct link between the results of each part of the course activities. This ensures the achievement of a holistic understanding of erosion in the environment as a key learning outcome.

  18. Cropping system effects on wind erosion potential (United States)

    Wind erosion of soil is a destructive process impacting crop productivity and human health and safety. The mechanics of wind erosion and soil properties that influence erosion are well understood. Less well-studied are the effects that cropping intensity has upon those soil properties. We collected ...

  19. Natural and anthropogenic rates of soil erosion (United States)

    Regions of land that are brought into crop production from native vegetation typically undergo a period of soil erosion instability, and long term erosion rates are greater than for natural lands as long as the land continues being used for crop production. Average rates of soil erosion under natur...

  20. Soil erosion in humid regions: a review (United States)

    Daniel J. Holz; Karl W.J. Williard; Pamela J. Edwards; Jon E. Schoonover


    Soil erosion has significant implications for land productivity and surface water quality, as sediment is the leading water pollutant worldwide. Here, erosion processes are defined. The dominant factors influencing soil erosion in humid areas are reviewed, with an emphasis on the roles of precipitation, soil moisture, soil porosity, slope steepness and length,...

  1. Complex Fluids and Hydraulic Fracturing. (United States)

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H


    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.

  2. Hydraulic properties of ladle slags

    Directory of Open Access Journals (Sweden)

    J. Vlček


    Full Text Available The article presents results of examining of hydraulic properties of ladle slags formed during production of steel. The studied ladle slags were subjected to different cooling mode from the molten state. Based on the ability of the slag react with the water was assessed their hydraulic activity. The hydraulic properties are caused by the presence of minerals dicalcium silicate, tricalcium aluminate, mayenite, brownmillerite and dicalcium ferite. The emergence of required hydrating phases in the ladle slags is conditioned by a sufficient CaO content and their cooling rate. The contact the slag with water during processing and their ageing has a negative effect. The experiment has shown that the phase transformation of the mineral dicalcium silicate which occurs during cooling of the ladle slags cause their volume instability.

  3. Hydraulic resistance of biofilms

    KAUST Repository

    Dreszer, C.


    Biofilms may interfere with membrane performance in at least three ways: (i) increase of the transmembrane pressure drop, (ii) increase of feed channel (feed-concentrate) pressure drop, and (iii) increase of transmembrane passage. Given the relevance of biofouling, it is surprising how few data exist about the hydraulic resistance of biofilms that may affect the transmembrane pressure drop and membrane passage. In this study, biofilms were generated in a lab scale cross flow microfiltration system at two fluxes (20 and 100Lm-2h-1) and constant cross flow (0.1ms-1). As a nutrient source, acetate was added (1.0mgL-1 acetate C) besides a control without nutrient supply. A microfiltration (MF) membrane was chosen because the MF membrane resistance is very low compared to the expected biofilm resistance and, thus, biofilm resistance can be determined accurately. Transmembrane pressure drop was monitored. As biofilm parameters, thickness, total cell number, TOC, and extracellular polymeric substances (EPS) were determined, it was demonstrated that no internal membrane fouling occurred and that the fouling layer actually consisted of a grown biofilm and was not a filter cake of accumulated bacterial cells. At 20Lm-2h-1 flux with a nutrient dosage of 1mgL-1 acetate C, the resistance after 4 days reached a value of 6×1012m-1. At 100Lm-2h-1 flux under the same conditions, the resistance was 5×1013m-1. No correlation of biofilm resistance to biofilm thickness was found; Biofilms with similar thickness could have different resistance depending on the applied flux. The cell number in biofilms was between 4×107 and 5×108 cellscm-2. At this number, bacterial cells make up less than a half percent of the overall biofilm volume and therefore did not hamper the water flow through the biofilm significantly. A flux of 100Lm-2h-1 with nutrient supply caused higher cell numbers, more biomass, and higher biofilm resistance than a flux of 20Lm-2h-1. However, the biofilm thickness

  4. Controls of Hydraulic Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhang Yin


    Full Text Available In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system can connect grid to generate electric and enhance reliability. The control system demonstrates a high performance speed regulation and effectiveness. The results are great significant to design a new type hydraulic wind turbine system.

  5. Ash particle erosion on steam boiler convective section

    Energy Technology Data Exchange (ETDEWEB)

    Meuronen, V.


    In this study, equations for the calculation of erosion wear caused by ash particles on convective heat exchanger tubes of steam boilers are presented. A new, three-dimensional test arrangement was used in the testing of the erosion wear of convective heat exchanger tubes of steam boilers. When using the sleeve-method, three different tube materials and three tube constructions could be tested. New results were obtained from the analyses. The main mechanisms of erosion wear phenomena and erosion wear as a function of collision conditions and material properties have been studied. Properties of fossil fuels have also been presented. When burning solid fuels, such as pulverized coal and peat in steam boilers, most of the ash is entrained by the flue gas in the furnace. In bubbling and circulating fluidized bed boilers, particle concentration in the flue gas is high because of bed material entrained in the flue gas. Hard particles, such as sharp edged quartz crystals, cause erosion wear when colliding on convective heat exchanger tubes and on the rear wall of the steam boiler. The most important ways to reduce erosion wear in steam boilers is to keep the velocity of the flue gas moderate and prevent channelling of the ash flow in a certain part of the cross section of the flue gas channel, especially near the back wall. One can do this by constructing the boiler with the following components. Screen plates can be used to make the velocity and ash flow distributions more even at the cross-section of the channel. Shield plates and plate type constructions in superheaters can also be used. Erosion testing was conducted with three types of tube constructions: a one tube row, an in- line tube bank with six tube rows, and a staggered tube bark with six tube rows. Three flow velocities and two particle concentrations were used in the tests, which were carried out at room temperature. Three particle materials were used: quartz, coal ash and peat ash particles. Mass loss

  6. Integrating hydraulic equivalent sections into a hydraulic geometry study (United States)

    Jia, Yanhong; Yi, Yujun; Li, Zhiwei; Wang, Zhaoyin; Zheng, Xiangmin


    Hydraulic geometry (HG) is an important geomorphic concept that has played an indispensable role in hydrological analyses, physical studies of streams, ecosystem and aquatic habitat studies, and sedimentology research. More than 60 years after Leopold and Maddock (1953) first introduced the concept of HG, researchers have still not uncovered the physical principles underlying HG behavior. One impediment is the complexity of the natural river cross section. The current study presents a new way to simplify the cross section, namely, the hydraulic equivalent section, which is generalized from the cross section in the ;gradually varied flow of an alluvial river; (GVFAR) and features hydrodynamic properties and bed-building laws similar to those of the GVFAR. Energy balance was used to derive the stage Z-discharge Q relationship in the GVFAR. The GVFAR in the Songhua River and the Yangtze River were selected as examples. The data, including measured discharge, river width, water stage, water depth, wet area, and cross section, were collected from the hydrological yearbooks of typical hydrological stations on the Songhua River and the Yangtze River from 1955 to 1987. The relationships between stage Z-discharge Q and cross-sectional area A-stage Z at various stations were analyzed, and ;at-a-station hydraulic geometry; (AHG) relationships were obtained in power-law forms. Based on derived results and observational data analysis, the Z-Q and Z-A relationships of AHG were similar to rectangular weir flows, thus the cross section of the GVFAR was generalized as a compound rectangular, hydraulic equivalent cross section. As to bed-building characteristics, the bankfull discharge method and the stage-discharge-relation method were used to calculate the dominant variables of the alluvial river. This hydraulic equivalent section has the same Z-Q relation, Z-A relation, dominant discharge, dominant river width, and dominant water depth as the cross section in the GVFAR. With the

  7. Detection of Damage in Hydraulic Components by Acoustic Emission Techniques. (United States)


    The narrow-band spectrum of the A.E. signal 61 ,o r r. VV W ’ -r from 0 - 100 KHz was obtained using a spectrum aralyzer. he flujo temperature and...leaks of gases and of liquids create high frequency sounds as well. The greatest single difficulty in -: implementing this kind of test procedure is

  8. Modeling Hydraulic Components for Automated FMEA of a Braking System (United States)



  9. Effect of hydraulic parameters on sediment transport capacity in overland flow over erodible beds (United States)

    Ali, M.; Sterk, G.; Seeger, M.; Boersema, M.; Peters, P.


    Sediment transport is an important component of the soil erosion process, which depends on several hydraulic parameters like unit discharge, mean flow velocity, and slope gradient. In most of the previous studies, the impact of these hydraulic parameters on transport capacity was studied for non-erodible bed conditions. Hence, this study aimed to examine the influence of unit discharge, mean flow velocity and slope gradient on sediment transport capacity for erodible beds and also to investigate the relationship between transport capacity and composite force predictors, i.e. shear stress, stream power, unit stream power and effective stream power. In order to accomplish the objectives, experiments were carried out in a 3.0 m long and 0.5 m wide flume using four well sorted sands (0.230, 0.536, 0.719, 1.022 mm). Unit discharges ranging from 0.07 to 2.07 × 10-3 m2 s-1 were simulated inside the flume at four slopes (5.2, 8.7, 13.2 and 17.6%) to analyze their impact on sediment transport rate. The sediment transport rate measured at the bottom end of the flume by taking water and sediment samples was considered equal to sediment transport capacity, because the selected flume length of 3.0 m was found sufficient to reach the transport capacity. The experimental result reveals that the slope gradient has a stronger impact on transport capacity than unit discharge and mean flow velocity due to the fact that the tangential component of gravity force increases with slope gradient. Our results show that unit stream power is an optimal composite force predictor for estimating transport capacity. Stream power and effective stream power can also be successfully related to the transport capacity, however the relations are strongly dependent on grain size. Shear stress showed poor performance, because part of shear stress is dissipated by bed irregularities, bed form evolution and sediment detachment. An empirical transport capacity equation was derived, which illustrates that

  10. Smart magnetic markers use in hydraulic fracturing. (United States)

    Zawadzki, Jarosław; Bogacki, Jan


    One of the main challenges and unknowns during shale gas exploration is to assess the range and efficiency of hydraulic fracturing. It is also essential to assess the distribution of proppant, which keeps the fracture pathways open. Solving these problems may considerably increase the efficiency of the shale gas extraction. Because of that, the idea of smart magnetic marker, which can be detected when added to fracturing fluid, has been considered for a long time. This study provides overview of the possibilities of magnetic marker application for shale gas extraction. The imaging methods using electromagnetic markers, are considered or developed in two directions. The first possibility is the markers' electromagnetic activity throughout the whole volume of the fracturing fluid. Thus, it can be assumed that the whole fracturing fluid is the marker. Among these type of hydraulic fracturing solutions, ferrofluid could be considered. The second possibility is marker, which is just one of many components of the fracturing fluid. In this case feedstock magnetic materials, ferrites and nanomaterials could be considered. Magnetic properties of magnetite could be too low and ferrofluids' or nanomaterials' price is unacceptably high. Because of that, ferrites, especially ZnMn ferrites seems to be the best material for magnetic marker. Because of the numerous applications in electronics, it is cheap and easily available, although the price is higher, then that of magnetite. The disadvantage of using ferrite, could be too small mechanical strength. It creates an essential need for combining magnetic marker with proppant into magnetic-ceramic composite.

  11. Hydro-abrasive erosion on coated Pelton runners: Partial calibration of the IEC model based on measurements in HPP Fieschertal (United States)

    Felix, D.; Abgottspon, A.; Albayrak, I.; Boes, R. M.


    At medium- and high-head hydropower plants (HPPs) on sediment-laden rivers, hydro-abrasive erosion on hydraulic turbines is a major economic issue. For optimization of such HPPs, there is an interest in equations to predict erosion depths. Such a semi-empirical equation suitable for engineering practice is proposed in the relevant guideline of the International Electrotechnical Commission (IEC 62364). However, for Pelton turbines no numerical values of the model's calibration parameters have been available yet. In the scope of a research project at the high-head HPP Fieschertal, Switzerland, the particle load and the erosion on the buckets of two hard-coated 32 MW-Pelton runners have been measured since 2012. Based on three years of field data, the numerical values of a group of calibration parameters of the IEC erosion model were determined for five application cases: (i) reduction of splitter height, (ii) increase of splitter width and (iii) increase of cut-out depth due to erosion of mainly base material, as well as erosion of coating on (iv) the splitter crests and (v) inside the buckets. Further laboratory and field investigations are recommended to quantify the effects of individual parameters as well as to improve, generalize and validate erosion models for uncoated and coated Pelton turbines.

  12. Experimental and numerical investigations of hydroerosive grinding for injection components

    Energy Technology Data Exchange (ETDEWEB)

    Iben, Uwe; Weickert, Mathias [Robert Bosch GmbH, Stuttgart (Germany)


    Diesel injection injectors are very complicated hydraulic systems which contain among other things small throttles and small sized blow holes in order to inject the fuel precisely into the combustion chamber. Due to the extremely strong exhaust laws, the geometrical forms and tolerances of the hydraulic components have to be maintained. The hydroerosive grinding process (HE process) is used for manufacturing of small holes using in Diesel injection components. A mixture of oil and small sized particles are used to form the final geometrical shapes of the throttles and the blow holes. Simulation models help to understand the underlying physical process and to optimize the manufacturing parameters for an efficient production process. This paper presents an Euler-Euler approach for the numerical simulation of the HE process. It describes a two-phase slurry flow consisting of a liquid and a dispersed solid phase which causes wear at walls of devices. The continuous fluid phase is solved using a finite volume scheme in which the Large Eddy Simulation (LES) model is applied to resolve large-scale turbulent structures. The solid phase is disperse and treated as a second continuum in which drag and lift forces as well as added mass, pressure and history force are taken into account. Considering particle-particle interactions, the granular model from Gidaspow is used for particle volume concentrations over 1%. Investigations of erosion processes proofed that non-spherically shaped particles as well as harder particles increase the wear on devices significantly. Consequently, non-spherical particles are utilized for the hydroerosive grinding. Their steady drag, unsteady drag and lift coefficients, depending on the particle Reynolds number, are determined by a direct numerical simulation via an in-house LES Lattice-Boltzmann solver. This Lattice-Boltzmann method was presented for laminar flows by Hoelzer. In this work, interpolating functions of these coefficients are

  13. Why can postwildfire runoff and erosion vary from negligible to extreme? (United States)

    Noske, P.; Nyman, P.; Lane, P. N. J.; Van der Sant, R.; Sheridan, G. J.


    Soil surface properties vary with aridity, as does runoff and erosion after wildfire. Here we draw on studies conducted in different upland eucalypt forests of Victoria Australia, to compare and contrast the hydrological effects of wildfire. The study central to this presentation was conducted in two small (0.2-0.3 ha) dry forested headwater catchments burned during the 2009 Black Saturday wildfire. Surface runoff ratios during rainfall events approached 0.45 in the first year postwildfire. High runoff ratios in these dry forests were attributed to wildfire-induced soil water repellency and inherently low hydraulic conductivity. Average annual sediment yields peaked at 10 t ha-1 during the first year before declining dramatically to background levels, suggesting high-magnitude erosion processes may become limited by sediment availability on hillslopes. Surface runoff and erosion differed substantially between the equatorial and polar-facing catchments; this was most likely due to higher rates of infiltration and surface roughness on polar-facing slopes. Data collected from a plot scale study from 5 different burned forest locations of differing aridity produced a range of runoff ratios that support the findings of the central study. Additional data from burned catchments supporting wetter forests are also presented to further illustrate the contrast in rates of runoff and recovery from a different forest type. Results show that rates of postwildfire erosion and runoff in eucalypt forests in south-east Australia are highly variable. Large differences in erosion and runoff occur with relatively small changes in aridity.

  14. Micro-mechanical analysis on the onset of erosion in granular materials (United States)

    Harshani, H. M. D.; Galindo-Torres, S. A.; Scheuermann, A.; Muhlhaus, H. B.


    The onset of internal erosion is a particle level phenomenon, and therefore, a numerical model capable of tracking the behaviour of particles at micro-scale is needed to exemplify most of the critical variables involved in the process. In this paper, a three-dimensional fully coupled fluid-solid model was utilized to explore the initiation of erosion. Particles were modelled on a micro-scale using the discrete element method (DEM), while the fluid was modelled at a meso-scale using the lattice Boltzmann method (LBM). Fluid was passed through a solid matrix in an opposing direction to gravity with the pore water pressure controlled in stepwise stages until internal erosion or bulk movement of the particles developed and progressed. The model was validated through experimental results found in the literature. Once validated, particle fluid properties were analyzed for the onset of erosion. Determination of a critical hydraulic gradient was obtained from the modelled scenario, which gave clear evidence that the coupled DEM-LBM scheme is a very effective tool for studying internal erosion phenomena in water retaining structures.

  15. Use of the mass exchange theory for describing soil erosion by water and wind (United States)

    Gendugov, V. M.; Glazunov, G. P.; Larionov, G. A.; Nazarov, N. F.


    It was shown that the soil loss equation for different types of erosion should and can be theoretically derived in a general form. An analogy was drawn between the detachment of soil particles by water or air flows, on the one hand, and the heat and mass exchange in the boundary layer on a plate flowed around by a flow, on the other hand, which allowed finding the thermodynamic parameters of the circumfluent flow analogous to the mechanical parameters of a flow eroding the soil. On this basis, the Clausius-Clapeyron equation for equilibrium sublimation was transformed into an equation describing the removal of soil by both water and wind. The validity of the obtained equation for the description of the soil loss rate as a function of the eroding flow parameters was confirmed using the data on the physical simulation of wind erosion in wind tunnels and water erosion in hydraulic flumes. The confirmed adequacy of the derived equation to the phenomena of soil erosion by water and wind provides the theoretical substantiation of the equations previously derived for soil loss by washing [6] and blowing [3] and forms the basis for the further development of the theory of soil erosion.

  16. Splash erosion. A bibliometric Review (United States)

    Fernández Raga, M. B.


    Ellison (1944) developed the splash board as a system for measuring splash erosion that was both cheap and reliable. Bollinne (1975), Morgan (1978, 1981). Mutchler (1967) described another different type of splash detectors according to whether they were passive or could register data. In the study mentioned above these authors included bottles, funnels, glasses, photography, markers. After that several devices has been made up like the splash sampler (Leguedois et al., 2005), soil tray (Van Dijk et al., 2002), splash funnel (Terry, 1989) and several rain cups (Fernandez-Raga et al., 2010; Molina and Llinares, 1996; Torri et al., 1987). Splash erosion research has materialized in the form of a number of papers published in international journals. The database of bibliographic references employed has been one of the most prestigious ones: theWeb of Science (ISI). The search was carried out on January 27th 2012. Among the 3x10^8 scholarly documents included in the Science Citation Index Expanded (SCI-EXPANDED) 1899 to present , the searching engine located 439 containing the word "splash erosion*", where the asterisk acts as a wildcard for any letter or group of letters. Of these, 383 were classified as articles, 87 as proceeding papers, 5 as editorial material, 2 as notes and 1 as correction. These documents have been published in 163 different journals, although four are particularly recurrent: Earth surface processes and Landforms, Catena, Soil Science Society of America Journal and Hydrological processes, with 41, 35, 35 and 26 published documents respectively. A geographic analysis of these articles has been carried out in an attempt to determine in what parts of the world research projects were making use of splash erosion. The results are that anglo-saxon countries, as USA, England and Australia dominate, particularly USA, with 130 articles. China and Japan are large communities of researches too, and some Central European countries as Belgium, France Germany

  17. Soil Erosion Threatens Food Production

    Directory of Open Access Journals (Sweden)

    Michael Burgess


    Full Text Available Since humans worldwide obtain more than 99.7% of their food (calories from the land and less than 0.3% from the oceans and aquatic ecosystems, preserving cropland and maintaining soil fertility should be of the highest importance to human welfare. Soil erosion is one of the most serious threats facing world food production. Each year about 10 million ha of cropland are lost due to soil erosion, thus reducing the cropland available for world food production. The loss of cropland is a serious problem because the World Health Organization and the Food and Agricultural Organization report that two-thirds of the world population is malnourished. Overall, soil is being lost from agricultural areas 10 to 40 times faster than the rate of soil formation imperiling humanity’s food security.


    Energy Technology Data Exchange (ETDEWEB)



    This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% {sup 239}Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: {sm_bullet}bare, {sm_bullet}1 inch of hydraulic fluid, or {sm_bullet}12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection.

  19. DCS Hydraulics Submittal, Butler County, Alabama, USA (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data includes spatial datasets and data tables necessary for documenting the hydraulic procedures for computing flood elevations for a flood insurance...

  20. DCS Hydraulics Submittal, Bullock County, Alabama, USA (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data includes spatial datasets and data tables necessary for documenting the hydraulic procedures for computing flood elevations for a flood insurance...

  1. DCS Hydraulics Submittal, Covington County, Alabama, USA (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data includes spatial datasets and data tables necessary for documenting the hydraulic procedures for computing flood elevations for a flood insurance...

  2. Erosive burning of solid propellants (United States)

    King, Merrill K.


    Presented here is a review of the experimental and modeling work concerning erosive burning of solid propellants (augmentation of burning rate by flow of product gases across a burning surface). A brief introduction describes the motor design problems caused by this phenomenon, particularly for low port/throat area ratio motors and nozzleless motors. Various experimental techniques for measuring crossflow sensitivity of solid propellant burning rates are described, with the conclusion that accurate simulation of the flow, including upstream flow development, in actual motors is important since the degree of erosive burning depends not only on local mean crossflow velocity and propellant nature, but also upon this upstream development. In the modeling area, a brief review of simplified models and correlating equations is presented, followed by a description of more complex numerical analysis models. Both composite and double-base propellant models are reviewed. A second generation composite model is shown to give good agreement with data obtained in a series of tests in which composite propellant composition and heterogeneity (particle size distribution) were systematically varied. Finally, the use of numerical models for the development of erosive burning correlations is described, and a brief discussion of scaling is presented.

  3. High Pressure Hydraulic Distribution System (United States)


    to 500 0 F. 5 cycles. 5000 F room temperature to 50001F; 45 ______________ Icycles The tesis planned for the distribution system demonstrator were...American Society for Testing and Materials ASTM D412 - Tension Testing of Vulcanized Rubber ASTM D571 - Testing Automotive Hydraulic Brake Hose Society of

  4. Hydraulic fracturing system and method

    Energy Technology Data Exchange (ETDEWEB)

    Ciezobka, Jordan; Salehi, Iraj


    A hydraulic fracturing system and method for enhancing effective permeability of earth formations to increase hydrocarbon production, enhance operation efficiency by reducing fluid entry friction due to tortuosity and perforation, and to open perforations that are either unopened or not effective using traditional techniques, by varying a pump rate and/or a flow rate to a wellbore.

  5. Hydraulic jumps in a channel

    DEFF Research Database (Denmark)

    Bonn, D.; Andersen, Anders Peter; Bohr, Tomas


    We present a study of hydraulic jumps with flow predominantly in one direction, created either by confining the flow to a narrow channel with parallel walls or by providing an inflow in the form of a narrow sheet. In the channel flow, we find a linear height profile upstream of the jump as expected...

  6. Hydraulic Fracture Containment in Sand

    NARCIS (Netherlands)

    Dong, Y.


    The mechanism of hydraulic fracturing in soft, high permeability material is considered fundamentally different from that in hard, low permeability rock, where a tensile fracture is created and conventional linear elastic fracture mechanics (LEFM) applies. The fracturing and associated modeling work

  7. Design of hydraulic recuperation unit

    Directory of Open Access Journals (Sweden)

    Jandourek Pavel


    Full Text Available This article deals with design and measurement of hydraulic recuperation unit. Recuperation unit consist of radial turbine and axial pump, which are coupled on the same shaft. Speed of shaft with impellers are 6000 1/min. For economic reasons, is design of recuperation unit performed using commercially manufactured propellers.

