WorldWideScience

Sample records for hydraulic conductivity soil

  1. Hydraulic conductivity of organomodified soil

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, R.B.; Grant, J.M.; Voice, T.C.; Rakhshandehroo, G.; Xu, S.; Boyd, S.A. [Michigan State Univ., East Lansing, MI (United States)

    1995-11-01

    The effects of organomodification on soil hydraulic conductivity were investigated. Hydraulic conductivity and porosity of treated and untreated samples of a sandy loam were measured as a function of effective stress. Batch treatment with hexadecyltrimethyl ammonium (HDTMA) and dry packing produced organomodified samples that were 79% less conducive than untreated samples prior to loading. Treated samples lost less hydraulic conductivity as a result of loading than untreated samples so that treated samples had higher conductivity at high loads. Observed differences in conductivity are explained in terms of the role of the treated and untreated clay in controlling initial effective pore size and its change during consolidation.

  2. Soil Structure and Saturated Hydraulic Conductivity

    Science.gov (United States)

    Houskova, B.; Nagy, V.

    The role of soil structure on saturated hydraulic conductivity changes is studied in plough layers of texturally different soils. Three localities in western part of Slovakia in Zitny ostrov (Corn Island) were under investigation: locality Kalinkovo with light Calcaric Fluvisol (FAO 1970), Macov with medium heavy Calcari-mollic Fluvisol and Jurova with heavy Calcari-mollic Fluvisol. Soil structure was determined in dry as well as wet state and in size of macro and micro aggregates. Saturated hydraulic conductivity was measured by the help of double ring method. During the period of ring filling the soil surface was protected against aggregates damage by falling water drops. Spatial and temporal variability of studied parameters was evaluated. Cultivated crops were ensilage maize at medium heavy and heavy soil and colza at light soil. Textural composition of soil and actual water content at the beginning of measurement are one of major factor affecting aggregate stability and consequently also saturated hydraulic conductivity.

  3. Hydraulic Conductivity Anisotropy of Heterogeneous Unsaturated Soils

    Science.gov (United States)

    Sun, Dongmin; Zhu, Jianting

    2010-05-01

    The effects of saturation degree (or capillary pressure) on hydraulic conductivity anisotropy in unsaturated soils have not been fully understood. This study developed an approach based on a conceptualization of combining the neural network based pedo-transfer function (PTF) results with the thin layer concept to explore the capillary pressure-dependent anisotropy in relation to soil texture and soil bulk density. The main objective is to examine how anisotropy characteristics are related to the relationships between hydraulic parameters and the basic soil attributes such as texture and bulk density. The hydraulic parameters are correlated with the texture and bulk density based on the pedo-transfer function (PTF) results. It is demonstrated that non-monotonic behavior of the unsaturated soil anisotropy in relation to the capillary pressure is only observed when the saturated hydraulic conductivity and the shape parameter are both related to the mean particle diameter. When only one hydraulic parameter is related to the grain diameter or when both are not related to the same attribute simultaneously, the unsaturated soil anisotropy increases monotonically with the increasing capillary pressure head. Therefore, it is suggested that this behavior is mainly due to the coupled dependence of the layer saturated hydraulic conductivities and the shape factors on the texture and bulk density. The correlation between the soil grain diameter and bulk density decreases the anisotropy effects of the unsaturated layered soils. The study illustrates that the inter-relationships of soil texture, bulk density, and hydraulic properties may cause vastly different characteristics of anisotropic unsaturated soils.

  4. Soil hydraulic properties near saturation, an improved conductivity model

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Jacobsen, Ole Hørbye; Hansen, Søren;

    2006-01-01

    The hydraulic properties near saturation can change dramatically due to the presence of macropores that are usually difficult to handle in traditional pore size models. The purpose of this study is to establish a data set on hydraulic conductivity near saturation, test the predictive capability...... of commonly used hydraulic conductivity models and give suggestions for improved models. Water retention and near saturated and saturated hydraulic conductivity were measured for a variety of 81 top and subsoils. The hydraulic conductivity models by van Genuchten [van Genuchten, 1980. A closed-form equation...... for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898.] (vGM) and Brooks and Corey, modified by Jarvis [Jarvis, 1991. MACRO—A Model of Water Movement and Solute Transport in Macroporous Soils. Swedish University of Agricultural Sciences. Department of Soil Sciences...

  5. Hydraulic conductivity of natural soils permeated with acid mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Yanful, E.K.; Shikatani, K.S.; Quirt, D.H. [University of Western Ontario, London, ON (Canada). Department of Civil Engineering

    1995-08-01

    The results of a laboratory study on the interactions of three natural soils (some under consideration as candidate cover materials) with acid mine drainage (AMD) are presented. Soil hydraulic conductivity measurements were used to assess soil compatibility with AMD. A silty clay from the decommissioned Waite Amulet tailings site in Quebec, glacial tills from the Heath Steele mine site in New Brunswick, and soil from the Faro mine site in the Yukon Territory were examined. Soil mineralogy and chemistry were examined before and after hydraulic conductivity testing to identify any changes. 20 refs., 25 figs., 8 tabs.

  6. Hydraulic Conductivity of Residual Soil-Cement Mix

    Science.gov (United States)

    Govindasamy, P.; Taha, M. R.

    2016-07-01

    In Malaysia, although there are several researches on engineering properties of residual soils, however study on the hydraulic conductivity properties of metasedimentary residual soils is still lacking. Construction of containment walls like slurry wall techniques can be achieved with hydraulic conductivity of approximately 5 x 10-7cm/sec. The objectives of the study were to determine the physical properties of metasedimentary residual soils and to determine the influence of 1%, 3%, 5% and 10% of cement on hydraulic conductivity parameters. The coefficient of hydraulic conductivity of the soil naturally and soil-cement mixtures were determined by using the falling head test. According to the test, the hydraulic conductivity of the original soil was 4.16 x 10-8 m/s. The value decreases to 3.89 x 10-8 m/s, 2.78 x 10-8 m/s then 6.83 x 10-9 m/s with the addition of 1%, 3% and 5% of cement additives, respectively. During the hydration process, cement hydrates is formed followed by the increase in pH value and Ca(OH)2 which will alter the modification of pores size and distribution. When the quantity of cement increases, the pores size decrease. But, the addition of 10% cement gives an increased hydraulic conductivity value to 2.78 x 10-8 m/s. With 10%, the pore size increase might due to flocculation and agglomeration reaction. The generated hydraulic conductivity values will indirectly become a guide in the preliminary soil cement stabilization to modify the properties of the soil to become more like the properties of a soft rock.1. Introduction

  7. Measurement of soil hydraulic conductivity in relation with vegetation

    Science.gov (United States)

    Chen, Xi; Cheng, Qinbo

    2010-05-01

    Hydraulic conductivity is a key parameter which influences hydrological processes of infiltration, surface and subsurface runoff. Vegetation alters surface characteristics (e.g., surface roughness, litter absorption) or subsurface characteristics (e.g. hydraulic conductivity). Field infiltration experiment of a single ring permeameter is widely used for measuring soil hydraulic conductivity. Measurement equipment is a simple single-ring falling head permeameter which consists of a hollow cylinder that is simply inserted into the top soil. An optimization method on the basis of objective of minimum error between the measured and simulated water depths in the single-ring is developed for determination of the soil hydraulic parameters. Using the single ring permeameter, we measured saturated hydraulic conductivities (Ks) of the red loam soil with and without vegetation covers on five hillslopes at Taoyuan Agro-Ecology Experimental Station, Hunan Province of China. For the measurement plots without vegetation roots, Ks value of the soil at 25cm depth is much smaller than that of surface soil (1.52×10-4 vs. 1.10×10-5 m/s). For the measurement plots with vegetation cover, plant roots significantly increase Ks of the lower layer soil but this increase is not significant for the shallow soil. Moreover, influences of vegetation root on Ks depend on vegetation species and ages. Ks value of the Camellia is about three times larger than that of seeding of Camphor (2.62×10-4 vs. 9.82×10-5 m/s). Ks value of the matured Camellia is 2.72×10-4 m/s while Ks value of the young Camellia is only 2.17×10-4 m/s. Key words: single ring permeameter; soil hydraulic conductivity; vegetation

