WorldWideScience

Sample records for hydraulic drive systems

  1. Hydraulic Modular Dosaging Systems for Machine Drives

    Directory of Open Access Journals (Sweden)

    A. J. Kotlobai

    2005-01-01

    Full Text Available The justified principle of making modular dosaging systems for positive-displacement multimotor hydraulic drives used in running gear and technological equipment of mobile construction, road and agricultural machines makes it possible to synchronize motion of running parts. The examples of the realization of modular dosaging systems and an algorithm of their operation are given in the paper.

  2. HYDRAULIC UNITS FOR DRIVING SYSTEMS OF RUNNING EQUIPMENT IN ROAD CONSTRUCTION MACHINERY

    Directory of Open Access Journals (Sweden)

    A. Ja. Kotlobai

    2016-01-01

    Full Text Available Operational efficiency of multi-functional road construction machines depends on number of working bodies which are simultaneously performing technological operations. Systems for propulsion pto to the running equipment drive and active working bodies of road construction machines are developing in the way of using three-axis hydraulic drives. When designing a hydraulic system for road construction machinery dividing of power flow from propulsion to the running equipment drive and active working bodies is considered as rather essential problem. Leading companies do not pay attention to the development of flow divider designs, preferring to produce more expensive multi-flow pumps. One of the ways to increase efficiency of multi-functional road construction machinery is an implementation of running equipment hydraulic driving system based on a mono-aggregate pump unit which consists of a pump and a volumetric divider of power fluid flow. A principle of volumetric division and summing-up of power fluid flows, technical realization and methodology for calculation of key parameters of discrete flow distributors has been developed on the basis of discrete hydraulics regulations. The paper presents results of mathematical modeling of hydraulic systems equipped with the discrete flow distributor. Analysis of a dual-motor hydraulic drive operation has shown the following results: a discrete flow distributor ensures independent load mode of the current consumer circuit operation from the load mode of the second consumer circuit within a wide range of loads; rational value of working fluid flow discretization parameter is the following value interval k = 4–6, maximum value of parameter efficiency is reached when an angular velocity of a distributor rotor coincides with the angular velocity of a pump shaft; discrete flow distributor provides a possibility to change parameters of hydraulic flow feeding in consumers’ pressure lines within a wide range

  3. A Computational Model of Hydraulic Volume Displacement Drive

    Directory of Open Access Journals (Sweden)

    V. N. Pil'gunov

    2014-01-01

    Full Text Available The paper offers a computational model of industrial-purpose hydraulic drive with two hydraulic volume adjustable working chamber machines (pump and motor. Adjustable pump equipped with the pressure control unit can be run together with several adjustable hydraulic motors on the principle of three-phase hydraulic socket-outlet with high-pressure lines, drain, and drainage system. The paper considers the pressure-controlled hydrostatic transmission with hydraulic motor as an output link. It shows a possibility to create a saving hydraulic drive using a functional tie between the adjusting parameters of the pump and hydraulic motor through the pressure difference, torque, and angular rate of the hydraulic motor shaft rotation. The programmable logic controller can implement such tie. The Coulomb and viscous frictions are taken into consideration when developing a computational model of the hydraulic volume displacement drive. Discharge balance considers external and internal leakages in equivalent clearances of hydraulic machines, as well as compression loss volume caused by hydraulic fluid compressibility and deformation of pipe walls. To correct dynamic properties of hydraulic drive, the paper offers that in discharge balance are included the additional regulated external leakages in the open circuit of hydraulic drive and regulated internal leakages in the closed-loop circuit. Generalized differential equations having functional multipliers and multilinked nature have been obtained to describe the operation of hydraulic positioning and speed drive with two hydraulic volume adjustable working chamber machines. It is shown that a proposed computational model of hydraulic drive can be taken into consideration in development of LS («Load-Sensing» drives, in which the pumping pressure is tuned to the value required for the most loaded slave motor to overcome the load. Results attained can be used both in designing the industrial-purpose heavy

  4. Hydraulic system for driving control rods

    International Nuclear Information System (INIS)

    Okuzumi, Naoaki.

    1982-01-01

    Purpose: To enable safety reactor shut down upon occurrence of an abnormal excess pressure in a hydraulic control unit. Constitution: The actuation pressure for a pressure switch that generates a scram signal is set lower than the release pressure set to a pressure release valve. Thus, if the pressure of nitrogen gas in a nitrogen container increases such as upon exposure of the hydraulic control unit to a high temperature, the pressure switch is actuated at first to generate the scram signal and a scram valve is opened to supply water at high pressure to control rod drives under the driving force of the nitrogen gas at high pressure to rapidly insert the control element into the reactor and shut down it. If the pressure of the nitrogen gas still increases after the scram, the pressure release valve is opened to release the nitrogen gas at high temperature to the atmosphere. Since the scram is attained before the actuation of the pressure release valve, safety reactor shut down can be attained and the hydraulic control unit can be protected. (Sekiya, K.)

  5. Transient flow analysis of the single cylinder for the control rod hydraulic driving system

    International Nuclear Information System (INIS)

    Sun, Xinming; Qin, Benke; Bo, Hanliang

    2017-01-01

    Highlights: • The control rod hydraulic driving system(CRHDS) is a new type of built-in control rod drive technology. The hydraulic cylinder is the main component of the CRHDS. • Transient flow phenomenon in the CRHDS is studied by experiments under different working conditions. • The working mechanism of the hydraulic cylinder step motion and the key characteristic parameters are analyzed based on the experimental results. - Abstract: The control rod hydraulic driving system (CRHDS) is a new type of built-in control rod drive technology. In the CRHDS the pulse flow from the pump into the hydraulic cylinder of the control rod hydraulic drive mechanism (CRHDM) is regulated by the integrated valve to perform the step motion of the reactor control rod. Transient flow occurs in the CRHDS during control rod step motion process which is studied by experiments. The time-history curves of flow rate, pressure and inner cylinder displacement were analyzed, and the results show that the water hammer pressure peak during the step-up motion is high, while there are no obvious pressure fluctuations in the corresponding step-down motion. In the step-up process, the pressure fluctuation amplitude increases with the increase of CRHDS driving pressure. The step-up time and the pressure increasing time before step-up decreases with the driving pressure. The step-up pressure increases with the driving pressure. In the step-down process, the step-down time, the step-down pressure and the pressure decreasing time before step-down do not change with the increase of the driving pressure. The experimental results lay the base for the working principle and vibration reduction analysis of the CRHDS and it’s also helpful for improvement of the working performance of the key facilities and instruments of the CRHDS loop.

  6. Design of a Novel Electro-hydraulic Drive Downhole Tractor

    Science.gov (United States)

    Fang, Delei; Shang, Jianzhong; Yang, Junhong; Wang, Zhuo; Wu, Wei

    2018-02-01

    In order to improve the traction ability and the work efficiency of downhole tractor in oil field, a novel electro-hydraulic drive downhole tractor was designed. The tractor’s supporting mechanism and moving mechanism were analyzed based on the tractor mechanical structure. Through the introduction of hydraulic system, the hydraulic drive mechanism and the implementation process were researched. Based on software, analysis of tractor hydraulic drive characteristic and movement performance were simulated, which provide theoretical basis for the development of tractor prototype.

  7. REVIEW OF ENERGY-SAVING TECHNOLOGIES IN MODERN HYDRAULIC DRIVES

    Directory of Open Access Journals (Sweden)

    Mykola Karpenko

    2017-12-01

    Full Text Available This paper focuses on review of modern energy­saving technologies in hydraulic drives. Described main areas of energy conservation in hydraulic drive (which in turn are divided into many under the directions and was established the popularity of them. Reviewed the comparative analysis of efficiency application of various strategies for energy saving in a hydraulic drive. Based on the review for further research a combined method of real­time control systems with energy­saving algorithms and regeneration unit – selected for maxing efficiency in hydraulic drive. Scientific papers (40 papers, what introduced in review, is not older than 15 years in the databases “Sciencedirect” and “Scopus”.

  8. Design of the Driving and Clamp Rotation Hydraulic Control System for the Heavy Load Forging Manipulator

    Directory of Open Access Journals (Sweden)

    Li Geqiang

    2015-01-01

    Full Text Available The manipulator was equipped with full hydraulic drive. We designed the hydraulic systems for the driving and clamping rotation. We used a fuzzy PID control strategy to design the electro-hydraulic proportional control system. We built a united simulation model based on the co-simulation of MATLAB/Simulink and AMEsim. A mathematical model of the system was also established. We did separate simulations of the system’s dynamic characteristics for fast forging and normal forging working conditions. The parameters were optimized. The field test shows that the steady-state error of the hydraulic system is small and the system response is fast. The system’s rapid response speed, high precision, and stability under heavy load were realized.

  9. Experimental Study of Hydraulic Control Rod Drive Mechanism for Passive IN-core Cooling System of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    CAREM 25 (27 MWe safety systems using hydraulic control rod drives (CRD) studied critical issues that were rod drops with interrupted flow [3]. Hydraulic control rod drive suggested fast shutdown condition using a large gap between piston and cylinder in order to fast drop of neutron absorbing rods. A Passive IN-core Cooling system (PINCs) was suggested for safety enhancement of pressurized water reactors (PWR), small modular reactor (SMR), sodium fast reactor (SFR) in UNIST. PINCs consist of hydraulic control rod drive mechanism (Hydraulic CRDM) and hybrid control rod assembly with heat pipe combined with control rod. The schematic diagram of the hydraulic CRDM for PINCs is shown in Fig. 1. The experimental results show the steady state and transient behavior of the upper cylinder at a low pressure and low temperature. The influence of the working fluid temperature and cylinder mass are investigated. Finally, the heat removal between evaporator section and condenser section is compared with or without the hybrid control rod. Heat removal test of the hybrid heat pipe with hydraulic CRDM system showed the heat transfer coefficient of the bundle hybrid control rod and its effect on evaporator pool. The preliminary test both hydraulic CRDM and heat removal system was conducted, which showed the possibility of the in-core hydraulic drive system for application of PINCs.

  10. Linear hydraulic drive system for a Stirling engine

    Science.gov (United States)

    Walsh, Michael M.

    1984-02-21

    A hydraulic drive system operating from the periodic pressure wave produced by a Stirling engine along a first axis thereof and effecting transfer of power from the Stirling engine to a load apparatus therefor and wherein the movable, or working member of the load apparatus is reciprocatingly driven along an axis substantially at right angles to the first axis to achieve an arrangement of a Stirling engine and load apparatus assembly which is much shorter and the components of the load apparatus more readily accessible.

  11. DESIGN AND STUDY OF DRIVE SWIVEL JOINTS FOR HYDRAULIC MANIPULATION SYSTEMS OF MOBILE TRANSPORT-TECHNOLOGICAL MACHINES

    Directory of Open Access Journals (Sweden)

    Lagerev A.V.

    2018-03-01

    Full Text Available The paper presents the design and principle of operation of a new type of articulated connection of adjacent links of manipulation systems of mobile transport and technological machines – the drive swivel joints to provide a rotary rela-tive movement of the links. Their design allows to combine the function of ensuring the continuity of the kinematic chain and the function of providing rotary movement adjacent units and without the use of additional external devices. The design of the device is protected by a patent of the Russian Federation. Drive swivel joints are an alternative to tra-ditional designs of articulated joints with external power hydraulic drives. Developed a mathematical optimization model. The model is based on the minimization of the mass of the drive swivel joints when you complete the necessary design, installation, operating and strength constraints. Based on this mathematical model the proposed method of com-puter-aided design of the drive swivel joints, which is implemented in a computer program. A study was conducted of the influence of the main technical characteristics and magnitude of the operational load at the optimal weight and the optimal constructive dimensions of the drive swivel joints. It is shown that at equal freight-altitude characteristics of mobile crane-manipulator the drive swivel joint allows you to exclude a number of operational shortcomings of the tra-ditional swivel: 1 development over time of the additional dynamic load of metal due to the increased clearances in connection; 2 lowering the volume of the working area of the crane due to the presence of external power of hydraulic drives; 3 the appearance of cracks due to fatigue failure of the elements of the attachment point of the hydraulic drives to the links of manipulation system. It is possible that the transfer of the hydraulic system for lower operating pressure, which increases the efficiency of the crane and the efficiency of the

  12. Seismic analysis of hydraulic control rod driving system

    International Nuclear Information System (INIS)

    Zheng, Yanhua; Bo, Hanliang; Dong, Duo

    2002-01-01

    A simplified mathematical model was developed for the Hydraulic Control Rod Driving System (HCRDS) of a 200 MW nuclear heating reactor, which incorporated the design of its chamfer-hole step cylinder, to analyze its seismic response characteristics. The control rod motion was analyzed for different sine-wave vibration loadings on platform vibrator. The vibration frequency domain and the minimum acceleration amplitude of the control rod needed to cause the control rod to step to its next setting were compared with the design acceleration amplitude spectrum. The system design was found to be safety within the calculated limits. The safety margin increased with increasing frequency. (author)

  13. Control rod driving hydraulic pressure device

    International Nuclear Information System (INIS)

    Ishida, Kazuo.

    1990-01-01

    Discharged water after actuating control rod drives in a BWR type reactor is once discharged to a discharging header, then returned to a master control unit and, subsequently, discharged to a reactor by way of a cooling water header. The radioactive level in the discharging header and the master control unit is increased by the reactor water to increase the operator's exposure. In view of the above, a riser is disposed for connecting a hydraulic pressure control unit incorporating a directional control valve and the cooling water head. When a certain control rod is inserted, the pressurized driving water is supplied through a hydraulic pressure control unit to the control rod drives. The discharged water from the control rod drives is entered by way of the hydraulic pressure control unit into the cooling water header and then returned to the reactor by way of other hydraulic pressure control unit and the control rod drives. Thus, the reactor water is no more recycled to the master control unit to reduce the radioactive exposure. (N.H.)

  14. Hydraulic system for the drive of control rod

    International Nuclear Information System (INIS)

    Niwano, Masao.

    1978-01-01

    Purpose: To remove thermal stress and improve safety by utilizing water discharged a driving device as a part of cooling water for the device upon driving of control rods. Constitution: A water drain valve is wholly closed and a flow stabilization valve is supplied with an amount of water necessary for driving control rods. Upon driving one control rod, an amount of water required for the driving is caused to flow to the relivant hydraulic control unit and the flow rate in the stabilization valve is reduced by an amount required for the driving to keep the flow rate constant in the flow control valve. Since Excess water conventionally returned to the pressure vessel is utilized as cooling water for the driving device of control rods, the pressure vessel nozzle can be saved. Accordingly, the thermal stress in the nozzle portion can be removed to significantly improve the safety. (Seki, T.)

  15. Synthesis of Servo Pneumatic/Hydraulic Drive

    Directory of Open Access Journals (Sweden)

    K D. Efremova

    2017-01-01

    Full Text Available Servo pneumatic and / or hydraulic drives are widely used in modern engineering and process control. The efficiency of using pneumatic / hydraulic drives depends on their parameters and characteristics. To select the optimal drive parameters, various methods are used, based on finding the minimum of the target (target or criteria function.The objective of this paper was to apply one crucial criterion (target function that provides determination of optimal parameters of the pneumatic / hydraulic drive with the translational motion of the end-effector as well as its use in the synthesis of the servo pneumatic cylinder. The article shows the form of the target function representing a set of drive parameters that do not have direct relationships with each other in a dimensionless form for the pneumatic / hydraulic drive with the translational motion of the end-effector. To calculate the parameters of the servo drive close to the optimal ones, a two-criteria LPτ search was used. As criteria, were used the decisive criterion - the proposed target function, and the power developed by the actuator of the pneumatic / hydraulic drive, which were presented in a dimensionless form. It is shown that the criterion for solution optimality is the minimum distance of the selected point in the space of the normalized criteria from the origin. This point was determined. In addition to the proposed criteria, non-formalised requirements were taken into account: actual and mass-produced components of drive, in terms of which its parameters close to the optimal ones were determined, and the maximum relative error of the obtained useful power value of the servo pneumatic drive was estimated. The paper presents design features of two types of the servo pneumatic drive created, taking into account the proposed target function, implemented according to the schemes "hidden" and "spaced apart". The experimental static characteristic of the servo pneumatic drive is

  16. TRACKING CONTROL FOR A HYDRAULIC DRIVE WITH A PRESSURE COMPENSATOR

    Directory of Open Access Journals (Sweden)

    S. V. Aranovskiy

    2015-07-01

    Full Text Available A problem of tracking control is considered for a hydraulic drive with a pressure compensator that is widespread in the equipment of heavy-duty machines. Method. The control problem is solved by means of a switching sliding-mode controller coupled with static nonlinear compensation and desired velocity feedforward. Main Results. Mathematical model of a hydraulic drive is given in view of the pressure compensator presence. Traditional model of a hydraulic drive is formulated for a system with a spool valve; purpose and principles of operation of the pressure compensator in hydraulic systems are described, and the extended model is presented illustrating compensator contribution to overall system dynamics. It is shown that the obtained model has an input static nonlinearity; the nonlinearity cancellation method is proposed giving the possibility for injection of a desired velocity feedforward term. The control law is chosen as a switching one and two chattering attenuation methods are studied: equivalent control estimation via filtering and sign function integration. Experimental studies are performed at a forestry hydraulic crane prototype and illustrate high tracking accuracy achieved for typical crane motions. Practical Significance. The results are suitable for heavy-duty hydraulic machines automation in construction, road building and forestry.

  17. Mid-sized omnidirectional robot with hydraulic drive and steering

    Science.gov (United States)

    Wood, Carl G.; Perry, Trent; Cook, Douglas; Maxfield, Russell; Davidson, Morgan E.

    2003-09-01

    Through funding from the US Army-Tank-Automotive and Armaments Command's (TACOM) Intelligent Mobility Program, Utah State University's (USU) Center for Self-Organizing and Intelligent Systems (CSOIS) has developed the T-series of omni-directional robots based on the USU omni-directional vehicle (ODV) technology. The ODV provides independent computer control of steering and drive in a single wheel assembly. By putting multiple omni-directional (OD) wheels on a chassis, a vehicle is capable of uncoupled translational and rotational motion. Previous robots in the series, the T1, T2, T3, ODIS, ODIS-T, and ODIS-S have all used OD wheels based on electric motors. The T4 weighs approximately 1400 lbs and features a 4-wheel drive wheel configuration. Each wheel assembly consists of a hydraulic drive motor and a hydraulic steering motor. A gasoline engine is used to power both the hydraulic and electrical systems. The paper presents an overview of the mechanical design of the vehicle as well as potential uses of this technology in fielded systems.

  18. Control rod driving hydraulic device

    International Nuclear Information System (INIS)

    Sugano, Hiroshi.

    1993-01-01

    In a control rod driving hydraulic device for an improved BWR type reactor, a bypass pipeline is disposed being branched from a scram pipeline, and a control orifice and a throttle valve are interposed to the bypass pipeline for restricting pressure. Upon occurrence of scram, about 1/2 of water quantity flowing from an accumulator of a hydraulic control unit to the lower surface of a piston of control rod drives by way of a scram pipeline is controlled by the restricting orifice and the throttle valve, by which the water is discharged to a pump suction pipeline or other pipelines by way of the bypass pipeline. With such procedures, a function capable of simultaneously conducting scram for two control rod drives can be attained by one hydraulic control unit. Further, an excessive peak pressure generated by a water hammer phenomenon in the scram pipeline or the control rod drives upon occurrence of scram can be reduced. Deformation and failure due to the excessive peak pressure can be prevented, as well as vibrations and degradation of performance of relevant portions can be prevented. (N.H.)

  19. Control rod drive hydraulic device

    International Nuclear Information System (INIS)

    Takekawa, Toru.

    1994-01-01

    The device of the present invention can reliably prevent a possible erroneous withdrawal of control rod driving mechanism when the pressure of a coolant line is increased by isolation operation of hydraulic control units upon periodical inspection for a BWR type reactor. That is, a coolant line is connected to the downstream of a hydraulic supply device. The coolant line is connected to a hydraulic control unit. A coolant hydraulic detection device and a pressure setting device are disposed to the coolant line. A closing signal line and a returning signal line are disposed, which connect the hydraulic supply device and a flow rate control valve for the hydraulic setting device. In the device of the present invention, even if pressure of supplied coolants is elevated due to isolation of hydraulic control units, the elevation of the hydraulic pressure can be prevented. Accordingly, reliability upon periodical reactor inspection can be improved. Further, the facility is simplified and the installation to an existent facility is easy. (I.S.)

  20. The safety feature of hydraulic driving system of control rod for 200 MW nuclear heating reactor

    International Nuclear Information System (INIS)

    Chi Zongbo; Wu Yuanqiang

    1997-01-01

    The hydraulic driving system of control rod is used as control rod drive mechanism in 200 MW nuclear heating reactor. Design of this system is based on passive system, integrating drive and guide of control rod. The author analyzes the inherent safety and the design safety of this system, with mechanism of control rod not ejecting when the pressure of pressure vessel is lost, and calculating result of core not exposing when the amount of coolant is drained by broken pipe. The results indicate that this system has good safety feature, and assures reactor safety under any accident conditions, providing important technology support for 200 MW nuclear heating reactor with inherent safety feature

  1. Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Mørkholt, M.

    a hydraulic soft yaw system, which is able to reduce the loads on the wind turbine significantly. A full scale hydraulic yaw test rig is available for experiments and tests. The test rig is presented as well as the system schematics of the hydraulic yaw system....... the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized to reduce loading in critical components. Results shows that a significant reduction in fatigue and extreme loads to the yaw...... system and rotor shaft when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. Based on the extrapolated loads, the duty cycles show that it is possible to construct...

  2. Experimental study of the pressure discharge process for the hydraulic control rod drive system stepped cylinder

    International Nuclear Information System (INIS)

    Wang, Jinhua; Bo, Hanliang; Zheng, Wenxiang

    2002-01-01

    The pressure discharge process from the stepped cylinder of the Hydraulic Control Rod Drive System (HCRDS) was studied experimentally in the HCRDS experimental loop for the 200 MW Nuclear Heating Reactor (NHR-200). The results showed that the differential pressure between the outside and the inside of the stepped cylinder increased rapidly to the desired value so that the force induced by the differential pressure which pushes the out tube of stepped cylinder was large enough. Therefore, if the hydraulic control rod were jammed, the pressure could push the hydraulic control rod to overcome the frictional resistance to insert the control rod into the reactor core. The experimental results verified that this design would solve the problem of hydraulic control rod jamming during an accident. (author)

  3. Numerical calculation for flow field of servo-tube guided hydraulic control rod driving system

    International Nuclear Information System (INIS)

    He Keyu; Han Weishi

    2010-01-01

    A new-style hydraulic control rod driving mechanism was put forward by using servo-tube control elements for the design of control rod driving mechanism. The results of numerical simulation by CFD program Fluent for flow field of hydraulic driving cylinder indicate that the bigger the outer diameter of servo-tube, the smaller the resistance coefficient of variable throttle orifice. The zero position gap of variable throttle orifice could be determined on 0.2 mm in the design. The pressure difference between the upper and nether surfaces of piston was mainly created by the throttle function of fixed throttle orifice. It can be effectively controlled by changing the gap of variable throttle orifice. And the lift force of driving cylinder is able to meet the requirement on the design load. (authors)

  4. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2014-09-01

    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  5. Safety of 5 MW district heating reactor (DHR) and hydraulic dynamic pressure drive control rods

    International Nuclear Information System (INIS)

    Wu Yuanqiang; Wang Dazhong

    1991-11-01

    The principles and movement characteristic of the hydraulic dynamic pressure drive for control rods in 5 MW district heating reactor are described with stress on analysis of its effects on reactor safety features. The drive is different from electric-magnetic drive for PWR or hydraulic drive for BWR. The drive cylinder is driven by dynamic pressure. In the new drive system, the reactor coolant (water) used as actuating medium is pressed by pump, then injected into a step cylinder which is set in the reactor core. The cylinder will move step by step by controlling flow, then the cylinder drives the neutron absorber and controls nuclear reaction. The drive is characterized by simplicity in structure, high reliability, inherent safety, reduction in reactor height, economy, etc

  6. An Analytic Approach to Cascade Control Design for Hydraulic Valve-Cylinder Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Hansen, Anders Hedegaard; Andersen, Torben O.

    2016-01-01

    , unfortunately not present in valve-operated hydraulic drives. This paper considers a cascade control approach for hydraulic valve-cylinder drives motivated by the fact that this may be applied to successfully suppress nonlinearities. The drive is pre-compensated utilizing a pressure updated inverse valve flow...

  7. stepping motor - hydraulic motor servo drives for an nc milling machine

    African Journals Online (AJOL)

    Dr Obe

    stepping motor Drive Assembly especially Designed for CNC systems". 13th Machine Tool Design and. Research. (MTDR) conference,. University of Birmingham, 1972. 2 Ertongur, N.A. "Investigation into the instability in an electro hydraulic control system for machine tools" Ph.D. Thesis, University of. Birmingham, UK. 1966 ...

  8. Adaptive Sliding Mode Control for Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2013-01-01

    This paper presents a new adaptive sliding mode controller generally applicable for position tracking control of electro-hydraulic valve-cylinder drives (VCD’s). The proposed control scheme requires limited knowledge on system parameters, and employs only piston- and valve spool position feedback...... employing parameter adaption through a recursive algorithm is presented. This is based on a reduced order model approximation of a VCD with unmatched valve flow- and cylinder asymmetries. Bounds on parameters are obtained despite lack of parameter knowledge, and the proposed controller demonstrates improved...

  9. DEVELOPMENT OF OPERATING DRIVE SYSTEMS IN ENGINEERING EQUIPMENT

    Directory of Open Access Journals (Sweden)

    A. A. Kotlobai

    2015-01-01

    Full Text Available Engineering machines being in operational service with military units of  engineer troops are fit to their purpose and their application is relevant in modern conditions. Maintenance of operating conditions in engineering equipment which was produced earlier by the USSR enterprises is considered as a rather complicated task due to lack of spare parts because their production has been discontinued.One of the approaches used for maintenance of engineering equipment combat capabilities is modernization of operating drive systems that presupposes replacement of mechanical systems in working element drives by hydrostatic drives which are realized while using modern element base. Usage of hydraulic units in drive systems being in mass production for replacement of mechanical systems manufactured earlier in small batches makes it possible to reduce labour inputs for maintenance and repair of machines. The paper presents some possibilities for development of operating drive systems in engineering equipment. The proposed approach is given through an example of  engineering obstacle-clearing vehicle (IMR-2M and excavation machines (MDK-3 and MDK-2M.Application of a hydraulic drive in working elements of the excavation machines permits to withdraw from cardan  shafts, a gear box, a rotary gear and an overload clutch. A hydraulic motor of the cutter and thrower drive is mounted  on a working element gearbox. While executing modernization of hydraulic systems in excavation machines a pump unit has been proposed for the cutter and thrower drive which consists of a controlled pump and a system for automatic maintenance of the pump operational parameters. While developing the operating drive systems in engineering equipment in accordance with the proposed requirements it is possible to simplify drive systems of working elements and  ensure reliable machinery operation in the units of engineer troops. 

  10. Sliding Control with Chattering Elimination for Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2012-01-01

    This paper presents the development of a sliding mode control scheme with chattering elimination, generally applicable for position tracking control of electro-hydraulic valve-cylinder drives. The proposed control scheme requires only common data sheet information, no knowledge on load characteri......This paper presents the development of a sliding mode control scheme with chattering elimination, generally applicable for position tracking control of electro-hydraulic valve-cylinder drives. The proposed control scheme requires only common data sheet information, no knowledge on load...... controller is developed for the control derivative based on a reduced order model. Simulation results demonstrate strong robustness when subjected to parameter perturbations and that chattering is eliminated....

  11. Replacement of pneumatic and hydraulic drives with electrical drives - Analysis of potential; Ersatz von pneumatischen und hydraulischen Antrieben durch Elektroantriebe. Potentialanalyse

    Energy Technology Data Exchange (ETDEWEB)

    Berchten, S. [BEngineering, Bassersdorf (Switzerland); Ritz, Ch. [Schnyder Ingenieure AG, Steg (Switzerland)

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) discusses the potential offered by modern technologies to save energy. The replacement of energy-intensive methods of providing physical movement - such as with pneumatic and hydraulic drives - with electrical drives is discussed. Based on existing installations in industry, an estimate of the potential for making savings is presented. This shows that large energy savings can be made by directly converting electrical into mechanical energy. Using real world examples, end-users and decision-makers are shown two profit-scenarios involving the purchase of a new system or retrofitting an existing system. The scenarios take investments, operating costs and system life-cycle into account. Extrapolations provide estimates of savings-potentials for the Swiss electricity market. Various market sectors are looked at, including the metal-working, chemical, foodstuffs and packaging sectors. Examples of installations actually implemented, where electro-mechanical systems have replaced pneumatic and hydraulic drives, are given.

  12. Static Analysis of High-Performance Fixed Fluid Power Drive with a Single Positive-Displacement Hydraulic Motor

    Directory of Open Access Journals (Sweden)

    O. F. Nikitin

    2015-01-01

    Full Text Available The article deals with the static calculations in designing a high-performance fixed fluid power drive with a single positive-displacement hydraulic motor. Designing is aimed at using a drive that is under development and yet unavailable to find and record the minimum of calculations and maximum of existing hydraulic units that enable clear and unambiguous performance, taking into consideration an available assortment of hydraulic units of hydraulic drives, to have the best efficiency.The specified power (power, moment and kinematics (linear velocity or angular velocity of rotation parameters of the output element of hydraulic motor determine the main output parameters of the hydraulic drive and the useful power of the hydraulic drive under development. The value of the overall efficiency of the hydraulic drive enables us to judge the efficiency of high-performance fixed fluid power drive.The energy analysis of a diagram of the high-performance fixed fluid power drive shows that its high efficiency is achieved when the flow rate of fluid flowing into each cylinder and the magnitude of the feed pump unit (pump are as nearly as possible.The paper considers the ways of determining the geometric parameters of working hydromotors (effective working area or working volume, which allow a selection of the pumping unit parameters. It discusses the ways to improve hydraulic drive efficiency. Using the principle of holding constant conductivity allows us to specify the values of the pressure losses in the hydraulic units used in noncatalog modes. In case of no exact matching between the parameters of existing hydraulic power modes and a proposed characteristics of the pump unit, the nearest to the expected characteristics is taken as a working version.All of the steps allow us to create the high-performance fixed fluid power drive capable of operating at the required power and kinematic parameters with high efficiency.

  13. A Generic Model Based Tracking Controller for Hydraulic Valve-Cylinder Drives

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Schmidt, Lasse; Pedersen, Henrik Clemmensen

    2016-01-01

    in the entire range of operation, rather than reducing stationary errors, and may be parameterized from the desired gain margin, as well as linear model parameters. The proposed control design approaches are evaluated in an experimentally validated, nonlinear simulation model of a hydraulic valve-cylinder drive......The control of hydraulic valve-cylinder drives is still an active subject of research, and various linear and particularly nonlinear approaches has been proposed, especially in the last two-three decades. In many cases the proposed controllers appear to produce excellent tracking ability due...... generally has failed to break through in industry. This paper discusses the dominant properties necessary to take into account when considering position tracking control of hydraulic valve-cylinder drives, and presents two generally applicable, generic control design approaches that combines non...

  14. Position Control of an Over‐Actuated Direct Hydraulic Cylinder Drive

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Grønkjær, Morten; Pedersen, Henrik Clemmensen

    2017-01-01

    , and various approaches have been proposed by research communities as well as the industry. Recently, a so-called Speed-variable Switched Differential Pump was proposed for direct drive of hydraulic differential cylinders. The main idea with this drive is to utilize an electric rotary drive with the shaft...

  15. Output Feedback Control of Electro-Hydraulic Cylinder Drives using the Twisting Algorithm

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2014-01-01

    contributions in literature. This paper considers the twisting algorithm when applied directly for output feedback control, and with the design based on a reduced order model representation of an arbitrary valve driven hydraulic cylinder drive. The consequence of implementing such a controller with the well......This paper discusses the utilization of the so-called twisting algorithm when applied in output feedback position control schemes for electro-hydraulic cylinder drives. The twisting controller was the first second order sliding controller ever introduced, and can structure-wise be considered...... feedback controller may be successfully applied to hydraulic valve driven cylinder drives, with performance being on the level with a conventional surface based first order sliding mode controller....

  16. MATHEMATICAL MODELING OF WORKING PROCESS IN HYDRAULIC DRIVE OF SPECIFICALLY HEAVY-DUTY TRUCK STEERING

    Directory of Open Access Journals (Sweden)

    E. M. Zabolotsky

    2006-01-01

    Full Text Available The paper provides an analysis that shows application of pump-controlled steering hydraulic drives. Dynamic model of steering hydraulic drive of open-cast BelAZ-75131 dump truck developed at BNTU and also mathematical models for circuit consisting of a metering pump and a turning cylinder and a flow amplifier and a turning cylinder with due account of compressibility and resistance of service drain line. It is noted that on the basis of the given methodology a multi-variant dynamic calculation has been carried out, drive dynamics has been analyzed at various design and component parameters of a metering pump and a flow amplifier, rational values of these parameters has been selected for design development. The paper also gives an algorithm scheme for the solution of the derived equation systems.

  17. State of Art of the CAREM-25 Hydraulic Control Rod Drives Feasibility Analysis

    International Nuclear Information System (INIS)

    Mazufri, C.M; Mazzi, R.O

    2000-01-01

    The proposed design adopted for the control rod drives for the CAREM reactor is based on a hydraulic system.As any innovative device, the design process requires to obtain experimental evidence to identify the most important control parameters and to set their relationship with other design parameters, in order to guarantee its feasibility as a previous step to the design qualification tests at the working conditions at the reactor.This paper features a global evaluation of the analysis performed and experimental results obtained in a low pressure loop, design improvements, limiting phenomena identified and corrective actions analyzed or proposed.The evaluation is based on a repetitivity, sensitivity and scalability study of the control parameters and test conditions, as well as the dynamic response between rod drive and the hydraulic system and features related with the mechanical design.Obtained results show that present system has an adequate response compatible with functional and manufacturing requirements

  18. Energy conservation strategy in Hydraulic Power Packs using Variable Frequency Drive IOP Conference Series: Materials Science and Engineering

    Science.gov (United States)

    Ramesh, S.; Ashok, S. Denis; Nagaraj, Shanmukha; Reddy, M. Lohith Kumar; Naulakha, Niranjan Kumar; Adithyakumar, C. R.

    2018-02-01

    At present, energy consumption is to such an extent that if the same trend goes on then in the future at some point of time, the energy sources will all be exploited. Energy conservation in a hydraulic power pack refers to the reduction in the energy consumed by the power pack. Many experiments have been conducted to reduce the energy consumption and one of those methods is by introducing a variable frequency drive. The main objective of the present work is to reduce the energy consumed by the hydraulic power pack using variable frequency drive. Variable Frequency drive is used to vary the speed of the motor by receiving electrical signals from the pressure switch which acts as the feedback system. Using this concept, the speed of the motor can be varied between the specified limits. In the present work, a basic hydraulic power pack and a variable frequency drive based hydraulic power pack were designed and compared both of them with the results obtained. The comparison was based on the power consumed, rise in temperature, noise levels, and flow of oil through pressure relief valve, total oil flow during loading cycle. By comparing both the circuits, it is found that for the proposed system, consumption of power reduces by 78.4% and is as powerful as the present system.

  19. An approach for second order control with finite time convergence for electro-hydraulic drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2013-01-01

    algorithm parameters. However a discontinuous term internally in the control structure may excite pressures of transmission lines in hydraulic drives as the control structure strives to maintain the control error and its derivative equal to zero. In this paper a modified version of a controller based......Being a second order sliding algorithm, the super twisting algorithm is highly attractive for application in control of hydraulic drives and mechanical systems in general, as it utilizes only the control error while driving the control error as well as its derivative to zero for properly chosen...... on the super twisting algorithm is proposed, with the focus of eliminating the discontinuous term in order to achieve a more smooth control operation. The convergence properties of the proposed controller are analyzed via a conservative phase plane analysis. Furthermore, homogeneity considerations imply finite...

  20. Rig`s electricity to power top drive drilling system

    Energy Technology Data Exchange (ETDEWEB)

    Liderth, D.

    1996-05-01

    Permanent magnet brushless electric motors to supply torque to more space-efficient top drive drilling assemblies was the solution designed by Kaman Electromagnetic Corporation, working hand-in-hand with Calgary-based Tesco Drilling Technology, to remedy problems created by the bulkiness of standard hydraulic top drive systems. The biggest advantage of using electric over hydraulic top drive systems is the ability to tap into the rig`s existing power source, which lowers both cost and effort. A better power to weight ratio and reduced maintenance requirements are other desirable advantages.

  1. Hydraulic Rod Drives for the CAREM Reactor

    International Nuclear Information System (INIS)

    Mazzi, R.O

    2000-01-01

    CAREM belongs to those considered innovative reactors and their main design goal is obtain a significant improvement in safety.Requirements for the design of the first shutdown systems (FSS) is one of the mayor challenges from functional and reliability point of view, among most of the system of a nuclear reactor.Thus, the design of First Shutdown System must be in accordance with both, the system and the specific design criteria of the CAREM concept.In order to choose the best option for the control rod drive device, three different alternatives have been analysed in the frame of the Project.This paper discusses the advantages and disadvantages of each option and presents the main reasons to select the hydraulic type as the most promising one.The principles and main characteristics of the selected system are explained and the main goals to be obtained during development activities, in order to obtain a reliable design to successfully comply with operating requirements for reactor service are also presented

  2. Hydraulic pressure control unit for control rod drive

    International Nuclear Information System (INIS)

    Watabe, Yukio.

    1990-01-01

    The pressure invention concerns a hydraulic pressure control unit for control rod drives in BWR type reactors. The space above a floating piston possessed by an accumulator and the housing of control rod drives are connected by means of a pipeline. The pipeline has a scram valve which is opened upon occurrence of reactor scram. A pump is disposed between the accumulator and the scram valve for communicating a discharge port to apply a high pressure water to the accumulator. According to the present invention, a control unit is disposed between the scram valve and the housing of the control rod drives in the hydraulic pressure control unit for maintaining the cross sectional area of the flow channel of the pipeline to a usual size when the pressure in a pressure vessel is under a rated operation pressure, while limiting the cross sectional area of the flow channel when the pressure is lower than that in the rated operation. Thus, whole insertion of the control rod substantially at a constant speed is enabled irrespective of the level of the pressure in the pressure vessel. (I.S.)

  3. Control System on a Wind Turbine: Evaluation of Control Strategies for a Wind Turbine with Hydraulic Drive Train by Means of Aeroelastic Analysis

    OpenAIRE

    Frøyd, Lars

    2009-01-01

    The evolution of wind turbines are going towards floating offshore structures. To improve the stability of these turbines, the weight of the nacelle should be as low as possible. The company ChapDrive has developed a hydraulic drive train that gives the ability to move the generator to the base of the tower and to replace the traditional gearbox. To test the system, ChapDrive has constructed a prototype turbine which is located at Valsneset.This thesis describes the combined aero-elastic and...

  4. Reactor Shutdown Mechanism by Top-mounted Hydraulic System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Haun; Cho, Yeong Garp; Choi, Myoung Hwan; Lee, Jin Haeng; Huh, Hyung; Kim, Jong In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    There are two types of reactor shutdown mechanisms in HANARO. One is the mechanism driven by a hydraulic system, and the other is driven by a stepping motor. In HANARO, there are four Control Rod Drive Mechanisms (CRDMs) with an individual step motor and four Shutoff (SO) Units with an individual hydraulic system located at the top of reactor pool. The absorber rods in SO units are poised at the top of the core by the hydraulic force during normal operation. The rods of SO units drop by gravity as the first reactor showdown mechanism when a trip is commended by the reactor protection system (RPS). The rods in CRDMs also drop by gravity together as a redundant shutdown mechanism. When a trip is commended by the reactor regulating system (RRS), the absorber rods of CRDM only drop; while the absorber rods of SO units stay at the top of the core by the hydraulic system. The reactivity control mechanisms of in JRTR, one of the new research reactor with plate type fuels, consist of four CRDMs driven by an individual step motor and two second shutdown drive mechanisms (SSDMs) driven by an individual hydraulic system as shown in Fig. 1. The CRDMs act as the first reactor shutdown mechanism and reactor regulating as well. The top-mounted SSDM driven by the hydraulic system for the JRTR is under design in KAERI. The SSDM provides an alternate and independent means of reactor shutdown. The second shutdown rods (SSRs) of the SSDM are poised at the top of the core by the hydraulic system during the normal operation and drop by gravity for the reactor trip. Based on the proven technology of the design, operation and maintenance for HANARO, the SSDM for the JRTR has been optimized by the design improvement from the experience and test. This paper aims for the introduction of the SSDM in the process of the basic design. The major differences of the shutdown mechanisms by the hydraulic system are compared between HANARO and JRTR, and the design features, system, structure and

  5. Shock analysis on hydraulic drive control rod during scram

    International Nuclear Information System (INIS)

    Song Wei; Qin Benke; Bo Hanliang

    2013-01-01

    Control rod hydraulic drive mechanism (CRHDM) is a new invention of Institute of Nuclear and New Energy Technology of Tsinghua University. The hydraulic absorber buffers the control rod when it scrams. The control rod fast drop impact experiment was conducted and the key parameters of control rod hydraulic buffering performance were obtained. Based on the test results and according to D'Alembert principle, the maximum inertial impact force on the control rod during the fast drop period was applied as equivalent static load force on the control rod. The deformations and stress distributions on the control rod in this worst case were calculated by using finite element software ABAQUS. Calculation results were compared with the experiment results, and it was verified that nonlinear transient dynamics analysis in this problem can be simplified as static analysis. Damage criterion of the control rod fast drop impact process was also given. And it lays foundation for optimal design of the control rod and hydraulic absorber. (authors)

  6. Development of A Hydraulic Drive for a novel Diesel-Hydraulic system for Large commercial Vehicles

    DEFF Research Database (Denmark)

    Stecki, J. S.; Conrad, Finn; Matheson, P.

    2002-01-01

    The objectives and results of the research project Hybrid Diesel-Hydraulic System for Large commercial vehicles, e.g. urban freight delivery, buses or garbage trucks. The paper presents and discusses the research and development of the system, modelling approach and results from preliminary...... performance tests on a 10 ton vehicle....

  7. Testing of marrow coal bed systems by hydraulic driving device for thin films of coal; Ensayo de un Sistema de Arranque con Cepillo mediante Accionamiento Hidraulico para Capas Estrechas de CArbon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This researching project had the aim of: Testing a new mining system performance at narrow coal bed, which uses plough equipment with hydraulic driving devices. Minimising driving power group size to avoid problems regarding with the wall mining-heading transition, decreasing the needed room to house it and thus simplifying wall mining edge support The expected goals were: Take advantage of hydraulic driving devices to obtain a good efficiency with a variable and discontinuous load, bu t without loosing the electric driving devices advantages, consisting on increase driving torque, being the engine blocked Lengthen the mechanical equipment life (chains, driving sprockets, etc.) Reach and economic production rate Researching project was developed in El Bierzo basin (Leon, Spain), in Grupo Ampliacion, a mining group belonged to Viloria Hnos S. A.. (Author)

  8. Computer Simulation of Hydraulic Systems with Typical Nonlinear Characteristics

    Directory of Open Access Journals (Sweden)

    D. N. Popov

    2017-01-01

    Full Text Available The task was to synthesise an adjustable hydraulic system structure, the mathematical model of which takes into account its inherent nonlinearity. Its solution suggests using a successive computer simulations starting with a structure of the linearized stable hydraulic system, which is then complicated by including the essentially non-linear elements. The hydraulic system thus obtained may be unable to meet the Lyapunov stability criterion and be unstable. This can be eliminated through correcting elements. Control of correction results is provided according to the form of transition processes due to stepwise variation of the control signal.Computer simulation of a throttle-controlled electrohydraulic servo drive with the rotary output element illustrates the proposed method application. A constant pressure power source provides fluid feed for the drive under pressure.For drive simulation the following models were involved: the linear model, the model taking into consideration a non-linearity of the flow-dynamic characteristics of a spool-type valve, and the non-linear models that take into account the dry friction in the spool-type valve, the backlash in the steering angle sensor of the motor shaft.The paper shows possibility of damping oscillation caused by variable hydrodynamic forces through introducing a correction device.The list of references attached contains 16 sources, which were used to justify and explain certain factors of the automatic control theory and the fluid mechanics of unsteady flows.The article presents 6 block-diagrams of the electrohydraulic servo drive and their appropriate transition processes, which have been studied.

  9. A hydraulic hybrid propulsion method for automobiles with self-adaptive system

    International Nuclear Information System (INIS)

    Wu, Wei; Hu, Jibin; Yuan, Shihua; Di, Chongfeng

    2016-01-01

    A hydraulic hybrid vehicle with the self-adaptive system is proposed. The mode-switching between the driving mode and the hydraulic regenerative braking mode is realised by the pressure cross-feedback control. Extensive simulated and tested results are presented. The control parameters are reduced and the energy efficiency can be increased by the self-adaptive system. The mode-switching response is fast. The response time can be adjusted by changing the controlling spool diameter of the hydraulic operated check valve in the self-adaptive system. The closing of the valve becomes faster with a smaller controlling spool diameter. The hydraulic regenerative braking mode can be achieved by changing the hydraulic transformer controlled angle. Compared with the convention electric-hydraulic system, the self-adaptive system for the hydraulic hybrid vehicle mode-switching has a higher reliability and a lower cost. The efficiency of the hydraulic regenerative braking is also increased. - Highlights: • A new hybrid system with a self-adaptive system for automobiles is presented. • The mode-switching is realised by the pressure cross-feedback control. • The energy efficiency can be increased with the self-adaptive system. • The control parameters are reduced with the self-adaptive system.

  10. Small hydraulic turbine drives

    Science.gov (United States)

    Rostafinski, W. A.

    1970-01-01

    Turbine, driven by the fluid being pumped, requires no external controls, is completely integrated into the flow system, and has bearings which utilize the main fluid for lubrication and cooling. Torque capabilities compare favorably with those developed by positive displacement hydraulic motors.

  11. FEATURES OF RESOURCE TESTING OF THE HYDRAULIC BRAKE DRIVE ELEMENTS OF VEHICLES EQUIPPED WITH ABS

    Directory of Open Access Journals (Sweden)

    A. Revin

    2011-01-01

    Full Text Available The analysis of the resource testing facilities and methods of automobile brake cylinders in terms of ABS working process adequacy is carried out. A testing stand construction and a method of carrying out the resource testing of hydraulic drive elements of the automobile automated braking sys-tem is offered.

  12. An Energy Efficient Hydraulic Winch Drive Concept Based on a Speed-variable Switched Differential Pump

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben O.; Pedersen, Henrik Clemmensen

    2017-01-01

    controls. Such solutions are typically constituted by many and rather expensive components, and are furthermore often suffering from low frequency dynamics. In this paper an alternative solution is proposed for winch drive operation, which is based on the so-called speed-variable switched differential pump......, originally designed for direct drive of hydraulic differential cylinders. This concept utilizes three pumps, driven by a single electric servo drive. The concept is redesigned for usage in winch drives, driven by flow symmetric hydraulic motors and single directional loads as commonly seen in e.g. active...... heave compensation applications. A general drive configuration approach is presented, along with a proper control strategy and design. The resulting concept is evaluated when applied for active heave compensation. Results demonstrate control performance on level with conventional valve solutions...

  13. Application of simple adaptive control to water hydraulic servo cylinder system

    Science.gov (United States)

    Ito, Kazuhisa; Yamada, Tsuyoshi; Ikeo, Shigeru; Takahashi, Koji

    2012-09-01

    Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems.

  14. Hydraulic Actuators with Autonomous Hydraulic Supply for the Mainline Aircrafts

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2014-01-01

    Full Text Available Applied in the aircraft control systems, hydraulic servo actuators with autonomous hydraulic supply, so-called, hydraulic actuators of integrated configuration, i.e. combination of a source of hydraulic power and its load in the single unit, are aimed at increasing control system reliability both owing to elimination of the pipelines connecting the actuator to the hydraulic supply source, and owing to avoidance of influence of other loads failure on the actuator operability. Their purpose is also to raise control system survivability by eliminating the long pipeline communications and their replacing for the electro-conductive power supply system, thus reducing the vulnerability of systems. The main reason for a delayed application of the hydraulic actuators in the cutting-edge aircrafts was that such aircrafts require hydraulic actuators of considerably higher power with considerable heat releases, which caused an unacceptable overheat of the hydraulic actuators. Positive and negative sides of the hydraulic actuators, their alternative options of increased reliability and survivability, local hydraulic systems as an advanced alternative to independent hydraulic actuators are considered.Now to use hydraulic actuators in mainline aircrafts is inexpedient since there are the unfairly large number of the problems reducing, first and last, safety of flights, with no essential weight and operational advantages. Still works to create competitive hydraulic actuators ought to be continued.Application of local hydraulic systems (LHS will allow us to reduce length of pressure head and drain pipelines and mass of pipelines, as well as to raise their general fail-safety and survivability. Application of the LHS principle will allow us to use a majority of steering drive advantages. It is necessary to allocate especially the following:- ease of meeting requirements for the non-local spread of the engine weight;- essentially reducing length and weight of

  15. Selected technological problems of repair of hydraulic drive systems for shearer loaders with the example of A2V-107 pumps and SHT-630W motors

    Energy Technology Data Exchange (ETDEWEB)

    Kusak, E.; Paluch, J.

    1983-07-01

    Major elements of hydraulic drive systems as well as their wear and repair characteristics are described. Types of wear and standardized repair methods are comparatively evaluated. The evaluations are aimed at development of standardized procedures for use in large repair shops. The following stages of repair operations of A2V-107 pumps and SHT-630W motors are analyzed: disassembling hydraulic systems, washing and cleaning, classification of equipment elements (elements for scrapping and for regeneration), regeneration, assembling and final tests. The following regeneration methods are discussed: cutting, burnishing, bushing (e.g. the Heli Coil method), regeneration using copper, tin or zinc dusts and a temperature from 950 to 1,000 K under inert atmosphere, heat treatments. Methods are reviewed for comparative evaluations of repair efficiency and repair quality as well as documents used for recording repair in the shops. Economic aspects of using standardized procedures for repair of hydraulic equipment for shearer loaders are discussed and recommendations are made. (6 refs.)

  16. High speed hydraulically-actuated operating system for an electric circuit breaker

    Science.gov (United States)

    Iman, Imdad

    1983-06-07

    This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a breaker-opening piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A dashpotting mechanism operating separately from the hydraulic actuating system is provided, thereby reducing flow restriction interference with breaker opening.

  17. Modeling and experiments on the drive characteristics of high-strength water hydraulic artificial muscles

    Science.gov (United States)

    Zhang, Zengmeng; Hou, Jiaoyi; Ning, Dayong; Gong, Xiaofeng; Gong, Yongjun

    2017-05-01

    Fluidic artificial muscles are popular in robotics and function as biomimetic actuators. Their pneumatic version has been widely investigated. A novel water hydraulic artificial muscle (WHAM) with high strength is developed in this study. WHAMs can be applied to underwater manipulators widely used in ocean development because of their environment-friendly characteristics, high force-to-weight ratio, and good bio-imitability. Therefore, the strength of WHAMs has been improved to fit the requirements of underwater environments and the work pressure of water hydraulic components. However, understanding the mechanical behaviors of WHAMs is necessary because WHAMs use work media and pressure control that are different from those used by pneumatic artificial muscles. This paper presents the static and dynamic characteristics of the WHAM system, including the water hydraulic pressure control circuit. A test system is designed and built to analyze the drive characteristics of the developed WHAM. The theoretical relationships among the amount of contraction, pressure, and output drawing force of the WHAM are tested and verified. A linearized transfer function is proposed, and the dynamic characteristics of the WHAM are investigated through simulation and inertia load experiments. Simulation results agree with the experimental results and show that the proposed model can be applied to the control of WHAM actuators.

  18. Electric and hydraulic hybrid actuator. Competing and complementary systems?; Elektrische und hydraulische Hybridantriebe. Konkurrierende oder komplementaere Systeme?

    Energy Technology Data Exchange (ETDEWEB)

    Dehnert, Klaus [Eaton Corporation, Rastatt (Germany)

    2011-07-01

    Hybrid drives for commercial vehicles and for mobile processing machines are evolving rapidly to a future-oriented technology. Hybrid drives significantly affect issues such as fuel efficiency, emissions, productivity and life cycle cost. For recovery and storage of kinetic energy, different technologies are used. Under this aspect, the author of the contribution under consideration reports on the key distinguishing features of some currently available hybrid concepts and their appropriate application. In the selection of suitable hydraulic hybrid drive systems, the essential features of different hybrid systems have to be considered.

  19. Electrohydraulic drive system with planetary superposed PS 16 gears

    Energy Technology Data Exchange (ETDEWEB)

    Graetz, A.; Klimek, K.H.; Welz, H.

    1988-10-20

    During the nine-month period of use of the electrohydraulic drive system with PS 16 superposed planetary gear and hydrostatic support advance of 800 m was achieved on the 250 m long face in the Geitling 2 seam at the Niederberg colliery. No appreciable difficulties occurred in the hydraulic system and with the PS 16 superposed planetary gear in the entire period. Uniform load distribution between the two drives was proved until the end of the working even with a chain elongation difference up to 3% observed during the final phase of operation. In contrast to normal operation thermal disconnections and motor failures no longer occurred. After accurate adjustment of the pressures the system operated successfully. The time utilisation of the equipment was improved by 15% to 65.7%. The quick and reliable response of the hydraulics in the event of overloading ensured that no chain cracks occurred. The four connector fractures were attributable to fatigue failures. The material-protecting method of operation was proved by the quiet running of the chain and substantially longer operating time, e.g. of the chain and sprocket. To prove the efficiency of the new drive system, comprehensive measurements were undertaken. It emerged during these measurements that in contrast to the conventional drives the load equalisation ensures that the total installed power is available if required. However, the freeing capacity of the plough could not be fully utilised because of the missing conveyor cross-section.

  20. Chapter 2. Mode-switching in Hydraulic Actuator Systems - An Experiment

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Conrad, Finn; Ravn, Anders P.

    1996-01-01

    Experiments with mode-switching adaptive control of actuators to drive a hydraulic test robot.The research is a cooperation with IT, DTU within the IMCIA Research Programme supported by the Danish Technical Research Council, STVF.......Experiments with mode-switching adaptive control of actuators to drive a hydraulic test robot.The research is a cooperation with IT, DTU within the IMCIA Research Programme supported by the Danish Technical Research Council, STVF....

  1. EVALUATION OF RESULTS OF ROAD RESEARCH OF LANOS CAR, EQUIPPED WITH AN ADVANCED HYDRAULIC BRAKE DRIVE

    Directory of Open Access Journals (Sweden)

    I. Nazarov

    2016-12-01

    Full Text Available The results of studies of road emergency braking of the car, the brake system equipped with an improved hydraulic brake actuator according to the patent number 76189 Ukraine are analyzed. This drive provides more efficient emergency braking of cars under operating conditions by of installing in each of the contours of the rear brakes one brake-power, each of which provides distribution of braking forces between the wheels of the corresponding side.

  2. The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design

    Science.gov (United States)

    White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald

    1988-01-01

    The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.

  3. A Hydraulic Motor-Alternator System for Ocean-Submersible Vehicles

    Science.gov (United States)

    Aintablian, Harry O.; Valdez, Thomas I.; Jones, Jack A.

    2012-01-01

    An ocean-submersible vehicle has been developed at JPL that moves back and forth between sea level and a depth of a few hundred meters. A liquid volumetric change at a pressure of 70 bars is created by means of thermal phase change. During vehicle ascent, the phase-change material (PCM) is melted by the circulation of warm water and thus pressure is increased. During vehicle descent, the PCM is cooled resulting in reduced pressure. This pressure change is used to generate electric power by means of a hydraulic pump that drives a permanent magnet (PM) alternator. The output energy of the alternator is stored in a rechargeable battery that powers an on-board computer, instrumentation and other peripherals.The focus of this paper is the performance evaluation of a specific hydraulic motor-alternator system. Experimental and theoretical efficiency data of the hydraulic motor and the alternator are presented. The results are used to evaluate the optimization of the hydraulic motor-alternator system. The integrated submersible vehicle was successfully operated in the Pacific Ocean near Hawaii. A brief overview of the actual test results is presented.

  4. HYDRAULIC SERVO CONTROL MECHANISM

    Science.gov (United States)

    Hussey, R.B.; Gottsche, M.J. Jr.