  8. Tree Hydraulics: How Sap Rises (United States)

    Denny, Mark


    Trees transport water from roots to crown--a height that can exceed 100 m. The physics of tree hydraulics can be conveyed with simple fluid dynamics based upon the Hagen-Poiseuille equation and Murray's law. Here the conduit structure is modelled as conical pipes and as branching pipes. The force required to lift sap is generated mostly by…

  9. Tree Hydraulics: How Sap Rises (United States)

    Denny, Mark


    Trees transport water from roots to crown--a height that can exceed 100 m. The physics of tree hydraulics can be conveyed with simple fluid dynamics based upon the Hagen-Poiseuille equation and Murray's law. Here the conduit structure is modelled as conical pipes and as branching pipes. The force required to lift sap is generated mostly by…

  10. 远洋船用伸缩折叠起重机液压系统设计%Marine telescopic folding crane hydraulic system design

    Institute of Scientific and Technical Information of China (English)

    卢志珍; 倪学虎; 舒希勇; 王成龙


    在分析伸缩折叠起重机对液压系统要求的基础上,针对起重机技术参数及客户要求提出了液压系统设计的思路.对关键液压元件——液压泵、液压马达、液压缸进行了计算选型,设计了液压原理图,并阐述了起重机液压回路的工作原理.%Based on the analysis of telescopic folding crane hydraulic system requirements,put forward the hydraulic system design thinking according to crane technical parameters and requirements of customers. Calculation and type selection of the key hydraulic components------hydraulic pump and hydraulic motor, hydraulic cylinder, design hydraulic principle diagram and expoundscrane hydraulic loop principle of work.

  11. A new linear type hydraulic motor (United States)

    Jiang, Dong; Zhang, Tong; Li, Wenhua; Chen, Xinyang


    This paper proposes the design of liner type hydraulic motor on the base of inner curved radial piston hydraulic motor. The hydraulic cylinders of the new type motor are in the straight line which will improve the utilization of the axial space and different out power can be supplied by changes the number of cylinders. In this paper, the structure and working principle of the liner type hydraulic motor is introduced.

  12. Standard Test Method for Cavitation Erosion Using Vibratory Apparatus

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This test method covers the production of cavitation damage on the face of a specimen vibrated at high frequency while immersed in a liquid. The vibration induces the formation and collapse of cavities in the liquid, and the collapsing cavities produce the damage to and erosion (material loss) of the specimen. 1.2 Although the mechanism for generating fluid cavitation in this method differs from that occurring in flowing systems and hydraulic machines (see 5.1), the nature of the material damage mechanism is believed to be basically similar. The method therefore offers a small-scale, relatively simple and controllable test that can be used to compare the cavitation erosion resistance of different materials, to study in detail the nature and progress of damage in a given material, or—by varying some of the test conditions—to study the effect of test variables on the damage produced. 1.3 This test method specifies standard test conditions covering the diameter, vibratory amplitude and frequency of the...

  13. Erosion Evaluation of a Slurry Mixer Tank with Computational Fluid Dynamics Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S


    This paper discusses the use of computational fluid dynamics (CFD) methods to understand and characterize erosion of the floor and internal structures in the slurry mixing vessels in the Defense Waste Processing Facility. An initial literature survey helped identify the principal drivers of erosion for a solids laden fluid: the solids content of the working fluid, the regions of recirculation and particle impact with the walls, and the regions of high wall shear. A series of CFD analyses was performed to characterize slurry-flow profiles, wall shear, and particle impingement distributions in key components such as coil restraints and the vessel floor. The calculations showed that the primary locations of high erosion resulting from abrasion were at the leading edge of the coil guide, the tank floor below the insert plate of the coil guide support, and the upstream lead-in plate. These modeling results based on the calculated high shear regions were in excellent agreement with the observed erosion sites in both location and the degree of erosion. Loss of the leading edge of the coil guide due to the erosion damage during the slurry mixing operation did not affect the erosion patterns on the tank floor. Calculations for a lower impeller speed showed similar erosion patterns but significantly reduced wall shear stresses.

  14. Forces acting on particles in a Pelton bucket and similarity considerations for erosion (United States)

    Rai, A. K.; Kumar, A.; Staubli, T.


    High sediment transport rates cause severe erosion issues in hydropower plants leading to interruptions in power generation, decrease in efficiency and shutdown for repair and maintenance. For Pelton turbines operating at high head, the issue of erosion is severe, especially in components like buckets, nozzle rings and needles. Goal of the study is to develop erosion focussed guidelines for both designing as well as operating hydropower plants with Pelton runners. In this study, the flow of sediment inside a Pelton bucket with respect to forces acting on solid particles is analysed with an analytical approach by considering different dynamic forces originating from the rotation of the turbine, the curvature of the buckets, and the Coriolis effect. Further, the path of sediment particles and its effect on erosion phenomena are analysed based on the process of separation of different sized sediment particles from streamlines. The data relating to head, power, discharge, number of jet and efficiency of 250 hydropower plants installed all over the world were analysed in this study to find the major factors related to erosion in Pelton turbine bucket. From analysis of different force ratios, it is found that an increase of D/B, i.e. the ratio of pitch circle diameter and bucket width, and/or decrease of specific speed (nq) enhances erosion. As the erosion process depends significantly on nondimensional parameters D/B and nq, these are considered as similarity measures for scaling of the erosion process in the Pelton buckets of various sizes.

  15. Hydraulic analysis of the Wendelstein 7-X cooling loops

    Energy Technology Data Exchange (ETDEWEB)

    Smirnow, M., E-mail: [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Orozco, G.; Boscary, J. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Peacock, A. [European Commission c/o Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany)


    Highlights: • A hydraulic simulation model of the W7-X cooling loops and plasma facing components. • CFD analysis of orifice components. • Optimization and flow balancing of cooling loops. -- Abstract: Actively water cooled in vessel components (IVC) are required for the long pulse operation of the stellarator Wendelstein 7-X (W7-X). In total, the cooling pipes have a length of about 4.5 km, supplying the coolant via 304 cooling circuits for the IVC. Within each cooling loop, the IVC are organized mostly in parallel. A homogeneous flow through all branches or at least the minimum specified flow in all of the branches of a circuit is crucial for the IVC to withstand the loading conditions. A detailed hydraulic simulation model of the W7-X cooling loops was built with the commercial code Flowmaster, which is a 1-D computational fluid dynamics software. In order to handle the huge amount of pipe-work data that had to be modelled, a pre- and post-processing macro was developed to transfer the 3D Catia V5 CAD model to the 1-D piping model. Within this model, the hydraulic characteristics of different types of first wall components were simulated, and compared with their pressure drop measurements. As a result of this work, the need for optimization of some cooling loops has been identified and feasible modified solutions were selected.

  16. Hydraulic characterization of " Furcraea andina (United States)

    Rivera-Velasquez, M. F.; Fallico, C.; Molinari, A.; Santillan, P.; Salazar, M.


    The present level of pollution, increasingly involving groundwaters, constitutes a serious risk for environment and human health. Therefore the remediation of saturated and unsaturated soils, removing pollutant materials through innovative and economic bio-remediation techniques is more frequently required. Recent studies on natural fiber development have shown the effectiveness of these fibers for removal of some heavy metals, due to the lignin content in the natural fibers which plays an important role in the adsorption of metal cations (Lee et al., 2004; Troisi et al., 2008; C. Fallico, 2010). In the context of remediation techniques for unsaturated and/or saturated zone, an experimental approach for the hydraulic characterization of the "Furcraea andina" (i.e., Cabuya Blanca) fiber was carried out. This fiber is native to Andean regions and grows easily in wild or cultivated form in the valleys and hillsides of Colombia, Ecuador, and Peru. Fibers of "Furcraea andina" were characterized by experimental tests to determine their hydraulic conductivity or permeability and porosity in order to use this medium for bioremediation of contaminated aquifer exploiting the physical, chemical and microbial capacity of natural fiber in heavy metal adsorption. To evaluate empirically the hydraulic conductivity, laboratory tests were carried out at constant head specifically on the fibers manually extracted. For these tests we used a flow cell (used as permeameter), containing the "Furcraea andina" fibers to be characterized, suitably connected by a tygon pipe to a Marriott's bottle, which had a plastic tube that allow the adjustment of the hydraulic head for different tests to a constant value. By this experiment it was also possible to identify relationships that enable the estimation of permeability as a function of density, i.e. of the compaction degree of the fibers. Our study was carried out for three values of hydraulic head (H), namely 10, 18, and 25 cm and for each

  17. Summary Findings of a Systematic Literature Review of the Ultrasound Assessment of Bone Erosions in Rheumatoid Arthritis

    DEFF Research Database (Denmark)

    Szkudlarek, Marcin; Terslev, Lene; Wakefield, Richard J


    OBJECTIVE: Bone erosions in rheumatoid arthritis (RA) have been studied in an increasing amount of research. Both earlier and present classification criteria of RA contain erosions as a significant classification component. Ultrasound (US) can detect bone changes in accessible surfaces. Therefore...

  18. When erosion ruins the chronology (United States)

    Wolters, Steffen; Enters, Dirk; Blume, Katharina; Lücke, Andreas


    Human land-use has considerably shaped the landscape of north-western Germany over the past millennia. Deforestation and agriculture created a predominantly open scenery preserved until today with only a few remnants of former landscape elements such as woodlands, peat bogs, heath lands and lakes. Here we present a multi-proxy approach including sedimentological and geochemical parameters (e. g. element concentrations and stable isotopes) as well as biological proxies (pollen, macro fossils and diatoms) combined with an archaeological site analysis to investigate the effects of prehistoric land-use on lake systems and their catchment areas with a special focus on changes of the water quality, e. g. eutrophication and acidification and its natural regeneration during phases of weaker land-use impact. The study reveals a millenia-long history of erosion processes caused by successive selective woodland clearances starting in Neolithic Times. The geochemical evidence of soil erosion is recorded by distinct peaks of the terrigenic elements K and Ti. However, due to (1) the low sensitivy of the XRF scanner for Si and (2) the prevalence of diatom related biogenic silicon XRF-scanning of highly organic lake sediments fails to reflect the actual sand input caused by erosion. Particularly single quartz grains are not detected in the organic sediment matrix. Therefore we make successful use of mineral grain analysis which previously has only been applied to record aeolian input in bogs. K and Ti concentrations are not correlated with the content of mineral grains which suggest two different erosion processes. Our efforts to construct robust age-depth relationships based on AMS 14C-dates of terrestrial plant macrofossils reveal a specific dating issue of northwest German lakes. Especially in younger sediments we observe 14C-dates which are on the one hand too old and on the other hand among themselves roughly contemporaneous. We explain this feature with the extensive bog

  19. Modelling sheet erosion on steep slopes in the loess region of China (United States)

    Wu, Bing; Wang, Zhanli; Zhang, Qingwei; Shen, Nan; Liu, June


    The relationship of sheet erosion rate (SE), slope gradient (S) and rainfall intensity (I), and hydraulic parameters, such as flow velocity (V), shear stress (τ), stream power (Ω) and unit stream power (P), was investigated to derive an accurate experimental model. The experiment was conducted at slopes of 12.23%, 17.63%, 26.8%, 36.4%, 40.4% and 46.63% under I of 48, 60, 90, 120, 138 and 150 mm h-1, respectively, using simulated rainfall. Results showed that sheet erosion rate increased as a power function with rainfall intensity and slope gradient with R2 = 0.95 and Nash-Sutcliffe model efficiency (NSE) = 0.87. Sheet erosion rate was more sensitive to rainfall intensity than to slope gradient. It increased as a power function with flow velocity, which was satisfactory for predicting sheet erosion rate with R2 = 0.95 and NSE = 0.81. Shear stress and stream power could be used to predict sheet erosion rate accurately with a linear function equation. Stream power (R2 = 0.97, NSE = 0.97) was a better predictor of sheet erosion rather than shear stress (R2 = 0.90, NSE = 0.89). However, a prediction based on unit stream power was poor. The new equation (i.e. SE = 7.5 ×1012S1.43I3.04 and SE = 0.06 Ω - 0.0003 and SE = 0.011 τ - 0.01) would improve water erosion estimation on loess hillslopes of China.

  20. 14 CFR 25.1435 - Hydraulic systems. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 25.1435 Section 25.1435... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1435 Hydraulic systems. (a) Element design. Each element of the hydraulic system must be designed to: (1) Withstand the proof...

  1. 14 CFR 27.1435 - Hydraulic systems. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 27.1435 Section 27.1435... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1435 Hydraulic systems. (a) Design. Each hydraulic system and its elements must withstand, without yielding, any structural loads...

  2. Pressure Characteristic Analysis of a Hydraulic System (United States)

    Cho, H. Y.; Yang, H. J.


    EPPR(ElectroProportional Pressure Reducing) valve control the MCV(Main Control Valve) built on the mobile heavy machine. The EPPR valve was tested in the experimental setup and the performance of the valve was compared with that of the existing EPPR valve. On thisstudy, electromagnetic properties analysis using AMESim program was performed to optimize the designing of EPPR Valve (Electric Proportional Pressure Reducing Valve) and by applying its results to the hydraulic system analytical model, performance of the valve could be predicted. Also by comparing the results of the actual experiment and the simulation, The results of thisstudy is that the 3 factor(cone angle, tip width, clearance between sleeve and plunger) have much effectiveness than other components in the EPPR valve.

  3. Valorization of phosphogypsum as hydraulic binder. (United States)

    Kuryatnyk, T; Angulski da Luz, C; Ambroise, J; Pera, J


    Phosphogypsum (calcium sulfate) is a naturally occurring part of the process of creating phosphoric acid (H(3)PO(4)), an essential component of many modern fertilizers. For every tonne of phosphoric acid made, from the reaction of phosphate rock with acid, commonly sulfuric acid, about 3t of phosphogypsum are created. There are three options for managing phosphogypsum: (i) disposal or dumping, (ii) stacking, (iii) use-in, for example, agriculture, construction, or landfill. This paper presents the valorization of two Tunisian phosphogypsums (referred as G and S) in calcium sulfoaluminate cement in the following proportions: 70% phosphogypsum-30% calcium sulfoaluminate clinker. The use of sample G leads to the production of a hydraulic binder which means that it is not destroyed when immersed in water. The binder including sample S performs very well when cured in air but is not resistant in water. Formation of massive ettringite in a rigid body leads to cracking and strength loss.

  4. River crossing: combining basic hydraulics with pipe protection

    Energy Technology Data Exchange (ETDEWEB)

    Carnicero, Martin [TGN Transportadora de Gas del Norte, Buenos Aires (Argentina). Integrity Dept.], e-mail:


    As a complement to the paper presented in 2003 (IBP505-03 River crossings: a decision making scheme for the execution of protection works), this paper is about sharing the experience collected during the following 6 years, regarding the performance of remediation works. At that time, alternatives were presented for erosion control in river beds (free spanning, unburied and buried pipe), river banks (curves and meanders), flood plains, river diversions through the right of way, and rivers subject to debris flow. While developing a solution, basic hydraulic principles must be taken into consideration, keeping in mind that the primary objective is to protect a pipeline. For each of the typical solutions discussed in the 2003 paper, there will be an example with a brief theoretical explanation, a conceptual justification of the solution adopted, and recommendations for construction details which become critical for the success of the projects implemented. (author)

  5. Conventional and anti-erosion fluoride toothpastes: effect on enamel erosion and erosion-abrasion. (United States)

    Ganss, C; Lussi, A; Grunau, O; Klimek, J; Schlueter, N


    New toothpastes with anti-erosion claims are marketed, but little is known about their effectiveness. This study investigates these products in comparison with various conventional NaF toothpastes and tin-containing products with respect to their erosion protection/abrasion prevention properties. In experiment 1, samples were demineralised (10 days, 6 × 2 min/day; citric acid, pH 2.4), exposed to toothpaste slurries (2 × 2 min/day) and intermittently stored in a mineral salt solution. In experiment 2, samples were additionally brushed for 15 s during the slurry immersion time. Study products were 8 conventional NaF toothpastes (1,400-1,490 ppm F), 4 formulations with anti-erosion claims (2 F toothpastes: NaF + KNO(3) and NaF + hydroxyapatite; and 2 F-free toothpastes: zinc-carbonate-hydroxyapatite, and chitosan) and 2 Sn-containing products (toothpaste: 3,436 ppm Sn, 1,450 ppm F as SnF(2)/NaF; gel: 970 ppm F, 3,030 ppm Sn as SnF(2)). A mouth rinse (500 ppm F as AmF/NaF, 800 ppm Sn as SnCl(2)) was the positive control. Tissue loss was quantified profilometrically. In experiment 1, most NaF toothpastes and 1 F-free formulation reduced tissue loss significantly (between 19 and 42%); the Sn-containing formulations were the most effective (toothpaste and gel 55 and 78% reduction, respectively). In experiment 2, only 4 NaF toothpastes revealed significant effects compared to the F-free control (reduction between 29 and 37%); the F-free special preparations and the Sn toothpaste had no significant effect. The Sn gel (reduction 75%) revealed the best result. Conventional NaF toothpastes reduced the erosive tissue loss, but had limited efficacy regarding the prevention of brushing abrasion. The special formulations were not superior, or were even less effective.

  6. 振动压路机液压系统研究%On the Hydraulic Driving System Based on Full Hydraulic Vibratory Roller

    Institute of Scientific and Technical Information of China (English)

    杨平; 许炳照


    According to the application of hydraulic control technology of full hydraulic vibratory roller,the paper presents a design scheme of how to select hydraulic driving pumps and the rotators for the hydraulic component parts.Before selecting the methods of the hydraulic driving pumps and the rotators,the design scheme of the hydraulic system power and the engine should be mated properly,so as to determine the data of full hydraulic vibratory roller.%对全液压振动压路机的液压系统进行配置设计,在确定液压泵及液压马达型号规格后,计算液压系统功率与整机的功率合理匹配,从而确定全液压振动压路机各液压系统的参数,完成整机液压系统的合理配置。

  7. Characterization of Hydraulic Fracture with Inflated Dislocation Moving Within a Semi-infinite Medium

    Institute of Scientific and Technical Information of China (English)

    OUYANG Zhi-hua; ELSWORTH Derek; LI Qiang


    Hydraulic fracturing is accompanied by a change in pore fluid pressure. As a result, this may be conveniently represented as inflated dislocation moving within a semi-infinite medium. Theory is developed to describe the pore pressures that build up around an inflated volumetric dislocation migrating within a saturated porous-elastic semi-infinite medium as analog to hydraulic fracturing emplacement. The solution is capable of evaluating the system behavior of both constant fluid pressure and zero flux surface conditions through application of a superposition. Characterization of horizontal moving dislocation processes is conducted as an application of these techniques. Where the mechanical and hydraulic parameters are defined, a priori, type curve matching of responses may be used to evaluate emplacement location uniquely. Pore pressure response elicited at a dilation, subject to pressure control is of interest in representing hydraulic fracturing where leak-off is an important component. The effect of hydraulic fracturing on fracture fluid pressure is evaluated in a poroelastic hydraulic fracture model utilizing dislocation theory. A minimum set of dimensionless parameters are defined that describe the system. Pore fluid pressures recorded during hydraulic fracturing of a well in the San Joaquin Valley of Central California is examined using the proposed model. The estimated geometry of the hydraulic fracture is matched with reasonable fidelity with the measured data.

  8. Two-dimensional time dependent hurricane overwash and erosion modeling at Santa Rosa Island (United States)

    McCall, R.T.; Van Theil de Vries, J. S. M.; Plant, N.G.; Van Dongeren, A. R.; Roelvink, J.A.; Thompson, D.M.; Reniers, A.J.H.M.


    A 2DH numerical, model which is capable of computing nearshore circulation and morphodynamics, including dune erosion, breaching and overwash, is used to simulate overwash caused by Hurricane Ivan (2004) on a barrier island. The model is forced using parametric wave and surge time series based on field data and large-scale numerical model results. The model predicted beach face and dune erosion reasonably well as well as the development of washover fans. Furthermore, the model demonstrated considerable quantitative skill (upwards of 66% of variance explained, maximum bias - 0.21 m) in hindcasting the post-storm shape and elevation of the subaerial barrier island when a sheet flow sediment transport limiter was applied. The prediction skill ranged between 0.66 and 0.77 in a series of sensitivity tests in which several hydraulic forcing parameters were varied. The sensitivity studies showed that the variations in the incident wave height and wave period affected the entire simulated island morphology while variations in the surge level gradient between the ocean and back barrier bay affected the amount of deposition on the back barrier and in the back barrier bay. The model sensitivity to the sheet flow sediment transport limiter, which served as a proxy for unknown factors controlling the resistance to erosion, was significantly greater than the sensitivity to the hydraulic forcing parameters. If no limiter was applied the simulated morphological response of the barrier island was an order of magnitude greater than the measured morphological response.

  9. Prediction of potential failures in hydraulic gear pumps

    Directory of Open Access Journals (Sweden)

    E. Lisowski


    Full Text Available Hydraulic gear pumps are used in many machines and devices. In hydraulic systems of machines gear pumps are main component ofsupply unit or perform auxiliary function. Gear pumps opposite to vane pumps are less complicated. They consists of such components as:housing, gear wheels, bearings, shaft, seal for rotation motion which are not very sensitive for damage and that is why they are using veryoften. However, gear pumps are break down from time to time. Usually damage of pump cause shutting down of machines and devices.One of the way for identifying potential failures and foreseeing their effects is a quality method. On the basis of these methods apreventing action might be undertaken before failure appear. In this paper potential failures and damages of a gear pump were presented bythe usage of matrix FMEA analysis.

  10. Erosion


    Slotte, Mikael


    Rosenlunds sandbankar är ett naturskyddsområde mellan Jönköping och Huskvarna som rasar med ungefär 30 cm per år. Platsen tillåts att årligen krympa men inte att användas. Det görs inga större ansatser för att dokumentera den för framtida generationer eller synliggöra den för nu levande generationer. I detta examensarbete undersöks ett naturligt fenomen som kommer att påverka civilisationer i tusentals år. Examensarbetet syftar i första hand till att återintroducera en bortglömd plats och bes...

  11. Validating and Improving Interrill Erosion Equations (United States)

    Zhang, Feng-Bao; Wang, Zhan-Li; Yang, Ming-Yi


    Existing interrill erosion equations based on mini-plot experiments have largely ignored the effects of slope length and plot size on interrill erosion rate. This paper describes a series of simulated rainfall experiments which were conducted according to a randomized factorial design for five slope lengths (0.4, 0.8, 1.2, 1.6, and 2 m) at a width of 0.4 m, five slope gradients (17%, 27%, 36%, 47%, and 58%), and five rainfall intensities (48, 62.4, 102, 149, and 170 mm h−1) to perform a systematic validation of existing interrill erosion equations based on mini-plots. The results indicated that the existing interrill erosion equations do not adequately describe the relationships between interrill erosion rate and its influencing factors with increasing slope length and rainfall intensity. Univariate analysis of variance showed that runoff rate, rainfall intensity, slope gradient, and slope length had significant effects on interrill erosion rate and that their interactions were significant at p = 0.01. An improved interrill erosion equation was constructed by analyzing the relationships of sediment concentration with rainfall intensity, slope length, and slope gradient. In the improved interrill erosion equation, the runoff rate and slope factor are the same as in the interrill erosion equation in the Water Erosion Prediction Project (WEPP), with the weight of rainfall intensity adjusted by an exponent of 0.22 and a slope length term added with an exponent of −0.25. Using experimental data from WEPP cropland soil field interrill erodibility experiments, it has been shown that the improved interrill erosion equation describes the relationship between interrill erosion rate and runoff rate, rainfall intensity, slope gradient, and slope length reasonably well and better than existing interrill erosion equations. PMID:24516624

  12. CFD simulations of flow erosion and flow-induced deformation of needle valve: Effects of operation, structure and fluid parameters

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongjun, E-mail: [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan (China); State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan (China); Pan, Qian; Zhang, Wenli; Feng, Guang; Li, Xue [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan (China)


    Highlights: • A combined FSI–CFD and DPM computational method is used to investigate flow erosion and deformation of needle valve. • The numerical model is validated with the comparison of measured and predicted erosion rate. • Effects of operation, structure and fluid parameters on flow erosion and flow-induced deformation are discussed. • Particle diameter has the most significant effect on flow erosion. • Inlet rate has the most obvious effect on flow-induced deformation. - Abstract: A three-dimensional fluid–structure interaction (FSI) computational model coupling with a combined continuum and discrete model has been used to predict the flow erosion rate and flow-induced deformation of needle valve. Comparisons with measured data demonstrate good agreement with the predictions of erosion rate. The flow field distribution of gas-particle flow and the erosion rate and deformation of valve core are captured under different operating and structural conditions with different fluid parameters. The effects of inlet velocity, valve opening and inlet valve channel size, particle concentration, particle diameter and particle phase components are discussed in detail. The results indicate that valve tip has the most severe erosion and deformation, and flow field, erosion rate and deformation of valve are all sensitive to inlet condition changes, structural changes and fluid properties changes. The effect of particle diameter on erosion is the most significant, while the influence of inlet rate on deformation is the greatest one.