  8. Effect of Irrigation Water Quality on Soil Hydraulic Conductivity

    Institute of Scientific and Technical Information of China (English)

    XIAOZHEN-HUA; B.PRENDERGAST; 等

    1992-01-01

    The effect of irrigation water quality on unsaturated hydraulic conductivity (HC) of undisturbed soil in field was studied.Results show that within the operating soil suction range (0-1.6 KPa) of disc permeameters,the higher the electric conductivity (EC) of irrigation water,the higher the soil HC became.The soil HC doubled when EC increased from 0.1 to 6.0ds m-1.High sodium-adsorption ratio(SAR) of irrigation water would have an unfavorable effect on soil HC.Soil HC decreased with the increasing of SAR,especially in the case of higher soil suction.An interaction existed between the effects of EC and SAR of irrigation water on soil HC.The HC of unsaturated soil dependent upon the macropores in surface soil decreased by one order of magnitude with 1 KPa increase of soil suction.In the study on the effect of very low soluble salt concentration (EC=0.1 ds m-1 of irrigation water on soil HC,soil HC was found to be lowered by 30% as a consequence of blocking up of some continuous pores by the dispersed and migrated clay particles.Nonlinear successive regression analysis and significance test show that the effects of EC and SAR of irrigation water on soil HC reached the extremely significant level.

  9. Hydraulic conductivity and soil-sewage sludge interactions

    Directory of Open Access Journals (Sweden)

    Silvio Romero de Melo Ferreira

    2011-10-01

    Full Text Available One of the main problems faced by humanity is pollution caused by residues resulting from the production and use of goods, e.g, sewage sludge. Among the various alternatives for its disposal, the agricultural use seems promising. The purpose of this study was to evaluate the hydraulic conductivity and interaction of soil with sandy-silty texture, classified as Spodosols, from the Experimental Station Itapirema - IPA, in Goiana, state of Pernambuco, in mixtures with sewage sludge from the Mangueira Sewage Treatment Station, in the city of Recife, Pernambuco at rates of 25, 50 and 75 Mg ha-1. Tests were conducted to let water percolate the natural saturated soil and soil-sludge mixtures to characterize their physical, chemical, and microstructural properties as well as hydraulic conductivity. Statistical data analysis showed that the presence of sewage sludge in soils leads to an increase of the < 0.005 mm fraction, reduction in real specific weight and variation in optimum moisture content from 11.60 to 12.90 % and apparent specific dry weight from 17.10 and 17.50 kN m-3. In the sludge-soil mixture, the quartz grains were covered by sludge and filling of the empty soil macropores between grains. There were changes in the chemical characteristics of soil and effluent due to sewage sludge addition and a small decrease in hydraulic conductivity. The results indicate the possibility that soil acidity influenced the concentrations of the elements found in the leachate, showing higher levels at higher sludge doses. It can be concluded that the leaching degree of potentially toxic elements from the sewage sludge treatments does not harm the environment.

  10. Predicting saturated hydraulic conductivity using soil morphological properties

    Directory of Open Access Journals (Sweden)

    Gülay Karahan

    2016-01-01

    Full Text Available Many studies have been conducted to predict soil saturated hydraulic conductivity (Ks by parametric soil properties such as bulk density and particle-size distribution. Although soil morphological properties have a strong effect on Ks, studies predicting Ks by soil morphological properties such as type, size, and strength of soil structure; type, orientation and quantity of soil pores and roots and consistency are rare. This study aimed at evaluating soil morphological properties to predict Ks. Undisturbed soil samples (15 cm length and 8.0 cm id. were collected from topsoil (0-15 cm and subsoil (15-30 cm (120 samples with a tractor operated soil sampler at sixty randomly selected sampling sites on a paddy field and an adjecent grassland in Central Anatolia (Cankırı, Turkey. Synchronized disturbed soil samples were taken from the same sampling sites and sampling depths for basic soil analyses. Saturated hydraulic conductivity was measured on the soil columns using a constant-head permeameter. Following the Ks measurements, the upper part of soil columns were covered to prevent evaporation and colums were left to drain in the laboratory. When the water flow through the column was stopped, a subsample were taken for bulk density and then soil columns were disturbed for describing the soil morphological properties. In addition, soil texture, bulk density, pH, field capacity, wilting point, cation exchange capacity, specific surface area, aggregate stability, organic matter, and calcium carbonate were measured on the synchronized disturbed soil samples. The data were divided into training (80 data values and validation (40 data values sets. Measured values of Ks ranged from 0.0036 to 2.14 cmh-1 with a mean of 0.86 cmh-1. The Ks was predicted from the soil morphological and parametric properties by stepwise multiple linear regression analysis. Soil structure class, stickiness, pore-size, root-size, and pore-quantity contributed to the Ks prediction

  11. Measuring lateral saturated soil hydraulic conductivity at different spatial scales

    Science.gov (United States)

    Di Prima, Simone; Marrosu, Roberto; Pirastru, Mario; Niedda, Marcello

    2017-04-01

    Among the soil hydraulic properties, saturated soil hydraulic conductivity, Ks, is particularly important since it controls many hydrological processes. Knowledge of this soil property allows estimation of dynamic indicators of the soil's ability to transmit water down to the root zone. Such dynamic indicators are valuable tools to quantify land degradation and developing 'best management' land use practice (Castellini et al., 2016; Iovino et al., 2016). In hillslopes, lateral saturated soil hydraulic conductivity, Ks,l, is a key factor since it controls subsurface flow. However, Ks,l data collected by point-scale measurements, including infiltrations tests, could be unusable for interpreting field hydrological processes and particularly subsurface flow in hillslopes. Therefore, they are generally not representative of subsurface processes at hillslope-scale due mainly to soil heterogeneities and the unknown total extent and connectivity of macropore network in the porous medium. On the other hand, large scale Ks,l measurements, which allow to average soil heterogeneities, are difficult and costly, thus remain rare. Reliable Ks,l values should be measured on a soil volume similar to the representative elementary volume (REV) in order to incorporate the natural heterogeneity of the soil. However, the REV may be considered site-specific since it is expected to increase for soils with macropores (Brooks et al., 2004). In this study, laboratory and in-situ Ks,l values are compared in order to detect the dependency Ks,l from the spatial scale of investigation. The research was carried out at a hillslope located in the Baratz Lake watershed, in northwest Sardinia, Italy, characterized by degraded vegetation (grassland established after fire or clearing of the maquis). The experimental area is about 60 m long, with an extent of approximately 2000 m2, and a mean slope of 30%. The soil depth is about 35 to 45 cm. The parent material is a very dense grayish, altered

  12. Effective soil hydraulic conductivity predicted with the maximum power principle

    Science.gov (United States)

    Westhoff, Martijn; Erpicum, Sébastien; Archambeau, Pierre; Pirotton, Michel; Zehe, Erwin; Dewals, Benjamin