    1963-09-17

    A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)

  5. Dynamic Analysis & Characterization of Conventional Hydraulic Power Supply Units

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Liedhegener, Michael; Bech, Michael Møller

    2016-01-01

    Hydraulic power units operated as constant supply pres-sure systems remain to be widely used in the industry, to supply valve controlled hydraulic drives etc., where the hydraulic power units are constituted by variable pumps with mechanical outlet pressure control, driven by induction motors....... In the analysis of supplied drives, both linear and rotary, emphasis is commonly placed on the drives themselves and the related loads, and the supply system dynamics is often given only little attention, and usually neglected or taken into account in a simplified fashion. The simplified supply system dynamics...... and drives will reduce the flow-to-pressure gain of the supply system, and hence increase the time constant of the sup-ply pressure dynamics. A consequence of this may be large vari-ations in the supply pressure, hence large variations in the pump shaft torque, and thereby the induction motor load torque...

  6. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    Science.gov (United States)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of

  7. Control rod driving hydraulic pressure device

    International Nuclear Information System (INIS)

    Ogawa, Masahide.

    1993-01-01

    The present invention concerns a control rod driving hydraulic device of a BWR type reactor, and provides an improvement for a means for supplying mechanical seal flashing water of a pump. That is, a mechanical seal flashing pipeline is branched at the downstream of a pressure-reducing orifice and connected to a minimum flow pipeline. With such a constitution, the minimum flow pipeline is connected to a minimum flow pipeline of an auxiliary pump at the downstream of the pressure-reducing orifice and returned to a suction pipeline of the pump. Pressure at the downstream of the pressure-reducing orifice is set, in the orifice, to a pressure required for mechanical seal flashing. Accordingly, the mechanical seal flashing pipeline is connected and a part of minimum flow rate is utilized, thereby enabling to cool mechanical seals. As a result, flow rate of the mechanical flashing water which has been flown out can be saved. The exhaustion amount from the pump can be reduced, to decrease the shaft power and reduce the capacity of the motor. (I.S.)

  8. Robust Position Tracking for Electro-Hydraulic Drives Based on Generalized Feedforward Compensation Approach

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2012-01-01

    This paper presents a robust tracking control concept based on accurate feedforward compensation for hydraulic valve-cylinder drives. The proposed feedforward compensator is obtained utilizing a generalized description of the valve flow that takes into account any asymmetry of valves and...... constant gain type feedforward compensator, when subjected to strong perturbations in supply pressure and coulomb friction....

  9. Study on the application of energy storage system in offshore wind turbine with hydraulic transmission

    International Nuclear Information System (INIS)

    Fan, Yajun; Mu, Anle; Ma, Tao

    2016-01-01

    Highlights: • Hydraulic offshore wind turbine is capable of outputting near constant power. • Open loop hydraulic transmission uses seawater as the working fluid. • Linear control strategy distributes total flow according to demand and supply. • Constant pressure hydraulic accumulator stores/releases the surplus energy. • Simulations show the dynamic performance of the hybrid system. - Abstract: A novel offshore wind turbine comprising fluid power transmission and energy storage system is proposed. In this wind turbine, the conventional mechanical transmission is replaced by an open-loop hydraulic system, in which seawater is sucked through a variable displacement pump in nacelle connected directly with the rotor and utilized to drive a Pelton turbine installed on the floating platform. Aiming to smooth and stabilize the output power, an energy storage system with the capability of flexible charging and discharging is applied. The related mathematical model is developed, which contains some sub-models that are categorized as the wind turbine rotor, hydraulic pump, transmission pipeline, proportional valve, accumulator and hydraulic turbine. A linear control strategy is adopted to distribute the flow out of the proportional valve through comparing the demand power with captured wind energy by hydraulic pump. Ultimately, two time domain simulations demonstrate the operation of the hybrid system when the hydraulic accumulator is utilized and show how this system can be used for load leveling and stabilizing the output power.

  10. Robust Non-Chattering Observer Based Sliding Control Concept for Electro-Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2013-01-01

    This paper presents an observer-based sliding mode control concept with chattering reduction, generally applicable for position tracking control of electro-hydraulic valve-cylinder drives (VCD's). The proposed control concept requires only common data sheet information and no knowledge on load...... extensive knowledge on system parameters nor advanced control theory. In order to accomplish this task, an integral sliding mode controller designed for the control derivative employing state observation is proposed, based on a generalized reduced order model structure of a VCD with unmatched valve ow......- and cylinder asymmetries. It is shown that limited attention can be given to bounds on parameter estimates, that chattering is reduced and the number of tuning parameters is reduced to the level seen in conventional PID schemes. Furthermore, simulation results demonstrate a high level of robustness when...

  11. Hydraulic Limits on Maximum Plant Transpiration

    Science.gov (United States)

    Manzoni, S.; Vico, G.; Katul, G. G.; Palmroth, S.; Jackson, R. B.; Porporato, A. M.

    2011-12-01

    Photosynthesis occurs at the expense of water losses through transpiration. As a consequence of this basic carbon-water interaction at the leaf level, plant growth and ecosystem carbon exchanges are tightly coupled to transpiration. In this contribution, the hydraulic constraints that limit transpiration rates under well-watered conditions are examined across plant functional types and climates. The potential water flow through plants is proportional to both xylem hydraulic conductivity (which depends on plant carbon economy) and the difference in water potential between the soil and the atmosphere (the driving force that pulls water from the soil). Differently from previous works, we study how this potential flux changes with the amplitude of the driving force (i.e., we focus on xylem properties and not on stomatal regulation). Xylem hydraulic conductivity decreases as the driving force increases due to cavitation of the tissues. As a result of this negative feedback, more negative leaf (and xylem) water potentials would provide a stronger driving force for water transport, while at the same time limiting xylem hydraulic conductivity due to cavitation. Here, the leaf water potential value that allows an optimum balance between driving force and xylem conductivity is quantified, thus defining the maximum transpiration rate that can be sustained by the soil-to-leaf hydraulic system. To apply the proposed framework at the global scale, a novel database of xylem conductivity and cavitation vulnerability across plant types and biomes is developed. Conductivity and water potential at 50% cavitation are shown to be complementary (in particular between angiosperms and conifers), suggesting a tradeoff between transport efficiency and hydraulic safety. Plants from warmer and drier biomes tend to achieve larger maximum transpiration than plants growing in environments with lower atmospheric water demand. The predicted maximum transpiration and the corresponding leaf water

  12. Thermo-hydraulic free piston engine as a primary propulsion unit in mobile hydraulic drives; Die thermohydraulische Freikolbenmaschine - ein neues Antriebskonzept fuer hydraulische angetriebene Fahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, H. [Technische Univ. Dresden (Germany)

    2004-07-01

    The principle function of a free piston engine was tested on a test stand. The engine can drive hydraulic loads as a primary aggregate in a storage-based constant pressure network. Its power is independent of the loads. The engine is operated in intermittent operation and at the optimal operating point. There are no idle or part-load fractions. Measurements so far have shown that the performance of the new system equals that of a current combination of internal combustion engine and axial piston pump in their optimal operating point. In cyclic operation, the performance is even better. (orig.)

  13. Development of a Cooperative Braking System for Front-Wheel Drive Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Di Zhao

    2018-02-01

    Full Text Available Most electric vehicles adopt cooperative braking systems that can blend friction braking torque with regenerative braking torque to achieve higher energy efficiency while maintaining a certain braking performance and driving safety. This paper presented a new cooperative regenerative braking system that contained a fully-decoupled hydraulic braking mechanism based on a modified electric stability control system. The pressure control algorithm and brake force distribution strategy were also discussed. Dynamic models of a front wheel drive electric car equipped with this system and a simulation platform with a driver model and driving cycles were established. Tests to evaluate the braking performance and energy regeneration were simulated and analyzed on this platform and the simulation results showed the feasibility and effectiveness of this system.

  14. Numerical calculation of three-dimensional flow field of servo-piston hydraulic control rod driving mechanism

    International Nuclear Information System (INIS)

    Yu Mingrui; Han Weishi; Wang Ge

    2014-01-01

    Servo-piston hydraulic control rod driving mechanism is a new type built-in driving mechanism which is suitable for integrated reactor and it can be moved continuously. The numerical calculation and analysis of the internal three-dimensional flow field inside the driving mechanism were carried out by the computational fluid dynamics software FLUENT. The result shows that the unique pressure mutation area of flow field inside the driving mechanism is at the place of the servo variable throttle orifice. The differential pressure of the piston can be effectively controlled by changing the gap of variable throttle orifice. When the gap changes within 0.5 mm, the differential pressure can be greatly changed, and then the driving mechanism motion state would be changed too. When the working pressure is 0.1 MPa, the hoisting capacity of the driving mechanism can meet the design requirements, and the flow rate is small. (authors)

  15. A Design to Digitalize Hydraulic Cylinder Control of a Machine Tool ...

    African Journals Online (AJOL)

    Conventionally hydraulic piston - cylinder servos are actuated using analogue controls for machine tool axis drives. In this paper a design of the axis control system of an NC milling machine which employs a small stepping motor to digitally actuated hydraulic piston - cylinder servo drives existing on the machines Y-axis is ...

  16. Test Rig Design and Presentation for a Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    The design and development of a hydraulic yaw system for multi MWturbines is presented and the concept explained. As part of the development of the new concept a full scale test rig for a 5 MW wind turbine has been designed and constructed. The test rig is presented along with its unique design...... features. The design process is outlined to give insight in the design criteria driving the design. Loads and yaw demands are based on the IEC 61400-1 standard for wind turbine design, and the loads for this examination are extrapolated from the FAST aero elastic design software. The concepts are based...... on a 5 MW offshore turbine. After the system presentation, measurement results are presented to verify the behavior of the system. The loads to the system are applied by torque controlled electrical servo drives, which can add a load of up to 3 MNm to the system. This gives an exact picture of the system...

  17. GROUNDING THE REDUCTION OF POWER OF THE HYDRAULIC DRIVE ELECTRIC MOTOR BY EQUIVALENT POWER METHOD

    Directory of Open Access Journals (Sweden)

    O. Hrygorov

    2017-06-01

    Full Text Available The authors have analyzed the power consumption by a hydraulic drive and wound rotor motor of crane mechanisms at all stages of the operational cycle: acceleration, movement at nominal or intermediate speed and deceleration. The decrease of the rated capacity of electric motors is justified.

  18. Parameter Design for the Energy Regeneration System of Series Hydraulic Hybrid Bus

    Directory of Open Access Journals (Sweden)

    Song Yunpu

    2014-02-01

    Full Text Available This paper simplifies the energy recovery process in the series hydraulic hybrid bus’ energy regeneration system into a process in which the main axle’s moment of inertia drives the secondary element variable delivery pump/motor and brings hydraulic oil from the oil tank to the accumulator. This process enables braking of the vehicle and also allows recovery of energy to the accumulator. Based on the flow equation for the secondary element variable delivery pump/motor and the torque equilibrium equation for its axle, the force equilibrium equation for vehicle braking and the pressure variation and flow continuity equations for the accumulator, simulation studies are conducted to analyze the effects of various system parameters, such as accumulator capacity, displacement of the secondary element variable delivery pump/motor, initial operating pressure of the system, etc. on system performance during regenerative braking.

  19. Experimental study on performance characteristics of servo-piston hydraulic control rod driving mechanism

    International Nuclear Information System (INIS)

    Yu Mingrui; Han Weishi; Zhou Jie; Liu Chunyu; Yang Zhida; Wang Ge

    2014-01-01

    An experimental study on the performance characteristics of the servo-piston hydraulic control rod driving mechanism is carried out, the dynamic processes of the driving mechanism are obtained through the experiments in different working conditions. Combined with the structure characteristics of the driving mechanism, the change rule between the characteristics parameters and the working condition is analyzed. The results indicate that the traction of the servo-tube decreases quickly at first, then slowly and finally trends to be a constant with the working pressure increasing, the tractions are the largest in the startup and deboost phases. The under pressure of the drive cylinder rises slowly and the upper pressure decreases rapidly at the beginning of the rise, the variation trend is opposite in the falling stage. There exists quick and clear flow change processes in the startup and deboost phases, the flow mutation value reduces and the mutation time changes a little with the working pressure increasing. The driving mechanism runs stable and has high sensitivity precision, the load does not vibrate at all when working conditions has small disturbance, a steady transform can be realized among every condition. (authors)

  20. Put the brake on costs and preserve the environment with hydraulic hybrid drive; Kosten bremsen und Umwelt schonen mit hydraulischem Hybridantrieb

    Energy Technology Data Exchange (ETDEWEB)

    Kliffken, Markus G.; Stawiarski, Robert [Bosch Rexroth AG, Elchingen (Germany). Systementwicklung Mobilhydraulik; Beck, Matthias; Ehret, Christine [Bosch Rexroth AG, Elchingen (Germany). HRB

    2009-03-15

    With their Hydrostatic Regenerative Braking System (HRB) Rexroth combines the advantages of hybrid concepts with the high power density of hydraulic accumulators for economical use in commercial vehicles and mobile machines. The result: Fuel savings of up to 25 percent with corresponding reductions in CO{sub 2} emissions. The system is based on off-the-self and modified components and requires only slight modifications to existing drive trains. This makes the HRB ideal for new equipment or retrofitting vehicle fleets. (orig.)

  1. Control rod drive

    International Nuclear Information System (INIS)

    Okutani, Tetsuro.

    1988-01-01

    Purpose: To provide a simple and economical control rod drive using a control circuit requiring no pulse circuit. Constitution: Control rods in a BWR type reactor are driven by hydraulic pressure and inserted or withdrawn in the direction of applying the hydraulic pressure. The direction of the hydraulic pressure is controlled by a direction control valve. Since the driving for the control rod is extremely important in view of the operation, a self diagnosis function is disposed for rapid inspection of possible abnormality. In the present invention, two driving contacts are disposed each by one between the both ends of a solenoid valve of the direction control valve for driving the control rod and the driving power source, and diagnosis is conducted by alternately operating them. Therefore, since it is only necessary that the control circuit issues a driving instruction only to one of the two driving contacts, the pulse circuit is no more required. Further, since the control rod driving is conducted upon alignment of the two driving instructions, the reliability of the control rod drive can be improved. (Horiuchi, T.)

  2. Design, Optimization and Analysis of Hydraulic Soft Yaw System for 5 MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.

    2011-01-01

    As wind turbines increase in size and the demands for lifetime also increases, new methods of load reduction needs to be examined. One method is to make the yaw system of the turbine soft/flexible and hence dampen the loads to the system, which is the focus of the current paper. The paper first p...... on the extrapolated loads, show that it is possible to construct a hydraulic soft yaw system, which is able to reduce the loads on the wind turbine significantly....... presents work previous done on this subject with focus on hydraulic yaw systems. By utilizing the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized. Results show that a significant...... reduction in fatigue and extreme loads to the yaw system and rotor shaft are possible, when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. The duty cycles, based...

  3. Piezoelectric-hydraulic pump based band brake actuation system for automotive transmission control

    Science.gov (United States)

    Kim, Gi-Woo; Wang, K. W.

    2007-04-01

    The actuation system of friction elements (such as band brakes) is essential for high quality operations in modern automotive automatic transmissions (in short, ATs). The current band brake actuation system consists of several hydraulic components, including the oil pump, the regulating valve and the control valves. In general, it has been recognized that the current AT band brake actuation system has many limitations. For example, the oil pump and valve body are relatively heavy and complex. Also, the oil pumps induce inherently large drag torque, which affects fuel economy. This research is to overcome these problems of the current system by exploring the utilization of a hybrid type piezo-hydraulic pump device for AT band brake control. This new actuating system integrates a piezo-hydraulic pump to the input of the band brake. Compared with the current systems, this new actuator features much simpler structure, smaller size, and lower weight. This paper describes the development, design and fabrication of the new stand-alone prototype actuator for AT band brake control. An analytical model is developed and validated using experimental data. Performance tests on the hardware and system simulations utilizing the validated model are performed to characterize the new prototype actuator. It is predicted that with increasing of accumulator pressure and driving frequency, the proposed prototype actuating system will satisfy the band brake requirement for AT shift control.

  4. 14 CFR 33.72 - Hydraulic actuating systems.

    Science.gov (United States)

    2010-01-01

    ... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic actuating systems. Each hydraulic actuating system must function properly under all conditions in which the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic actuating systems. 33.72 Section...

  5. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    International Nuclear Information System (INIS)

    Kim, Hyo-gon; Han, Changsoo; Lee, Jong-won; Park, Sangdeok

    2015-01-01

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program

  6. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-gon; Han, Changsoo [Hanyang University, Seoul (Korea, Republic of); Lee, Jong-won [Korea University of Science and Technology, Seoul (Korea, Republic of); Park, Sangdeok [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2015-02-15

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program.

  7. On the Optimally Controlled Hydrostatic Mechanical Drive in Case of Flywheel Acceleration

    Directory of Open Access Journals (Sweden)

    V. A. Korsunskii

    2016-01-01

    Full Text Available An improving dynamic quality of vehicles and enhanced fuel efficiency are gained thanks to the combined power system (CPS, comprising a main energy source - internal combustion engine (ICE with an attained level of the power source - and an auxiliary energy source, i.e. an energy storage device (a flywheel.To solve this problem was developed a mathematical model of CPS comprising internal combustion engine and flywheel energy storage (FES with stepless drive.The stepless drive of the flywheel is made to be hydrostatic mechanical to raise the system efficiency. To reduce the drive weight and simplify the control system in the hydraulic part of the flywheel drive is used only one hydraulic unit being controlled.The paper presents a kinematic diagram of the track-type vehicle equipped with the CPS that has a hydrostatic mechanical drive of the flywheel and a mechanical transmission.A mathematical model of the system comprising an ICE, hydrostatic mechanical drive, and FES with stepless drive has been developed. This mathematical model was used to study the influence of ICE and flywheel drive parameters on the dynamic characteristics of the system.The paper estimates the impact of flywheel energy consumption, pressure in the hydraulic system, and control parameter of hydrostatic mechanical drive on the charging time of FES.The obtained piecewise linear law to control the regulation parameter of the hydraulic unit allows us to minimize the charging time of the flywheel at the short-term stops and in the parking area of a tracked vehicle equipped with a CPS.The causes affecting the performance of ‘ICE – drive – flywheel’ system in the course of the flywheel acceleration are a restricted maximum power of the engine, as well as a limited generating capacity, and a maximum flywheel drive hydro-system pressure.The obtained results allow us to determine rational parameters of the flywheel and the laws of drive control to provide their further

  8. Power Management in Mobile Hydraulic Applications - An Approach for Designing Hydraulic Power Supply Systems

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    2004-01-01

    Throughout the last three decades energy consumption has become one of the primary design aspects in hydraulic systems, especially for mobile hydraulic systems, as power and cooling capacity here is at limited disposal. Considering the energy usage, this is dependent on component efficiency, but ...... the hydraulic power supply in the most energy efficient way, when considering a number of load situations. Finally an example of the approach is shown to prove its validity.}......Throughout the last three decades energy consumption has become one of the primary design aspects in hydraulic systems, especially for mobile hydraulic systems, as power and cooling capacity here is at limited disposal. Considering the energy usage, this is dependent on component efficiency...

  9. Development of BLDC Electric Motor Control System In Hydraulic Servo Drive Based on Variable Hydrostatic Transmission

    Directory of Open Access Journals (Sweden)

    O. I. Tarasov

    2014-01-01

    Full Text Available Modern robotic systems require the use of servo drives. Owing to encoder and negative feedback these drives ensure highly accurate motion parameters. In case of autonomous systems drives must also have high power characteristics. Moreover, in most cases, it was impossible to select the motor so that the speed and torque on its shaft were in compliance with those of required by the actuator. To match these parameters different types of reducers are used. The article justifies and considers a selection criterion of the gear ratios for such transmission. For clarity, there is an example of selecting a motor and a gear for above transmission, taking into account the proposed criterion. In addition, the article discusses the advantages of using hydrostatic transmission in the drive, which monitors the angular position of the output level, in comparison with a mechanical gearbox. Due to the fact that, at the moment, BLDC motors have the best power characteristics, such a servo drive requires a special control system that will take into account the features of variable hydrostatic transmission and electric BLDC motor. Therefore, the paper proposes a structure of such a system and set out the principles of its construction. Various embodiments of sensor types that may be used in this system and their installation scheme explained.

  10. Combined hydraulic and regenerative braking system

    Science.gov (United States)

    Venkataperumal, R.R.; Mericle, G.E.

    1979-08-09

    A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  11. Design of Servo Scheme and Drive Electronics for the Integrated Electrohydraulic Actuation System of RLV-TD

    Science.gov (United States)

    Kurian, Priya C.; Gopinath, Anish; Shinoy, K. S.; Santhi, P.; Sundaramoorthy, K.; Sebastian, Baby; Jaya, B.; Namboodiripad, M. N.; Mookiah, T.

    2017-12-01

    Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) is a system which has the ability to carry a payload from the earth's surface to the outer space more than once. The control actuation forms the major component of the control system and it actuates the control surfaces of the RLV-TD based on the control commands. Eight electro hydraulic actuators were used in RLV-TD for vectoring the control surfaces about their axes. A centralised Hydraulic Power Generating Unit (HPU) was used for powering the eight actuators located in two stages. The actuation system had to work for the longest ever duration of about 850 s for an Indian launch vehicle. High bandwidth requirement from autopilot was met by the servo design using the nonlinear mathematical model. Single Control Electronics which drive four electrohydraulic actuators was developed for each stage. High power electronics with soft start scheme was realized for driving the BLDC motor which is the prime mover for hydraulic pump. Many challenges arose due to single HPU for two stages, uncertainty of aero load, higher bandwidth requirements etc. and provisions were incorporated in the design to successfully overcome them. This paper describes the servo design and control electronics architecture of control actuation system.

  12. Thermal-hydraulic unreliability of passive systems

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Saltos, N.T.

    1995-01-01

    Advanced light water reactor designs like AP600 and the simplified boiling water reactor (SBWR) use passive safety systems for accident prevention and mitigation. Because these systems rely on natural forces for their operation, their unavailability due to hardware failures and human error is significantly smaller than that of active systems. However, the coolant flows predicted to be delivered by these systems can be subject to significant uncertainties, which in turn can lead to a significant uncertainty in the predicted thermal-hydraulic performance of the plant under accident conditions. Because of these uncertainties, there is a probability that an accident sequence for which a best estimate thermal-hydraulic analysis predicts no core damage (success sequence) may actually lead to core damage. For brevity, this probability will be called thermal-hydraulic unreliability. The assessment of this unreliability for all the success sequences requires very expensive computations. Moreover, the computational cost increases drastically as the required thermal-hydraulic reliability increases. The required computational effort can be greatly reduced if a bounding approach can be used that either eliminates the need to compute thermal-hydraulic unreliabilities, or it leads to the analysis of a few bounding sequences for which the required thermal-hydraulic reliability is relatively small. The objective of this paper is to present such an approach and determine the order of magnitude of the thermal-hydraulic unreliabilities that may have to be computed

  13. Application of second order sliding mode algorithms for output feedback control in hydraulic cylinder drives with profound valve dynamics

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben O.

    2016-01-01

    The application of second order sliding mode algorithms for output feedback control in hydraulic valve-cylinder drives appear attractive due to their simple realization and parametrization, and strong robustness toward bounded parameter variations and uncertainties. However, intrinsic nonlinear...

  14. Modeling hydraulic regenerative hybrid vehicles using AMESim and Matlab/Simulink

    Science.gov (United States)

    Lynn, Alfred; Smid, Edzko; Eshraghi, Moji; Caldwell, Niall; Woody, Dan

    2005-05-01

    This paper presents the overview of the simulation modeling of a hydraulic system with regenerative braking used to improve vehicle emissions and fuel economy. Two simulation software packages were used together to enhance the simulation capability for fuel economy results and development of vehicle and hybrid control strategy. AMESim, a hydraulic simulation software package modeled the complex hydraulic circuit and component hardware and was interlinked with a Matlab/Simulink model of the vehicle, engine and the control strategy required to operate the vehicle and the hydraulic hybrid system through various North American and European drive cycles.

  15. Hydraulic loop: practices using open control systems

    International Nuclear Information System (INIS)

    Carrasco, J.A.; Alonso, L.; Sanchez, F.

    1998-01-01

    The Tecnatom Hydraulic Loop is a dynamic training platform. It has been designed with the purpose of improving the work in teams. With this system, the student can obtain a full scope vision of a system. The hydraulic Loop is a part of the Tecnatom Maintenance Centre. The first objective of the hydraulic Loop is the instruction in components, process and process control using open control system. All the personal of an electric power plant can be trained in the Hydraulic Loop with specific courses. The development of a dynamic tool for tests previous to plant installations has been an additional objective of the Hydraulic Loop. The use of this platform is complementary to the use of full-scope simulators in order to debug and to analyse advanced control strategies. (Author)

  16. Project calculation of the steering mechanism hydraulic servo control in motor vehicles

    Directory of Open Access Journals (Sweden)

    Zoran Đukan Majkić

    2013-10-01

    resistance to wheel rotation in place The magnitude of the torque required to rotate drive wheels in place, is affected by: 1 load on wheels; 2 coefficient of friction of the tire surface; 3 dimensions and shape of the tire footprint on the surface, as deterimined by the pressure in the tire and its construction; 4 lateral stiffness of the tire; 5 turning radius of drive wheels; 6 angles of inclination of the pin; 7 moment of friction in pins and steering gear mechanism. To achieve the proper torque values of torsional resistance in drive wheels, it is necessary to take into account all these influential factors, as this provides a lower load on the elements in the control system while enabling easier control and reducing the moment of force on the steering wheel. Moment of resistance to rotating drive wheels in place according to Mitin Mitin obtained the coefficient  only for one tire so the use of this formula is practically impossible. Moment of resistance to rotating drive wheels in place according to Taborek Moment of resistance to rotating drive wheels in place according to Lisov This formula takes into account the radius of the tire, but does not take into account the pressure and elastic characteristics of tires. Moment of resistance ito rotating drive wheels in place by Litvinov For the calculation by this formula, it is necessary to know the dependence of the tire footprint surface and the load on it. Moment of resistance to rotating drive wheels in place by Gough Experimental studies have shown that this term is very acceptable. Dimensions of the executive hydraulic cylinder The control amplifier must provide that the wheels rotate in place when the force of the driver on the steering wheel is not above 160 – 200 N in a complete range of the rotation angles from   for the inner wheel to for the outer wheel. Reactive and centering elements of the hydraulic servo control The control system without a hydraulic servo control must have one very important

  17. Experimental evaluation of control strategies for hydraulic servo robot

    DEFF Research Database (Denmark)

    Bech, Michael Møller; Andersen, Torben Ole; Pedersen, Henrik C.

    2013-01-01

    In this paper different linear and non-linear controllers applied to a hydraulically driven servo robot are evaluated and validated. The task is to make the actuators of the manipulator track a position reference with minimum error. Hydraulic systems are intrinsically non-linear and using linear...... in industrial servo drives. The different controllers are compared and evaluated from simulation and experimental results....

  18. BWR control rod drive scram pilot valve monitoring system

    International Nuclear Information System (INIS)

    Soden, R.A.; Kelly, V.

    1984-01-01

    The control rod drive system in a Boiling Water Reactor is the most important safety system in the power plant. All components of the system can be verified except the solenoid operated, scram pilot valves without scramming a rod. The pilot valve mechancial works is the weak link to the control rod drive system. These pilot valves control the hydraulic system which applies pressure to the ''insert'' side of the control rod piston and vents the ''withdraw'' side of the piston causing the rods to insert during a scam. The only verification that the valve is operating properly is to scram the rod. The concern for this portion of the system is demonstrated by the high number of redundant components and complete periodic testing of the electrical circuits. The pilot valve can become hung-up through wear, fracture of internal components, mechanical binding, foreign material or chemicals left in the valve during maintenance, etc. If the valve becomes hung-up the electrical tests performed will not indicate this condition and scramming the rod is in jeopardy. Only an attempt to scram a rod will indicate the hung-up valve. While this condition exists the rod is considered inoperative. This paper describes a system developed at a nuclear power plant that monitors the pilot valves on the control rod drive system. This system utilizes pattern recognition to assure proper internal workings of the scram pilot valves to plant operators. The system is totally automatic such that each time the valve is operated on a ''half scram'', a printout is available to the operator along with light indication that each of the 370 valves (on one unit of a BWR) is operating properly. With this monitoring system installed, all components of the control rod drive system including the solenoid pilot valves can be verified as operational without scramming any rods

  19. System Topology Optimization - An Approach to System Design of Electro-Hydraulic-Mechanical Systems

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn

    2003-01-01

    The current paper presents an approach to system design of combined electro-hydraulic-mechanical systems. The approach is based on the concurrent handling of the topology as well as the design parameters of the mechanical, hydraulic and controller sub- systems, respectively. Based on an initial...... design the procedure attempts to find the optimal topology and the related parameters. The topology considerations comprise the type of hydraulic pump, the employment of knee linkages or not as well as the type of hydraulic actuators. The design variables also include the signals to the proportional...... valve in a number of predefined load cases as well as the hydraulic and mechanical parameters....

  20. Electrical drives for direct drive renewable energy systems

    CERN Document Server

    Mueller, Markus

    2013-01-01

    Wind turbine gearboxes present major reliability issues, leading to great interest in the current development of gearless direct-drive wind energy systems. Offering high reliability, high efficiency and low maintenance, developments in these direct-drive systems point the way to the next generation of wind power, and Electrical drives for direct drive renewable energy systems is an authoritative guide to their design, development and operation. Part one outlines electrical drive technology, beginning with an overview of electrical generators for direct drive systems. Principles of electrical design for permanent magnet generators are discussed, followed by electrical, thermal and structural generator design and systems integration. A review of power electronic converter technology and power electronic converter systems for direct drive renewable energy applications is then conducted. Part two then focuses on wind and marine applications, beginning with a commercial overview of wind turbine drive systems and a...

  1. Highly reliable electro-hydraulic control system

    International Nuclear Information System (INIS)

    Mande, Morima; Hiyama, Hiroshi; Takahashi, Makoto

    1984-01-01

    The unscheduled shutdown of nuclear power stations disturbs power system, and exerts large influence on power generation cost due to the lowering of capacity ratio; therefore, high reliability is required for the control system of nuclear power stations. Toshiba Corp. has exerted effort to improve the reliability of the control system of power stations, and in this report, the electro-hydraulic control system for the turbines of nuclear power stations is described. The main functions of the electro-hydraulic control system are the control of main steam pressure with steam regulation valves and turbine bypass valves, the control of turbine speed and load, the prevention of turbine overspeed, the protection of turbines and so on. The system is composed of pressure sensors and a speed sensor, the control board containing the electronic circuits for control computation and protective sequence, the oil cylinders, servo valves and opening detectors of the valves for control, a high pressure oil hydraulic machine and piping, the operating panel and so on. The main features are the adoption of tripling intermediate value selection method, the multiplying of protection sensors and the adoption of 2 out of 3 trip logic, the multiplying of power sources, the improvement of the reliability of electronic circuit hardware and oil hydraulic system. (Kako, I.)

  2. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  3. Determining the Conditions for the Hydraulic Impacts Emergence at Hydraulic Systems

    Directory of Open Access Journals (Sweden)

    Mazurenko A.S.

    2017-08-01

    Full Text Available This research aim is to develop a method for modeling the conditions for the critical hydrau-lic impacts emergence on thermal and nuclear power plants’ pipeline systems pressure pumps depart-ing from the general provisions of the heat and hydrodynamic instability theory. On the developed method basis, the conditions giving rise to the reliability-critical hydraulic impacts emergence on pumps for the thermal and nuclear power plants’ typical pipeline system have been determined. With the flow characteristic minimum allowable (critical sensitivity, the flow velocity fluctuations ampli-tude reaches critical values at which the pumps working elements’ failure occurs. The critical hydrau-lic impacts emergence corresponds to the transition of the vibrational heat-hydrodynamic instability into an aperiodic one. As research revealed, a highly promising approach as to the preventing the criti-cal hydraulic impacts related to the foreground use of pumps having the most sensitive consumption (at supply network performance (while other technical characteristics corresponding to that parame-ter. The research novelty refers to the suggested method elaborated by the authors’ team, which, in contrast to traditional approaches, is efficient in determining the pump hydraulic impact occurrence conditions when the vibrational heat-hydrodynamic instability transition to the aperiodic instability.

  4. Model predictive control-based dynamic coordinate strategy for hydraulic hub-motor auxiliary system of a heavy commercial vehicle

    Science.gov (United States)

    Zeng, Xiaohua; Li, Guanghan; Yin, Guodong; Song, Dafeng; Li, Sheng; Yang, Nannan

    2018-02-01

    Equipping a hydraulic hub-motor auxiliary system (HHMAS), which mainly consists of a hydraulic variable pump, a hydraulic hub-motor, a hydraulic valve block and hydraulic accumulators, with part-time all-wheel-drive functions improves the power performance and fuel economy of heavy commercial vehicles. The coordinated control problem that occurs when HHMAS operates in the auxiliary drive mode is addressed in this paper; the solution to this problem is the key to the maximization of HHMAS. To achieve a reasonable distribution of the engine power between mechanical and hydraulic paths, a nonlinear control scheme based on model predictive control (MPC) is investigated. First, a nonlinear model of HHMAS with vehicle dynamics and tire slip characteristics is built, and a controller-design-oriented model is simplified. Then, a steady-state feedforward + dynamic MPC feedback controller (FMPC) is designed to calculate the control input sequence of engine torque and hydraulic variable pump displacement. Finally, the controller is tested in the MATLAB/Simulink and AMESim co-simulation platform and the hardware-in-the-loop experiment platform, and its performance is compared with that of the existing proportional-integral-derivative controller and the feedforward controller under the same conditions. Simulation results show that the designed FMPC has the best performance, and control performance can be guaranteed in a real-time environment. Compared with the tracking control error of the feedforward controller, that of the designed FMPC is decreased by 85% and the traction efficiency performance is improved by 23% under a low-friction-surface condition. Moreover, under common road conditions for heavy commercial vehicles, the traction force can increase up to 13.4-15.6%.

  5. A Robust Control Concept for Hydraulic Drives Based on Second Order Sliding Mode Disturbance Compensation

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben O.; Johansen, Per

    2017-01-01

    , the successful implementation relies heavily on the low-pass filter design where the drive dynamics, sample rate etc. play a significant role. In this paper the utilization of the super twisting algorithm for disturbance compensation is considered. The fact that the discontinuity here is nested in an integral......The application of sliding mode algorithms for control of hydraulic drives has gained increasing interest in recent years due to algorithm simplicity, low number of parameters and possible excellent control performance. Both application of firstand higher order sliding mode control algorithms...... observer based control etc., and several examples of such approaches have been presented in literature. The latter case appear especially interesting as a sliding mode actually takes place, but only the low-pass filtered sliding mode algorithm output is used in the actual control input. However...

  6. Hydraulically powered dissimilar teleoperated system controller design

    International Nuclear Information System (INIS)

    Jansen, J.F.; Kress, R.L.

    1996-01-01

    This paper will address two issues associated with the implementation of a hydraulically powered dissimilar master-slave teleoperated system. These issues are the overall system control architecture and the design of robust hydraulic servo controllers for the position control problem. Finally, a discussion of overall system performance on an actual teleoperated system will be presented

  7. Numerical simulation of temperature's sensitivity of chamfer hole's resistance on hydraulic step cylinder

    International Nuclear Information System (INIS)

    Jinhua, Wang; Hanliang, Bo; Wenxiang, Zheng; Jinnong, Yang

    2003-01-01

    The control rod drive is a very important device for controlling nuclear reactor startup, operation, shut down, and power change. The ability of the control rod drive to move safely and reliably directly relates to reactor safety. The Hydraulic Control Rod Drive System (HCRDS) is a new type of control rod drive system developed by the Institute of Nuclear Energy Technology (INET) of Tsinghua University for Nuclear Heating Reactors. The HCRDS, designed using the hydrodynamic principle, has many advantages, including having the structure complete in the vessel, no possible ejection accident, short drive line, simple movable parts structure and safe shutdown during accidents. The hydraulic step cylinder is the key part for the HCRDS. In the process of reactor startup, the variation of temperature could make the water's density and viscosity change, and the force from the water flow would change accordingly. These factors could influence the performance of the hydraulic step cylinder. In this paper, the temperature sensitivity of the chamfer hole's resistance in the hydraulic step cylinder was studied with the Computational Fluid Dynamics (CFD) program CFX5.5. The results were satisfactory: the discipline of variation of the chamfer hole's resistance with the outer tube's position was the same at different temperatures, the discrepancy of the chamfer hole's resistance was small for the same position at different temperatures, the chamfer hole's resistance decreased gradually with the increase of temperature, and the decrease extent was relatively small

  8. Hydraulic power take-off for wave energy systems

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    2001-01-01

    Investigation and laboratory experiments with a hydraulic power conversion system for converting forces from a 2.5m diamter float to extract energy from seawaves. The test rig consists of a hydraulic wave simulator and a hydraulic point absorber. The absorber converts the incomming forces to a co...... to a continous rotation of an electric generator. The experiments document efficiencies and losses for the conversion process. The experiments are used for verification and update of a computer model.......Investigation and laboratory experiments with a hydraulic power conversion system for converting forces from a 2.5m diamter float to extract energy from seawaves. The test rig consists of a hydraulic wave simulator and a hydraulic point absorber. The absorber converts the incomming forces...

  9. The modern instrumentation used for monitoring and controlling the main parameters of the regenerative electro-mechano-hydraulic drive systems

    Science.gov (United States)

    Cristescu, Corneliu; Drumea, Petrin; Krevey, Petrica

    2009-01-01

    In this work is presented the modern instrumentation used for monitoring and controlling the main parameters for one regenerative drive system, used to recovering the kinetic energy of motor vehicles, lost in the braking phase, storing and using this energy in the starting or accelerating phases. Is presented a Romanian technical solution for a regenerative driving system, based on a hybrid solution containing a hydro-mechanic module and an existing thermal motor drive, all conceived as a mechatronics system. In order to monitoring and controlling the evolution of the main parameters, the system contains a series of sensors and transducers that provide the moment, rotation, temperature, flow and pressure values. The main sensors and transducers of the regenerative drive system, their principal features and tehnical conecting solutions are presented in this paper, both with the menaging electronic and informational subsystems.

  10. Hydraulic manipulator

    International Nuclear Information System (INIS)

    Sinha, A.K.; Srikrishnamurty, G.

    1990-01-01

    Successful operation of nuclear plant is largely dependent on safe handling of radio-active material. In order to reduce this handling problem and minimise the exposure of radiation, various handling equipment and manipulators have been developed according to the requirements. Manufacture of nuclear fuel, which is the most important part of the nuclear industry, involves handling of uranium ingots weighing approximately 250 kg. This paper describes a specially designed hydraulic manipulator for handling of the ingots in a limited space. It was designed to grab and handle the ingots in any position. This has following drive motions: (1)gripping and releasing, (2)lifting and lowering (z-motion), (3)rotation about the horizontal axis (azimuth drive), (4)rotation about the job axis, and (5)rotation about the vertical axis. For horizontal motion (X and Y axis motion) this equipment is mounted on a motorised trolley, so that it can move inside the workshop. For all drives except the rotation about the job axis, hydraulic cylinders have been used with a battery operated power pack. Trolley drive is also given power from same battery. This paper describes the design aspects of this manipulator. (author). 4 figs

  11. A low order adaptive control scheme for hydraulic servo systems

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Pedersen, Henrik Clemmensen; Bech, Michael Møller

    2015-01-01

    This paper deals with high-performance position control of hydraulics servo systems in general. The hydraulic servo system used is a two link robotic manipulator actuated by two hydraulic servo cylinders. A non-linear model of the hydraulic system and a Newton-Euler based model of the mechanical...

  12. Hydraulic elements in reduction of vibrations in mechanical systems

    Science.gov (United States)

    Białas, K.; Buchacz, A.

    2017-08-01

    This work presents non-classical method of design of mechanic systems with subsystem reducing vibrations. The purpose of this paper is also introduces synthesis of mechanic system with reducing vibrations understand as design of this type of systems. The synthesis may be applied to modify the already existing systems in order to achieve a desired result. Elements which reduce vibrations can be constructed with passive, semi-active or active components. These considerations systems have selected active items. A hallmark of active elements it is possible to change the parameters on time of these elements and their power from an external source. The implementation of active elements is very broad. These elements can be implemented through the use of components of electrical, pneumatic, hydraulic, etc. The system was consisted from mechanical and hydraulic elements. Hydraulic elements were used as subsystem reducing unwanted vibration of mechanical system. Hydraulic elements can be realized in the form of hydraulic cylinder. In the case of an active vibration reduction in the form of hydraulic cylinder it is very important to find the corresponding values of hydraulic components. The values of these elements affect the frequency of vibrations of this sub-system which is related to the effective vibration reduction [7,11].

  13. Hydraulic Yaw System for Wind Turbines with New Compact Hydraulic Motor Principle

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Mørk; Hansen, Michael Rygaard; Mouritsen, Ole Ø.

    2011-01-01

    This paper presents a new hydraulic yaw system for wind turbines. The basic component is a new type of hydraulic motor characterized by an extraordinary high specific displacement yielding high output torque in a compact form. The focus in the paper is the volumetric efficiency of the motor, which...

  14. Design of a hydraulic ash transport system

    Energy Technology Data Exchange (ETDEWEB)

    Mirgorodskii, V.G.; Mova, M.E.; Korenev, V.E.; Grechikhin, Yu.A. (Donetskii Politekhnicheskii Institut (USSR))

    1990-04-01

    Discusses general design of a hydraulic ash removal system to be employed at the reconstructed six 225 MW blocks of the Mironov State Regional Power Plant in the USSR. The blocks burn low-grade solid fuel with an ash content of up to 40.5%. Large quantities of ash have to be moved from the plant (total ash production 60 t/h, using 570 t/h of water for cooling and moistening). An optimum hydraulic ash transportation system would include a two-section airlift pumping system, shown in a diagram. Technological advantages of using this airlift system are enumerated, including short pipes, reduction in required water quantity and the possibility of siting hydraulic pumps at zero level.

  15. INFORMATION-MEASURING TEST SYSTEM OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSIONS

    Directory of Open Access Journals (Sweden)

    I. V. Zhukovytskyy

    2015-08-01

    Full Text Available Purpose. The article describes the process of developing the information-measuring test system of diesel locomotives hydraulic transmission, which gives the possibility to obtain baseline data to conduct further studies for the determination of the technical condition of diesel locomotives hydraulic transmission. The improvement of factory technology of post-repair tests of hydraulic transmissions by automating the existing hydraulic transmission test stands according to the specifications of the diesel locomotive repair enterprises was analyzed. It is achieved based on a detailed review of existing foreign information-measuring test systems for hydraulic transmission of diesel locomotives, BelAZ earthmover, aircraft tug, slag car, truck, BelAZ wheel dozer, some brands of tractors, etc. The problem for creation the information-measuring test systems for diesel locomotive hydraulic transmission is being solved, starting in the first place from the possibility of automation of the existing test stand of diesel locomotives hydraulic transmission at Dnipropetrovsk Diesel Locomotive Repair Plant "Promteplovoz". Methodology. In the work the researchers proposed the method to create a microprocessor automated system of diesel locomotives hydraulic transmission stand testing in the locomotive plant conditions. It acts by justifying the selection of the necessary sensors, as well as the application of the necessary hardware and software for information-measuring systems. Findings. Based on the conducted analysis there was grounded the necessity of improvement the plant hydraulic transmission stand testing by creating a microprocessor testing system, supported by the experience of developing such systems abroad. Further research should be aimed to improve the accuracy and frequency of data collection by adopting the more modern and reliable sensors in tandem with the use of filtering software for electromagnetic and other interference. Originality. The

  16. System Design and Performance Test of Hydraulic Intensifier

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Eui; Lee, Gi Chun [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Kim, Jae Hoon [Chungnam National University, Daejeon (Korea, Republic of)

    2010-07-15

    Components such as pressure vessel, hydraulic hose assembly, accumulator, hydraulic cylinder, hydraulic valve, pipe, etc., are tested under the impulse-pressure conditions prescribed in ISO and SAE standards. The impulse pressure test machine needs to have a high pressure, a precise control system and a long life. It should satisfy the requirements for fabrication of the impulse tester to generate ultra high pressure in the hydraulic system. In the impulse tester, a servo-valve control system is adopted; although the control application is convenient, it is expensive owing to the cost of developing the system. The type of the control system determines the pressure wave, which affects the components that are tested. In this study, the manufacturing process and the intensifier system design related to the flow, pressure, and the increasing rate of pressure are investigated. The results indicate the ultra high pressure waves in the system.

  17. Operation of a hydraulic elevator system

    Energy Technology Data Exchange (ETDEWEB)

    Lazarev, G.A.; Li, Yu.V.; Bezuglov, N.N.

    1983-03-01

    The paper describes the hydraulic elevator system in the im. 50-letiya Oktyabr'skoi Revolutsii mine in the Karaganda basin. The system removes water and coal from the sump of a skip mine shaft. Water influx rate per day to the sump does not exceed 120 m/sup 3/, weight of coal falling from the skip is about 5,000 kg per day. The sump, 85 m deep, is closed by a screen. The elevator system consists of two pumps (one is used as a reserve pump) with a capacity of 300 m/sup 3/h. When water level exceeds the maximum permissive limit the pump is activated by an automatic control system. The coal and water mixture pumped from the sump bottom is directed to a screen which separates coal from water. Coal is fed to a coal hopper and water is pumped to a water tank. The hydraulic elevator has a capacity of 80 m/sup 3/ of mixture per hour. The slurry is tranported by a pipe of 175 mm diameter. Specifications of the pumps and pipelines are given. A scheme of the hydraulic elevator system is also shown. Economic aspects of hydraulic elevator use for removal of water and coal from deep sumps of skip shafts in the Karaganda basin also are discussed.

  18. Control of flexible robots with prismatic joints and hydraulic drives

    International Nuclear Information System (INIS)

    Love, L.J.; Kress, R.L.; Jansen, J.F.

    1997-01-01

    The design and control of long-reach, flexible manipulators has been an active research topic for over 20 years. Most of the research to date has focused on single link, fixed length, single plane of vibration test beds. In addition, actuation has been predominantly based upon electromagnetic motors. Ironically, these elements are rarely found in the existing industrial long-reach systems. One example is the Modified Light Duty Utility Arm (MLDUA) designed and built by Spar Aerospace for Oak Ridge National Laboratory (ORNL). This arm operates in larger, underground waste storage tanks located at ORNL. The size and nature of the tanks require that the robot have a reach of approximately 15 ft and a payload capacity of 250 lb. In order to achieve these criteria, each joint is hydraulically actuated. Furthermore, the robot has a prismatic degree-of-freedom to ease deployment. When fully extended, the robot's first natural frequency is 1.76 Hz. Many of the projected tasks, coupled with the robot's flexibility, present an interesting problem. How will many of the existing flexure control algorithms perform on a hydraulic, long-reach manipulator with prismatic links? To minimize cost and risk of testing these algorithms on the MLDUA, the authors have designed a new test bed that contains many of the same elements. This manuscript described a new hydraulically actuated, long-reach manipulator with a flexible prismatic link at ORNL. Focus is directed toward both modeling and control of hydraulic actuators as well as flexible links that have variable natural frequencies

  19. Cross-cutting european thermal-hydraulics research for innovative nuclear systems

    International Nuclear Information System (INIS)

    Roelofs, F.; Class, A.; Cheng, X.; Meloni, P.; Van Tichelen, K.; Boudier, P.; Prasser, M.

    2010-01-01

    Thermal-hydraulics is recognized as a key scientific subject in the development of different innovative nuclear reactor systems. From the thermal-hydraulic point of view, different innovative reactors are mainly characterized by their coolants (gas, water, liquid metals and molten salt). This results in different micro- and macroscopic behavior of flow and heat transfer and requires specific models and advanced analysis tools. However, many common thermal-hydraulic issues are identified among various innovative nuclear systems. In Europe, such cross-cutting thermal-hydraulic issues are the subject of the 7. framework programme THINS (Thermal-Hydraulics of Innovative Nuclear Systems) project which runs from 2010 until 2014. This paper will describe the activities in this project which address the main identified thermal hydraulics issues for innovative nuclear systems. (authors)

  20. On Application of Second Order Sliding Mode Control to Electro-Hydraulic Systems

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2014-01-01

    This paper discusses the application of second order mode controls to hydraulic valve-cylinder drives with a special focus on the limitations resulting from nonlinear dynamic effects in flow control valves. Second order sliding mode algorithms appear highly attractive in the successive...

  1. Fluid Temperature of Aero Hydraulic Systems

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2016-01-01

    Full Text Available In modern supersonic aircrafts due to aerodynamic skin heating a temperature of hydraulics environment significantly exceeds that of permissible for fluids used. The same problem exists for subsonic passenger aircrafts, especially for Airbuses, which have hydraulics of high power where convective heat transfer with the environment is insufficient and there is no required temperature control of fluid. The most significant in terms of heat flow is the flow caused by the loss of power to the pump and when designing the hydraulic system (HS it is necessary to pay very serious attention to it. To use a constant capacity pump is absolutely unacceptable, since HS efficiency in this case is extremely low, and the most appropriate are variable-capacity pumps, cut-off pumps, dual-mode pumps. The HS fluid cooling system should provide high reliability, lightweight, simple design, and a specified heat transfer in all flight modes.A system cooling the fluid by the fuel of feeding lines of the aircraft engines is the most effective, and it is widely used in supersonic aircrafts, where power of cooling system is essential. Subsonic aircrafts widely use convective heat exchangers. In thermal design of the aircraft hydraulics, the focus is generally given to the maximum and minimum temperatures of the HS fluid, the choice of the type of heat exchanger (convective or flow-through, the place of its installation. In calculating the operating temperature of a hydraulic system and its cooling systems it is necessary to determine an increase of the working fluid temperature when throttling it. There are three possible formulas to calculate the fluid temperature in throttling, with the error of a calculated temperature drop from 30% to 4%.The article considers the HS stationary and noon-stationary operating conditions and their calculation, defines temperatures of fluid and methods to control its specified temperature. It also discusses various heat exchanger schemes

  2. Stepping Motor - Hydraulic Motor Servo Drives for an NC Milling ...

    African Journals Online (AJOL)

    In this paper the retrofit design of the control system of an NC milling machine with a stepping motor and stepping motor - actuated hydraulic motor servo mechanism on the machines X-axis is described. The servo designed in the course of this study was tested practically and shown to be linear - the velocity following errors ...

  3. Tap Water Hydraulic Control Systems - Design and Industrial Applications. Chapter 7 in Advances in Hydraulic Control Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    Deals with development and design of modern tap water hydraulic components and systems, in particalar the Danfoss Nessie-family of components and systems working with pure tap water without any kind of additives. Typical industrial applications are presented and the perspectives of new industrial...... applications and the environmental benefits are in focus, in particular in the food processing industry and in fire-fighting systems.......Deals with development and design of modern tap water hydraulic components and systems, in particalar the Danfoss Nessie-family of components and systems working with pure tap water without any kind of additives. Typical industrial applications are presented and the perspectives of new industrial...

  4. Managing the aging of BWR control rod drive systems

    International Nuclear Information System (INIS)

    Greene, R.H.; Farmer, W.S.

    1992-01-01

    This Phase I Nuclear Plant Aging Research (NPAR) study examines the aging phenomena associated with BWR control and rod drive mechanisms (CRDMs) and assesses the merits of various methods of ''imaging'' this aging. Information for this study was acquired from (1) the results of a special CRDM aging questionnaire distributed to each US BWR utility, (2) a first-of-its-kind workshop held to discuss CRDM aging and maintenance concerns, (3) an analysis of the Nuclear Plant Reliability Data System (NPRDS) failure cases attributed to the control rod drive (CRD) system, and (4) personal information exchange with nuclear industry CRDM maintenance experts. The report documenting the findings of this research, NUREG-5699, will be published this year. Nearly 23% of the NPRDS CRD system component failure reports were attributed to the CRDM. The CRDM components most often requiring replacement due to aging are the Graphitar seals. The predominant causes of aging for these seals are mechanical wear and thermal embrittlement. More than 59% of the NPRDS CRD system failure reports were attributed to components that comprise the hydraulic control unit (HCU). The predominant HCU components experiencing the effects of service wear and aging are value seals, discs, seats, stems, packing, and diaphragms

  5. Control issues for a hydraulically powered dissimilar teleoperated system

    International Nuclear Information System (INIS)

    Jansen, J.F.; Kress, R.L.

    1995-01-01

    This paper will address two issues associated with the implementation of a hydraulically powered dissimilar master-slave teleoperated system. These issues are the overall system control architecture and the design of robust hydraulic servo controllers for the position control problem. Finally, a discussion of overall system performance on an actual teleoperated system will be presented. (Schilling's Titan II hydraulic manipulators are the slave manipulators and the master manipulators are from the Oak Ridge National Laboratory-developed Advanced Servo Manipulator.)

  6. Automated Hydraulic System Design and Power Management in Mobile Applications

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    force, torque and power density. One of these areas is the mobile hydraulic area, which generally comprise all type of off-highway machinery, such as construction equipment, agricultural equipment etc. But where hydraulic systems earlier was designed with primary focus on cost, dynamic performance...... and accuracy, energy consumption is becoming an ever more important design parameter. At the same time as the first oil crisis the first hydraulic load sensing (LS) systems also emerged on the market, which, compared to the other systems of the time, offered significant energy saving potentials and which today...... are found on most medium and high-end mobile hydraulic machinery. Despite the energy saving potentials that these systems posses, compared to the other open-circuit hydraulic system topologies, LS-system may still be subject to very low system efficiencies if not designed correctly. This is typically...

  7. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  8. Absorber rod drive for nuclear reactors

    International Nuclear Information System (INIS)

    Acher, H.

    1985-01-01

    The invention concerns a further addition to the invention of DE 33 42 830 A1. The free contact of the hollow piston with the nut due to hydraulic pressure is replaced by a hydraulic or spring attachment. The pressure system required to produce the hydraulic pressure is therefore omitted, and the electrical power required for driving the pump or the mass flow is also omitted. The absorber rod slotted along its longitudinal axis is replaced by an absorber rod, in the longitudinal axis of which a hollow piston is connected together with the absorber rod. This makes the absorber rod more stable, and assembly is simplified. (orig./HP) [de

  9. The hydraulic capacity of deteriorating sewer systems.

    Science.gov (United States)

    Pollert, J; Ugarelli, R; Saegrov, S; Schilling, W; Di Federico, V

    2005-01-01

    Sewer and wastewater systems suffer from insufficient capacity, construction flaws and pipe deterioration. Consequences are structural failures, local floods, surface erosion and pollution of receiving waters bodies. European cities spend in the order of five billion Euro per year for wastewater network rehabilitation. This amount is estimated to increase due to network ageing. The project CARE-S (Computer Aided RE-habilitation of Sewer Networks) deals with sewer and storm water networks. The final project goal is to develop integrated software, which provides the most cost-efficient system of maintenance, repair and rehabilitation of sewer networks. Decisions on investments in rehabilitation often have to be made with uncertain information about the structural condition and the hydraulic performance of a sewer system. Because of this, decision-making involves considerable risks. This paper presents the results of research focused on the study of hydraulic effects caused by failures due to temporal decline of sewer systems. Hydraulic simulations are usually carried out by running commercial models that apply, as input, default values of parameters that strongly influence results. Using CCTV inspections information as dataset to catalogue principal types of failures affecting pipes, a 3D model was used to evaluate their hydraulic consequences. The translation of failures effects in parameters values producing the same hydraulic conditions caused by failures was carried out through the comparison of laboratory experiences and 3D simulations results. Those parameters could be the input of 1D commercial models instead of the default values commonly inserted.

  10. The application of hydraulics in the 2,000 kW wind turbine generator

    Science.gov (United States)

    Onufreiczuk, S.

    1978-01-01

    A 2000 kW turbine generator using hydraulic power in two of its control systems is being built under the management of NASA Lewis Research Center. The hydraulic systems providing the control torques and forces for the yaw and blade pitch control systems are discussed. The yaw-drive-system hydraulic supply provides the power for positioning the nacelle so that the rotary axis is kept in line with the direction of the prevailing wind, as well as pressure to the yaw and high speed shaft brakes. The pitch-change-mechanism hydraulic system provides the actuation to the pitch change mechanism and permits feathering of the blades during an emergency situation. It operates in conjunction with the overall windmill computer system, with the feather control permitting slewing control flow to pass from the servo valve to the actuators without restriction.