  13. Approaches for delineating landslide hazard areas using receiver operating characteristic in an advanced calibrating precision soil erosion model

    Directory of Open Access Journals (Sweden)

    P. T. Ghazvinei


    Full Text Available Soil erosion is undesirable natural event that causes land degradation and desertification. Identify the erosion-prone areas is a major component of preventive measures. Recent landslide damages at different regions lead us to develop a model of the erosion susceptibility map using empirical method (RUSLE. A landslide-location map was established by interpreting satellite image. Field observation data was used to validate the intensity of soil erosion. Further, a correlation analysis was conducted to investigate the "Receiver Operating Characteristic" and frequency ratio. Results showed a satisfactory correlation between the prepared RUSLE-based soil erosion map and actual landslide distribution. The proposed model can effectively predict the landslide events in soil-erosion area. Such a reliable predictive model is an effective management facility for the regional landslide forecasting system.

  14. Thermal Hydraulic Performance of Tight Lattice Bundle (United States)

    Yamamoto, Yasushi; Akiba, Miyuki; Morooka, Shinichi; Shirakawa, Kenetsu; Abe, Nobuaki

    Recently, the reduced moderation spectrum BWR has been studied. The fast neutron spectrum is obtained through triangular tight lattice fuel. However, there are few thermal hydraulic test data and thermal hydraulic correlation applicable to critical power prediction in such a tight lattice bundle. This study aims to enhance the database of the thermal hydraulic performance of the tight lattice bundle whose rod gap is about 1mm. Therefore, thermal hydraulic performance measurement tests of tight lattice bundles for the critical power, the pressure drop and the counter current flow limiting were performed. Moreover, the correlations to evaluate the thermal-hydraulic performance of the tight lattice bundle were developed.

  15. Design of hydraulic output Stirling engine (United States)

    Toscano, W. M.; Harvey, A. C.; Lee, K.


    A hydraulic output system for the RE-1000 free piston stirling engine (FPSE) was designed. The hydraulic output system can be readily integrated with the existing hot section of RE-1000 FPSE. The system has two simply supported diaphragms which separate the engine gas from the hydraulic fluid, a dynamic balance mechanism, and a novel, null center band hydraulic pump. The diaphragms are designed to endure more than 10 billion cycles, and to withstand the differential pressure load as high as 14 MPa. The projected thermodynamic performance of the hydraulic output version of RE-1000 FPSE is 1.87 kW at 29/7 percent brake efficiency.

  16. Experimental investigation of the dielectric properties of soil under hydraulic loading (United States)

    Bittner, Tilman; Bore, Thierry; Wagner, Norman; Karlovšek, Jurij; Scheuermann, Alexander


    An experimental set-up was developed in order to determine the coupled hydraulic, dielectric and mechanical properties of granular media under hydraulic loading. The set-up consisted of a modified column for permeability tests involving a flow meter and pressure transducers along the sample to quantify the hydraulic gradient. A newly developed open-ended coaxial probe allowed the measurement of the frequency dependent dielectric permittivity of the material under test. The shear strength of the sample within the column was measured using a conventional vane shear device. In this paper, the overall set-up is introduced with focus on the open-ended coaxial probe. The design and calibration of the probe are introduced in detail. A numerical study showed that the sensitive cylindrical volume of the probe was approximately 150 mm in diameter with a depth of 65 mm. An investigation with glass beads showed that the set-up allowed the parameterization of the hydraulic, mechanic and dielectric parameters of granular materials under the influence of vertical flow. A satisfactorily good correlation between porosity and the real part of the dielectric permittivity was detected. The critical hydraulic gradient defining the transition of a fixed bed of particles to fluidization was characterized by a sharp peak in the evolution of the hydraulic conductivity and could easily be determined from the measurements. The shear strength of the material under test reduces linearly with increasing hydraulic gradient. Future investigations will be carried out to provide the required parameterizations for experimental and numerical investigations of the internal erosion of granular media.

  17. Erosion control and protection from torrential floods in Serbia-spatial aspects

    Directory of Open Access Journals (Sweden)

    Ristić Ratko


    Full Text Available Torrential floods represent the most frequent phenomenon within the category of “natural risks” in Serbia. The representative examples are the torrential floods on the experimental watersheds of the rivers Manastirica (June 1996 and Kamišna (May 2007. Hystorical maximal discharges (Qmaxh were reconstructed by use of ″hydraulics flood traces″ method. Computations of maximal discharges (Qmaxc, under hydrological conditions after the restoration of the watersheds, were performed by use of a synthetic unit hydrograph theory and Soil Conservation Service methodology. Area sediment yields and intensity of erosion processes were estimated on the basis of the “Erosion Potential Method”. The actual state of erosion processes is represented by the coefficients of erosion Z=0.475 (Manastirica and Z=0.470 (Kamišna. Restoration works have been planned with a view to decreasing yields of erosive material, increasing water infiltration capacity and reducing flood runoff. The planned state of erosion processes is represented by the coefficients of erosion Z=0.343 (Manastirica and Z=0.385 (Kamišna. The effects of hydrological changes were estimated by the comparison of historical maximal discharges and computed maximal discharges (under the conditions after the planned restoration. The realisation of restoration works will help decrease annual yields of erosive material from Wа=24357 m3 to Wа=16198.0 m3 (Manastirica and from Wа=19974 m3 to Wа=14434 m3 (Kamišna. The values of historical maximal discharges (QmaxhMan=154.9 m3•s-1; QmaxhKam=76.3 m3•s-1 were significantly decreased after the restoration (QmaxcMan=84.5 m3 •s-1; QmaxcKam=43.7 m3•s-1, indicating the improvement of hydrological conditions, as a direct consequence of erosion and torrent control works. Integrated management involves biotechnical works on the watershed, technical works on the hydrographic network within a precisely defined administrative and spatial framework in

  18. Powered orthosis and attachable power-assist device with Hydraulic Bilateral Servo System. (United States)

    Ohnishi, Kengo; Saito, Yukio; Oshima, Toru; Higashihara, Takanori


    This paper discusses the developments and control strategies of exoskeleton-type robot systems for the application of an upper limb powered orthosis and an attachable power-assist device for care-givers. Hydraulic Bilateral Servo System, which consist of a computer controlled motor, parallel connected hydraulic actuators, position sensors, and pressure sensors, are installed in the system to derive the joint motion of the exoskeleton arm. The types of hydraulic component structure and the control strategy are discussed in relation to the design philosophy and target joints motions.

  19. Field application of a multi-frequency acoustic instrument to monitor sediment for silt erosion study in Pelton turbine in Himalayan region, India (United States)

    Rai, A. K.; Kumar, A.; Hies, T.; Nguyen, H. H.


    High sediment load passing through hydropower components erodes the hydraulic components resulting in loss of efficiency, interruptions in power production and downtime for repair/maintenance, especially in Himalayan regions. The size and concentration of sediment play a major role in silt erosion. The traditional process of collecting samples manually to analyse in laboratory cannot suffice the need of monitoring temporal variation in sediment properties. In this study, a multi-frequency acoustic instrument was applied at desilting chamber to monitor sediment size and concentration entering the turbine. The sediment size and concentration entering the turbine were also measured with manual samples collected twice daily. The samples collected manually were analysed in laboratory with a laser diffraction instrument for size and concentration apart from analysis by drying and filtering methods for concentration. A conductivity probe was used to calculate total dissolved solids, which was further used in results from drying method to calculate suspended solid content of the samples. The acoustic instrument was found to provide sediment concentration values similar to drying and filtering methods. However, no good match was found between mean grain size from the acoustic method with the current status of development and laser diffraction method in the first field application presented here. The future versions of the software and significant sensitivity improvements of the ultrasonic transducers are expected to increase the accuracy in the obtained results. As the instrument is able to capture the concentration and in the future most likely more accurate mean grain size of the suspended sediments, its application for monitoring silt erosion in hydropower plant shall be highly useful.

  20. USDA-ARS Concentrated Flow Erosion and Assessment Technology Research for Evaluation of Conservation Practices in Watershed Systems (United States)

    Bingner, R. L.; Dabney, S. M.; Langendoen, E. J.; Momm, H. G.; Wells, R. R.; Wilson, G. V.


    Concentrated runoff increases erosion and efficiently transfers sediment and associated agrichemicals from upland areas to stream channels. Ephemeral gully erosion on cropland in the U.S. may contribute up to 40% of the sediment delivered to the edge of the field. Typically, conservation practices developed for sheet and rill erosion are also expected to treat ephemeral gully erosion, but technology and tools do not exist to account for the separate benefits and effects of practices on various sediment sources. Practices specifically developed to treat ephemeral gully erosion need further testing, when used in conjunction with sheet and rill erosion control practices. Without improved research studies, subjective observations will continue to be used to satisfy quality criteria in lieu of scientifically defensible, quantitative methods to estimate the impact of gully erosion. Some of the more important limiting components are the identification of and relationships for: (1) ephemeral gully width; (2) soil resistance to gully erosion including a definition for non-erosive layers; (3) the effect of root mass and above ground vegetation on erosion resistance; (4) ephemeral gully networks; and (5) the effect of subsurface flow on ephemeral gullies. Currently, these components are represented through widely divergent to non-existent algorithms. Scientists at the U.S. Department of Agriculture, Agricultural Research Service are currently undertaking extensive research studies to understand the processes associated with concentrated flow erosion in fields and streams of watershed systems. A description of this research and the integration into enhanced technology for concentrated flow assessments critical for developing and testing conservation practices specifically designed for gully and channel erosion control will be provided.

  1. Physics of soil erosion at the microscale (United States)

    Philippe, Pierre; Cuéllar, Pablo; Brunier-Coulin, Florian; Luu, Li-Hua; Benahmed, Nadia; Bonelli, Stéphane; Delenne, Jean-Yves


    We focus here on the major and always topical issue of soil erosion by fluid flows, and more specifically on the determination of both a critical threshold for erosion occurrence and a kinetics that specifies the rate of eroded matter entrainment. A synthetic state-of-the-art is first proposed with a critical view on the most commonly used methods and erosion models. It is then discussed an alternative strategy, promoting the use of model materials that allow systematic parametric investigations with the purpose of first identifying more precisely the local mechanisms responsible for soil particle erosion and second ultimately quantifying both critical onsets and kinetics, possibly through existing or novel empirical erosion laws. Finally, we present and discuss several examples following this methodology, implemented either by means of experiments or numerical simulations, and coupling erosion tests in several particular hydrodynamical configurations with wisely selected mechanical tests.


    Directory of Open Access Journals (Sweden)

    Rafi Shaik


    Full Text Available BACKGROUND The pattern of oral diseases has been influenced by ever changing human lifestyle. Tooth wear especially dental erosion has drawn increasing attention as risk factor for tooth damage or loss in recent years. It is a common condition in primary dentition compared to permanent dentition due to thinner and less mineralised enamel. However, it is more worrying, when this condition is being found in an alarming proportion among children. The presence of dental erosion in children is likely to be associated with a number of general health and dietary factors, but it is also aggravated by the relatively more rapid progression of erosion in the deciduous teeth. An understanding of the aetiologies and risk factors for erosion is important for early recognition of dental erosion to prevent serious irreversible damage to the dentition. This paper discusses the erosion in children with regard to its epidemiology, prevalence, clinical features, measurement and prevention.

  3. Hydraulic fracture during epithelial stretching (United States)

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier


    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells’ cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here, we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression manoeuvres. After pressure equilibration, cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics.


    Institute of Scientific and Technical Information of China (English)

    Jihn-Sung LAI; Fi-John CHANG


    A movable bed physical model was constructed to investigate hydraulic desiltation by flushing and lateral erosion in the Tapu reservoir, Taiwan. The model scaling is based on the requirement for dynamic similarity of cohesive sediment deposit initiation in flushing processes. For model scaling,flume experiments investigating the initiation of cohesive sediment deposits were carried out to establish the relationship between critical shear stress of the flow and dry density of the deposit.Experiments in the physical model were then performed to measure the variations of the reservoir water level, the outlet discharge and the outflow sediment discharge. The processes of emptying and flushing were observed and analyzed in the main flushing channel. One of the experiments was conducted to simulate the on-site flushing operations on June 11, 1997. The results showed that the total cumulative flushed sediment volume by physical modeling was close to that by numerical simulation. To deal with the floodplain deposits, experiments of lateral erosion as an auxiliary method were also conducted in the physical model to investigate the effectiveness and applicability for the Tapu reservoir.

  5. Design and Analysis of High Pressure Hydraulic Filter for Marine Application (United States)

    Momin, Toshin; Chandrasekar, RP; Balasubramanian, S.; Junaid Basha, AM, Dr.


    Filter is a critical component in ahydraulic system for maintaining the cleanliness of the fluid to required class level. InMarine applications very high reliable filter is required to operate continuously in saline environment. Design anddevelopment of high pressure hydraulic filter for Marine application is a challenging task. The design involves selection of special materialsandstringent qualification tests as per International standards. The present paper describes various stages of design and development of high pressure hydraulic filter for Marine application.

  6. The Development of an Optimal Control Strategy for a Series Hydraulic Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Chih-Wei Hung


    Full Text Available In this work, a Truck Class II series hydraulic hybrid model is established. Dynamic Programming (DP methodology is applied to derive the optimal power-splitting factor for the hybrid system for preselected driving schedules. Implementable rules are derived by extracting the optimal trajectory features from a DP scheme. The system behaviors illustrate that the improved control strategy gives a highly effective operation region for the engine and high power density characteristics for the hydraulic components.

  7. Bio-based Hydraulic Fluids (United States)


    currently formulated with vegetable oils (i.e., rapeseed , sun flower, corn, soybean, canola, coconut, etc.) and synthetic ester, such as polyol ester...2008 Vegetable Oil • Excellent lubrication • Nontoxic • Biodegradable • Derived from renewable resources such as rapeseed , sunflower, corn...Mineral Oil 100 SAE 15W-40 G Rapeseed 32 Commercial HF H Polyol ester 22 MIL-PRF-32073 Grade 2 I Canola - Cooking Oil *Hydraulic fluid 3717 April

  8. Charging valve of the full hydraulic braking system

    Directory of Open Access Journals (Sweden)

    Jinshi Chen


    Full Text Available It is known that the full hydraulic braking system has excellent braking performance. As the key component of the full hydraulic braking system, the parameters of the accumulator charging valve have a significant effect on the braking performance. In this article, the key parameters of the charging valve are analyzed through the static theoretical and an Advanced Modeling Environment for performing Simulation of engineering systems (AMESim simulation model of the dual-circuit accumulator charging valve is established based on the real structure parameters first. Second, according to the results of the dynamic simulation, the dynamic characteristics of the charging pressure, the flow rate, and the frequency of the charging valve are studied. The key parameters affecting the serial production are proposed and some technical advices for improving the performance of the full hydraulic system are provided. Finally, the theoretical analysis is validated by the simulation results. The comparison between the simulation results and the experimental results indicates that the simulated AMESim model of the charging valve is accurate and credible with the error rate inside 0.5% compared with the experimental result. Hence, the performance of the charging valve meets the request of the full hydraulic braking system exactly.

  9. Erosive lichen planus: a therapeutic challenge*


    Romero, Williams; Giesen,Laura; Navajas-Galimany, Lucas; Gonzalez, Sergio


    Abstract Erosive lichen planus is an uncommon variant of lichen planus. Chronic erosions of the soles, accompanied by intense and disabling pain, are some of its most characteristic manifestations. We present the case of a woman who developed oral and plantar erosive lichen planus associated with lichen planus pigmentosus and ungueal lichen planus that were diagnosed after several years. The patient failed to respond to multiple therapies requiring longstanding medication but remained refract...

  10. Preventing erosive risks after wildfire in Spain: advances and gaps (United States)

    Fernández Filgueira, Cristina; Vega Hidalgo, José A.; Fontúrbel Lliteras, Teresa


    Galicia (NW Spain) is one of the most wildfire-affected areas in Western Europe and where the highest soil losses following fire are recorded in the Iberian Peninsula. During the last decade, mitigation of hydrological and erosive risk has been an important objective for researchers and forest managers. For this reason, research carried out has focused on three main issues: i) the development of operational tools to prioritize post-fire soil stabilization actions, based on soil burn severity indicators and remote sensed information, and testing of their ability to reflect degradation risk in relevant soil properties and subsequent soil erosion, ii) the development and testing of different soil stabilization treatments and their effectiveness for reducing erosion, following their application at broad scale, under the specific environmental conditions of Galicia and iii) the assessment of the performance of current erosion models as well as the development of empirical models to predict post-fire soil losses. On the other hand, the use of forest resources is an essential component of the regional incomes in NW Spain and consequently there is a pressing necessity for investigation on techniques suitable for reconciling soil conservation and sustainable use of those resources. In the framework of wildfire impacts this involve many and complex challenges. This scenario contrast with most of the Iberian Peninsula under Mediterranean influence where salvage logging is not a priority. As in other regions, post-fire hydrologic and erosive risk modeling, including threatened resources vulnerability evaluation is also a capital research need, particularly in a climate change context where dramatic changes in drivers such as precipitation, evapotranspiration and fire regime are expected. The study was funded by the National Institute of Agricultural Research of Spain (INIA) through project RTA2014-00011-C06-02, cofunded by FEDER and the Plan de Mejora e Innovación Forestal de

  11. Erosive lichen planus: a therapeutic challenge. (United States)

    Romero, Williams; Giesen, Laura; Navajas-Galimany, Lucas; Gonzalez, Sergio


    Erosive lichen planus is an uncommon variant of lichen planus. Chronic erosions of the soles, accompanied by intense and disabling pain, are some of its most characteristic manifestations. We present the case of a woman who developed oral and plantar erosive lichen planus associated with lichen planus pigmentosus and ungueal lichen planus that were diagnosed after several years. The patient failed to respond to multiple therapies requiring longstanding medication but remained refractory. Knowledge of the treatment options for erosive lichen planus is insufficient. Further research is required to clarify their effectiveness, ideally adopting an evidence-based methodology.

  12. Erosion behavior and mechanism of boronised steels

    Institute of Scientific and Technical Information of China (English)

    刘立; 凌国平; 刘涛; 郦剑


    Boronising of steels is a hardening process to get high surface hardness. The erosion resistance of boronised steels was researched with the use of four kinds of erodent, i.e. glass, alumina, quartz and silicon carbide. The erosion rate increases rapidly with erodent hardness and severe erosion occurs with high impacting angle range of hard particles. SEM analysis indicated that chipping is caused by repetitive impacting of glass and quartz, whereas by alumina and silicon carbide impacting, chipping, and that plastic flow take place simultaneously and the erosion rate reaches the peak value when the impacting angle is above 60°.

  13. Erosion behavior and mechanism of boronised steels

    Institute of Scientific and Technical Information of China (English)

    刘立; 凌国平; 刘涛; 郦剑


    Boronising of steels is a hardening process to get high surfaoe hardness. The erosion resis-tance of boronised steels was researched with the use of four kinds of erodent, i.e. glass, alumina,quartz and silicon carbide. The erosion rate increases rapidly with erodent hardness and severe erosion occurs with high impacting angle range of hard particles. SEM analysis indicated that chipping is caused by repetitive impacting of glass and quartz, whereas b.y alumina and silicon carbide impacting, chipping,and that plastic flow .take place simultaneously and the erosion rate reaches the peak value when the impacting angle is above 60°.


    Institute of Scientific and Technical Information of China (English)

    刘青泉; 陈力; 李家春


    The main factors influencing soil erosion include the net rain excess, the water depth, the velocity, the shear stress of overland flows , and the erosion-resisting capacity of soil. The laws of these factors varying with the slope gradient were investigated by using the kinematic wave theory. Furthermore, the critical slope gradient of erosion was driven. The analysis shows that the critical slope gradient of soil erosion is dependent on grain size , soil bulk density , surface roughness, runoff length, net rain excess, and the friction coefficient of soil, etc. The critical slope gradient has been estimated theoretically with its range between 41. 5 °~ 50°.

  15. Applicability of different hydraulic parameters to describe soil detachment in eroding rills. (United States)

    Wirtz, Stefan; Seeger, Manuel; Zell, Andreas; Wagner, Christian; Wagner, Jean-Frank; Ries, Johannes B


    This study presents the comparison of experimental results with assumptions used in numerical models. The aim of the field experiments is to test the linear relationship between different hydraulic parameters and soil detachment. For example correlations between shear stress, unit length shear force, stream power, unit stream power and effective stream power and the detachment rate does not reveal a single parameter which consistently displays the best correlation. More importantly, the best fit does not only vary from one experiment to another, but even between distinct measurement points. Different processes in rill erosion are responsible for the changing correlations. However, not all these procedures are considered in soil erosion models. Hence, hydraulic parameters alone are not sufficient to predict detachment rates. They predict the fluvial incising in the rill's bottom, but the main sediment sources are not considered sufficiently in its equations. The results of this study show that there is still a lack of understanding of the physical processes underlying soil erosion. Exerted forces, soil stability and its expression, the abstraction of the detachment and transport processes in shallow flowing water remain still subject of unclear description and dependence.

  16. Simulating the Erosion and Sedimentation of Karun Alluvial River in the Region of Ahvaz (Southwest Of Iran

    Directory of Open Access Journals (Sweden)

    Farhang Azarang


    Full Text Available Since the rivers are the main basic and accessible resource of water for miscellaneous uses, the erosion and Sedimentation condition of rivers are of a great deal of importance. Karun River, the greatest river of Iran, has a considerable interest because of strategic and environmental conditions regarding its water projects planning, agriculture, water supply of cities, and industrial units. The morphological changes due to erosion processes, sedimentation, and Sediment transport affects the hydraulic structures like Intake port, irrigation systems, and pump stations. Thus, the present research deals with the simulation of erosion and sedimentation processes and also considering cross section geometric changes, prediction of river thalweg, and total sediment load of Karun River using HEC-RAS model. The simulation periods of this research is 10 years from 2001-2011. The results show that the Karun River has had sedimentation in its most cross sections while the erosion has been rarely observed. Additionally, the Englund–Hansen and Ackers–White sediment transport functions propose better results about the river changes. According to the HEC-RAS results and the measured data, river training of dredging is necessary at the studied site especially at the Ahvaz urban areas. Also, at the river parts which are under erosion the stabilization procedures for the banks and walls, is suggested. The result of this work can be an appropriate pattern about the situations of Karun and effects of erosion, sediment transport, and sedimentation processes.

  17. Design Mixers to Minimize Effects of Erosion and Corrosion Erosion

    Directory of Open Access Journals (Sweden)

    Julian Fasano


    Full Text Available A thorough review of the major parameters that affect solid-liquid slurry wear on impellers and techniques for minimizing wear is presented. These major parameters include (i chemical environment, (ii hardness of solids, (iii density of solids, (iv percent solids, (v shape of solids, (vi fluid regime (turbulent, transitional, or laminar, (vii hardness of the mixer's wetted parts, (viii hydraulic efficiency of the impeller (kinetic energy dissipation rates near the impeller blades, (ix impact velocity, and (x impact frequency. Techniques for minimizing the wear on impellers cover the choice of impeller, size and speed of the impeller, alloy selection, and surface coating or coverings. An example is provided as well as an assessment of the approximate life improvement.