    2016-04-01

    Drainage of water in soils happens for a large extent through preferential flowpaths, but these subsurface flowpaths are extremely difficult to observe or parameterize in hydrological models. To potentially overcome this problem, thermodynamic optimality principles have been suggested to predict effective parametrization of these (sub-grid) structures, such as the maximum entropy production principle or the equivalent maximum power principle. These principles have been successfully applied to predict heat transfer from the Equator to the Poles, or turbulent heat fluxes between the surface and the atmosphere. In these examples, the effective flux adapts itself to its boundary condition by adapting its effective conductance through the creation of e.g. convection cells. However, flow through porous media, such as soils, can only quickly adapt its effective flow conductance by creation of preferential flowpaths, but it is unknown if this is guided by the aim to create maximum power. Here we show experimentally that this is indeed the case: In the lab, we created a hydrological analogue to the atmospheric model dealing with heat transport between Equator and poles. The experimental setup consists of two freely draining reservoirs connected with each other by a confined aquifer. By adding water to only one reservoir, a potential difference will build up until a steady state is reached. From the steady state potential difference and the observed flow through the aquifer, and effective hydraulic conductance can be determined. This observed conductance does correspond to the one maximizing power of the flux through the confined aquifer. Although this experiment is done in an idealized setting, it opens doors for better parameterizing hydrological models. Furthermore, it shows that hydraulic properties of soils are not static, but they change with changing boundary conditions. A potential limitation to the principle is that it only applies to steady state conditions

  13. Effects of hedgerow systems on soil moisture and unsaturated hydraulics conductivity measured by the Libardi method

    Directory of Open Access Journals (Sweden)

    S . Prijono

    2016-01-01

    Full Text Available The hedgerow systems are the agroforestry practices suggesting any positive impacts and negative impacts on soil characteristics. This study evaluated the effects of hedgerows on the unsaturated hydraulic conductivity of soil with the Libardi method approach. This study was conducted in North Lampung for 3 months on the hedgerow plots of Peltophorum dassyrachis (P, Gliricidia sepium (G, and without hedgerow plot (K, with four replications. Each plot was watered as much as 150 liters of water until saturated, then the soil surface were covered with the plastic film. Observation of soil moisture content was done to a depth of 70 cm by the 10 cm intervals. Soil moisture content was measured using the Neutron probe that was calibrated to get the value of volumetric water content. Unsaturated hydraulic conductivity of soil was calculated by using the Libardi Equation. Data were tested using the analysis of variance, the least significant different test (LSD, Duncan Multiple Range Test (DMRT, correlation and regression analysis. The results showed that the hedgerow significantly affected the soil moisture content and unsaturated hydraulic conductivity. Soil moisture content on the hedgerow plots was lower than the control plots. The value of unsaturated hydraulic conductivity in the hedgerow plots was higher than the control plots. Different types of hedgerows affected the soil moisture content and unsaturated hydraulic conductivity. The positive correlation was found between the volumetric soil moisture content and the unsaturated hydraulic conductivity of soil.

  14. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil

    Science.gov (United States)

    Jarvis, N.; Koestel, J.; Messing, I.; Moeys, J.; Lindahl, A.

    2013-12-01

    Due to inadequate data support, existing algorithms used to estimate soil hydraulic conductivity, K, in (eco)hydrological models ignore the effects of key site factors such as land use and climate and underplay the significant effects of soil structure on water flow at and near saturation. These limitations may introduce serious bias and error into predictions of terrestrial water balances and soil moisture status, and thus plant growth and rates of biogeochemical processes. To resolve these issues, we collated a new global database of hydraulic conductivity measured by tension infiltrometer under field conditions. The results of our analyses on this data set contrast markedly with those of existing algorithms used to estimate K. For example, saturated hydraulic conductivity, Ks, in the topsoil (< 0.3 m depth) was found to be only weakly related to texture. Instead, the data suggests that Ks depends more strongly on bulk density, organic carbon content and land use. In this respect, organic carbon was negatively correlated with Ks, presumably due to water repellency, while Ks at arable sites was, on average, ca. 2-3 times smaller than under natural vegetation, forests and perennial agriculture. The data also clearly demonstrates that clay soils have smaller K in the soil matrix and thus a larger contribution of soil macropores to K at and near saturation.

  15. Comparison of Laboratory and Field Methods for Determining the Quasi-Saturated Hydraulic Conductivity of Soils

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris

    1997-08-01

    Laboratory and field ponded infiltration tests in quasi-saturated soils (containing entrapped air) exhibit the same three-stage temporal variability for the flow rate and hydraulic conductivity. However, the values for the hydraulic conductivity may differ by as much as two orders of magnitude due to differences in the geometry and physics of flow when different laboratory and field methods are applied. The purpose of this paper is to investigate this variability using a comparison of results of ponded infiltration tests conducted under laboratory conditions using confined cores, with results of field tests conducted using partially isolated cores and double-ring infiltrometers. Under laboratory conditions in confined cores, during the firs stage, the water flux decreases over time because entrapped air plugs the largest pores in the soils; during the second stage, the quasi-saturated hydraulic conductivity increases by one to two orders of magnitude, essentially reaching the saturated hydraulic conductivity, when entrapped air is discharged from the soils; during the third stage, the hydraulic conductivity decreases to minimum values due to sealing of the soil surface and the effect of biofilms sealing the pores within the wetted zone. Under field conditions, the second stage is only partially developed, and when the surface sealing process begins, the hydraulic pressure drops below the air entry value, thereby causing atmospheric air to enter the soils. As a result, the soils become unsaturated with a low hydraulic conductivity, and the infiltration rate consequently decreases. Contrary to the laboratory experiments in confined cores, the saturated hydraulic conductivity cannot be reached under field conditions. In computations of infiltration one has to take into account the variations in the quasi-saturated and unsaturated hydraulic conductivities, moisture and entrapped air content, and the hydraulic gradient in the quasi-saturated or unsaturated soils.

  16. Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste.

    Science.gov (United States)

    Hamdi, Noureddine; Srasra, Ezzeddine

    2013-01-01

    Three natural clayey soils from Tunisia were studied to assess their suitability for use as a liner for an acid waste disposal site. An investigation of the effect of the mineral composition and mechanical compaction on the hydraulic conductivity and fluoride and phosphate removal of three different soils is presented. The hydraulic conductivity of these three natural soils are 8.5 × 10(-10), 2.08 × 10(-9) and 6.8 × 10(-10)m/s for soil-1, soil-2 and soil-3, respectively. Soil specimens were compacted under various compaction strains in order to obtain three wet densities (1850, 1950 and 2050 kg/m(3)). In this condition, the hydraulic conductivity (k) was reduced with increasing density of sample for all soils. The test results of hydraulic conductivity at long-term (>200 days) using acidic waste solution (pH=2.7, charged with fluoride and phosphate ions) shows a decrease in k with time only for natural soil-1 and soil-2. However, the specimens of soil-2 compressed to the two highest densities (1950 and 2050 kg/m(3)) are cracked after 60 and 20 days, respectively, of hydraulic conductivity testing. This damage is the result of a continued increase in the internal stress due to the swelling and to the effect of aggressive wastewater. The analysis of anions shows that the retention of fluoride is higher compared to phosphate and soil-1 has the highest sorption capacity.

  17. Saturated hydraulic conductivity of US soils grouped according textural class and bulk density

    Science.gov (United States)

    Importance of the saturated hydraulic conductivity as soil hydraulic property led to the development of multiple pedotransfer functions for estimating it. One approach to estimating Ksat was using textural classes rather than specific textural fraction contents as pedotransfer inputs. The objective...