  11. Chapter 12. Pure Tap Water Hydraulic Systems and Applications

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications.......Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications....

  12. Advanced Direct-Drive Generator for Improved Availability of Oscillating Wave Surge Converter Power Generation Systems Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Englebretson, Steven [ABB Inc., Cary, NC (United States); Ouyang, Wen [ABB Inc., Cary, NC (United States); Tschida, Colin [ABB Inc., Cary, NC (United States); Carr, Joseph [ABB Inc., Cary, NC (United States); Ramanan, V.R. [ABB Inc., Cary, NC (United States); Johnson, Matthew [Texas A& M Univ., College Station, TX (United States); Gardner, Matthew [Texas A& M Univ., College Station, TX (United States); Toliyat, Hamid [Texas A& M Univ., College Station, TX (United States); Staby, Bill [Resolute Marine Energy, Inc., Boston, MA (United States); Chertok, Allan [Resolute Marine Energy, Inc., Boston, MA (United States); Hazra, Samir [ABB Inc., Cary, NC (United States); Bhattacharya, Subhashish [ABB Inc., Cary, NC (United States)

    2017-05-13

    This report summarizes the activities conducted under the DOE-EERE funded project DE-EE0006400, where ABB Inc. (ABB), in collaboration with Texas A&M’s Advanced Electric Machines & Power Electronics (EMPE) Lab and Resolute Marine Energy (RME) designed, derisked, developed, and demonstrated a novel magnetically geared electrical generator for direct-drive, low-speed, high torque MHK applications The project objective was to investigate a novel and compact direct-drive electric generator and its system aspects that would enable elimination of hydraulic components in the Power Take-Off (PTO) of a Marine and Hydrokinetic (MHK) system with an oscillating wave surge converter (OWSC), thereby improving the availability of the MHK system. The scope of this project was limited to the development and dry lab demonstration of a low speed generator to enable future direct drive MHK systems.

  13. Investigation of New Servo Drive Concept Utilizing Two Fixed Displacement Units

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Schmidt, Lasse; Andersen, Torben Ole

    2014-01-01

    Traditional valve controlled hydraulic drives have an inherent power loss, due to the throttling over the valves, which limits the maximum system efficiency. Pump controlled direct drives do not have this inherent limitation, but are limited when it comes to controlling asymmetric cylinders, why...

  14. Investigation of New Servo Drive Concept Utilizing Two Fixed Displacement Units

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Schmidt, Lasse; Andersen, Torben O.

    2015-01-01

    Traditional valve controlled hydraulic drives have an inherent power loss, due to the throttling over the valves, which limits the maximum system efficiency. Pump controlled direct drives do not have this inherent limitation, but are limited when it comes to controlling asymmetric cylinders, why...

  15. Analysis of buffering process of control rod hydraulic absorber

    International Nuclear Information System (INIS)

    Bao Jishi; Qin Benke; Bo Hanliang

    2011-01-01

    Control Rod Hydraulic Drive Mechanism(CRHDM) is a newly invented build-in control rod drive mechanism. Hydraulic absorber is the key part of this mechanism, and is used to cushion the control rod when the rod scrams. Thus, it prevents the control rod from being deformed and damaged. In this paper dynamics program ANSYS CFX is used to calculate all kinds of flow conditions in hydraulic absorber to obtain its hydraulic characteristics. Based on the flow resistance coefficients obtained from the simulation results, fluid mass and momentum equations were developed to get the trend of pressure change in the hydraulic cylinder and the displacement of the piston rod during the buffering process of the control rod. The results obtained in this paper indicate that the hydraulic absorber meets the design requirement. The work in this paper will be helpful for the design and optimization of the control rod hydraulic absorber. (author)

  16. Effect of physical property of supporting media and variable hydraulic loading on hydraulic characteristics of advanced onsite wastewater treatment system.

    Science.gov (United States)

    Sharma, Meena Kumari; Kazmi, Absar Ahmad

    2015-01-01

    A laboratory-scale study was carried out to investigate the effects of physical properties of the supporting media and variable hydraulic shock loads on the hydraulic characteristics of an advanced onsite wastewater treatment system. The system consisted of two upflow anaerobic reactors (a septic tank and an anaerobic filter) accommodated within a single unit. The study was divided into three phases on the basis of three different supporting media (Aqwise carriers, corrugated ring and baked clay) used in the anaerobic filter. Hydraulic loadings were based on peak flow factor (PFF), varying from one to six, to simulate the actual conditions during onsite wastewater treatment. Hydraulic characteristics of the system were identified on the basis of residence time distribution analyses. The system showed a very good hydraulic efficiency, between 0.86 and 0.93, with the media of highest porosity at the hydraulic loading of PFF≤4. At the higher hydraulic loading of PFF 6 also, an appreciable hydraulic efficiency of 0.74 was observed. The system also showed good chemical oxygen demand and total suspended solids removal efficiency of 80.5% and 82.3%, respectively at the higher hydraulic loading of PFF 6. Plug-flow dispersion model was found to be the most appropriate one to describe the mixing pattern of the system, with different supporting media at variable loading, during the tracer study.

  17. Hydraulic concrete composition and properties control system

    OpenAIRE

    PSHINKO O.M.; KRASNYUK A.V.; HROMOVA O.V.

    2015-01-01

    Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings) based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic–viscous–plastic bodies. The system of canon...

  18. Hydraulic Soft Yaw System for Multi MW Wind Turbines

    DEFF Research Database (Denmark)

    Stubkier, Søren

    energy and an increase in the loading of the wind turbine structure and components. This dissertation examines the hypothesis that there are advantages of basing a yaw system on hydraulic components instead of normal electrical components. This is done through a state of the art analysis followed...... in the wind turbine yaw system along with minor reductions in the blades and main shaft. Optimization of the damping and stiffness of the hydraulic soft yaw system have been conducted and an optimum found for load reduction. Linear control algorithms for control of damping pressure peaks have been developed...... the full turbine code in FAST, and the mathematical model of the hydraulic yaw system in Matlab/Simulink and Amesim is developed in order to analyze a full scale model of the hydraulic yaw system in combination with the implemented friction model for the yaw system. These results are also promising...

  19. Extended state observer–based fractional order proportional–integral–derivative controller for a novel electro-hydraulic servo system with iso-actuation balancing and positioning

    Directory of Open Access Journals (Sweden)

    Qiang Gao

    2015-12-01

    Full Text Available Aiming at balancing and positioning of a new electro-hydraulic servo system with iso-actuation configuration, an extended state observer–based fractional order proportional–integral–derivative controller is proposed in this study. To meet the lightweight requirements of heavy barrel weapons with large diameters, an electro-hydraulic servo system with a three-chamber hydraulic cylinder is especially designed. In the electro-hydraulic servo system, the balance chamber of the hydraulic cylinder is used to realize active balancing of the unbalanced forces, while the driving chambers consisting of the upper and lower chambers are adopted for barrel positioning and dynamic compensation of external disturbances. Compared with conventional proportional–integral–derivative controllers, the fractional order proportional–integral–derivative possesses another two adjustable parameters by expanding integer order to arbitrary order calculus, resulting in more flexibility and stronger robustness of the control system. To better compensate for strong external disturbances and system nonlinearities, the extended state observer strategy is further introduced to the fractional order proportional–integral–derivative control system. Numerical simulation and bench test indicate that the extended state observer–based fractional order proportional–integral–derivative significantly outperforms proportional–integral–derivative and fractional order proportional–integral–derivative control systems with better control accuracy and higher system robustness, well demonstrating the feasibility and effectiveness of the proposed extended state observer–based fractional order proportional–integral–derivative control strategy.

  20. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  1. Fiscal 2000 achievement report. Research on machine tool not necessitating hydraulic system; 2000 nendo yuatsu resu kosaku kikai no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    From the viewpoint that the manufacturing process, expendable items, and recycling should all be taken into consideration when machine tool energy consumption is the matter to discuss, it is concluded that the most important policy to follow in the effort to enhance energy conservation is to enable the tool to operate without hydraulic systems. For the realization of a general-purpose machine tool (lathe) to operate free of hydraulic systems, efforts are exerted to develop element technologies, tool rests, tail stocks, and chuck drives usable for the construction of a practical hydraulic system-free machine tool. In fiscal 2000, comprehensive evaluation of experimental machine tools continued, problems to solve for practical application were put together for the fabrication of improved units, and the improved units and an improved control method were integrated into a prototype of practical machine tools. The prototype was exhibited at Japan International Machine Tool Fair (JIMTOF) as a hydraulic system-free NC (numerically controlled) lathe Type LB300, and won a high valuation. The prototype was then tested for basic performance and for possibility of improvement, and problems to be solved before commercialization were isolated. (NEDO)

  2. SENSORS FAULT DIAGNOSIS ALGORITHM DESIGN OF A HYDRAULIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Matej ORAVEC

    2017-06-01

    Full Text Available This article presents the sensors fault diagnosis system design for the hydraulic system, which is based on the group of the three fault estimation filters. These filters are used for estimation of the system states and sensors fault magnitude. Also, this article briefly stated the hydraulic system state control design with integrator, which is important assumption for the fault diagnosis system design. The sensors fault diagnosis system is implemented into the Matlab/Simulink environment and it is verified using the controlled hydraulic system simulation model. Verification of the designed fault diagnosis system is realized by series of experiments, which simulates sensors faults. The results of the experiments are briefly presented in the last part of this article.

  3. Thermal modeling of a hydraulic hybrid vehicle transmission based on thermodynamic analysis

    International Nuclear Information System (INIS)

    Kwon, Hyukjoon; Sprengel, Michael; Ivantysynova, Monika

    2016-01-01

    Hybrid vehicles have become a popular alternative to conventional powertrain architectures by offering improved fuel efficiency along with a range of environmental benefits. Hydraulic Hybrid Vehicles (HHV) offer one approach to hybridization with many benefits over competing technologies. Among these benefits are lower component costs, more environmentally friendly construction materials, and the ability to recover a greater quantity of energy during regenerative braking which make HHVs partially well suited to urban environments. In order to further the knowledge base regarding HHVs, this paper explores the thermodynamic characteristics of such a system. A system model is detailed for both the hydraulic and thermal components of a closed circuit hydraulic hybrid transmission following the FTP-72 driving cycle. Among the new techniques proposed in this paper is a novel method for capturing rapid thermal transients. This paper concludes by comparing the results of this model with experimental data gathered on a Hardware-in-the-Loop (HIL) transmission dynamometer possessing the same architecture, components, and driving cycle used within the simulation model. This approach can be used for several applications such as thermal stability analysis of HHVs, optimal thermal management, and analysis of the system's thermodynamic efficiency. - Highlights: • Thermal modeling for HHVs is introduced. • A model for the hydraulic and thermal system is developed for HHVs. • A novel method for capturing rapid thermal transients is proposed. • The thermodynamic system diagram of a series HHV is predicted.

  4. Hydraulic oil control system for transformer stations

    International Nuclear Information System (INIS)

    Truong, P.

    2002-01-01

    'Full text:' Electrical oil control systems are commonly used to contain large volumes of spilled oil in transformer stations. Specially calibrated floats, some of which are designed to float only in oil and others only in water, are used in combination with a pump to contain oil at the catch basin below a transformer station.This electrical control system requires frequent maintenance and inspections to ensure the electrical system is not affected by any electrical surges. Also the floats need to be inspected and cleaned frequently to prevent oil or grit build up that may affect the systems' ability to contain oil.Recognizing the limitations of electrical oil control systems, Hydro One is investigating alternative control systems. A hydraulic oil control system is being investigated as an alternative which can backup oil in a containment area while allowing any water entering the containment area to pass through. Figure 1 shows a schematic of a bench-top model tested at Ryerson University. Oil and water separation occurs within the double-piped column. Oil and water are allowed to enter the external pipe column but only water is allowed to exit the internal pipe column. The internal pipe column is designed to generate enough hydrostatic pressure to ensure the oil is contained in the external pipe column.The hydraulic oil control system provides a reliable control mechanism and requires less maintenance compared to that of the electrical control system. Since the hydraulic oil control system has no moving parts, nor would any parts that require electricity, it is not affected by electrical surges such as lightening.The maintenance requirements of the hydraulic oil control system are: the removal of any oil and grit from the catch basin, and the occasional visual inspection for any crack or clogs in the system. (author)

  5. Full-automatic Special Drill Hydraulic System and PLC Control

    Directory of Open Access Journals (Sweden)

    Tian Xue Jun

    2016-01-01

    Full Text Available A hydraulic-driven and PLC full-automatic special drill is introduced, working principle of the hydraulic system and PLC control system are analyzed and designed, this equipment has the advantages of high efficiency, superior quality and low cost etc.

  6. Virtual Design of a Controller for a Hydraulic Cam Phasing System

    Science.gov (United States)

    Schneider, Markus; Ulbrich, Heinz

    2010-09-01

    Hydraulic vane cam phasing systems are nowadays widely used for improving the performance of combustion engines. At stationary operation, these systems should achieve a constant phasing angle, which however is badly disturbed by the alternating torque generated by the valve actuation. As the hydraulic system shows a non-linear characteristic over the full operation range and the inductivity of the hydraulic pipes generates a significant time delay, a full model based control emerges very complex. Therefore a simple feed-forward controller is designed, bridging the time delay of the hydraulic system and improving the system behaviour significantly.

  7. Hydraulic braking system for loads subjected to impacts and vibrations

    International Nuclear Information System (INIS)

    1980-01-01

    This invention concerns a hydraulic braking system for loads subjected to impacts and vibrations. These double acting telescopic type hydraulic braking systems possess significant drawbacks linked to possibly important hydraulic leaks due to (a) the use of many dynamic seals in such appliances and (b) the effects of the environment of the system on these seals, particularly when employed in nuclear power stations where the seals reach significant temperatures and are subjected to radiation. Under this invention a remedy is suggested to such drawbacks by integrating means to offset automatically the leaks and the accumulation of hydraulic fluid expansions, as well as facilities to show if such leaks have occurred [fr

  8. Robust Hinfinity position control synthesis of an electro-hydraulic servo system.

    Science.gov (United States)

    Milić, Vladimir; Situm, Zeljko; Essert, Mario

    2010-10-01

    This paper focuses on the use of the techniques based on linear matrix inequalities for robust H(infinity) position control synthesis of an electro-hydraulic servo system. A nonlinear dynamic model of the hydraulic cylindrical actuator with a proportional valve has been developed. For the purpose of the feedback control an uncertain linearized mathematical model of the system has been derived. The structured (parametric) perturbations in the electro-hydraulic coefficients are taken into account. H(infinity) controller extended with an integral action is proposed. To estimate internal states of the electro-hydraulic servo system an observer is designed. Developed control algorithms have been tested experimentally in the laboratory model of an electro-hydraulic servo system. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Charging valve of the full hydraulic braking system

    Directory of Open Access Journals (Sweden)

    Jinshi Chen

    2016-03-01

    Full Text Available It is known that the full hydraulic braking system has excellent braking performance. As the key component of the full hydraulic braking system, the parameters of the accumulator charging valve have a significant effect on the braking performance. In this article, the key parameters of the charging valve are analyzed through the static theoretical and an Advanced Modeling Environment for performing Simulation of engineering systems (AMESim simulation model of the dual-circuit accumulator charging valve is established based on the real structure parameters first. Second, according to the results of the dynamic simulation, the dynamic characteristics of the charging pressure, the flow rate, and the frequency of the charging valve are studied. The key parameters affecting the serial production are proposed and some technical advices for improving the performance of the full hydraulic system are provided. Finally, the theoretical analysis is validated by the simulation results. The comparison between the simulation results and the experimental results indicates that the simulated AMESim model of the charging valve is accurate and credible with the error rate inside 0.5% compared with the experimental result. Hence, the performance of the charging valve meets the request of the full hydraulic braking system exactly.

  10. Hydraulic regenerative system for a light vehicle

    OpenAIRE

    Orpella Aceret, Jordi; Guinart Trayter, Xavier

    2009-01-01

    The thesis is based in a constructed light vehicle that must be improved by adding a hydraulic energy recovery system. This vehicle named as TrecoLiTH, participated in the Formula Electric and Hybrid competition (Formula EHI) 2009 in Italy -Rome- and won several awards. This system consists in two hydraulic motors hub mounted which are used to store fluid at high pressure in an accumulator when braking. Through a valve the pressure will flow from the high pressure accumulator to the low press...

  11. Adaptive Non-linear Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF).......Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF)....

  12. Concept Evaluation for Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    The yaw system is the subsystem on a wind turbine which ensures that the rotor plane of the turbine always is facing the wind direction. Studies from [1] show that a soft yaw system may be utilized to dampen the loads in the wind turbine structure. The soft yaw system operates much like...... investigation. Loads and yaw demands are based on the IEC 61400-1 standard for wind turbine design, and the loads for this examination are extrapolated from the HAWC2 aeroelastic design code. The concepts are based on a 5 MW off-shore turbine....... a suspension system on a car, leading the loads away from the turbine structure. However, to realize a soft hydraulic yaw system a new design concept must be found. As a part of the development of the new concept a preliminary concept evaluation has been conducted, evaluating seven different hydraulic yaw...

  13. FOREWORD: 26th IAHR Symposium on Hydraulic Machinery and Systems

    Science.gov (United States)

    Wu, Yulin; Wang, Zhengwei; Liu, Shuhong; Yuan, Shouqi; Luo, Xingqi; Wang, Fujun

    2012-11-01

    The 26th IAHR Symposium on Hydraulic Machinery and Systems, will be held in Beijing, China, 19-23 August 2012. It is jointly organized by Tsinghua University, State Key Laboratory of Hydro Science and Hydraulic Engineering, China, Jiangsu University, Xi'an University of Technology, China Agricultural University, National Engineering Research Center of Hydropower Equipment and Dongfang Electric Machinery Co., Ltd. It is the second time that China hosts such a symposium. By the end of 2011, the China electrical power system had a total of 1 050 GW installed power, out of which 220 GW was in hydropower plants. The energy produced in hydropower facilities was 662.6 TWh from a total of 4,720 TWh electrical energy production in 2011. Moreover, in 2020, new hydropower capacities are going to be developed, with a total of 180 GW installed power and an estimated 708 TWh/year energy production. And in 2011, the installed power of pumped storage stations was about 25GW. In 2020, the data will be 70GW. At the same time, the number of pumps used in China is increasing rapidly. China produces about 29,000,000 pumps with more than 220 series per year. By the end of 2011, the Chinese pumping system has a total of 950 GW installed power. The energy consumed in pumping facilities was 530 TWh in 2011. The pump energy consumption accounted for about 12% of the national electrical energy production. Therefore, there is a large market in the field of hydraulic machinery including water turbines, pump turbines and a variety of pumps in China. There are also many research projects in this field. For example, we have conducted National Key Research Projects on 1000 MW hydraulic turbine, and on the pump turbines with high head, as well as on the large capacity pumps for water supply. Tsinghua University of Beijing is proud to host the 26th IAHR Symposium on Hydraulic Machinery and Systems. Tsinghua University was established in 1911, after the founding of the People's Republic of China. It

  14. Nonlinear control for a class of hydraulic servo system.

    Science.gov (United States)

    Yu, Hong; Feng, Zheng-jin; Wang, Xu-yong

    2004-11-01

    The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening, friction, etc. Aside from the nonlinear nature of hydraulic dynamics, hydraulic servo systems also have large extent of model uncertainties. To address these challenging issues, a robust state-feedback controller is designed by employing backstepping design technique such that the system output tracks a given signal arbitrarily well, and all signals in the closed-loop system remain bounded. Moreover, a relevant disturbance attenuation inequality is satisfied by the closed-loop signals. Compared with previously proposed robust controllers, this paper's robust controller based on backstepping recursive design method is easier to design, and is more suitable for implementation.

  15. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    International Nuclear Information System (INIS)

    Song, C. H.; Baek, W. P.; Chung, M. K.

    2007-06-01

    The objectives of the project are to study thermal hydraulic characteristics of advanced nuclear reactor system for evaluating key thermal-hydraulic phenomena relevant to new safety concepts. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. The Followings are main research topics: - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation-induced Thermal Mixing in a Pool - Development of Thermal-Hydraulic Models for Two-Phase Flow - Construction of T-H Data Base

  16. Numerical and experimental study of hydraulic dashpot used in the shut-off rod drive mechanism of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Narendra K., E-mail: nksingh_chikki@yahoo.com [Division of Remote Handling and Robotics, Bhabha Atomic Research Centre, Mumbai 400085 (India); Badodkar, Deepak N. [Division of Remote Handling and Robotics, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Singh, Manjit [Division of Remote Handling and Robotics, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-07-01

    Highlights: • Hydraulic dashpot performance is studied numerically as well as experimentally. • Instantaneous pressure built-up in the dashpot is mainly contributing for damping of freely falling shut-off rod at the end of its travel. • At elevated temperature, dashpot pressure does not reduce in proportion to the reduction in viscosity. • ‘C’ grove in the dashpot shaft flattens the pressure peak and shifts it toward the end of operation. - Abstract: Hydraulic dashpot design for shut-off rod drive mechanism application in a nuclear reactor has been analyzed both numerically and experimentally in this paper. Finite element commercial code COMSOL Multiphysics 4.3 has been used for numerical analysis. Experimental validation has been done at two different cases. Experimental test set-ups and hydraulic dashpot constructions have been described in detail. Various combinations of dashpot oil viscosity and clearance thickness have been analyzed. Important experimental results are also presented and discussed. Pressure distributions in the dashpot chambers obtained from COMSOL are given for both the set-ups. Numerical and experimental results are compared. Dashpot designs have been qualified after detailed analysis and testing on full-scale test stations simulating actual reactor conditions (except radiation)

  17. Numerical and experimental study of hydraulic dashpot used in the shut-off rod drive mechanism of a nuclear reactor

    International Nuclear Information System (INIS)

    Singh, Narendra K.; Badodkar, Deepak N.; Singh, Manjit

    2014-01-01

    Highlights: • Hydraulic dashpot performance is studied numerically as well as experimentally. • Instantaneous pressure built-up in the dashpot is mainly contributing for damping of freely falling shut-off rod at the end of its travel. • At elevated temperature, dashpot pressure does not reduce in proportion to the reduction in viscosity. • ‘C’ grove in the dashpot shaft flattens the pressure peak and shifts it toward the end of operation. - Abstract: Hydraulic dashpot design for shut-off rod drive mechanism application in a nuclear reactor has been analyzed both numerically and experimentally in this paper. Finite element commercial code COMSOL Multiphysics 4.3 has been used for numerical analysis. Experimental validation has been done at two different cases. Experimental test set-ups and hydraulic dashpot constructions have been described in detail. Various combinations of dashpot oil viscosity and clearance thickness have been analyzed. Important experimental results are also presented and discussed. Pressure distributions in the dashpot chambers obtained from COMSOL are given for both the set-ups. Numerical and experimental results are compared. Dashpot designs have been qualified after detailed analysis and testing on full-scale test stations simulating actual reactor conditions (except radiation)

  18. Acceptance Test Report for 241-SY Pump Cradle Hydraulic System

    International Nuclear Information System (INIS)

    Koons, B.M.

    1995-01-01

    The purpose of this ATP is to verify that hydraulic system/cylinder procured to replace the cable/winch system on the 101-SY Mitigation Pump cradle assembly fulfills its functional requirements for raising and lowering the cradle assembly between 70 and 90 degrees, both with and without pump. A system design review was performed on the 101-SY Cradle Hydraulic System by the vendor before shipping (See WHC-SD-WM-DRR-045, 241-SY-101 Cradle Hydraulic System Design Review). The scope of this plan focuses on verification of the systems ability to rotate the cradle assembly and any load through the required range of motion

  19. Design of The Test Stand for Hydraulic Active Heave Compensation System

    Directory of Open Access Journals (Sweden)

    Jakubowski Arkadiusz

    2017-01-01

    Full Text Available The article presented here described the design of a test stand for hydraulic active heave compensation system. The simulation of sea waves is realized by the use of hydraulic cylinder. A hydraulic motor is used for sea waves compensation. The hydraulic cylinder and the hydraulic motor are controlled by electrohydraulic servo valves. For the measurements Authors used displacement sensor and incremental encoder. Control algorithm is implemented on the PLC. The performed tests included hydraulic actuator and hydraulic motor step responses.

  20. Transportable 56-kN, 200-mm displacement hydraulic shaker for seismic simulation

    International Nuclear Information System (INIS)

    Smallwood, D.O.; Hunter, N.F.

    1972-01-01

    A large hydraulic shaker for seismic simulation is described. The shaker is 6.1 x 2.2 x 0.8 m and weighs 8800 kg. The shaker has a 56-kN force output driving a 7000 kg reaction mass, with a maximum displacement capability of 200 mm (p-p) over a frequency range from 1 to 50 Hz. The entire system, including the hydraulic power supplies, is designed to be self-contained and transportable. External support required for the system includes 110-V power for instrumentation, 64-kV . A (220- or 440-V) power for the hydraulic power supplies, and water for oil cooling. The system was successfully used to excite a four-story test structure at the AEC's Nevada Test Site. A brief description of the test series is given. (U.S.)

  1. Environmental and management impacts on temporal variability of soil hydraulic properties

    Science.gov (United States)

    Bodner, G.; Scholl, P.; Loiskandl, W.; Kaul, H.-P.

    2012-04-01

    Soil hydraulic properties underlie temporal changes caused by different natural and management factors. Rainfall intensity, wet-dry cycles, freeze-thaw cycles, tillage and plant effects are potential drivers of the temporal variability. For agricultural purposes it is important to determine the possibility of targeted influence via management. In no-till systems e.g. root induced soil loosening (biopores) is essential to counteract natural soil densification by settling. The present work studies two years of temporal evolution of soil hydraulic properties in a no-till crop rotation (durum wheat-field pea) with two cover crops (mustard and rye) having different root systems (taproot vs. fibrous roots) as well as a bare soil control. Soil hydraulic properties such as near-saturated hydraulic conductivity, flow weighted pore radius, pore number and macroporosity are derived from measurements using a tension infiltrometer. The temporal dynamics are then analysed in terms of potential driving forces. Our results revealed significant temporal changes of hydraulic conductivity. When approaching saturation, spatial variability tended to dominate over the temporal evolution. Changes in near-saturated hydraulic conductivity were mainly a result of changing pore number, while the flow weighted mean pore radius showed less temporal dynamic in the no-till system. Macroporosity in the measured range of 0 to -10 cm pressure head ranged from 1.99e-4 to 8.96e-6 m3m-3. The different plant coverage revealed only minor influences on the observed system dynamics. Mustard increased slightly the flow weighted mean pore radius, being 0.090 mm in mustard compared to 0.085 mm in bare soil and 0.084 mm in rye. Still pore radius changes were of minor importance for the overall temporal dynamics. Rainfall was detected as major driving force of the temporal evolution of structural soil hydraulic properties at the site. Soil hydraulic conductivity in the slightly unsaturated range (-7 cm to -10

  2. Design of Transputer Controllers for Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    1996-01-01

    The paper deals with how transputers can be applied for fast controllers for hydraulic actuator systems. A general transputer-based control systems including a data acquisition transputer subsystem is presented. An application case: development of a mechatronic test facility with a fast hydraulic...... test robot controlled by a transputer-basec controller is presented. Some experimental path-tracking results with adaptive control algorithms are presented and discussed. The results confirm that transputers have significant advantages for intelligent control of actuator systems and robots for high...

  3. Researching on YH100 Numerical Control Servo Press Hydraulic Control System and Control Algorithm

    Directory of Open Access Journals (Sweden)

    Kai LI

    2014-09-01

    Full Text Available In order to study the numerical control (NC servo press hydraulic control system and its control algorithm. The numerical control servo press performance and control principle of hydraulic control system are analyzed. According to the flow equation of the hydraulic control valve, hydraulic cylinder flow continuity equation and the force balance equation of the hydraulic cylinder with load press, the mathematical model of hydraulic control system is established. And the servo press hydraulic system transfer function is deduced. Introducing the suitable immune particle swarm control algorithm for servo press hydraulic system, and the control system block diagram is established. Immune algorithm is used to optimize new control parameters of the system and adopt the new optimization results to optimize the system simulation. The simulation result shows that the hydraulic system’s transition time controlled by the immune particle swarm algorithm is shorter than traditional ones, and the control performance is obviously improved. Finally it can be concluded that immune particle swarm PID control have these characteristics such as quickness, stability and accuracy. Applying this principle into application, the obtained YH100 numerical control servo press hydraulic control system meets the requirement.

  4. Hydraulically-actuated operating system for an electric circuit breaker

    Science.gov (United States)

    Barkan, Philip; Imam, Imdad

    1978-01-01

    This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A vent is located hydraulically between the actuating space and the valve for affording communication between said actuating space and a low pressure region. Flow control means is provided for restricting leakage through said vent to a rate that prevents said leakage from substantially detracting from the development of pressure within said actuatng space during the period from initial opening of the valve to the time when said piston has moved through most of its opening stroke. Following such period and while the valve is still open, said flow control means allows effective leakage through said vent. The accumulator has a limited capacity that results in the pressure within said actuating space decaying promptly to a low value as a result of effective leakage through said vent after the piston has moved through a circuit-breaker opening stroke and while the valve is in its open state. Means is provided for resetting the valve to its closed state in response to said pressure decay in the actuating space.

  5. Electro-Pneumatic Control System with Hydraulically Positioning Actuator Motor

    Directory of Open Access Journals (Sweden)

    V. N. Pilgunov

    2016-01-01

    Full Text Available A compressibility of the actuating fluid of a pneumatic drive (compressed air leads to significant landing of the pneumatic cylinder piston at the time of stop and hold of the load, a constant component of which can fluctuate significantly for the holding period.There are a lot of factors, which have a significant impact on the landing value of piston. Those are: an initial position of the piston at its stop, which determines the volume of the an active area of the piston, a value of the constant load component at the time of stop and its variation for the holding period, a transfer coefficient of the position component of the load, an active area of the pneumatic cylinder piston, as well as reduction in atmospheric pressure, which can significantly affect the operation of the control systems of small aircrafts flying at high altitudes.To reduce the landing value of piston due to changing value of the constant load component for its holding period, it is proposed to use a hydraulic positioner, which comprises a hydraulic cylinder the rod of which is rigidly connected to the rod of the pneumatic cylinder through the traverse, a cross-feed valve of the hydro-cylinder cavities with discrete electro-magnetic control, and adjustable chokes.A programmable logic controller provides the hydraulic positioner control. At the moment the piston stops and the load is held the cross-feed valve overlaps the hydro-cylinder cavities thereby locking the pneumatic cylinder piston and preventing its landing. With available pneumatic cylinder-controlled signal the cross-feed valve connects the piston and rod cavities of the positioner hydro-cylinder, the pneumatic cylinder piston is released and becomes capable of moving.A numerical estimate of landing of the pneumatic cylinder piston and its positioning quality is of essential interest. For this purpose, a technique to calculate the landing of piston has been developed taking into consideration that different

  6. FONESYS: The FOrum and NEtwork of SYStem Thermal-Hydraulic Codes in Nuclear Reactor Thermal-Hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S.H., E-mail: k175ash@kins.re.kr [Korea Institute of Nuclear Safety (KINS) (Korea, Republic of); Aksan, N., E-mail: nusr.aksan@gmail.com [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Austregesilo, H., E-mail: henrique.austregesilo@grs.de [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) (Germany); Bestion, D., E-mail: dominique.bestion@cea.fr [Commissariat à l’énergie atomique et aux énergies alternatives (CEA) (France); Chung, B.D., E-mail: bdchung@kaeri.re.kr [Korea Atomic Energy Research Institute (KAERI) (Korea, Republic of); D’Auria, F., E-mail: f.dauria@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Emonot, P., E-mail: philippe.emonot@cea.fr [Commissariat à l’énergie atomique et aux énergies alternatives (CEA) (France); Gandrille, J.L., E-mail: jeanluc.gandrille@areva.com [AREVA NP (France); Hanninen, M., E-mail: markku.hanninen@vtt.fi [VTT Technical Research Centre of Finland (VTT) (Finland); Horvatović, I., E-mail: i.horvatovic@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Kim, K.D., E-mail: kdkim@kaeri.re.kr [Korea Atomic Energy Research Institute (KAERI) (Korea, Republic of); Kovtonyuk, A., E-mail: a.kovtonyuk@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Petruzzi, A., E-mail: a.petruzzi@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy)

    2015-01-15

    Highlights: • We briefly presented the project called Forum and Network of System Thermal-Hydraulics Codes in Nuclear Reactor Thermal-Hydraulics (FONESYS). • We presented FONESYS participants and their codes. • We explained FONESYS projects motivation, its main targets and working modalities. • We presented FONESYS position about projects topics and subtopics. - Abstract: The purpose of this article is to present briefly the project called Forum and Network of System Thermal-Hydraulics Codes in Nuclear Reactor Thermal-Hydraulics (FONESYS), its participants, the motivation for the project, its main targets and working modalities. System Thermal-Hydraulics (SYS-TH) codes, also as part of the Best Estimate Plus Uncertainty (BEPU) approaches, are expected to achieve a more-and-more relevant role in nuclear reactor technology, safety and design. Namely, the number of code-users can easily be predicted to increase in the countries where nuclear technology is exploited. Thus, the idea of establishing a forum and a network among the code developers and with possible extension to code users has started to have major importance and value. In this framework the FONESYS initiative has been created. The main targets of FONESYS are: • To promote the use of SYS-TH Codes and the application of the BEPU approaches. • To establish acceptable and recognized procedures and thresholds for Verification and Validation (V and V). • To create a common ground for discussing envisaged improvements in various areas, including user-interface, and the connection with other numerical tools, including Computational Fluid Dynamics (CFD) Codes.

  7. Modelling and LPV control of an electro-hydraulic servo system

    NARCIS (Netherlands)

    Naus, G.J.L.; Wijnheijmer, F.P.; Post, W.J.A.E.M.; Steinbuch, M.; Teerhuis, A.P.

    2006-01-01

    This paper aims to show the modelling and control of an hydraulic servo system, targeting at frequency domain based controller design and the implementation of a LPV controller. The actual set-up consists of a mass, moved by a hydraulic cylinder and an electro-hydraulic servo valve. A nonlinear

  8. Hydraulic pitch control system for wind turbines: Advanced modeling and verification of an hydraulic accumulator

    DEFF Research Database (Denmark)

    Irizar, Victor; Andreasen, Casper Schousboe

    2017-01-01

    Hydraulic pitch systems provide robust and reliable control of power and speed of modern wind turbines. During emergency stops, where the pitch of the blades has to be taken to a full stop position to avoid over speed situations, hydraulic accumulators play a crucial role. Their efficiency...... and capability of providing enough energy to rotate the blades is affected by thermal processes due to the compression and decompression of the gas chamber. This paper presents an in depth study of the thermodynamical processes involved in an hydraulic accumulator during operation, and how they affect the energy...

  9. a design to digitalize hydraulic cylinder control of a machine tool

    African Journals Online (AJOL)

    Dr Obe

    1995-09-01

    Sep 1, 1995 ... Department of Mechanical Engineering. FEDERAL UNIVERSITY OF TECHNOLOGY, OWERRI,. P.M.B. 1526, OWERRI. ABSTRACT. Conventionally hydraulic piston - cylinder servos are actuated using analogue controls for machine tool axis drives. In this paper a design of the axis control system of an NC ...

  10. Hydraulic Soft Yaw System Load Reduction and Prototype Results

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Markussen, Kristian

    2013-01-01

    Introducing a hydraulic soft yaw concept for wind turbines leads to significant load reductions in the wind turbine structure. The soft yaw system operates as a shock absorption system on a car, hence absorbing the loading from turbulent wind conditions instead of leading them into the stiff wind...... turbine structure. Results presented shows fatigue reductions of up to 40% and ultimate load reduction of up to 19%. The ultimate load reduction increases even more when the over load protection system in the hydraulic soft yaw system is introduced and results show how the exact extreme load cut off...... operates. Further it is analyzed how the soft yaw system influence the power production of the turbine. It is shown that the influence is minimal, but at larger yaw errors the effect is possitive. Due to the implemeted functions in the hydraulic soft yaw system such as even load distribution on the pinions...

  11. Research Based on AMESim of Electro-hydraulic Servo Loading System

    Science.gov (United States)

    Li, Jinlong; Hu, Zhiyong

    2017-09-01

    Electro-hydraulic servo loading system is a subject studied by many scholars in the field of simulation and control at home and abroad. The electro-hydraulic servo loading system is a loading device simulation of stress objects by aerodynamic moment and other force in the process of movement, its function is all kinds of gas in the lab condition to analyze stress under dynamic load of objects. The purpose of this paper is the design of AMESim electro-hydraulic servo system, PID control technology is used to configure the parameters of the control system, complete the loading process under different conditions, the optimal design parameters, optimization of dynamic performance of the loading system.

  12. Optimization and performance characteristics of servo-piston hydraulic control rod drive mechanism

    International Nuclear Information System (INIS)

    Yu Mingrui; Han Weishi; Wang Ge

    2014-01-01

    This paper introduces the structure and working principles of the servo-piston hydraulic control rod drive mechanism (SHCM), which can be moved continuously and has self-lock capacity. The steady state characteristics of SHCM are simulated using FLUENT codes. Based on comparison with the experimental results, the simulation is proven to be credible as a tool to describe the steady state characteristics. Finally, the influence of structural parameters is analyzed to obtain an optimal design. The experimental results indicate that the traction of the servo-tube is larger in the starting and braking stages. The resistance coefficient of SHCM increases gradually in the starting and lifting stage, and then tends to be stable. This coefficient has a maximum value while the inlet pressure is low. Performance norms of SHCM, such as the anti-disturbance ability and positioning accuracy, are tested, the anti-disturbance ability of the actuator is strong while the inlet pressure is fluctuating. The positioning accuracy is high regardless of the action process (lifting or not). (author)

  13. Quasi-open loop hydraulic ram incremental actuator with power conserving properties

    International Nuclear Information System (INIS)

    Raymond, E.T.; Robinson, C.W.

    1982-01-01

    An electric stepping motor, operated by command signals from a computer or a microprocessor, rotates a rotary control member of a distributor valve, for sequencing hydraulic pressure and hence flow to the cylinders of an axial piston hydraulic machine. A group of the cylinders are subjected to pressure and flow and the remaining cylinders are vented to a return line. Rotation of the rotary control valve member sequences pressurization by progressively adding a cylinder to the forward edge to the pressurized group and removing a cylinder from the trailing edge of the pressurized group. The double ended pistons of each new pressurized group function to drive a wobble plate into a new position of equilibrium and then hold it in such position until another change in the makeup of the pressurized group. These pistons also displace hydraulic fluid from the opposite cylinder head which serves as the output of a pumping element. An increment of displacement of the wobble plate occurs in direct response to each command pulse that is received by the stepping motor. Wobble plate displacement drives the rotary valve of the hydraulic power transfer unit, causing it to transfer hydraulic fluid from a first expansible chamber on one side of a piston in a hydraulic ram to a second expansible chamber on the opposite side of the piston. Reverse drive of the hydraulic power transfer unit reverses the direction of transfer of hydraulic fluid between the two expansible chambers

  14. Prevention and preservation aid system for control rod drives

    International Nuclear Information System (INIS)

    Ishisato, Shin-ichi; Yamamoto, Yoko.

    1992-01-01

    The system of the present invention can select control rod drives (CRD) as an object of inspection, and can manage maintenance hysteresis even by unskilled persons upon maintenance operation for the CRD. That is, the system of the present invention comprises a data base concerning prevention and preservation for the CRD and hydraulic pressure control unit (HCU), a data base management device for retrieving and managing the intelligence of the data base and a maintenance data base for storing data measured based on the data base on every periodical inspections. Further, it also comprises a function for displaying, on a map, the CRD to be disassembled and inspected upon periodical inspection on every inspection recommendation priority groups, based on these data base. Further, it also comprises a function for evaluating exchange hysteresis maintenance data for incore structures which require periodical exchange. As a result, high reliability of the CRD can be maintained and reliability of a nuclear power plant can further be improved. (I.S.)

  15. An evaluation of a hubless inducer and a full flow hydraulic turbine driven inducer boost pump

    Science.gov (United States)

    Lindley, B. K.; Martinson, A. R.

    1971-01-01

    The purpose of the study was to compare the performance of several configurations of hubless inducers with a hydrodynamically similar conventional inducer and to demonstrate the performance of a full flow hydraulic turbine driven inducer boost pump using these inducers. A boost pump of this type consists of an inducer connected to a hydraulic turbine with a high speed rotor located in between. All the flow passes through the inducer, rotor, and hydraulic turbine, then into the main pump. The rotor, which is attached to the main pump shaft, provides the input power to drive the hydraulic turbine which, in turn, drives the inducer. The inducer, rotating at a lower speed, develops the necessary head to prevent rotor cavitation. The rotor speed is consistent with present main engine liquid hydrogen pump designs and the overall boost pump head rise is sufficient to provide adequate main pump suction head. This system would have the potential for operating at lower liquid hydrogen tank pressures.

  16. ENERGY EFFICIENCY OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSION TESTS AT LOCOMOTIVE REPAIR PLANT

    Directory of Open Access Journals (Sweden)

    B. E. Bodnar

    2015-10-01

    Full Text Available Purpose. In difficult economic conditions, cost reduction of electricity consumption for the needs of production is an urgent task for the country’s industrial enterprises. Technical specifications of enterprises, which repair diesel locomotive hydraulic transmission, recommend conducting a certain amount of evaluation and regulatory tests to monitor their condition after repair. Experience shows that a significant portion of hydraulic transmission defects is revealed by bench tests. The advantages of bench tests include the ability to detect defects after repair, ease of maintenance of the hydraulic transmission and relatively low labour intensity for eliminating defects. The quality of these tests results in the transmission resource and its efficiency. Improvement of the technology of plant post-repairs hydraulic tests in order to reduce electricity consumption while testing. Methodology. The possible options for hydraulic transmission test bench improvement were analysed. There was proposed an energy efficiency method for diesel locomotive hydraulic transmission testing in locomotive repair plant environment. This is achieved by installing additional drive motor which receives power from the load generator. Findings. Based on the conducted analysis the necessity of improving the plant stand testing of hydraulic transmission was proved. The variants of the stand modernization were examined. The test stand modernization analysis was conducted. Originality. The possibility of using electric power load generator to power the stand electric drive motor or the additional drive motor was theoretically substantiated. Practical value. A variant of hydraulic transmission test stand based on the mutual load method was proposed. Using this method increases the hydraulic transmission load range and power consumption by stand remains unchanged. The additional drive motor will increase the speed of the input shaft that in its turn wil allow testing in

  17. Estimators for initial conditions for optimisation in learning hydraulic systems

    NARCIS (Netherlands)

    Post, W.J.A.E.M.; Burrows, C.R.; Edge, K.A.

    1998-01-01

    In Learning Hydraulic Systems (LHS1. developed at the Eindhoven University of Technology, a specialised optimisation routine is employed In order to reduce energy losses in hydraulic systems. Typical load situations which can be managed by LHS are variable cyclic loads, as can be observed In many

  18. Design of a Hydraulic Motor System Driven by Compressed Air

    Directory of Open Access Journals (Sweden)

    Jyun-Jhe Yu

    2013-06-01

    Full Text Available This paper presents the design of a highly efficient pneumatic motor system. The air engine is currently the most generally used device to convert potential energy of compressed air into mechanical energy. However, the efficiency of the air engines is too low to provide sufficient operating range for the vehicle. In this study, the energy contained in compressed air/pressurized hydraulic oil is transformed by a hydraulic motor to mechanical energy to enhance the efficiency of using air power. To evaluate the theoretical efficiency, the principle of balance of energy is applied. The theoretical efficiency of converting air into hydraulic energy is found to be a function of pressure; thus, the maximum converting efficiency can be determined. To confirm the theoretical evaluation, a prototype of the pneumatic hydraulic system is built. The experiment verifies that the theoretical evaluation of the system efficiency is reasonable, and that the layout of the system is determined by the results of theoretical evaluation.

  19. Modified hydraulic braking system limits angular deceleration to safe values

    Science.gov (United States)

    Briggs, R. S.; Council, M.; Green, P. M.

    1966-01-01

    Conventional spring actuated, hydraulically released, fail-safe disk braking system is modified to control the angular deceleration of a massive antenna. The hydraulic system provides an immediate preset pressure to the spring-loaded brake shoes and holds it at this value to decelerate the antenna at the desired rate.

  20. A Hydraulic Stress Measurement System for Deep Borehole Investigations

    Science.gov (United States)

    Ask, Maria; Ask, Daniel; Cornet, Francois; Nilsson, Tommy

    2017-04-01

    Luleå University of Technology (LTU) is developing and building a wire-line system for hydraulic rock stress measurements, with funding from the Swedish Research Council and Luleå University of Technology. In this project, LTU is collaborating with University of Strasbourg and Geosigma AB. The stress state influences drilling and drillability, as well as rock mass stability and permeability. Therefore, knowledge about the state of in-situ stress (stress magnitudes, and orientations) and its spatial variation with depth is essential for many underground rock engineering projects, for example for underground storage of hazardous material (e.g. nuclear waste, carbon dioxide), deep geothermal exploration, and underground infrastructure (e.g. tunneling, hydropower dams). The system is designed to conduct hydraulic stress testing in slim boreholes. There are three types of test methods: (1) hydraulic fracturing, (2) sleeve fracturing and (3) hydraulic testing of pre-existing fractures. These are robust methods for determining in situ stresses from boreholes. Integration of the three methods allows determination of the three-dimensional stress tensor and its spatial variation with depth in a scientific unambiguously way. The stress system is composed of a downhole and a surface unit. The downhole unit consists of hydraulic fracturing equipment (straddle packers and downhole imaging tool) and their associated data acquisition systems. The testing system is state of the art in several aspects including: (1) Large depth range (3 km), (2) Ability to test three borehole dimensions (N=76 mm, H=96 mm, and P=122 mm), (3) Resistivity imager maps the orientation of tested fracture; (4) Highly stiff and resistive to corrosion downhole testing equipment; and (5) Very detailed control on the injection flow rate and cumulative volume is obtained by a hydraulic injection pump with variable piston rate, and a highly sensitive flow-meter. At EGU General Assembly 2017, we would like to

  1. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Jean-Baptiste [Calstart Incorporated, Pasadena, CA (United States)

    2014-03-07

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulic hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: -Performance, -Fleet deployment, -Maintenance, -Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles throughout the

  2. Several new thermo-hydraulic test facilities in NPIC

    International Nuclear Information System (INIS)

    Ye Shurong; Sun Yufa; Ji Fuyun; Zong Guifang; Guo Zhongchuan

    1997-01-01

    Several new thermo-hydraulic test facilities are under construction in Nuclear Power Institute of Chinese (NPIC) at Chengdu. These facilities include: 1. Nuclear Power Component Comprehensive Test Facility. 2. Reactor Hydraulic Modeling Test Facility. 3. Control Rod Drive Line Hydraulic Test Facility. 4. Large Scale Thermo-Hydraulic Test Facility. The construction of these facilities will make huge progress in the research and development capability of nuclear power technology in CHINA. The author will present a brief description of the design parameters flowchart and test program of these facilities

  3. Modeling and stability of electro-hydraulic servo of hydraulic excavator

    Science.gov (United States)

    Jia, Wenhua; Yin, Chenbo; Li, Guo; Sun, Menghui

    2017-11-01

    The condition of the hydraulic excavator is complicated and the working environment is bad. The safety and stability of the control system is influenced by the external factors. This paper selects hydraulic excavator electro-hydraulic servo system as the research object. A mathematical model and simulation model using AMESIM of servo system is established. Then the pressure and flow characteristics are analyzed. The design and optimization of electro-hydraulic servo system and its application in engineering machinery is provided.

  4. Control Rod Drive Mechanism Installed in the Internal of Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, M. H.; Choi, S.; Park, J. S.; Lee, J. S.; Kim, D. O.; Hur, N. S.; Hur, H.; Yu, J. Y

    2008-09-15

    This report describes the review results and important technologies related to the in-vessel type control rod drive mechanism. Generally, most of the CRDMs used in the PWR are attached outside of the reactor pressure vessel, and the pernetration of the vessel head can not avoid. However, in-vessel type CRDMs, which are installed inside the reactor vessel, can eliminate the possibility of rod ejection accidents and the penetration of the vessel head, and provide a compact design of the reactor vessel and containment. There are two kinds of in-vessel type CRDM concerning the driving force-driven by a driving motor and by a hydraulic force. Motor driven CRDMs have been mainly investigated in Japan(MRX, IMR, DRX, next generation BWR etc.), and developed the key components such as a canned motor, an integrated rod position indicator, a separating ball-nut and a ball bearing that can operate under the water conditions of a high temperature and pressure. The concept of hydraulically driven CRDMs have been first reported by KWU and Siemens for KWU 200 reactor, and Argentina(CAREM) and China(NHR-5, NHR-200) have been developed the internal CRDM with the piston and cylinder of slightly different geometries. These systems are driven by the hydraulic force which is produced by pumps outside of the reactor vessel and transmitted through a pipe penetrating the reactor vessel, and needs complicated control and piping systems including pumps, valves and pipes etc.. IRIS has been recently decided the internal CRDMs as the reference design, and an analytical and experimental investigations of the hydraulic drive concept are performed by POLIMI in Italy. Also, a small French company, MP98 has been developed a new type of control rods, called 'liquid control rods', where reactivity is controlled by the movement of a liquid absorber in a manometer type device.

  5. Pressure control of hydraulic servo system using proportional control valve

    International Nuclear Information System (INIS)

    Yang, Kyong Uk; Oh, In Ho; Lee, Ill Yeong

    1999-01-01

    The purpose of this study is to develop a control scheme for the hydraulic servo system which can rapidly control the pressure in a hydraulic cylinder with very short stroke. Compared with the negligible stroke of the cylinder in the system, the flow gain of the proportional pressure control valve constituting the hydraulic servo system is relatively large and the time delay on the response of the valve is quite long. Therefore, the pressure control system, in this study tends to get unstable during operations. Considering the above mentioned characteristics of the system, a two-degree-of-freedom control scheme, composed of the I-PDD 2 ... feedback compensator and the feedforward controller, is proposed. The reference model scheme is used in deciding the parameters of the controllers. The validity of the proposed control scheme is confirmed through the experiments

  6. Thermal Hydraulic Analysis of RPV Support Cooling System for HTGR

    International Nuclear Information System (INIS)

    Min Qi; Wu Xinxin; Li Xiaowei; Zhang Li; He Shuyan

    2014-01-01

    Passive safety is now of great interest for future generation reactors because of its reduction of human interaction and avoidance of failures of active components. reactor pressure vessel (RPV) support cooling system (SCS) for high temperature gas-cooled reactor (HTGR) is a passive safety system and is used to cool the concrete seats for the four RPV supports at its bottom. The SCS should have enough cooling capacity to ensure the temperature of the concrete seats for the supports not exceeding the limit temperature. The SCS system is composed of a natural circulation water loop and an air cooling tower. In the water loop, there is a heat exchanger embedded in the concrete seat, heat is transferred by thermal conduction and convection to the cooling water. Then the water is cooled by the air cooler mounted in the air cooling tower. The driving forces for water and air are offered by the density differences caused by the temperature differences. In this paper, the thermal hydraulic analysis for this system was presented. Methods for decoupling the natural circulation and heat transfer between the water loop and air flow were introduced. The operating parameters for different working conditions and environment temperatures were calculated. (author)

  7. Dynamics three-tier hydraulic crane-manipulators

    OpenAIRE

    Lagerev I.A.; Lagerev A.V.

    2018-01-01

    The methods and generalized recommendations for modeling dynamic loading of load-bearing elements of steel structures of three-tier hydraulic cranes-manipulators are considered. Mathematical models have been developed to study the dynamics of moving elements of the crane-manipulator, the movement of the load-lifting machine on a stochastic uneven surface with a suspended load. The presented approaches can be used to calculate other types of jib cranes equipped with hydraulic drive.

  8. Robust Control of Industrial Hydraulic Cylinder Drives - with Special Reference to Sliding Mode- & Finite-Time Control

    DEFF Research Database (Denmark)

    Schmidt, Lasse

    In industry, performance requirements regarding machinery, applications etc., are constantly increasing, and with the development of reliable proportional flow control components to reasonable prices, the market is increasingly turning its attention toward controllable fluid power solutions....... For series produced systems such as presses etc., dedicated controls are often developed. However, the great majority of the hydraulic systems developed, are produced in limited numbers for specialized applications, and here stand alone economically feasible digital controllers with ease-of-use interfaces...... are widely used. Such controllers typically provide the possibility to employ traditional linear controls such as PID schemes, and variants of this, with parameters tunable via graphical user interfaces. However, due to the intrinsic nonlinearities of hydraulic systems as well as the often limited knowledge...

  9. Adaptive Control System of Hydraulic Pressure Based on The Mathematical Modeling

    Science.gov (United States)

    Pilipenko, A. V.; Pilipenko, A. P.; Kanatnikov, N. V.

    2016-04-01

    In this paper, the authors highlight the problem of replacing an old heavy industrial equipment, and offer the replacement of obsolete control systems on the modern adaptive control system, which takes into account changes in the hydraulic system of the press and compensates them with a corrective action. The proposed system can reduce a water hammer and thereby increase the durability of the hydraulic system and tools.

  10. Integration of Flex Nozzle System and Electro Hydraulic Actuators to Solid Rocket Motors

    Science.gov (United States)

    Nayani, Kishore Nath; Bajaj, Dinesh Kumar

    2017-10-01

    A rocket motor assembly comprised of solid rocket motor and flex nozzle system. Integration of flex nozzle system and hydraulic actuators to the solid rocket motors are done after transportation to the required place where integration occurred. The flex nozzle system is integrated to the rocket motor in horizontal condition and the electro hydraulic actuators are assembled to the flex nozzle systems. The electro hydraulic actuators are connected to the hydraulic power pack to operate the actuators. The nozzle-motor critical interface are insulation diametrical compression, inhibition resin-28, insulation facial compression, shaft seal `O' ring compression and face seal `O' ring compression.

  11. A Fault Diagnosis Approach for the Hydraulic System by Artificial Neural Networks

    OpenAIRE

    Xiangyu He; Shanghong He

    2014-01-01

    Based on artificial neural networks, a fault diagnosis approach for the hydraulic system was proposed in this paper. Normal state samples were used as the training data to develop a dynamic general regression neural network (DGRNN) model. The trained DGRNN model then served as the fault determinant to diagnose test faults and the work condition of the hydraulic system was identified. Several typical faults of the hydraulic system were used to verify the fault diagnosis approach. Experiment re...

  12. Model-based nonlinear control of hydraulic servo systems: Challenges, developments and perspectives

    Science.gov (United States)

    Yao, Jianyong

    2018-06-01

    Hydraulic servo system plays a significant role in industries, and usually acts as a core point in control and power transmission. Although linear theory-based control methods have been well established, advanced controller design methods for hydraulic servo system to achieve high performance is still an unending pursuit along with the development of modern industry. Essential nonlinearity is a unique feature and makes model-based nonlinear control more attractive, due to benefit from prior knowledge of the servo valve controlled hydraulic system. In this paper, a discussion for challenges in model-based nonlinear control, latest developments and brief perspectives of hydraulic servo systems are presented: Modelling uncertainty in hydraulic system is a major challenge, which includes parametric uncertainty and time-varying disturbance; some specific requirements also arise ad hoc difficulties such as nonlinear friction during low velocity tracking, severe disturbance, periodic disturbance, etc.; to handle various challenges, nonlinear solutions including parameter adaptation, nonlinear robust control, state and disturbance observation, backstepping design and so on, are proposed and integrated, theoretical analysis and lots of applications reveal their powerful capability to solve pertinent problems; and at the end, some perspectives and associated research topics (measurement noise, constraints, inner valve dynamics, input nonlinearity, etc.) in nonlinear hydraulic servo control are briefly explored and discussed.

  13. Thermal-hydraulic tests for reactor safety system

    International Nuclear Information System (INIS)

    Chun, Se Young; Chung, Moon Ki; Baek, Won Pil

    2002-05-01

    Tests for the safety depressurization system, Sparger adopted for the Korean next generation reactor, APR1400 are carried out for several geometries with the B and C (Blowdown and Condensation) facility in the condition of high temperature and pressure and with a small test facility in the condition of atmospheric temperature and pressure. Tests for the critical heat flux are performed with the RCS(Reactor Coolant System) facility as well as with the Freon CHF Loop in the condition of high temperature and pressure. The atmospheric temperature and pressure facility is utilized for development of the high standard thermal hydraulic measurement technology. The optical method is developed to measure the local thermal-hydraulic behavior for the single and two-phase boiling phenomena

  14. Optimization design of wind turbine drive train based on Matlab genetic algorithm toolbox

    Science.gov (United States)

    Li, R. N.; Liu, X.; Liu, S. J.