  18. Hydraulic Redistribution: A Modeling Perspective (United States)

    Daly, E.; Verma, P.; Loheide, S. P., III


    Roots play a key role in the soil water balance. They extract and transport water for transpiration, which usually represents the most important soil water loss in vegetated areas, and can redistribute soil water, thereby increasing transpiration rates and enhancing root nutrient uptake. We present here a two-dimensional model capable of describing two key aspects of root water uptake: root water compensation and hydraulic redistribution. Root water compensation is the ability of root systems to respond to the reduction of water uptake from areas of the soil with low soil water potential by increasing the water uptake from the roots in soil parts with higher water potential. Hydraulic redistribution is a passive transfer of water through the root system from areas of the soil with greater water potential to areas with lower water potential. Both mechanisms are driven by gradients of water potential in the soil and the roots. The inclusion of root water compensation and hydraulic redistribution in models can be achieved by describing root water uptake as a function of the difference in water potential between soil and root xylem. We use a model comprising the Richards equation for the water flow in variably saturated soils and the Darcy's equation for the water flow in the xylem. The two equations are coupled via a sink term, which is assumed to be proportional to the difference between soil and xylem water potentials. The model is applied in two case studies to describe vertical and horizontal hydraulic redistribution and the interaction between vegetation with different root depths. In the case of horizontal redistribution, the model is used to reproduce the fluxes of water across the root system of a tree subjected to uneven irrigation. This example can be extended to situations when only part of the root system has access to water, such as vegetation near creeks, trees at the edge of forests, and street trees in urban areas. The second case is inspired by recent

  19. Smartphone imagery to analyze animal-induced erosion in riverbanks (United States)

    Sofia, Giulia; Masin, Roberta; Tarolli, Paolo


    Among the most invasive species, the Coypu (Myocastor coypus) best exemplifies the widespread damage caused by alien species to ecosystems, with effects on crops, riverine systems, and hydraulic structures. The extent of the latter impact is still rarely quantified, despite the increasing economic and social importance. In northern Italy, Coypu damages to the drainage network have multiple aspects. One main issue is related to the weakening of earthen structures: burrows significantly reduce the integrity of the banks, and potentially contribute to the bank failure. A second concern is related to the agricultural activities nearby the channels. When burrows are present, soil may collapse when subjected to the weight of heavy objects on the surface (such as vehicles and farm machinery). A third issue is connected on the impact of burrowing activities on riparian buffer zones. Coypu burrows create specific flowing paths for the water, delivering water and sediment from the fields directly to the drainage system, thus possibly reducing the efficiency of these zones, and improving the risk of surface water contamination. The purpose of this research is to provide a new perspective, from a geoscience point of view, on Coypu damages to riverbanks, showing the effectiveness of a low-cost approach to model surface burrowing damages and to quantify the related erosion. The work is based on the Structure-from-Motion (SfM) photogrammetric method. To quantify the damages, high-resolution 3D models of the riverbanks were reconstructed from imagery acquired with a smartphone (Prosdocimi et al. 2015). From these models, it was possible to determine the volume of the animal-induced erosion. Proven its effectiveness, the proposed method could allow the creation of a database of damages. Researchers could test the flexibility of the approach to determine the distribution of erosion along the whole drainage system as an index of damage region wide, and to determine the severity of

  20. Graffiti for science - erosion painting reveals spatially variable erosivity of sediment-laden flows (United States)

    Beer, Alexander R.; Kirchner, James W.; Turowski, Jens M.


    Spatially distributed detection of bedrock erosion is a long-standing challenge. Here we show how the spatial distribution of surface erosion can be visualized and analysed by observing the erosion of paint from natural bedrock surfaces. If the paint is evenly applied, it creates a surface with relatively uniform erodibility, such that spatial variability in the erosion of the paint reflects variations in the erosivity of the flow and its entrained sediment. In a proof-of-concept study, this approach provided direct visual verification that sediment impacts were focused on upstream-facing surfaces in a natural bedrock gorge. Further, erosion painting demonstrated strong cross-stream variations in bedrock erosion, even in the relatively narrow (5 m wide) gorge that we studied. The left side of the gorge experienced high sediment throughput with abundant lateral erosion on the painted wall up to 80 cm above the bed, but the right side of the gorge only showed a narrow erosion band 15-40 cm above the bed, likely due to deposited sediment shielding the lower part of the wall. This erosion pattern therefore reveals spatial stream bed aggradation that occurs during flood events in this channel. The erosion painting method provides a simple technique for mapping sediment impact intensities and qualitatively observing spatially distributed erosion in bedrock stream reaches. It can potentially find wide application in both laboratory and field studies.

  1. A seepage erosion sediment transport function and geometric headcut relationships for predicting seepage erosion undercutting (United States)

    Seepage erosion is an important factor in hillslope instability and failure. However, predicting erosion by subsurface flow or seepage and incorporating its effects into stability models remain a challenge. Limitations exist with all existing seepage erosion sediment transport functions, including n...

  2. Farmers' identification of erosion indicators and related erosion damage in the Central Highlands of Kenya

    NARCIS (Netherlands)

    Sterk, G.; Okoba, B.O.


    Most soil and water conservation planning approaches rely on empirical assessment methods and hardly consider farmers' knowledge of soil erosion processes. Farmers' knowledge of on-site erosion indicators could be useful in assessing the site-specific erosion risk before planning any conservation me

  3. Horizontal roof gap of backfill hydraulic support

    Institute of Scientific and Technical Information of China (English)

    张强; 张吉雄; 邰阳; 方坤; 殷伟


    For the backfill hydraulic support as the key equipment for achieving integration of backfilling and coal mining simultaneously in the practical process, its characteristics will directly influence the backfill body’s compression ratio. Horizontal roof gap, as a key parameter of backfilling characteristics, may impact the backfilling effect from the aspects of control of roof subsidence in advance, support stress, backfilling process and the support design. Firstly, the reason why horizontal roof gap exists was analyzed and its definition, causes and connotation were introduced, then adopting the Pro/E 3D simulation software, three typical 3D entity models of backfill hydraulic supports were built, based on the influence of horizontal roof gap on backfilling effect, and influence rules of four factors, i.e. support height, suspension height, suspension angle and tamping angle, were emphatically analyzed on horizontal roof gap. The results indicate that, the four factors all have significant impacts on horizontal roof gap, but show differences in influence trend and degree, showing negative linear correlation, positive linear correlation, positive semi-parabolic correlation and negative semi-parabolic correlation, respectively. Four legs type is the most adaptive to the four factors, while six legs (II) type has the poorest adaptability, and the horizontal roof gap is small under large support height, small suspension height, small suspension angle and large tamping angle situation. By means of optimizing structure components and their positional relation and suspension height of backfill scrape conveyor in the process of support design and through controlling working face deployment, roof subsidence in advance, mining height and backfilling during engineering application, the horizontal roof gap is optimized. The research results can be served as theoretical basis for support design and guidance for backfill support to have better performance in backfilling.

  4. Erosion of Premium Connection Cross-over Joint in Solid-liquid Flow

    Directory of Open Access Journals (Sweden)

    Zhao Yong’an


    Full Text Available Hydraulic fracturing is a new technique which is used in oil yield to maximize its own production. The pumping of fracturing slurry flow through tubing collar can cause considerable mass loss of inner surface materials. This may pose a significantly potential risk even a well loss. Especially, the erosion phenomenon is particularly serious in the structure of variable diameter. Numerical simulation in this paper was used to get particle impact parameters, and it is combined with jet experiments to find out the main factors of BG-13Cr mass loss. Finally, the equation with experimental data was applied to predict erosion rate of premium connection cross-over joint inner wall.

  5. Ultrasonic cavitation erosion of a duplex treated 16MnCr5 steel

    Energy Technology Data Exchange (ETDEWEB)

    Mitelea, Ion; Ghera, Christian; Craciunescu, Corneliu M. [Timisoara Univ. (Romania). Dept. of Materials and Manufacturing Engineering; Bordeasu, Ilare [Timisoara Univ. (Romania). Dept. of Mechanical Machines, Equipments and Transportation


    Ultrasonic cavitation experiments using a piezoceramic-based apparatus, according to ASTM G32-2010, were performed on heat and thermochemically treated Cr - Mn low alloyed steel samples. The microstructure in annealed, carburized and tempered states as well as following a duplex treatment (carburized, surface induction hardening and tempering) was analyzed before and after the cavitation erosion tests. The results show the advantage of the duplex treatment, with a significant increase of up to 20 times of the cavitation erosion resistance compared to the annealed state and reveal that the main mechanism for surface deterioration is micro-cracking. The observations are important for the improvement of the behaviour for parts used in hydraulic equipment, for which the volume hardening following the carburization can be replaced by cost-efficient surface induction hardening treatments.


    Institute of Scientific and Technical Information of China (English)

    Li CHEN; Qingquan LIU; Jiachun LI


    This paper presents a process-based model for runoff generation on slopes. One dimensional kinematic wave theory combined with the revised Green-Ampt infiltration formula is applied in the model. According to the characteristics of soil and rainfall in the Loess Plateau area, six types of storm are defined, and among them three typical erosion zones that have different values of representative parameters are chosen to simulate the runoff generation processes. The primary hydraulic characteristics of the runoff generation, such as unit discharge, runoff depth, flow velocity, shear stress and ratio of runoff generation, are obtained and analyzed. The results demonstrate that the different erosion characteristics are related to different runoff generation zones.

  7. An improved experimental method for simulating erosion processes by concentrated channel flow. (United States)

    Chen, Xiao-Yan; Zhao, Yu; Mo, Bin; Mi, Hong-Xing


    Rill erosion is an important process that occurs on hill slopes, including sloped farmland. Laboratory simulations have been vital to understanding rill erosion. Previous experiments obtained sediment yields using rills of various lengths to get the sedimentation process, which disrupted the continuity of the rill erosion process and was time-consuming. In this study, an improved experimental method was used to measure the rill erosion processes by concentrated channel flow. By using this method, a laboratory platform, 12 m long and 3 m wide, was used to construct rills of 0.1 m wide and 12 m long for experiments under five slope gradients (5, 10, 15, 20, and 25 degrees) and three flow rates (2, 4, and 8 L min(-1)). Sediment laden water was simultaneously sampled along the rill at locations 0.5 m, 1 m, 2 m, 3 m, 4 m, 5 m, 6 m, 7 m, 8 m, 10 m, and 12 m from the water inlet to determine the sediment concentration distribution. The rill erosion process measured by the method used in this study and that by previous experimental methods are approximately the same. The experimental data indicated that sediment concentrations increase with slope gradient and flow rate, which highlights the hydraulic impact on rill erosion. Sediment concentration increased rapidly at the initial section of the rill, and the rate of increase in sediment concentration reduced with the rill length. Overall, both experimental methods are feasible and applicable. However, the method proposed in this study is more efficient and easier to operate. This improved method will be useful in related research.

  8. Prevalence of dental erosion in adolescent competitive swimmers exposed to gas-chlorinated swimming pool water. (United States)

    Buczkowska-Radlińska, J; Łagocka, R; Kaczmarek, W; Górski, M; Nowicka, A


    The purpose of this study was to analyze the prevalence of dental erosion among competitive swimmers of the local swimming club in Szczecin, Poland, who train in closely monitored gas-chlorinated swimming pool water. The population for this survey consisted of a group of junior competitive swimmers who had been training for an average of 7 years, a group of senior competitive swimmers who had been training for an average of 10 years, and a group of recreational swimmers. All subjects underwent a clinical dental examination and responded to a questionnaire regarding aspects of dental erosion. In pool water samples, the concentration of calcium, magnesium, phosphate, sodium, and potassium ions and pH were determined. The degree of hydroxyapatite saturation was also calculated. Dental erosion was found in more than 26 % of the competitive swimmers and 10 % of the recreational swimmers. The lesions in competitive swimmers were on both the labial and palatal surfaces of the anterior teeth, whereas erosions in recreational swimmers developed exclusively on the palatal surfaces. Although the pH of the pool water was neutral, it was undersaturated with respect to hydroxyapatite. The factors that increase the risk of dental erosion include the duration of swimming and the amount of training. An increased risk of erosion may be related to undersaturation of pool water with hydroxyapatite components. To decrease the risk of erosion in competitive swimmers, the degree of dental hydroxyapatite saturation should be a controlled parameter in pool water.

  9. Polarization sensitive camera for the in vitro diagnostic and monitoring of dental erosion (United States)

    Bossen, Anke; Rakhmatullina, Ekaterina; Lussi, Adrian; Meier, Christoph

    Due to a frequent consumption of acidic food and beverages, the prevalence of dental erosion increases worldwide. In an initial erosion stage, the hard dental tissue is softened due to acidic demineralization. As erosion progresses, a gradual tissue wear occurs resulting in thinning of the enamel. Complete loss of the enamel tissue can be observed in severe clinical cases. Therefore, it is essential to provide a diagnosis tool for an accurate detection and monitoring of dental erosion already at early stages. In this manuscript, we present the development of a polarization sensitive imaging camera for the visualization and quantification of dental erosion. The system consists of two CMOS cameras mounted on two sides of a polarizing beamsplitter. A horizontal linearly polarized light source is positioned orthogonal to the camera to ensure an incidence illumination and detection angles of 45°. The specular reflected light from the enamel surface is collected with an objective lens mounted on the beam splitter and divided into horizontal (H) and vertical (V) components on each associate camera. Images of non-eroded and eroded enamel surfaces at different erosion degrees were recorded and assessed with diagnostic software. The software was designed to generate and display two types of images: distribution of the reflection intensity (V) and a polarization ratio (H-V)/(H+V) throughout the analyzed tissue area. The measurements and visualization of these two optical parameters, i.e. specular reflection intensity and the polarization ratio, allowed detection and quantification of enamel erosion at early stages in vitro.

  10. Experimental investigation on erosive wear behaviour of plasma spray coated stainless steel (United States)

    Girisha, K. G.; Sreenivas Rao, K. V.; Anil, K. C.; Sanman, S.


    Slurry erosion is an implicit problem in many engineering industrial components such as ore carrying pipelines, slurry pumps and extruders. Even the water turbine blades are subjected to erosive wear when the water contains considerable amount of silt. In the present study, Al2O3-40%TiO2 powder particles of average particle size of 50 micrometer were deposited on EN56B martenistic stainless steel by atmospheric plasma spray technique. Ni/Cr was pre coated to work as bond coat for good adhesion between coating and the substrate material. A coating thickness of 200 micrometer was achieved. Coated and un-coated substrates were subjected to slurry erosion test as per ASTM G-119 standard. Slurry erosion test rig was used to evaluate the erosion properties at room temperature condition by varying the spindle speed. Scanning electron microphotographs were taken before and after the slurry erosion test. Microstructures reveal uniform distribution of coating materials. Eroded surface shows lip, groove, and crater formation and dense coating resulting in less porosity. Micro hardness test was evaluated and reported. EDX analysis confirms the presence of Al, Ti and O2 particles. It was observed that, Al2O3-40%TiO2 coated substrates exhibit superior erosion resistance as compared to un-coated substrates due to higher hardness and less coating porosity.

  11. Developed hydraulic simulation model for water pipeline networks

    Directory of Open Access Journals (Sweden)

    A. Ayad


    Full Text Available A numerical method that uses linear graph theory is presented for both steady state, and extended period simulation in a pipe network including its hydraulic components (pumps, valves, junctions, etc.. The developed model is based on the Extended Linear Graph Theory (ELGT technique. This technique is modified to include new network components such as flow control valves and tanks. The technique also expanded for extended period simulation (EPS. A newly modified method for the calculation of updated flows improving the convergence rate is being introduced. Both benchmarks, ad Actual networks are analyzed to check the reliability of the proposed method. The results reveal the finer performance of the proposed method.

  12. A comparison of indexing methods to evaluate quality of soils subjected to different erosion: the role of soil microbiological properties. (United States)

    Romaniuk, Romina; Lidia, Giuffre; Alejandro, Costantini; Norberto, Bartoloni; Paolo, Nannipieri


    Soil quality assessment is needed to evaluate the soil conditions and sustainability of soil and crop management properties, and thus requires a systematic approach to select and interpret soil properties to be used as indicators. The aim of this work was to evaluate and compare different indexing methods to assess quality of an undisturbed grassland soil (UN), a degraded pasture soil (GL) and a no tilled soil (NT) with four different A horizon depths (25, 23, 19 and 14 cm) reflecting a diverse erosion. Twenty four soil properties were measured from 0 to10 (1) and 10 to 20 cm. (2) and a minimum data set was chosen by multivariate principal component analysis (PCA) considering all measured soil properties together (A), or according to their classification in physical, chemical or microbiological (B) properties. The measured soil properties involved either inexpensive or not laborious standard protocols, to be used in routine laboratory analysis (simple soil quality index - SSQI), or a more laborious, time consuming and expensive protocols to determine microbial diversity and microbial functionality by methyl ester fatty acids (PLFA) and catabolic response profiles (CRP), respectively (complex soil quality index - CSQI). The selected properties were linearly normalized and integrated by the weight additive method to calculate SSQI A, SSQI B, CSQI A and CSQI B indices. Two microbiological soil quality indices (MSQI) were also calculated: the MSQI 1 only considered microbiological properties according to the procedure used for calculating SQI; the MSQI 2 was calculated by considering microbial carbon biomass (MCB), microbial activity (Resp) and functional diversity determined by CPR (E). The soil quality indices were SSQI A = MCB 1 + Particulate Organic Carbon (POC)1 + Mean Weight Diameter (MWD)1; SSQI B = Saturated hydraulic conductivity (K) 1 + Total Organic Carbon (TOC) 1 + MCB 1; CSQI A = MCB 1 + POC 1 + MWD 1; CSQI B = K 1+ TOC 1+ 0.3 * (MCB 1+ i/a +POC 1) + 0

  13. Short-term transport of glyphosate with erosion in Chinese loess soil--a flume experiment. (United States)

    Yang, Xiaomei; Wang, Fei; Bento, Célia P M; Xue, Sha; Gai, Lingtong; van Dam, Ruud; Mol, Hans; Ritsema, Coen J; Geissen, Violette


    Repeated applications of glyphosate may contaminate the soil and water and threaten their quality both within the environmental system and beyond it through water erosion related processes and leaching. In this study, we focused on the transport of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) related to soil erosion at two slope gradients (10 and 20°), two rates of pesticide with a formulation of glyphosate (Roundup®) application (360 and 720 mg m(-2)), and a rain intensity of 1.0 mm min(-1) for 1 h on bare soil in hydraulic flumes. Runoff and erosion rate were significantly different within slope gradients (psoil at the end of the experiment decreased significantly with depth (psoil layers, respectively. The risk of contamination in deep soil and the groundwater was thus low, but 5% of the initial application did reach the 2-10 cm soil layer. The risk of contamination of surface water through runoff and sedimentation, however, can be considerable, especially in regions where rain-induced soil erosion is common.

  14. A New Type of Hydraulic Actuator Using Electrorheological Fluids (United States)

    Wendt, Eckhard; Büsing, Klaus W.

    Electrorheological Fluids (ERF) are usually used in semi active damping elements, e.g. shock absorbers or engine mounts because of their continuously controllable shear stress. A totally new field of application may be achieved, if an ERF is used as a hydraulic fluid and not only as a control medium. In this case a fundamental need is the capability to produce a volume flow by using normal hydraulic pumps, e.g. gear pumps. The ERF and the hydraulic components both must have a long lifetime without unusual wear. Bayer AG has developed an ERF based on soft crosslinked PU-particles dispersed in silicone oil. These ERF are characterised by a low basic viscosity, a high ER-effect and a moderate conductivity. Compared with previous ERF where hard inorganic particles were used, the new fluid is not abrasive. It is foremostly this characteristic which gives the possibility of using the ERF in hydraulic systems with high shear rates and high shear stresses. The usage of ERF as hydraulic fluid allows the construction of proportional valves without mechanically driven parts. The control of the pressure drop over the valves is realised directly by an electrical signal. It is possible to realise actuators with very fast response times since the reaction time of ERF is within milliseconds. For demonstration purpose Bayer AG has built an actuator which is controlled by an electrorheological valve-block. The calculation of the dimension of this actuator and the valves will be shown and the realised response time will be demonstrated.

  15. Erosion phenomena in sand moulds

    Directory of Open Access Journals (Sweden)

    A. Chojecki


    Full Text Available Authors studicd the erosion phcnorncna in sand moulds pured with cast iron. Thc study comprises an evaluation of erosionresistance of thc three sands: grccn sand. sand bondcd with inorganic or organic bindcr. It was concluded that thc most resistant is [heclassic green sand with thc addition of 5 B coal dust. Resistance of the sand with organic binder is generally weak and dcvnds onkind of used raisin. Spccinl nztcntion was paid to the sands with no organic bindcr watcr glass and phospha~c. It was Sound that thcirrcsistance depends on dehydratation conditions. When the mould is stored in law humidity of atmosphcrc the very strong crosion canbe expected. It rcsul ts hrn thc micro fractures in the bridges of binders, joining the grains of the sable. This phcnomcna facilitates thetearing away of fragments of sand [tom the surface

  16. Tools for Ephemeral Gully Erosion Process Research (United States)

    Techniques to quantify ephemeral gully erosion have been identified by USDA Natural Resources Conservation Service (NRCS) as one of gaps in current erosion assessment tools. One reason that may have contributed to this technology gap is the difficulty to quantify changes in channel geometry to asses...

  17. Saliva parameters and erosive wear in adolescents

    NARCIS (Netherlands)

    Zwier, N.; Huysmans, M.C.D.N.J.M.; Jager, D.H.J.; Ruben, J.; Bronkhorst, E.M.; Truin, G.J.


    The aim of this study was to investigate the relationship between several parameters of saliva and erosive wear in adolescents. (Un-)stimulated saliva was collected from 88 adolescents with erosion and 49 controls (age 16 ± 1 years). Flow rate, pH and buffer capacity were determined immediately.

  18. Saliva Parameters and Erosive Wear in Adolescents

    NARCIS (Netherlands)

    Zwier, N.; Huysmans, M. C. D. N. J. M.; Jager, D. H. J.; Ruben, J.; Bronkhorst, E. M.; Truin, G. J.


    The aim of this study was to investigate the relationship between several parameters of saliva and erosive wear in adolescents. (Un-)stimulated saliva was collected from 88 adolescents with erosion and 49 controls (age 16 +/- 1 years). Flow rate, pH and buffer capacity were determined immediately.

  19. Soil erosion dynamics response to landscape pattern

    NARCIS (Netherlands)

    Ouyang, W.; Skidmore, A.K.; Hao, F.; Wang, T.


    Simulating soil erosion variation with a temporal land use database reveals long-term fluctuations in landscape patterns, as well as priority needs for soil erosion conservation. The application of a multi-year land use database in support of a Soil Water Assessment Tool (SWAT) led to an accurate as

  20. Rainfall erosivity in Brazil: A Review (United States)

    In this paper, we review the erosivity studies conducted in Brazil to verify the quality and representativeness of the results generated and to provide a greater understanding of the rainfall erosivity (R-factor) in Brazil. We searched the ISI Web of Science, Scopus, SciELO, and Google Scholar datab...

  1. Erosion Pressure on the Danish Coasts

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Sørensen, Per; Kroon, Aart

    , neglects the need for sand replenishment i.e. in the form of repeated sand nourishments. Here we present a conceptual model and method for dividing coastal erosion into acute and chronic erosion pressure, respectively. We focus on the model use for management and climate change adaptation purposes...

  2. EPro Non-contact erosion profiling

    DEFF Research Database (Denmark)

    Meinert, Palle

    EPro is a profiler controlled by software, which is constructed to measure the same surface or work piece multiple times and track changes due to erosion.......EPro is a profiler controlled by software, which is constructed to measure the same surface or work piece multiple times and track changes due to erosion....

  3. Wind erosion potential following application of biosolids (United States)

    The application of biosolids to agricultural land has the potential to improve soil health and crop production. These benefits could also possibly reduce the threat of wind erosion in arid and semiarid regions. Therefore, we assessed the impact of biosolids on wind erosion of agricultural land at Li...