  18. Saturated hydraulic conductivity of US soils grouped according to textural class and bulk density

    Science.gov (United States)

    Importance of the saturated hydraulic conductivity as soil hydraulic property led to the development of multiple pedotransfer functions for estimating it. One approach to estimating Ksat was using textural classes rather than specific textural fraction contents as pedotransfer inputs. The objective...

  19. Sample dimensions effect on prediction of soil water retention curve and saturated hydraulic conductivity

    Science.gov (United States)

    Soil water retention curve (SWRC) and saturated hydraulic conductivity (SHC) are key hydraulic properties for unsaturated zone hydrology and groundwater. Not only are the SWRC and SHC measurements time-consuming, their results are scale dependent. Although prediction of the SWRC and SHC from availab...

  20. Interaction between soil mineralogy and the application of crop residues on aggregate stability and hydraulic conductivity of the soil

    Science.gov (United States)

    Lado, M.; Kiptoon, R.; Bar-Tal, A.; Wakindiki, I. I. C.; Ben-Hur, M.

    2012-04-01

    One of the main goals of modern agriculture is to achieve sustainability by maintaining crop productivity while avoiding soil degradation. Intensive cultivation could lead to a reduction in soil organic matter that could affect the structure stability and hydraulic conductivity of the soil. Moreover, crops extract nutrients from the soil that are taken away from the field when harvested, and as a consequence, the addition of fertilizers to the soil is necessary to maintain crop productivity. One way to deal with these problems is to incorporate crop residues into the soil after harvest. Crop residues are a source of organic matter that could improve soil physical properties, such as aggregate stability and soil hydraulic conductivity. However, this effect could vary according to other soil properties, such as clay content, clay mineralogy, and the presence of other cementing materials in the soil (mainly carbonates and aluminum and iron oxides). In the present work, the interaction between the addition of chickpea crop residues to the soil and clay mineralogy on aggregate stability and saturated hydraulic conductivity were studied. Chickpea plant residues were added at a rate of 0.5% (w/w) to smectitic, kaolinitic, illitic and non-phyllosilicate soils from different regions. The soils without (control) and with chickpea residues were incubated for 0, 3, 7 and 30 days, and the saturated hydraulic conductivity of the soils was measured in columns after each incubation time. The response of hydraulic conductivity to the addition of residues and incubation time was different in the soils with various mineralogies, although in general, the addition of chickpea residues increased the saturated hydraulic conductivity as compared with the control soils. This positive effect of crop residues on hydraulic conductivity was mainly a result of improved aggregate stability and resistance to slaking during wetting.

  1. The Comparison of Predicted and Measured Hydraulic Conductivities of Soils having Different Physical Properties

    Science.gov (United States)

    Zengin, Enes; Abiddin Erguler, Zeynal; Karakuş, Hüseyin

    2015-04-01

    Hydraulic conductivity is one of the most important parameter of earth science related studies such as engineering geology, soil physics, agriculture etc. In order to estimate the ability of soils to transport fluid through particles, field and laboratory tests have been performed since last decades of 19th century. Constant and falling head tests are widely used to directly measure hydraulic conductivity values in laboratory conditions for soils having different particle size distributions. The determination of hydraulic conductivity of soils by performing these methods are time consuming processes and also requires undisturbed samples to reflect in-situ natural condition. Considering these limitations, numerous approaches have been proposed to practically estimate hydraulic conductivity of soils by utilizing empirical equations based on simple physical and index properties such as grain size distribution curves related parameters, porosity, void ratio, etc. Many previous studies show that the hydraulic conductivity values calculated by empirical equations deviate more than two order magnitude than the measured hydraulic conductivity values obtained from convenient permeability tests. In order to investigate the main controlling parameters on hydraulic conductivity of soils, a comprehensive research program was carried out on some disturbed and undisturbed soil samples collected from different locations in Turkey. The hydraulic conductivity values of samples were determined as changing between 10-6 and 10-9 m/s by using falling head tests. In addition to these tests, basic soil properties such as natural water content, Atterberg limits, specific gravity and grain size analyses of these samples were also defined to be used as an input parameters of empirical equations for prediction hydraulic conductivity values. In addition, data from previous studies were also used for the aim of this study. The measured hydraulic conductivity values were correlated with all

  2. Gas diffusion-derived tortuosity governs saturated hydraulic conductivity in sandy soils

    DEFF Research Database (Denmark)

    Masis Melendez, Federico; Deepagoda Thuduwe Kankanamge Kelum, Chamindu; de Jonge, Lis Wollesen

    2014-01-01

    Accurate prediction of saturated hydraulic conductivity (Ksat) is essential for the development of better distributed hydrological models and area-differentiated risk assessment of chemical leaching. The saturated hydraulic conductivity is often estimated from basic soil properties such as particle...... size distribution or, more recently, soil-air permeability. However, similar links to soil gas diffusivity (Dp/Do) have not been fully explored even though gas diffusivity is a direct measure of connectivity and tortuosity of the soil pore network. Based on measurements for a coarse sandy soil....../Do model to measured data, and subsequently linked to the cementation exponent of the wellestablished Revil and Cathles predictive model for saturated hydraulic conductivity. Furthermore, a two-parameter model, analogue to the Kozeny-Carman equation, was developed for the Ksat - Dp/Do relationships. All 44...

  3. STOCHASTIC ANALYSIS OF UNSATURATED FLOW WITH THE NORMAL DISTRIBUTION OF SOIL HYDRAULIC CONDUCTIVITY

    Institute of Scientific and Technical Information of China (English)

    Huang Guan-hua; Zhang Ren-duo

    2003-01-01

    Stochastic approaches are useful to quantitatively describe transport behavior over large temporal and spatial scales while accounting for the influence of small-scale variabilities. Numerous solutions have been developed for unsaturated soil water flow based on the lognormal distribution of soil hydraulic conductivity. To our knowledge, no available stochastic solutions for unsaturated flow have been derived on the basis of the normal distribution of hydraulic conductivity. In this paper, stochastic solutions were developed for unsaturated flow by assuming the normal distribution of saturated hydraulic conductivity (Ks). Under the assumption that soil hydraulic properties are second-order stationary, analytical expressions for capillary tension head variance (σ2h) and effective hydraulic conductivity (K*ii) in stratified soils were derived using the perturbation method. The dependence of σ2h and K*ii on soil variability and mean flow variables (the mean capillary tension head and its temporal and spatial gradients) and mean flow conditions (wetting and drying) were systematically analyzed. The calculated variance of capillary tension head with the analytical solution derived in this paper was compared with field experimental data. The good agreement indicates that the analytical solution is applicable to evaluate the variance of capillary tension head of field soils with moderate variability.

  4. Treated wastewater irrigation effects on soil hydraulic conductivity and aggregate stability of loamy soils in Israel

    Directory of Open Access Journals (Sweden)

    Schacht Karsten

    2015-03-01

    Full Text Available The use of treated wastewater (TWW for agricultural irrigation becomes increasingly important in water stressed regions like the Middle East for substituting fresh water (FW resources. Due to elevated salt concentrations and organic compounds in TWW this practice has potential adverse effects on soil quality, such as the reduction of hydraulic conductivity (HC and soil aggregate stability (SAS. To assess the impact of TWW irrigation in comparison to FW irrigation on HC, in-situ infiltration measurements using mini disk infiltrometer were deployed in four different long-term experimental orchard test sites in Israel. Topsoil samples (0-10 cm were collected for analyzing SAS and determination of selected soil chemical and physical characteristics.