    2013-12-01

    In order to ensure the high efficiency of the whole flexible drive train of the front-end speed adjusting wind turbine, the working principle of the main part of the drive train is analyzed. As critical parameters, rotating speed ratios of three planetary gear trains are selected as the research subject. The mathematical model of the torque converter speed ratio is established based on these three critical variable quantity, and the effect of key parameters on the efficiency of hydraulic mechanical transmission is analyzed. Based on the torque balance and the energy balance, refer to hydraulic mechanical transmission characteristics, the transmission efficiency expression of the whole drive train is established. The fitness function and constraint functions are established respectively based on the drive train transmission efficiency and the torque converter rotating speed ratio range. And the optimization calculation is carried out by using MATLAB genetic algorithm toolbox. The optimization method and results provide an optimization program for exact match of wind turbine rotor, gearbox, hydraulic mechanical transmission, hydraulic torque converter and synchronous generator, ensure that the drive train work with a high efficiency, and give a reference for the selection of the torque converter and hydraulic mechanical transmission.

  15. Optimization design of wind turbine drive train based on Matlab genetic algorithm toolbox

    International Nuclear Information System (INIS)

    Li, R N; Liu, X; Liu, S J

    2013-01-01

    In order to ensure the high efficiency of the whole flexible drive train of the front-end speed adjusting wind turbine, the working principle of the main part of the drive train is analyzed. As critical parameters, rotating speed ratios of three planetary gear trains are selected as the research subject. The mathematical model of the torque converter speed ratio is established based on these three critical variable quantity, and the effect of key parameters on the efficiency of hydraulic mechanical transmission is analyzed. Based on the torque balance and the energy balance, refer to hydraulic mechanical transmission characteristics, the transmission efficiency expression of the whole drive train is established. The fitness function and constraint functions are established respectively based on the drive train transmission efficiency and the torque converter rotating speed ratio range. And the optimization calculation is carried out by using MATLAB genetic algorithm toolbox. The optimization method and results provide an optimization program for exact match of wind turbine rotor, gearbox, hydraulic mechanical transmission, hydraulic torque converter and synchronous generator, ensure that the drive train work with a high efficiency, and give a reference for the selection of the torque converter and hydraulic mechanical transmission

  16. Hydraulic bilateral construction robot; Yuatsushiki bilateral kensetsu robot

    Energy Technology Data Exchange (ETDEWEB)

    Maehata, K.; Mori, N. [Kayaba Industry Co. Ltd., Tokyo (Japan)

    1999-05-15

    Concerning a hydraulic bilateral construction robot, its system constitution, structures and functions of important components, and the results of some tests are explained, and the researches conducted at Gifu University are described. The construction robot in this report is a servo controlled system of a version developed from the mini-shovel now available in the market. It is equipped, in addition to an electrohydraulic servo control system, with various sensors for detecting the robot attitude, vibration, and load state, and with a camera for visualizing the surrounding landscape. It is also provided with a bilateral joy stick which is a remote control actuator capable of working sensation feedback and with a rocking unit that creates robot movements of rolling, pitching, and heaving. The construction robot discussed here, with output increased and response faster thanks to the employment of a hydraulic driving system for the aim of building a robot system superior in performance to the conventional model designed primarily for heavy duty, proves after tests to be a highly sophisticated remotely controlled robot control system. (NEDO)

  17. Structural Integrity Assessment for SSDM Hydraulic Cylinder of JRTR

    International Nuclear Information System (INIS)

    Kim, Sanghaun; Lee, Jin Haeng; Cho, Yeonggarp; Yoo, Yeonsik

    2014-01-01

    In HANARO, there are four Control Rod Drive Mechanisms (CRDMs) with an individual step motor and four Shutoff (SO) Units with an individual hydraulic system located at the top of reactor pool. The absorber rods in SO units are poised at the top of the core by the hydraulic force during normal operation. The rods of SO units drop by gravity as the first reactor showdown mechanism when a trip is commended by the reactor protection system (RPS). The CRDMs act as the first reactor shutdown mechanism and reactor regulating as well. The top-mounted SSDM driven by the hydraulic system for the JRTR is under design in KAERI. The SSDM provides an alternate and independent means of reactor shutdown. The second shutdown rods (SSRs) of the SSDM are poised at the top of the core by the hydraulic system during the normal operation and drop by gravity for the reactor trip. Based on the proven technology of the design, operation and maintenance for HANARO, the SSDM for the JRTR has been optimized by the design improvement from the experience and test. This paper aims for the structural integrity assessment for SSDM hydraulic cylinder which is designed on the basis of the SO unit of HANARO but optimized with the new core environment (i. e., geometrical, physical, etc.) of JRTR. A stress analysis of the hydraulic cylinder for the SSDM used in JRTR has been performed through the conservative approach with the uncertainties in the system design step. The crank's pinch load with no slip between the bearing (stiffener) plate of hydraulic cylinder and base plate of mount bracket during SSE has been calculated by considering the design and seismic load combination. The stress by the load combination satisfies the Class 3 criteria given Table NG-3325 of Section III of the ASME Code. The maximum stresses are at the clamp contact region in the cylinder

  18. TMI-2 in-vessel hydraulic systems utilize high water and high boron content fluids

    International Nuclear Information System (INIS)

    Baston, V.F.; Hofstetter, K.J.; Hofman, L.A.; Gallagher, R.E.

    1987-01-01

    Choice of a hydraulic fluid for use in the Three Mile Island Unit 2 (TMI-2) reactor vessel defueling equipment required consideration of the following constraints for the hydraulic fluid given an accidental spill into the reactor coolant system (RCS). The TMI-2 RCS hydraulic fluid utilized in the hydraulic operations utilized a solution composition of 95 wt% water and 5 wt% of the above base fluid. The TMI-2 hydraulic system utilizes pressures up to 3500 psi. The selected hydraulic fluid has been in use since December 1986 with minimal operational difficulties

  19. Enhancing the safety and efficiency of the driving gear of coal mining machinery by using water as a hydraulic fluid and enhancing the reliability of scraper-chain conveyors; Erhoehung der Sicherheit und Leistungsfaehigkeit der Antriebstechnik von Arbeitsmaschinen durch Verwendung von Wasserhydraulik sowie Erhoehung der Zuverlaessigkeit der Kettenkratzerfoerderer

    Energy Technology Data Exchange (ETDEWEB)

    Reichel, J.; Boeing, R.; Graetz, A.; Loehning, H.D.; Plum, D.

    1997-12-31

    The objective pursued is to increasingly use water or high water-content fluids as a substitute for other hydraulic fluids in driving gear of mining machinery. The state of the art of the technology is represented only by individual solutions achieved for given purposes which are not suitable for other applications, let alone for coal mining machinery. The research project was to identify hydraulic components that will permit the use of water or watery substances as a hydraulic fluid in mining applications. The components have been found and further developed, and finally systems with linear and rotatory drives have been tested at various test facilities in order to derive information on the system behaviour of pressurized fluids and machinery components and their suitability for coal mining applications. (orig./CB) [Deutsch] In der untertaegigen Antriebstechnik sollen vermehrt Wasser und wasserhaltige Fluessigkeiten eingesetzt werden. Der Stand der Technik fuehrt bei der Anwendung von Wasserhydraulik immer wieder nur Einzelloesungen auf, die nicht allgemein und insbesondere im Steinkohlenbergbau angewendet werden koennen. Im Rahmen dieses Forschungsvorhabens wurden fuer die Wasserhydraulik geeignete Komponenten untersucht, weiterentwickelt und schliesslich Systeme mit linearen und rotatorischen Antrieben auf verschiedenen Pruefstaenden erprobt, um Aussagen ueber das Systemverhalten von Druckfluessigkeit und Bauelementen fuer Bergbauanwendungen zu bekommen. (orig./MSK)

  20. A Study on Control Strategy of Regenerative Braking in the Hydraulic Hybrid Vehicle Based on ECE Regulations

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2013-01-01

    Full Text Available This paper establishes a mathematic model of composite braking in the hydraulic hybrid vehicle and analyzes the constraint condition of parallel regenerative braking control algorithm. Based on regenerative braking system character and ECE (Economic Commission of Europe regulations, it introduces the control strategy of regenerative braking in parallel hydraulic hybrid vehicle (PHHV. Finally, the paper establishes the backward simulation model of the hydraulic hybrid vehicle in Matlab/simulink and makes a simulation analysis of the control strategy of regenerative braking. The results show that this strategy can equip the hydraulic hybrid vehicle with strong brake energy recovery power in typical urban drive state.

  1. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    International Nuclear Information System (INIS)

    Song, C. H.; Chung, M. K.; Park, C. K. and others

    2005-04-01

    The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved

  2. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Song, C. H.; Chung, M. K.; Park, C. K. and others

    2005-04-15

    The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved.

  3. Hydraulic turbines

    International Nuclear Information System (INIS)

    Meluk O, G.

    1998-01-01

    The hydraulic turbines are defined according to the specific speed, in impulse turbines and in reaction turbines. Currently, the Pelton turbines (of impulse) and the Francis and Kaplan turbines (of reaction), they are the most important machines in the hydroelectric generation. The hydraulic turbines are capable of generating in short times, large powers, from its loads zero until the total load and reject the load instantly without producing damages in the operation. When the hydraulic resources are important, the hydraulic turbines are converted in the axle of the electric system. Its combination with thermoelectric generation systems, it allow the continuing supply of the variations in demand of energy system. The available hydraulic resource in Colombia is of 93085 MW, of which solely 9% is exploited, become 79% of all the electrical country generation, 21% remaining is provided by means of the thermoelectric generation

  4. Investigation and Development of the Thermal Preparation System of the Trailbuilder Machinery Hydraulic Actuator

    Science.gov (United States)

    Konev, V.; Polovnikov, E.; Krut, O.; Merdanov, Sh; Zakirzakov, G.

    2017-07-01

    It’s determined that the main part of trailbuilders operated in the North is the technology equipped by the hydraulic actuator. Further development of the northern territories will demand using of various means and ways machinery thermal preparation, and also the machinery of the northern fulfillment. On this basis problems in equipment operation are defined. One of the main is efficiency supplying of a hydraulic actuator. On the basis of the operating conditions’ analysis of trailbuilder hydraulic actuator operation it is determined, that under low negative temperatures the means of thermal preparation are necessary. The existing systems warm up only a hydraulic tank or warming up of the hydro equipment before the machinery operation is carried out under loading with intensive wears. Thus, with the purpose to raise the efficiency of thermal hydraulic actuator, operated far from stationary bases autonomous, energy saving, not expensive in creation and operation systems are necessary. In accordance with the analysis of means and ways of the thermal preparation of the hydraulic actuator and the thermal balance calculations of the (internal) combustion engine the system of the hydraulic actuator heating is offered and is being investigated. It contains a local hydraulic actuator warming up and the system of internal combustion engine heat utilization. Within research operation conditions of the local hydraulic actuator heating are viewed and determined, taking into account constructive changes to the local hydraulic actuator heating. Mathematical modelling of the heat technical process in the modernized hydraulic actuator is considered. As a result temperature changes of the heat-transfer and the hydraulic cylinder in time are determined. To check the theoretical researches and to define dependences on hydraulic actuator warming up, the experimental installation is made. It contains the measuring equipment, a small tank with the heat exchanger of the burnt gases

  5. Visual and intelligent transients and accidents analyzer based on thermal-hydraulic system code

    International Nuclear Information System (INIS)

    Meng Lin; Rui Hu; Yun Su; Ronghua Zhang; Yanhua Yang

    2005-01-01

    Full text of publication follows: Many thermal-hydraulic system codes were developed in the past twenty years, such as RELAP5, RETRAN, ATHLET, etc. Because of their general and advanced features in thermal-hydraulic computation, they are widely used in the world to analyze transients and accidents. But there are following disadvantages for most of these original thermal-hydraulic system codes. Firstly, because models are built through input decks, so the input files are complex and non-figurative, and the style of input decks is various for different users and models. Secondly, results are shown in off-line data file form. It is not convenient for analysts who may pay more attention to dynamic parameters trend and changing. Thirdly, there are few interfaces with other program in these original thermal-hydraulic system codes. This restricts the codes expanding. The subject of this paper is to develop a powerful analyzer based on these thermal-hydraulic system codes to analyze transients and accidents more simply, accurately and fleetly. Firstly, modeling is visual and intelligent. Users build the thermalhydraulic system model using component objects according to their needs, and it is not necessary for them to face bald input decks. The style of input decks created automatically by the analyzer is unified and can be accepted easily by other people. Secondly, parameters concerned by analyst can be dynamically communicated to show or even change. Thirdly, the analyzer provide interface with other programs for the thermal-hydraulic system code. Thus parallel computation between thermal-hydraulic system code and other programs become possible. In conclusion, through visual and intelligent method, the analyzer based on general and advanced thermal-hydraulic system codes can be used to analysis transients and accidents more effectively. The main purpose of this paper is to present developmental activities, assessment and application results of the visual and intelligent

  6. Nonlinear, Adaptive and Fault-tolerant Control for Electro-hydraulic Servo Systems

    DEFF Research Database (Denmark)

    Choux, Martin

    is designed and implemented on the test bed that successfully diagnoses internal or external leakages, friction variations in the actuator or fault related to pressure sensors. The presented algorithm uses the position and pressure measurements to detect and isolate faults, avoiding missed detection and false...... numerous attractive properties, hydraulic systems are always subject to potential leakages in their components, friction variation in their hydraulic actuators and deciency in their sensors. These violations of normal behaviour reduce the system performances and can lead to system failure...... if they are not detected early and handled. Moreover, the task of controlling electro hydraulic systems for high performance operations is challenging due to the highly nonlinear behaviour of such systems and the large amount of uncertainties present in their models. This thesis focuses on nonlinear adaptive fault...

  7. Knowledge-based Adaptive Tracking Control of Electro-hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik

    1997-01-01

    The paper deal with intelligent motion control and electro-hydraulic actuator systems for multiaxis machynes and robots.The research results are from the IMCIA research Programme supported by the Danish Technical Research Council, STVF.......The paper deal with intelligent motion control and electro-hydraulic actuator systems for multiaxis machynes and robots.The research results are from the IMCIA research Programme supported by the Danish Technical Research Council, STVF....

  8. Development of NTD Hydraulic Rotation System for Kijang Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hanok; Park, Kijung; Park, Yongsoo; Kim, Seong Hoon; Park, Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The KJRR will be mainly utilized for isotope production, NTD (Neutron Transmutation Doping) production, and related research activities. During irradiation for the NTD process, the irradiation rigs containing the silicon ingot rotate at a constant speed to ensure precisely defined homogeneity of the irradiation. The NTDHRS requires only hydraulic piping conveniently routed to the rotating devices inside the reactor pool. The resulting layout leaves the pool area clear of obstructions which might obscure vision and hinder target handling for operators. Pump banks and control valves are located remotely in a dedicated plant room allowing easy access and online maintenance. The necessities and major characteristic of NTD hydraulic rotation system are described in this study. A new NTD hydraulic rotation system are being developed to rotate the irradiation rigs at a constant speed and supply cooling flow for the irradiation rigs and reflector assembly. The configuration of the NTD hydraulic rotation device is discussed and practical methods to improve the rotational performance are suggested.

  9. Development of NTD Hydraulic Rotation System for Kijang Research Reactor

    International Nuclear Information System (INIS)

    Kang, Hanok; Park, Kijung; Park, Yongsoo; Kim, Seong Hoon; Park, Cheol

    2014-01-01

    The KJRR will be mainly utilized for isotope production, NTD (Neutron Transmutation Doping) production, and related research activities. During irradiation for the NTD process, the irradiation rigs containing the silicon ingot rotate at a constant speed to ensure precisely defined homogeneity of the irradiation. The NTDHRS requires only hydraulic piping conveniently routed to the rotating devices inside the reactor pool. The resulting layout leaves the pool area clear of obstructions which might obscure vision and hinder target handling for operators. Pump banks and control valves are located remotely in a dedicated plant room allowing easy access and online maintenance. The necessities and major characteristic of NTD hydraulic rotation system are described in this study. A new NTD hydraulic rotation system are being developed to rotate the irradiation rigs at a constant speed and supply cooling flow for the irradiation rigs and reflector assembly. The configuration of the NTD hydraulic rotation device is discussed and practical methods to improve the rotational performance are suggested

  10. Development of MARS for multi-dimensional and multi-purpose thermal-hydraulic system analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, Bub Dong; Kim, Kyung Doo; Hwang, Moon Kyu; Jeong, Jae Jun; Ha, Kwi Seok; Joo, Han Gyu [Korea Atomic Energy Research Institute, T/H Safety Research Team, Yusung, Daejeon (Korea)

    2000-10-01

    MARS (Multi-dimensional Analysis of Reactor Safety) code is being developed by KAERI for the realistic thermal-hydraulic simulation of light water reactor system transients. MARS 1.4 has been developed as a final version of basic code frame for the multi-dimensional analysis of system thermal-hydraulics. Since MARS 1.3, MARS 1.4 has been improved to have the enhanced code capability and user friendliness through the unification of input/output features, code models and code functions, and through the code modernization. Further improvements of thermal-hydraulic models, numerical method and user friendliness are being carried out for the enhanced code accuracy. As a multi-purpose safety analysis code system, a coupled analysis system, MARS/MASTER/CONTEMPT, has been developed using multiple DLL (Dynamic Link Library) techniques of Windows system. This code system enables the coupled, that is, more realistic analysis of multi-dimensional thermal-hydraulics (MARS 2.0), three-dimensional core kinetics (MASTER) and containment thermal-hydraulics (CONTEMPT). This paper discusses the MARS development program, and the developmental progress of the MARS 1.4 and the MARS/MASTER/CONTEMPT focusing on major features of the codes and their verification. It also discusses thermal hydraulic models and new code features under development. (author)

  11. Development of MARS for multi-dimensional and multi-purpose thermal-hydraulic system analysis

    International Nuclear Information System (INIS)

    Lee, Won Jae; Chung, Bub Dong; Kim, Kyung Doo; Hwang, Moon Kyu; Jeong, Jae Jun; Ha, Kwi Seok; Joo, Han Gyu

    2000-01-01

    MARS (Multi-dimensional Analysis of Reactor Safety) code is being developed by KAERI for the realistic thermal-hydraulic simulation of light water reactor system transients. MARS 1.4 has been developed as a final version of basic code frame for the multi-dimensional analysis of system thermal-hydraulics. Since MARS 1.3, MARS 1.4 has been improved to have the enhanced code capability and user friendliness through the unification of input/output features, code models and code functions, and through the code modernization. Further improvements of thermal-hydraulic models, numerical method and user friendliness are being carried out for the enhanced code accuracy. As a multi-purpose safety analysis code system, a coupled analysis system, MARS/MASTER/CONTEMPT, has been developed using multiple DLL (Dynamic Link Library) techniques of Windows system. This code system enables the coupled, that is, more realistic analysis of multi-dimensional thermal-hydraulics (MARS 2.0), three-dimensional core kinetics (MASTER) and containment thermal-hydraulics (CONTEMPT). This paper discusses the MARS development program, and the developmental progress of the MARS 1.4 and the MARS/MASTER/CONTEMPT focusing on major features of the codes and their verification. It also discusses thermal hydraulic models and new code features under development. (author)

  12. Observer-Based Robust Control for Hydraulic Velocity Control System

    Directory of Open Access Journals (Sweden)

    Wei Shen

    2013-01-01

    Full Text Available This paper investigates the problems of robust stabilization and robust control for the secondary component speed control system with parameters uncertainty and load disturbance. The aim is to enhance the control performance of hydraulic system based on Common Pressure Rail (CPR. Firstly, a mathematical model is presented to describe the hydraulic control system. Then a novel observer is proposed, and an observed-based control strategy is designed such that the closed-loop system is asymptotically stable and satisfies the disturbance attenuation level. The condition for the existence of the developed controller can by efficiently solved by using the MATLAB software. Finally, simulation results are provided to demonstrate the effectiveness of the proposed method.

  13. Thermal-hydraulic effects of transition to improved System 80TM fuel

    International Nuclear Information System (INIS)

    Rodack, T.; Joffre, P.F.; Kapoor, R.K.

    2004-01-01

    ABB CE's improved System 80 TM PWR fuel design includes GUARDIAN debris-resistant features and laser-welded Zircaloy grids. The GUARDIAN features include an Inconel grid with debris-filtering features located just above the Lower End Fitting, and a solid fuel rod bottom end cap that extends above the filtering features. Tests and analyses were done to establish the impact of these design improvements on fuel assembly hydraulic performance. Further analysis was done to determine the mixed core thermal-hydraulic performance as the transition is made over two fuel cycles to a full core of the improved System 80 TM fuel. Results confirm that the Thermal-Hydraulic (T-H) effects of the reduction in hydraulic resistance between the improved and resident fuel due to the laser-welded Zircaloy grids offsets the effects of the increased resistance GUARDIAN grid. Therefore, the mechanically improved System 80 TM fuel can be implemented with no net impact on Departure from Nucleate Boiling (DNB) margin in transition cores. (author)

  14. European activities on crosscutting thermal-hydraulic phenomena for innovative nuclear systems

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X., E-mail: xu.cheng@kit.edu [Karlsruhe Institute of Technology (KIT) (Germany); Batta, A. [Karlsruhe Institute of Technology (KIT) (Germany); Bandini, G. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) (Italy); Roelofs, F. [Nuclear Research and Consultancy Group (NRG) (Netherlands); Van Tichelen, K. [Studiecentrum voor Kernenergie – Centre d’étude de l’Energie Nucléaire (SCK-CEN) (Belgium); Gerschenfeld, A. [Commissariat à l’Energie Atomique (CEA) (France); Prasser, M. [Paul Scherrer Institute (PSI) (Switzerland); Papukchiev, A. [Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS) (Germany); Hampel, U. [Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR) (Germany); Ma, W.M. [Kungliga Tekniska Högskolan (KTH) (Sweden)

    2015-08-15

    Highlights: • This paper serves as a guidance of the special issue. • The technical tasks and methodologies applied to achieve the objectives have been described. • Main results achieved so far are summarized. - Abstract: Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. In Europe, a consortium is established consisting of 24 institutions of universities, research centers and nuclear industries with the main objectives to identify and to perform research activities on important crosscutting thermal-hydraulic issues encountered in various innovative nuclear systems. For this purpose the large-scale integrated research project THINS (Thermal-Hydraulics of Innovative Nuclear Systems) is launched in the 7th Framework Programme FP7 of European Union. The main topics considered in the THINS project are (a) advanced reactor core thermal-hydraulics, (b) single phase mixed convection, (c) single phase turbulence, (d) multiphase flow, and (e) numerical code coupling and qualification. The main objectives of the project are: • Generation of a data base for the development and validation of new models and codes describing the selected crosscutting thermal-hydraulic phenomena. • Development of new physical models and modeling approaches for more accurate description of the crosscutting thermal-hydraulic phenomena. • Improvement of the numerical engineering tools for the design analysis of the innovative nuclear systems. This paper describes the technical tasks and methodologies applied to achieve the objectives. Main results achieved so far are summarized. This paper serves also as a guidance of this special issue.

  15. Dynamic Self-Adaptive Reliability Control for Electric-Hydraulic Systems

    Directory of Open Access Journals (Sweden)

    Yi Wan

    2015-02-01

    Full Text Available The high-speed electric-hydraulic proportional control is a new development of the hydraulic control technique with high reliability, low cost, efficient energy, and easy maintenance; it is widely used in industrial manufacturing and production. However, there are still some unresolved challenges, the most notable being the requirements of high stability and real-time by the classical control algorithm due to its high nonlinear characteristics. We propose a dynamic self-adaptive mixed control method based on the least squares support vector machine (LSSVM and the genetic algorithm for high-speed electric-hydraulic proportional control systems in this paper; LSSVM is used to identify and adjust online a nonlinear electric-hydraulic proportional system, and the genetic algorithm is used to optimize the control law of the controlled system and dynamic self-adaptive internal model control and predictive control are implemented by using the mixed intelligent method. The internal model and the inverse control model are online adjusted together. At the same time, a time-dependent Hankel matrix is constructed based on sample data; thus finite dimensional solution can be optimized on finite dimensional space. The results of simulation experiments show that the dynamic characteristics are greatly improved by the mixed intelligent control strategy, and good tracking and high stability are met in condition of high frequency response.

  16. Research on MEMS sensor in hydraulic system flow detection

    Science.gov (United States)

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2011-05-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  17. Electrohydraulic drive system with planetary superposed gears

    Energy Technology Data Exchange (ETDEWEB)

    Graetz, A.; Klimek, K.H.; Welz, H.

    1989-01-01

    To prevent drive problems in ploughs the drives must be designed in such a way as to compensate for asymmetries. If electromechanical drives are replaced by an electrohydraulic drive system with superposed planetary gears and hydrostatic torque reaction supports the following advantages occur: load-free acceleration, load equalisation between main and auxiliary drive, overload protection, and reduction of systems vibrations. 2 figs., 2 tabs.

  18. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  19. Hydraulic brake-system for a bicycle

    NARCIS (Netherlands)

    Van Frankenhuyzen, J.

    2007-01-01

    The invention relates to a hydraulic brake system for a bicycle which may or may not be provided with an auxiliary motor, comprising a brake disc and brake claws cooperating with the brake disc, as well as fluid-containing channels (4,6) that extend between an operating organ (1) and the brake

  20. Extended Analytic Linear Model of Hydraulic Cylinder With Respect Different Piston Areas and Volumes

    Directory of Open Access Journals (Sweden)

    Petr KOŇAŘÍK

    2009-06-01

    Full Text Available Standard analytic linear model of hydraulic cylinder usually comes from assumptions of identical action piston areas on both sides of hydraulic cylinder (double piston rod and suitable operation point, which is usually chosen in the middle of piston. By reason of that volumes inside of cylinder are than same. Moreover for control of that arrangement of hydraulic cylinder, usually controlled by 4/3 servovalve, the same mount of flows comes in and comes out to each of chambers of hydraulic cylinder. Presented paper deal with development of extended form of analytic linear model of single piston rod hydraulic cylinder which respects different action piston areas and volumes inside of chambers of hydraulic cylinder and also two different input flows of hydraulic cylinder. In extended model are also considered possibilities of different dead volumes in hoses and intake parts of hydraulic cylinder. Dead volume has impact on damping of hydraulic cylinder. Because the system of hydraulic cylinder is generally presented as a integrative system with inertia of second order: eq , we can than obtain time constants and damping of hydraulic cylinder for each of analytic form model. The model has arisen for needs of model fractionation on two parts. Part of behaviour of chamber A and part of behaviour of chamber B of cylinder. It was created for the reason of analysis and synthesis of control parameters of regulation circuit of multivalve control concept of hydraulic drive with separately controlled chamber A and B which could be then used for.

  1. Advanced energy saving hydraulic elevator

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, A.; Sevilleja, J.; Servia, A.

    1993-08-24

    An hydraulic elevator is described comprising: a counterweighted elevator comprising a car, a counterweight, and a rope connecting the car and the counterweight; a ram having a first reaction surface for driving one of the car or the counterweight upwardly and a second reaction surface for driving one of the car or the counterweight downwardly; multiplier means for moving the car a distance greater than a stroke of the ram, the multiplier means connecting the ram to the counterweighted elevator, the multiplier means comprising: a first pulley; a second pulley; means for rigidly connecting the first and second pulley, the means having a length corresponding to a rise of the hydraulic elevator, the means attaching to the ram; and a pulley rope which: has a first end attaching to a first fixed point, extends about the first pulley, extends about the second pulley, and has a second end attaching to a second fixed point.

  2. Analysis and selection of a system for hydraulic transport of slags in the Mironovskii power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mirgorodskii, V.G.; Mova, M.E.; Korenev, V.E.; Grechikhin, Yu.A. (Donetskii Politekhnicheskii Institut (USSR))

    1991-01-01

    Discusses systems for hydraulic transport of ashes and slags from combustion of black coal (with an ash content of 40.5%) in the Mironovskii power plant. Three systems are comparatively evaluated: hydraulic transport under influence of gravity, hydraulic transport with a system of dredging pumps, or an airlift pump system. Design of each system, its operation and types of pumps or airlift systems are discussed. The evaluation concentrates on the hydraulic transport system with 1 to 3 airlift pumps each with a capacity ranging from 110 to 890 m{sup 3}/h. Optimum design of the airlift hydraulic system for slag and ash transport is described.

  3. Driving performance at lateral system limits during partially automated driving.

    Science.gov (United States)

    Naujoks, Frederik; Purucker, Christian; Wiedemann, Katharina; Neukum, Alexandra; Wolter, Stefan; Steiger, Reid

    2017-11-01

    This study investigated driver performance during system limits of partially automated driving. Using a motion-based driving simulator, drivers encountered different situations in which a partially automated vehicle could no longer safely keep the lateral guidance. Drivers were distracted by a non-driving related task on a touch display or driving without an additional secondary task. While driving in partially automated mode drivers could either take their hands off the steering wheel for only a short period of time (10s, so-called 'Hands-on' variant) or for an extended period of time (120s, so-called 'Hands-off' variant). When the system limit was reached (e.g., when entering a work zone with temporary lines), the lateral vehicle control by the automation was suddenly discontinued and a take-over request was issued to the drivers. Regardless of the hands-off interval and the availability of a secondary task, all drivers managed the transition to manual driving safely. No lane exceedances were observed and the situations were rated as 'harmless' by the drivers. The lack of difference between the hands-off intervals can be partly attributed to the fact that most of the drivers kept contact to the steering wheel, even in the hands-off condition. Although all drivers were able to control the system limits, most of them could not explain why exactly the take-over request was issued. The average helpfulness of the take-over request was rated on an intermediate level. Consequently, providing drivers with information about the reason for a system limit can be recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Nuclear refueling platform drive system

    International Nuclear Information System (INIS)

    Busch, F.R.; Faulstich, D.L.

    1992-01-01

    This patent describes a drive system. It comprises: a gantry including a bridge having longitudinal and transverse axes and supported by spaced first and second end frames joined to fist and second end frames joined to first and second drive trucks for moving the bridge along the transverse axis; first means for driving the first drive truck; second means for driving the second drive truck being independent from the first driving means; and means for controlling the first and second driving means for reducing differential transverse travel between the first and second drive trucks, due to a skewing torque acting on the bridge, to less than a predetermined maximum, the controlling means being in the form of an electrical central processing unit and including: a closed-loop first velocity control means for controlling velocity of the first drive truck by providing a first command signal to the first driver means; a close loop second velocity control means for controlling velocity of the second drive truck by providing a second command signal to the second driving means; and an auxiliary closed-loop travel control means

  5. Dynamic Characteristics of Communication Lines with Distributed Parameters to Control the Throttle-controlled Hydraulic Actuators

    Directory of Open Access Journals (Sweden)

    D. N. Popov

    2015-01-01

    Full Text Available The article considers a mathematical model of the hydraulic line for remote control of electro-hydraulic servo drive (EHSD with throttle control. This type of hydraulic lines is designed as a backup to replace the electrical connections, which are used to control EHSD being remote from the site with devices located to form the control signals of any object. A disadvantage of electric connections is that they are sensitive to magnetic fields and thereby do not provide the required reliability of the remote control. Hydraulic lines have no this disadvantage and therefore are used in aircraft and other industrial systems. However, dynamic characteristics of hydraulic systems still have been investigated insufficiently in the case of transmitting control signals at a distance at which the signal may be distorted when emerging the wave processes.The article results of mathematical simulation, which are verified through physical experimentation, largely eliminate the shortcomings of said information.The mathematical model described in the paper is based on the theory of unsteady pressure compressible fluids. In the model there are formulas that provide calculation of frequency characteristics of the hydraulic lines under hydraulic oscillations of the laminar flow parameters of viscous fluid.A real mock-up of the system under consideration and an experimental ad hoc unit are used to verify the results of mathematically simulated hydraulic systems.Calculated logarithmic amplitude and phase frequency characteristics compared with those obtained experimentally prove, under certain conditions, the proposed theoretical method of calculation. These conditions have to ensure compliance with initial parameters of fluid defined under stationary conditions. The applied theory takes into consideration a non-stationary hydraulic resistance of the line when calculating frequency characteristics.The scientific novelty in the article material is presented in

  6. Mine drivage in hydraulic mines

    Energy Technology Data Exchange (ETDEWEB)

    Ehkber, B Ya

    1983-09-01

    From 20 to 25% of labor cost in hydraulic coal mines falls on mine drivage. Range of mine drivage is high due to the large number of shortwalls mined by hydraulic monitors. Reducing mining cost in hydraulic mines depends on lowering drivage cost by use of new drivage systems or by increasing efficiency of drivage systems used at present. The following drivage methods used in hydraulic mines are compared: heading machines with hydraulic haulage of cut rocks and coal, hydraulic monitors with hydraulic haulage, drilling and blasting with hydraulic haulage of blasted rocks. Mining and geologic conditions which influence selection of the optimum mine drivage system are analyzed. Standardized cross sections of mine roadways driven by the 3 methods are shown in schemes. Support systems used in mine roadways are compared: timber supports, roof bolts, roof bolts with steel elements, and roadways driven in rocks without a support system. Heading machines (K-56MG, GPKG, 4PU, PK-3M) and hydraulic monitors (GMDTs-3M, 12GD-2) used for mine drivage are described. Data on mine drivage in hydraulic coal mines in the Kuzbass are discussed. From 40 to 46% of roadways are driven by heading machines with hydraulic haulage and from 12 to 15% by hydraulic monitors with hydraulic haulage.

  7. Research on Travel Control System of Hydrostatic Transmission Chassis

    Directory of Open Access Journals (Sweden)

    Zhao Liang

    2017-01-01

    Full Text Available Aiming at the control problem of driving system of hydrostatic transmission chassis, the composition of the control system of hydrostatic transmission chassis is introduced and the control method of dual engine is solved. According to the number of driving axles in driving process, The external characteristic curve of the engine controls the variable hydraulic pump by one parameter, controls the rotational speed of the variable hydraulic motor according to the change of the vehicle speed, and introduces the control flow of the brake system. It provides a reference for the design of driving control system of multi-axis hydrostatic transmission chassis.

  8. REDUCING ENERGY CONSUMPTION BY PASSENGER CAR WITH USING OF NON-ELECTRICAL HYBRID DRIVE TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Tomas Skrucany

    2017-03-01

    Full Text Available Not only electrical hybrid technology is used for drivetrain of passenger cars. Also other systems using non-electrical principles (hydraulic or air pressure, mechanical energy storage can be found in current vehicles. There is a quantification of the spared energy by using a hybrid vehicle in the paper. Driving cy-cle ECE 15 was chosen as a platform for simulation of driving resistances.

  9. Fixed-Time Stability of the Hydraulic Turbine Governing System

    Directory of Open Access Journals (Sweden)

    Caoyuan Ma

    2018-01-01

    Full Text Available This paper studies the problem of fixed-time stability of hydraulic turbine governing system with the elastic water hammer nonlinear model. To control and improve the quality of hydraulic turbine governing system, a new fixed-time control strategy is proposed, which can stabilize the water turbine governing system within a fixed time. Compared with the finite-time control strategy where the convergence rate depends on the initial state, the settling time of the fixed-time control scheme can be adjusted to the required value regardless of the initial conditions. Finally, we numerically show that the fixed-time control is more effective than and superior to the finite-time control.

  10. An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Frank A., E-mail: bender@isys.uni-stuttgart.de; Bosse, Thomas; Sawodny, Oliver

    2014-09-15

    Highlights: • Driving cycle acquisition in a refuse collection vehicle. • Vehicle modeling and validation for numerical simulations based on the measured driving cycle. • Fuel consumption analysis for a conventional diesel vehicle and a hybrid hydraulic vehicle. - Abstract: Refuse trucks play an important role in the waste collection process. Due to their typical driving cycle, these vehicles are characterized by large fuel consumption, which strongly affects the overall waste disposal costs. Hybrid hydraulic refuse vehicles offer an interesting alternative to conventional diesel trucks, because they are able to recuperate, store and reuse braking energy. However, the expected fuel savings can vary strongly depending on the driving cycle and the operational mode. Therefore, in order to assess the possible fuel savings, a typical driving cycle was measured in a conventional vehicle run by the waste authority of the City of Stuttgart, and a dynamical model of the considered vehicle was built up. Based on the measured driving cycle and the vehicle model including the hybrid powertrain components, simulations for both the conventional and the hybrid vehicle were performed. Fuel consumption results that indicate savings of about 20% are presented and analyzed in order to evaluate the benefit of hybrid hydraulic vehicles used for refuse collection.

  11. An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles

    International Nuclear Information System (INIS)

    Bender, Frank A.; Bosse, Thomas; Sawodny, Oliver

    2014-01-01

    Highlights: • Driving cycle acquisition in a refuse collection vehicle. • Vehicle modeling and validation for numerical simulations based on the measured driving cycle. • Fuel consumption analysis for a conventional diesel vehicle and a hybrid hydraulic vehicle. - Abstract: Refuse trucks play an important role in the waste collection process. Due to their typical driving cycle, these vehicles are characterized by large fuel consumption, which strongly affects the overall waste disposal costs. Hybrid hydraulic refuse vehicles offer an interesting alternative to conventional diesel trucks, because they are able to recuperate, store and reuse braking energy. However, the expected fuel savings can vary strongly depending on the driving cycle and the operational mode. Therefore, in order to assess the possible fuel savings, a typical driving cycle was measured in a conventional vehicle run by the waste authority of the City of Stuttgart, and a dynamical model of the considered vehicle was built up. Based on the measured driving cycle and the vehicle model including the hybrid powertrain components, simulations for both the conventional and the hybrid vehicle were performed. Fuel consumption results that indicate savings of about 20% are presented and analyzed in order to evaluate the benefit of hybrid hydraulic vehicles used for refuse collection

  12. A THERMAL-HYDRAULIC SYSTEM FOR THE CONVERSION AND THE STORAGE OF ENERGY

    Directory of Open Access Journals (Sweden)

    MITRAN Tudor

    2016-05-01

    Full Text Available The paper proposes the concept design of a thermal-hydraulic system that converts the thermal energy (from the geothermal water, from the cooling water of power equipment, from exhaust gasses, and so. in hydrostatic energy, that is stored in a hydraulic accumulator. The hydraulic energy can be converted into electrical energy when needed.

  13. Towards Autonomous Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of new developed control algorithms to increase autonomy and intelligence of hydraulic control systems. A refinement of relaytuning method is used to determine the control parameters of a lag/lead controller and a poleplacement controller. Further, a fail-safe function is developed...

  14. An electro-hydraulic servo control system research for CFETR blanket RH

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Changqi [Hefei University of Technology, Hefei 230009, Anhui (China); Tang, Hongjun, E-mail: taurustang@126.com [Hefei University of Technology, Hefei 230009, Anhui (China); Qi, Songsong [Hefei University of Technology, Hefei 230009, Anhui (China); Cheng, Yong; Feng, Hansheng; Peng, Xuebing; Song, Yuntao [Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230031, Anhui (China)

    2014-11-15

    Highlights: • We discussed the conceptual design of CFETR blanket RH maintenance system. • The mathematical model of electro-hydraulic servo system was calculated. • A fuzzy adaptive PD controller was designed based on control theory and experience. • The co-simulation models of the system were established with AMESim/Simulink. • The fuzzy adaptive PD algorithm was designed as the core strategy of the system. - Abstract: Based on the technical design requirements of China Fusion Engineering Test Reactor (CFETR) blanket remote handling (RH) maintenance, this paper focus on the control method of achieving high synchronization accuracy of electro-hydraulic servo system. Based on fuzzy control theory and practical experience, a fuzzy adaptive proportional-derivative (PD) controller was designed. Then a more precise co-simulation model was established with AMESim/Simulink. Through the analysis of simulation results, a fuzzy adaptive PD control algorithm was designed as the core strategy of electro-hydraulic servo control system.

  15. An electro-hydraulic servo control system research for CFETR blanket RH

    International Nuclear Information System (INIS)

    Chen, Changqi; Tang, Hongjun; Qi, Songsong; Cheng, Yong; Feng, Hansheng; Peng, Xuebing; Song, Yuntao

    2014-01-01

    Highlights: • We discussed the conceptual design of CFETR blanket RH maintenance system. • The mathematical model of electro-hydraulic servo system was calculated. • A fuzzy adaptive PD controller was designed based on control theory and experience. • The co-simulation models of the system were established with AMESim/Simulink. • The fuzzy adaptive PD algorithm was designed as the core strategy of the system. - Abstract: Based on the technical design requirements of China Fusion Engineering Test Reactor (CFETR) blanket remote handling (RH) maintenance, this paper focus on the control method of achieving high synchronization accuracy of electro-hydraulic servo system. Based on fuzzy control theory and practical experience, a fuzzy adaptive proportional-derivative (PD) controller was designed. Then a more precise co-simulation model was established with AMESim/Simulink. Through the analysis of simulation results, a fuzzy adaptive PD control algorithm was designed as the core strategy of electro-hydraulic servo control system

  16. Modal space three-state feedback control for electro-hydraulic servo plane redundant driving mechanism with eccentric load decoupling.

    Science.gov (United States)

    Zhao, Jinsong; Wang, Zhipeng; Zhang, Chuanbi; Yang, Chifu; Bai, Wenjie; Zhao, Zining

    2018-06-01

    The shaking table based on electro-hydraulic servo parallel mechanism has the advantage of strong carrying capacity. However, the strong coupling caused by the eccentric load not only affects the degree of freedom space control precision, but also brings trouble to the system control. A novel decoupling control strategy is proposed, which is based on modal space to solve the coupling problem for parallel mechanism with eccentric load. The phenomenon of strong dynamic coupling among degree of freedom space is described by experiments, and its influence on control design is discussed. Considering the particularity of plane motion, the dynamic model is built by Lagrangian method to avoid complex calculations. The dynamic equations of the coupling physical space are transformed into the dynamic equations of the decoupling modal space by using the weighted orthogonality of the modal main mode with respect to mass matrix and stiffness matrix. In the modal space, the adjustments of the modal channels are independent of each other. Moreover, the paper discusses identical closed-loop dynamic characteristics of modal channels, which will realize decoupling for degree of freedom space, thus a modal space three-state feedback control is proposed to expand the frequency bandwidth of each modal channel for ensuring their near-identical responses in a larger frequency range. Experimental results show that the concept of modal space three-state feedback control proposed in this paper can effectively reduce the strong coupling problem of degree of freedom space channels, which verify the effectiveness of the proposed model space state feedback control strategy for improving the control performance of the electro-hydraulic servo plane redundant driving mechanism. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Inducement of Design Parameters for Reliability Improvement of Servo Actuator for Hydraulic Valve Operation

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Baek Ju; Kim, Do Sik [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2014-05-15

    The precision hydraulic valve is widely used in various industrial field like aircraft, automobile, and general machinery. Servo actuator is the most important device for driving the precise hydraulic valve. The reliable operation of servo actuator effects on the overall hydraulic system. The performance of servo actuator relies on frequency response and step response according to arbitrary input signal. In this paper, we performed the analysis for the components of servo actuator to satisfy the reliable operation and response characteristics through the reliability analysis, and also induced the design parameters to realize the reliable operation and fast response characteristics of servo actuator for hydraulic valve operation through the empirical knowledge of experts and electromagnetic theories. We suggested the design equations to determine the values of design parameters of servo actuator as like bobbin size, length of yoke and plunger and turn number of coil, and verified the achieved design values through FEM analysis and performance tests using some prototypes of servo actuators adapted in hydraulic valve.

  18. Simulation and Analysis of Roller Chain Drive Systems

    DEFF Research Database (Denmark)

    Pedersen, Sine Leergaard

    The subject of this thesis is simulation and analysis of large roller chain drive systems, such as e.g. used in marine diesel engines. The aim of developing a chain drive simulation program is to analyse dynamic phenomena of chain drive systems and investigate different design changes to the syst......The subject of this thesis is simulation and analysis of large roller chain drive systems, such as e.g. used in marine diesel engines. The aim of developing a chain drive simulation program is to analyse dynamic phenomena of chain drive systems and investigate different design changes...... mathematical models, and compare to the prior done research. Even though the model is developed at first for the use of analysing chain drive systems in marine engines, the methods can with small changes be used in general, as for e.g. chain drives in industrial machines, car engines and motorbikes. A novel...

  19. Drive transmission system between a driving organ and a receiver organ

    International Nuclear Information System (INIS)

    Guillot, J.F.

    1985-01-01

    The present invention applies to the control rods of a water cooled nuclear reactor. The drive transmission system is disposed on the internal kinematic chain, between the control rod which is the receiver organ, and the driving organ. The control rod translation is obtained from a motion of rotation transformed in a motion of translation by means of a screw-nut system. The present invention prevents from control rod ejection in case of depressurization of the vessel containing the control rod drives or in case of reactor upsetting when it is embarked [fr

  20. Development and industrial tests of the first LNG hydraulic turbine system in China

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2016-10-01

    Full Text Available The cryogenic hydraulic turbine can be used to replace the conventional J–T valve for LNG or mixed refrigerant throttling and depressurization in a natural gas liquefaction plant. This advanced technology is not only to enhance the efficiency of the liquefaction plant, but to usher a new trend in the development of global liquefaction technologies. China has over 136 liquefaction plants, but the cryogenic hydraulic turbines have not been deployed in industrial utilization. In addition, these turbines cannot be manufactured domestically. In this circumstance, through working on the key technologies for LNG hydraulic turbine process & control system development, hydraulic model optimization design, structure design and manufacturing, the first domestic cryogenic hydraulic turbine with a flow rate of 40 m3/h was developed to recover the pressure energy from the LNG of cold box. The turbine was installed in the CNOOC Zhuhai Natural Gas Liquefaction Plant for industrial tests under multiple working conditions, including start-stop, variable flow rates and variable rotation speeds. Test results show that the domestic LNG cryogenic hydraulic turbine has satisfactory mechanical and operational performances at low temperatures as specified in design. In addition, the process & control system and frequency-conversion power-generation system of the turbine system are designed properly to automatically and smoothly replace the existing LNG J–T valve. As a result, the domestic LNG cryogenic hydraulic turbine system can improve LNG production by an average of 2% and generate power of 8.3 kW.

  1. Building 65 Hydraulic Systems Handbook: Components, Systems, and Applications

    Science.gov (United States)

    2016-04-01

    Dump Buttons OVERVIEW Pump Dump Buttons...hydraulic system? There are different types of dump buttons that control a hierarchy of flow paths. Some dump buttons are used to shut down a pump ...that branch. The use of this dump button is preferred over the Pump Dump Button when possible. Test Site Dump

  2. On justification of efficient Energy-Force parameters of Hydraulic-excavator main mechanisms

    Science.gov (United States)

    Komissarov, Anatoliy; Lagunova, Yuliya; Shestakov, Viktor; Lukashuk, Olga

    2018-03-01

    The article formulates requirements for energy-efficient designs of the operational equipment of a hydraulic excavator (its boom, stick and bucket) and defines, for a mechanism of that equipment, a new term “performance characteristic”. The drives of main rotation mechanisms of the equipment are realized by hydraulic actuators (hydraulic cylinders) and transmission (leverage) mechanisms, with the actuators (the cylinders themselves, their pistons and piston rods) also acting as links of the leverage. Those drives are characterized by the complexity of translating mechanical-energy parameters of the actuators into energy parameters of the driven links (a boom, a stick and a bucket). Relations between those parameters depend as much on the types of mechanical characteristics of the hydraulic actuators as on the types of structural schematics of the transmission mechanisms. To assess how energy-force parameters of the driven links change when a typical operation is performed, it was proposed to calculate performance characteristics of the main mechanisms as represented by a set of values of transfer functions, i.e. by functional dependences between driven links and driving links (actuators). Another term “ideal performance characteristic” of a mechanism was introduced. Based on operation-emulating models for the main mechanisms of hydraulic excavators, analytical expressions were derived to calculate kinematic and force transfer functions of the main mechanisms.

  3. A driving system for Moessbauer spectrometer

    International Nuclear Information System (INIS)

    Maslan, M.; Cholmeckij, A.; Evdokimov, V.; Misevic, O.; Fedorov, A.; Zak, D.

    1993-01-01

    The driving system of a Moessbauer spectrometer is described. The system comprises a minivibrator, a digital generator of the reference velocity signal, and circuits for controlling the vibrator. The reference velocity signal is stored by the control computer in an intermediate storage. The feedback in the control circuits includes correction for nonlinearity of the driving facility. A Moessbauer spectrometer which is equipped with this driving system exhibits a velocity scale nonlinearity below 0.1%. The resonance line width for sodium nitroprusside is 0.27 ± 0.01 mm/s. (author). 6 figs., 8 refs

  4. Safety implications of electronic driving support systems : an orientation.

    OpenAIRE

    Gundy, C.M. Steyvers, F.J.J.M. & Kaptein, N.A.

    1995-01-01

    This report focuses on traffic safety aspects of driving support systems. The report consists of two parts. First of all, the report discusses a number of topics, relevant for the implementation and evaluation of driving support systems. These topics include: (1) safety research into driving support systems: (2) the importance of research into driver models and the driving task; (3) horizontal integration of driving support systems; (4) vertical integration of driving support systems; (5) tas...

  5. A flexible coupling scheme for Monte Carlo and thermal-hydraulics codes

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J. Eduard, E-mail: J.E.Hoogenboom@tudelft.nl [Delft University of Technology (Netherlands); Ivanov, Aleksandar; Sanchez, Victor, E-mail: Aleksandar.Ivanov@kit.edu, E-mail: Victor.Sanchez@kit.edu [Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology, Eggenstein-Leopoldshafen (Germany); Diop, Cheikh, E-mail: Cheikh.Diop@cea.fr [CEA/DEN/DANS/DM2S/SERMA, Commissariat a l' Energie Atomique, Gif-sur-Yvette (France)

    2011-07-01

    A coupling scheme between a Monte Carlo code and a thermal-hydraulics code is being developed within the European NURISP project for comprehensive and validated reactor analysis. The scheme is flexible as it allows different Monte Carlo codes and different thermal-hydraulics codes to be used. At present the MCNP and TRIPOLI4 Monte Carlo codes can be used and the FLICA4 and SubChanFlow thermal-hydraulics codes. For all these codes only an original executable is necessary. A Python script drives the iterations between Monte Carlo and thermal-hydraulics calculations. It also calls a conversion program to merge a master input file for the Monte Carlo code with the appropriate temperature and coolant density data from the thermal-hydraulics calculation. Likewise it calls another conversion program to merge a master input file for the thermal-hydraulics code with the power distribution data from the Monte Carlo calculation. Special attention is given to the neutron cross section data for the various required temperatures in the Monte Carlo calculation. Results are shown for an infinite lattice of PWR fuel pin cells and a 3 x 3 fuel BWR pin cell cluster. Various possibilities for further improvement and optimization of the coupling system are discussed. (author)

  6. A flexible coupling scheme for Monte Carlo and thermal-hydraulics codes

    International Nuclear Information System (INIS)

    Hoogenboom, J. Eduard; Ivanov, Aleksandar; Sanchez, Victor; Diop, Cheikh

    2011-01-01

    A coupling scheme between a Monte Carlo code and a thermal-hydraulics code is being developed within the European NURISP project for comprehensive and validated reactor analysis. The scheme is flexible as it allows different Monte Carlo codes and different thermal-hydraulics codes to be used. At present the MCNP and TRIPOLI4 Monte Carlo codes can be used and the FLICA4 and SubChanFlow thermal-hydraulics codes. For all these codes only an original executable is necessary. A Python script drives the iterations between Monte Carlo and thermal-hydraulics calculations. It also calls a conversion program to merge a master input file for the Monte Carlo code with the appropriate temperature and coolant density data from the thermal-hydraulics calculation. Likewise it calls another conversion program to merge a master input file for the thermal-hydraulics code with the power distribution data from the Monte Carlo calculation. Special attention is given to the neutron cross section data for the various required temperatures in the Monte Carlo calculation. Results are shown for an infinite lattice of PWR fuel pin cells and a 3 x 3 fuel BWR pin cell cluster. Various possibilities for further improvement and optimization of the coupling system are discussed. (author)

  7. Development of realistic thermal-hydraulic system analysis codes ; development of thermal hydraulic test requirements for multidimensional flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Yull; Yoon, Sang Hyuk; Noh, Sang Woo; Lee, Il Suk [Seoul National University, Seoul (Korea)

    2002-03-01

    This study is concerned with developing a multidimensional flow model required for the system analysis code MARS to more mechanistically simulate a variety of thermal hydraulic phenomena in the nuclear stem supply system. The capability of the MARS code as a thermal hydraulic analysis tool for optimized system design can be expanded by improving the current calculational methods and adding new models. In this study the relevant literature was surveyed on the multidimensional flow models that may potentially be applied to the multidimensional analysis code. Research items were critically reviewed and suggested to better predict the multidimensional thermal hydraulic behavior and to identify test requirements. A small-scale preliminary test was performed in the downcomer formed by two vertical plates to analyze multidimensional flow pattern in a simple geometry. The experimental result may be applied to the code for analysis of the fluid impingement to the reactor downcomer wall. Also, data were collected to find out the controlling parameters for the one-dimensional and multidimensional flow behavior. 22 refs., 40 figs., 7 tabs. (Author)

  8. A Hydraulic Stress Measurement System for Investigations at Depth in Slim Boreholes

    Science.gov (United States)

    Ask, M. V. S.; Ask, D.; Cornet, F. H.; Nilsson, T.; Talib, M.; Sundberg, J.

    2017-12-01

    Knowledge of the state of stress is essential to most underground work in rock mechanics as it provides means to analyze the mechanical behavior of a rock mass, serve as boundary condition in rock engineering problems, and help understand rock mass stability and groundwater flow. Luleå University of Technology (LTU) has developed and built a wire-line system for hydraulic rock stress measurements in slim boreholes together with the University of Strasbourg and Geosigma AB. The system consists of a downhole- and a surface unit. The downhole unit consists of hydraulic fracturing equipment (straddle packers and downhole imaging tool) and their associated data acquisition systems. The surface unit comprises of a 40-foot container permanently mounted on a trailer, which is equipped with a tripod, wire-line winches, water hydraulics, and a generator. The surface unit serves as a climate-independent on-site operations center, as well as a self-supporting transport vessel for the entire system. Three hydraulic stress testing methods can be applied: hydraulic fracturing, sleeve fracturing and hydraulic testing of pre-existing fractures. The three-dimensional stress tensor and its variation with depth within a continuous rock mass can be determined in a scientific unambiguously way by integrating results from the three test methods. The testing system is state of the art in several aspects including: (1) Large depth range (3 km), (2) Ability to test three borehole dimensions, (3) Resistivity imager maps the orientation of tested fracture (which is highlighted); (4) Highly stiff and resistive to corrosion downhole testing equipment; and (5) Very detailed control on the injection flow rate and cumulative volume is obtained by a hydraulic injection pump with variable piston rate, and a highly sensitive flow-meter. These aspects highly reduce measurement-related uncertainties of stress determination. Commissioning testing and initial field tests are scheduled to occur in a 1200

  9. Advisory and autonomous cooperative driving systems

    NARCIS (Netherlands)

    Broek, T.H.A. van den; Ploeg, J.; Netten, B.D.

    2011-01-01

    In this paper, the traffic efficiency of an advisory cooperative driving system, Advisory Acceleration Control is examined and compared to the efficiency of an autonomous cooperative driving system, Cooperative Adaptive Cruise Control. The algorithms and implementation thereof are explained. The

  10. General motors front wheel drive 2-mode hybrid transmission

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, James [General Motors Corp., Pontiac, MI (United States). New Transmission Products Group.; Holmes, Alan G. [General Motors Corp., Pontiac, MI (United States). Powertrain Hybrid Architecture

    2009-07-01

    General Motors now expands the application of two-mode hybrid technology to front wheel drive vehicles with the development of a hybrid electric transmission packaged into essentially the same space as a conventional automatic transmission for front wheel drive. This was accomplished using a space-efficient arrangement based on two planetary gear sets and electric motor-generators with large internal diameters. A combination of damper and hydraulically-controlled clutch allow comfortable shutdown and restarting of large-displacement engines in front wheel drive vehicles. The hybrid system delivers electric low-speed urban driving, two continuously variable ranges of transmission speed ratios, four fixed transmission speed ratios, electric acceleration boosting, and regenerative braking. In the first vehicle application, the two-mode hybrid helps to reduce vehicle fuel consumption by approximately one-third. (orig.)