  4. Reduction of soil erosion on forest roads (United States)

    Edward R. Burroughs; John G. King


    Presents the expected reduction in surface erosion from selected treatments applied to forest road traveledways, cutslopes, fillslopes, and ditches. Estimated erosion reduction is expressed as functions of ground cover, slope gradient, and soil properties whenever possible. A procedure is provided to select rock riprap size for protection of the road ditch.

  5. The erosive potential of candy sprays

    NARCIS (Netherlands)

    Gambon, D.L.; Brand, H.S.; Nieuw Amerongen, A.V.


    Objective To determine the erosive potential of seven different commercially available candy sprays in vitro and in vivo. Material and methods The erosive potential was determined in vitro by measuring the pH and neutralisable acidity. The salivary pH and flow rate were measured in healthy volunteer

  6. Vibrations of hydraulic pump and their solution


    Dobšáková Lenka; Nováková Naděžda; Habán Vladimír; Hudec Martin; Jandourek Pavel


    The vibrations of hydraulic pump and connected pipeline system are very problematic and often hardly soluble. The high pressure pulsations of hydraulic pump with the double suction inlet are investigated. For that reason the static pressure and accelerations are measured. The numerical simulations are carried out in order to correlate computed data with experimental ones and assess the main source of vibrations. Consequently the design optimization of the inner hydraulic part of pump is done ...

  7. Etiology and pathogenesis of dental erosion. (United States)

    Kanzow, Philipp; Wegehaupt, Florian J; Attin, Thomas; Wiegand, Annette


    The condition of dental erosion is defined as acid-related loss of tooth structure which does not involve microorganisms. Depending on the origin of the acid, extrinsic (usually caused by acids in food) and intrinsic (caused by endogenous acid) erosion can be distinguished. The presence and severity of erosive defects depend on various parameters such as nutrition, saliva, general diseases, and mechanical stress by abrasion and attrition. As an example, dietary habits which involve frequent intake of acidic food and beverages, occupational acid exposure, as well as certain drugs or diseases that affect saliva flow rate are accompanied by an increased risk of erosive dental hard tissue defects. By a thorough clinical examination and an accurate anamnesis, various erosion-related risk factors can be identified and strategies to reduce or eliminate these factors be identified.

  8. Modelling rainfall erosion resulting from climate change (United States)

    Kinnell, Peter


    It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.

  9. Morphometric and hydraulic geometry assessment of a gully in SW Spain (United States)

    Caraballo-Arias, N. A.; Conoscenti, C.; Di Stefano, C.; Ferro, V.; Gómez-Gutiérrez, A.


    Gully erosion represents one of the most significant types of land degradation in the Mediterranean areas, giving place to important on- and off-site effects. In this paper, a second-order gully located in SW Spain is analyzed. Along the gully, 28 cross-sections were established and measured with a Leica TCRM1102 laser total station, approximately every 6 months from 2001 to 2007. The sections were located at variable distance, placing them in areas where active erosion was evident. In total, 13 field measurements were carried out, and the geometric characteristics of 28 cross-sections were obtained. Morphometric analyses were carried out in both the main gully and a tributary reach by applying an empirical relationship between channel length and eroded volume. Morphometric variables of the gully sections were combined into two dimensionless groups, and a morphological similarity between different linear erosion landforms (rills, ephemeral and permanent gullies) was obtained. Then, the coefficient of variation of the calculated volumes was used to compare the instability between the main gully and the tributary reach. Finally, the hydraulic geometry of the gully was assessed by calibrating three empirical power equations, which relate bankfull discharge with mean flow velocity, cross-sectional depth and width. The hydraulic characterization of the main gully and the tributary reach was investigated for each field survey and a different behavior was detected. The hydraulic analysis also demonstrated that higher values of discharge provide better predictions of flow velocity; the size of the main and tributary gullies affects the discharge-width relationship; and that gully depth is the variable which can be predicted with the highest accuracy.

  10. Quantifying the erosion effect on current carbon budget of European agricultural soils at high spatial resolution. (United States)

    Lugato, Emanuele; Paustian, Keith; Panagos, Panos; Jones, Arwyn; Borrelli, Pasquale


    The idea of offsetting anthropogenic CO2 emissions by increasing global soil organic carbon (SOC), as recently proposed by French authorities ahead of COP21 in the 'four per mil' initiative, is notable. However, a high uncertainty still exits on land C balance components. In particular, the role of erosion in the global C cycle is not totally disentangled, leading to disagreement whether this process induces lands to be a source or sink of CO2. To investigate this issue, we coupled soil erosion into a biogeochemistry model, running at 1 km(2) resolution across the agricultural soils of the European Union (EU). Based on data-driven assumptions, the simulation took into account also soil deposition within grid cells and the potential C export to riverine systems, in a way to be conservative in a mass balance. We estimated that 143 of 187 Mha have C erosion rates 0.45 Mg C ha(-1) yr(-1). In comparison with a baseline without erosion, the model suggested an erosion-induced sink of atmospheric C consistent with previous empirical-based studies. Integrating all C fluxes for the EU agricultural soils, we estimated a net C loss or gain of -2.28 and +0.79 Tg yr(-1) of CO2 eq, respectively, depending on the value for the short-term enhancement of soil C mineralization due to soil disruption and displacement/transport with erosion. We concluded that erosion fluxes were in the same order of current carbon gains from improved management. Even if erosion could potentially induce a sink for atmospheric CO2, strong agricultural policies are needed to prevent or reduce soil erosion, in order to maintain soil health and productivity.

  11. Geological record of fluid flow and seismogenesis along an erosive subducting plate boundary. (United States)

    Vannucchi, Paola; Remitti, Francesca; Bettelli, Giuseppe


    Tectonic erosion of the overriding plate by the downgoing slab is believed to occur at half the Earth's subduction zones. In situ investigation of the geological processes at active erosive margins is extremely difficult owing to the deep marine environment and the net loss of forearc crust to deeper levels in the subduction zone. Until now, a fossil erosive subduction channel-the shear zone marking the plate boundary-has not been recognized in the field, so that seismic observations have provided the only information on plate boundary processes at erosive margins. Here we show that a fossil erosive margin is preserved in the Northern Apennines of Italy. It formed during the Tertiary transition from oceanic subduction to continental collision, and was preserved by the late deactivation and fossilization of the plate boundary. The outcropping erosive subduction channel is approximately 500 m thick. It is representative of the first 5 km of depth, with its deeper portions reaching approximately 150 degrees C. The fossil zone records several surprises. Two décollements were simultaneously active at the top and base of the subduction channel. Both deeper basal erosion and near-surface frontal erosion occurred. At shallow depths extension was a key deformation component within this erosive convergent plate boundary, and slip occurred without an observable fluid pressure cycle. At depths greater than about 3 km a fluid cycle is clearly shown by the development of veins and the alternation of fast (co-seismic) and slow (inter-seismic) slip. In the deepest portions of the outcropping subduction channel, extension is finally overprinted by compressional structures. In modern subduction zones the onset of seismic activity is believed to occur at approximately 150 degrees C, but in the fossil channel the onset occurred at cooler palaeo-temperatures.

  12. Impact of High Concentration Solutions on Hydraulic Properties of Geosynthetic Clay Liner Materials

    Directory of Open Access Journals (Sweden)

    Lei Liu


    Full Text Available This study focuses on the impact of landfill high concentration solutions erosion on geosynthetic clay liner (GCL materials permeability. The permeation tests on the GCL, submerged using different kinds of solutions with different concentrations, were carried out systematically by taking these chemical solutions as permeant liquids. Based on seasonal variations of ion concentrations in Chenjiachong landfill leachate (Wuhan Province, CaCl2, MgCl2, NaCl, and KCl were selected as chemical attack solutions to carry out experimental investigations under three concentrations (50 mM, 100 mM, 200 mM and soak times (5, 10, and 20 days. The variation law of the GCL hydraulic conductivity under different operating conditions was analyzed. The relationship between GCL hydraulic conductivity, chemical solutions categories, concentrations, and soak times were further discussed. The GCL hydraulic conductivity, when soaked and permeated with high concentration chemical solutions, increases several times or exceeds two orders of magnitude, as compared with the permeation test under normal conditions that used water as the permeant liquid. This reveals that GCL is very susceptible to chemical attack. For four chemical solutions, the chemical attack effect on GCL hydraulic conductivity is CaCl2 > MgCl2 > KCl > NaCl. The impact of soak times on GCL hydraulic conductivity is the cooperative contribution of the liner chemical attack reaction and hydration swelling. A longer soak time results in a more advantageous hydration swelling effect. The chemical attack reaction restrains the hydration swelling of the GCL. Moreover, the GCL hydraulic conductivity exponentially decreases with the increased amplitude of thickness.

  13. Portable Life Support Subsystem Thermal Hydraulic Performance Analysis (United States)

    Barnes, Bruce; Pinckney, John; Conger, Bruce


    This paper presents the current state of the thermal hydraulic modeling efforts being conducted for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS). The goal of these efforts is to provide realistic simulations of the PLSS under various modes of operation. The PLSS thermal hydraulic model simulates the thermal, pressure, flow characteristics, and human thermal comfort related to the PLSS performance. This paper presents modeling approaches and assumptions as well as component model descriptions. Results from the models are presented that show PLSS operations at steady-state and transient conditions. Finally, conclusions and recommendations are offered that summarize results, identify PLSS design weaknesses uncovered during review of the analysis results, and propose areas for improvement to increase model fidelity and accuracy.

  14. Grinding efficiency improvement of hydraulic cylinders parts for mining equipment

    Directory of Open Access Journals (Sweden)

    Korotkov Aleksandr


    Full Text Available The aim of the article is to find out ways to improve parts treatment and components of mining equipment on the example of hydraulic cylinders parts, used as pillars for mine roof supports, and other actuator mechanisms. In the course of the research work methods of machine retaining devices design were used, the scientific approaches for the selection of progressive grinding schemes were applied; theoretical and practical experience in the design and production of new constructions of grinding tools was used. As a result of this work it became possible to create a progressive construction of a machine retaining device for grinding of large parts of hydraulic cylinders, to apply an effective scheme of rotary abrasive treatment, to create and implement new design of grinding tools by means of grains with controllable shape and orientation. Implementation of the results obtained in practice will improve the quality and performance of repairing and manufacturing of mining equipment.

  15. Initial insights from 2.5D hydraulic modeling of floods in Athabasca Valles, Mars (United States)

    Keszthelyi, L.P.; Denlinger, R.P.; O'Connell, D. R. H.; Burr, D.M.


    We present the first application of a 2.5D hydraulic model to catastrophic floods on Mars. This model simulates flow over complex topography and incorporates flood dynamics that could not be modeled in the earlier 1D models. We apply this model to Athabasca Valles, the youngest outflow channel on Mars, investigating previous bank-full discharge estimates and utilizing the interpolated Mars Orbiter Laser Altimeter elevation map as input. We confirm that the bank-full assumption does not fit the observed landforms. Instead, the channel appears more deeply incised near the source. Flow modeling also identifies several areas of special interest, including a dry cataract that coincides with a region of predicted high erosion. However, artifacts in the elevation data strongly impacted estimated stages and velocities in other areas. More extensive connection between the flood hydraulics and observed landforms awaits improved topographic data.

  16. Design and Analysis of Hydraulic Chassis with Obstacle Avoidance Function (United States)

    Hong, Yingjie; Zhang, Xiang


    This article mainly expounds the design of hydraulic system for the hydraulic chassis with obstacle avoidance function. Including the selection of hydraulic motor wheels, hydraulic pump, digital hydraulic cylinder and the matching of engine power. And briefly introduces the principle of obstacle avoidance.

  17. Meta-analysis: abundance, behavior, and hydraulic energy shape biotic effects on sediment transport in streams. (United States)

    Albertson, L K; Allen, D C


    An increasing number of studies have emphasized the need to bridge the disciplines of ecology and geomorphology. A large number of case studies show that organisms can affect erosion, but a comprehensive understanding of biological impacts on sediment transport conditions is still lacking. We use meta-analysis to synthesize published data to quantify the effects of the abundance, body size, and behavior of organisms on erosion in streams. We also explore the influence of current velocity, discharge, and sediment grain size on the strength of biotic effects on erosion. We found that species that both increase erosion (destabilizers) and decrease erosion (stabilizers) can alter incipient sediment motion, sediment suspension, and sediment deposition above control conditions in which the organisms were not present. When abundance was directly manipulated, these biotic effects were consistently stronger in the higher abundance treatment, increasing effect sizes by 66%. Per capita effect size and per capita biomass were also consistently positively correlated. Fish and crustaceans were the most studied organisms, but aquatic insects increased the effect size by 550 x compared to other types of organisms after accounting for biomass. In streams with lower discharge and smaller grain sizes, we consistently found stronger biotic effects. Taken collectively, these findings provide synthetic evidence that biology can affect physical processes in streams, and these effects can be mediated by hydraulic energy. We suggest that future studies focus on understudied organisms, such as biofilms, conducting experiments under realistic field conditions, and developing hypotheses for the effect of biology on erosion and velocity currents in the context of restoration to better understand the forces that mediate physical disturbances in stream ecosystems.

  18. Water infiltration and hydraulic conductivity in a natural Mediterranean oak forest: impacts of hydrology-oriented silviculture on soil hydraulic properties (United States)

    Di Prima, Simone; Bagarello, Vincenzo; Bautista, Inmaculada; Cerdà, Artemi; Cullotta, Sebastiano; del Campo, Antonio; González-Sanchis, María; Iovino, Massimo; Maetzke, Federico


    the practice of forest management persist for almost one century. It is therefore important to monitor managed sites over longer periods, since short-term investigations are insufficient to detect changes that may influence e.g. larger parts of watersheds (Bens et al., 2006). In addition, soil hydraulic properties exhibit strong spatial and temporal variations and a large number of determinations are required to assess the magnitude of the variation within the selected area (Logsdon and Jaynes, 1996). The use of simple and rapid field techniques is therefore important to obtain reliable data with a sustainable effort (Bagarello et al., 2014; Di Prima et al., 2016). The Beerkan Estimation of Soil Transfer (BEST) parameters procedure by Lassabatere et al. (2006) is very attractive for practical use since it allows an estimation of both the soil water retention and the hydraulic conductivity functions from cumulative infiltration collected during a ponded field experiment and a few routinely laboratory determinations. Lassabatere et al. (2006) suggested to measure the infiltration time of small volumes of water repeatedly poured on the soil surface confined by a ring inserted to a depth of about 1 cm into the soil. BEST considers a zero ponded infiltration model which was assumed to be appropriate for an infiltration run performed with small, but positive, pressure heads. This assumption was supported by numerical tests carried out by Touma et al. (2007). Recently, Di Prima (2015) developed a method to automate data collection with a compact infiltrometer under constant head conditions. The device, maintaining a small quasi-constant head of water (i.e., 2-3 mm) on the infiltration surface, is equipped with a differential pressure transducer to measure the stepwise drop of water level in the reservoir, and, in turn, to quantify cumulative infiltration into the soil. The data acquisition system has been designed with low cost components and it is based on the open source

  19. Helical coil thermal hydraulic model (United States)

    Caramello, M.; Bertani, C.; De Salve, M.; Panella, B.


    A model has been developed in Matlab environment for the thermal hydraulic analysis of helical coil and shell steam generators. The model considers the internal flow inside one helix and its associated control volume of water on the external side, both characterized by their inlet thermodynamic conditions and the characteristic geometry data. The model evaluates the behaviour of the thermal-hydraulic parameters of the two fluids, such as temperature, pressure, heat transfer coefficients, flow quality, void fraction and heat flux. The evaluation of the heat transfer coefficients as well as the pressure drops has been performed by means of the most validated literature correlations. The model has been applied to one of the steam generators of the IRIS modular reactor and a comparison has been performed with the RELAP5/Mod.3.3 code applied to an inclined straight pipe that has the same length and the same elevation change between inlet and outlet of the real helix. The predictions of the developed model and RELAP5/Mod.3.3 code are in fairly good agreement before the dryout region, while the dryout front inside the helical pipes is predicted at a lower distance from inlet by the model.

  20. Communicating and Visualizing Erosion-associated Risks to Infrastructure (United States)

    Hewett, Caspar; Simpson, Carolyn; Wainwright, John


    Soil erosion is a major problem worldwide, affecting agriculture, the natural environment and urban areas through its impact on flood risk, water quality, loss of nutrient-rich upper soil layers, eutrophication of water bodies, sedimentation of waterways and sediment-related damage to roads, buildings and infrastructure such as water, gas and electricity supply networks. This study focuses on risks to infrastructure associated with erosion and the interventions needed to reduce those risks. Deciding on what interventions to make means understanding better which parts of the landscape are most susceptible to erosion and which measures are most effective in reducing it. Effective ways of communicating mitigation strategies to stakeholders such as farmers, land managers and policy-makers are then essential if interventions are to be implemented. Drawing on the Decision-Support Matrix (DSM) approach which combines a set of hydrological principles with Participatory Action Research (PAR), a decision-support tool for Communicating and Visualizing Erosion-Associated Risks to Infrastructure (CAVERTI) was developed. The participatory component was developed with the Wear Rivers Trust, focusing on a case-study area in the North East of England. The CAVERTI tool brings together process understanding gained from modelling with knowledge and experience of a variety of stakeholders to address directly the problem of sediment transport. Development of the tool was a collaborative venture, ensuring that the problems and solutions presented are easily recognised by practitioners and decision-makers. This recognition, and ease of access via a web-based interface, in turn help to ensure that the tools get used. The web-based tool developed helps to assess, manage and improve understanding of risk from a multi-stakeholder perspective and proposes solutions to problems. We argue that visualization and communication tools co-developed by researchers and stakeholders are the best means

  1. Soil erosion on vineyards: impacts on vine performances (United States)

    Degan, Francesca; Salvador-Banes, Sébastien; Cerdan, Olivier; Goulet, Etienne; Le Duc, Lionel


    Many agricultural practices increase soil degradation processes. The measurement of the effects of such practices helps for the management of constraints and ensures the stability of agricultural production. In viticulture, soil is one of the components that define the specificity and quality of wine. Chemical and physical soil properties indeed exert a strong influence on vine performances. However, the precise influences of soil properties, such as rock fragments, clay or lime contents, soil depth or mineral content are subjected to debate. Actually, vine performances derive also from climate and vintage, viticulture and winemaking techniques and plant genetic. Nerveless, soil erosion can significantly change the root growing zone properties and therefore the vine responses. In fact viticulture is the agricultural production that is the most prone to erosion, with an average rate of 12 t.ha -1.yr-1 in the European context (Cerdan et al., 2010). The soil's capacities to support crop growth, without resulting in soil degradation, need to be brought under control, to improve environmental sustainability and minimize in-site and off-site impacts. The aim of this study is to better quantify the effect of soil erosion in vineyards on soil parameters (such as available water content) that exert a key role in the specificity of viticultural terroirs. Two study areas are considered in Corsica and in the Loire Valley. Our approach is divided into three steps. Firstly, the identification and the mapping of soil properties that have an impact over vine performances, using digital soil mapping techniques and pedotransfer functions. The soil characteristics are identified by field survey at two spatial resolutions: the field and landscape. In the same study areas, the erosion dynamics is assessed. Various techniques are employed such as: 137Cs activities, spatial distribution of copper and stock unearthing. In order to comprehend erosion dynamics and evolutions, the third step

  2. Laboratory Testing of Magnetic Tracers for Soil Erosion Measurement*1

    Institute of Scientific and Technical Information of China (English)

    HU Guo-Qing; DONG Yuan-Jie; WANG Hui; QIU Xian-Kui; WANG Yan-Hua


    Soil erosion, which includes soil detachment, transport, and deposition, is one of the important dynamic land surface processes. The magnetic tracer method is a useful method for studying soil erosion processes. In this study, five types of magnetic tracers were made with fine soil, fly ash, cement, bentonite, and magnetic powder (reduced iron powder) using the method of disk granulation. The tracers were uniformly mixed with soil and tested in the laboratory using simulated rainfall and inflow experiments to simulate the interrill and rill components of soil erosion, in order to select one or more tracers which could be used to study detachment and deposition by the erosive forces of raindrops and surface flow of water on a slope. The results showed that the five types of magnetic tracers with high magnetic susceptibility and a wide range of sizes had a range of 0.99-1.29 gcm-s in bulk density. In the interrill and rill experiments, the tracers FC1 and FC2 which consisted of fly ash and cement at ratios of 1:1 and 2:1, respectively, were transported in phase with soil particles since the magnetic susceptibility of sediment approximated that of the soil which was uneroded and the slopes of the regression equations between the detachment of sediment and magnetic tracers FC1 and FC2 were very close to the expected value of 20, which was the original soil/tracer ratio. The detachment and deposition on slopes could be accurately reflected by the magnetic susceptibility differences. The change in magnetic susceptibility depended on whether deposition or detachment occurred. However, the tracer FS which consisted of fine soil and the tracers FB1 and FB2 which consisted of fly ash and bentonite at ratios of 1:1 and 2:1, respectively, were all unsuitable for soil erosion study since there was no consistent relationship between sediment and tracer detachment for increasing amounts of runoff. Therefore, the tracers FC1 and FC2 could be used to study soil erosion by water.


    Directory of Open Access Journals (Sweden)

    Teodor Eugen Man


    Full Text Available This paper presents two examples of exploitation of water energy that can be used in the irrigation field. First of theseexamples is the hydraulic transformer type A. Barglazan used for irrigation, pumped water is taken directly from theriver’s well, using a hydraulic pump which simultaneously carried out a double transformation in this way: hydraulicenergy into mechanic energy and mechanical energy into hydraulic energy. Technology preparation and devices designwas done in record time, seeing that this constructive solution is more robust, reliable and with improved energyperformance versus the laboratory prototype. The experimental research which was made at 1:1 scale proved theirgood function over time. Another example is the hydraulic hammer (hydraulic pump that uses low-head energy topump water, with a global efficiency of about 10 - 50%. Currently, the new situation of private ownership of landprovides conditions for new pumping microstations to be made where irrigation is necessary and optimal hydrauliclocations exist.

  4. Erosive separation of organic coatings from fibrous substrates. (United States)

    Weiss, M; Momber, A W


    The separation of organic coatings from fibrous substrates is a key problem in recycling processes. This problem applies to carpets, technical textiles and automotive interior components. This paper reports about results of laboratory studies involving the application of high-speed liquid jets to solve this problem. Results from high-speed video images are used to qualify the principal erosion process. It is shown that the coating material is first ground by the jet; the generated erosion debris is then pushed through the permeable fibrous fabric of the substrate. It is also found that threshold conditions exist for the coating grinding process and for the debris transportation. These threshold conditions depend on target composition and process parameters. A phenomenological separation model is introduced. The influence of key process parameters, namely jet velocity, exposure time, stand-off distance and impact angle, is also investigated. It is found that high-speed liquid jets are suitable tools for separating organic coatings completely and selectively from fibrous substrates. Recommendations on how to optimise the erosion process are derived from the results.


    Institute of Scientific and Technical Information of China (English)


    This paper discusses the overland flow and concentrated flow systems that occur in most farm fields. Concentrated flow areas, which are distinct from overland flow areas, can be a major sediment source and are the main conduits that convey runoff and sediment from most farm fields. Ephemeral gully erosion, which occurs in concentrated flow areas, is similar to but differs from both rill and classical gully erosion. Concentrated flow areas occupy much of the flow path between the end of overland flow areas and defined stream channels. This paper describes the erosion and deposition processes that occur in concentrated flow areas and the effect of soil and cover management on these processes. Ephemeral gully erosion is not estimated with rill-interrill erosion prediction methods, which can result in major errors in estimates of sediment yield leaving farm fields. Much deposition can occur in concentrated flow areas resulting in sediment load leaving a farm field being much less than the sediment produced by rill-interrill and ephemeral gully erosion within the field. This paper describes model structure, topographic representation, and features of ephemeral gully erosion control practices needed in mathematical models used in conservation planning for farm fields.