  5. The effect of mineral-ion interactions on soil hydraulic conductivity

    Science.gov (United States)

    The reuse of winery wastewater (WW) for irrigation could provide an alternative water source for wine production. The shift of many wineries and other food processing industries to K+-based cleaners requires studies on the effects of K+ on soil hydraulic conductivity (HC). Soils of contrasting mine...

  6. Estimation of soil saturated hydraulic conductivity by artificial neural networks ensemble in smectitic soils

    Science.gov (United States)

    Sedaghat, A.; Bayat, H.; Safari Sinegani, A. A.

    2016-03-01

    The saturated hydraulic conductivity ( K s ) of the soil is one of the main soil physical properties. Indirect estimation of this parameter using pedo-transfer functions (PTFs) has received considerable attention. The Purpose of this study was to improve the estimation of K s using fractal parameters of particle and micro-aggregate size distributions in smectitic soils. In this study 260 disturbed and undisturbed soil samples were collected from Guilan province, the north of Iran. The fractal model of Bird and Perrier was used to compute the fractal parameters of particle and micro-aggregate size distributions. The PTFs were developed by artificial neural networks (ANNs) ensemble to estimate K s by using available soil data and fractal parameters. There were found significant correlations between K s and fractal parameters of particles and microaggregates. Estimation of K s was improved significantly by using fractal parameters of soil micro-aggregates as predictors. But using geometric mean and geometric standard deviation of particles diameter did not improve K s estimations significantly. Using fractal parameters of particles and micro-aggregates simultaneously, had the most effect in the estimation of K s . Generally, fractal parameters can be successfully used as input parameters to improve the estimation of K s in the PTFs in smectitic soils. As a result, ANNs ensemble successfully correlated the fractal parameters of particles and micro-aggregates to K s .

  7. Polyacrylamide effect on hydraulic conductivity of hardsetting soils in Northeast of Brazil

    Science.gov (United States)

    Silva, Laércio; Almeida, Brivaldo; Melo, Diego; Marques, Karina; Almeida, Ceres

    2013-04-01

    Among soil hydro-physical properties, hydraulic conductivity is more sensitive to changes in soil structure. Hydraulic conductivity describes the ease with which a fluid (usually water) can move through pore spaces or fractures. It depends on the intrinsic permeability of the material and on the degree of saturation, and on the density and viscosity of the fluid. Hardsetting soils present very low hydraulic conductivity values. When dry, these soils show high penetration resistance and consistency extremely hard, but change to friable when moist. In this condition are poorly structured, slaking when moist, limit agricultural machinery use and it may reduce the growth of the root system. In Brazil, these soils occur throughout of coastal zone in flat areas called "coastal tableland". Chemical ameliorant, such as polymers based on anionic polyacrylamide (PAM), improve hydraulic conductivity of soil in hardsetting soils. The primary functions of polyacrylamide soil conditioners are to increase soil tilth, aeration, and porosity and reduce compaction and water run-off. PAM effect is attributed to its ability to expand when placed in water, storing it in soil pore space, releasing it gradually to the plants. This process occurs by reducing the water flow through the pores of the soil, due to water molecules can be absorbed by PAM, providing water gradually. Thus, this study tested the hypothesis that PAM reduces the soil hardsetting character. The area is located in coastal zone in Goiana city, Pernambuco, northeastern of Brazil. This soil is typical hardsetting soil. Intact soil cores were collected from four horizons until 70cm depth. In the laboratory, the soil cores were saturated with different PAM concentrations (0.01, 0.005, 0.00125%) and H2O (control). Saturated hydraulic conductivity (Ksat) was determined using a constant head method, according to Klute and Dirksen (1986). Four replicates were used for each horizon and Tukey test at 5% probability was used by

  8. Using boosted regression trees to predict the near-saturated hydraulic conductivity of undisturbed soils

    Science.gov (United States)

    Koestel, John; Bechtold, Michel; Jorda, Helena; Jarvis, Nicholas

    2015-04-01

    The saturated and near-saturated hydraulic conductivity of soil is of key importance for modelling water and solute fluxes in the vadose zone. Hydraulic conductivity measurements are cumbersome at the Darcy scale and practically impossible at larger scales where water and solute transport models are mostly applied. Hydraulic conductivity must therefore be estimated from proxy variables. Such pedotransfer functions are known to work decently well for e.g. water retention curves but rather poorly for near-saturated and saturated hydraulic conductivities. Recently, Weynants et al. (2009, Revisiting Vereecken pedotransfer functions: Introducing a closed-form hydraulic model. Vadose Zone Journal, 8, 86-95) reported a coefficients of determination of 0.25 (validation with an independent data set) for the saturated hydraulic conductivity from lab-measurements of Belgian soil samples. In our study, we trained boosted regression trees on a global meta-database containing tension-disk infiltrometer data (see Jarvis et al. 2013. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrology & Earth System Sciences, 17, 5185-5195) to predict the saturated hydraulic conductivity (Ks) and the conductivity at a tension of 10 cm (K10). We found coefficients of determination of 0.39 and 0.62 under a simple 10-fold cross-validation for Ks and K10. When carrying out the validation folded over the data-sources, i.e. the source publications, we found that the corresponding coefficients of determination reduced to 0.15 and 0.36, respectively. We conclude that the stricter source-wise cross-validation should be applied in future pedotransfer studies to prevent overly optimistic validation results. The boosted regression trees also allowed for an investigation of relevant predictors for estimating the near-saturated hydraulic conductivity. We found that land use and bulk density were most important to predict Ks. We also observed that Ks is large in fine

  9. Estimating saturated hydraulic conductivity and air permeability from soil physical properties using state-space analysis

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe; Møldrup, Per; Nielsen, Don

    2003-01-01

    field were used. Multiple regression and ARIMA models yielded similar prediction accuracy, whereas state-space models generally gave significantly higher accuracy. State-space modeling suggested K-S at a given location could be predicted using nearby values of K-S, k(a100) and air-filled porosity......Estimates of soil hydraulic conductivity (K) and air permeability (k(a)) at given soil-water potentials are often used as reference points in constitutive models for K and k(a) as functions of moisture content and are, therefore, a prerequisite for predicting migration of water, air, and dissolved...... and gaseous chemicals in the vadose zone. In this study, three modeling approaches were used to identify the dependence of saturated hydraulic conductivity (K-S) and air permeability at -100 cm H2O soil-water potential (k(a100)) on soil physical properties in undisturbed soil: (i) Multiple regression, (ii...

  10. Seasonal variability of near-saturated hydraulic conductivity on cultivated soil

    Science.gov (United States)

    Klípa, Vladimír; Zumr, David; Sněhota, Michal

    2014-05-01

    The soil structure and hydraulic properties of arable soils considerably vary during the year due to the periodical tillage and fertilization activities, soil compaction, plant and root grow, climate impact etc. The knowledge of the effect of temporal soil variability is essential when assessing water regime and associated dissolved substance transport in soils. The main aim of this contribution is to describe the temporal development of unsaturated hydraulic conductivity on arable land during a year. The experimental site is located in Nucice catchment (Central Bohemia, Czech republic), where also rainfall-runoff and soil erosion processes are studied. The soil is classified as Cambisol, typical texture ranges from loam to clay loam classes. Soil is conservatively tilled till depth of approximately 17 cm, below the topsoil a compacted subsoil was observed. Tension infiltration experiments were performed repeatedly at single location in order to determine the unsaturated hydraulic conductivity of the topsoil. So far four tension infiltration campaigns were carried out under tension h0 = -3.0 cm with different field conditions: (i) young winter barley (October 2012), (ii) between postharvest stubble breaking and seeding (April 2013), (iii) full-grown oat (June 2013) and (iv) after fresh postharvest stubble breaking (October 2013). Measurements were carried out using newly introduced automated multi minidisk tension infiltrometer (Klipa et al., EGU2014-7230). All experiments were performed on the levelled soil surface after removing upper soil layer (1 to 3 cm). A thin layer of quartz sand (thickness 1 - 2 mm, grain size 0.1 - 0.6 mm) was applied to improve contact between the infiltrometer and the soil surface. Each infiltration campaign consisted of six tension infiltration experiments, the total number of 24 infiltration data sets was obtained for this study. Results show that unsaturated hydraulic conductivity was significantly smaller in April, but rather the

  11. Unsaturated hydraulic conductivity of sandy soil columns packed to different bulk densities and water uptake by plantroots

    NARCIS (Netherlands)

    Rossi-Pisa, P.