  11. On Energy Efficient Mobile Hydraulic Systems : with Focus on Linear Actuation

    OpenAIRE

    Heybroek, Kim

    2017-01-01

    In this dissertation, energy efficient hydraulic systems are studied. The research focuses on solutions for linear actuators in mobile applications, with emphasis on construction machines. Alongside the aspect of energy efficiency, the thesis deals with competing aspects in hydraulic system design found in the development of construction machines. Simulation models and controls for different concepts are developed, taking the whole machine into account. In line with this work, several proof o...

  12. UIO-based Fault Diagnosis for Hydraulic Automatic Gauge Control System of Magnesium Sheet Mill

    Directory of Open Access Journals (Sweden)

    Li-Ping FAN

    2014-02-01

    Full Text Available Hydraulic automatic gauge control system of magnesium sheet mill is a complex integrated control system, which including mechanical, hydraulic and electrical comprehensive information. The failure rate of AGC system always is high, and its fault reasons are always complex. Based on analyzing the fault of main components of the automatic gauge control system, unknown input observer is used to realize fault diagnosis and isolation. Simulation results show that the fault diagnosis method based on the unknown input observer for the hydraulic automatic gauge control system of magnesium sheet mill is effective.

  13. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT X, AUTOMATIC TRANSMISSIONS--HYDRAULIC SYSTEMS (PART II).

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF MAINTENANCE PROCEDURES FOR AUTOMATIC TRANSMISSIONS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) CHECKING THE HYDRAULIC SYSTEM, (2) SERVICING THE HYDRAULIC SYSTEM, (3) EXAMINING THE RANGE CONTROL VALVE, (4) EXAMINING THE LOCK-UP AND FLOW VALVE, (5) EXAMINING THE MAIN REGULATOR…

  14. TG 220 MW hydraulic control system diagnostics

    International Nuclear Information System (INIS)

    Svabcik, A.

    1996-01-01

    The TG power output control system comprises a hydraulic and an electronic part. TG speed, power output or the main steam header pressure (HPK) depend on the steam flow at the turbine inlet. The steam admission into the turbine is controlled by four control valves and one by-pass valve in case of the HP part and by four capture flap valves in case of the LP part. The task of the SKODA K-220 MW turbine protection and control systems is to provide both the turbine speed and power output control to the setpoint value. Diagnostic measurements were aimed at getting an overview of both technical and functional states of all power output control elements. Principally, it can be stated that some deficiencies of a design nature originating from the manufacturer's factory were revealed and some other deficiencies related to hydraulic control elements functionality were identified more closely by the new method. 5 figs

  15. TG 220 MW hydraulic control system diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Svabcik, A [Atomova Elektraren Bohunice, Jaslovske Bohunice (Slovakia)

    1997-12-31

    The TG power output control system comprises a hydraulic and an electronic part. TG speed, power output or the main steam header pressure (HPK) depend on the steam flow at the turbine inlet. The steam admission into the turbine is controlled by four control valves and one by-pass valve in case of the HP part and by four capture flap valves in case of the LP part. The task of the SKODA K-220 MW turbine protection and control systems is to provide both the turbine speed and power output control to the setpoint value. Diagnostic measurements were aimed at getting an overview of both technical and functional states of all power output control elements. Principally, it can be stated that some deficiencies of a design nature originating from the manufacturer`s factory were revealed and some other deficiencies related to hydraulic control elements functionality were identified more closely by the new method. 5 figs.

  16. Wind tunnel experiments to prove a hydraulic passive rotor speed control concept for variable speed wind turbines (poster)

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin Laguna, A.

    2012-01-01

    As alternative to geared and direct drive solutions, fluid power drive trains are being developed by several institutions around the world. The common configuration is where the wind turbine rotor is coupled to a hydraulic pump. The pump is connected through a high pressure line to a hydraulic motor

  17. Proceedings of transient thermal-hydraulics and coupled vessel and piping system responses 1991

    International Nuclear Information System (INIS)

    Wang, G.Y.; Shin, Y.W.; Moody, F.J.

    1991-01-01

    This book reports on transient thermal-hydraulics and coupled vessel and piping system responses. Topics covered include: nuclear power plant containment designs; analysis of control rods; gate closure of hydraulic turbines; and shock wave solutions for steam water mixtures in piping systems

  18. Design strategy for improving the energy efficiency in series hydraulic/electric synergy system

    International Nuclear Information System (INIS)

    Ramakrishnan, R.; Hiremath, Somashekhar S.; Singaperumal, M.

    2014-01-01

    Battery is a vital subsystem in an electric vehicle with regenerative braking system. The energy efficiency of an electric vehicle is improved by storing the regenerated energy in an electric battery, during braking, and reusing it during subsequent acceleration. Battery possesses a relatively poor power density and slow charging of regenerated energy, when compared to hydro-pneumatic accumulators. A series hydraulic/electric synergy system – an energy efficient mechatronics system is proposed to overcome the drawbacks in the conventional electric vehicle with regenerative braking. Even though, electric battery provides higher energy density than the accumulator system, optimal sizing of the hydro-pneumatic accumulator and other process parameters in the system to provide better energy density and efficiency. However, a trade-off prevails between the system energy delivered and energy consumed. This gives rise to a multiple objective problem. The proposed multi-objective design optimization procedure based on an evolutionary strategy algorithm maximizes the energy efficiency of the system. The system simulation results after optimization show that, the optimal system parameters increase the energy efficiency by 3% and hydraulic regeneration efficiency by 17.3%. The suggested design methodology provides a basis for the design of a series hydraulic/electric synergy system as energy efficient and zero emission system. - Highlights: • Dynamic analysis of SHESS to investigate energy efficiency. • Optimization of system parameters based on multi-objective design strategy. • Evaluation of improvements in system energy efficiency and hydraulic regeneration energy. • Identification of conditions at which hydraulic regenerative efficiency is maximized for minimum energy consumption. • Results confirm advantages of using SHESS

  19. Effect of Hydraulic Accumulator on Pressure Surge of a Hydrostatic Transmission System

    Science.gov (United States)

    Kumar, Ajit; Das, Jayanta; Dasgupta, Kabir; Barnwal, Manish Kumar

    2018-04-01

    Hydraulic power system is generally used in off-road vehicles for power transmission such as Heavy Earth Moving Machineries (HEMM). Their energy efficiency and unsubstantial failure becomes an extensive subject of analysis. Various arrangements in the system are compassed along with the utilization of some appropriate components. Application of a hydraulic accumulator is one among them. Benefits of accumulator is its multi-purpose usages like energy saving and pressure surge damping. This paper deals with the control of pressure surges in the hydraulic system and energy saving from the surges by using accumulator. For this purpose, the simulation of the hydraulic system is done in MATLAB/SimulinkR environment and an external disturbance is introduced to generate the pressure surge. The surge absorptivity of the accumulator is studied for different sizes at different pre-charged conditions of the accumulator. The discharge characteristics of different sized accumulators are also analyzed in this paper. It is observed that the ability to absorb the surge and stabilize the system is high in the smaller capacity accumulator. However the energy delivery time of larger sized accumulator is high.

  20. Fault Diagnosis for Nonlinear Hydraulic-Mechanical Drilling Pipe Handling System

    DEFF Research Database (Denmark)

    Choux, Martin; Blanke, Mogens

    2011-01-01

    Leakage and increased friction are common faults in hydraulic cylinders that can have serious consequences if they are not detected at early stage. In this paper, the design of a fault detector for a nonlinear hydraulic mechanical system is presented. By considering the system in steady state, two...... residual signals are generated and analysed with a composite hypothesis test which accommodates for unknown parameters. The resulting detector is able to detect abrupt changes in leakage or friction given the noisy pressure and position measurements. Test rig measurements validate the properties...

  1. Status and topics of thermal-hydraulic analysis for next-generation LWRs with passive safety systems

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Ohnuki, Akira; Arai, Kenji; Kikuta, Michitaka; Yonomoto, Taisuke; Araya, Fumimasa; Akimoto, Hajime

    1999-01-01

    For increasing of electric power demand and reducing of carbon dioxide exhaust in the 21st century, studies of the next-generation light water reactor (LWR) with passive safety systems are developing in the world: AP-600 (by Westing House Co.); SBWR (by General Electric Co.); SWR1000 (by Siemens Co.); NP21 (by Mitsubishi Heavy Industry Co., et al.); JPSR (by JAERI). The passive equipment using natural circulation and natural convection are installed in the passive safety system, instead of active safety equipment, such as pumps, etc. It remains still as a important issue, however, to verify the reliability on the functions of the passive equipment, since that the driving forces of the passive equipment are small at comparison with the active safety equipment. The various subjects of thermal-hydraulic analysis for the next-generation light water reactors, such as temperature stratification in the passive safety systems, vapor condensation in the mixture of non-condensable gases and the interactions of the passive safety system with the primary cooling system, are illustrated and discussed in the paper. (M. Suetake)

  2. Environmental and management influences on temporal variability of near saturated soil hydraulic properties☆

    Science.gov (United States)

    Bodner, G.; Scholl, P.; Loiskandl, W.; Kaul, H.-P.

    2013-01-01

    Structural porosity is a decisive property for soil productivity and soil environmental functions. Hydraulic properties in the structural range vary over time in response to management and environmental influences. Although this is widely recognized, there are few field studies that determine dominant driving forces underlying hydraulic property dynamics. During a three year field experiment we measured temporal variability of soil hydraulic properties by tension infiltrometry. Soil properties were characterized by hydraulic conductivity, effective macroporosity and Kosugi's lognormal pore size distribution model. Management related influences comprised three soil cover treatment (mustard and rye vs. fallow) and an initial mechanical soil disturbance with a rotary harrow. Environmental driving forces were derived from meteorological and soil moisture data. Soil hydraulic parameters varied over time by around one order of magnitude. The coefficient of variation of soil hydraulic conductivity K(h) decreased from 69.5% at saturation to 42.1% in the more unsaturated range (− 10 cm pressure head). A slight increase in the Kosugi parameter showing pore heterogeneity was observed under the rye cover crop, reflecting an enhanced structural porosity. The other hydraulic parameters were not significantly influenced by the soil cover treatments. Seedbed preparation with a rotary harrow resulted in a fourfold increase in macroporosity and hydraulic conductivity next to saturation, and homogenized the pore radius distribution. Re-consolidation after mechanical loosening lasted over 18 months until the soil returned to its initial state. The post-tillage trend of soil settlement could be approximated by an exponential decay function. Among environmental factors, wetting-drying cycles were identified as dominant driving force explaining short term hydraulic property changes within the season (r2 = 0.43 to 0.59). Our results suggested that beside considering average

  3. Environmental and management influences on temporal variability of near saturated soil hydraulic properties.

    Science.gov (United States)

    Bodner, G; Scholl, P; Loiskandl, W; Kaul, H-P

    2013-08-01

    Structural porosity is a decisive property for soil productivity and soil environmental functions. Hydraulic properties in the structural range vary over time in response to management and environmental influences. Although this is widely recognized, there are few field studies that determine dominant driving forces underlying hydraulic property dynamics. During a three year field experiment we measured temporal variability of soil hydraulic properties by tension infiltrometry. Soil properties were characterized by hydraulic conductivity, effective macroporosity and Kosugi's lognormal pore size distribution model. Management related influences comprised three soil cover treatment (mustard and rye vs. fallow) and an initial mechanical soil disturbance with a rotary harrow. Environmental driving forces were derived from meteorological and soil moisture data. Soil hydraulic parameters varied over time by around one order of magnitude. The coefficient of variation of soil hydraulic conductivity K(h) decreased from 69.5% at saturation to 42.1% in the more unsaturated range (- 10 cm pressure head). A slight increase in the Kosugi parameter showing pore heterogeneity was observed under the rye cover crop, reflecting an enhanced structural porosity. The other hydraulic parameters were not significantly influenced by the soil cover treatments. Seedbed preparation with a rotary harrow resulted in a fourfold increase in macroporosity and hydraulic conductivity next to saturation, and homogenized the pore radius distribution. Re-consolidation after mechanical loosening lasted over 18 months until the soil returned to its initial state. The post-tillage trend of soil settlement could be approximated by an exponential decay function. Among environmental factors, wetting-drying cycles were identified as dominant driving force explaining short term hydraulic property changes within the season (r 2  = 0.43 to 0.59). Our results suggested that beside considering average

  4. Estimating biozone hydraulic conductivity in wastewater soil-infiltration systems using inverse numerical modeling.

    Science.gov (United States)

    Bumgarner, Johnathan R; McCray, John E

    2007-06-01

    During operation of an onsite wastewater treatment system, a low-permeability biozone develops at the infiltrative surface (IS) during application of wastewater to soil. Inverse numerical-model simulations were used to estimate the biozone saturated hydraulic conductivity (K(biozone)) under variably saturated conditions for 29 wastewater infiltration test cells installed in a sandy loam field soil. Test cells employed two loading rates (4 and 8cm/day) and 3 IS designs: open chamber, gravel, and synthetic bundles. The ratio of K(biozone) to the saturated hydraulic conductivity of the natural soil (K(s)) was used to quantify the reductions in the IS hydraulic conductivity. A smaller value of K(biozone)/K(s,) reflects a greater reduction in hydraulic conductivity. The IS hydraulic conductivity was reduced by 1-3 orders of magnitude. The reduction in IS hydraulic conductivity was primarily influenced by wastewater loading rate and IS type and not by the K(s) of the native soil. The higher loading rate yielded greater reductions in IS hydraulic conductivity than the lower loading rate for bundle and gravel cells, but the difference was not statistically significant for chamber cells. Bundle and gravel cells exhibited a greater reduction in IS hydraulic conductivity than chamber cells at the higher loading rates, while the difference between gravel and bundle systems was not statistically significant. At the lower rate, bundle cells exhibited generally lower K(biozone)/K(s) values, but not at a statistically significant level, while gravel and chamber cells were statistically similar. Gravel cells exhibited the greatest variability in measured values, which may complicate design efforts based on K(biozone) evaluations for these systems. These results suggest that chamber systems may provide for a more robust design, particularly for high or variable wastewater infiltration rates.

  5. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1991-01-01

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  6. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  7. Parametric model of servo-hydraulic actuator coupled with a nonlinear system: Experimental validation

    Science.gov (United States)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-05-01

    Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.

  8. Driving with head-slaved camera system

    NARCIS (Netherlands)

    Oving, A.B.; Erp, J.B.F. van

    2001-01-01

    In a field experiment, we tested the effectiveness of a head-slaved camera system for driving an armoured vehicle under armour. This system consists of a helmet-mounted display (HMD), a headtracker, and a motion platform with two cameras. Subjects performed several driving tasks on paved and in

  9. Hydraulic Circuit of Mechanical Pruner Drive for Hops on Low Trellises

    Directory of Open Access Journals (Sweden)

    Hoffmann David

    2015-09-01

    Full Text Available A mechanical pruner serves for pruning new hopvine shoots in spring. The later yield depends on the right timing and quality of pruning. That is why hop pruning is one of the most important agrotechnical procedures. A double-disc mechanical pruner used on high trellises cannot be used on low trellises due to its large size. Abroad, for pruning hops on low trellises a specially adapted sprinkler is used (chemical pruning. With regard to the effort to minimize the chemical environmental burden, we opted for the design of the mechanical pruner. Firstly, the low trellis, mechanical pruner, and also elements used in the design of hydraulic circuit are described. Next part of the paper is devoted to the input requirements for both the hydraulic circuit and the mechanical pruner designs. Then a description of an adapted inter-axle carrier used for the experimental model of the hop mechanical pruner and of the effected field measurement follows, along with interpretation of the measured data. These data are depicted in clearly arranged graphs showing the dependency of pressure and hydraulic oil flow on the cutting disc rotational frequency.

  10. Harmonic Coupling Analysis of a Multi-Drive System with Slim DC-link Drive

    DEFF Research Database (Denmark)

    Yang, Feng; Kwon, Jun Bum; Blaabjerg, Frede

    2017-01-01

    One of the problems with slim dc-link adjustable speed drive is the difficulties to analyze the harmonic coupling when it is integrated into a multi-drive system. The traditional methods analyze this harmonic issue by neglecting the harmonic coupling, and base on the linear time-invariant methods....... Its disadvantages include the time consumption and large computer memory. This paper proposes to do harmonic analysis by using the harmonic state-space modeling method by using the linear time-periodic theory. By using the proposed model, the harmonic couplings, between dc-link and point of common...... coupling in different drives, are all analyzed in the multi-drive system. In the meantime, the effects of the small film dc-link capacitance and the nonlinear characteristic of the diode rectifier are considered. The detailed modeling procedure, the simulations and the lab experiment on a two-drive system...

  11. Chaos in electric drive systems analysis control and application

    CERN Document Server

    Chau, K T

    2011-01-01

    In Chaos in Electric Drive Systems: Analysis, Control and Application authors Chau and Wang systematically introduce an emerging technology of electrical engineering that bridges abstract chaos theory and practical electric drives. The authors consolidate all important information in this interdisciplinary technology, including the fundamental concepts, mathematical modeling, theoretical analysis, computer simulation, and hardware implementation. The book provides comprehensive coverage of chaos in electric drive systems with three main parts: analysis, control and application. Corresponding drive systems range from the simplest to the latest types: DC, induction, synchronous reluctance, switched reluctance, and permanent magnet brushless drives.The first book to comprehensively treat chaos in electric drive systemsReviews chaos in various electrical engineering technologies and drive systemsPresents innovative approaches to stabilize and stimulate chaos in typical drivesDiscusses practical application of cha...

  12. Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle

    Science.gov (United States)

    Zhang, Han; Zhao, Wanzhong

    2018-02-01

    To improve the maneuverability and stability of in-wheel-motor-drive electric vehicle, a control strategy based on nonlinear decoupling control method is proposed in this paper, realizing the coordinated control of the steering and driving system. At first, the nonlinear models of the in-wheel-motor-drive electric vehicle and its sub-system are constructed. Then the inverse system decoupling theory is applied to decompose the nonlinear system into several independent subsystems, which makes it possible to realize the coordinated control of each subsystem. Next, the μ-Synthesis theory is applied to eliminate the influence of model uncertainty, improving the stability, robustness and tracking performance of in-wheel-motor-drive electric vehicle. Simulation and experiment results and numerical analyses, based on the electric vehicle actuated by in-wheel-motors, prove that the proposed control method is effective to accomplish the decoupling control of the steering and driving system in both simulation and real practice.

  13. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E

    2011-01-01

    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  14. Rod drive and latching mechanism

    International Nuclear Information System (INIS)

    Veronesi, L.; Sherwood, D.G.

    1982-01-01

    Hydraulic drive and latching mechanisms for driving reactivity control mechanisms in nuclear reactors are described. Preferably, the pressurized reactor coolant is utilized to raise the drive rod into contact with and to pivot the latching mechanism so as to allow the drive rod to pass the latching mechanism. The pressure in the housing may then be equalized which allows the drive rod to move downwardly into contact with the latching mechanism but to hold the shaft in a raised position with respect to the reactor core. Once again, the reactor coolant pressure may be utilized to raise the drive rod and thus pivot the latching mechanism so that the drive rod passes above the latching mechanism. Again, the mechanism pressure can be equalized which allows the drive rod to fall and pass by the latching mechanism so that the drive rod approaches the reactor core. (author)

  15. Does reintroducing large wood influence the hydraulic landscape of a lowland river system?

    Science.gov (United States)

    Matheson, Adrian; Thoms, Martin; Reid, Michael

    2017-09-01

    Our understanding of the effectiveness of reintroduced large wood for restoration is largely based on studies from high energy river systems. By contrast, few studies of the effectiveness of reintroducing large wood have been undertaken on large, low energy, lowland river systems: river systems where large wood is a significant physical feature on the in-channel environment. This study investigated the effect of reintroduced large wood on the hydraulic landscape of the Barwon-Darling River, Australia, at low flows. To achieve this, the study compared three hydraulic landscapes of replicated reference (naturally wooded), control (unwooded,) and managed (wood reintroduced) treatments on three low flow periods. These time periods were prior to the reintroduction of large wood to managed reaches; several months after the reintroduction of large wood into the managed reaches; and then more than four years after wood reintroduction following several large flood events. Hydraulic landscapes of reaches were characterised using a range of spatial measures calculated from velocity measurements taken with a boat-mounted Acoustic Doppler Profiler. We hypothesised that reintroduced large wood would increase the diversity of the hydraulic landscape at low flows and that managed reaches would be more similar to the reference reaches. Our results suggest that the reintroduction of large wood did not significantly change the character of the hydraulic landscape at the reach scale after several months (p = 0.16) or several years (p = 0.29). Overall, the character of the hydraulic landscape in the managed reaches was more similar to the hydraulic landscape of the control reaches than the hydraulic landscape of the reference reaches, at low flows. Some variability in the hydraulic landscapes was detected over time, and this may reflect reworking of riverbed sediments and sensitivity to variation in discharge. The lack of a response in the low flow hydraulic landscape to the

  16. Efficient numerical method for district heating system hydraulics

    International Nuclear Information System (INIS)

    Stevanovic, Vladimir D.; Prica, Sanja; Maslovaric, Blazenka; Zivkovic, Branislav; Nikodijevic, Srdjan

    2007-01-01

    An efficient method for numerical simulation and analyses of the steady state hydraulics of complex pipeline networks is presented. It is based on the loop model of the network and the method of square roots for solving the system of linear equations. The procedure is presented in the comprehensive mathematical form that could be straightforwardly programmed into a computer code. An application of the method to energy efficiency analyses of a real complex district heating system is demonstrated. The obtained results show a potential for electricity savings in pumps operation. It is shown that the method is considerably more effective than the standard Hardy Cross method still widely used in engineering practice. Because of the ease of implementation and high efficiency, the method presented in this paper is recommended for hydraulic steady state calculations of complex networks

  17. Discussion on Stochastic Analysis of Hydraulic Vibration in Pressurized Water Diversion and Hydropower Systems

    Directory of Open Access Journals (Sweden)

    Jianxu Zhou

    2018-03-01

    Full Text Available Hydraulic vibration exists in various water conveyance projects and has resulted in different operating problems, but its obvious effects on system’s pressure head and stable operation have not been definitively addressed in the issued codes for engineering design, especially considering the uncertainties of hydraulic vibration. After detailed analysis of the randomness in hydraulic vibration and the commonly used stochastic approaches, in the basic equations for hydraulic vibration analysis, the random parameters and the formed stochastic equations were discussed for further probabilistic characteristic analysis of the random variables. Furthermore, preliminary investigation of the stochastic analysis of hydraulic vibration in pressurized pipelines and possible self-excited vibration in pumped-storage systems was presented for further consideration. The detailed discussion indicates that it is necessary to conduct further and systematic stochastic analysis of hydraulic vibration. Further, with the obtained frequencies and amplitudes in the form of a probability statement, the stochastic characteristics of various hydraulic vibrations can be investigated in detail and these solutions will be more reasonable for practical applications. Eventually, the stochastic analysis of hydraulic vibration will provide a basic premise to introduce its effect into the engineering design of water diversion and hydropower systems.

  18. Analysis of the steady state hydraulic behaviour of the ITER blanket cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A., E-mail: pietroalessandro.dimaio@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Dell’Orco, G.; Furmanek, A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Garitta, S. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Merola, M.; Mitteau, R.; Raffray, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Spagnuolo, G.A.; Vallone, E. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2015-10-15

    Highlights: • Nominal steady state hydraulic behaviour of ITER blanket standard sector cooling system has been investigated. • Numerical simulations have been run adopting a qualified thermal-hydraulic system code. • Hydraulic characteristic functions and coolant mass flow rates, velocities and pressure drops have been assessed. • Most of the considered circuits are able to effectively cool blanket modules, meeting ITER requirements. - Abstract: The blanket system is the ITER reactor component devoted to providing a physical boundary for plasma transients and contributing to thermal and nuclear shielding of vacuum vessel, magnets and external components. It is expected to be subjected to significant heat loads under nominal conditions and its cooling system has to ensure an adequate cooling, preventing any risk of critical heat flux occurrence while complying with pressure drop limits. At the University of Palermo a study has been performed, in cooperation with the ITER Organization, to investigate the steady state hydraulic behaviour of the ITER blanket standard sector cooling system. A theoretical–computational approach based on the finite volume method has been followed, adopting the RELAP5 system code. Finite volume models of the most critical blanket cooling circuits have been set-up, realistically simulating the coolant flow domain. The steady state hydraulic behaviour of each cooling circuit has been investigated, determining its hydraulic characteristic function and assessing the spatial distribution of coolant mass flow rates, velocities and pressure drops under reference nominal conditions. Results obtained have indicated that the investigated cooling circuits are able to provide an effective cooling to blanket modules, generally meeting ITER requirements in term of pressure drop and velocity distribution, except for a couple of circuits that are being revised.

  19. X-ray system with coupled source drive and detector drive

    International Nuclear Information System (INIS)

    1976-01-01

    An electronic coupling replacing the (more expensive) mechanical coupling which controls the speed of two sets of two electric motors, one driving an X-ray source and the other an X-ray detector, is described. Source and detector are kept rotating in parallel planes with a fairly constant velocity ratio. The drives are controlled by an electronic system comprising a comparator circuit comparing the position-indicative signals, a process control circuit and an inverter switch. The control system regulates the speed of the electric motors. The signal processing is described

  20. High bulk modulus of ionic liquid and effects on performance of hydraulic system.

    Science.gov (United States)

    Kambic, Milan; Kalb, Roland; Tasner, Tadej; Lovrec, Darko

    2014-01-01

    Over recent years ionic liquids have gained in importance, causing a growing number of scientists and engineers to investigate possible applications for these liquids because of their unique physical and chemical properties. Their outstanding advantages such as nonflammable liquid within a broad liquid range, high thermal, mechanical, and chemical stabilities, low solubility for gases, attractive tribological properties (lubrication), and very low compressibility, and so forth, make them more interesting for applications in mechanical engineering, offering great potential for new innovative processes, and also as a novel hydraulic fluid. This paper focuses on the outstanding compressibility properties of ionic liquid EMIM-EtSO4, a very important physical chemically property when IL is used as a hydraulic fluid. This very low compressibility (respectively, very high Bulk modulus), compared to the classical hydraulic mineral oils or the non-flammable HFDU type of hydraulic fluids, opens up new possibilities regarding its usage within hydraulic systems with increased dynamics, respectively, systems' dynamic responses.

  1. Contaminant removal and hydraulic conductivity of laboratory rain garden systems for stormwater treatment.

    Science.gov (United States)

    Good, J F; O'Sullivan, A D; Wicke, D; Cochrane, T A

    2012-01-01

    In order to evaluate the influence of substrate composition on stormwater treatment and hydraulic effectiveness, mesocosm-scale (180 L, 0.17 m(2)) laboratory rain gardens were established. Saturated (constant head) hydraulic conductivity was determined before and after contaminant (Cu, Zn, Pb and nutrients) removal experiments on three rain garden systems with various proportions of organic topsoil. The system with only topsoil had the lowest saturated hydraulic conductivity (160-164 mm/h) and poorest metal removal efficiency (Cu ≤ 69.0% and Zn ≤ 71.4%). Systems with sand and a sand-topsoil mix demonstrated good metal removal (Cu up to 83.3%, Zn up to 94.5%, Pb up to 97.3%) with adequate hydraulic conductivity (sand: 800-805 mm/h, sand-topsoil: 290-302 mm/h). Total metal amounts in the effluent were pH was elevated (up to 7.38) provided by the calcareous sand in two of the systems, whereas the topsoil-only system lacked an alkaline source. Organic topsoil, a typical component in rain garden systems, influenced pH, resulting in poorer treatment due to higher dissolved metal fractions.

  2. Parametric Assessment of Perchloroethylene Hydraulic Behaviour in a Two-Phase System

    International Nuclear Information System (INIS)

    Chatrenour, M.; Homaee, M.; Asadi Kapourchal, S.; Mahmoodian Shoshtari, M.

    2016-01-01

    Quantitative description of soil hydraulic properties is crucial for preventing organic contamination entering into the soil and groundwater. In order to assess the hydraulic behaviour of Perchloroethylene as a toxic chlorinated contaminant in soil, the retention curves for Perchloroethylene and water were determined. The Saturated hydraulic conductivity of both fluids examined was determined by the constant head method. The Perchloroethylene and water hydraulic conductivities obtained were 492.84 and 450.27 cm day-1, respectively. The porous medium retention parameters were obtained based on the van Genuchten, Brooks-Corey and Kosugi retention models. Further, the unsaturated hydraulic conductivity for both fluids was obtained based on the Mualem-Brooks-Corey, Mualem-van Genuchten and Mualem-Kosugi models. The accuracy performance of the models was assessed using some statistics including ME, RMSE, EF, CD and CRM. Results indicated that the van Genuchten model provided better estimations than other models when the fluid studied was Perchloroethylene. The results further indicated that the magnitudes of the pore-size distribution parameters and the bubbling pressure parameters are reduced more in a water-air system compared to a Perchloroethylene-air system. This can be attributed to the high viscosity of water and its considerable resistance against flow. This implies that more suction is needed to drain water out from a porous medium than Perchloroethylene. Consequently, a porous medium provides less retention for Perchloroethylene at a given quantity of fluid than water. Owing to lower Perchloroethylene viscosity, the saturated and unsaturated porous medium hydraulic conductivity of Perchloroethylene was greater than that of water. Since Perchloroethylene has lower retention and larger hydraulic conductivity than water, its infiltration into a porous medium would lead to its faster movement towards groundwater.

  3. Hydraulically driven control rod concept for integral reactors: fluid dynamic simulation and preliminary test

    International Nuclear Information System (INIS)

    Ricotti, M.E.; Cammi, A.; Lombardi, C.; Passoni, M.; Rizzo, C.; Carelli, M.; Colombo, E.

    2003-01-01

    The paper deals with the preliminary study of the Hydraulically Driven Control Rod concept, tailored for PWR control rods (spider type) with hydraulic drive mechanism completely immersed in the primary water. A specific solution suitable for advanced versions of the IRIS integral reactor is under investigation. The configuration of the Hydraulic Control Rod device, made up by an external movable piston and an internal fixed cylinder, is described. After a brief description of the whole control system, particular attention is devoted to the Control Rod characterization via Computational Fluid Dynamics (CFD) analysis. The investigation of the system behavior, including dynamic equilibrium and stability properties, has been carried out. Finally, preliminary tests were performed in a low pressure, low temperature, reduced length experimental facility. The results are compared with the dynamic control model and CFD simulation model, showing good agreement between simulations and experimental data. During these preliminary tests, the control system performs correctly, allowing stable dynamic equilibrium positions for the Control Rod and stable behavior during withdrawal and insertion steps. (author)

  4. Nonlinear stability research on the hydraulic system of double-side rolling shear

    Science.gov (United States)

    Wang, Jun; Huang, Qingxue; An, Gaocheng; Qi, Qisong; Sun, Binyu

    2015-10-01

    This paper researches the stability of the nonlinear system taking the hydraulic system of double-side rolling shear as an example. The hydraulic system of double-side rolling shear uses unsymmetrical electro-hydraulic proportional servo valve to control the cylinder with single piston rod, which can make best use of the space and reduce reversing shock. It is a typical nonlinear structure. The nonlinear state-space equations of the unsymmetrical valve controlling cylinder system are built first, and the second Lyapunov method is used to evaluate its stability. Second, the software AMEsim is applied to simulate the nonlinear system, and the results indicate that the system is stable. At last, the experimental results show that the system unsymmetrical valve controlling the cylinder with single piston rod is stable and conforms to what is deduced by theoretical analysis and simulation. The construction and application of Lyapunov function not only provide the theoretical basis for using of unsymmetrical valve controlling cylinder with single piston rod but also develop a new thought for nonlinear stability evaluation.

  5. Research on hydraulic system of KZC-5 type rear dump truck in underground mine

    International Nuclear Information System (INIS)

    Lei Zeyong

    2005-01-01

    KZC-5 type rear dump truck in underground mine is introduced in this paper. The determining principles and ways of two main hydraulic systems are discussed. It has been proved that the hydraulic systems are reasonable in the industrial scale test. (author)

  6. Effects of turbine's selection on hydraulic transients in the long pressurized water conveyance system

    International Nuclear Information System (INIS)

    Zhou, J X; Hu, M; Cai, F L; Huang, X T

    2014-01-01

    For a hydropower station with longer water conveyance system, an optimum turbine's selection will be beneficial to its reliable and stable operation. Different optional turbines will result in possible differences of the hydraulic characteristics in the hydromechanical system, and have different effects on the hydraulic transients' analysis and control. Therefore, the premise for turbine's selection is to fully understand the properties of the optional turbines and their effects on the hydraulic transients. After a brief introduction of the simulation models for hydraulic transients' computation and stability analysis, the effects of hydraulic turbine's characteristics at different operating points on the hydro-mechanical system's free vibration analysis were theoretically investigated with the hydraulic impedance analysis of the hydraulic turbine. For a hydropower station with long water conveyance system, based on the detailed hydraulic transients' computation respectively for two different optional turbines, the effects of the turbine's selection on hydraulic transients were analyzed. Furthermore, considering different operating conditions for each turbine and the similar operating conditions for these two turbines, free vibration analysis was comprehensively carried out to reveal the effects of turbine's impedance on system's vibration characteristics. The results indicate that, respectively with two different turbines, most of the controlling parameters under the worst cases have marginal difference, and few shows obvious differences; the turbine's impedances under different operating conditions have less effect on the natural angular frequencies; different turbine's characteristics and different operating points have obvious effects on system's vibration stability; for the similar operating conditions of these two turbines, system's vibration characteristics are basically consistent with

  7. Development of semi-active hydraulic damper as active interaction ...

    Indian Academy of Sciences (India)

    Semi-auto controller; displacement semi-active hydraulic damper; ... 2000), and Magnetorheological Damper (Dyke et al 1998) were widely discussed or used. ... driving force provided by electrical motor causes the subordinate structure to ...

  8. Optimal Control Development System for Electrical Drives

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2008-08-01

    Full Text Available In this paper the optimal electrical drive development system is presented. It consists of both electrical drive types: DC and AC. In order to implement the optimal control for AC drive system an Altivar 71 inverter, a Frato magnetic particle brake (as load, three-phase induction machine, and dSpace 1104 controller have been used. The on-line solution of the matrix Riccati differential equation (MRDE is computed by dSpace 1104 controller, based on the corresponding feedback signals, generating the optimal speed reference for the AC drive system. The optimal speed reference is tracked by Altivar 71 inverter, conducting to energy reduction in AC drive. The classical control (consisting of rotor field oriented control with PI controllers and the optimal one have been implemented by designing an adequate ControlDesk interface. The three-phase induction machine (IM is controlled at constant flux. Therefore, the linear dynamic mathematical model of the IM has been obtained. The optimal control law provides transient regimes with minimal energy consumption. The obtained solution by integration of the MRDE is orientated towards the numerical implementation-by using a zero order hold. The development system is very useful for researchers, doctoral students or experts training in electrical drive. The experimental results are shown.

  9. Design of a Hydraulic Motor System Driven by Compressed Air

    OpenAIRE

    Shaw, Dein; Yu, Jyun-Jhe; Chieh, Cheng

    2013-01-01

    This paper presents the design of a highly efficient pneumatic motor system. The air engine is currently the most generally used device to convert potential energy of compressed air into mechanical energy. However, the efficiency of the air engines is too low to provide sufficient operating range for the vehicle. In this study, the energy contained in compressed air/pressurized hydraulic oil is transformed by a hydraulic motor to mechanical energy to enhance the efficiency of using air power....

  10. A look at one of the world`s largest apron feeder drives - Alberta Oil Sands Project

    Energy Technology Data Exchange (ETDEWEB)

    Persson, O. [Hagglunds Drives Canada Inc., Vancouver, BC (Canada)

    1999-10-01

    Various types of equipment to transport tar sands to processing plants are discussed, with special attention to the advantages of hydraulic direct drives over conventional electro-mechanical drives. A hydraulic direct drive such as the Hagglund Drive has exceptional starting torque capacity due to the high torque capability of the hydraulic motor. As such, it can be particularly useful in applications where shock loads occur with some frequency, or where many starts and stops are needed. Application of the Hagglund drive to power one of the world`s largest apron feeders in the Alberta Oil Sands is described as an illustration of the exceptional reliability, productivity and performance of this equipment. It has about one five-hundredth of the inertia of an equivalent high speed drive with gear reducer, a feature which is particularly significant in the case of feeders which are known to suffer much downtime due to chain related problems. These types of drives have also been used to great advantage in the process industries like pulp and paper, chemical, rubber and plastics, recycling and steel. 1 tab., 1 fig.

  11. Computerized hydraulic scanning system for quantitative non destructive examination

    International Nuclear Information System (INIS)

    Gundtoft, H.E.

    1982-01-01

    A hydraulic scanning system with five degrees of freedom is described. It is primarily designed as a universal system for fast and accurate ultrasonic inspection of materials for their internal variation in properties. The whole system is controlled by a minicomputer which also is used for evaluating and presenting of the results of the inspection. (author)

  12. A hydraulic device for unloading coke

    Energy Technology Data Exchange (ETDEWEB)

    Kretinin, M.V.; Abizgildin, U.M.; Kirillov, T.S.; Makarov, M.I.; Prokopov, O.I.; Solov' ev, A.M.

    1979-07-15

    A hydraulic device for unloading petroleum coke from slow carbonization chambers is characterized by an arrangement whereby in order to increase the output of large size coke by controlling the increment of the cutting line of the coke, the mechanism used to move the rod in the hydraulic cutter is built in the form of a rod rotation rotor; a gear wheel is mounted on the immobile section of this rotor, and on the mobile section a multi-stage regulator is installed. The drive gear of the regulator is engaged with the gear wheel, while the driven gear is connected to the rack, which is fastened to the rod.

  13. Plasma driving system requirements for commercial tokamak fusion reactors

    International Nuclear Information System (INIS)

    Brooks, J.N.; Kustom, R.C.; Stacey, W.M. Jr.

    1978-01-01

    The plasma driving system for a tokamak reactor is composed of an ohmic heating (OH) coil, equilibrium field (EF) coil, and their respective power supplies. Conceptual designs of an Experimental Power Reactor (EPR) and scoping studies of a Demonstration Power Reactor have shown that the driving system constitutes a significant part of the overall reactor cost. The capabilities of the driving system also set or help set important parameters of the burn cycle, such as the startup time, and the net power output. Previous detailed studies on driving system dynamics have helped to define the required characteristics for fast-pulsed superconducting magnets, homopolar generators, and very high power (GVA) power supplies for an EPR. This paper summarizes results for a single reactor configuration together with several design concepts for the driving system. Both the reactor configuration and the driving system concepts are natural extensions from the EPR. Thus, the new results presented in this paper can be compared with the previous EPR results to obtain a consistent picture of how the driving system requirements will evolve--for one particular design configuration

  14. Plasma driving system requirements for commercial tokamak fusion reactors

    International Nuclear Information System (INIS)

    Brooks, J.N.; Kustom, R.C.; Stacey, W.M. Jr.

    1977-01-01

    The plasma driving system for a tokamak reactor is composed of an ohmic heating (OH) coil, equilibrium field (EF) coil, and their respective power supplies. Conceptual designs of an Experimental Power Reactor (EPR) and scoping studies of a Demonstration Power Reactor have shown that the driving system constitutes a significant part of the overall reactor cost. The capabilities of the driving system also set or help set important parameters of the burn cycle, such as the startup time, and the net power output. Previous detailed studies on driving system dynamics have helped to define the required characteristics for fast-pulsed superconducting magnets, homopolar generators, and very high power (GVA) power supplies for an EPR. This paper summarizes results for a single reactor configuration together with several design concepts for the driving system. Both the reactor configuration and the driving system concepts are natural extensions from the EPR. Thus, the new results can be compared with the previous EPR results to obtain a consistent picture of how the driving system requirements will evolve--for one particular design configuration

  15. Chaos in drive systems

    Directory of Open Access Journals (Sweden)

    Kratochvíl C.

    2007-10-01

    Full Text Available The purpose of this article is to provide an elementary introduction to the subject of chaos in the electromechanical drive systems. In this article, we explore chaotic solutions of maps and continuous time systems. These solutions are also bounded like equilibrium, periodic and quasiperiodic solutions.

  16. New method to improve dynamic stiffness of electro-hydraulic servo systems

    Science.gov (United States)

    Bai, Yanhong; Quan, Long

    2013-09-01

    Most current researches working on improving stiffness focus on the application of control theories. But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated, so the control action is lagged. Thus dynamic performance against force disturbance and dynamic load stiffness can’t be improved evidently by advanced control algorithms. In this paper, the elementary principle of maintaining piston position unchanged under sudden external force load change by charging additional oil is analyzed. On this basis, the conception of raising dynamic stiffness of electro hydraulic position servo system by flow feedforward compensation is put forward. And a scheme using double servo valves to realize flow feedforward compensation is presented, in which another fast response servo valve is added to the regular electro hydraulic servo system and specially utilized to compensate the compressed oil volume caused by load impact in time. The two valves are arranged in parallel to control the cylinder jointly. Furthermore, the model of flow compensation is derived, by which the product of the amplitude and width of the valve’s pulse command signal can be calculated. And determination rules of the amplitude and width of pulse signal are concluded by analysis and simulations. Using the proposed scheme, simulations and experiments at different positions with different force changes are conducted. The simulation and experimental results show that the system dynamic performance against load force impact is largely improved with decreased maximal dynamic position deviation and shortened settling time. That is, system dynamic load stiffness is evidently raised. This paper proposes a new method which can effectively improve the dynamic stiffness of electro-hydraulic servo systems.

  17. Hydraulic screw fastening devices - design, maintenance, operational experience

    International Nuclear Information System (INIS)

    Lachner.

    1976-01-01

    With hydraulic screw fastening devices, pretension values with a maximum deviation of +-2.5% from the rated value can be achieved. This high degree of pretension accuracy is of considerable importance with regard to the safety factor required for the screw connection between reactor vessel head and reactor vessel. The operating rhythm of a nuclear power station with its refuelling art regular intervals makes further demands on the screw fastening device, in particular in connection with the transport of screws and for nuts. The necessary installations extend the screw fastening device into a combination of a high-pressure hydraulic cylinder system with an electrical or pneumoelectrical driving unit and an electrical control unit. Maintenance work is complicated by the large number of identical, highly stressed structural elements in connection with an unfavourable relation operating time/outage time. The problems have been perpetually reduced by close cooperation between the manufacturers and users of screw fastening devices. (orig./AK) [de

  18. Cascade Controller Including Back-stepping for Hydraulic-Mechanical Systems

    DEFF Research Database (Denmark)

    Choux, Martin; Hovland, Geir; Blanke, Mogens

    2012-01-01

    Development of a cascade controller structure including adaptive backstepping for a nonlinear hydraulic-mechanical system is considered in this paper where a dynamic friction (LuGre) model is included to obtain the necessary accuracy. The paper compares the performance of two variants of an adapt......Development of a cascade controller structure including adaptive backstepping for a nonlinear hydraulic-mechanical system is considered in this paper where a dynamic friction (LuGre) model is included to obtain the necessary accuracy. The paper compares the performance of two variants...... of an adaptive backstepping tracking controller with earlier results. The new control architecture is analysed and enhanced tracking performance is demonstrated when including the extended friction model. The complexity of the backstepping procedure is significantly reduced due to the cascade structure. Hence...

  19. Hierarchical high-pressure hydraulic system for a continuously variable transmission; Mudan hensokuki no kaisoshiki koyuatsu system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tominaga, M; Wakahara, T; Hiraoka, Y; Ishimori, Y [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    A belt CVT system requires a large oil flow during shifts compared with a conventional automatic transmission. And the hydraulic pressure is higher for high-powered engines. As a result the oil pump is bigger and efficiency is lower(fuel consumption is higher). This system develops high pressure in three stages first reducing the hydraulic control system so that a small oil pump is attained. 8 figs.

  20. Operating experience with power-equalising drive systems for ploughs. Betriebserfahrungen mit leistungsausgleichenden Antriebssystemen fuer Hobelanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Kaci, M.V. (DMT-Gesellschaft fuer Forschung und Pruefung mbH (Germany). Inst. fuer Vortrieb und Gewinnung); Klimek, K.H. (Ruhrkohle Niederrhein AG (Germany))

    1991-11-14

    Further development of ploughs and the available technology enable the application of stripping in deposits, which did not permit efficient plough operation in the past. Power equalisation between the drives is certainly the optimum solution for some of the applications with internal power consumption. However, it has emerged that the simple transition from the passive hydraulic to the active electrical system with use of the same gear is not the best method. Hence the idea of upgrading a plough gear with integrated overload protection to a load equalising gear was conceived. This system is known as S 15 UeL with LA 15 and conforms to the standardization efforts of Ruhrkohle AG. If the advantages of active power equalisation are dispensed with, the PL 15-S (Safesydor) can be used with ideally integrated overload protection. (orig.).

  1. Thermal-hydraulic modeling needs for passive reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.M. [Nuclear Regulatory Commission, Washington, DC (United States)

    1997-07-01

    The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered, but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken.

  2. Thermal-hydraulic modeling needs for passive reactors

    International Nuclear Information System (INIS)

    Kelly, J.M.

    1997-01-01

    The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered, but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken

  3. Simulation and Analysis of Chain Drive Systems

    DEFF Research Database (Denmark)

    Pedersen, Sine Leergaard

    mathematical models, and compare to the prior done research. Even though the model is developed at first for the use of analysing chain drive systems in marine engines, the methods can with small changes be used in general, as for e.g. chain drives in industrial machines, car engines and motorbikes. A novel...... with a real tooth profile proves superior to other applied models. With this model it is possible to perform a dynamic simulation of large marine engine chain drives. Through the application of this method, it is shown that the interrelated dynamics of the elements in the chain drive system is captured...

  4. HYDRAULIC CONCRETE COMPOSITION AND PROPERTIES CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2015-08-01

    Full Text Available Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic–viscous–plastic bodies. The system of canonical equations consists of the equations for concrete strength, absolute volume, concrete mix consistency as well as the equation for optimal concrete saturation with aggregates while minimizing cement content. The joint solution of these four equations related to composition allows determining for the materials the concrete composition of required strength, concrete workability with minimum cement content. The procedure for calculation of hydraulic concrete composition according to the physico-analytical method consists of two parts: 1 physical, which is laboratory testing of concrete mix components in different concrete compositions; 2 analytical, which represents the calculation algorithm for concrete compositions equivalent in concrete strength and workability that comply with the specific conditions of concrete placing. Findings. To solve the problem of designing the concrete composition with the desired properties for railway structures and buildings it was proposed to use the information technology in the form of a developed computer program whose algorithm includes the physico-analytical method for hydraulic concrete composition determination. Originality. The developed concrete composition design method takes into account the basic properties of raw materials, concrete mix and concrete, which are pre-determined. The distinctive feature of physico-analytical method is obtaining of a set of equivalent compositions with a certain concrete mix

  5. FOREWORD: The XXV IAHR Symposium on Hydraulic Machinery and Systems marks half a century tradition

    Science.gov (United States)

    Susan-Resiga, Romeo

    2010-05-01

    IAHR75_logoUPT90_logoARFT_logo International Association of Hydro-Environment Engineering and Research'Politehnica' University of TimisoaraRomanian Academy - Timisoara Branch The 25th edition of the IAHR Symposium on Hydraulic Machinery and Systems, held in Timisoara, Romania, 20-24 September 2010, jointly organized by the 'Politehnica' University of Timisoara and the Romanian Academy - Timisoara Branch, marks a half century tradition of these prestigious symposia. However, it is the first time that Romania hosts such a symposium, and for good reasons. The Romanian electrical power system has a total of 20,630 MW installed power, out of which 6,422 MW in hydropower plants. The energy produced in hydropower facilities was in 2008 of 17,105 GWh from a total of 64,772 GWh electrical energy production. Moreover, for the period 2009-2015, new hydropower capacities are going to be developed, with a total of 2,157 MW installed power and an estimated 5,770 GWh/year energy production. Within the same period of time, the refurbishment, modernization and repair programs will increase the actual hydropower production with an estimated 349 GWh/year. The 'Politehnica' University of Timisoara is proud to host the 25th IAHR Symposium on Hydraulic Machinery and Systems, in the year of its 90th anniversary. The 'Politehnica' University of Timisoara is one of the largest and most well-known technical universities from Central and Eastern Europe. It was founded in 1920, a short time after the union into one state of all the Romanian territories, following the end of the First World War, in order to respond to the need engineers felt by the Romanian society at that time, within the economical development framework. During its 90 years of existence, 'Politehnica' University of Timisoara educated over 100,000 engineers, greatly appreciated both in Romania and abroad, for their competence and seriousness. King Ferdinand I of Romania said while visiting the recently established

  6. A new generation drilling rig: hydraulically powered and computer controlled

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, M.; Angman, P.; Oveson, D. [Tesco Corp., Calgary, AB, (Canada)

    1999-11-01

    Development, testing and operation of a new generation of hydraulically powered and computer controlled drilling rig that incorporates a number of features that enhance functionality and productivity, is described. The rig features modular construction, a large heated common drilling machinery room, permanently-mounted draw works which, along with the permanently installed top drive, significantly reduces rig-up/rig-down time. Also featured are closed and open hydraulic systems and a unique hydraulic distribution manifold. All functions are controlled through a programmable logic controller (PLC), providing almost unlimited interlocks and calculations to increase rig safety and efficiency. Simplified diagnostic routines, remote monitoring and troubleshooting are also part of the system. To date, two rigs are in operation. Performance of both rigs has been rated as `very good`. Little or no operational problems have been experienced; downtime has averaged 0.61 per cent since August 1998 when the the first of the two rigs went into operation. The most important future application for this rig is for use with the casing drilling process which eliminates the need for drill pipe and tripping. It also reduces the drilling time lost due to unscheduled events such as reaming, fishing and taking kicks while tripping. 1 tab., 6 figs.

  7. Large-Scale Battery System Development and User-Specific Driving Behavior Analysis for Emerging Electric-Drive Vehicles

    Directory of Open Access Journals (Sweden)

    Yihe Sun

    2011-04-01

    Full Text Available Emerging green-energy transportation, such as hybrid electric vehicles (HEVs and plug-in HEVs (PHEVs, has a great potential for reduction of fuel consumption and greenhouse emissions. The lithium-ion battery system used in these vehicles, however, is bulky, expensive and unreliable, and has been the primary roadblock for transportation electrification. Meanwhile, few studies have considered user-specific driving behavior and its significant impact on (PHEV fuel efficiency, battery system lifetime, and the environment. This paper presents a detailed investigation of battery system modeling and real-world user-specific driving behavior analysis for emerging electric-drive vehicles. The proposed model is fast to compute and accurate for analyzing battery system run-time and long-term cycle life with a focus on temperature dependent battery system capacity fading and variation. The proposed solution is validated against physical measurement using real-world user driving studies, and has been adopted to facilitate battery system design and optimization. Using the collected real-world hybrid vehicle and run-time driving data, we have also conducted detailed analytical studies of users’ specific driving patterns and their impacts on hybrid vehicle electric energy and fuel efficiency. This work provides a solid foundation for future energy control with emerging electric-drive applications.

  8. Design and simulation of the direct drive servo system

    Science.gov (United States)

    Ren, Changzhi; Liu, Zhao; Song, Libin; Yi, Qiang; Chen, Ken; Zhang, Zhenchao

    2010-07-01

    As direct drive technology is finding their way into telescope drive designs for its many advantages, it would push to more reliable and cheaper solutions for future telescope complex motion system. However, the telescope drive system based on the direct drive technology is one high integrated electromechanical system, which one complex electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. The telescope is one ultra-exact, ultra-speed, high precision and huge inertial instrument, which the direct torque motor adopted by the telescope drive system is different from traditional motor. This paper explores the design process and some simulation results are discussed.

  9. Motion control of multi-actuator hydraulic systems for mobile machineries: Recent advancements and future trends

    Science.gov (United States)

    Xu, Bing; Cheng, Min

    2018-06-01

    This paper presents a survey of recent advancements and upcoming trends in motion control technologies employed in designing multi-actuator hydraulic systems for mobile machineries. Hydraulic systems have been extensively used in mobile machineries due to their superior power density and robustness. However, motion control technologies of multi-actuator hydraulic systems have faced increasing challenges due to stringent emission regulations. In this study, an overview of the evolution of existing throttling control technologies is presented, including open-center and load sensing controls. Recent advancements in energy-saving hydraulic technologies, such as individual metering, displacement, and hybrid controls, are briefly summarized. The impact of energy-saving hydraulic technologies on dynamic performance and control solutions are also discussed. Then, the advanced operation methods of multi-actuator mobile machineries are reviewed, including coordinated and haptic controls. Finally, challenges and opportunities of advanced motion control technologies are presented by providing an overall consideration of energy efficiency, controllability, cost, reliability, and other aspects.

  10. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    Science.gov (United States)

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  11. Optimisation of Working Areas in Discrete Hydraulic Power Take off-system for Wave Energy Converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Hansen, Rico Hjerm; Pedersen, Henrik C.

    2012-01-01

    Fluid power is the leading technology in Power Take Off(PTO) systems in Wave Energy Converters(WEC’s), due to the capability of generating high force at low velocity. However, as hydraulic force controlling system may suffer from large energy losses the efficiency of the hydraulic PTO systems may...

  12. A look at one of the world's largest apron feeder drives - Alberta Oil Sands Project

    Energy Technology Data Exchange (ETDEWEB)

    Persson, O. (Hagglunds Drives Canada Inc., Vancouver, BC (Canada))

    1999-01-01

    Various types of equipment to transport tar sands to processing plants are discussed, with special attention to the advantages of hydraulic direct drives over conventional electro-mechanical drives. A hydraulic direct drive such as the Hagglund Drive has exceptional starting torque capacity due to the high torque capability of the hydraulic motor. As such, it can be particularly useful in applications where shock loads occur with some frequency, or where many starts and stops are needed. Application of the Hagglund drive to power one of the world's largest apron feeders in the Alberta Oil Sands is described as an illustration of the exceptional reliability, productivity and performance of this equipment. It has about one five-hundredth of the inertia of an equivalent high speed drive with gear reducer, a feature which is particularly significant in the case of feeders which are known to suffer much downtime due to chain related problems. These types of drives have also been used to great advantage in the process industries like pulp and paper, chemical, rubber and plastics, recycling and steel. 1 tab., 1 fig.

  13. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  14. Wind power plants. Hydraulic transmission with control systems for unrestricted number of revolutions

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, R

    1976-09-01

    Basic ideas are presented for the design of a hydraulic transmission with its control system adapted to an electric generator operated by a wind turbine with unrestricted revolutions. The settlement of the principle is shown by means of commercially available parts. The relations of the installed effect, its cost and the length of operational life are discussed. The control system is directly integrated to the hydraulic circuits.

  15. Hydraulic manipulator research at ORNL

    International Nuclear Information System (INIS)

    Kress, R.L.; Jansen, J.F.; Love, L.J.

    1997-01-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL's flexible/prismatic test stand

  16. Hydraulic manipulator research at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States); Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States)

    1997-03-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.

  17. Consistent Automation Solutions for Electrohydraulic Drives in Times of Industry 4.0

    OpenAIRE

    Köckemann, Albert; Birke, Benno

    2016-01-01

    Electrohydraulic drives are primarily used whenever a low power/weight ratio, a compact build and/or large forces are required for individual applications. These drives are often used together with electric drive technology in machines. However, in terms of automation, unlike electric drives, electrohydraulic drives are still largely connected via analog interfaces and centralized closed control loops today. To compensate for this competitive disadvantage of hydraulic drive technology and, at...

  18. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  19. Underwater hydraulic shock shovel control system

    Science.gov (United States)

    Liu, He-Ping; Luo, A.-Ni; Xiao, Hai-Yan

    2008-06-01

    The control system determines the effectiveness of an underwater hydraulic shock shovel. This paper begins by analyzing the working principles of these shovels and explains the importance of their control systems. A new type of control system’s mathematical model was built and analyzed according to those principles. Since the initial control system’s response time could not fulfill the design requirements, a PID controller was added to the control system. System response time was still slower than required, so a neural network was added to nonlinearly regulate the proportional element, integral element and derivative element coefficients of the PID controller. After these improvements to the control system, system parameters fulfilled the design requirements. The working performance of electrically-controlled parts such as the rapidly moving high speed switch valve is largely determined by the control system. Normal control methods generally can’t satisfy a shovel’s requirements, so advanced and normal control methods were combined to improve the control system, bringing good results.