  6. Soft drinks and in vitro dental erosion. (United States)

    Gravelle, Brent L; Hagen Ii, Ted W; Mayhew, Susan L; Crumpton, Brooks; Sanders, Tyler; Horne, Victoria


    The purpose of this investigation was to determine to what extent the in vitro exposure of healthy teeth to various commonly consumed carbonated soft drinks may precipitate dental erosion. Forty-two healthy, extracted, previously unerupted human molars were weighed prior to, during, and after suspension in various sugared and diet or zero-calorie carbonated beverages for 20 days; the specimens were stored at room temperature while being stirred at 275 rpm. The percentage decrease in tooth weight from before to after exposure represented the weight loss due to enamel erosion; values in the experimental groups varied from 3.22% to 44.52% after 20 days' exposure. Data were subjected to analysis of variance and post hoc Scheffe testing at a level of α = 0.05. Nonsugared drinks (diet and zero-calorie) as a whole were more erosive than sugared beverages. A significant positive correlation was found between the amount of titratable acid and percentage of tooth erosion, while a significant negative correlation was revealed between the beverage pH and percentage of tooth erosion. No significant correlations were found between calcium or phosphate ion concentrations and the amount of erosion. It appears that enamel erosion is dependent on not only the beverage flow rate, pH, and amount of titratable acid, but also whether the soft drink is of the diet or zero-calorie variety, which reflects the type of artificial sweetener present.

  7. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton B. Higdon III


    Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for

  8. Thermal Hydraulic Analysis on Containment Filtered Venting System

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Suk; Park, Tong Kyu; Lee, Doo Yong; Lee, Byung Chul [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Lee, Sang Won; Kim, Hyeong Taek [KHNP-Central Research Institute, Daejeon (Korea, Republic of)


    In this study, the thermal hydraulic conditions (e. g. pressure and flow rate) at each component have been examined and the sensitivity analysis on CFVS design parameters (e. g. water inventory, volumetric flow rate). The purpose is to know the possible range of flow conditions at each component to determine the optimum size of filtration system. GOTHIC code has been used to simulate the thermal-hydraulic behavior inside of CFVS. The behavior of flows in the CFVS has been investigated. The vessel water level and the flow rates during the CFVS operation are examined. It was observed that the vessel water level would be changed significantly due to steam condensation/thermal expansion and steam evaporation. Therefore, the vessel size and the initial water inventory should be carefully determined to keep the minimum water level required for filtration components and not to flood the components in the upper side of the vessel. It has been also observed that the volumetric flow rate is maintained during the CFVS operation, which is beneficial for pool scrubbing units. However, regarding the significant variations at the orifice downstream, careful design would be necessary.

  9. Soil erosion risk evaluation using GIS in the Yuanmou County,a dry-hot valley of Yunnan, China

    Institute of Scientific and Technical Information of China (English)


    Soil erosion is a major threat to sustainable agriculture. Evaluating regional erosion risk is increasingly needed by national and in-ternational environmental agencies. This study elaborates a model (using spatial principal component analysis [SPCA]) method for the evaluation of soil erosion risk in a representative area of dry-hot valley (Yuanmou County) at a scale of 1:100,000 using a spatial database and GIS. The model contains seven factors: elevation, slope, annual precipitation, land use, vegetation, soil, and population density. The evaluation results show that five grades of soil erosion risk: very low, low, medium, high, and very high. These are divided in the study area, and a soil erosion risk evaluation map is created. The model may be applicable to other areas of China because it utilizes spatial data that are generally available.

  10. Design of Pumps for Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Klit, Peder; Olsen, Stefan; Bech, Thomas Nørgaard


    This paper considers the development of two pumps for water hydraulic applications. The pumps are based on two different working principles: The Vane-type pump and the Gear-type pump. Emphasis is put on the considerations that should be made to account for water as the hydraulic fluid.......KEYWORDS: water, pump, design, vane, gear....

  11. Hydraulic fracturing with distinct element method

    NARCIS (Netherlands)

    Pruiksma, J.P.; Bezuijen, A.


    In this report, hydraulic fracturing is investigated using the distinct element code PFC2D from Itasca. Special routines were written to be able to model hydraulic fracturing. These include adding fluid flow to PFC2D and updating the fluid flow domains when fractures appear. A brief description of t

  12. Hydraulic Actuator for Ganged Control Rods (United States)

    Thompson, D. C.; Robey, R. M.


    Hydraulic actuator moves several nuclear-reactor control rods in unison. Electromagnetic pump pushes liquid lithium against ends of control rods, forcing them out of or into nuclear reactor. Color arrows show lithium flow for reactor startup and operation. Flow reversed for shutdown. Conceived for use aboard spacecraft, actuator principle applied to terrestrial hydraulic machinery involving motion of ganged rods.

  13. Control arrangement for the actuation of hydraulic consumers

    Energy Technology Data Exchange (ETDEWEB)

    Kussel, W.; Dettmers, M.; Weirich, W.


    An arrangement for controlling the actuation of hydraulic consumers, by selectively connecting the consumers to hydraulic pressure and return lines; the control arrangement comprising a respective hydraulically operated directional control valve associated with each of the hydraulic consumers, a respective electro-magnetically operated pre-control valve associated with each of the hydraulic directional control valves, and further electro-magnetically operated directional control valve means associated with the pre-control valves, each of the hydraulic consumers being connectible to the hydraulic pressure or return lines via the associated hydraulically operated directional control valve which is actuatable by a hydraulic control line leading from the output of the associated pre-control valve, wherein the inputs of the pre-control valves are connected directly to the hydraulic return line and indirectly, via the further control valve means, to the hydraulic return line or to a hydraulic control pressure line.

  14. Simwe model application on susceptibility analysis to linear erosion: a case study in Alto Douro wine region. (United States)

    Fernandes, Joana; Bateira, Carlos; Soares, Laura; Faria, Ana; Moura, Rui; Gonçalves, José


    The wine production in Alto Douro Wine Region - one of the world's oldest regulated and demarcated wine region - is based on a slope system organized in agricultural terraces once supported exclusively by dry stone walls. It has been undergoing the necessary changes for the introduction of technological innovations partially associated to the mechanization of vineyards work. In this sense, different forms of terrain framing have been implemented, namely the substitution of stone walls by earth embankments. This evolution raises a group of problems related to the hydric soil erosion and landscape preservation, since Alto Douro Wine Region is classified as UNESCO World Heritage Site since 2001. The study area is mostly occupied by vineyards planted in the agriculture terraces without continuous vegetation, the flow proceeds superficially influenced by the weak infiltration capacity and hydraulic conductivity. So, because of this conditioning factor the erosive features present non-significant depth, and the length thereof is limited essentially by the slope of the land, where was registered 64 gullies and 78 rills This paper focuses on the evaluation of susceptibility to linear erosion, through the application of SIMWE (SIMulated Water Erosion), (Mitas and Mitasova, 1998), using a digital elevation model, with pixel of one square meter of spatial resolution, created through detail aerial photographs, (side pixel of 50 cm), submitted to automatic stereo-correlation procedures in Agisoft PhotoScan software. The results provided by the model are compared with hydrological characteristics of the soil, (infiltration capacity, and hydraulic conductivity), soil texture, and soil structure parameters (identified by electrical resistivity measurement) where obtained from field monitoring. This approach demonstrates an association between the spatial distribution of erosive features with high values of soil saturation, and reduced water discharge (10-110 cm3/s), that are

  15. The effect of single-application fluoride treatment on simulated gastric erosion and erosion-abrasion of enamel in vitro. (United States)

    Austin, Rupert S; Stenhagen, Kjersti Refsholt; Hove, Lene Hystad; Tveit, Anne Bjørg; Moazzez, Rebecca V; Bartlett, David W


    To compare single-application fluoride formulations on enamel erosion and erosion-abrasion in vitro. Enamel specimens were pretreated with either sodium, tin, titanium, or sodium/calcium fluoride and subjected to either an erosion model or an erosion-abrasion model, after which optical profilometry was used to measure enamel step height loss. For erosion, the titanium fluoride (P .05). For erosion-abrasion, the titanium fluoride increased enamel loss in comparison to control (P fluoride has differing effects on enamel loss from erosion and erosion-abrasion models.

  16. [Gastric band erosion: Alternative management]. (United States)

    Echaverry-Navarrete, Denis José; Maldonado-Vázquez, Angélica; Cortes-Romano, Pablo; Cabrera-Jardines, Ricardo; Mondragón-Pinzón, Erwin Eduardo; Castillo-González, Federico Armando


    Obesity is a public health problem, for which the prevalence has increased worldwide at an alarming rate, affecting 1.7 billion people in the world. To describe the technique employed in incomplete penetration of gastric band where endoscopic management and/or primary closure is not feasible. Laparoscopic removal of gastric band was performed in five patients with incomplete penetrance using Foley catheterization in the perforation site that could lead to the development of a gastro-cutaneous fistula. The cases presented include a leak that required surgical lavage with satisfactory outcome, and one patient developed stenosis 3 years after surgical management, which was resolved endoscopically. In all cases, the penetration site closed spontaneously. Gastric band erosion has been reported in 3.4% of cases. The reason for inserting a catheter is to create a controlled gastro-cutaneous fistula, allowing spontaneous closure. Various techniques have been described: the totally endoscopic, hybrid techniques (endoscopic/laparoscopic) and completely laparoscopic. A technique is described here that is useful and successful in cases where the above-described treatments are not viable. Copyright © 2015. Published by Masson Doyma México S.A.

  17. Gravity-Driven Hydraulic Fractures (United States)

    Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.


    This study is motived by a new method for disposing of nuclear waste by injecting it as a dense slurry into a hydraulic fracture that grows downward to great enough depth to permanently isolate the waste. Disposing of nuclear waste using gravity-driven hydraulic fractures is mechanically similar to the upward growth of dikes filled with low density magma. A fundamental question in both applications is how the injected fluid controls the propagation dynamics and fracture geometry (depth and breadth) in three dimensions. Analog experiments in gelatin [e.g., Heimpel and Olson, 1994; Taisne and Tait, 2009] show that fracture breadth (the short horizontal dimension) remains nearly stationary when the process in the fracture "head" (where breadth is controlled) is dominated by solid toughness, whereas viscous fluid dissipation is dominant in the fracture tail. We model propagation of the resulting gravity-driven (buoyant or sinking), finger-like fracture of stationary breadth with slowly varying opening along the crack length. The elastic response to fluid loading in a horizontal cross-section is local and can be treated similar to the classical Perkins-Kern-Nordgren (PKN) model of hydraulic fracturing. The propagation condition for a finger-like crack is based on balancing the global energy release rate due to a unit crack extension with the rock fracture toughness. It allows us to relate the net fluid pressure at the tip to the fracture breadth and rock toughness. Unlike the PKN fracture, where breadth is known a priori, the final breadth of a finger-like fracture is a result of processes in the fracture head. Because the head is much more open than the tail, viscous pressure drop in the head can be neglected leading to a 3D analog of Weertman's hydrostatic pulse. This requires relaxing the local elasticity assumption of the PKN model in the fracture head. As a result, we resolve the breadth, and then match the viscosity-dominated tail with the 3-D, toughness

  18. Scaling hydraulic properties of a macroporous soil (United States)

    Mohanty, Binayak P.


    Macroporous soils exhibit significant differences in their hydraulic properties for different pore domains. Multimodal hydraulic functions may be used to describe the characteristics of multiporosity media. I investigated the usefulness of scaling to describe the spatial variability of hydraulic conductivity (K(-h)) functions of a macroporous soil in Las Nutrias, New Mexico. Piecewise-continuous hydraulic conductivity functions suitable for macroporous soils in conjunction with a hybrid similar media-functional normalization scaling approach were used. Results showed that gravity-dominated flow and the related hydraulic conductivity (K(minus;h) functions of the macropore region are more readily scalable than capillary-dominated flow properties of the mesopore and micropore regions. A possible reason for this behavior is that gravity-dominated flow in the larger pores is mostly influenced by the pore diameter which remains more uniform as compared to tortuous mesopores and micropores with variable neck and body sizes along the pore length.

  19. Hydraulic conductivity of GCLs in MSW landfills

    Institute of Scientific and Technical Information of China (English)

    LI Guo-cheng; YANG Wu-chao; DAN Tang-hui


    The state of the art of the study on the hydraulic conductivity of GCLs is presented in terms of the in-fluence of the effective stress, chemical interactions, freeze - thaw cycles and temperature gradients. The chan-ges of void ratio caused by changes of effective stress have a direct linear effect on the hydraulic conductivity, regardless of the cation concentration or the thickness of the adsorbed layer. The hydraulic conductivity is relat-ed to the relative abundance of monovalent and divalent cation(RMD), and RMD has a great effect on the hy-draulic conductivity in weak solution. The long-term susceptibility of GCLs to increased hydraulic conductivity as a response to repeated freeze-thaw cycling is minimal, which has been proved after 150 freeze-thaw cycles. The potential of desiccation cracking increases with the increasing temperature gradient and is related to the ini-tial subsoil water content, the applied overburden stress, etc.

  20. Modeling and Simulation of Hydraulic Engine Mounts

    Institute of Scientific and Technical Information of China (English)

    DUAN Shanzhong; Marshall McNea


    Hydraulic engine mounts are widely used in automotive powertrains for vibration isolation.A lumped mechanical parameter model is a traditional approach to model and simulate such mounts.This paper presents a dynamical model of a passive hydraulic engine mount with a double-chamber,an inertia track,a decoupler,and a plunger.The model is developed based on analogy between electrical systems and mechanical-hydraulic systems.The model is established to capture both low and high frequency dynatmic behaviors of the hydraulic mount.The model will be further used to find the approximate pulse responses of the mounts in terms of the force transmission and top chamber pressure.The close form solution from the simplifiod linear model may provide some insight into the highly nonlinear behavior of the mounts.Based on the model,computer simulation has been carried out to study dynamic performance of the hydraulic mount.

  1. Ash formation, deposition, corrosion, and erosion in conventional boilers

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S.A.; Jones, M.L. [Univ. of North Dakota, Grand Forks, ND (United States)


    The inorganic components (ash-forming species) associated with coals significantly affect boiler design, efficiency of operation, and lifetimes of boiler parts. During combustion in conventional pulverized fuel boilers, the inorganic components are transformed into inorganic gases, liquids, and solids. This partitioning depends upon the association of the inorganic components in the coal and combustion conditions. The inorganic components are associated as mineral grains and as organically associated elements, and these associations of inorganic components in the fuel directly influence their fate upon combustion. Combustion conditions, such as temperature and atmosphere, influence the volatility and the interaction of inorganic components during combustion and gas cooling, which influences the state and size composition distribution of the particulate and condensed ash species. The intermediate species are transported with the bulk gas flow through the combustion systems, during which time the gases and entrained ash are cooled. Deposition, corrosion, and erosion occur when the ash intermediate species are transported to the heat-transfer surface, react with the surface, accumulate, sinter, and develop strength. Research over the past decade has significantly advanced understanding of ash formation, deposition, corrosion, and erosion mechanisms. Many of the advances in understanding and predicting ash-related issues can be attributed to advanced analytical methods to determine the inorganic composition of fuels and the resulting ash materials. These new analytical techniques have been the key to elucidation of the mechanisms of ash formation and deposition. This information has been used to develop algorithms and computer models to predict the effects of ash on combustion system performance.

  2. Numerical Representation of Hydrological Connectivity and Erosion at Hillslope Scale (United States)

    Moshirvaziri, S.; Sheridan, G. J.; Lane, P. N.; Jones, O.


    The pattern of hydrological connectivity between unsealed forest roads and adjacent nearby streams is examined numerically by evaluating the effect of spatial and temporal variability of factors that contribute to runoff and erosion. Significant factors affecting infiltration rate, roughness, sediment detachment and entrainment are identified and represented in the form of algebraic equations. The diffusive equations as simplification to St. Venant equations in hydraulics are applied to create one and two-dimensional models to represent the behaviour of flow dynamics and sediment transport mathematically. The system of nonlinear partial differential equations is solved numerically by choosing the appropriate initial and boundary conditions. The MacCormack finite difference method is used to solve flow variables in the runoff part of the model. The concepts behind sediment detachment due to rainfall and flow dynamics are linked to the equations of mass conservation and continuity to represent erosion. The erosion equations are discretized by applying Forward in Time and Backward in Space finite difference scheme. Since both methods are meant to solve the equations explicitly, care must be taken for stability and convergence of the methods by investigating suitable spatial and temporal increments which satisfies Courant-Friedrichs-Lewy condition. The effect of vegetation and litter on the ground is considered by introducing drag coefficients in the roughness calculation. Validation of the model was accomplished by series of overland flow pumping experiments. Ultimately, the model's simulation outcome for different sets of input parameters will be compared and illustrated in graphs to demonstrate the role of variability in each parameter in the final solution. The numerical representation involves various parameters, many of which are unavailable or difficult to obtain for practical field applications. The final goal of this numerical approach is to develop a more

  3. Repair of Erosion Defects in Gun Barrels by Direct Laser Deposition (United States)

    Nowotny, Steffen; Spatzier, Joerg; Kubisch, Frank; Scharek, Siegfried; Ortner, Jens; Beyer, Eckhard


    In recent years the development of functional carbide coatings follows the trend to use composite powders with fine grained hard particles. In addition to thermal spraying, laser cladding is a suitable surface technology in particular for dynamically loaded components, and it is widely used for the manufacturing of coatings as well as complex 3D structures. The paper presents an application addressing the repair of erosion defects in large gun barrels using a novel internal diameter laser cladding head. The most promising material systems are TiC- and VC-based metal-matrix composites. Samples were evaluated in a special erosion test that emulates realistic load conditions. In this test, the materials are exposed to extreme stresses by temperature and pressure shocks, a very reactive atmosphere and erosive particles. As result, TiC-based coatings showed the best performance, and they are applicable for both repair and surface protection of inner surfaces of components and tools.

  4. Hydraulic test for evaluation of hydrophone VSP

    Energy Technology Data Exchange (ETDEWEB)

    Yabuuchi, Satoshi; Koide, Kaoru [Power Reactor and Nuclear Fuel Development Corp., Toki, Gifu (Japan). Tono Geoscience Center


    This hydraulic test was carried out at the test site of Tono Geoscience Center, Mizunami-shi, Gifu Pref. in order to evaluate the reliability of the hydraulic conductivity estimated from hydrophone VSP experiment. From March to April 1997, we carried out measurements of pore-water pressure at five depths and permeability tests at seven depths down to G.L.-300m, within a borehole drilled in granitic rock. We compared the results of hydraulic test with hydrophone VSP experiment on condition that a single open fracture existed, and we obtained two notable results. First, for the granitic rock at which a single open fracture was found by BTV and also detected by hydrophone VSP experiment, the hydraulic conductivity was 1.54 x 10{sup -7} cm/sec, while for the same granitic rock at which another single open fracture was found by BTV but not detected by hydrophone VSP experiment, the hydraulic conductivity was less than 6 x 10{sup -10} cm/sec. Second, we converted the hydraulic conductivity of 1.54 x 10{sup -7} cm/sec which was obtained in a hydraulic test section of length 2.5 m into an equivalent value for a single open fracture of width 1 mm. The converted value (3.8 x 10{sup -4} cm/sec) was similar to the hydraulic conductivity estimated from hydrophone VSP experiment. In conclusion, the hydraulic test result shows that hydrophone VSP is useful to estimate an approximate hydraulic conductivity of a single open fracture. (author)

  5. Current research issues related to post-wildfire runoff and erosion processes (United States)

    Moody, John A.; Shakesby, Richard A.; Robichaud, Peter R.; Cannon, Susan H.; Martin, Deborah A.


    Research into post-wildfire effects began in the United States more than 70 years ago and only later extended to other parts of the world. Post-wildfire responses are typically transient, episodic, variable in space and time, dependent on thresholds, and involve multiple processes measured by different methods. These characteristics tend to hinder research progress, but the large empirical knowledge base amassed in different regions of the world suggests that it should now be possible to synthesize the data and make a substantial improvement in the understanding of post-wildfire runoff and erosion response. Thus, it is important to identify and prioritize the research issues related to post-wildfire runoff and erosion. Priority research issues are the need to: (1) organize and synthesize similarities and differences in post-wildfire responses between different fire-prone regions of the world in order to determine common patterns and generalities that can explain cause and effect relations; (2) identify and quantify functional relations between metrics of fire effects and soil hydraulic properties that will better represent the dynamic and transient conditions after a wildfire; (3) determine the interaction between burned landscapes and temporally and spatially variable meso-scale precipitation, which is often the primary driver of post-wildfire runoff and erosion responses; (4) determine functional relations between precipitation, basin morphology, runoff connectivity, contributing area, surface roughness, depression storage, and soil characteristics required to predict the timing, magnitudes, and duration of floods and debris flows from ungaged burned basins; and (5) develop standard measurement methods that will ensure the collection of uniform and comparable runoff and erosion data. Resolution of these issues will help to improve conceptual and computer models of post-wildfire runoff and erosion processes.

  6. Study on the facilities and procedures for meltwater erosion of thawed soil

    Directory of Open Access Journals (Sweden)

    Yunyun Ban


    Full Text Available High erosion rate of seasonal thawed soils by snow- and ice-melting runoff in the high altitude and latitude cold regions has great impacts on ecological systems, industries, agriculture and various manmade infrastructures as well as people's lives. The facilities and procedures are of great importance for the studies on simulating erosion processes of melt-frozen soil. This study focuses on the method and facility for simulating the thawing process of frozen soil. The facility includes soil freezing system, melt-water supply system and experimental flume system for thawed soil erosion. The soil freezing system provides enough space to freeze soil columns in flumes. The water supply system deliveries snow- or ice-melting water flow of constant-rate at 0 °C. The soil flumes of 200 or 300 cm long, 10 cm wide and 12 cm high are designed to be assemble and convenient for soil freezing before they are thawed in one-dimensional manner from top to bottom. The one-dimensional thawing process is realized as follows. The frozen soil flume is put on ice boxes and thermally insulated with heat-insulating materials all around to prevent frozen soil from being thawed from sidewalls and bottom. The soil thaws with this system shows that it can meet the requirements of simulating the process of soil thawing from top to bottom. The thawed soil flumes are connected from end to end to form rills of 6–8 m long to run the erosion experiments under different designed hydraulic condition. The equipment provides facility, method and operation process for simulating one-dimensional soil thawing to serve research on the effect of thawed soil depth on erosion process.

  7. Aircraft Hydraulic Systems Dynamic Analysis (United States)


    4400 PSIG OUTLET PRESSURE ~’f UM5 S1 l .( FIF ~0RV lR 1 .I. AP (c R (V) IFWM) APPROX C ASE !VPý :iI S ReUN N•;MRF.. r p kN i t, isI A! f IN, I:E • ’l...and 1F.GI pump modelo were assumed from data supplied by CECO. 165 _ -- --- - SECTION V HYDRAULIC MOTOR MODEL DEVELOPMENT AND VERIFICATION A fixed...3 70 P.,0 601 ~4 M24.0 3 1p ’, 4 r I 1 1 ISIS 2411 APPENDIX E (CONT.) HSFR TECHNICAL MANUAL (AFAPL-TR-76-43, VOL. IV) 4.15 VANE PU`MP SUBROUTINE 4.15A

  8. An Analytical/Computational Approach to the Effect of Roughness on Erosion: Global and Local Angles (United States)

    Lasa, A.; Canik, J. M.; Unterberg, E. A.; Rapp, J.; Chrobak, C.; Stangeby, P. C.


    Plasma-material interactions lead to erosion of plasma facing surfaces, limiting component lifetime, and leading to impurity production and plasma contamination. Surface erosion depends, among other parameters, on the impact angle, which is determined both by local plasma conditions and surface morphology. For rough surfaces (O(μ m)), the ``local'' particle impact angle can differ significantly from the ``global'' impact angle defined by the average surface contour. So far, studies targeted at bridging these local and global angles have been of interpretative focus, aiming to model and understand erosion of naturally occurring surfaces following their exposure to plasma. Here, a more general study of how surface morphology impacts erosion is undertaken by deriving impact angle and density distributions for analytically described surfaces, while systematically varying the ``global angle'' and degree of roughness. These distributions are used to derive spatially resolved erosion yields, as well as estimating the impact of roughness on the total erosion. Surfaces of interest also include ones intentionally sculpted to control material surface migration. This work is supported by the US DOE under contract DE-AC05-00OR22725.