    1978-01-01

    This paper describes a laboratory metbod used to determine both the soil moisture retention curve and the unsaturated hydraulic conductivity in soil columns under transient flow conditions during evaporation.

  12. Evaluation of two methods for measuring saturated hydraulic conductivity of soils under two vegetation covers

    Energy Technology Data Exchange (ETDEWEB)

    Rubio, C.M.; Josa, R.; Poyatos, R.; Llorens, P.; Gallart, F.; Latron, J.; Ferrer, F.

    2009-07-01

    The main goal of this work is to determine and to evaluate the saturated hydraulic conductivity for a silt loam soil in field and laboratory conditions. the experimental area was located in the Vallcebre research catchment, in headwaters of the Llobregat River (NE Spain). Hydraulic conductivity was measured in the field using the Guelph permeameter and field saturated hydraulic conductivity (K{sub f}s) based on Elrick equation was calculated. The Guelph permeameter measures were made in two conditions (dry and wet) and in profiles below two vegetation covers (meadows and forest). To determine the saturated hydraulic conductivity at the laboratory (K{sub s}) the constant head permeameter was used. The average K{sub f}s values for the wet period was about 2 cm.h{sup -}1. During the dry period, both soil profiles presented higher values, about 7.5 cm.h{sup -}1. Under laboratory conditions, means observed K{sub s} values were between 12 and 25 cm.h{sup -}1. The relationship K{sub f}s/k{sub s} was of 0.1 cm.h{sup -}1 in wet conditions and about 0.4 cm.h{sup -}1 in dry conditions. The results indicated significant differences between both methods and between both seasons. differences can be explained by the anisotropy of soils as a consequence of vegetation root system that promotes preferential flows paths. (Author) 10 refs.

  13. Sample dimensions effect on prediction of soil water retention curve and saturated hydraulic conductivity

    Science.gov (United States)

    Ghanbarian, Behzad; Taslimitehrani, Vahid; Dong, Guozhu; Pachepsky, Yakov A.

    2015-09-01

    Soil water retention curve (SWRC) and saturated hydraulic conductivity (SHC) are key hydraulic properties for unsaturated zone hydrology and groundwater. Not only the SWRC and SHC measurements are time-consuming, but also their results are scale dependent. Although prediction of the SWRC and SHC from available parameters, such as textural data, organic matter, and bulk density have been under investigation for decades, up to now no research has focused on the effect of sample dimensions on the soil hydraulic properties pedotransfer functions development. The main purpose here is investigating sample internal diameter and height (or length) effects on the prediction of the soil water retention curve and the saturated hydraulic conductivity. We, therefore, develop pedotransfer functions using a novel approach called contrast pattern aided regression (CPXR) and consider the sample dimensions as input variables. Two datasets including 210 and 213 soil samples with known sample dimensions were extracted from the UNSODA database to develop and evaluate pedotransfer functions for the SWRC and SHC, respectively. The 10-fold cross-validation method is applied to evaluate the accuracy and reliability of the proposed regression-based models. Our results show that including sample dimensions, such as sample internal diameter and height (or length) could substantially improve the accuracy of the SWRC and SHC pedotransfer functions developed using the CPXR method.

  14. FRACTAL SCALING OF PARTICLE AND PORE SIZE DISTRIBUTIONS AND ITS RELATION TO SOIL HYDRAULIC CONDUCTIVITY

    Directory of Open Access Journals (Sweden)

    BACCHI O.O.S.

    1996-01-01

    Full Text Available Fractal scaling has been applied to soils, both for void and solid phases, as an approach to characterize the porous arrangement, attempting to relate particle-size distribution to soil water retention and soil water dynamic properties. One important point of such an analysis is the assumption that the void space geometry of soils reflects its solid phase geometry, taking into account that soil pores are lined by the full range of particles, and that their fractal dimension, which expresses their tortuosity, could be evaluated by the fractal scaling of particle-size distribution. Other authors already concluded that although fractal scaling plays an important role in soil water retention and porosity, particle-size distribution alone is not sufficient to evaluate the fractal structure of porosity. It is also recommended to examine the relationship between fractal properties of solids and of voids, and in some special cases, look for an equivalence of both fractal dimensions. In the present paper data of 42 soil samples were analyzed in order to compare fractal dimensions of pore-size distribution, evaluated by soil water retention curves (SWRC of soils, with fractal dimensions of soil particle-size distributions (PSD, taking the hydraulic conductivity as a standard variable for the comparison, due to its relation to tortuosity. A new procedure is proposed to evaluate the fractal dimension of pore-size distribution. Results indicate a better correlation between fractal dimensions of pore-size distribution and the hydraulic conductivity for this set of soils, showing that for most of the soils analyzed there is no equivalence of both fractal dimensions. For most of these soils the fractal dimension of particle-size distribution does not indicate properly the pore trace tortuosity. A better equivalence of both fractal dimensions was found for sandy soils.

  15. [Spatial variation characteristics of surface soil water content, bulk density and saturated hydraulic conductivity on Karst slopes].

    Science.gov (United States)

    Zhang, Chuan; Chen, Hong-Song; Zhang, Wei; Nie, Yun-Peng; Ye, Ying-Ying; Wang, Ke-Lin

    2014-06-01

    Surface soil water-physical properties play a decisive role in the dynamics of deep soil water. Knowledge of their spatial variation is helpful in understanding the processes of rainfall infiltration and runoff generation, which will contribute to the reasonable utilization of soil water resources in mountainous areas. Based on a grid sampling scheme (10 m x 10 m) and geostatistical methods, this paper aimed to study the spatial variability of surface (0-10 cm) soil water content, soil bulk density and saturated hydraulic conductivity on a typical shrub slope (90 m x 120 m, projected length) in Karst area of northwest Guangxi, southwest China. The results showed that the surface soil water content, bulk density and saturated hydraulic conductivity had different spatial dependence and spatial structure. Sample variogram of the soil water content was fitted well by Gaussian models with the nugget effect, while soil bulk density and saturated hydraulic conductivity were fitted well by exponential models with the nugget effect. Variability of soil water content showed strong spatial dependence, while the soil bulk density and saturated hydraulic conductivity showed moderate spatial dependence. The spatial ranges of the soil water content and saturated hydraulic conductivity were small, while that of the soil bulk density was much bigger. In general, the soil water content increased with the increase of altitude while it was opposite for the soil bulk densi- ty. However, the soil saturated hydraulic conductivity had a random distribution of large amounts of small patches, showing high spatial heterogeneity. Soil water content negatively (P conductivity, while there was no significant correlation between the soil bulk density and saturated hydraulic conductivity.