  20. Hydraulic limits on maximum plant transpiration and the emergence of the safety-efficiency trade-off.

    Science.gov (United States)

    Manzoni, Stefano; Vico, Giulia; Katul, Gabriel; Palmroth, Sari; Jackson, Robert B; Porporato, Amilcare

    2013-04-01

    Soil and plant hydraulics constrain ecosystem productivity by setting physical limits to water transport and hence carbon uptake by leaves. While more negative xylem water potentials provide a larger driving force for water transport, they also cause cavitation that limits hydraulic conductivity. An optimum balance between driving force and cavitation occurs at intermediate water potentials, thus defining the maximum transpiration rate the xylem can sustain (denoted as E(max)). The presence of this maximum raises the question as to whether plants regulate transpiration through stomata to function near E(max). To address this question, we calculated E(max) across plant functional types and climates using a hydraulic model and a global database of plant hydraulic traits. The predicted E(max) compared well with measured peak transpiration across plant sizes and growth conditions (R = 0.86, P efficiency trade-off in plant xylem. Stomatal conductance allows maximum transpiration rates despite partial cavitation in the xylem thereby suggesting coordination between stomatal regulation and xylem hydraulic characteristics. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  1. Thermal-Hydraulic System Codes in Nulcear Reactor Safety and Qualification Procedures

    Directory of Open Access Journals (Sweden)

    Alessandro Petruzzi

    2008-01-01

    Full Text Available In the last four decades, large efforts have been undertaken to provide reliable thermal-hydraulic system codes for the analyses of transients and accidents in nuclear power plants. Whereas the first system codes, developed at the beginning of the 1970s, utilized the homogenous equilibrium model with three balance equations to describe the two-phase flow, nowadays the more advanced system codes are based on the so-called “two-fluid model” with separation of the water and vapor phases, resulting in systems with at least six balance equations. The wide experimental campaign, constituted by the integral and separate effect tests, conducted under the umbrella of the OECD/CSNI was at the basis of the development and validation of the thermal-hydraulic system codes by which they have reached the present high degree of maturity. However, notwithstanding the huge amounts of financial and human resources invested, the results predicted by the code are still affected by errors whose origins can be attributed to several reasons as model deficiencies, approximations in the numerical solution, nodalization effects, and imperfect knowledge of boundary and initial conditions. In this context, the existence of qualified procedures for a consistent application of qualified thermal-hydraulic system code is necessary and implies the drawing up of specific criteria through which the code-user, the nodalization, and finally the transient results are qualified.

  2. Investigation of Self Yaw and its Potential using a Hydraulic Soft Yaw System for 5 MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.

    2013-01-01

    The focus of the current paper is on a hydraulic soft yaw system, designed to reduce the loading of the turbine structure, by absorbing wind guest via the hydraulic system, but which also enables the system to be used as a self-aligning yaw system. The system is analyzed with basis in the NREL 5-MW...... turbine, modeled in FAST, in which a new robust method for implementing Coulomb friction is utilized. Based on this model and a model of the hydraulic system, the influence of friction and wind speed is investigated in relation to the possibility to use the system as a self-aligning yaw system. Similarly...... the behavior of the hydraulic system is analyzed and it is concluded that the hydraulic yaw system allows selfyaw under normal operating conditions for the turbine. Self-yaw control is possible in wind speeds above 12 m/s when yaw friction is kept below 1 MNm....

  3. 46 CFR 112.50-3 - Hydraulic starting.

    Science.gov (United States)

    2010-10-01

    ... POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-3 Hydraulic starting. A hydraulic starting system must meet the following: (a) The hydraulic starting system must be a... 46 Shipping 4 2010-10-01 2010-10-01 false Hydraulic starting. 112.50-3 Section 112.50-3 Shipping...

  4. Thermal hydraulic analysis of BWR containment venting system

    International Nuclear Information System (INIS)

    Baburajan, P.K.; Sharma, Prashant; Paul, U.K.; Gaikwad, Avinash

    2015-01-01

    Installation of additional containment filtered venting system (CFVS) is necessary to depressurize the containment to maintain its mechanical integrity due to over pressurization during severe accident condition. A typical venting system for BWR is modelled using RELAP5 and analysed to investigate the effect of various thermal hydraulic parameters on the operational parameters of the venting system. The venting system consists of piping from the containment to the scrubber tank and exit line from the scrubber tank. The scrubber tank is partially filled with water to enable the scrubbing action to remove the particulate radionuclides from the incoming containment air. The pipe line from the containment is connected to the venturi inlet and the throat of the venturi is open to the scrubber tank water inventory at designed submergence level. The exit of the venturi is open to scrubber tank water. Filters are used in the upper air space of the scrubber tank as mist separator before venting out the air into the atmosphere through the exit vent line. The effect of thermal hydraulic parameters such as inlet fluid temperature, inlet steam content and venturi submergence in the scrubber tank on the venting flow rate, exit steam content, scrubber tank inventory, overflow line and siphon breaker flow rate is analysed. Results show that inlet steam content and the venturi nozzle submergence influence the venting system parameters. (author)

  5. Research on intelligent algorithm of electro - hydraulic servo control system

    Science.gov (United States)

    Wang, Yannian; Zhao, Yuhui; Liu, Chengtao

    2017-09-01

    In order to adapt the nonlinear characteristics of the electro-hydraulic servo control system and the influence of complex interference in the industrial field, using a fuzzy PID switching learning algorithm is proposed and a fuzzy PID switching learning controller is designed and applied in the electro-hydraulic servo controller. The designed controller not only combines the advantages of the fuzzy control and PID control, but also introduces the learning algorithm into the switching function, which makes the learning of the three parameters in the switching function can avoid the instability of the system during the switching between the fuzzy control and PID control algorithms. It also makes the switch between these two control algorithm more smoother than that of the conventional fuzzy PID.

  6. Cradle modification for hydraulic ram

    International Nuclear Information System (INIS)

    Koons, B.M.

    1995-01-01

    The analysis of the cradle hydraulic system considers stress, weld strength, and hydraulic forces required to lift and support the cradle/pump assembly. The stress and weld strength of the cradle modifications is evaluated to ensure that they meet the requirements of the American Institute for Steel Construction (AISC 1989). The hydraulic forces are evaluated to ensure that the hydraulic system is capable of rotating the cradle and pump assembly to the vertical position (between 70 degrees and 90 degrees)

  7. Adaptive Neural Network Control for Nonlinear Hydraulic Servo-System with Time-Varying State Constraints

    Directory of Open Access Journals (Sweden)

    Shu-Min Lu

    2017-01-01

    Full Text Available An adaptive neural network control problem is addressed for a class of nonlinear hydraulic servo-systems with time-varying state constraints. In view of the low precision problem of the traditional hydraulic servo-system which is caused by the tracking errors surpassing appropriate bound, the previous works have shown that the constraint for the system is a good way to solve the low precision problem. Meanwhile, compared with constant constraints, the time-varying state constraints are more general in the actual systems. Therefore, when the states of the system are forced to obey bounded time-varying constraint conditions, the high precision tracking performance of the system can be easily realized. In order to achieve this goal, the time-varying barrier Lyapunov function (TVBLF is used to prevent the states from violating time-varying constraints. By the backstepping design, the adaptive controller will be obtained. A radial basis function neural network (RBFNN is used to estimate the uncertainties. Based on analyzing the stability of the hydraulic servo-system, we show that the error signals are bounded in the compacts sets; the time-varying state constrains are never violated and all singles of the hydraulic servo-system are bounded. The simulation and experimental results show that the tracking accuracy of system is improved and the controller has fast tracking ability and strong robustness.

  8. Drunk driving warning system (DDWS). Volume 1, System concept and description

    Science.gov (United States)

    1983-11-01

    The Drunk Driving Warning System (DDWS) is a vehicle-mounted device for testing driver impairment and activating alarms. The driver must pass a steering competency test in order to drive the car in a normal manner. The emergency flasher system operat...

  9. Thermal hydraulic tests for reactor safety system -Research on the improvement of nuclear safety-

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Park, Chun Kyeong; Yang, Seon Kyu; Chung, Chang Hwan; Chun, Shee Yeong; Song, Cheol Hwa; Chun, Hyeong Gil; Chang, Seok Kyu; Chung, Heung Joon; Won, Soon Yeon; Cho, Yeong Ro; Kim, Bok Deuk; Min, Kyeong Ho

    1994-07-01

    The present research aims at the development of the thermal hydraulic verification test technology for the reactor safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. (Author)

  10. Design and analysis of hydraulic ram water pumping system

    Science.gov (United States)

    Hussin, N. S. M.; Gamil, S. A.; Amin, N. A. M.; Safar, M. J. A.; Majid, M. S. A.; Kazim, M. N. F. M.; Nasir, N. F. M.

    2017-10-01

    The current pumping system (DC water pump) for agriculture is powered by household electricity, therefore, the cost of electricity will be increased due to the higher electricity consumption. In addition, the water needs to be supplied at different height of trees and different places that are far from the water source. The existing DC water pump can pump the water to 1.5 m height but it cost money for electrical source. The hydraulic ram is a mechanical water pump that suitable used for agriculture purpose. It can be a good substitute for DC water pump in agriculture use. The hydraulic ram water pumping system has ability to pump water using gravitational energy or the kinetic energy through flowing source of water. This project aims to analyze and develop the water ram pump in order to meet the desired delivery head up to 3 meter height with less operation cost. The hydraulic ram is designed using CATIA software. Simulation work has been done using ANSYS CFX software to validate the working concept. There are three design were tested in the experiment study. The best design reached target head of 3 m with 15% efficiency and flow rate of 11.82l/min. The results from this study show that the less diameter of pressure chamber and higher supply head will create higher pressure.

  11. Method for achieving hydraulic balance in typical Chinese building heating systems by managing differential pressure and flow

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Xia, Jianjun; Thorsen, Jan Eric

    2017-01-01

    to a lack of pressure and flow control. This study investigated using pre-set radiator valves combined with differential pressure (DP) controllers to achieve hydraulic balance in building distribution systems, and consequently save energy and reduce the emissions. We considered a multi-storey building......Hydraulic unbalance is a common problem in Chinese district heating (DH) systems. Hydraulic unbalance has resulted in poor flow distribution among heating branches and overheating of apartments. Studies show that nearly 30% of the total heat supply is being wasted in Chinese DH systems due...... modelled in the IDA-ICE software, along with a self-developed mathematical hydraulic model to simulate its heat performance and hydraulic performance with various control scenarios. In contrast to the situation with no pressure or flow control, this solution achieves the required flow distribution...

  12. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton B. Higdon III

    2011-01-07

    Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for

  13. Safety implications of electronic driving support systems : an orientation.

    NARCIS (Netherlands)

    Gundy, C.M. Steyvers, F.J.J.M. & Kaptein, N.A.

    1995-01-01

    This report focuses on traffic safety aspects of driving support systems. The report consists of two parts. First of all, the report discusses a number of topics, relevant for the implementation and evaluation of driving support systems. These topics include: (1) safety research into driving support

  14. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Moon Kee; Park, Choon Kyung; Yang, Sun Kyoo; Chun, Se Yung; Song, Chul Hwa; Jun, Hyung Kil; Jung, Heung Joon; Won, Soon Yun; Cho, Yung Roh; Min, Kyung Hoh; Jung, Jang Hwan; Jang, Suk Kyoo; Kim, Bok Deuk; Kim, Wooi Kyung; Huh, Jin; Kim, Sook Kwan; Moon, Sang Kee; Lee, Sang Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-06-01

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author).

  15. Role of system characteristics in evolution of pump hydraulic design

    International Nuclear Information System (INIS)

    Walia, Mohinder; Misri, Vijay; Sharma, A.K.; Bapat, C.N.

    1994-01-01

    Primary heat transport (PHT) main circuit provides the means for transferring the heat produced in the fuel by circulating heavy water in the main circuit loop by primary coolant pumps (PCPs). The procurement specification of PCPs for 500 MWe pressurised heavy water reactor (PHWR) was prepared based upon the first order hydraulic analysis of the primary heat transport system and accordingly duty point was fixed. With this specification the manufacturer carried out model testing to arrive at optimum size of the impeller followed by determination of pump characteristics curves using full scale impeller during type testing. The duty point thus obtained was higher than specified necessitating the trimming of impeller. However, in order to make use of available higher duty point from system considerations, the duty point was redefined for production of subsequent pumps within specified tolerances governed by manufacturing limitations. PHT main system sizing (piping and feeders) was carried out based upon pump (delivering maximum flow) characteristics curve. Pressure profiles of PHT system at various operating modes were drawn and corresponding power drawn by motor was calculated. The interfacing of reactor coolant main system with hydraulic characteristics of PCP plays a significant role in establishing the requisite capability and capacity of PHT system in performing its intended functions. Therefore the paper traces the evolution of design parameters for PCP and subsequent generation of pressure profiles commensurate with the changes made in power profile including their impact on feeder sizing. The paper also highlights the scope of interaction between process designer and pump manufacturer in formulating a mutually acceptable and efficient hydraulic performance for PCP. (author). 3 refs., 8 figs., 3 tabs

  16. Calculation of dynamic hydraulic forces in nuclear plant piping systems

    International Nuclear Information System (INIS)

    Choi, D.K.

    1982-01-01

    A computer code was developed as one of the tools needed for analysis of piping dynamic loading on nuclear power plant high energy piping systems, including reactor safety and relief value upstream and discharge piping systems. The code calculates the transient hydraulic data and dynamic forces within the one-dimensional system, caused by a pipe rupture or sudden value motion, using a fixed space and varying time grid-method of characteristics. Subcooled, superheated, homogeneous two-phase and transition flow regimes are considered. A non-equilibrium effect is also considered in computing the fluid specific volume and fluid local sonic velocity in the two-phase mixture. Various hydraulic components such as a spring loaded or power operated value, enlarger, orifice, pressurized tank, multiple pipe junction (tee), etc. are considered as boundary conditions. Comparisons of calculated results with available experimental data shows a good agreement. (Author)

  17. Dynamic force profile in hydraulic hybrid vehicles: a numerical investigation

    Science.gov (United States)

    Mohaghegh-Motlagh, Amin; Elahinia, Mohammad H.

    2010-04-01

    A hybrid hydraulic vehicle (HHV) combines a hydraulic sub-system with the conventional drivetrain in order to improve fuel economy for heavy vehicles. The added hydraulic module manages the storage and release of fluid power necessary to assist the motion of the vehicle. The power collected by a pump/motor (P/M) from the regenerative braking phase is stored in a high-pressure accumulator and then released by the P/M to the driveshaft during the acceleration phase. This technology is effective in significantly improving fuel-economy for heavy-class vehicles with frequent stop-and-go drive schedules. Despite improved fuel economy and higher vehicle acceleration, noise and vibrations are one of the main problems of these vehicles. The dual function P/Ms are the main source of noise and vibration in a HHV. This study investigates the dynamics of a P/M and particularly the profile and frequency-dependence of the dynamic forces generated by a bent-axis P/M unit. To this end, the fluid dynamics side of the problem has been simplified for investigating the system from a dynamics perspective. A mathematical model of a bent axis P/M has been developed to investigate the cause of vibration and noise in HHVs. The forces are calculated in time and frequency domains. The results of this work can be used to study the vibration response of the chassis and to design effective vibration isolation systems for HHVs.

  18. Algorithm & SoC design for automotive vision systems for smart safe driving system

    CERN Document Server

    Shin, Hyunchul

    2014-01-01

    An emerging trend in the automobile industry is its convergence with information technology (IT). Indeed, it has been estimated that almost 90% of new automobile technologies involve IT in some form. Smart driving technologies that improve safety as well as green fuel technologies are quite representative of the convergence between IT and automobiles. The smart driving technologies include three key elements: sensing of driving environments, detection of objects and potential hazards, and the generation of driving control signals including warning signals. Although radar-based systems are primarily used for sensing the driving environments, the camera has gained importance in advanced driver assistance systems(ADAS). This book covers system-on-a-chip (SoC) designs—including both algorithms and hardware—related with image sensing and object detection by using the camera for smart driving systems. It introduces a variety of algorithms such as lens correction, super resolution, image enhancement, and object ...

  19. Evaluation of Linear and Non-Linear Control Schemes Applied to a Hydraulic Servo System

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik Clemmensen

    2005-01-01

    Due to the innovation of low-cost electronics such as sensors, microcontrollers etc., the focus on highperformance motion control is increasing. This work focuses on position control of single-input single-output hydraulic servo-systems in general. A hydraulically actuated robotic manipulator...

  20. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-05-01

    This factsheet describes a research project whose goal is to develop degradation-resistant nano-coatings of AlMgB14 and AlMgB14– (titanium diboride) TiB2 that result in improved surface hardness and reduced friction for industrial hydraulic and tooling systems.

  1. On Power Stream in Motor or Drive System

    Directory of Open Access Journals (Sweden)

    Paszota Zygmunt

    2016-12-01

    Full Text Available In a motor or a drive system the quantity of power increases in the direction opposite to the direction of power flow. Energy losses and energy efficiency of a motor or drive system must be presented as functions of physical quantities independent of losses. Such quantities are speed and load. But the picture of power stream in a motor or drive system is presented in the literature in the form of traditional Sankey diagram of power decrease in the direction of power flow. The paper refers to Matthew H. Sankey’s diagram in his paper „The Thermal Efficiency of Steam Engines“ of 1898. Presented is also a diagram of power increase in the direction opposite to the direction of power flow. The diagram, replacing the Sankey’s diagram, opens a new prospect for research into power of energy losses and efficiency of motors and drive systems.

  2. A new hydraulic regulation method on district heating system with distributed variable-speed pumps

    International Nuclear Information System (INIS)

    Wang, Hai; Wang, Haiying; Zhu, Tong

    2017-01-01

    Highlights: • A hydraulic regulation method was presented for district heating with distributed variable speed pumps. • Information and automation technologies were utilized to support the proposed method. • A new hydraulic model was developed for distributed variable speed pumps. • A new optimization model was developed based on genetic algorithm. • Two scenarios of a multi-source looped system was illustrated to validate the method. - Abstract: Compared with the hydraulic configuration based on the conventional central circulating pump, a district heating system with distributed variable-speed-pumps configuration can often save 30–50% power consumption on circulating pumps with frequency inverters. However, the hydraulic regulations on distributed variable-speed-pumps configuration could be more complicated than ever while all distributed pumps need to be adjusted to their designated flow rates. Especially in a multi-source looped structure heating network where the distributed pumps have strongly coupled and severe non-linear hydraulic connections with each other, it would be rather difficult to maintain the hydraulic balance during the regulations. In this paper, with the help of the advanced automation and information technologies, a new hydraulic regulation method was proposed to achieve on-site hydraulic balance for the district heating systems with distributed variable-speed-pumps configuration. The proposed method was comprised of a new hydraulic model, which was developed to adapt the distributed variable-speed-pumps configuration, and a calibration model with genetic algorithm. By carrying out the proposed method step by step, the flow rates of all distributed pumps can be progressively adjusted to their designated values. A hypothetic district heating system with 2 heat sources and 10 substations was taken as a case study to illustrate the feasibility of the proposed method. Two scenarios were investigated respectively. In Scenario I, the

  3. Discussion on sealing performance required in disposal system. Hydraulic analysis of tunnel intersections

    International Nuclear Information System (INIS)

    Sugita, Yutaka; Takahashi, Yoshiaki; Uragami, Manabu; Kitayama, Kazumi; Fujita, Tomoo; Kawakami, Susumu; Yui, Mikazu; Umeki, Hiroyuki; Miyamoto, Yoichi

    2005-09-01

    The sealing performance of a repository must be considered in the safety assessment of the geological disposal system of the high-level radioactive waste. NUMO and JNC established 'Technical Commission on Sealing Technology of Repository' based on the cooperation agreement. The objectives of this commission are to present the concept on the sealing performance required in the disposal system and to develop the direction for future R and D programme for design requirements of closure components (backfilling material, clay plug, etc.) in the presented concept. In the first phase of this commission, the current status of domestic and international sealing technologies were reviewed; and repository components and repository environments were summarized subsequently, the hydraulic analysis of tunnel intersections, where a main tunnel and a disposal tunnel in a disposal panel meet, were performed, considering components in and around the engineered barrier system (EBS). Since all tunnels are connected in the underground facility, understanding the hydraulic behaviour of tunnel intersections is an important issue to estimate migration of radionuclides from the EBS and to evaluate the required sealing performance in the disposal system. In the analytical results, it was found that the direction of hydraulic gradient, hydraulic conductivities of concrete and backfilling materials and the position of clay plug had impact on flow condition around the EBS. (author)

  4. Modeling and Positioning of a PZT Precision Drive System

    Directory of Open Access Journals (Sweden)

    Che Liu

    2017-11-01

    Full Text Available The fact that piezoelectric ceramic transducer (PZT precision drive systems in 3D printing are faced with nonlinear problems with respect to positioning, such as hysteresis and creep, has had an extremely negative impact on the precision of laser focusing systems. To eliminate the impact of PZT nonlinearity during precision drive movement, mathematical modeling and theoretical analyses of each module comprising the system were carried out in this study, a micro-displacement measurement circuit based on Position Sensitive Detector (PSD is constructed, followed by the establishment of system closed-loop control and creep control models. An XL-80 laser interferometer (Renishaw, Wotton-under-Edge, UK was used to measure the performance of the precision drive system, showing that system modeling and control algorithms were correct, with the requirements for precision positioning of the drive system satisfied.

  5. Modeling and Positioning of a PZT Precision Drive System.

    Science.gov (United States)

    Liu, Che; Guo, Yanling

    2017-11-08

    The fact that piezoelectric ceramic transducer (PZT) precision drive systems in 3D printing are faced with nonlinear problems with respect to positioning, such as hysteresis and creep, has had an extremely negative impact on the precision of laser focusing systems. To eliminate the impact of PZT nonlinearity during precision drive movement, mathematical modeling and theoretical analyses of each module comprising the system were carried out in this study, a micro-displacement measurement circuit based on Position Sensitive Detector (PSD) is constructed, followed by the establishment of system closed-loop control and creep control models. An XL-80 laser interferometer (Renishaw, Wotton-under-Edge, UK) was used to measure the performance of the precision drive system, showing that system modeling and control algorithms were correct, with the requirements for precision positioning of the drive system satisfied.

  6. High Bulk Modulus of Ionic Liquid and Effects on Performance of Hydraulic System

    Directory of Open Access Journals (Sweden)

    Milan Kambic

    2014-01-01

    Full Text Available Over recent years ionic liquids have gained in importance, causing a growing number of scientists and engineers to investigate possible applications for these liquids because of their unique physical and chemical properties. Their outstanding advantages such as nonflammable liquid within a broad liquid range, high thermal, mechanical, and chemical stabilities, low solubility for gases, attractive tribological properties (lubrication, and very low compressibility, and so forth, make them more interesting for applications in mechanical engineering, offering great potential for new innovative processes, and also as a novel hydraulic fluid. This paper focuses on the outstanding compressibility properties of ionic liquid EMIM-EtSO4, a very important physical chemically property when IL is used as a hydraulic fluid. This very low compressibility (respectively, very high Bulk modulus, compared to the classical hydraulic mineral oils or the non-flammable HFDU type of hydraulic fluids, opens up new possibilities regarding its usage within hydraulic systems with increased dynamics, respectively, systems’ dynamic responses.

  7. Operating problem of low specific speed pumps operating in closed hydraulic loop

    International Nuclear Information System (INIS)

    Rajput, A.K.

    1979-01-01

    Results of the studies of pressure pulsations caused by the centrifugal pump driving a typical sodium test loop are presented. The method of characteristics has been used for solving the equations of unsteady fluid flow in closed hydraulic loops with various boundary points, important of which are pump, control valve and heater tank (acting hydraulically as surge tank). Mathematical and computational models used for calculations are described. (M.G.B.)

  8. Hydraulic Performance of Lined Permeable Pavement Systems in the Built Environment

    Directory of Open Access Journals (Sweden)

    Jan Støvring

    2018-05-01

    Full Text Available The hydraulic performance of permeable pavement (PP systems has been well demonstrated when based on full or partial on-site infiltration, while there is only limited research on lined PP systems built to provide detention and volume reduction by evaporation only. In this study, we tested the performance of commercially available PP components when constructed as lined PP systems with un-throttled discharge to explore basic hydraulic function in a real-life-setting. Four types of PP surface products and three types of sub-base aggregates were tested in six unique combinations, built as side-by-side parking lots into an existing parking area, each stall having a size of 25 m2 and 0.5 m of depth with individual lining. Based on 12 months of monitoring precipitation and discharge from each stall, total volume reduction ranged from 3% to 37%. Analysis of up to 22 single events, representing return periods of up to two years, revealed marked detention capacities, expressed as median volume reduction of 40%, spanning 27–69% and median lag time of 1:38 h, spanning 0:39–3:16 h, across all stalls. The considerable range in hydraulic properties can be ascribed to both surface and sub-base properties.

  9. RAMONA-3B/MINET composite representation of BWR thermal-hydraulic systems

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Slovik, G.; Cazzoli, E.G.; Nepsee, T.C.; Guppy, J.G.

    1985-01-01

    The modification and interfacing of two computer codes, RAMONA-3B and MINET, for the thermal hydraulic transient analysis of a Boiling Water Reactor nuclear steam supply system, is described. The RAMONA-3B code provides for multi-channel thermal hydraulics and three-dimensional (or one-dimensional) neutron kinetics analysis of a boiling water reactor core. The RAMONA-3B system representation terminates at the end of the steam line and at the junction of the feedwater line at the vessel inlet. By interfacing RAMONA-3B with MINET, a generic balance-of-plant systems analysis code, a complete BWR systems code with detailed core modeling was obtained. The result is a code of particular importance to the analysis of transients such as ATWS. A comparison between the 3-D and 1-D neutronics representation is provided, along with a test case utilizing the composite RAMONA-3B/MINET code

  10. Combined Optimal Control System for excavator electric drive

    Science.gov (United States)

    Kurochkin, N. S.; Kochetkov, V. P.; Platonova, E. V.; Glushkin, E. Y.; Dulesov, A. S.

    2018-03-01

    The article presents a synthesis of the combined optimal control algorithms of the AC drive rotation mechanism of the excavator. Synthesis of algorithms consists in the regulation of external coordinates - based on the theory of optimal systems and correction of the internal coordinates electric drive using the method "technical optimum". The research shows the advantage of optimal combined control systems for the electric rotary drive over classical systems of subordinate regulation. The paper presents a method for selecting the optimality criterion of coefficients to find the intersection of the range of permissible values of the coordinates of the control object. There is possibility of system settings by choosing the optimality criterion coefficients, which allows one to select the required characteristics of the drive: the dynamic moment (M) and the time of the transient process (tpp). Due to the use of combined optimal control systems, it was possible to significantly reduce the maximum value of the dynamic moment (M) and at the same time - reduce the transient time (tpp).

  11. Electrical drives of the safety system in nuclear power plants

    International Nuclear Information System (INIS)

    1990-09-01

    Actuating drives, control magnets for ventilators, machine drives and control member drives are part of this rule. The rule deals with the security and technical requirements for design, construction, calculation, fabrication, assembling, testing and operation. Furthermore, it places significant demands, with regard to planning and arrangement of electrical drives, on the accompanying technical systems. Furthermore, demands are placed on the aggregate protection for electrical drives of the security systems. The signals given to these systems do not, however, have precedence over the protection signals of the reactor. The rule is identical with KTA-3504, version 9/1988. (orig./HP) [de

  12. An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles.

    Science.gov (United States)

    Bender, Frank A; Bosse, Thomas; Sawodny, Oliver

    2014-09-01

    Refuse trucks play an important role in the waste collection process. Due to their typical driving cycle, these vehicles are characterized by large fuel consumption, which strongly affects the overall waste disposal costs. Hybrid hydraulic refuse vehicles offer an interesting alternative to conventional diesel trucks, because they are able to recuperate, store and reuse braking energy. However, the expected fuel savings can vary strongly depending on the driving cycle and the operational mode. Therefore, in order to assess the possible fuel savings, a typical driving cycle was measured in a conventional vehicle run by the waste authority of the City of Stuttgart, and a dynamical model of the considered vehicle was built up. Based on the measured driving cycle and the vehicle model including the hybrid powertrain components, simulations for both the conventional and the hybrid vehicle were performed. Fuel consumption results that indicate savings of about 20% are presented and analyzed in order to evaluate the benefit of hybrid hydraulic vehicles used for refuse collection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Design of Intelligent Hydraulic Excavator Control System Based on PID Method

    Science.gov (United States)

    Zhang, Jun; Jiao, Shengjie; Liao, Xiaoming; Yin, Penglong; Wang, Yulin; Si, Kuimao; Zhang, Yi; Gu, Hairong

    Most of the domestic designed hydraulic excavators adopt the constant power design method and set 85%~90% of engine power as the hydraulic system adoption power, it causes high energy loss due to mismatching of power between the engine and the pump. While the variation of the rotational speed of engine could sense the power shift of the load, it provides a new method to adjust the power matching between engine and pump through engine speed. Based on negative flux hydraulic system, an intelligent hydraulic excavator control system was designed based on rotational speed sensing method to improve energy efficiency. The control system was consisted of engine control module, pump power adjusted module, engine idle module and system fault diagnosis module. Special PLC with CAN bus was used to acquired the sensors and adjusts the pump absorption power according to load variation. Four energy saving control strategies with constant power method were employed to improve the fuel utilization. Three power modes (H, S and L mode) were designed to meet different working status; Auto idle function was employed to save energy through two work status detected pressure switches, 1300rpm was setting as the idle speed according to the engine consumption fuel curve. Transient overload function was designed for deep digging within short time without spending extra fuel. An increasing PID method was employed to realize power matching between engine and pump, the rotational speed's variation was taken as the PID algorithm's input; the current of proportional valve of variable displacement pump was the PID's output. The result indicated that the auto idle could decrease fuel consumption by 33.33% compared to work in maximum speed of H mode, the PID control method could take full use of maximum engine power at each power mode and keep the engine speed at stable range. Application of rotational speed sensing method provides a reliable method to improve the excavator's energy efficiency and

  14. Naturalistic driving observations of manual and visual-manual interactions with navigation systems and mobile phones while driving.

    NARCIS (Netherlands)

    Christoph, M. Nes, N. van & Knapper, A.

    2014-01-01

    This paper discusses a naturalistic driving study on the use of mobile phones and navigation systems while driving. Manual interactions with these devices while driving can cause distraction from the driving task and reduce traffic safety. In this study 21 subjects were observed for 5 weeks. Their

  15. Design of Pumps for Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Klit, Peder; Olsen, Stefan; Bech, Thomas Nørgaard

    1999-01-01

    This paper considers the development of two pumps for water hydraulic applications. The pumps are based on two different working principles: The Vane-type pump and the Gear-type pump. Emphasis is put on the considerations that should be made to account for water as the hydraulic fluid.......KEYWORDS: water, pump, design, vane, gear....

  16. Scaling in nuclear reactor system thermal-hydraulics

    International Nuclear Information System (INIS)

    D'Auria, F.; Galassi, G.M.

    2010-01-01

    Scaling is a reference 'key-word' in engineering and in physics. The relevance of scaling in the water cooled nuclear reactor technology constitutes the motivation for the present paper. The origin of the scaling-issue, i.e. the impossibility to get access to measured data in case of accident in nuclear reactors, is discussed at first. The so-called 'scaling-controversy' constitutes an outcome. Then, a critical survey (or 'scaling state-of-art';) is given of the attempts and of the approaches to provide a solution to the scaling-issue in the area of Nuclear Reactor System Thermal-Hydraulics (NRSTH): dimensionless design factors for Integral Test Facilities (ITF) are distinguished from scaling factors. The last part of the paper has a two-fold nature: (a) classifying the information about achievements in the area of thermal-hydraulics which are relevant to scaling: the concepts of 'scaling-pyramid' and the related 'scaling bridges' are introduced; (b) establishing a logical path across the scaling achievements (represented as a 'scaling puzzle'). In this context, the 'roadmap for scaling' is proposed: the objective is addressing the scaling issue when demonstrating the applicability of system codes in the licensing process of nuclear power plants. The code itself is referred hereafter as the 'key-to-scaling'. The database from the operation of properly scaled ITF and the availability of qualified system codes are identified as main achievements in NRSTH connected with scaling. The 'roadmap to scaling' constitutes a unified approach to scaling which aims at solving the 'scaling puzzle' created by researches performed during a half-a-century period.

  17. Fault Diagnosis for Hydraulic Servo System Using Compressed Random Subspace Based ReliefF

    Directory of Open Access Journals (Sweden)

    Yu Ding

    2018-01-01

    Full Text Available Playing an important role in electromechanical systems, hydraulic servo system is crucial to mechanical systems like engineering machinery, metallurgical machinery, ships, and other equipment. Fault diagnosis based on monitoring and sensory signals plays an important role in avoiding catastrophic accidents and enormous economic losses. This study presents a fault diagnosis scheme for hydraulic servo system using compressed random subspace based ReliefF (CRSR method. From the point of view of feature selection, the scheme utilizes CRSR method to determine the most stable feature combination that contains the most adequate information simultaneously. Based on the feature selection structure of ReliefF, CRSR employs feature integration rules in the compressed domain. Meanwhile, CRSR substitutes information entropy and fuzzy membership for traditional distance measurement index. The proposed CRSR method is able to enhance the robustness of the feature information against interference while selecting the feature combination with balanced information expressing ability. To demonstrate the effectiveness of the proposed CRSR method, a hydraulic servo system joint simulation model is constructed by HyPneu and Simulink, and three fault modes are injected to generate the validation data.

  18. Automated System of Diagnostic Monitoring at Bureya HPP Hydraulic Engineering Installations: a New Level of Safety

    Energy Technology Data Exchange (ETDEWEB)

    Musyurka, A. V., E-mail: musyurkaav@burges.rushydro.ru [Bureya HPP (a JSC RusGidro affiliate) (Russian Federation)

    2016-09-15

    This article presents the design, hardware, and software solutions developed and placed in service for the automated system of diagnostic monitoring (ASDM) for hydraulic engineering installations at the Bureya HPP, and assuring a reliable process for monitoring hydraulic engineering installations. Project implementation represents a timely solution of problems addressed by the hydraulic engineering installation diagnostics section.

  19. Automated System of Diagnostic Monitoring at Bureya HPP Hydraulic Engineering Installations: a New Level of Safety

    International Nuclear Information System (INIS)

    Musyurka, A. V.

    2016-01-01

    This article presents the design, hardware, and software solutions developed and placed in service for the automated system of diagnostic monitoring (ASDM) for hydraulic engineering installations at the Bureya HPP, and assuring a reliable process for monitoring hydraulic engineering installations. Project implementation represents a timely solution of problems addressed by the hydraulic engineering installation diagnostics section.

  20. Analytical and experimental investigation of chlorine decay in water supply systems under unsteady hydraulic conditions

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Stoianov, Ivan; Graham, Nigel

    2013-01-01

    This paper investigates the impact of the dynamic hydraulic conditions on the kinetics of chlorine decay in water supply systems. A simulation framework has been developed for the scale-adaptive hydraulic and chlorine decay modelling under steady- and unsteady-state flows. An unsteady decay coeff...... of experimental data provides new insights for the near real-time modelling and management of water quality as well as highlighting the uncertainty and challenges of accurately modelling the loss of disinfectant in water supply networks.......This paper investigates the impact of the dynamic hydraulic conditions on the kinetics of chlorine decay in water supply systems. A simulation framework has been developed for the scale-adaptive hydraulic and chlorine decay modelling under steady- and unsteady-state flows. An unsteady decay...... coefficient is defined which depends upon the absolute value of shear stress and the rate of change of shear stress for quasi-unsteady and unsteady-state flows. By coupling novel instrumentation technologies for continuous hydraulic monitoring and water quality sensors for in-pipe water quality sensing...

  1. Design and Optimization of Fast Switching Valves for Large Scale Digital Hydraulic Motors

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck

    The present thesis is on the design, analysis and optimization of fast switching valves for digital hydraulic motors with high power ratings. The need for such high power motors origins in the potential use of hydrostatic transmissions in wind turbine drive trains, as digital hydraulic machines...... have been shown to improve the overall efficiency and efficient operation range compared to traditional hydraulic machines. Digital hydraulic motors uses electronically controlled independent seat valves connected to the pressure chambers, which must be fast acting and exhibit low pressure losses...... to enable efficient operation. These valves are complex components to design, as multiple design aspects are present in these integrated valve units, with conflicting objectives and interdependencies. A preliminary study on a small scale single-cylinder digital hydraulic pump has initially been conducted...

  2. Improving Motor and Drive System Performance – A Sourcebook for Industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-02-01

    This sourcebook outlines opportunities to improve motor and drive systems performance. The sourcebook is divided into four main sections: (1) Motor and Drive System Basics: Summarizes important terms, relationships, and system design considerations relating to motor and drive systems. (2) Performance Opportunity Road Map: Details the key components of well-functioning motor and drive systems and opportunities for energy performance opportunities. (3) Motor System Economics: Offers recommendations on how to propose improvement projects based on corporate priorities, efficiency gains, and financial payback periods. (4) Where to Find Help: Provides a directory of organizations associated with motors and drives, as well as resources for additional information, tools, software, videos, and training opportunities.

  3. Hydraulics and pneumatics a technician's and engineer's guide

    CERN Document Server

    Parr, Andrew

    1991-01-01

    Hydraulics and Pneumatics: A Technician's and Engineer's Guide provides an introduction to the components and operation of a hydraulic or pneumatic system. This book discusses the main advantages and disadvantages of pneumatic or hydraulic systems.Organized into eight chapters, this book begins with an overview of industrial prime movers. This text then examines the three different types of positive displacement pump used in hydraulic systems, namely, gear pumps, vane pumps, and piston pumps. Other chapters consider the pressure in a hydraulic system, which can be quickly and easily controlled

  4. Status and subjects of thermal-hydraulic analysis for next-generation LWRs with passive safety systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The present status and subjects on thermal-hydraulic analysis for next-generation light water reactors (LWRs) with passive safety systems were summarized based on survey results and discussion by subcommittee on improvement of reactor thermal-hydraulic analysis codes under nuclear code committee in Japan Atomic Energy Research Institute. This survey was performed to promote the research of improvement of reactor thermal-hydraulic analysis codes in future. In the first part of this report, the status and subjects on system analysis and those on evaluation of passive safety system performance are summarized for various types of reactor proposed before. In the second part, the status and subjects on multidimensional two-phase flow analysis are reviewed, since the multidimensional analysis was recognized as one of most important subjects through the investigation in the first part. Besides, databases for bubbly flow and annular dispersed flow were explored, those are needed to assess and verify each multidimensional analytical method. The contents in this report are the forefront of thermal-hydraulic analysis for LWRs and those include current findings for the development of multidimensional two-phase flow analytical method. Thus, we expect that the contents can offer various useful information against the improvement of reactor thermal-hydraulic analysis codes in future. (author)

  5. A new linearized equation for servo valve in hydraulic control systems

    International Nuclear Information System (INIS)

    Kim, Tae Hyung; Lee, Ill Yeong

    2002-01-01

    In the procedure of the hydraulic control system analysis, a linearized approximate equation described by the first order term of Taylor's series has been widely used. Such a linearized equation is effective just near the operating point. And, as of now, there are no general standards on how to determine the operating point of a servo valve in the process of applying the linearized equation. So, in this study, a new linearized equation for valve characteristics is proposed as a modified form of the existing linearized equation. And, a method for selecting an optimal operating point is proposed for the new linearized equation. The effectiveness of the new linearized equation is confirmed through numerical simulations and experiments for a model hydraulic control system

  6. Resonant driving of a nonlinear Hamiltonian system

    International Nuclear Information System (INIS)

    Palmisano, Carlo; Gervino, Gianpiero; Balma, Massimo; Devona, Dorina; Wimberger, Sandro

    2013-01-01

    As a proof of principle, we show how a classical nonlinear Hamiltonian system can be driven resonantly over reasonably long times by appropriately shaped pulses. To keep the parameter space reasonably small, we limit ourselves to a driving force which consists of periodic pulses additionally modulated by a sinusoidal function. The main observables are the average increase of kinetic energy and of the action variable (of the non-driven system) with time. Applications of our scheme aim for driving high frequencies of a nonlinear system with a fixed modulation signal.

  7. A Transformerless Medium Voltage Multiphase Motor Drive System

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2016-04-01

    Full Text Available A multiphase motor has several major advantages, such as high reliability, fault tolerance, and high power density. It is a critical issue to develop a reliable and efficient multiphase motor drive system. In this paper, a transformerless voltage source converter-based drive system for a medium-voltage (MV multiphase motor is proposed. This drive converter employs cascaded H-bridge rectifiers loaded by H-bridge inverters as the interface between the grid and multiphase motor. The cascaded H-bridge rectifier technique makes the drive system able to be directly connected to the MV grid without the phase-shifting transformer because it can offset the voltage level gap between the MV grid and the semiconductor devices, provide near-sinusoidal AC terminal voltages without filters, and draw sinusoidal line current from the grid. Based on a digital signal processor (DSP, a complete improved Phase Disposition Pulse Width Modulation (PD-PWM method is developed to ensure the individual DC-link capacitor voltage balancing for enhancing the controllability and limiting the voltage and power stress on the H-bridge cells. A downscaled prototype is designed and developed based on a nine-phase motor. The experimental results verify the excellent performances of the proposed drive system and control strategy in steady-state and variant-frequency startup operations.

  8. Research and development on the hydraulic design system of the guide vanes of multistage centrifugal pumps

    International Nuclear Information System (INIS)

    Zhang, Q H; Xu, Y; Shi, W D; Lu, W G

    2012-01-01

    To improve the hydraulic design accuracy and efficiency of the guide vanes of the multistage centrifugal pumps, four different-structured guide vanes are investigated, and the design processes of those systems are established. The secondary development platforms of the ObjectArx2000 and the UG/NX OPEN are utilized to develop the hydraulic design systems of the guide vanes. The error triangle method is adopted to calculate the coordinates of the vanes, the profiles of the vanes are constructed by Bezier curves, and then the curves of the flow areas along the flow-path are calculated. Two-dimensional and three-dimensional hydraulic models can be developed by this system.

  9. Optimal hydraulic design of new-type shaft tubular pumping system

    International Nuclear Information System (INIS)

    Zhu, H G; Zhang, R T; Zhou, J R

    2012-01-01

    Based on the characteristics of large flow rate, low-head, short annual operation time and high reliability of city flood-control pumping stations, a new-type shaft tubular pumping system featuring shaft suction box, siphon-type discharge passage with vacuum breaker as cutoff device was put forward, which possesses such advantages as simpler structure, reliable cutoff and higher energy performance. According to the design parameters of a city flood control pumping station, a numerical computation model was set up including shaft-type suction box, siphon-type discharge passage, pump impeller and guide vanes. By using commercial CFD software Fluent, RNG κ-ε turbulence model was adopted to close the three-dimensional time-averaged incompressible N-S equations. After completing optimal hydraulic design of shaft-type suction box, and keeping the parameters of total length, maximum width and outlet section unchanged, siphon-type discharge passages of three hump locations and three hump heights were designed and numerical analysis on the 9 hydraulic design schemes of pumping system were proceeded. The computational results show that the changing of hump locations and hump heights directly affects the internal flow patterns of discharge passages and hydraulic performances of the system, and when hump is located 3.66D from the inlet section and hump height is about 0.65D (D is the diameter of pump impeller), the new-type shaft tubular pumping system achieves better energy performances. A pumping system model test of the optimal designed scheme was carried out. The result shows that the highest pumping system efficiency reaches 75.96%, and when at design head of 1.15m the flow rate and system efficiency were 0.304m 3 /s and 63.10%, respectively. Thus, the validity of optimal design method was verified by the model test, and a solid foundation was laid for the application and extension of the new-type shaft tubular pumping system.

  10. Electromagnetic driving units for complex microrobotic systems

    Science.gov (United States)

    Michel, Frank; Ehrfeld, Wolfgang; Berg, Udo; Degen, Reinhard; Schmitz, Felix

    1998-10-01

    Electromagnetic actuators play an important role in macroscopic robotic systems. In combination with motion transformers, like reducing gear units, angular gears or spindle-screw drives, electromagnetic motors in large product lines ensure the rotational or linear motion of robot driving units and grippers while electromagnets drive valves or part conveyors. In this paper micro actuators and miniaturized motion transformers are introduced which allow a similar development in microrobotics. An electromagnetic motor and a planetary gear box, both with a diameter of 1.9 mm, are already commercially available from the cooperation partner of IMM, the company Dr. Fritz Faulhaber GmbH in Schonaich, Germany. In addition, a motor with a diameter of 2.4 mm is in development. The motors successfully drive an angular gear and a belt drive. A linear stage with a motion range of 7 mm and an overall size as small as 5 X 3.5 X 24 mm3 has been realized involving the motor, a stationary spur gear with zero backlash and a spindle-screw drive. By the use of these commercially available elements complex microrobots can be built up cost-efficiently and rapidly. Furthermore, a batch process has been developed to produce the coils of micro actuator arrays using lithographic techniques with SU-8 resin. In applying these components, the modular construction of complex microrobotic systems becomes feasible.

  11. FRF based position controller design through system identification for A hydraulic cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyoung Kyu; Kim, Dong Hwan [Dept. of Mechanical Design and Robot Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of); Park, Jong Won [Reliability Assessment Center, Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2015-11-15

    In this study, we have focused on the design of a controller and an operating program for the operation of the hydraulic actuators used in a shaker. To control the motion of the shaker accurately, the position of each hydraulic cylinder should be controlled precisely even under an uncertain environment. For this purpose, we have suggested a control algorithm using an FRF (frequency response function) based control which senses the behavior of the actuator in advance, calculates a transfer function through the system identification method, and provides the final control input. The experimental results on the performance of this system were compared with that of a simple PID control algorithm.

  12. The impulsive control synchronization of the drive-response complex system

    International Nuclear Information System (INIS)

    Zhao Yanhong; Yang Yongqing

    2008-01-01

    This Letter investigates projective synchronization between the drive system and response complex dynamical system. An impulsive control scheme is adapted to synchronize the drive-response dynamical system to a desired scalar factor. By using the stability theory of the impulsive differential equation, the criteria for the projective synchronization are derived. The feasibility of the impulsive control of the projective synchronization is demonstrated in the drive-response dynamical system

  13. Researches regarding primary control in hydraulic systems

    OpenAIRE

    Tița Irina; Mardare Irina

    2017-01-01

    The technology in wind turbines has developed very rapidly but there are still a lot that can be improved also regarding new technologies. One example is wind turbine with hydraulic transmission. At the beginning low power wind turbines are in view. First of all the wind energy is meant to be used by isolated users for household and garden equipment or pumping water. Later, if results will be as expected, and wind potential satisfactory, such systems could be connected to electric grid. In ou...

  14. Adaptive fuzzy PID control of hydraulic servo control system for large axial flow compressor

    Science.gov (United States)

    Wang, Yannian; Wu, Peizhi; Liu, Chengtao

    2017-09-01

    To improve the stability of the large axial compressor, an efficient and special intelligent hydraulic servo control system is designed and implemented. The adaptive fuzzy PID control algorithm is used to control the position of the hydraulic servo cylinder steadily, which overcomes the drawback that the PID parameters should be adjusted based on the different applications. The simulation and the test results show that the system has a better dynamic property and a stable state performance.

  15. Increasing the energy efficiency of diesel-hydraulic railcars; Steigerung der Energieeffizienz dieselhydraulischer Triebwagen

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, Guenter; Steglich, Uwe; Kache, Martin; Vogler, Christian [TU Dresden (Germany). Professur fuer Technik spurgefuehrte Fahrzeuge

    2010-03-15

    Increasing the energy efficiency of diesel-hydraulic railcars is a complex undertaking in which account needs to be taken of operating conditions and driving modes, the configuration and management of auxiliary systems, and brake and exhaust energy regeneration. The last-mentioned subset of problems is discussed in detail in this article. The authors describe a simulation model based on the AMESim trademark simulation environment that can be used to represent various hybrid configurations, and present initial simulation results for various parallel electric hybrid variants and a exhaust gas heat recovery system based on a closed-loop steam process. (orig.)

  16. Development of control system of coating of rod hydraulic cylinders

    Science.gov (United States)

    Aizhambaeva, S. Zh; Maximova, A. V.

    2018-01-01

    In this article, requirements to materials of hydraulic cylinders and methods of eliminating the main factors affecting the quality of the applied coatings rod hydraulic cylinders. The chromium plating process - one of ways of increase of anti-friction properties of coatings rods, stability to the wear and corrosion. The article gives description of differences of the stand-speed chromium plating process from other types of chromium plating that determines a conclusion about cutting time of chromium plating process. Conducting the analysis of technological equipment suggested addressing the modernization of high-speed chromium plating processes by automation and mechanization. Control system developed by design of schematic block diagram of a modernized and stand-speed chromium plating process.

  17. Modeling and design of cooperative braking in electric and hybrid vehicles using induction machine and hydraulic brake

    Directory of Open Access Journals (Sweden)

    Zaini Dalimus

    2016-07-01

    Full Text Available In mixed-mode braking applications, the electric motor / generator (M/G and hydraulic pressure valve are controlled to meet the driver’s braking demand. Controlling these braking elements is achieved by modulating the current generated by the M/G and adjusting the fluid pressure to the wheel brake cylinders. This paper aims to model and design combined regenerative and hydraulic braking systems which, comprise an induction electric machine, inverter, NiMH battery, controller, a pressure source, pressure control unit, and brake calipers. A 15 kW 1500 rpm induction machine equipped with a reduction gear having a gear ratio of 4 is used. A hydraulic brake capable to produce fluid pressure up to 40 bar is used. Direct torque control and pressure control are chosen as the control criteria in the M/G and the hydraulic solenoid valve. The braking demands for the system are derived from the Federal Testing Procedure (FTP drive cycle. Two simulation models have been developed in Matlab®/Simulink® to analyze the performance of the control strategy in each braking system. The developed model is validated through experiment. It is concluded that the control system does introduce torque ripple and pressure oscillation in the braking system, but these effects do not affect vehicle braking performance due to the high frequency nature of pressure fluctuation and the damping effect of the vehicle inertia. Moreover, experiment results prove the effectiveness of the developed model.

  18. What Drives Saline Circulation Cells in Coastal Aquifers? An Energy Balance for Density-Driven Groundwater Systems

    Science.gov (United States)

    Harvey, C. F.; Michael, H. A.

    2017-12-01

    We formulate the energy balance for coastal groundwater systems and apply it to: (1) Explain the energy driving offshore saline circulation cells, and; (2) Assess the accuracy of numerical simulations of coastal groundwater systems. The flow of fresh groundwater to the ocean is driven by the loss of potential energy as groundwater drops from the elevation of the inland watertable, where recharge occurs, to discharge at sea level. This freshwater flow creates an underlying circulation cell of seawater, drawn into coastal aquifers offshore and discharging near shore, that adds to total submarine groundwater discharge. The saline water in the circulation cell enters and exits the aquifer through the sea floor at the same hydraulic potential. Existing theory explains that the saline circulation cell is driven by mixing of fresh and saline without any additional source of potential or mechanical power. This explanation raises a basic thermodynamic question: what is the source of energy that drives the saline circulation cell? Here, we resolve this question by building upon Hubbert's conception of hydraulic potential to formulate an energy balance for density-dependent flow and salt transport through an aquifer. We show that, because local energy dissipation within the aquifer is proportional to the square of the groundwater velocity, more groundwater flow may be driven through an aquifer for a given energy input if local variations in velocity are smoothed. Our numerical simulations of coastal groundwater systems show that dispersion of salt across the fresh-saline interface spreads flow over larger volumes of the aquifer, smoothing the velocity field, and increasing total flow and submarine groundwater discharge without consuming more power. The energy balance also provides a criterion, in addition to conventional mass balances, for judging the accuracy of numerical solutions of non-linear density-dependent flow problems. Our results show that some numerical

  19. Metallic particles into mechanical and hydraulic systems in agricultural and construction machines

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jair Rosas da; Silva, Deise Paula da [Instituto Agronomico de Campinas (IAC), Campinas, SP (Brazil). Centro de Engenharia Agricola; Bormio, Marcos Roberto [Universidade Estadual Paulista (UNESP), Bauru, SP (Brazil). Fac. de Engenharia

    2008-07-01

    The lubricant oil analysis are an indicator of the conditions how the lubricant is, may to allow the prevision of damages that occurred into machine due to the internal abrasion of hydraulic and mechanical components of the machines. The present study had the objective to determine the kind and quantity of the metallic particles that occurred into the lubricant oil of the mechanical and hydraulic compartments of the energy transmission systems of three kinds of machines: a tracked-tractor, a sugarcane harvester and a group of power-shovels. The metallic particles presents into these compartments were determined under laboratory tests and concerning to the following elements: iron, copper, chromium, lead, nickel, aluminum, silex, tin and molybdenum. About to the tracked-tractor, the metallic contaminators into to the oil charges surpasses the tolerate levels, considering the technical standards adopted in this evaluation. In the sugarcane harvester only a metallic element in excess was identified and, in a power-shovel group it was showed the need to correct air false entrances in the hydraulic or mechanical systems due the high presence of silex element. (author)

  20. Hydraulic and hydrological aspects of an evapotranspiration-constructed wetland combined system for household greywater treatment.

    Science.gov (United States)

    Filho, Fernando Jorge C Magalhães; Sobrinho, Teodorico Alves; Steffen, Jorge L; Arias, Carlos A; Paulo, Paula L

    2018-05-12

    Constructed wetlands systems demand preliminary and primary treatment to remove solids present in greywater (GW) to avoid or reduce clogging processes. The current paper aims to assess hydraulic and hydrological behavior in an improved constructed wetland system, which has a built-in anaerobic digestion chamber (AnC), GW is distributed to the evapotranspiration and treatment tank (CEvaT), combined with a subsurface horizontal flow constructed wetland (SSHF-CW). The results show that both the plants present in the units and the AnC improve hydraulic and volumetric efficiency, decrease short-circuiting and improve mixing conditions in the system. Moreover, the hydraulic conductivity measured on-site indicates that the presence of plants in the system and the flow distribution pattern provided by the AnC might reduce clogging in the SSHF-CW. It is observed that rainfall enables salt elimination, thus increasing evapotranspiration (ET), which promotes effluent reduction and enables the system to have zero discharge when reuse is unfeasible.

  1. Digital switched hydraulics

    Science.gov (United States)

    Pan, Min; Plummer, Andrew

    2018-06-01

    This paper reviews recent developments in digital switched hydraulics particularly the switched inertance hydraulic systems (SIHSs). The performance of SIHSs is presented in brief with a discussion of several possible configurations and control strategies. The soft switching technology and high-speed switching valve design techniques are discussed. Challenges and recommendations are given based on the current research achievements.

  2. Modeling and simulation of hydrostatic transmission system with energy regeneration using hydraulic accumulator

    International Nuclear Information System (INIS)

    Ho, Triet Hung; Ahn, Kyoung Kwan

    2010-01-01

    A new hydraulic closed-loop hydrostatic transmission (HST) energy-saving system is proposed in this paper. The system improves the efficiency of the primary power source. Furthermore, the system is energy regenerative, highly efficient even under partial load conditions. It can work in either a flow or pressure coupling configuration, allowing it to avoid the disadvantages of each configuration. A hydraulic accumulator, the key component of the energy regenerative modality, can be decoupled from or coupled to the HST circuit to improve the efficiency of the system in low-speed, high-torque situations. The accumulator is used in a novel way to recover the kinetic energy without reversion of fluid flow. Both variable displacement hydraulic pump /motors are used when the system operates in the flow coupling configuration so as to enable it to meet the difficult requirements of some industrial and mobile applications. Modeling and a simulation were undertaken with regard to testing the primary energy sources in the two configurations and recovering the energy potential of the system. The results indicated that the low efficiency of traditional HSTs under partial load conditions can be improved by utilizing the pressure coupling configuration. The round-trip efficiency of the system in the energy recovery testing varied from 32% to 66% when the losses of the load were taken into account

  3. Multi-parameter monitoring system for hydraulic fluids; Multi-Parameter Monitoring System fuer Hydraulische Fluessigkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Sumit; Legner, Wolfgang; Hackner, Angelika; Mueller, Gerhard [EADS Innovation Works, Muenchen (Germany). Bereich Sensors, Electronics and Systems Integration; Baumbach, Volker [Airbus Operations GmbH, Bremen (Germany). Bereich Hydraulic Performance and Integrity

    2011-07-01

    A miniaturised sensor system for aviation hydraulic fluids is presented. The system consists of an optochemical sensor and a particle sensor. The optochemical sensor detects the form of the O-H absorption feature around 3500 cm{sup -1} to reveal the water and acid contamination in the fluid. The particle sensor uses a light barrier principle to derive its particle contamination number. (orig.)