  9. Evaluation of High Temperature Particle Erosion Resistance of Vanadium-Boride Coating

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. Y.; Kim, J. H.; Jeong, S. I. [Andong National University, Andong (Korea, Republic of); Lee, S. H.; Eum, G. W. [Corporate R and D Institute Doosan Heavy Industries and Construction Co., Changwon (Korea, Republic of)


    The components in ultra super critical (USC) steam turbine, which is under development for high efficient power generation, are encountering harsher solid particle erosion by iron oxide scales than ones in the existing steam turbines. Therefore, the currently used boride coating will not be able to hold effective protection from particle erosion in USC system and should be replaced by new particle erosion resistant coatings. One of the best protective coatings developed for USC steam turbine parts was found to be vanadium-boride (V-boride) coating which has a hardness of about 3000 HV, much higher than that of boride, 1600∼2000 HV. In order to evaluate particle erosion resistance of the various coatings such as V-boride, boride and Cr-carbide coatings at high temperature, particle erosion test equipment were designed and manufactured. In addition, erosion particle velocity was simulated using FLUENT software based on semi-implicity method for pressure linked equations revised (SIMPLER). Based on experimental results of this work, the vanadium-boride coating was found to be superior to others and to be a candidate coating to replace the boride coating.

  10. Measurement of Fracture Geometry for Accurate Computation of Hydraulic Conductivity (United States)

    Chae, B.; Ichikawa, Y.; Kim, Y.


    Fluid flow in rock mass is controlled by geometry of fractures which is mainly characterized by roughness, aperture and orientation. Fracture roughness and aperture was observed by a new confocal laser scanning microscope (CLSM; Olympus OLS1100). The wavelength of laser is 488nm, and the laser scanning is managed by a light polarization method using two galvano-meter scanner mirrors. The system improves resolution in the light axis (namely z) direction because of the confocal optics. The sampling is managed in a spacing 2.5 μ m along x and y directions. The highest measurement resolution of z direction is 0.05 μ m, which is the more accurate than other methods. For the roughness measurements, core specimens of coarse and fine grained granites were provided. Measurements were performed along three scan lines on each fracture surface. The measured data were represented as 2-D and 3-D digital images showing detailed features of roughness. Spectral analyses by the fast Fourier transform (FFT) were performed to characterize on the roughness data quantitatively and to identify influential frequency of roughness. The FFT results showed that components of low frequencies were dominant in the fracture roughness. This study also verifies that spectral analysis is a good approach to understand complicate characteristics of fracture roughness. For the aperture measurements, digital images of the aperture were acquired under applying five stages of uniaxial normal stresses. This method can characterize the response of aperture directly using the same specimen. Results of measurements show that reduction values of aperture are different at each part due to rough geometry of fracture walls. Laboratory permeability tests were also conducted to evaluate changes of hydraulic conductivities related to aperture variation due to different stress levels. The results showed non-uniform reduction of hydraulic conductivity under increase of the normal stress and different values of

  11. Puerto Rico Relative Vulnerability to Erosion (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical factors, such as the slope of the land, the texture of the soil, and the precipitation regime influence erosion in an area. Parts of Puerto Rico are very...

  12. Emission Facilities - Erosion & Sediment Control Facilities (United States)

    NSGIC Education | GIS Inventory — An Erosion and Sediment Control Facility is a DEP primary facility type related to the Water Pollution Control program. The following sub-facility types related to...

  13. Geophysical Processes - Erosion & Sediment Control Facilities (United States)

    NSGIC GIS Inventory (aka Ramona) — An Erosion and Sediment Control Facility is a DEP primary facility type related to the Water Pollution Control program. The following sub-facility types related to...

  14. Erosion behaviour of hydro turbine steels

    Indian Academy of Sciences (India)

    Akhilesh K Chauhan; D B Goel; Satya Prakash


    The martensitic stainless steel (termed as 13/4) is currently being used for fabrication of underwater parts in hydroelectric projects. There are, however, several maintenance problems associated with the use of this steel. A nitronic steel (termed as 21–4–N) has been developed as an alternative with the specific aim of overcoming these problems. A comparative study has been made on the erosion behaviour of 13/4 and 21–4–N steels by means of solid particle impingement using gas jet. The eroded surfaces after erosion tests were analysed by scanning electron microscopy. It is observed that the 21–4–N nitronic steel possesses better resistance to erosion in comparison to 13/4 martensitic stainless steel. The austenitic matrix of the nitronic steel possesses high hardness, high tensile toughness and work hardening ability, which results in higher erosion resistance.

  15. Time-Dependent Erosion of Ion Optics (United States)

    Wirz, Richard E.; Anderson, John R.; Katz, Ira; Goebel, Dan M.


    The accurate prediction of thruster life requires time-dependent erosion estimates for the ion optics assembly. Such information is critical to end-of-life mechanisms such as electron backstreaming. CEX2D was recently modified to handle time-dependent erosion, double ions, and multiple throttle conditions in a single run. The modified code is called "CEX2D-t". Comparisons of CEX2D-t results with LDT and ELT post-tests results show good agreement for both screen and accel grid erosion including important erosion features such as chamfering of the downstream end of the accel grid and reduced rate of accel grid aperture enlargement with time.

  16. The role of fluoride in erosion therapy. (United States)

    Huysmans, Marie-Charlotte; Young, Alix; Ganss, Carolina


    The role of fluoride in erosion therapy has long been questioned. However, recent research has yielded positive results. In this chapter, an overview of the literature is provided regarding the application of fluorides in the prevention and treatment of erosion and erosive wear. The results are presented and discussed for different fluoride sources such as monovalent and polyvalent fluorides, and for different vehicles such as toothpastes, solutions and rinses, as well as varnishes and gels. It is concluded that fluoride applications are very likely to be of use in the preventive treatment of erosive wear. Most promising are high-concentration, acidic formulations and the polyvalent fluoride sources, with the best evidence available for stannous fluoride. However, the evidence base for clinical effectiveness is still small. © 2014 S. Karger AG, Basel.

  17. Puerto Rico Relative Vulnerability to Erosion (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical factors, such as the slope of the land, the texture of the soil, and the precipitation regime influence erosion in an area. Parts of Puerto Rico are very...

  18. Erosion dynamics of a wet granular medium. (United States)

    Lefebvre, Gautier; Jop, Pierre


    Liquid may give strong cohesion properties to a granular medium, and confer a solidlike behavior. We study the erosion of a fixed circular aggregate of wet granular matter subjected to a flow of dry grains inside a half-filled rotating drum. During the rotation, the dry grains flow around the fixed obstacle. We show that its diameter decreases linearly with time for low liquid content, as wet grains are pulled out of the aggregate. This erosion phenomenon is governed by the properties of the liquids. The erosion rate decreases exponentially with the surface tension while it depends on the viscosity to the power -1. We propose a model based on the force fluctuations arising inside the flow, explaining both dependencies: The capillary force acts as a threshold and the viscosity controls the erosion time scale. We also provide experiments using different flowing grains, confirming our model.

  19. Puerto Rico Relative Erosion Potential (REP) - 1990 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The relative erosion potential is an indicator of sediment and pollution runoff from land based on slope, soil type, land cover (circa 1990) and (maximum monthly)...

  20. Puerto Rico Relative Erosion Potential (REP) - 2000 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The relative erosion potential is an indicator of sediment and pollution runoff from land based on slope, soil type, land cover (circa 2000) and (maximum monthly)...

  1. Rain Erosion/Measurement Impact Laboratory (United States)

    Federal Laboratory Consortium — The FARM Rain Erosion/Impact Measurement Lab develops solutions for deficiencies in the ability of materials, coatings and designs to withstand a severe operational...

  2. Definition of tolerable soil erosion values

    Directory of Open Access Journals (Sweden)

    G. Sparovek


    Full Text Available Although the criteria for defining erosion tolerance are well established, the limits generally used are not consistent with natural, economical and technological conditions. Rates greater than soil formation can be accepted only until a minimum of soil depth is reached, provided that they are not associated with environmental hazard or productivity losses. A sequence of equations is presented to calculate erosion tolerance rates through time. The selection of equation parameters permits the definition of erosion tolerance rates in agreement with environmental, social and technical needs. The soil depth change that is related to irreversible soil degradation can be calculated. The definition of soil erosion tolerance according to these equations can be used as a guideline for sustainable land use planning and is compatible with expert systems.

  3. Storm dissolved organic matter : surface and sub-surface erosion controls its composition (United States)

    Denis, Marie; Jeanneau, Laurent; Gruau, Gérard; Petitjean, Patrice; Pierson-Wickmann, Anne-Catherine


    In headwater catchments, flood events are responsible for exportation of the major part of DOM (dissolved organic matter) during the hydrological year. During these hot moments, the increased flow at the outlet is accompanied with an increase of DOM concentrations, implying the mobilisation of additional DOM sources which could have a different composition than DOM exported during base-flow. Molecular analysis performed on samples coming from the outlet of the Kervidy-Naizin catchment, an agricultural catchment located in France (Critical Zone Observatory AgrHyS) revealed a modification in the distribution of lignin compounds during flood events. This DOM, less biodegraded, could be produced by partition between particulate and dissolved phases when the soil/water ratio is low, that is to say when soil particles are isolated in water. The evolution of DOM composition during storm events has been assumed to reflect a combination of in-stream and in-soil erosion processes. So how soil erosion could be responsible for production of less degraded DOM? And is the composition of soil DOM modified during a storm event? Those questions were investigated during two flood events, by sampling soil solutions with high frequency in riparian soils equipped with zero-tension lysimeters in the Kervidy-Naizin catchment. In the same time stream DOM was sampled at the outlet of the watershed and runoff were investigated. Samples have been filtered at 0.2μm, analysed for DOC and freeze-dried for molecular analysis (thermally assisted hydrolysis methylation - gas chromatography / mass spectrometry). The hydraulic gradient was monitored every 15 minutes using piezometers implemented in the riparian soils and higher up in the toposequence. At the beginning of the events, hydraulic gradient increased rapidly and stayed high during several days. Modification of DOM composition in soil solution were recorded during the hydraulic gradient rise with an increase in the proportion of less

  4. Primary system thermal hydraulics of future Indian fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Velusamy, K., E-mail: [Thermal Hydraulics Section, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Natesan, K.; Maity, Ram Kumar; Asokkumar, M.; Baskar, R. Arul; Rajendrakumar, M.; Sarathy, U. Partha; Selvaraj, P.; Chellapandi, P. [Thermal Hydraulics Section, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Kumar, G. Senthil; Jebaraj, C. [AU-FRG Centre for CAD/CAM, Anna University, Chennai 600 025 (India)


    Highlights: • We present innovative design options proposed for future Indian fast reactor. • These options have been validated by extensive CFD simulations. • Hotspot factors in fuel subassembly are predicted by parallel CFD simulations. • Significant safety improvement in the thermal hydraulic design is quantified. - Abstract: As a follow-up to PFBR (Indian prototype fast breeder reactor), many FBRs of 500 MWe capacity are planned. The focus of these future FBRs is improved economy and enhanced safety. They are envisaged to have a twin-unit concept. Design and construction experiences gained from PFBR project have provided motivation to achieve an optimized design for future FBRs with significant design changes for many critical components. Some of the design changes include, (i) provision of four primary pipes per primary sodium pump, (ii) inner vessel with single torus lower part, (iii) dome shape roof slab supported on reactor vault, (iv) machined thick plate rotating plugs, (v) reduced main vessel diameter with narrow-gap cooling baffles and (vi) safety vessel integrated with reactor vault. This paper covers thermal hydraulic design validation of the chosen options with respect to hot and cold pool thermal hydraulics, flow requirement for main vessel cooling, inner vessel temperature distribution, safety analysis of primary pipe rupture event, adequacy of decay heat removal capacity by natural convection cooling, cold pool transient thermal loads and thermal management of top shield and reactor vault.

  5. Suspended Decoupler: A New Design of Hydraulic Engine Mount

    Directory of Open Access Journals (Sweden)

    J. Christopherson


    Full Text Available Because of the density mismatch between the decoupler and surrounding fluid, the decoupler of all hydraulic engine mounts (HEM might float, sink, or stick to the cage bounds, assuming static conditions. The problem appears in the transient response of a bottomed-up floating decoupler hydraulic engine mount. To overcome the bottomed-up problem, a suspended decoupler design for improved decoupler control is introduced. The new design does not noticeably affect the mechanism's steady-state behavior, but improves start-up and transient response. Additionally, the decoupler mechanism is incorporated into a smaller, lighter, yet more tunable and hence more effective hydraulic mount design. The steady-state response of a dimensionless model of the mount is examined utilizing the averaging perturbation method applied to a set of second-order nonlinear ordinary differential equations. It is shown that the frequency responses of the floating and suspended decoupled designs are similar and functional. To have a more realistic modeling, utilizing nonlinear finite elements in conjunction with a lumped parameter modeling approach, we evaluate the nonlinear resorting characteristics of the components and implement them in the equations of motion.

  6. Impact of Climate Change on Riverbank Erosion

    Directory of Open Access Journals (Sweden)

    Most. Nazneen Aktar


    Full Text Available Bangladesh is one of the most climate vulnerable countries in the world. This country is highly vulnerable to climate change because of a number of hydro-geological and socio-economic factors such as geographical location, topography, extreme climate variability, high population density, poverty incidence and dependency of agriculture on climate. Presently this country has been experiencing different hydro-meteorological disastrous events that have never been experienced before. Along with other natural disasters, floods are expected to be impacted by climate change in the future. Since floods are always associated with riverbank erosion, it is essential to assess the impact of climate change on bank erosion. Riverbank erosion is also a serious hazard that directly or indirectly causes the suffering of millions of people. Beyond that, most of the old cities and important infrastructures in this country are situated on riverbanks since once upon a time waterway transportation was the main mode of travel. Moreover, people like to reside near rivers because of their dependency on river water for irrigation purposes. So a major part of the total population of this country lives near riverbanks, which frequently makes them victims of riverbank erosion. The major rivers, the Jamuna, the Ganges and the Padma, annually erode thousand hectares of floodplain land and damage or destroy infrastructures. Consequently, this natural disaster has become a major social hazard. This study aims to find out the relationship between floods and bank erosion; and hence the impact of climate changes on riverbank erosion. Since there is no record on riverbank erosion, this study attempts to measure it with the help of satellite images. It has been found in this study that climate change will play a significant role in riverbank erosion. On an average, the riverbank erosion along the major three rivers will be increased by 13% by 2050 and it will be increased by 18% by

  7. Natural and anthropogenic rates of soil erosion

    Directory of Open Access Journals (Sweden)

    Mark A. Nearing


    Full Text Available Regions of land that are brought into crop production from native vegetation typically undergo a period of soil erosion instability, and long term erosion rates are greater than for natural lands as long as the land continues being used for crop production. Average rates of soil erosion under natural, non-cropped conditions have been documented to be less than 2 Mg ha−1 yr−1. On-site rates of erosion of lands under cultivation over large cropland areas, such as in the United States, have been documented to be on the order of 6 Mg ha−1 yr−1 or more. In northeastern China, lands that were brought into production during the last century are thought to have average rates of erosion over this large area of as much as 15 Mg ha−1 yr−1 or more. Broadly applied soil conservation practices, and in particular conservation tillage and no-till cropping, have been found to be effective in reducing rates of erosion, as was seen in the United States when the average rates of erosion on cropped lands decreased from on the order of 9 Mg ha−1 yr−1 to 6 or 7 Mg ha−1 yr−1 between 1982 and 2002, coincident with the widespread adoption of new conservation tillage and residue management practices. Taking cropped lands out of production and restoring them to perennial plant cover, as was done in areas of the United States under the Conservation Reserve Program, is thought to reduce average erosion rates to approximately 1 Mg ha−1 yr−1 or less on those lands.

  8. Magnetic field penetration of erosion switch plasmas (United States)

    Mason, Rodney J.; Jones, Michael E.; Grossmann, John M.; Ottinger, Paul F.


    Computer simulations demonstrate that the entrainment (or advection) of magnetic field with the flow of cathode-emitted electrons can constitute a dominant mechanism for the magnetic field penetration of erosion switch plasmas. Cross-field drift in the accelerating electric field near the cathode starts the penetration process. Plasma erosion propagates the point for emission and magnetic field injection along the cathode toward the load-for the possibility of rapid switch opening.



    Rafi Shaik


    BACKGROUND The pattern of oral diseases has been influenced by ever changing human lifestyle. Tooth wear especially dental erosion has drawn increasing attention as risk factor for tooth damage or loss in recent years. It is a common condition in primary dentition compared to permanent dentition due to thinner and less mineralised enamel. However, it is more worrying, when this condition is being found in an alarming proportion among children. The presence of dental erosion in c...

  10. Prescribed fire effects on runoff, erosion, and soil water repellency on steeply-sloped sagebrush rangeland over a five year period (United States)

    Fire is an inherent component of sagebrush steppe rangelands in western North America and can dramatically affect runoff and erosion processes. Post-fire flooding and erosion events pose substantial threats to proximal resources, property, and human life. Yet, prescribed fire can serve as a tool to ...

  11. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Ligotke, M.W.; Klopfer, D.C.


    Protective barriers have been identified as integral components of plans to isolate defense waste on the Hanford Site. The use of natural materials to construct protective barriers over waste site is being considered. Design requirements for protective barriers include preventing exposure of buried waste, and restricting penetration or percolation of surface waters through the waste zone. Studies were initiated to evaluate the effects of wind erosion on candidate protective barrier surfaces. A wind tunnel was used to provide controlled erosive stresses and to investigate the erosive effects of wind forces on proposed surface layers for protective barriers. Mixed soil and gravel surfaces were prepared and tested for resistance to wind erosion at the Pacific Northwest Laboratory Aerosol Wind Tunnel Research Facility. These tests were performed to investigate surface deflation caused by suspension of soil from various surface layer configurations and to provide a comparison of the relative resistance of the different surfaces to wind erosion. Planning, testing, and analyzing phases of this wind erosion project were coordinated with other tasks supporting the development of protective barriers. These tasks include climate-change predictions, field studies and modeling efforts. This report provides results of measurements of deflation caused by wind forces over level surfaces. Section 2.0 reviews surface layer characteristics and previous relevant studies on wind erosion, describes effects of erosion, and discusses wind tunnel modeling. Materials and methods of the wind tunnel tests are discussed in Section 3.0. Results and discussion are presented in Section 4.0, and conclusions and recommendations Section 5.0. 53 refs., 29 figs., 7 tabs.

  12. Erosion patterns on dissolving blocks (United States)

    Courrech du Pont, Sylvain; Cohen, Caroline; Derr, Julien; Berhanu, Michael


    Patterns in nature are shaped under water flows and wind action, and the understanding of their morphodynamics goes through the identification of the physical mechanisms at play. When a dissoluble body is exposed to a water flow, typical patterns with scallop-like shapes may appear [1,2]. These shapes are observed on the walls of underground rivers or icebergs. We experimentally study the erosion of dissolving bodies made of salt, caramel or ice into water solutions without external flow. The dissolving mixture, which is created at the solid/liquid interface, undergoes a buoyancy-driven instability comparable to a Rayleigh-Bénard instability so that the dissolving front destabilizes into filaments. This mechanism yields to spatial variations of solute concentration and to differential dissolution of the dissolving block. We first observe longitudinal stripes with a well defined wavelength, which evolve towards chevrons and scallops that interact and move again the dissolving current. Thanks to a careful analysis of the competing physical mechanisms, we propose scaling laws, which account for the characteristic lengths and times of the early regime in experiments. The long-term evolution of patterns is understood qualitatively. A close related mechanism has been proposed to explain structures observed on the basal boundary of ice cover on brakish lakes [3] and we suggest that our experiments are analogous and explain the scallop-like patterns on iceberg walls. [1] P. Meakin and B. Jamtveit, Geological pattern formation by growth and dissolution in aqueous systems, Proc. R. Soc. A 466, 659-694 (2010). [2] P.N. Blumberg and R.L. Curl, Experimental and theoretical studies of dissolution roughness, J. Fluid Mech. 65, 735-751 (1974). [3] L. Solari and G. Parker, Morphodynamic modelling of the basal boundary of ice cover on brakish lakes, J.G.R. 118, 1432-1442 (2013).

  13. Dental erosion: causes, diagnostics and treatment.

    Directory of Open Access Journals (Sweden)

    Cecilia Sosa-Puente


    Full Text Available Despite being a commonly studied topic, it is difficult to find studies which explain the problem of dental erosion. For this article, literature was analyzed to find information on the agents which trigger dental erosion, the main diagnosis methods, the most common treatments used nowadays and the interrelationship with dental materials. The etiology of dental erosion is multifactorial, including acids, eating disorders and gastro-esophageal reflux. However, biological factors such as saliva or habits also play a part in the establishment of this condition. In order to establish a reliable diagnosis, clinical appearance becomes decisive. The Basic Index Erosive Wear Examination (BEWE, created in 2008, is an auxiliary diagnosis tool for assessing the status and progress of the erosion. Treatment should be linked to the eradication of the causative agent and it can range from simple observational monitoring of slightly affected teeth to the placement of total crowns in the most severe cases, but this will depend entirely on the extent, severity, symptoms and type of dentition. Regarding dental materials used in the treatment of eroded parts, there are glass ionomer and composite; the latter presents the greatest resistance to biodegradation when interacting with acids. Glass ionomers are the most vulnerable material while resin is seen as the most resistant. In conclusion, dental erosion has become an issue of great importance in the dental practice because of its serious impact on dental structures. Consequently, it is ranked among the most important dental disorders in the present day.

  14. Erosion of Earthen Levees by Wave Action (United States)

    Ozeren, Y.; Wren, D. G.; Reba, M. L.


    Earthen levees of aquaculture and irrigation reservoirs in the United States often experience significant erosion due to wind-generated waves. Typically constructed using local soils, unprotected levees are subjected to rapid erosion and retreat due to wind generated waves and surface runoff. Only a limited amount of published work addresses the erosion rates for unprotected levees, and producers who rely on irrigation reservoirs need an economic basis for selecting a protection method for vulnerable levees. This, in turn, means that a relationship between wave energy and erosion of cohesive soils is needed. In this study, laboratory experiments were carried out in order to quantify wave induced levee erosion and retreat. A model erodible bank was packed using a soil consisting of approximately 14% sand, 73% silt, and 13% clay in a 20.6 m long 0.7 m wide and 1.2 m deep wave tank at the USDA-ARS, National Sedimentation Laboratory in Oxford MS. The geometry of the levee face was monitored by digital camera and the waves were measured by means of 6 capacitance wave staffs. Relationships were established between levee erosion, edge and retreat rates, and incident wave energy.

  15. Formation of gravel pavements during fluvial erosion as an explanation for persistence of ancient cratered terrain on Titan and Mars (United States)

    Howard, Alan D.; Breton, Sylvain; Moore, Jeffrey M.


    In many terrestrial channels the gravel bed is only transported during rare floods (threshold channels), and rates of erosion are very slow. In this paper we explore how coarse debris delivered to channels on Mars and Titan from erosion may inhibit further erosion once a coarse gravel channel bed develops. Portions of the equatorial region of Titan are fluvially eroded into banded (crenulated) terrain, some of which contains numerous circular structures that are likely highly degraded large impact craters surviving from the late heavy bombardment. No mechanism that can chemically or physically break down ice (likely the most important component of Titans crust) has been unambiguously identified. This paper examines a scenario in which fluvial erosion on Titan has largely involved erosion into an impact-generated megaregolith that contains a modest component of gravel-sized debris. As the megaregolith is eroded, coarse gravel gradually accumulates as a lag pavement on channel beds, limiting further erosion and creating a dissected, but largely inactive, or senescent, landscape. Similar development of gravel pavements occur in ancient mountain belts on Earth, and partially explain the persistence of appreciable relief after hundreds of millions of years. Likewise, coarse gravel beds may have limited the degree to which erosion could modify the heavily cratered terrains on Mars, particularly if weathering were largely due to physical, rather than chemical weathering processes in a relatively cold and/or arid environment.