  16. Biochar-Induced Changes in Soil Hydraulic Conductivity and Dissolved Nutrient Fluxes Constrained by Laboratory Experiments

    Science.gov (United States)

    Barnes, Rebecca T.; Gallagher, Morgan E.; Masiello, Caroline A.; Liu, Zuolin; Dugan, Brandon

    2014-01-01

    The addition of charcoal (or biochar) to soil has significant carbon sequestration and agronomic potential, making it important to determine how this potentially large anthropogenic carbon influx will alter ecosystem functions. We used column experiments to quantify how hydrologic and nutrient-retention characteristics of three soil materials differed with biochar amendment. We compared three homogeneous soil materials (sand, organic-rich topsoil, and clay-rich Hapludert) to provide a basic understanding of biochar-soil-water interactions. On average, biochar amendment decreased saturated hydraulic conductivity (K) by 92% in sand and 67% in organic soil, but increased K by 328% in clay-rich soil. The change in K for sand was not predicted by the accompanying physical changes to the soil mixture; the sand-biochar mixture was less dense and more porous than sand without biochar. We propose two hydrologic pathways that are potential drivers for this behavior: one through the interstitial biochar-sand space and a second through pores within the biochar grains themselves. This second pathway adds to the porosity of the soil mixture; however, it likely does not add to the effective soil K due to its tortuosity and smaller pore size. Therefore, the addition of biochar can increase or decrease soil drainage, and suggests that any potential improvement of water delivery to plants is dependent on soil type, biochar amendment rate, and biochar properties. Changes in dissolved carbon (C) and nitrogen (N) fluxes also differed; with biochar increasing the C flux from organic-poor sand, decreasing it from organic-rich soils, and retaining small amounts of soil-derived N. The aromaticity of C lost from sand and clay increased, suggesting lost C was biochar-derived; though the loss accounts for only 0.05% of added biochar-C. Thus, the direction and magnitude of hydraulic, C, and N changes associated with biochar amendments are soil type (composition and particle size) dependent

  17. A complete soil hydraulic model accounting for capillary and adsorptive water retention, capillary and film conductivity, and hysteresis

    NARCIS (Netherlands)

    Sakai, Masaru; Van Genuchten, Martinus Th; Alazba, A. A.; Setiawan, Budi Indra; Minasny, Budiman

    2015-01-01

    A soil hydraulic model that considers capillary hysteretic and adsorptive water retention as well as capillary and film conductivity covering the complete soil moisture range is presented. The model was obtained by incorporating the capillary hysteresis model of Parker and Lenhard into the hydraulic

  18. Soil hydraulic properties and REV study using X-ray microtomography and pore-scale modelling: saturated hydraulic conductivity

    Science.gov (United States)

    Gerke, Kirill; Khirevich, Siarhei; Sizonenko, Timofey; Karsanina, Marina; Umarova, Aminat; Korost, Dmitry; Matthai, Stephan; Mallants, Dirk

    2016-04-01

    To verify pore-scale modelling approach for determination of soil saturated hydraulic conductivity properties we scanned three cylindrical soil samples taken from A, Ah and B horizons using X-ray microtomography method. Resulting 3D soil images with resolutions of 15.25-20.96 μm were segmented into pores and solids and their maximum inscribed cube subvolumes were used as input data for three major pore-scale modelling methods to simulate saturated flow - lattice-Boltzmann method, finite-difference solution of the Stokes problem, and pore-network model. Provided that imaging resolution is high enough to capture the backbone of effective porosity and the main conducting pores all three methods resulted in simulated soil permeabilities close to experimental values for Ah and B samples. The resolution of A sample was not enough for an accurate modelling and we concluded that this soil requires multi-scale imaging to cover all relevant heterogeneities. We demonstrate that popular SWV method to choose segmentation threshold resulted in oversegmentation and order of magnitude higher permeability values. Careful manual thresholding combined with local segmentation algorithm provided much more accurate results. Detailed analysis of water retention curves showed that air-filled porosity at relevant pressure stages cannot be used for verification of the segmentation results. Representativity analysis by simulating flow in increasing soil volume up to 2.8 cm3 revealed no representative elementary volume (REV) within Ah sample and non-uniqueness of REV for B sample. The latter was explained by soil structure non-stationarity. We further speculate that structures soil horizons can exhibit no REV at all. We discuss numerous advantages of coupled imaging and pore-scale modelling approach and show how it can become a successor of the conventional soil coring method to parametrize large scale continuum models.

  19. Two and Three-Phases Fractal Models Application in Soil Saturated Hydraulic Conductivity Estimation

    Directory of Open Access Journals (Sweden)

    ELNAZ Rezaei abajelu

    2017-03-01

    Full Text Available Introduction: Soil Hydraulic conductivity is considered as one of the most important hydraulic properties in water and solutionmovement in porous media. In recent years, variousmodels as pedo-transfer functions, fractal models and scaling technique are used to estimate the soil saturated hydraulic conductivity (Ks. Fractal models with two subset of two (solid and pore and three phases (solid, pore and soil fractal (PSF are used to estimate the fractal dimension of soil particles. The PSF represents a generalization of the solid and pore mass fractal models. The PSF characterizes both the solid and pore phases of the porous material. It also exhibits self-similarity to some degree, in the sense that where local structure seems to be similar to the whole structure.PSF models can estimate interface fractal dimension using soil pore size distribution data (PSD and soil moisture retention curve (SWRC. The main objective of this study was to evaluate different fractal models to estimate the Ksparameter. Materials and Methods: The Schaapetal data was used in this study. The complex consists of sixty soil samples. Soil texture, soil bulk density, soil saturated hydraulic conductivity and soil particle size distribution curve were measured by hydrometer method, undistributed soil sample, constant head method and wet sieve method, respectively for all soil samples.Soil water retention curve were determined by using pressure plates apparatus.The Ks parameter could be estimated by Ralws model as a function of fractal dimension by seven fractal models. Fractal models included Fuentes at al. (1996, Hunt and Gee (2002, Bird et al. (2000, Huang and Zhang (2005, Tyler and Wheatcraft (1990, Kutlu et al. (2008, Sepaskhah and Tafteh (2013.Therefore The Ks parameter can be estimated as a function of the DS (fractal dimension by seven fractal models (Table 2.Sensitivity analysis of Rawls model was assessed by making changes±10%, ±20% and±30%(in input parameters

  20. Interrelations among the soil-water retention, hydraulic conductivity, and suction-stress characteristic curves

    Science.gov (United States)

    Lu, Ning; Kaya, Murat; Godt, Jonathan W.

    2014-01-01

    The three fundamental constitutive relations that describe fluid flow, strength, and deformation behavior of variably saturated soils are the soil-water retention curve (SWRC), hydraulic conductivity function (HCF), and suction-stress characteristic curve (SSCC). Until recently, the interrelations among the SWRC, HCF, and SSCC have not been well established. This work sought experimental confirmation of interrelations among these three constitutive functions. Results taken from the literature for six soils and those obtained for 11 different soils were used. Using newly established analytical relations among the SWRC, HCF, and SSCC and these test results, the authors showed that these three constitutive relations can be defined by a common set of hydromechanical parameters. The coefficient of determination for air-entry pressures determined independently using hydraulic and mechanical methods is >0.99, >0.98 for the pore size parameter, and 0.94 for the residual degree of saturation. One practical implication is that one of any of the four experiments (axis-translation, hydraulic, shear-strength, or deformation) is sufficient to quantify all three constitutive relations.