  4. Outside-xylem pathways, not xylem embolism, drive leaf hydraulic decline with dehydration

    Science.gov (United States)

    Leaf hydraulic supply is crucial to enable the maintenance of open stomata for CO2 capture and plant growth. During drought-induced leaf dehydration, the capacity for water flow through the leaf (Kleaf) declines, a phenomenon surprisingly attributed for the past fifty years solely to the formation o...

  5. Assessment of Automated Driving Systems using real-life scenarios

    NARCIS (Netherlands)

    Gelder, E. de; Paardekooper, J.P.

    2017-01-01

    More and more Advanced Driver Assistance Systems (ADAS) are entering the market for improving both safety and comfort by assisting the driver with their driving task. An important aspect in developing future ADAS and Automated Driving Systems (ADS) is testing and validation. Validating the failure

  6. BWR control rod drive scram pilot valve monitoring program

    International Nuclear Information System (INIS)

    Soden, R.A.; Kelly, V.

    1986-01-01

    The control rod drive system in a Boiling Water Reactor is the most important safety system in the power plant. All components of the system can be verified except the solenoid operated, scram pilot valves without scramming a rod. The pilot valve mechanical works is the weak link to the control rod drive system. These pilot valves control the hydraulic system which applies pressure to the insert side of the control rod piston and vents the withdraw side of the piston causing the rods to insert during a scram. The only verification that the valve is operating properly is to scram the rod. The concern for this portion of the system is demonstrated by the high number of redundant components and complete periodic testing of the electrical circuits. The pilot valve can become hung-up through wear, fracture of internal components, mechanical binding, foreign material or chemicals left in the valve during maintenance, etc. If the valve becomes hung-up the electrical tests performed will not indicate this condition and scramming the rod is in jeopardy. Only an attempt to scram a rod will indicate the hung-up valve. While this condition exists the rod is considered inoperative. This paper describes a system developed at a nuclear power plant that monitors the pilot valves on the control rod drive system. This system utilizes pattern recognition to assure proper internal workings of the scram pilot valves to plant operators. The system is totally automatic such that each time the valve is operated on a half scram, a printout is available to the operator along with light indication that each of the 370 valves (on one unit of a BWR) is operating properly. With this monitoring system installed, all components of the control rod drive system including the solenoid pilot valves can be verified as operational without scramming any rods

  7. Summary and evaluation of available hydraulic property data for the Hanford Site unconfined aquifer system

    International Nuclear Information System (INIS)

    Thorne, P.D.; Newcomer, D.R.

    1992-11-01

    Improving the hydrologic characterization of the Hanford Site unconfined aquifer system is one of the objectives of the Hanford Site Ground-Water Surveillance Project. To help meet this objective, hydraulic property data available for the aquifer have been compiled, mainly from reports published over the past 40 years. Most of the available hydraulic property estimates are based on constant-rate pumping tests of wells. Slug tests have also been conducted at some wells and analyzed to determine hydraulic properties. Other methods that have been used to estimate hydraulic properties of the unconfined aquifer are observations of water-level changes in response to river stage, analysis of ground-water mound formation, tracer tests, and inverse groundwater flow models

  8. High speed hydraulic scanner for deep x-ray lithography

    International Nuclear Information System (INIS)

    Milne, J.C.; Johnson, E.D.

    1997-07-01

    From their research and development in hard x-ray lithography, the authors have found that the conventional leadscrew driven scanner stages do not provide adequate scan speed or travel. These considerations have led the authors to develop a scanning system based on a long stroke hydraulic drive with 635 mm of travel and closed loop feedback to position the stage to better than 100 micrometers. The control of the device is through a PC with a custom LabView interface coupled to simple x-ray beam diagnostics. This configuration allows one to set a variety of scan parameters, including target dose, scan range, scan rates, and dose rate. Results from the prototype system at beamline X-27B are described as well as progress on a production version for the X-14B beamline

  9. High speed hydraulic scanner for deep x-ray lithography

    Energy Technology Data Exchange (ETDEWEB)

    Milne, J.C.; Johnson, E.D.

    1997-07-01

    From their research and development in hard x-ray lithography, the authors have found that the conventional leadscrew driven scanner stages do not provide adequate scan speed or travel. These considerations have led the authors to develop a scanning system based on a long stroke hydraulic drive with 635 mm of travel and closed loop feedback to position the stage to better than 100 micrometers. The control of the device is through a PC with a custom LabView interface coupled to simple x-ray beam diagnostics. This configuration allows one to set a variety of scan parameters, including target dose, scan range, scan rates, and dose rate. Results from the prototype system at beamline X-27B are described as well as progress on a production version for the X-14B beamline.

  10. Tap Water Hydraulic Systems for Medium Power Applications

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of new range of developed tap water hydraulic componets and applications for medium power up to 4 kW and 50 bar.......Presentation of new range of developed tap water hydraulic componets and applications for medium power up to 4 kW and 50 bar....

  11. Water hydraulic applications in hazardous environments

    International Nuclear Information System (INIS)

    Siuko, M.; Koskinen, K.T.; Vilenius, M.J.

    1996-01-01

    Water hydraulic technology provides several advantages for devices operating in critical environment. Though water hydraulics has traditionally been used in very rough applications, gives recent strong development of components possibility to build more sophisticated applications and devices with similar capacity and control properties than those of oil hydraulics without the disadvantages of oil hydraulic systems. In this paper, the basic principles, possibilities and advantages of water hydraulics are highlighted, some of the most important design considerations are presented and recent developments of water hydraulic technology are presented. Also one interesting application area, ITER fusion reactor remote handling devices, are discussed. (Author)

  12. Reduced-order model based active disturbance rejection control of hydraulic servo system with singular value perturbation theory.

    Science.gov (United States)

    Wang, Chengwen; Quan, Long; Zhang, Shijie; Meng, Hongjun; Lan, Yuan

    2017-03-01

    Hydraulic servomechanism is the typical mechanical/hydraulic double-dynamics coupling system with the high stiffness control and mismatched uncertainties input problems, which hinder direct applications of many advanced control approaches in the hydraulic servo fields. In this paper, by introducing the singular value perturbation theory, the original double-dynamics coupling model of the hydraulic servomechanism was reduced to a integral chain system. So that, the popular ADRC (active disturbance rejection control) technology could be directly applied to the reduced system. In addition, the high stiffness control and mismatched uncertainties input problems are avoided. The validity of the simplified model is analyzed and proven theoretically. The standard linear ADRC algorithm is then developed based on the obtained reduced-order model. Extensive comparative co-simulations and experiments are carried out to illustrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Hydraulic Systems with Tap Water versus Bio-oils

    DEFF Research Database (Denmark)

    Conrad, Finn

    1997-01-01

    Deals with the advantages of using pure tap water hydraulics versus bio-oils for suiteable applications. Focus is in particular on food processing industry.......Deals with the advantages of using pure tap water hydraulics versus bio-oils for suiteable applications. Focus is in particular on food processing industry....

  14. Hydraulics and pneumatics

    CERN Document Server

    Parr, Andrew

    2006-01-01

    Nearly all industrial processes require objects to be moved, manipulated or subjected to some sort of force. This is frequently accomplished by means of electrical equipment (such as motors or solenoids), or via devices driven by air (pneumatics) or liquids (hydraulics).This book has been written by a process control engineer as a guide to the operation of hydraulic and pneumatic systems for all engineers and technicians who wish to have an insight into the components and operation of such a system.This second edition has been fully updated to include all recent developments su

  15. Control performances of a piezoactuator direct drive valve system at high temperatures with thermal insulation

    Science.gov (United States)

    Han, Yung-Min; Han, Chulhee; Kim, Wan Ho; Seong, Ho Yong; Choi, Seung-Bok

    2016-09-01

    This technical note presents control performances of a piezoactuator direct drive valve (PDDV) operated at high temperature environment. After briefly discussing operating principle and mechanical dimensions of the proposed PDDV, an appropriate size of the PDDV is manufactured. As a first step, the temperature effect on the valve performance is experimentally investigated by measuring the spool displacement at various temperatures. Subsequently, the PDDV is thermally insulated using aerogel and installed in a large-size heat chamber in which the pneumatic-hydraulic cylinders and sensors are equipped. A proportional-integral-derivative feedback controller is then designed and implemented to control the spool displacement of the valve system. In this work, the spool displacement is chosen as a control variable since it is directly related to the flow rate of the valve system. Three different sinusoidal displacements with different frequencies of 1, 10 and 50 Hz are used as reference spool displacement and tracking controls are undertaken up to 150 °C. It is shown that the proposed PDDV with the thermal insulation can provide favorable control responses without significant tracking errors at high temperatures.

  16. Scaling in nuclear reactor system thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    D' Auria, F., E-mail: dauria@ing.unipi.i [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, University of Pisa, Via Diotisalvi 2, 56126 Pisa (Italy); Galassi, G.M. [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, University of Pisa, Via Diotisalvi 2, 56126 Pisa (Italy)

    2010-10-15

    Scaling is a reference 'key-word' in engineering and in physics. The relevance of scaling in the water cooled nuclear reactor technology constitutes the motivation for the present paper. The origin of the scaling-issue, i.e. the impossibility to get access to measured data in case of accident in nuclear reactors, is discussed at first. The so-called 'scaling-controversy' constitutes an outcome. Then, a critical survey (or 'scaling state-of-art';) is given of the attempts and of the approaches to provide a solution to the scaling-issue in the area of Nuclear Reactor System Thermal-Hydraulics (NRSTH): dimensionless design factors for Integral Test Facilities (ITF) are distinguished from scaling factors. The last part of the paper has a two-fold nature: (a) classifying the information about achievements in the area of thermal-hydraulics which are relevant to scaling: the concepts of 'scaling-pyramid' and the related 'scaling bridges' are introduced; (b) establishing a logical path across the scaling achievements (represented as a 'scaling puzzle'). In this context, the 'roadmap for scaling' is proposed: the objective is addressing the scaling issue when demonstrating the applicability of system codes in the licensing process of nuclear power plants. The code itself is referred hereafter as the 'key-to-scaling'. The database from the operation of properly scaled ITF and the availability of qualified system codes are identified as main achievements in NRSTH connected with scaling. The 'roadmap to scaling' constitutes a unified approach to scaling which aims at solving the 'scaling puzzle' created by researches performed during a half-a-century period.

  17. Optimal Design and Hybrid Control for the Electro-Hydraulic Dual-Shaking Table System

    Directory of Open Access Journals (Sweden)

    Lianpeng Zhang

    2016-08-01

    Full Text Available This paper is to develop an optimal electro-hydraulic dual-shaking table system with high waveform replication precision. The parameters of hydraulic cylinders, servo valves, hydraulic supply power and gravity balance system are designed and optimized in detail. To improve synchronization and tracking control precision, a hybrid control strategy is proposed. The cross-coupled control using a novel based on sliding mode control based on adaptive reaching law (ASMC, which can adaptively tune the parameters of sliding mode control (SMC, is proposed to reduce the synchronization error. To improve the tracking performance, the observer-based inverse control scheme combining the feed-forward inverse model controller and disturbance observer is proposed. The system model is identified applying the recursive least squares (RLS algorithm and then the feed-forward inverse controller is designed based on zero phase error tracking controller (ZPETC technique. To compensate disturbance and model errors, disturbance observer is used cooperating with the designed inverse controller. The combination of the novel ASMC cross-coupled controller and proposed observer-based inverse controller can improve the control precision noticeably. The dual-shaking table experiment system is built and various experiments are performed. The experimental results indicate that the developed system with the proposed hybrid control strategy is feasible and efficient and can reduce the tracking errors to 25% and synchronization error to 16% compared with traditional control schemes.

  18. Monitoring system of hydraulic lifting device based on the fiber optic sensors

    Science.gov (United States)

    Fajkus, Marcel; Nedoma, Jan; Novak, Martin; Martinek, Radek; Vanus, Jan; Mec, Pavel; Vasinek, Vladimir

    2017-10-01

    This article deals with the description of the monitoring system of hydraulic lifting device based on the fiber-optic sensors. For minimize the financial costs of the proposed monitoring system, the power evaluation of measured signal has been chosen. The solution is based on an evaluation of the signal obtained using the single point optic fiber sensors with overlapping reflective spectra. For encapsulation of the sensors was used polydimethylsiloxane (PDMS) polymer. To obtain a information of loading is uses the action of deformation of the lifting device on the pair single point optic fiber sensors mounted on the lifting device of the tested car. According to the proposed algorithm is determined information of pressure with an accuracy of +/- 5 %. Verification of the proposed system was realized on the various types of the tested car with different loading. The original contribution of the paper is to verify the new low-cost system for monitoring the hydraulic lifting device based on the fiber-optic sensors.

  19. A two-compartment thermal-hydraulic experiment (LACE-LA4) analyzed by ESCADRE code

    International Nuclear Information System (INIS)

    Passalacqua, R.

    1994-01-01

    Large scale experiments show that whenever a Loss of Coolant Accident (LOCA) occurs, water pools are generated. Stratifications of steam saturated gas develop above water pools causing a two-compartment thermal-hydraulics. The LACE (LWR Advanced Containment Experiment) LA4 experiment, performed at the Hanford Engineering Development Laboratory (HEDL), exhibited a strong stratification, at all times, above a growing water pool. JERICHO and AEROSOLS-B2 are part of the ESCADRE code system (Ensemble de Systemes de Codes d'Analyse d'accident Des Reacteurs A Eau), a tool for evaluating the response of a nuclear plant to severe accidents. These two codes are here used to simulate respectively the thermal-hydraulics and the associated aerosol behavior. Code results have shown that modelling large containment thermal-hydraulics without taking account of the stratification phenomenon leads to large overpredictions of containment pressure and temperature. If the stratification is modelled as a zone with a higher steam condensation rate and a higher thermal resistance, ESCADRE predictions match quite well experimental data. The stratification thermal-hydraulics is controlled by power (heat fluxes) repartition in the lower compartment between the water pool and the nearby walls. Therefore the total, direct heat exchange between the two compartment is reduced. Stratification modelling is believed to be important for its influence on aerosol behavior: aerosol deposition through the inter-face of the two subcompartments is improved by diffusiophoresis and thermophoresis. In addition the aerosol concentration gradient, through the stratification, will cause a driving force for motion of smaller particles towards the pool. (author)

  20. Hydraulic balance by means of electromotoric HKV drives for dynamic load profiles; Hydraulischer Abgleich mittels elektromotorischer HKV-Antriebe fuer dynamische Lastprofile

    Energy Technology Data Exchange (ETDEWEB)

    Szendrei, Danny [Westsaechsische Hochschule Zwickau (Germany)

    2010-07-01

    To date, measures and concepts for saving energy become more and more important. The development of prices for conventional energy sources forces public and private households and businesses to changes in consumer behaviour and purchasing behaviour. Due to the structural infrastructure, the housing construction in communes strongly is affected by these developments. Nearly 35 % of the total energy demand in Europe account for heating of buildings generally. The most common type of heating system for heating of residential buildings is the central hot water heating in the two-tube version. It is assumed that nearly 90 % of the operated plants have a hydraulic unbalance. Additionally, balanced heating systems fulfil the desired efficiency only under certain, structural design conditions. The integration of the control of heating systems in the smart home infrastructure or KNX infrastructure enables a building-independent, tunable heat supply between buildings and consumption acquisition. The hydraulic system loads can be optimized simultaneously via the direct access to the control value. Thus, a homogeneous mass distribution over the plant can be guaranteed which is derived from the dynamic needs of the system users. These heat loads are calculated by the KNX system and the application of HeatingControl.

  1. Next Generation Environmentally-Friendly Driving Feedback Systems Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Matthew [Regents Of The University Of California, Riverside, CA (United States); Boriboonsomsin, Kanok [Regents Of The University Of California, Riverside, CA (United States)

    2014-12-31

    The objective of this project is to design, develop, and demonstrate a next-generation, federal safety- and emission-complaint driving feedback system that can be deployed across the existing vehicle fleet and improve fleet average fuel efficiency by at least 2%. The project objective was achieved with the driving feedback system that encourages fuel-efficient vehicle travel and operation through: 1) Eco-Routing Navigation module that suggests the most fuel-efficient route from one stop to the next, 2) Eco-Driving Feedback module that provides sensible information, recommendation, and warning regarding fuel-efficient vehicle operation, and 3) Eco-Score and Eco-Rank module that provides a means for driving performance tracking, self-evaluation, and peer comparison. The system also collects and stores vehicle travel and operation data, which are used by Algorithm Updating module to customize the other modules for specific vehicles and adapts them to specific drivers over time. The driving feedback system was designed and developed as an aftermarket technology that can be retrofitted to vehicles in the existing fleet. It consists of a mobile application for smart devices running Android operating system, a vehicle on-board diagnostics connector, and a data server. While the system receives and utilizes real-time vehicle and engine data from the vehicle’s controller area network bus through the vehicle’s on-board diagnostic connector, it does not modify or interfere with the vehicle’s controller area network bus, and thus, is in compliance with federal safety and emission regulations. The driving feedback system was demonstrated and then installed on 45 vehicles from three different fleets for field operational test. These include 15 private vehicles of the general public, 15 pickup trucks of the California Department of Transportation that are assigned to individual employees for business use, and 15 shuttle buses of the Riverside Transit Agency that are used

  2. Intelligent Materials Used in Hydraulic, Fuel, and Rudder Control Systems of Aircrafts

    Directory of Open Access Journals (Sweden)

    D. B. Chernov

    2017-01-01

    Full Text Available The device is really intelligent, only if it is capable to respond to changing external conditions. The devices, which "feel" the external environment and can change their characteristics, have many advantages compared to the conventional devices: they are more efficient, wear out more slowly, and have lower operating costs.The scope of smart products is truly infinite. Alloys with memory effect also apply to intellectual content. Natural piezoelectric crystals such as silicon dioxide (intellectual material have been known for over a hundred years. They have greater stiffness and can be used at high operating frequencies. Due to the direct piezoelectric effect, they have been successfully used as a strain gage. Later came artificial ceramic piezoelectric materials; they are used as mechanical transducers. Thus, an inverse piezoelectric effect is usually used. It consists in the change of dimensions when an electric field is applied. Control of intellectual structure can be provided by heat fluxes, electromagnetic, hydraulic or piezoelectric forces and through application of electro-rheological, and magneto-rheological fluids. The article examines the intellectual materials and technologies that are already in place or will find its application in aviation hydraulic and fuel systems and control systems of rudders (CSR of aircrafts in the near future.The paper considers in detail the shape memory effect alloys (SMEA as "intelligent" materials. Actuators made from SMEA have a number of advantages: high working power; large recoverable deformation; different types of strain (tensile, compressive, bending and torsional; most specific value of the work per unit mass. All the SMEA advantages may be well used for the so-called thermo-mechanical connections (TMС of pipelines where SMEA drawbacks in this application, practically, do not affect the quality of TMC. In aircraft engineering the TMC were first used in hydraulic systems of the aircraft TU204

  3. Scaling of Thermal-Hydraulic Phenomena and System Code Assessment

    International Nuclear Information System (INIS)

    Wolfert, K.

    2008-01-01

    In the last five decades large efforts have been undertaken to provide reliable thermal-hydraulic system codes for the analyses of transients and accidents in nuclear power plants. Many separate effects tests and integral system tests were carried out to establish a data base for code development and code validation. In this context the question has to be answered, to what extent the results of down-scaled test facilities represent the thermal-hydraulic behaviour expected in a full-scale nuclear reactor under accidental conditions. Scaling principles, developed by many scientists and engineers, present a scientific technical basis and give a valuable orientation for the design of test facilities. However, it is impossible for a down-scaled facility to reproduce all physical phenomena in the correct temporal sequence and in the kind and strength of their occurrence. The designer needs to optimize a down-scaled facility for the processes of primary interest. This leads compulsorily to scaling distortions of other processes with less importance. Taking into account these weak points, a goal oriented code validation strategy is required, based on the analyses of separate effects tests and integral system tests as well as transients occurred in full-scale nuclear reactors. The CSNI validation matrices are an excellent basis for the fulfilling of this task. Separate effects tests in full scale play here an important role.

  4. TECHNOLOGICAL DEVELOPMENT OF DRIVING SUPPORT SYSTEMS BASED ON HUMAN BEHAVIORAL CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Shunichi DOI

    2006-01-01

    Full Text Available Driving support and cruise assist systems are of growing importance in achieving both road traffic safety and convenience. Such driver support seeks to achieve, with the highest possible quality, nothing less than “driver-vehicle symbiosis under all conditions.” At the same time, many traffic accidents result from improper driver behavior. The author focuses on driver behavior under various driving conditions, conducting detailed measurement and analysis of visual perception and attention characteristics as well as perceptual characteristics involved in driving. The aim in doing so is to support research on driving support systems and driving workload reduction technologies that function as human-vehicle systems and take such characteristics into account.

  5. Interaction between thermal/hydraulics, human factors and system analysis for assessing feed and bleed risk benefits

    International Nuclear Information System (INIS)

    Lanore, J.M.; Caron, J.L.

    1987-11-01

    For probabilistic analysis of accident sequences, thermal/hydraulics, human factors and systems operation problems are frequently closely interrelated. This presentation will discuss a typical example which illustrates this interrelation: total loss of feedwater flow. It will present thermal/hydraulic analysises performed, how the T/H analysises are related to human factors and systems operation, and how, based on this, the failure probability of the feed and bleed cooling mode was evaluated

  6. Virtual Winch Prototyping-Design, Modeling, Simulation and Testing of A Marine Hydraulic Winch System with Active Heave Compensation.

    OpenAIRE

    He, Dahai

    2016-01-01

    This thesis is to develop a standard virtual prototyping system for hydraulic winch system including developing a library of standard sub-models of hydraulic system, mechanical system and control system (AHC), and visualizing the simulation and operation of the virtual winch prototyping system. To be more specific: Chapter 1. Motivation and background of winch prototyping is introduced so as to break down the problems and formulate the objectives of this projects. Chapter 2. Theoretical...

  7. Preliminary thermal-hydraulic and safety analysis of China DFLL-TBM system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei [School of Nuclear Science and Technology, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an, Shanxi 710049 (China); Tian, Wenxi, E-mail: wxtian@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an, Shanxi 710049 (China); Qiu, Suizheng; Su, Guanghui; Jiao, Hong [School of Nuclear Science and Technology, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an, Shanxi 710049 (China); Bai, Yunqing; Chen, Hongli [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Wu, Yican, E-mail: yican.Wu@Fds.Org.Cn [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2013-06-15

    Highlights: • Thermal-hydraulic and safety analysis on DFLL-TBM system is performed. • The TBM FW maximum temperature is 541 °C under steady state condition. • The TBM FW maximum temperature does not exceed the melt point of CLAM steel 1500 °C. • Neither the VV pressurization nor vault pressure build-up goes beyond 0.2 MPa. -- Abstract: China has proposed the dual-functional lithium-lead (DFLL) tritium breeding blanket concept for testing in ITER as a test blanket module (TBM), to demonstrate the technologies of tritium self-sufficiency, high-grade heat extraction and efficient electricity production which are needed for DEMO and fusion power plant. Safety assessment of the TBM and its auxiliary system should be conducted to deal with ITER safety issues directly caused by the TBM system failure during the design process. In this work, three potential initial events (PIEs) – in-vessel loss of helium (He) coolant and ex-vessel loss of He coolant and loss of flow without scram (LOFWS) – were analyzed for the TBM system with a modified version of the RELAP5/MOD3 code containing liquid lithium-lead eutectic (LiPb). The code also comprised an empirical expression for MHD pressure drop relevant to three-dimensional (3D) effect, the Lubarsky–Kaufman convective heat transfer correlation for LiPb flow and the Gnielinski convective heat transfer correlation for He flow. Since both LiPb and He serve as TBM coolants, the LiPb and He ancillary cooling systems were modeled to investigate the thermal-hydraulic characteristic of the TBM system and its influence on ITER safety under those accident conditions. The TBM components and the coolants flow within the TBM were simulated with one-dimensional heat structures and their associated hydrodynamic components. ITER enclosures including vacuum vessel (VV), port cell and TCWS vault were also covered in the model for accident analyses. Through this best estimate approach, the calculation indicated that the current

  8. Estimating parameters of chaotic systems synchronized by external driving signal

    International Nuclear Information System (INIS)

    Wu Xiaogang; Wang Zuxi

    2007-01-01

    Noise-induced synchronization (NIS) has evoked great research interests recently. Two uncoupled identical chaotic systems can achieve complete synchronization (CS) by feeding a common noise with appropriate intensity. Actually, NIS belongs to the category of external feedback control (EFC). The significance of applying EFC in secure communication lies in fact that the trajectory of chaotic systems is disturbed so strongly by external driving signal that phase space reconstruction attack fails. In this paper, however, we propose an approach that can accurately estimate the parameters of the chaotic systems synchronized by external driving signal through chaotic transmitted signal, driving signal and their derivatives. Numerical simulation indicates that this approach can estimate system parameters and external coupling strength under two driving modes in a very rapid manner, which implies that EFC is not superior to other methods in secure communication

  9. Transistorized PWM inverter-induction motor drive system

    Science.gov (United States)

    Peak, S. C.; Plunkett, A. B.

    1982-01-01

    This paper describes the development of a transistorized PWM inverter-induction motor traction drive system. A vehicle performance analysis was performed to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of inverter and motor specifications. The inverter was a transistorized three-phase bridge using General Electric power Darlington transistors. The description of the design and development of this inverter is the principal object of this paper. The high-speed induction motor is a design which is optimized for use with an inverter power source. The primary feedback control is a torque angle control with voltage and torque outer loop controls. A current-controlled PWM technique is used to control the motor voltage. The drive has a constant torque output with PWM operation to base motor speed and a constant horsepower output with square wave operation to maximum speed. The drive system was dynamometer tested and the results are presented.

  10. Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System

    International Nuclear Information System (INIS)

    O'Brien, Robert C.; Klein, Andrew C.; Taitano, William T.; Gibson, Justice; Myers, Brian; Howe, Steven D.

    2011-01-01

    Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

  11. Hydraulic Hybrid Fleet Vehicle Testing | Transportation Research | NREL

    Science.gov (United States)

    Hydraulic Hybrid Fleet Vehicle Evaluations Hydraulic Hybrid Fleet Vehicle Evaluations How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would -pressure reservoir to a high-pressure accumulator. When the vehicle accelerates, fluid in the high-pressure

  12. Soft Dielectric Elastomer Oscillators Driving Bioinspired Robots.

    Science.gov (United States)

    Henke, E-F Markus; Schlatter, Samuel; Anderson, Iain A

    2017-12-01

    Entirely soft robots with animal-like behavior and integrated artificial nervous systems will open up totally new perspectives and applications. To produce them, we must integrate control and actuation in the same soft structure. Soft actuators (e.g., pneumatic and hydraulic) exist but electronics are hard and stiff and remotely located. We present novel soft, electronics-free dielectric elastomer oscillators, which are able to drive bioinspired robots. As a demonstrator, we present a robot that mimics the crawling motion of the caterpillar, with an integrated artificial nervous system, soft actuators and without any conventional stiff electronic parts. Supplied with an external DC voltage, the robot autonomously generates all signals that are necessary to drive its dielectric elastomer actuators, and it translates an in-plane electromechanical oscillation into a crawling locomotion movement. Therefore, all functional and supporting parts are made of polymer materials and carbon. Besides the basic design of this first electronic-free, biomimetic robot, we present prospects to control the general behavior of such robots. The absence of conventional stiff electronics and the exclusive use of polymeric materials will provide a large step toward real animal-like robots, compliant human machine interfaces, and a new class of distributed, neuron-like internal control for robotic systems.

  13. Transient performance analysis of the master cylinder hydraulic system of a 6.3 MN fineblanking press

    Science.gov (United States)

    Yi, Guodong; Li, Jin

    2018-03-01

    The master cylinder hydraulic system is the core component of the fineblanking press that seriously affects the machine performance. A key issue in the design of the master cylinder hydraulic system is dealing with the heavy shock loads in the fineblanking process. In this paper, an equivalent model of the master cylinder hydraulic system is established based on typical process parameters for practical fineblanking; then, the response characteristics of the master cylinder slider to the step changes in the load and control current are analyzed, and lastly, control strategies for the proportional valve are studied based on the impact of the control parameters on the kinetic stability of the slider. The results show that the kinetic stability of the slider is significantly affected by the step change of the control current, while it is slightly affected by the step change of the system load, which can be improved by adjusting the flow rate and opening time of the proportional valve.

  14. Assessing drivers' response during automated driver support system failures with non-driving tasks.

    Science.gov (United States)

    Shen, Sijun; Neyens, David M

    2017-06-01

    With the increase in automated driver support systems, drivers are shifting from operating their vehicles to supervising their automation. As a result, it is important to understand how drivers interact with these automated systems and evaluate their effect on driver responses to safety critical events. This study aimed to identify how drivers responded when experiencing a safety critical event in automated vehicles while also engaged in non-driving tasks. In total 48 participants were included in this driving simulator study with two levels of automated driving: (a) driving with no automation and (b) driving with adaptive cruise control (ACC) and lane keeping (LK) systems engaged; and also two levels of a non-driving task (a) watching a movie or (b) no non-driving task. In addition to driving performance measures, non-driving task performance and the mean glance duration for the non-driving task were compared between the two levels of automated driving. Drivers using the automated systems responded worse than those manually driving in terms of reaction time, lane departure duration, and maximum steering wheel angle to an induced lane departure event. These results also found that non-driving tasks further impaired driver responses to a safety critical event in the automated system condition. In the automated driving condition, driver responses to the safety critical events were slower, especially when engaged in a non-driving task. Traditional driver performance variables may not necessarily effectively and accurately evaluate driver responses to events when supervising autonomous vehicle systems. Thus, it is important to develop and use appropriate variables to quantify drivers' performance under these conditions. Copyright © 2017 Elsevier Ltd and National Safety Council. All rights reserved.

  15. Thermal Hydraulic Analysis on Containment Filtered Venting System

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Suk; Park, Tong Kyu; Lee, Doo Yong; Lee, Byung Chul [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Lee, Sang Won; Kim, Hyeong Taek [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this study, the thermal hydraulic conditions (e. g. pressure and flow rate) at each component have been examined and the sensitivity analysis on CFVS design parameters (e. g. water inventory, volumetric flow rate). The purpose is to know the possible range of flow conditions at each component to determine the optimum size of filtration system. GOTHIC code has been used to simulate the thermal-hydraulic behavior inside of CFVS. The behavior of flows in the CFVS has been investigated. The vessel water level and the flow rates during the CFVS operation are examined. It was observed that the vessel water level would be changed significantly due to steam condensation/thermal expansion and steam evaporation. Therefore, the vessel size and the initial water inventory should be carefully determined to keep the minimum water level required for filtration components and not to flood the components in the upper side of the vessel. It has been also observed that the volumetric flow rate is maintained during the CFVS operation, which is beneficial for pool scrubbing units. However, regarding the significant variations at the orifice downstream, careful design would be necessary.

  16. Improvement of diesel engine performance by hydraulically powered electronic control (mechatronics) system. Hakuyo diesel kikan no mechatronics system ni yoru seino kojo

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, K.; Nakamura, Y.; Kajima, T.; Sato, S.; Fujii, T.; Tobe, Y. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan))

    1992-07-20

    This paper describes new hydraulically-actuated mechanisms for both fuel injection and inlet/exhaust valve operation of diesel engines through solenoid valves, which obviate the conventional cam-driven system. These mechanisms were integrated with an electronic control unit also developed in this study and they were mounted as a mechatronics system'' on a power-increased single-cylinder engine. This mechatronics system was mainly composed of an injection control. boost and accumulation component, an inlet and exhaust valve control component, a solenoid valve, an electronic control equipment, a hydraulic power unit, and a maneuvering unit. The verification test was carried out for the improvement of diesel engine performance by the hydraulically powered mechatronics system. As a result, it was proved not only that these mechanisms provide stable operating characteristics over a wide range of conditions, but also that the electronic control system allows accurate, smooth response. 3 refs., 23 figs., 2 tabs.

  17. NREL Evaluates Performance of Hydraulic Hybrid Refuse Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    This highlight describes NREL's evaluation of the in-service performance of 10 next-generation hydraulic hybrid refuse vehicles (HHVs), 8 previous-generation (model year 2013) HHVs, and 8 comparable conventional diesel vehicles operated by Miami-Dade County's Public Works and Waste Management Department in southern Florida. Launched in March 2015, the on-road portion of this 12-month evaluation focuses on collecting and analyzing vehicle performance data - fuel economy, maintenance costs, and drive cycles - from the HHVs and the conventional diesel vehicles. The fuel economy of heavy-duty vehicles, such as refuse trucks, is largely dependent on the load carried and the drive cycles on which they operate. In the right applications, HHVs offer a potential fuel-cost advantage over their conventional counterparts. This advantage is contingent, however, on driving behavior and drive cycles with high kinetic intensity that take advantage of regenerative braking. NREL's evaluation will assess the performance of this technology in commercial operation and help Miami-Dade County determine the ideal routes for maximizing the fuel-saving potential of its HHVs. Based on the field data, NREL will develop a validated vehicle model using the Future Automotive Systems Technology Simulator, also known as FASTSim, to study the impacts of route selection and other vehicle parameters. NREL is also analyzing fueling and maintenance data to support total-cost-of-ownership estimations and forecasts. The study aims to improve understanding of the overall usage and effectiveness of HHVs in refuse operation compared to similar conventional vehicles and to provide unbiased technical information to interested stakeholders.

  18. Passive temperature compensation in hydraulic dashpot used for the shut-off rod drive mechanism of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Narendra K., E-mail: nksingh_chikki@yahoo.com [Division of Remote Handling and Robotics, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Badodkar, Deepak N. [Division of Remote Handling and Robotics, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 (India)

    2015-11-15

    Highlights: • Passive temperature compensation in hydraulic dashpot has been studied numerically as well as experimentally. • Temperature compensation is achieved by reducing the clearances in the hydraulic dashpot at elevated temperature to compensate for the viscosity reduction. • Temperature compensation effects due to difference in thermal expansion of common engineering materials and use of bimetallic strips have been analyzed. • Design of a novel passive temperature compensating hydraulic dashpot is presented, which can be used for wide range of temperature variations. - Abstract: Passive temperature compensating hydraulic dashpot has been studied numerically as well as experimentally in this paper. Study is focused on reducing the clearances of the hydraulic dashpot at elevated temperature which intern compensates for the reduction in viscosity of damping oil and the dashpot gives uniform performance for wide range of temperature variation. Temperature compensation effects are mainly due to difference in the thermal expansion of materials. Different combinations of materials are used to reduce the dashpot clearances at elevated temperature. Finite element commercial code COMSOL Multiphysics 5.1 has been used for numerical analysis. Fluid-structure analysis has been carried-out to study the thermal expansion and pressure generated in the hydraulic dashpot. Multiphysics study with solid mechanics, laminar flow and moving mesh interfaces has been carried-out. Thermal expansion results of study-1 (solid mechanics) are further extended in to study-2 (laminar flow and moving mesh) and dashpot pressure is estimated. These results show that bimetallic strip improves the dashpot performance at 55 °C but do not fully compensate beyond that and less severe impacts occurs. Specific combinations of design and materials have been presented in this paper for obtaining maximum temperature compensation. A novel passive temperature compensating hydraulic dashpot

  19. Passive temperature compensation in hydraulic dashpot used for the shut-off rod drive mechanism of a nuclear reactor

    International Nuclear Information System (INIS)

    Singh, Narendra K.; Badodkar, Deepak N.

    2015-01-01

    Highlights: • Passive temperature compensation in hydraulic dashpot has been studied numerically as well as experimentally. • Temperature compensation is achieved by reducing the clearances in the hydraulic dashpot at elevated temperature to compensate for the viscosity reduction. • Temperature compensation effects due to difference in thermal expansion of common engineering materials and use of bimetallic strips have been analyzed. • Design of a novel passive temperature compensating hydraulic dashpot is presented, which can be used for wide range of temperature variations. - Abstract: Passive temperature compensating hydraulic dashpot has been studied numerically as well as experimentally in this paper. Study is focused on reducing the clearances of the hydraulic dashpot at elevated temperature which intern compensates for the reduction in viscosity of damping oil and the dashpot gives uniform performance for wide range of temperature variation. Temperature compensation effects are mainly due to difference in the thermal expansion of materials. Different combinations of materials are used to reduce the dashpot clearances at elevated temperature. Finite element commercial code COMSOL Multiphysics 5.1 has been used for numerical analysis. Fluid-structure analysis has been carried-out to study the thermal expansion and pressure generated in the hydraulic dashpot. Multiphysics study with solid mechanics, laminar flow and moving mesh interfaces has been carried-out. Thermal expansion results of study-1 (solid mechanics) are further extended in to study-2 (laminar flow and moving mesh) and dashpot pressure is estimated. These results show that bimetallic strip improves the dashpot performance at 55 °C but do not fully compensate beyond that and less severe impacts occurs. Specific combinations of design and materials have been presented in this paper for obtaining maximum temperature compensation. A novel passive temperature compensating hydraulic dashpot

  20. Powertrains 2011. Electronics, mechanics and hydraulics in application; Antriebssysteme 2011. Elektrik, Mechanik und Hydraulik in der Anwendung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the VDI/VDE conference at 13th-14th September, 2011 in Stuttgart (Federal Republic of Germany) the following lectures and posters were presented: (1) Sieve printed windings of rotating small drives and their evaluation (P. Braeuer); (2) Variable impedance induction motor - Measurement results of a variable impedance induction motor prototype (H. Gholizad); (3) Utilization of a multiphase winding in a star-polygon hybrid circuit for squirrel asynchronous motors for increasing the energy efficiency - generation of flooding waves of a 6-phase machine with a 3-phase connection (T. Knopik); (4) Virtual development of electric moors - Design of an asynchronous motor for propel drives by means of a numeric optimization and software automation (V. Reinhardt); (5) A hybrid microproduction system driven by piezoactuators and linear motors (C. Hast); (6) MRF actors with minimized standby losses (D. Gueth); (7) Experimental determination of rotor losses in a homopolar magnetic bearing (E. Fleischer); (8) Vibrational condition monitoring of coiler heads of electric large machines (C. Kreischer); (9) Recovery potentials in the electric propulsion technology - ''What is left usable from the energy'' (M. Schumacher); (10) Overall energy balance in the powertrain - The application decides - Energetic analysis of a powertrain (A. Thomas); (11) Optimal dimensioning of an actuator in the mechatronic overall system electric motor - gear - load (M. Lindner); (12) Electric and hydraulic hybrid actuator: Competing and complementary systems (K. Dehnert); (13) Intelligent pump drives - Simulation, condition monitoring, fault diagnosis and energy efficiency (S. Kleinmann); (14) Parametric models of the permanent magnet-synchronous machine (PMSM) under consideration of the impacts of magnetic saturation (F. Mink); (15) Electromagnetic, structure dynamic acoustic FEM simulation of an asynchronous motor for the evaluation of noise emission (J. Wibbeler); (16

  1. Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States). Robotics and Process Systems Div.; Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States); Basher, A.M.H. [South Carolina State Univ., Orangeburg, SC (United States)

    1996-09-01

    To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and analytical

  2. Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kress, R.L.; Jansen, J.F.; Basher, A.M.H.

    1996-09-01

    To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and analytical

  3. Latest trends in variable speed drive systems. ; Application to elevators. Kahensoku drive system no saishin doko. ; Elevator eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, H. (Hitachi, Ltd., Tokyo (Japan))

    1992-07-12

    The history of the elevator development may be summarized as a challenge to heights of buildings, pursuit of energy saving, and realizing comfort. Transfer of its drive system to the inverter drive system has been nearly completed keeping the pace with advance of electronic technologies. This paper describes control systems of elevators, effects of introducing inverters, and future trends. The inverter system used widely now for standard elevators with a speed lower than 105 m/min consists of a converter to rectify the utility power, a regenerative power consuming circuit to suppress overvoltage in the DC stage, and an inverter to supply power to induction motors. Those elevators exceeding a 120 m/min speed use power regenerating inverter system, with its converter controlled using micro computers according to loads and speeds of motors. The inverter system is particularly marked for having realized energy saving, lower power consumption, lower environmental pollution (from harmonics), comfort and maintainability at high levels. 13 refs., 9 figs.

  4. Development of the Nissan hydraulic active suspension. Nissan yuatsu active suspension no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kawarasaki, y.; Fukunaga, Y.; Hasegawa, S.; Okuyama, Y.; Omura, I.; Takahashi, K.; Abe, S.; Tsuruta, E. (Nissan Motor Co. Ltd., Tokyo (Japan))

    1989-12-25

    A hydraulic active suspension system, Nissan original product, was developed and mass produced for the first time in the world. The system incorporates a sufficient power source, a high accuracy sensor and a high response device for continuous and intended vehicle control and at the same time delivers high levels of ride comfort and driving performance. The suspension system has four innovative features: skyhook damping, active roll and pitching control, a frequency-dependent damping mechanism, and active steering characteristics control. Under all road and operating conditions, the system actively suppresses vehicle attitude changes and unnecessary movement, and also gently absorbs inputs from the road. This epoch-making system provides a dramatic improvement in vehicle performance, and has been adopted in the Infiniti Q45 luxury sedan. 2 refs., 20 figs., 4 tabs.

  5. A novel dual motor drive system for three wheel electric vehicles

    Science.gov (United States)

    Panmuang, Piyapat; Thongsan, Taweesak; Suwapaet, Nuchida; Laohavanich, Juckamass; Photong, Chonlatee

    2018-03-01

    This paper presents a novel dual motor drive system used for three wheel electric vehicles that have one free wheel at the front and two wheels with a drive system at the end of the vehicles. A novel dual motor drive system consists of two identical DC motors that are independently controlled by its speed-torque controller. Under light load conditions, only one of the DC motors will operate around it rated whilst under hard load conditions both of the DC motors will operate. With this drive system, the motors will operate only at its high performance at rated or else no operate to retain longer lifetime. The simulated results for the Skylab three wheel electric vehicle prototype with 8kW at full load (high torque, low speed) and around 4kW at light/normal operating loads (regular speed-torque) showed that the proposed system provides better dynamic responses with faster overshoot current/voltage recovery time, has lower investment costs, has longer lifetime of the motors and allows the motors to always operate at their high performance and thus achieve more cost effective system compared to a single motor drive system with 8kW DC motors.

  6. A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system.

    Science.gov (United States)

    Endut, Azizah; Jusoh, A; Ali, N; Wan Nik, W B; Hassan, A

    2010-03-01

    The growths of the African catfish (Clarias gariepinus) and water spinach (Ipomoea aquatica) were evaluated in recirculation aquaponic system (RAS). Fish production performance, plant growth and nutrient removal were measured and their dependence on hydraulic loading rate (HLR) was assessed. Fish production did not differ significantly between hydraulic loading rates. In contrast to the fish production, the water spinach yield was significantly higher in the lower hydraulic loading rate. Fish production, plant growth and percentage nutrient removal were highest at hydraulic loading rate of 1.28 m/day. The ratio of fish to plant production has been calculated to balance nutrient generation from fish with nutrient removal by plants and the optimum ratio was 15-42 gram of fish feed/m(2) of plant growing area. Each unit in RAS was evaluated in terms of oxygen demand. Using specified feeding regime, mass balance equations were applied to quantify the waste discharges from rearing tanks and treatment units. The waste discharged was found to be strongly dependent on hydraulic loading rate. 2009 Elsevier Ltd. All rights reserved.

  7. The hydraulic mechanism in the hind wing veins of Cybister japonicus Sharp (order: Coleoptera

    Directory of Open Access Journals (Sweden)

    Jiyu Sun

    2016-06-01

    Full Text Available The diving beetles (Dytiscidae, Coleoptera are families of water beetles. When they see light, they fly to the light source directly from the water. Their hind wings are thin and fragile under the protection of their elytra (forewings. When the beetle is at rest the hind wings are folded over the abdomen of the beetle and when in flight they unfold to provide the necessary aerodynamic forces. In this paper, the unfolding process of the hind wing of Cybister japonicus Sharp (order: Coleoptera was investigated. The motion characteristics of the blood in the veins of the structure system show that the veins have microfluidic control over the hydraulic mechanism of the unfolding process. A model is established, and the hind wing extending process is simulated. The blood flow and pressure changes are discussed. The driving mechanism for hydraulic control of the folding and unfolding actions of beetle hind wings is put forward. This can assist the design of new deployable micro air vehicles and bioinspired deployable systems.

  8. FRAMEWORK OF TAILORMADE DRIVING SUPPORT SYSTEMS AND NEURAL NETWORK DRIVER MODEL

    Directory of Open Access Journals (Sweden)

    Toshiya HIROSE, M.S.

    2004-01-01

    Nowadays, tailormade medical treatment is receiving much attention in the field of medical care. It is also desirable for driving support systems to reflect the driving characteristics of individuals as much as possible, begin monitoring the driver when a driver starts driving and calculates the driver model, and supports them with a model that makes the driver feel quite normal. That is the construction of Tailormade Driving Support Systems (TDSS. This research proposes a concept and a framework of TDSS, and presents a driver model that uses a neural network to build the system. As for the feasibility of this system, the research selects braking as a typical constituent element, and illustrates and reviews the results of experiments and simulations.

  9. NRC Information No. 87-56: Improper hydraulic control unit installation at BWR plants

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    This information notice is being provided to alert addressees to a potential problem that could affect the ability of the hydraulic control units (HCUs) to control the positioning of the control rods in the event of an earthquake. In addition, the potential for damage to the control rod drive (CRD) system withdraw lines that exists under certain conditions could result in a small-break loss-of-coolant accident in the HCU area. The CRD system controls the position of the control rods within the reactor core either to change reactor core power or to rapidly shut down the reactor (scram). The HCU is a major component of the CRD system that incorporates all the hydraulic, electrical, and pneumatic equipment necessary to move one CRD mechanism during normal or scram operations. This equipment, which includes the accumulators, CRD insert lines, CRD withdraw lines, and scram valves, is supported by the HCU frames. If a sufficiently large number of HCU frame bolts are missing or loose, a Safe Shutdown Earthquake (SSE) could result in damage affecting the ability of the CRD system to control the positioning of the control rods. In addition, damage to a CRD withdraw line could result in a small-break loss-of-coolant accident in the area of the HCUs

  10. Elevator and hydraulics; Elevator to yuatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, I. [Hitachi, Ltd., Tokyo (Japan)

    1994-07-15

    A hydraulic type elevator is installed in relatively lower buildings as compared with a rope type elevator, but the ratio in the number of installation of the former elevator is increasing. This paper explains from its construction and features to especially various control systems for the riding comfort and safety. A direct push-up system with hydraulic jacks arranged beneath a car, and an indirect push-up system that has hydraulic jacks arranged on flank of a car and transmits the movement of a plunger via a rope are available. The latter system eliminates the need of large holes to embed hydraulic jacks. While the speed is controlled by controlling flow rates of high-pressure oil, the speed, position, acceleration and even time differential calculus of the acceleration must be controlled severely. The system uses two-step control for the through-speed and the landing speed. Different systems that have been realized may include compensation for temperatures in flow rate control valves, load pressures, and oil viscosity, from learning control to fuzzy control for psychological effects, or control of inverters in motors. 13 refs., 12 figs., 1 tab.

  11. Nonlinear Control of Hydraulic Manipulator for Decommissioning Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung-Ho; Lee, Sung-Uk; Kim, Chang-Hoi; Choi, Byung-Seon; Moon, Jei-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Robot technique is need to decommission nuclear reactor because of high radiation environment. Especially, Manipulator systems are useful for dismantling complex structure in a nuclear facility. In addition, Hydraulic system is applied to handle heavy duty object. Since hydraulic system can demonstrate high power. The manipulator with hydraulic power is already developed. To solve this problem, various nonlinear control method includes acceleration control. But, it is difficult because acceleration value is highly noisy. In this paper, the nonlinear control algorithm without acceleration control is studied. To verify, the hydraulic manipulator model had been developed. Furthermore, the numerical simulation is carried out. The nonlinear control without acceleration parameter method is developed for hydraulic manipulator. To verify control algorithm, the manipulator is modeled by MBD and the hydraulic servo system is also derived. In addition, the numerical simulation is also carried out. Especially, PID gain is determined though TDC algorithm. In the result of numerical simulation, tracking performance is good without acceleration control. Thus, the PID though TDC with SMC is good for hydraulic manipulator control.

  12. Nonlinear Control of Hydraulic Manipulator for Decommissioning Nuclear Reactor

    International Nuclear Information System (INIS)

    Kim, Myoung-Ho; Lee, Sung-Uk; Kim, Chang-Hoi; Choi, Byung-Seon; Moon, Jei-Kwon

    2016-01-01

    Robot technique is need to decommission nuclear reactor because of high radiation environment. Especially, Manipulator systems are useful for dismantling complex structure in a nuclear facility. In addition, Hydraulic system is applied to handle heavy duty object. Since hydraulic system can demonstrate high power. The manipulator with hydraulic power is already developed. To solve this problem, various nonlinear control method includes acceleration control. But, it is difficult because acceleration value is highly noisy. In this paper, the nonlinear control algorithm without acceleration control is studied. To verify, the hydraulic manipulator model had been developed. Furthermore, the numerical simulation is carried out. The nonlinear control without acceleration parameter method is developed for hydraulic manipulator. To verify control algorithm, the manipulator is modeled by MBD and the hydraulic servo system is also derived. In addition, the numerical simulation is also carried out. Especially, PID gain is determined though TDC algorithm. In the result of numerical simulation, tracking performance is good without acceleration control. Thus, the PID though TDC with SMC is good for hydraulic manipulator control

  13. Development of Traction Drive Motors for the Toyota Hybrid System

    Science.gov (United States)

    Kamiya, Munehiro

    Toyota Motor Corporation developed in 2005 a new hybrid system for a large SUV. This system included the new development of a high-speed traction drive motor achieving a significant increase in power weight ratio. This paper provides an overview of the hybrid system, discusses the characteristics required of a traction drive motor, and presents the technologies employed in the developed motor.

  14. Thermal-hydraulic analysis of the improved TOPAZ-II power system using a heat pipe radiator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenwen; Zhang, Dalin, E-mail: dlzhang@mail.xjtu.edu.cn; Tian, Wenxi; Qiu, Suizheng; Su, G.H.

    2016-10-15

    Highlights: • The system thermal-hydraulic model of the improved space thermionic reactor is developed. • The temperature reactivity feedback effects of the moderator, UO2 fuel, electrodes and reflector are considered. • The alkali metal heat pipe radiator is modeled with the two dimensional heat pipe model. • The steady state and the start-up procedure of the system are analyzed. - Abstract: A system analysis code coupled with the heat pipe model is developed to analyze the thermal-hydraulic characteristics of the improved TOPAZ-II reactor power system with a heat pipe radiator. The core thermal-hydraulic model, neutron physics model, and the coolant loop component models (including pump, volume accumulator, pipes and plenums) are established. The designed heat pipe radiator, which replaces the original pumped loop radiator, is also modeled, including two-dimensional heat pipe analysis model, fin model and coolant transport duct model. The system analysis code and the heat pipe model is coupled in the transport duct model. Steady state condition and start-up procedure of the improved TOPAZ-II system are calculated. The results show that the designed radiator can satisfy the waste heat rejection requirement of the improved power system. Meanwhile, the code can be used to obtained the thermal characteristics of the system transients such as the start-up process.

  15. Integrated Validation System for a Thermal-hydraulic System Code, TASS/SMR-S

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee-Kyung; Kim, Hyungjun; Kim, Soo Hyoung; Hwang, Young-Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Hyeon-Soo [Chungnam National University, Daejeon (Korea, Republic of)

    2015-10-15

    Development including enhancement and modification of thermal-hydraulic system computer code is indispensable to a new reactor, SMART. Usually, a thermal-hydraulic system code validation is achieved by a comparison with the results of corresponding physical effect tests. In the reactor safety field, a similar concept, referred to as separate effect tests has been used for a long time. But there are so many test data for comparison because a lot of separate effect tests and integral effect tests are required for a code validation. It is not easy to a code developer to validate a computer code whenever a code modification is occurred. IVS produces graphs which shown the comparison the code calculation results with the corresponding test results automatically. IVS was developed for a validation of TASS/SMR-S code. The code validation could be achieved by a comparison code calculation results with corresponding test results. This comparison was represented as a graph for convenience. IVS is useful before release a new code version. The code developer can validate code result easily using IVS. Even during code development, IVS could be used for validation of code modification. The code developer could gain a confidence about his code modification easily and fast and could be free from tedious and long validation work. The popular software introduced in IVS supplies better usability and portability.

  16. Research on Parameter Design of Multi - axis Hydrostatic Transmission Vehicle

    Directory of Open Access Journals (Sweden)

    Zhao Liang

    2017-01-01

    Full Text Available In order to obtain reasonable parameters in the design of driving system of multi-axis hydrostatic transmission vehicle, the working principle of single-side drive of hydrostatic transmission vehicle is introduced. The matching and control of engine and hydraulic pump are analyzed. According to the driving equation of vehicle, The driving force required for driving system is determined, and the parameters of hydraulic motor, hydraulic pump, system working pressure and braking system are designed and calculated, which provides the parameter design for driving system of multi-axis hydrostatic transmission Reliable theoretical basis.

  17. Variable-Speed, Robust Synchronous Reluctance Machine Drive Systems

    DEFF Research Database (Denmark)

    Wang, Dong

    The synchronous reluctance machine drive is getting more and more interests from the industrial side, since it can provide higher system energy efficiency than traditional inverter-fed induction machine drive systems with similar production cost. It is considered as a good candidate for super...... is recommended. In recent years, there is an increasing trend to replace the electrolytic capacitor in the frequency converter with film capacitor, which has a longer expected service lifetime and no explosion risk. Furthermore, it is possible to achieve a compact converter design by using film capacitor, since...

  18. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, Hiroyuki; Uwaba, Tomoyuki [Japan Atomic Energy Agency (4002 Narita, O-arai, Ibaraki 311-1393, Japan) (Japan); Hashimoto, Akihiko; Imai, Yasutomo [NDD Corporation (1-1-6 Jounan, Mito, Ibaraki 310-0803, Japan) (Japan); Ito, Masahiro [NESI Inc. (4002 Narita, O-arai, Ibaraki 311-1393, Japan) (Japan)

    2015-12-31

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.

  19. Experimental studies of thermo-hydraulic processes during passive safety systems operation in new WWER NPP projects

    International Nuclear Information System (INIS)

    Morozov, A.V.; Remizov, O.V.; Kalyakin, D.S.

    2014-01-01

    The results of experimental study of thermal-hydraulic processes during operation of the passive safety systems of WWER reactors of new generation are given. The interaction processes of counter flows of saturated steam and cold water in vertical steam-line of the auxiliary passive core reflood system from secondary hydraulic accumulator are studied. The peculiarities of undeveloped boiling on single horizontal tube heating by steam and steam-gas mixture, which is character for WWER steam generator condensing mode, are investigated [ru

  20. Railway crossings: driving the structure under the railway by means of oleodinamic jacks

    OpenAIRE

    Escribano Méndez, Ramón; López Palomar, Rafael; Ruiz Viedma, Andrés J.

    1991-01-01

    "The best level crossing is a dead crossing", those involved are accustomed to say Yet, until a short time ago, eliminating these conflictive crossings not only implied a great deal of money but prolonged building work, with the all too familiar sequel of precautions, speed restrictions and problems for rail traffic. However, a brand new system, based on using hydraulic jacks to drive the concrete structure of the crossing to a different level in the track embankment, allows the execution in ...