  16. A fully-coupled geomechanics and flow model for hydraulic fracturing and reservoir engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Charoenwongsa, S.; Kazemi, H.; Miskimins, J.; Fakcharoenphol [Colorado School of Mines, Golden, CO (United States)


    A fully coupled geomechanics flow model was used to assess how the changes in pore pressure and temperature influence rock stresses in tight gas reservoirs. The finite difference method was used to develop simulations for phases, components, and thermal stresses. A wave component was used to model the propagation of the strain displacement front as well as changes in stress with time. Fluid and heat flow volumes were modelled separately from rock formation properties. The influence of hydraulic fracturing on stress distributions surrounding the fracture was investigated as well as the effect of filter cake and filtrate. Results of the study showed that significant changes in shear stresses near hydraulic fractures occur as a result of hydraulic fracture face displacement perpendicular to the fracture face. While temperature effects also caused changes in stress distributions, changes in pore pressure did not significantly impact shear stresses as the filtrate did not travel very far into the reservoir. 17 refs., 17 figs.

  17. IT-Tools Concept for Simulation and Design of Water Hydraulic Mechatronic Test Facilities for Motion Control and Operation in Environmentally Sensitive Application Areas

    DEFF Research Database (Denmark)

    Conrad, Finn; Pobedza, J.; Sobczyk, A.


    This paper presents a proposed IT-Tools concept for modeling, simulation, analysis and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. The designed test rigs have tap water hydraulic components of the Danfoss Nessie® product family and equipped...

  18. Satellite-based estimation of rainfall erosivity for Africa

    NARCIS (Netherlands)

    Vrieling, A.; Sterk, G.; Jong, S.M. de


    Rainfall erosivity is a measure for the erosive force of rainfall. Rainfall kinetic energy determines the erosivity and is in turn greatly dependent on rainfall intensity. Attempts for its large-scale mapping are rare. Most are based on interpolation of erosivity values derived from rain gauge data.

  19. Rill erosion in natural and disturbed forests: 1. Measurements (United States)

    P. R. Robichaud; J. W. Wagenbrenner; R. E. Brown


    Rill erosion can be a large portion of the total erosion in disturbed forests, but measurements of the runoff and erosion at the rill scale are uncommon. Simulated rill erosion experiments were conducted in two forested areas in the northwestern United States on slopes ranging from 18 to 79%. We compared runoff rates, runoff velocities, and sediment flux rates from...

  20. An inversion strategy for hydraulic tomography: Coupling travel time and amplitude inversion (United States)

    Brauchler, R.; Cheng, J.-T.; Dietrich, P.; Everett, M.; Johnson, B.; Liedl, R.; Sauter, M.


    SummaryWe present a hydraulic tomographic inversion strategy with an emphasis on the reduction of ambiguity of hydraulic travel time inversion results and the separation of the estimated diffusivity values into hydraulic conductivity and specific storage. Our tomographic inversion strategy is tested by simulated multilevel interference slug tests in which the positions of the sources (injection ports) and the receivers (observation ports) isolated with packers are varied. Simulations include the delaying effect of wellbore storage on travel times which are quantified and shown to be of increasing importance for shorter travel distances. For the reduction of ambiguity of travel time inversion, we use the full travel time data set, as well as smaller data subsets of specified source-receiver angles. The inversion results of data subsets show different resolution characteristics and improve the reliability of the interpretation. The travel time of a pressure pulse is a function of the diffusivity of the medium between the source and receiver. Thus, it is difficult to directly derive values for hydraulic conductivity and specific storage by inverting travel times. In order to overcome this limitation, we exploit the great computational efficiency of hydraulic travel time tomography to define the aquifer structure, which is then input into the underlying groundwater flow model MODFLOW-96. Finally, we perform a model calibration (amplitude inversion) using the automatic parameter estimator PEST, enabling us to separate diffusivity into its two components hydraulic conductivity and specific storage.

  1. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil. (United States)

    Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo


    This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (catchment, the soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.

  2. Hydraulic supports for polishing TMT M3MP (United States)

    Hu, Haifei; Qi, Erhui; Cole, Glen; Hu, Haixiang; Luo, Xiao; Ford, Virginia; Zhang, Xuejun


    For polishing the ultra-thin TMT M3MP, a polishing support system with 18 hydraulic supports (HS) is introduced. This work focuses on the designing and testing of these HSs. Firstly the design concept of HS system is discussed; then mechanical implementation of the HS structure is carried out, with special consideration of fluid cycling, work pressurization and the weight component. Afterward the piping installation and the de-gas process for the working fluid are implemented. Pressurization and stiffness are well checked before system integration for the single HS unit. Finally the support system is integrated for the polishing process.

  3. Linear hydraulic drive system for a Stirling engine (United States)

    Walsh, Michael M.


    A hydraulic drive system operating from the periodic pressure wave produced by a Stirling engine along a first axis thereof and effecting transfer of power from the Stirling engine to a load apparatus therefor and wherein the movable, or working member of the load apparatus is reciprocatingly driven along an axis substantially at right angles to the first axis to achieve an arrangement of a Stirling engine and load apparatus assembly which is much shorter and the components of the load apparatus more readily accessible.

  4. Relationships Between GIS-Based Erosion Indices and Relief Production in the Karakoram Himalaya (United States)

    Bishop, M. P.; Shroder, J. F.; Bush, A. B.; Copland, L.; Owen, L. A.


    Mountain topography is the result of highly scale-dependent interactions involving climatic, tectonic, and surface processes. Alpine glaciers are known to be effective erosional agents that alter landscape relief-structure differently with altitude, although considerable uncertainty and debate exists concerning their effectiveness relative to fluvial activity. Furthermore, from a geodynamic systems perspective, the role of surface processes and relief production, and the spatio-temporal relationships between erosion and rock uplift are enigmatic. The Karakoram Himalaya represents an excellent location to study such relationships, given the extreme relief and reported values of sediment flux and exhumation rates. Consequently, we utilized GIS-based terrain modeling, global climate model simulations, geochronology, and satellite remote sensing to depict areas of rapid erosion in relation to mountain peaks and zones of rapid uplift, and assess the influence of alpine glaciation and other surface processes on landscape relief-structure. Three-dimensional, scale-dependent analysis and modeling of GTOPO30 data reveals that the maximum Airy isostatic response to landscape dissection ranges from ˜ 2 - 3 km for the highest peaks. GIS-based erosion indices depict high-erosion patterns that are spatially coincident with known and suspected zones of rapid uplift and erosion, such as Nanga Parbat, K2 and the Hunza region. The spatial variations depict differences in the coupling of glacier and fluvial erosion, although high-erosion areas exhibit a significant glacier erosion component. Topographic analysis reveals a non-linear relationship between slope angles and altitude, and high-resolution satellite imagery provides evidence of glacier erosion surfaces at high altitude. Although these surfaces have not yet been dated in the K2 region, geochronologic evidence from similar terraces in Hunza support an age of > 100 K BP. If we assume this to be the case, our preliminary

  5. Study of drilling muds on the anti-erosion property of a fluidic amplifier in directional drilling

    Directory of Open Access Journals (Sweden)

    Jiang-fu He


    Full Text Available Due to some drawbacks of conventional drilling methods and drilling tools, the application of hydraulic hammers with a fluidic amplifier have been extensively popularized since its emergence in recent years. However, the performance life of a fluidic amplifier is still unsatisfactory in oil and gas wells drilling, especially the heavy wear or erosion of the fluidic amplifier leads to the reduction of service life time of hydraulic hammers, which is derived from the incision of drilling muds with high speed and pressure. In order to investigate the influence of drilling muds, such as particle size, solid content and jet velocity, on the antierosion property of a fluidic amplifier, several groups of drilling muds with different performance parameters have been utilized to numerical simulation on basis of Computational Fluid Dynamics (CFD. Simulation results have shown that the jet nozzle of fluidic amplifiers is primarily abraded, afterwards are the lateral plates and the wedge of the fluidic amplifier, which shows extraordinary agreement with the actual cases of fluidic amplifier in drilling process. It can be concluded that particle size, solid content and jet velocity have a great influence on the anti-erosion property of a fluidic amplifier, and the erosion rate linearly varies with the particle size of drilling muds, nevertheless exponentially varies with solid content and jet velocity of drilling muds. As to improve the service life time of a fluidic amplifier, the mud purification system or low solid clay-free mud system is suggested in the operation of directional well drilling

  6. Raindrop and flow interactions for interrill erosion with wind-driven rain

    NARCIS (Netherlands)

    Erpul, G.; Gabriels, D.; Darell Norton, L.; Dennis, C.; Huang, C.H.; Visser, S.M.


    Wind-driven rain (WDR) experiments were conducted to evaluate the interrill component of the Water Erosion Prediction Project model with a two-dimensional experimental set-up in a wind tunnel. Synchronized wind and rain simulations were applied to soil surfaces on windward and leeward slopes of 7, 1

  7. Erosion protection conferred by whole human saliva, dialysed saliva, and artificial saliva (United States)

    Baumann, T.; Kozik, J.; Lussi, A.; Carvalho, T. S.


    During dental erosion, tooth minerals are dissolved, leading to a softening of the surface and consequently to irreversible surface loss. Components from human saliva form a pellicle on the tooth surface, providing some protection against erosion. To assess the effect of different components and compositions of saliva on the protective potential of the pellicle against enamel erosion, we prepared four different kinds of saliva: human whole stimulated saliva (HS), artificial saliva containing only ions (AS), human saliva dialysed against artificial saliva, containing salivary proteins and ions (HS/AS), and human saliva dialysed against deionised water, containing only salivary proteins but no ions (HS/DW). Enamel specimens underwent four cycles of immersion in either HS, AS, HS/AS, HS/DW, or a humid chamber (Ctrl), followed by erosion with citric acid. During the cycling process, the surface hardness and the calcium released from the surface of the specimens were measured. The different kinds of saliva provided different levels of protection, HS/DW exhibiting significantly better protection than all the other groups (p < 0.0001). Different components of saliva, therefore, have different effects on the protective properties of the pellicle and the right proportions of these components in saliva are critical for the ability to form a protective pellicle. PMID:27703230

  8. Impact of nitrogen seeding on carbon erosion in the JET divertor

    NARCIS (Netherlands)

    Brezinsek, S.; Jachmich, S.; Rapp, J.; Meigs, A. G.; Nicholas, C.; O' Mullane, M.; Pospieszczyk, A.; van Rooij, G. J.


    Nitrogen has been introduced in H-mode plasmas in JET in order to study its radiation cooling capability and impact on the erosion of divertor plasma-facing components made of carbon-fiber composites (CFC). Experiments in the ionizing plasma regime with low nitrogen injection show a reduction of the

  9. Effect of salivary factors on the susceptibility of hydroxyapatite to early erosion

    NARCIS (Netherlands)

    Jager, D.H.J.; Vieira, A.M.; Ligtenberg, A.J.M.; Bronkhorst, E.; Huysmans, M.C.D.N.J.M.; Vissink, A.


    OBJECTIVE: Salivary pellicle is known to reduce the erosion of enamel and differences in the level of protection exist between individual saliva sources, but which parameters or components are important is not known. The focus of this study was to investigate the relationship between saliva paramete

  10. Effect of salivary factors on the susceptibility of hydroxyapatite to early erosion.

    NARCIS (Netherlands)

    Jager, D.H.; Vieira, A.M.; Ligtenberg, A.J.; Bronkhorst, E.M.; Huysmans, M.C.D.N.J.M.; Vissink, A.


    Objective: Salivary pellicle is known to reduce the erosion of enamel and differences in the level of protection exist between individual saliva sources, but which parameters or components are important is not known. The focus of this study was to investigate the relationship between saliva paramete

  11. Modeling, Optimization, and Detailed Design of a Hydraulic Flywheel-Accumulator (United States)

    Strohmaier, Kyle Glenn

    Improving mobile energy storage technology is an important means of addressing concerns over fossil fuel scarcity and energy independence. Traditional hydraulic accumulator energy storage, though favorable in power density, durability, cost, and environmental impact, suffers from relatively low energy density and a pressure-dependent state of charge. The hydraulic flywheel-accumulator concept utilizes both the hydro-pneumatic and rotating kinetic energy domains by employing a rotating pressure vessel. This thesis provides an in-depth analysis of the hydraulic flywheel-accumulator concept and an assessment of the advantages it offers over traditional static accumulator energy storage. After specifying a practical architecture for the hydraulic flywheel-accumulator, this thesis addresses the complex fluid phenomena and control implications associated with multi-domain energy storage. To facilitate rapid selection of the hydraulic flywheel-accumulator dimensions, computationally inexpensive material stress models are developed for each component. A drive cycle simulation strategy is also developed to assess the dynamic performance of the device. The stress models and performance simulation are combined to form a toolset that facilitates computationally-efficient model-based design. The aforementioned toolset has been embedded into a multi-objective optimization algorithm that aims to minimize the mass of the hydraulic flywheel-accumulator system and to minimize the losses it incurs over the course of a drive cycle. Two optimizations have been performed - one with constraints that reflect a vehicle-scale application, and one with constraints that reflect a laboratory application. At both scales, the optimization results suggest that the hydraulic flywheel-accumulator offers at least an order of magnitude improvement over traditional static accumulator energy storage, while operating at efficiencies between 75% and 93%. A particular hydraulic flywheel-accumulator design



    Santos De La Cruz, Eulogio; Universidad Nacional Mayor de San Marcos; Rojas Lazo, Oswaldo; Universidad Nacional Mayor de San Marcos; Yenque Dedios, Julio; Universidad Nacional Mayor de San Marcos; Lavado Soto, Aurelio; Universidad Nacional Mayor de San Marcos


    A hydraulic system project includes the design, materials selection and construction of the hydraulic piston, hydraulic circuit and the joint with the pump and its accesories. This equiment will be driven by the force of moving fluid, whose application is in the devices of machines, tools, printing, perforation, packing and others. El proyecto de un sistema hidráulico, comprende el diseño, selección de materiales y construcción del pistón hidráulico, circuito hidráulico y el ensamble con l...

  13. Bubble visualization in a simulated hydraulic jump

    CERN Document Server

    Witt, Adam; Shen, Lian


    This is a fluid dynamics video of two- and three-dimensional computational fluid dynamics simulations carried out at St. Anthony Falls Laboratory. A transient hydraulic jump is simulated using OpenFOAM, an open source numerical solver. A Volume of Fluid numerical method is employed with a realizable k-epsilon turbulence model. The goal of this research is to model the void fraction and bubble size in a transient hydraulic jump. This fluid dynamics video depicts the air entrainment characteristics and bubble behavior within a hydraulic jump of Froude number 4.82.

  14. The strength/moisture relations and hydraulic conductivity of Mexican tepetate

    Energy Technology Data Exchange (ETDEWEB)

    Nimlos, T.J. (Univ. of Montana, Missoula (USA)); Hillery P.A. (Environmental Information Center, Helena, MT (USA))


    Indurated soil material formed from volcanic-ash-flow tuff is widespread in the Pacific rim portions of Latin America. This material is called tepetate in Mexico where, in some areas, all soil overlying tepetate has been removed by erosion, leaving a barren landscape with a very slowly permeable surface that contributes to overland flow and flooding. Reclamation of this land involves ripping to break up the upper part of the tepetate or terracing to retain water so that it may infiltrate. Tepetate strength and hydraulic conductivity influence both treatments. The authors determined the change in tepetate strength with moisture. Unconfined compressive strength of eight typical samples was measured at four moisture contents. Strength declined with increasing moisture, especially in samples of high or moderate strength. These data suggest that tepetate of moderate or high strength should be reclaimed during the wet season, whereas low-strength tepetate can be reclaimed at any season. They also determined tepetate's saturated hydraulic conductivity; it varied from 1.5 {times} 10{sup {minus}7} to 36.0 {times} 10{sup {minus}7} m/s. These low values demonstrate the very slowly permeable nature of tepetate and account for the extensive erosion and flooding frequency.

  15. Influence of Deforestation on Infiltration and Erosion in the Brazilian Caatinga (United States)

    Leite, P. A.; Souza, E.; Gomes, R. J.; Jacques, Y.; Cantalice, J. R. B.; Wilcox, B. P.


    Population growth and changes in land use are leading to increasing rates of deforestation and land degradation in the Brazilian Caatinga—a semiarid tropical forest. The influence of deforestation and subsequent recovery on soil hydrological properties and erosion are poorly understood. To investigate the influence of forest regeneration stage on soil hydrological processes, we conducted small plot rainfall simulation experiments on (1) a degraded pasture, recently abandoned; (2) an abandoned pasture left for natural recovery in the past seven years; (3) a 40 year old regenerating forestland; and (4) an old-growth forestland. In addition, we determined infiltration rates using single rings (following the Beerkan Method) and in the laboratory we applied the constant head method to soil core samples. Hydraulic parameters will be obtained using the BEST method with SciLab software and statistical analysis of the data will be carried in R. We found that infiltration rates were highest and erosion the lowest in the old-growth forest. Surprisingly, differences in both infiltration and erosion rates were quite small in the other sites. These results suggest that significant time is required following deforestation for recovery of soil hydrological properties.

  16. An integrated approach to prevent the erosion of salt marshes in the lagoon of Venice

    Directory of Open Access Journals (Sweden)

    Alberto Barausse


    Full Text Available The loss of coastal habitats is a widespread problem in Europe. To protect the intertidal salt marshes of the lagoon of Venice from the erosion due to natural and human causes which is diffusely and intensely impacting them, the European Commission has funded the demonstrative project LIFE VIMINE. LIFE VIMINE aims to protect the most interior, hard-to-access salt marshes in the northern lagoon of Venice through an integrated approach, whose core is the prevention of erosion through numerous, small but spatially-diffuse soil-bioengineering protections works, mainly placed through semi-manual labour and with low impact on the environment and the landscape. The effectiveness of protection works in the long term is ensured through routine, temporally-continuous and spatially-diffuse actions of monitoring and maintenance. This method contrasts the common approach to managing hydraulic risk and erosion in Italy which is based on large, one-off and irreversible protection actions. The sustainability of the LIFE VIMINE approach is ensured by the participatory involvement of stakeholders and the recognition that protecting salt marshes means defending the benefits they provide to society through their ecological functions, as well as protecting the jobs linked to the existence or conservation of this habitat.

  17. Impact erosion prediction using the finite volume particle method with improved constitutive models (United States)

    Leguizamón, Sebastián; Jahanbakhsh, Ebrahim; Maertens, Audrey; Vessaz, Christian; Alimirzazadeh, Siamak; Avellan, François


    Erosion damage in hydraulic turbines is a common problem caused by the high- velocity impact of small particles entrained in the fluid. In this investigation, the Finite Volume Particle Method is used to simulate the three-dimensional impact of rigid spherical particles on a metallic surface. Three different constitutive models are compared: the linear strainhardening (L-H), Cowper-Symonds (C-S) and Johnson-Cook (J-C) models. They are assessed in terms of the predicted erosion rate and its dependence on impact angle and velocity, as compared to experimental data. It has been shown that a model accounting for strain rate is necessary, since the response of the material is significantly tougher at the very high strain rate regime caused by impacts. High sensitivity to the friction coefficient, which models the cutting wear mechanism, has been noticed. The J-C damage model also shows a high sensitivity to the parameter related to triaxiality, whose calibration appears to be scale-dependent, not exclusively material-determined. After calibration, the J-C model is capable of capturing the material's erosion response to both impact velocity and angle, whereas both C-S and L-H fail.

  18. Managing the Arroyo Seco for Flood Prevention, Erosion Control, Waterway and Habitat Restoration

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, L; Wang, C; Laurant, J


    One of the most important tasks for a site facility manager is to ensure that appropriate channel erosion controls are applied to on-site drainage channels. These erosion controls must minimize risks to the public and structures. Water and sediment loads commonly originate from off-site sources and many of the traditional reactionary measures (installing rip-rap or some other form of bed or bank armor) simply transfer or delay the problem. State and federal agency requirements further complicate the management solution. One case in point is the Arroyo Seco, an intermittent stream that runs along the southwest corner of the Lawrence Livermore National Laboratory (LLNL) in Livermore, California. In 2001, LLNL contracted Questa Engineering Corporation to conduct hydraulic, geomorphic, and biological investigations and to prepare an alternatives and constraints analysis. From these investigations, LLNL has selected a water management plan that encompasses overall flood prevention, erosion control, and waterway and habitat restoration and enhancement elements. The most unique aspect of the Arroyo Seco management plan is its use of non-traditional and biotechnical techniques.

  19. Hydraulic Fracturing and the Environment (United States)

    Ayatollahy Tafti, T.; Aminzadeh, F.; Jafarpour, B.; de Barros, F.


    In this presentation, we highlight two key environmental concerns of hydraulic fracturing (HF), namely induced seismicity and groundwater contamination (GC). We examine the induced seismicity (IS) associated with different subsurface fluid injection and production (SFIP) operations and the key operational parameters of SFIP impacting it. In addition we review the key potential sources for possible water contamination. Both in the case of IS and GC we propose modeling and data analysis methods to quantify the risk factors to be used for monitoring and risk reduction. SFIP include presents a risk in hydraulic fracturing, waste water injection, enhanced oil recovery as well as geothermal energy operations. Although a recent report (NRC 2012) documents that HF is not responsible for most of the induced seismicities, we primarily focus on HF here. We look into vaious operational parameters such as volume and rate of water injection, the direction of the well versus the natural fracture network, the depth of the target and the local stress field and fault system, as well as other geological features. The latter would determine the potential for triggering tectonic related events by small induced seismicity events. We provide the building blocks for IS risk assessment and monitoring. The system we propose will involve adequate layers of complexity based on mapped seismic attributes as well as results from ANN and probabilistic predictive modeling workflows. This leads to a set of guidelines which further defines 'safe operating conditions' and 'safe operating zones' which will be a valuable reference for future SFIP operations. We also illustrate how HF can lead to groundwater aquifer contamination. The source of aquifer contamination can be the hydrocarbon gas or the chemicals used in the injected liquid in the formation. We explore possible pathways of contamination within and discuss the likelihood of contamination from each source. Many of the chemical compounds used

  20. The impact of the streamflow hydrograph on sediment supply from terrace erosion (United States)

    Higson, John Lee; Singer, Michael Bliss


    Sediment supply from banks and terraces has important implications for grain-size distributions in alluvial rivers (and by extension for aquatic habitat), as well as for the delivery of floodplain-stored nutrients and contaminants to the aquatic environment. The interactions between streamflow hydrographs and lateral channel boundary failure control the sediment supply from banks and terraces. However, the relationships between variable flow and discrete sediment supply from catastrophic erosion of lateral boundaries and subsequent mass sediment flux in rivers are not well characterised by existing methods and models that focus only on one of several relevant interrelated processes. In order to improve predictive capability of catastrophic sediment supply from lateral boundaries, we adopt a new approach to modelling the process interactions between stream hydrology, erosion of banks/terraces, and the corresponding discrete supply of sediment to channels. We develop a modelling framework for terrace - channel coupling that combines existing theories of flow through porous media, bank stability, and fractional sediment flux. We demonstrate the utility of this modelling approach by assessing hydrologically driven erosion, evolution of grain size in the channel, and fine sediment flux from a study site along the Yuba River in California over individual flood hydrographs and over decadal historical flow series. We quantify the supply of sediment eroded from a contaminated nineteenth century fan terrace of hydraulic gold mining tailings intersecting the Yuba, and find that a threshold for erosion exists at a stage in the channel in excess of 8 m producing episodic sediment concentrations in excess of 300 mg L-1. The modelling produced erosion and fine sediment pulses from each of three major floods in the past several decades until the flow drops below 500 m3 s-1 and a bed armor layer forms, while no sediment was generated from the terrace during smaller floods. We