  1. Active control of multi-input hydraulic journal bearing system

    Science.gov (United States)

    Chuang, Jen-Chen; Chen, Chi-Yin; Tu, Jia-Ying

    2016-09-01

    Because of the advantages of high accuracy, high capacity, and low friction, the development of hydrostatic bearing for machine tool receives significant attention in the last decades. The mechanics and mechanical design of hydrostatic journal bearing with capillary restrictors has been discussed in literature. However, pragmatically, the undesired loading effects of cutting force tend to result in resonance and instability of the rotor and damage the shaft during operation. Therefore, multi-input, active flow control using state feedback design is proposed in this paper. To this purpose, the proportional pressure valves are added to the hydraulic system as active control devices, and the linearised models of the bearing and valve are discussed and identified. Simulation and experimental work is conducted to verify the proposed active control and parameter identification techniques. The results show that the unbalance responses of the rotor are reduced by the proposed state feedback controller, which is able to regulate the flow pressure effectively, thus enhancing the stability and accuracy of the hydraulic journal bearing.

  2. Energy Efficient Hydraulic Hybrid Drives

    OpenAIRE

    Rydberg, Karl-Erik

    2009-01-01

    Energy efficiency of propulsion systems for cars, trucks and construction machineries has become one of the most important topics in today’s mobile system design, mainly because of increased fuel costs and new regulations about engine emissions, which is needed to save the environment. To meet the increased requirements on higher efficiency and better functionality, components and systems have been developed over the years. For the last ten years the development of hybrid systems can be divid...

  3. Numerical Hydraulic Study on Seawater Cooling System of Combined Cycle Power Plant

    Science.gov (United States)

    Kim, J. Y.; Park, S. M.; Kim, J. H.; Kim, S. W.

    2010-06-01

    As the rated flow and pressure increase in pumping facilities, a proper design against surges and severe cavitations in the pipeline system is required. Pressure surge due to start-up, shut-down process and operation failure causes the water hammer in upstream of the closing valve and the cavitational hammer in downstream of the valve. Typical cause of water hammer is the urgent closure of valves by breakdown of power supply and unexpected failure of pumps. The abrupt changes in the flow rate of the liquid results in high pressure surges in upstream of the valves, thus kinetic energy is transformed into potential energy which leads to the sudden increase of the pressure that is called as water hammer. Also, by the inertia, the liquid continues to flow downstream of the valve with initial speed. Accordingly, the pressure decreases and an expanding vapor bubble known as column separation are formed near the valve. In this research, the hydraulic study on the closed cooling water heat exchanger line, which is the one part of the power plant, is introduced. The whole power plant consists of 1,200 MW combined power plant and 220,000 m3/day desalination facility. Cooling water for the plant is supplied by sea water circulating system with a capacity of 29 m3/s. The primary focus is to verify the steady state hydraulic capacity of the system. The secondary is to quantify transient issues and solutions in the system. The circuit was modeled using a commercial software. The stable piping network was designed through the hydraulic studies using the simulation for the various scenarios.

  4. Thermal-hydraulic calculation and water hammer analysis on CEFR loop system

    International Nuclear Information System (INIS)

    Hao Pengfei; Zhang Xiwen; Cai Weidong; Wang Xuefang

    1997-01-01

    China Experimental Fast Reactor (CEFR) is one of the '863' High-technical Projects. It is necessary to study the hydraulic and thermal Characteristic of CEFR loop system in order to guarantee the safety of operation. The results of the thermal-hydraulic calculation have been given. The main points are as follows: 1. The simplified model is built according to the loop system of CEFR, and the calculation method which is called 'NODE'-'BRANCH' is applied. This method includes two aspects, one is the theoretical analysis that is based on fluid mechanics and heat transfer theory. The other is the engineering calculation. These two aspects are connected in the computation. On the basis of the work mentioned above, the stable state computation is presented. In order to prevent serious damage caused by power failure accident, the courses of surplus reactor heat removing through two different systems have been simulated in the computation. 2. By using the fluid dynamics theory, the simplified model and the equipment boundary conditions of loop system are given. The water hammer computation is processed during the valve closing and pump stopping accidents. Some pictures of water hammer wave are presented, and the most dangerous state in the accident is also given

  5. A hydraulic test stand for demonstrating the operation of Eaton’s energy recovery system (ERS)

    OpenAIRE

    Wang, Meng (Rachel); Danzl, Per; Mahulkar, Vishal; Piyabongkarn, Damrongrit (Neng); Brenner, Paul

    2016-01-01

    Fuel cost represents a significant operating expense for owners and fleet managers of hydraulic off-highway vehicles. Further, the upcoming Tier IV compliance for off-highway applications will create further expense for after-treatment and cooling. Solutions that help address these factors motivate fleet operators to consider and pursue more fuelefficient hydraulic energy recovery systems. Electrical hybridization schemes are typically complex, expensive, and often do not satisfy customer pay...

  6. Hydraulically centered control rod

    International Nuclear Information System (INIS)

    Horlacher, W.R.; Sampson, W.T.; Schukei, G.E.

    1981-01-01

    A control rod suspended to reciprocate in a guide tube of a nuclear fuel assembly has a hydraulic bearing formed at its lower tip. The bearing includes a plurality of discrete pockets on its outer surface into which a flow of liquid is continuously provided. In one embodiment the flow is induced by the pressure head in a downward facing chamber at the end of the bearing. In another embodiment the flow originates outside the guide tube. In both embodiments the flow into the pockets produces pressure differences across the bearing which counteract forces tending to drive the rod against the guide tube wall. Thus contact of the rod against the guide tube is avoided

  7. Driving systems: innovations - trends - mechatronics; Antriebssysteme: Innovationen - Trends - Mechatronik

    Energy Technology Data Exchange (ETDEWEB)

    Binder, A. [Technische Univ. Darmstadt (Germany). Inst. fuer Elektrische Energiewandlung; Doppelbauer, M. [SEW-Eurodrive GmbH und Co.KG, Bruchsal (DE). Entwicklung und Konstruktion Motoren (EML); Gold, P.W. [RWTH Aachen (Germany). Inst. fuer Maschinenelemente und Maschinengestaltung; Hofmann, W. [Technische Univ. Chemnitz (Germany). Lehrstuhl fuer Elektrische Maschinen und Antriebe

    2007-03-15

    Short overview on this special meeting with interdisciplinary topics of connection between mechanical and electrical engineering: mechatronics. The main topics are covered by the fields motion control, simulation of drives, monitoring, gears, motors engineering/-design, converter systems, industrial applications and drives for wind turbines. (GL)

  8. A system recovering heat from exhaust gases. Abgasenergie-Rueckgewinnungseinrichtung

    Energy Technology Data Exchange (ETDEWEB)

    John, E; Hultsch, H; Brendorp, W

    1990-08-16

    The proposed exhaust gas heat recovery system is provided with a hydraulic clutch (8) which is located between a gas tubine (2) to be driven by the exhaust gases of an internal combustion engine (20) and a drive unit (18) of the internal combustion engine (20). A mechanical blocking device (6) prevents the turbine from running at explosion speed when the hydraulic clutch (8) is emptied or when the oil pressure of the hydraulic clutch drops below a certain minimum.

  9. ITHNA.SYS: An Integrated Thermal Hydraulic and Neutronic Analyzer SYStem for NUR research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mazidi, S., E-mail: samirmazidi@gmail.com [Division Physique et Applications Nucléaires, Centre de Recherche Nucléaire de Draria (CRND), BP 43 Sebala, Draria, Alger (Algeria); Meftah, B., E-mail: b_meftah@yahoo.com [Division Physique et Applications Nucléaires, Centre de Recherche Nucléaire de Draria (CRND), BP 43 Sebala, Draria, Alger (Algeria); Belgaid, M., E-mail: belgaidm@yahoo.com [Faculté de Physique, Université Houari Boumediene, USTHB, BP 31, Bab Ezzouar, Alger (Algeria); Letaim, F., E-mail: fletaim@yahoo.fr [Faculté des Sciences et Technologies, Université d’El-oued, PO Box 789, El-oued (Algeria); Halilou, A., E-mail: hal_rane@yahoo.fr [Division Réacteur NUR, Centre de Recherche Nucléaire de Draria, BP 43 Sebala, Draria, Alger (Algeria)

    2015-08-15

    Highlights: • We develop a neutronic and thermal hydraulic MTR reactor analyzer. • The analyzer allows a rapid determination of the reactor core parameters. • Some NUR reactor parameters have been analyzed. - Abstract: This paper introduces the Integrated Thermal Hydraulic and Neutronic Analyzer SYStem (ITHNA.SYS) that has been developed for the Algerian research reactor NUR. It is used both as an operating aid tool and as a core physics engineering analysis tool. The system embeds three modules of the MTR-PC software package developed by INVAP SE: the cell calculation code WIMSD, the core calculation code CITVAP and the program TERMIC for thermal hydraulic analysis of a material testing reactor (MTR) core in forced convection. ITHNA.SYS operates both in on-line and off-line modes. In the on-line mode, the system is linked, via the computer parallel port, to the data acquisition console of the reactor control room and allows a real time monitoring of major physical and safety parameters of the NUR core. PC-based ITHNA.SYS provides a viable and convenient way of using an accumulated and often complex reactor physics stock of knowledge and frees the user from the intricacy of adequate reactor core modeling. This guaranties an accurate, though rapid, determination of a variety of neutronic and thermal hydraulic parameters of importance for the operation and safety analysis of the NUR research reactor. Instead of the several hours usually required, the processing time for the determination of such parameters is now reduced to few seconds. Validation of the system was performed with respect to experimental measurements and to calculations using reference codes. ITHNA.SYS can be easily adapted to accommodate other kinds of MTR reactors.

  10. Motor drive chassis for the plutonium protection system

    International Nuclear Information System (INIS)

    Shaut, A.L.

    1979-05-01

    A motor drive chassis has been developed for use in the Plutonium Protection System. Rotation of the desired carrousel in a secure storage module is controlled by this chassis which supplies the power and drive pulses required by the carrousel motor. This work was sponsored by the Department of Energy/Office of Safeguards and Security (DOE/OSS) as part of the overall Sandia Fixed Physical Protection Program

  11. Application of Fuzzy Clustering in Modeling of a Water Hydraulics System

    DEFF Research Database (Denmark)

    Zhou, Jianjun; Kroszynski, Uri

    2000-01-01

    This article presents a case study of applying fuzzy modeling techniques for a water hydraulics system. The obtained model is intended to provide a basis for model-based control of the system. Fuzzy clustering is used for classifying measured input-output data points into partitions. The fuzzy...... model is extracted from the obtained partitions. The identified model has been evaluated by comparing measurements with simulation results. The evaluation shows that the identified model is capable of describing the system dynamics over a reasonably wide frequency range....

  12. Thermal-hydraulic simulation and analysis of Research Reactor Cooling Systems

    International Nuclear Information System (INIS)

    EL Khatib, H.H.A.

    2013-01-01

    The objective of the present study is to formulate a model to simulate the thermal hydraulic behavior of integrated cooling system in a typical material testing reactor (MTR) under loss of ultimate heat sink, the model involves three interactively coupled sub-models for reactor core, heat exchanger and cooling tower. The developed model predicts the temperature profiles in addition it predicts inlet and outlet temperatures of the hot and cold stream as well as the heat exchangers and cooling tower. The model is validated against PARET code for steady-state operation and also verified by the reactor operational records, and then the model is used to simulate the thermal-hydraulic behavior of the reactor under a loss of ultimate heat sink. The simulation is performed for two operational regimes named regime I of (11 MW) thermal power and three operated cooling tower cells and regime II of (22 MW) thermal power and six operated cooling tower cells. In regime I, the simulation is performed for 1, 2 and 3 cooling tower failed cells while in regime II, it is performed for 1, 2, 3, 4, 5 and 6 cooling tower failed cells. The safety action is conducted by the reactor protection system (RPS) named power reduction safety action, it is triggered to decrease the reactor power by amount of 20% of the present power when the water inlet temperature to the core reaches 43 degree C and a scram (emergency shutdown) is triggered in case of the inlet temperature reaches 44 degree C. The model results are analyzed and discussed. The temperature profiles of fuel, clad and coolant are predicted during transient where its maximum values are far from thermal hydraulic limits.

  13. Drive Control System for Pipeline Crawl Robot Based on CAN Bus

    International Nuclear Information System (INIS)

    Chen, H J; Gao, B T; Zhang, X H; Deng, Z Q

    2006-01-01

    Drive control system plays important roles in pipeline robot. In order to inspect the flaw and corrosion of seabed crude oil pipeline, an original mobile pipeline robot with crawler drive unit, power and monitor unit, central control unit, and ultrasonic wave inspection device is developed. The CAN bus connects these different function units and presents a reliable information channel. Considering the limited space, a compact hardware system is designed based on an ARM processor with two CAN controllers. With made-to-order CAN protocol for the crawl robot, an intelligent drive control system is developed. The implementation of the crawl robot demonstrates that the presented drive control scheme can meet the motion control requirements of the underwater pipeline crawl robot

  14. Drive Control System for Pipeline Crawl Robot Based on CAN Bus

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H J [Department of Electrical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China); Gao, B T [Department of Electrical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China); Zhang, X H [Department of Electrical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China); Deng, Z Q [School of Mechanical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China)

    2006-10-15

    Drive control system plays important roles in pipeline robot. In order to inspect the flaw and corrosion of seabed crude oil pipeline, an original mobile pipeline robot with crawler drive unit, power and monitor unit, central control unit, and ultrasonic wave inspection device is developed. The CAN bus connects these different function units and presents a reliable information channel. Considering the limited space, a compact hardware system is designed based on an ARM processor with two CAN controllers. With made-to-order CAN protocol for the crawl robot, an intelligent drive control system is developed. The implementation of the crawl robot demonstrates that the presented drive control scheme can meet the motion control requirements of the underwater pipeline crawl robot.

  15. Determination of travel time capsules hydraulic rabbit system channel 2 (JBB 02) at the G.A. Siwabessy reactor

    International Nuclear Information System (INIS)

    Sutrisno; Sunarko; Elisabeth Ratnawati

    2014-01-01

    Rabbit System is an irradiation facilities used for research on neutron activation. There are two types of Rabbit Systems including 4 pieces Rabbit Hydraulic Systems (JBB01 - JBB04) and Rabbit Pneumatic Systems (JBB05). Irradiation facility of hydraulic rabbit system is irradiation facility with media delivery in the form of capsules. Travel time delivery and the return capsule in hydraulic rabbit system facility depends on the magnitude of the observed flow rate on flow measurement instruments for water circulation. To determine the travel time should be observed flow rates varied by opening the valve (JBB02 AA007), so the delivery time and the return capsule in the rabbit facility hydraulic system can be known. Observations made from the results obtained travel time capsule delivery poly ethylene (PE) of the isotope cell to irradiation position appropriate to the graph Y=57,67 e -0,139.x , for capsules Aluminum (Al) appropriate graph Y= 68,178 e -0,189.x , while the travel time of the return capsule poly ethylene (PE) from the irradiation position to the isotope cell appropriate graph Y=56,459 e -13.x , for capsules Al appropriate graph Y= 65,51 e -183.x this result can be used as a reference for determining the travel time desired by the operator. (author)

  16. 3. Workshop for IAEA ICSP on Integral PWR Design Natural Circulation Flow Stability and Thermo-hydraulic Coupling of Containment and Primary System during Accidents. Presentations

    International Nuclear Information System (INIS)

    2012-04-01

    Most advanced nuclear power plant designs adopted several kinds of passive systems. Natural circulation is used as a key driving force for many passive systems and even for core heat removal during normal operation such as NuScale, CAREM, ESBWR and Indian AHWR designs. Simulation of natural circulation phenomena is very challenging since the driving force of it is weak compared to forced circulation and involves a coupling between primary system and containment for integral type reactor. The IAEA ICSP (International Collaborative Standard Problem) on 'Integral PWR Design Natural Circulation Flow Stability and Thermo-hydraulic Coupling of Containment and Primary System during Accidents' was proposed within the CRP on 'Natural Circulation Phenomena, Modelling, and Reliability of Passive Systems that utilize Natural Circulation'. Oregon State University (OSU) of USA offered to host this ICSP. This ICSP plans to conduct the following experiments and blind/open simulations with system codes: 1. Quasi-steady state operation with different core power levels: Conduct quasi-steady state operation with step-wise increase of core power level in order to observe single phase natural circulation flow according to power level. The experimental facility and operating conditions for an integral PWR will be used. 2. Thermo-hydraulic Coupling between Primary system and Containment: Conduct a loss of feedwater transient with subsequent ADS blowdown and long term cooling to determine the progression of a loss of feedwater transient by natural circulation through primary and containment systems. These tests would examine the blowdown phase as well as the long term cooling using sump natural circulation by coupling the primary to containment systems. This data could be used for the evaluation of system codes to determine if they model specific phenomena in an accurate manner. OSU completed planned two ICSP tests in July 2011 and real initial and boundary conditions measured from the

  17. IoT On-Board System for Driving Style Assessment.

    Science.gov (United States)

    Jachimczyk, Bartosz; Dziak, Damian; Czapla, Jacek; Damps, Pawel; Kulesza, Wlodek J

    2018-04-17

    The assessment of skills is essential and desirable in areas such as medicine, security, and other professions where mental, physical, and manual skills are crucial. However, often such assessments are performed by people called “experts” who may be subjective and are able to consider a limited number of factors and indicators. This article addresses the problem of the objective assessment of driving style independent of circumstances. The proposed objective assessment of driving style is based on eight indicators, which are associated with the vehicle’s speed, acceleration, jerk, engine rotational speed and driving time. These indicators are used to estimate three driving style criteria: safety , economy , and comfort . The presented solution is based on the embedded system designed according to the Internet of Things concept. The useful data are acquired from the car diagnostic port—OBD-II—and from an additional accelerometer sensor and GPS module. The proposed driving skills assessment method has been implemented and experimentally validated on a group of drivers. The obtained results prove the system’s ability to quantitatively distinguish different driving styles. The system was verified on long-route tests for analysis and could then improve the driver’s behavior behind the wheel. Moreover, the spider diagram approach that was used established a convenient visualization platform for multidimensional comparison of the result and comprehensive assessment in an intelligible manner.

  18. IoT On-Board System for Driving Style Assessment

    Directory of Open Access Journals (Sweden)

    Bartosz Jachimczyk

    2018-04-01

    Full Text Available The assessment of skills is essential and desirable in areas such as medicine, security, and other professions where mental, physical, and manual skills are crucial. However, often such assessments are performed by people called “experts” who may be subjective and are able to consider a limited number of factors and indicators. This article addresses the problem of the objective assessment of driving style independent of circumstances. The proposed objective assessment of driving style is based on eight indicators, which are associated with the vehicle’s speed, acceleration, jerk, engine rotational speed and driving time. These indicators are used to estimate three driving style criteria: safety, economy, and comfort. The presented solution is based on the embedded system designed according to the Internet of Things concept. The useful data are acquired from the car diagnostic port—OBD-II—and from an additional accelerometer sensor and GPS module. The proposed driving skills assessment method has been implemented and experimentally validated on a group of drivers. The obtained results prove the system’s ability to quantitatively distinguish different driving styles. The system was verified on long-route tests for analysis and could then improve the driver’s behavior behind the wheel. Moreover, the spider diagram approach that was used established a convenient visualization platform for multidimensional comparison of the result and comprehensive assessment in an intelligible manner.

  19. Base drive for paralleled inverter systems

    Science.gov (United States)

    Nagano, S. (Inventor)

    1980-01-01

    In a paralleled inverter system, a positive feedback current derived from the total current from all of the modules of the inverter system is applied to the base drive of each of the power transistors of all modules, thereby to provide all modules protection against open or short circuit faults occurring in any of the modules, and force equal current sharing among the modules during turn on of the power transistors.

  20. Analysis of Thermal-Hydraulic Behavior of CMT in the SMART-ITL Facility

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Byong Guk; Bae, Hwang; Ryu, Sung-Uk; Ryu, Hyobong; Byun, Sun-Joon; Yi, Sung-Jae; Park, Hyun-Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    SMART, an integral small modular reactor, received a standard design approval in 2012 and now extends its safety features through replacing active safety injection pumps by passive safety injection systems: core makeup tanks (CMT) and safety injection tanks (SIT). SMART-ITL has been built in a full height scale and 1/49 area and power scale. One train of CMT and SIT has been installed and their thermal-hydraulic behaviors have been identified through a series of tests. In this paper, initial condensation characteristics as well as force balance around the CMT will be discussed for a representative test. PSIS are added into SMART for better treatment of accidents with prolonged station blackout. In the SMART-ITL, the CMT and SIT are installed to evaluate their performance and a series of tests have been conducted. In this paper, the thermal-hydraulic behavior of CMT is addressed based on the experimental data, especially focusing on the issues of fierce condensation after opening of the isolation valve and driving force balance around the CMT.

  1. Analysis of Thermal-Hydraulic Behavior of CMT in the SMART-ITL Facility

    International Nuclear Information System (INIS)

    Jeon, Byong Guk; Bae, Hwang; Ryu, Sung-Uk; Ryu, Hyobong; Byun, Sun-Joon; Yi, Sung-Jae; Park, Hyun-Sik

    2015-01-01

    SMART, an integral small modular reactor, received a standard design approval in 2012 and now extends its safety features through replacing active safety injection pumps by passive safety injection systems: core makeup tanks (CMT) and safety injection tanks (SIT). SMART-ITL has been built in a full height scale and 1/49 area and power scale. One train of CMT and SIT has been installed and their thermal-hydraulic behaviors have been identified through a series of tests. In this paper, initial condensation characteristics as well as force balance around the CMT will be discussed for a representative test. PSIS are added into SMART for better treatment of accidents with prolonged station blackout. In the SMART-ITL, the CMT and SIT are installed to evaluate their performance and a series of tests have been conducted. In this paper, the thermal-hydraulic behavior of CMT is addressed based on the experimental data, especially focusing on the issues of fierce condensation after opening of the isolation valve and driving force balance around the CMT

  2. Development of whole core thermal-hydraulic analysis program ACT. 3. Coupling core module with primary heat transport system module

    International Nuclear Information System (INIS)

    Ohtaka, Masahiko; Ohshima, Hiroyuki

    1998-10-01

    A whole core thermal-hydraulic analysis program ACT is being developed for the purpose of evaluating detailed in-core thermal hydraulic phenomena of fast reactors including inter-wrapper flow under various reactor operation conditions. In this work, the core module as a main part of the ACT developed last year, which simulates thermal-hydraulics in the subassemblies and the inter-subassembly gaps, was coupled with an one dimensional plant system thermal-hydraulic analysis code LEDHER to simulate transients in the primary heat transport system and to give appropriate boundary conditions to the core model. The effective algorithm to couple these two calculation modules was developed, which required minimum modification of them. In order to couple these two calculation modules on the computing system, parallel computing technique using PVM (Parallel Virtual Machine) programming environment was applied. The code system was applied to analyze an out-of-pile sodium experiment simulating core with 7 subassemblies under transient condition for code verification. It was confirmed that the analytical results show a similar tendency of experimental results. (author)

  3. Implementation of safety driving system using e-health and telematics technology.

    Science.gov (United States)

    Lee, Youngbum; Lee, Myoungho

    2008-08-01

    This research aimed to develop a safety driving system using e-health and telematics technology. Biosignal sensors were installed in an automobile to check the driver's health status with an automatic diagnosis system providing health information to the driver. Measured data were sent to the e-health center through a telematics device, and a medical doctor analyzed these data, sending diagnosis and prescription information to the driver. This system recognizes the driver's sleeping, drinking impairment, excitability, and fatigue using biosensors. The system initially provides alerts in the automobile. It also controls the driving environment in the car, searches for a highway service area using Global Positioning System (GPS), and provides additional information for safety driving. If a car accident has occurred, it makes an emergency call to the nearest hospital, emergency center, and insurance company. A conceptual and prototype model for an imbedded system is presented with initial data for driver condition. Such a system could prevent car accidents caused by drivers driving while intoxicated and falling asleep at the wheel using the driver's biosignals measured by biosensors. The system can provide various e-health services using a telematics system to enhance the technical compatibility of the automobile.

  4. Characteristic Length Scales in Fracture Networks: Hydraulic Connectivity through Periodic Hydraulic Tests

    Science.gov (United States)

    Becker, M.; Bour, O.; Le Borgne, T.; Longuevergne, L.; Lavenant, N.; Cole, M. C.; Guiheneuf, N.

    2017-12-01

    Determining hydraulic and transport connectivity in fractured bedrock has long been an important objective in contaminant hydrogeology, petroleum engineering, and geothermal operations. A persistent obstacle to making this determination is that the characteristic length scale is nearly impossible to determine in sparsely fractured networks. Both flow and transport occur through an unknown structure of interconnected fracture and/or fracture zones making the actual length that water or solutes travel undetermined. This poses difficulties for flow and transport models. For, example, hydraulic equations require a separation distance between pumping and observation well to determine hydraulic parameters. When wells pairs are close, the structure of the network can influence the interpretation of well separation and the flow dimension of the tested system. This issue is explored using hydraulic tests conducted in a shallow fractured crystalline rock. Periodic (oscillatory) slug tests were performed at the Ploemeur fractured rock test site located in Brittany, France. Hydraulic connectivity was examined between three zones in one well and four zones in another, located 6 m apart in map view. The wells are sufficiently close, however, that the tangential distance between the tested zones ranges between 6 and 30 m. Using standard periodic formulations of radial flow, estimates of storativity scale inversely with the square of the separation distance and hydraulic diffusivity directly with the square of the separation distance. Uncertainty in the connection paths between the two wells leads to an order of magnitude uncertainty in estimates of storativity and hydraulic diffusivity, although estimates of transmissivity are unaffected. The assumed flow dimension results in alternative estimates of hydraulic parameters. In general, one is faced with the prospect of assuming the hydraulic parameter and inverting the separation distance, or vice versa. Similar uncertainties exist

  5. Driver support and automated driving systems : Acceptance and effects on behavior

    NARCIS (Netherlands)

    De Waard, D.; Brookhuis, K.A.; Scerbo, MW; Mouloua, M

    1999-01-01

    Automation in driving ranges from simple in-vehicle information systems to completely automated driving in the Automated Highway System (AHS). An increased level of automation and increased restriction in behavioural freedom, as well as decreased control over tasks, have serious consequences for

  6. Control system for NPP powerfull turbines

    International Nuclear Information System (INIS)

    Osipenko, V.D.; Rozhanskij, V.E.; Rokhlenko, V.Yu.

    1985-01-01

    A control system for NPP 1000 MW turbines safety is described. The turbine safety system has a hydraulic drive to actuate in case of increasipg of rotational speed of a turbine rotor and an electrohydraulic drce to operate in case of pressure reduction in the lubrication system, axial displacement deviation, etc. The system is highly reliable due to application of a safety system without slide valves and long-term operation of hydraulic controls in guarding conditions; the system epsures multifunctional control with high accuracy and speed due to application of the intricate electronic part, high speed of response with a limited use of high pressure oil due to application of two-pressure pumps, pneumohydraulic accumulators and oil discharge valves. Steady-state serviceability of the system is maintained by devices for valve cooling dawn. A shockless change from electrohydraulic to hydraulic control channels is provided

  7. Design, test and model of a hybrid magnetostrictive hydraulic actuator

    International Nuclear Information System (INIS)

    Chaudhuri, Anirban; Yoo, Jin-Hyeong; Wereley, Norman M

    2009-01-01

    The basic operation of hybrid hydraulic actuators involves high frequency bi-directional operation of an active material that is converted to uni-directional motion of hydraulic fluid using valves. A hybrid actuator was developed using magnetostrictive material Terfenol-D as the driving element and hydraulic oil as the working fluid. Two different lengths of Terfenol-D rod, 51 and 102 mm, with the same diameter, 12.7 mm, were used. Tests with no load and with load were carried out to measure the performance for uni-directional motion of the output piston at different pumping frequencies. The maximum no-load flow rates were 24.8 cm 3 s −1 and 22.7 cm 3 s −1 with the 51 mm and 102 mm long rods respectively, and the peaks were noted around 325 Hz pumping frequency. The blocked force of the actuator was close to 89 N in both cases. A key observation was that, at these high pumping frequencies, the inertial effects of the fluid mass dominate over the viscous effects and the problem becomes unsteady in nature. In this study, we also develop a mathematical model of the hydraulic hybrid actuator in the time domain to show the basic operational principle under varying conditions and to capture phenomena affecting system performance. Governing equations for the pumping piston and output shaft were obtained from force equilibrium considerations, while compressibility of the working fluid was taken into account by incorporating the bulk modulus. Fluid inertia was represented by a lumped parameter approach to the transmission line model, giving rise to strongly coupled ordinary differential equations. The model was then used to calculate the no-load velocities of the actuator at different pumping frequencies and simulation results were compared with experimental data for model validation

  8. The hydraulic lifting system for the main magnets of CYCIAE-30 cyclotron

    CERN Document Server

    Zhao Zhen Lu; Chen Rong Fan; Chu Cheng Jie

    2002-01-01

    The oil-line structure, control system and their working principles of the hydraulic lifting system for the main magnets of CYCIAE-30 cyclotron are introduced. The six years practice proves that the specification of the system matches the requirements: the oil cylinder maximum stroke of 850 mm, the eight slot positioning dowels repositioning accuracy of +-0.01 mm, the two oil cylinders moving in step accuracy of 5-10 mm. The system is safe, reliable and easy to be operated

  9. Comparison of drive systems for pulsed synchronous machines - an overview

    International Nuclear Information System (INIS)

    Baumgart, G.E.; Boenig, H.J.

    1986-01-01

    Magnetically confined plasma fusion experiments require large pulses of energy to be delivered into coil systems. One of the most effective methods of generating these high energy pulses is to convert stored inertial energy into electrical energy. Large synchronous generators of both the vertical and horizontal shaft type have been successfully used for this purpose. As the pulsed energy is delivered to the load, the inertial energy of the rotor of the machine is changed into electrical energy, causing the rotor to slow down. A drive system is required to accelerate the generator from standstill to the maximum operating speed and between load pulses from a reduced operating speed to the maximum speed. There are several types of drive systems that can be used for this application. An overview of six candidate drive systems is presented and comparisons of cost, performance, efficiency and line effects for these systems are described

  10. Comparison of drive systems for pulsed synchronous machines: an overview

    International Nuclear Information System (INIS)

    Baumgart, G.E.; Boenig, H.J.

    1985-01-01

    Magnetically confined plasma fusion experiments require large pulses of energy to be delivered into coil systems. One of the most effective methods of generating these high energy pulses is to convert stored inertial energy into electrical energy. Large synchronous generators of both the vertical and horizontal shaft type have been successfully used for this purpose. As the pulsed energy is delivered to the load, the inertial energy of the rotor of the machine is changed into electrical energy, causing the rotor to slow down. A drive system is required to accelerate the generator from standstill to the maximum operating speed and between load pulses from a reduced operating speed to the maximum speed. There are several types of drive systems that can be used for this application. An overview of six candidate drive systems is presented and comparisons of cost, performance, efficiency, and line effects for these systems are described

  11. Research on Performance of Wire-controlled Hydraulic Steering System Based on Four-wheel Steering

    Science.gov (United States)

    Tao, P.; Jin, X. H.

    2018-05-01

    In this paper, the steering stability and control strategy of forklift are put forward. Drive based on yawing moment distribution of rotary torque coordination control method, through analyzing the linear two degree of freedom model of forklift truck, forklift yawing angular velocity and mass center side-slip Angle of expectations, as the control target parameters system, using fuzzy controller output driving forklift steering the yawing moment, to drive rotary torque distribution, make the forklift truck to drive horizontal pendulum angular velocity and side-slip Angle tracking reference model very well. In this paper, the lateral stability control system were designed, the joint simulation in MATLAB/Simulink, the simulation results show that under the different partial load, the control system can effectively to control side forklift lateral stability, enhanced the forklift driving safety, for the side forklift steering stability study provides a theoretical basis.

  12. Evolution of the design of fuel handling control system in 220 MWe Indian PHWRs

    International Nuclear Information System (INIS)

    Dhruvanarayana, L.; Gupta, H.; Bharathkumar, M.

    1996-01-01

    Following two CANDU type reactors at Rajasthan (RAPS-1 and 2), three nuclear power stations, each of two units of 220 MWe has been in operation at Rajasthan (RAPS-1 and 2). Madras (MAPS-1 and 2). Narora (NAPS-1 and 2) and Kakrapar (KAPS-1 and 2). Two more stations, also of 220 MWe capacity, are under construction at Rajasthan (RAPP-3 and 4) and Kaiga (Kaiga-1 and 2). These are natural uranium fuelled pressurized heavy water cooled and heavy water moderated reactors (PHWRs). The two units at Rajasthan viz RAPS-1 and 2, were built with the technical collaboration with Canada, and the rest of the units have been designed and built indigenously, incorporating a number of modifications, particularly in the on-power refuelling system. The evolution of the design of the Fuel Handling Control systems of these reactors, taking into consideration operational needs, safety aspects and maintainability are highlighted in this paper. A combination of hydraulic and electronic control has been provided to enable the operations. In RAPS-1 and 2, hardwired electronic controls were provided, while in MAPS-1 and 2, the hardwired system was improved. From NAPS onwards, a computerized control system with hardwired interlock logic has been provided. New devices like coarse-fine potentiometers, special oil filled potentiometer assembly, rectilinear potentiometers etc., were specified from NAPS onwards. Positioning logic is computerized providing flexibility and expendability. Digital panel meters and indicating lamps have been provided for manual mode operations, while CRT (cathode-ray tube) monitors help in computer mode operations. Hydraulic controls which comprise D 2 0 hydraulics, H 2 0 hydraulics and oil hydraulics have been improved from NAPS onwards. Hydraulic panels have been relocated in accessible areas to reduce radiation doses and for better maintainability. All electric drives including X and Y drives were modified as hydraulic drives for better control. New types of valves

  13. Evolution of the design of fuel handling control system in 220 MWe Indian PHWRs

    Energy Technology Data Exchange (ETDEWEB)

    Dhruvanarayana, L; Gupta, H; Bharathkumar, M [Nuclear Power Corporation of India Ltd., Mumbai (India)

    1997-12-31

    Following two CANDU type reactors at Rajasthan (RAPS-1 and 2), three nuclear power stations, each of two units of 220 MWe has been in operation at Rajasthan (RAPS-1 and 2). Madras (MAPS-1 and 2). Narora (NAPS-1 and 2) and Kakrapar (KAPS-1 and 2). Two more stations, also of 220 MWe capacity, are under construction at Rajasthan (RAPP-3 and 4) and Kaiga (Kaiga-1 and 2). These are natural uranium fuelled pressurized heavy water cooled and heavy water moderated reactors (PHWRs). The two units at Rajasthan viz RAPS-1 and 2, were built with the technical collaboration with Canada, and the rest of the units have been designed and built indigenously, incorporating a number of modifications, particularly in the on-power refuelling system. The evolution of the design of the Fuel Handling Control systems of these reactors, taking into consideration operational needs, safety aspects and maintainability are highlighted in this paper. A combination of hydraulic and electronic control has been provided to enable the operations. In RAPS-1 and 2, hardwired electronic controls were provided, while in MAPS-1 and 2, the hardwired system was improved. From NAPS onwards, a computerized control system with hardwired interlock logic has been provided. New devices like coarse-fine potentiometers, special oil filled potentiometer assembly, rectilinear potentiometers etc., were specified from NAPS onwards. Positioning logic is computerized providing flexibility and expendability. Digital panel meters and indicating lamps have been provided for manual mode operations, while CRT (cathode-ray tube) monitors help in computer mode operations. Hydraulic controls which comprise D{sub 2}0 hydraulics, H{sub 2}0 hydraulics and oil hydraulics have been improved from NAPS onwards. Hydraulic panels have been relocated in accessible areas to reduce radiation doses and for better maintainability. All electric drives including X and Y drives were modified as hydraulic drives for better control. New types of

  14. Advanced Performance Hydraulic Wind Energy

    Science.gov (United States)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  15. Mechanical Design Engineering Enabler Project wheel and wheel drives

    Science.gov (United States)

    Nutt, Richard E.; Couch, Britt K.; Holley, John L., Jr.; Garris, Eric S.; Staut, Paul V.

    1992-01-01

    Our group was assigned the responsibility of designing the wheel and wheel drive system for a proof-of-concept model of the lunar-based ENABLER. ENABLER is a multi-purpose, six wheeled vehicle designed to lift and transport heavy objects associated with the construction of a lunar base. The resulting design was based on the performance criteria of the ENABLER. The drive system was designed to enable the vehicle to achieve a speed of 7 mph on a level surface, climb a 30 percent grade, and surpass a one meter high object and one meter wide crevice. The wheel assemblies were designed to support the entire weight of the vehicle on two wheels. The wheels were designed to serve as the main component of the vehicle's suspension and will provide suitable traction for lunar-type surfaces. The expected performance of the drive system for the ENABLER was influenced by many mechanical factors. The expected top speed on a level sandy surface is 4 mph instead of the desired 7 mph. This is due to a lack of necessary power at the wheels. The lack of power resulted from dimension considerations that allowed only an eight horsepower engine and also from mechanical inefficiencies of the hydraulic system. However, the vehicle will be able to climb a 30 percent grade, surpass a one meter high object and one meter wide crevice. The wheel assemblies will be able to support the entire weight of the vehicle on two wheels. The wheels will also provide adequate suspension for the vehicle and sufficient traction for lunar-type surfaces.

  16. Use of Hydraulic Model for Water Loss Reduction

    OpenAIRE

    Mindaugas Rimeika; Anželika Jurkienė

    2016-01-01

    Hydraulic modeling is the modern way to apply world water engineering experience in every day practice. Hydraulic model is an effective tool in order to perform analysis of water supply system, optimization of its operation, assessment of system efficiency potential, evaluation of water network development, fire flow capabilities, energy saving opportunities and water loss reduction and ect. Hydraulic model shall include all possible engineering elements and devices allocated in a real water ...

  17. Fluid dynamics of acoustic and hydrodynamic cavitation in hydraulic power systems

    Science.gov (United States)

    Ferrari, A.

    2017-03-01

    Cavitation is the transition from a liquid to a vapour phase, due to a drop in pressure to the level of the vapour tension of the fluid. Two kinds of cavitation have been reviewed here: acoustic cavitation and hydrodynamic cavitation. As acoustic cavitation in engineering systems is related to the propagation of waves through a region subjected to liquid vaporization, the available expressions of the sound speed are discussed. One of the main effects of hydrodynamic cavitation in the nozzles and orifices of hydraulic power systems is a reduction in flow permeability. Different discharge coefficient formulae are analysed in this paper: the Reynolds number and the cavitation number result to be the key fluid dynamical parameters for liquid and cavitating flows, respectively. The latest advances in the characterization of different cavitation regimes in a nozzle, as the cavitation number reduces, are presented. The physical cause of choked flows is explained, and an analogy between cavitation and supersonic aerodynamic flows is proposed. The main approaches to cavitation modelling in hydraulic power systems are also reviewed: these are divided into homogeneous-mixture and two-phase models. The homogeneous-mixture models are further subdivided into barotropic and baroclinic models. The advantages and disadvantages of an implementation of the complete Rayleigh-Plesset equation are examined.

  18. Novel electro-hydraulic position control system for primary mirror supporting system

    Directory of Open Access Journals (Sweden)

    Xiongbin Peng

    2016-05-01

    Full Text Available In the field of modern large-scale telescope, primary mirror supporting system technology faces the difficulties of theoretically uniform output force request and bias compensation. Therefore, a novel position control system combining hydraulic system with servo motor system is introduced. The novel system ensures uniform output force on supporting points without complicating the mechanical structure. The structures of both primary mirror supporting system and novel position system are described. Then, the mathematical model of novel position control system is derived for controller selection. A proportional–derivative controller is adopted for simulations and experiments of step response and triangle path tracking. The results show that proportional–derivative controller guarantees the system with micrometer-level positioning ability. A modified proportional–derivative controller is utilized to promote system behavior with faster response overshoot. The novel position control system is then applied on primary mirror supporting system. Coupling effect is observed among actuator partitions, and relocation of virtual pivot supporting point is chosen as the decoupling measurement. The position keeping ability of the primary mirror supporting system is verified by rotating the mirror cell at a considerably high rate. The experiment results show that the decoupled system performs better with smaller bias and shorter recovery time.

  19. ANN Model for Predicting the Impact of Submerged Aquatic Weeds Existence on the Hydraulic Performance of Branched Open Channel System Accompanied by Water Structures

    International Nuclear Information System (INIS)

    Abdeen, Mostafa A. M.; Abdin, Alla E.

    2007-01-01

    The existence of hydraulic structures in a branched open channel system urges the need for considering the gradually varied flow criterion in evaluating the different hydraulic characteristics in this type of open channel system. Computations of hydraulic characteristics such as flow rates and water surface profiles in branched open channel system with hydraulic structures require tremendous numerical effort especially when the flow cannot be assumed uniform. In addition, the existence of submerged aquatic weeds in this branched open channel system adds to the complexity of the evaluation of the different hydraulic characteristics for this system. However, this existence of aquatic weeds can not be neglected since it is very common in Egyptian open channel systems. Artificial Neural Network (ANN) has been widely utilized in the past decade in civil engineering applications for the simulation and prediction of the different physical phenomena and has proven its capabilities in the different fields. The present study aims towards introducing the use of ANN technique to model and predict the impact of submerged aquatic weeds existence on the hydraulic performance of branched open channel system. Specifically the current paper investigates a branched open channel system that consists of main channel supplies water to two branch channels that are infested by submerged aquatic weeds and have water structures such as clear over fall weirs and sluice gates. The results of this study showed that ANN technique was capable, with small computational effort and high accuracy, of predicting the impact of different infestation percentage for submerged aquatic weeds on the hydraulic performance of branched open channel system with two different hydraulic structures

  20. The drive system of 100 MeV electron linear accelerator

    International Nuclear Information System (INIS)

    Sun Yuzhen; Su Guoping; Wang Xiulong; Tianlu

    1988-06-01

    The principle, structure, measurement results and technical performances of microwave drive system for 100MeV electron linear accelerator are presented. In this system the peak power of 15 kW is produced by the S bank middle power klystron. The output power of the klystron is divided into six subdrive lines that drive six high power klystrons respectively. The results show the system with simple structure and good characteristics completely meets the requirements of 100 MeV Linac

  1. Modular component kit for hybrid drive systems; Modularer Komponentenbaukasten fuer Hybride Antriebssysteme

    Energy Technology Data Exchange (ETDEWEB)

    Riegger, Peter; Schalk, Johannes; Schmalzing, Claus-Oliver [MTU Friedrichshafen GmbH, Friedrichshafen (Germany). Bereich Forschung Technologieentwicklung

    2013-10-15

    By hybrid drives, fuel consumption in off-road applications can be significantly reduced. However, the additional power train components and degrees of freedom required in the design of hybridised systems involve an increase in system variants. To keep the number of variants as low as possible whilst simultaneously ensuring that hybrid drives can serve as wide a spectrum of applications as possible, MTU has developed a modular system of components. This makes it possible to use customer requirements as a basis for creating innovative drive systems for the widest range of applications. (orig.)

  2. Development of brake assist system. Summary of hydraulic brake assist system; Brake assist system no kaihatsu. Ekiatsushiki brake assist system no gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, M; Ota, M; Shimizu, S [Toyota, Motor Corp., Aichi (Japan)

    1997-10-01

    We have already developed vacuum-booster-type Brake Assist System that supplies additional braking power when panic braking is recognized. We are convinced that the expansion of Brake Assist System will become more important issue in the future. Therefore we have developed hydraulic Brake Assist System with increasing its controllability and reducing its discomfort. This system have a brake pressure sensor to detect emergency braking operation and an antilock device to supply additional braking power. 8 refs., 11 figs.

  3. A Novel Model-Based Driving Behavior Recognition System Using Motion Sensors

    Directory of Open Access Journals (Sweden)

    Minglin Wu

    2016-10-01

    Full Text Available In this article, a novel driving behavior recognition system based on a specific physical model and motion sensory data is developed to promote traffic safety. Based on the theory of rigid body kinematics, we build a specific physical model to reveal the data change rule during the vehicle moving process. In this work, we adopt a nine-axis motion sensor including a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer, and apply a Kalman filter for noise elimination and an adaptive time window for data extraction. Based on the feature extraction guided by the built physical model, various classifiers are accomplished to recognize different driving behaviors. Leveraging the system, normal driving behaviors (such as accelerating, braking, lane changing and turning with caution and aggressive driving behaviors (such as accelerating, braking, lane changing and turning with a sudden can be classified with a high accuracy of 93.25%. Compared with traditional driving behavior recognition methods using machine learning only, the proposed system possesses a solid theoretical basis, performs better and has good prospects.

  4. Variable speed electrical driving systems; Entrainements electriques a vitesse variable

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, J. [ESE, Promethee, Groupe Schneider (France)

    1997-12-31

    This book is the first of a series of 3 volumes which synthesize the most recent knowledge on variable speed electrical driving systems. It is devoted to electronic and electromechanical engineers and technicians and to manufacturers of electrical equipments involving such systems. after a recall of basic electrotechnical and mechanical notions, this book focusses on the functionalities and criteria of definition of driving systems, and shows the interactions between the different parts of these equipments. It develops a methodological approach of the choice for the most suitable technology with respect to the application under consideration. Various industrial sectors are concerned and a particular attention is paid to the driving of receptive turbo-machineries which play a major role in the energy balance sheet of the industrial electrical power force. (J.S.) 28 refs.

  5. Proceedings of the 1991 national conference on hydraulic engineering

    International Nuclear Information System (INIS)

    Shane, R.M.

    1991-01-01

    This book contains the proceedings of the 1991 National Conference of Hydraulic Engineering. The conference was held in conjunction with the International Symposium on Ground Water and a Software Exchange that facilitated exchange of information on recent software developments of interest to hydraulic engineers. Also included in the program were three mini-symposia on the Exclusive Economic Zone, Data Acquisition, and Appropriate Technology. Topics include sedimentation; appropriate technology; exclusive economic zone hydraulics; hydraulic data acquisition and display; innovative hydraulic structures and water quality applications of hydraulic research, including the hydraulics of aerating turbines; wetlands; hydraulic and hydrologic extremes; highway drainage; overtopping protection of dams; spillway design; coastal and estuarine hydraulics; scale models; computation hydraulics; GIS and expert system applications; watershed response to rainfall; probabilistic approaches; and flood control investigations

  6. OPTIMISATION OF A DRIVE SYSTEM AND ITS EPICYCLIC GEAR SET

    OpenAIRE

    Bellegarde , Nicolas; Dessante , Philippe; Vidal , Pierre; Vannier , Jean-Claude

    2007-01-01

    International audience; This paper describes the design of a drive consisting of a DC motor, a speed reducer, a lead screw transformation system, a power converter and its associated DC source. The objective is to reduce the mass of the system. Indeed, the volume and weight optimisation of an electrical drive is an important issue for embedded applications. Here, we present an analytical model of the system in a specific application and afterwards an optimisation of the motor and speed reduce...

  7. Hydraulic characterisation of karst systems with man-made tracers

    International Nuclear Information System (INIS)

    Werner, A.

    1998-01-01

    Tracer experiments using man-made tracers are common in hydrogeological exploration of groundwater aquifers in karst systems. In the present investigation, a convection-dispersion model (multidispersion model with consideration of several flow paths) and a single-cleft model (consideration of the diffusion between the cleft and the surrounding rock matrix) were used for evaluating tracer experiments in the main hydrological system of the saturated zone of karst systems. In addition to these extended analytical solutions, a numerical transport model was developed for investigating the influence of the transient flow rate on the flow and transport parameters. Comparative evaluations of the model approaches for the evaluation of tracer experiments were made in four different karst systems: Danube-Aach, Paderborn, Slowenia and Lurbach, of which the Danube-Aach system was considered as the most important. The investigation also comprised three supplementary experiments in order to enable a complete hydraulic characterisation of the system. (orig./SR) [de

  8. Neutronics and thermal hydraulics coupling scheme for design improvement of liquid metal fast systems

    International Nuclear Information System (INIS)

    Sanchez-Espinoza, V.H.; Jaeger, W.; Travleev, A.; Monti, L.; Doern, R.

    2009-01-01

    Many advanced reactor concepts are nowadays under investigations within the Generation IV international initiative as well as in European research programs including subcritical and critical fast reactor systems cooled by liquid metal, gas and supercritical water. The Institute of Neutron Physics and Reactor Technology (INR) at the Forschungszentrum Karlsruhe GmbH is involved in different European projects like IP EUROTRANS, ELSY, ESFR. The main goal of these projects is, among others, to assess the technical feasibility of proposed concepts regarding safety, economics and transmutation requirements. In view of increased computer capabilities, improved computational schemes, where the neutronic and the thermal hydraulic solution is iteratively coupled, become practicable. The codes ERANOS2.1 and TRACE are being coupled to analyze fuel assembly or core designs of lead-cooled fast reactors (LFR). The neutronic solution obtained with the coupled system for a LFR fuel assembly was compared with the MCNP5 solution. It was shown that the coupled system is predicting physically sound results. The iterative coupling scheme was realized using Perlscripts and auxiliary Fortran programs to ensure that the mapping between the neutronic and the thermal hydraulic part is consistent. The coupled scheme is very flexible and appropriate for the neutron physical and thermal hydraulic investigation of fuel assemblies and of cores of lead cooled fast reactors. The developed methods and the obtained results will be presented and discussed. (author)

  9. A seismic analysis of the driving system for the pulsed reactor

    International Nuclear Information System (INIS)

    Hu Yongtao; Fu Shixiang; Zeng Jianhua; Hong Jingfeng

    1991-01-01

    The driving system of the pulsed reactor contains control rods, pulsing o rod and sample rack. They are slender, and their drive function is required more strictly. First, a complete model which contains all driving system and reactor bridge is used. Then the substructure models are adopted. The results of calculation are compared with the experimental results. It shows that the analysis results are reliable and the substructure method is simple, available and utility. The seismic safety is evaluated by the results from response spectra method

  10. Simulation of Trolleybus Traction Induction Drive With Supercapacitor Energy Storage System

    Science.gov (United States)

    Brazis, V.; Latkovskis, L.; Grigans, L.

    2010-01-01

    The article considers the possibilities of saving the regenerative braking energy in Škoda 24Tr type trolleybuses by installing the onboard supercapacitor energy storage system (ESS) and improving its performance with automated switching to the autonomous traction mode. Proposed is an ESS control system with constant DC bus voltage in the supercapacitor charging mode and supercapacitor current proportional to the AC drive current in the discharging mode. The authors investigate stability of the trolleybus ESS control system operating together with AC traction drive in various overhead voltage failure modes. The co-simulation of ESS operation was done by Matlab/Simulink AC drive and PSIM ESS continuous models.

  11. Resolution of thermal-hydraulic safety and licensing issues for the system 80+trademark design

    International Nuclear Information System (INIS)

    Carpentino, S.E.; Ritterbusch, S.E.; Schneider, R.E.

    1995-01-01

    The System 80+ trademark Standard Design is an evolutionary Advanced Light Water Reactor (ALWR) with a generating capacity of 3931 MWt (1350 MWe). The Final Design Approval (FDA) for this design was issued by the Nuclear Regulatory Commission (NRC) in July 1994. The design certification by the NRC is anticipated by the end of 1995 or early 1996. NRC review of the System 80+ design has involved several new safety issues never before addressed in a regulatory atmosphere. In addition, conformance with the Electric Power Research Institute (EPRI) ALWR Utility Requirements Document (URD) required that the System 80+ plant address nuclear industry concerns with regard to design, construction, operation and maintenance of nuclear power plants. A large number of these issues/concerns deals with previously unresolved generic thermal-hydraulic safety issues and severe accident prevention and mitigation. This paper discusses the thermal-hydraulic analyses and evaluations performed for the System 80+ design to resolve safety and licensing issues relevant to both the Nuclear Stream Supply System (NSSS) and containment designs. For the NSSS design, the Safety Depressurization System mitigation capability and resolution of the boron dilution concern are described. Examples of containment design issues dealing with containment shell strength, robustness of the reactor cavity walls and hydrogen mixing under severe accident conditions are also provided. Finally, the overall approach used in the application of NRC's new (NUREG-1465) radiological source term for System 80+ evaluation is described. The robustness of the System 80+ containment design to withstand severe accident consequences was demonstrated through detailed thermal-hydraulic analyses and evaluations. This advanced design to shown to meet NRC severe accident policy goals and ALWR URD requirements without any special design features and unnecessary costs

  12. Process management using component thermal-hydraulic function classes

    Science.gov (United States)

    Morman, J.A.; Wei, T.Y.C.; Reifman, J.

    1999-07-27

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced. 5 figs.

  13. Process management using component thermal-hydraulic function classes

    Science.gov (United States)

    Morman, James A.; Wei, Thomas Y. C.; Reifman, Jaques

    1999-01-01

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

  14. 14 CFR 27.923 - Rotor drive system and control mechanism tests.

    Science.gov (United States)

    2010-01-01

    ... the position that will give maximum longitudinal cyclic pitch change to simulate forward flight. The... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor drive system and control mechanism....923 Rotor drive system and control mechanism tests. (a) Each part tested as prescribed in this section...

  15. Interface design considerations for an in-vehicle eco-driving assistance system

    OpenAIRE

    Jamson, AH; Hibberd, DL; Merat, N

    2015-01-01

    This high-fidelity driving simulator study used a paired comparison design to investigate the effectiveness of 12 potential eco-driving interfaces. Previous work has demonstrated fuel economy improvements through the provision of in-vehicle eco-driving guidance using a visual or haptic interface. This study uses an eco-driving assistance system that advises the driver of the most fuel efficient accelerator pedal angle, in real time. Assistance was provided to drivers through a visual dashboar...

  16. Precision Force Control for an Electro-Hydraulic Press Machine

    Directory of Open Access Journals (Sweden)

    Hong-Ming Chen

    2014-08-01

    Full Text Available This thesis is primarily intended to design a PC-based control system to control the force of an electro-hydraulic servo press system for implementing precision force control. The main feature is to develop a composite control by using the relief valve and the flow servo valve. Using feedback from a force sensor, a fuzzy controller was designed with LabVIEW software as the system control core for achieving a precision force control for the hydraulic cylinder on its travel and output. The weakness of hydraulic systems is that hydraulic oil is compressible and prone to leaking, and its characteristics can vary with oil temperature, thus making it difficult for a general linear controller to achieve accurate control. Therefore, a fuzzy controller was designed with LabVIEW along with a NI-PCI_6221 interface card and a load cell to control the servo valve flow and the relief valve to control the pressure source. The testing results indicate that accurate force control output of an electro-hydraulic servo press system can be obtained.

  17. Automotive mechatronics automotive networking, driving stability systems, electronics

    CERN Document Server

    2015-01-01

    As the complexity of automotive vehicles increases this book presents operational and practical issues of automotive mechatronics. It is a comprehensive introduction to controlled automotive systems and provides detailed information of sensors for travel, angle, engine speed, vehicle speed, acceleration, pressure, temperature, flow, gas concentration etc. The measurement principles of the different sensor groups are explained and examples to show the measurement principles applied in different types. Contents Basics of mechatronics.- Architecture.- Electronic control unit.- Software development.- Basic principles of networking.- Automotive networking.- Bus systems.- Automotive sensors.- Sensor measuring principles.- Sensor types.- Electric actuators.- Electrohydraulic actuators.- Electronic transmission control.- Electronic transmission control unit.- Modules for transmission control.- Antilock braking system.- Traction control system.- Electronic stability program.- Automatic brake functions.- Hydraulic modu...

  18. Drunk driving warning system (DDWS). Volume 2, Field test evaluation

    Science.gov (United States)

    1983-12-01

    The Drunk Driving Warning System (DDWS) is a vehicle-mounted device for testing driver impairment and activating alarms. The driver must pass a steering competency test (the Critical Tracking Task or CTT) in order to drive the car in a normal manner....

  19. Electromagnetic drive of the control and protection system of a nuclear reactor

    International Nuclear Information System (INIS)

    Zav'yalova, G.I.

    1983-01-01

    The design and operating principle of an electromagnetic drive with a linear synchronous reaction motor are described. At the present time, electromagnetic control mechanisms using linear electric motors are finding increasingly widespread application as drives for the control and protection system of nuclear reactors. In these drives there is a functional mergence of the electromagnetic mechanism with the final control element; these drives, therefore, have advantages over electromechanical drives

  20. Principle and analysis of a linear motor driving system for HTS levitation applications

    International Nuclear Information System (INIS)

    Jin, Jian X.; Guo, You G.; Zhu, Jian G.

    2007-01-01

    High temperature superconductor (HTS) high levitation force density with passive and self-stabilizing features allows a number of special applications to be developed. Linear motor driving systems are commonly required for those applications such as levitated transport systems. In this paper a prototype linear motor driving system with HTS is analyzed with calculation details including its magnetic fields and driving forces presented in the paper