  1. Hydraulic conductivity of active layer soils in the McMurdo Dry Valleys, Antarctica: Geological legacy controls modern hillslope connectivity

    Science.gov (United States)

    Schmidt, Logan M.; Levy, Joseph S.

    2017-04-01

    Spatial variability in the hydraulic and physical properties of active layer soils influences shallow groundwater flow through cold-desert hydrological systems. This study measures the saturated hydraulic conductivity and grain-size distribution of 90 soil samples from the McMurdo Dry Valleys (MDV), Antarctica-primarily from Taylor Valley-to determine what processes affect the spatial distribution of saturated hydraulic conductivity in a simple, mineral-soil-dominated natural hillslope laboratory. We find that the saturated hydraulic conductivity and the grain-size distribution of soils are organized longitudinally within Taylor Valley. Soils sampled down-valley near the coast have a higher percentage of fine-sized sediments (fine sand, silt, clay) and lower saturated hydraulic conductivities than soils collected up-valley near Taylor Glacier (1.3 × 10- 2 vs. 1.2 × 10- 1 cm/s). Soils collected mid-valley have intermediate amounts of fines and saturated hydraulic conductivity values consistent with a hydrogeologic gradient spanning the valley from high inland to low near the coast. These results suggest the organization of modern soil properties within Taylor Valley is a relict signature from past glaciations that have deposited soils of decreasing age toward the mouth of the valley, modified by fluvial activity acting along temporal and microclimate gradients.

  2. Measurement of hydraulic conductivity and water retention curves for different methods and prediction of soil physical properties by kriging

    OpenAIRE

    Eurileny Lucas de Almeida

    2013-01-01

    Knowledge of the physical and hydraulic properties of the soil and its spatial dependence is important because it allows you to perform the zoning of the area in plots that receive differentiated management. This work was divided into three chapters whose general objective is to measure the hydraulic conductivity and water retention curve in soil by different methods and by using the Kriging, draw maps of soil physical attributes of the Irrigation Perimeter Baixo AcaraÃ. To obtain the water r...

  3. Estimation of hydraulic conductivity on clay content in soil determined from resistivity data

    Energy Technology Data Exchange (ETDEWEB)

    Shevnin, Vladimir; Delgado-Rodriguez, Omar; Mousatov, Aleksandr [Mexican Petroleum Institute, Mexico, D.F. (Mexico); Ryjov, Albert [Moscow State Geological Prospecting Academy, Geophysical Faculty, Moscow (Russian Federation)

    2006-07-15

    The influence of clay content in sandy and clayey soils on hydraulic conductivity (filtration coefficient) is considered. A review of published experimental data on the relationship of hydraulic conductivity with soil lithology and grain size, as dependent on clay content is presented. Theoretical calculations include clay content. Experimental and calculated data agree, and several approximation formulas for filtration coefficient vs clay content are presented. Clay content in soil is estimated from electric resistivity data obtained from 2D VES interpretation. A two-step method is proposed, the first step including clay content calculating from soil resistivity and groundwater salinity, and the second step including filtration coefficient estimating from clay content. Two applications are presented. [Spanish] El contenido de arcilla en suelos areno-arcillosos influye sobre la permeabilidad hidraulica (coeficiente de filtracion). Se presenta una revision de datos experimentales publicados que relacionan el coeficiente de filtracion con el tipo litologico del suelo y el tamano de las particulas. A partir de calculos teoricos, se modifican las conocidas formulas que relacionan el coeficiente de filtracion con el contenido de arcilla. Se estima el contenido de arcilla a partir de los datos interpretados por el metodo SEV, y se propone un procedimiento para la estimacion del coeficiente de filtracion: (a) calculo del contenido de arcilla a partir de la resistividad del suelo y de la salinidad del agua subterranea, (b) estimacion del coeficiente de filtracion a partir del contenido de arcilla. Se presentan algunos ejemplos de la aplicacion de esta metodologia.

  4. Agricultural use of soil, consequences in soil organic matter and hydraulic conductivity compared with natural vegetation in central Spain

    Science.gov (United States)

    Vega, Verónica; Carral, Pilar; Alvarez, Ana Maria; Marques, Maria Jose

    2014-05-01

    When ecosystems are under pressure due to high temperatures and water scarcity, the use of land for agriculture can be a handicap for soil and water conservation. The interactions between plants and soils are site-specific. This study provides information about the influence of the preence vs. The absence of vegetation on soil in a semi-arid area of the sout-east of Madrid (Spain, in the Tagus River basin. In this area soil materials are developed over a calcareous-evaporitic lithology. Soils can be classified as Calcisols, having horizons of accumulation with powdered limestone and irregular nodules of calcium carbonate. They can be defined as Haplic Cambisols and Leptic Calcisols (WRB 2006-FAO). The area is mainly used for rainfed agriculture, olive groves, vineyards and cereals. There are some patches of bushes (Quercus sp.) and grasses (Stipa tenacissima L.) although only found on the top of the hills. This study analyses the differences found in soils having three different covers: Quercus coccifera, Stipa tenacissima and lack of vegetation. This last condition was found in the areas between cultivated olive trees. Soil organic matter, porosity and hydraulic conductivity are key properties of soil to understand its ability to adapt to climate or land use changes. In order to measure the influence of different soil covers, four replicates of soil were sampled in each condition at two soil depth, (0-10 cm and 10-20 cm). Hydraulic conductivity was measured in each soil condition and replicate using a Mini-disk® infiltrometer. There were no differences between the two depths sampled. Similarly, there were no changes in electric conductivity (average 0.1±0.03 dS m-1); pH (8.7±0.2) or calcium carbonate content (43±20 %). Nevertheless, significant differences (p>0.001) were found in soil organic matter. The maximum was found in soils under Quercus (4.7±0.5 %), followed by Stipa (2.2±1.1 %). The soil without vegetation in the areas between olive trees had only 0

  5. Simulating soil-water movement through loess-veneered landscapes using nonconsilient saturated hydraulic conductivity measurements

    Science.gov (United States)

    Williamson, Tanja N.; Lee, Brad D.; Schoeneberger, Philip J.; McCauley, W. M.; Indorante, Samuel J.; Owens, Phillip R.

    2014-01-01

    Soil Survey Geographic Database (SSURGO) data are available for the entire United States, so are incorporated in many regional and national models of hydrology and environmental management. However, SSURGO does not provide an understanding of spatial variability and only includes saturated hydraulic conductivity (Ksat) values estimated from particle size analysis (PSA). This study showed model sensitivity to the substitution of SSURGO data with locally described soil properties or alternate methods of measuring Ksat. Incorporation of these different soil data sets significantly changed the results of hydrologic modeling as a consequence of the amount of space available to store soil water and how this soil water is moved downslope. Locally described soil profiles indicated a difference in Ksat when measured in the field vs. being estimated from PSA. This, in turn, caused a difference in which soil layers were incorporated in the hydrologic simulations using TOPMODEL, ultimately affecting how soil water storage was simulated. Simulations of free-flowing soil water, the amount of water traveling through pores too large to retain water against gravity, were compared with field observations of water in wells at five slope positions along a catena. Comparison of the simulated data with the observed data showed that the ability to model the range of conditions observed in the field varied as a function of three soil data sets (SSURGO and local field descriptions using PSA-derived Ksat or field-measured Ksat) and that comparison of absolute values of soil water storage are not valid if different characterizations of soil properties are used.

  6. A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves

    Science.gov (United States)

    Montzka, Carsten; Herbst, Michael; Weihermüller, Lutz; Verhoef, Anne; Vereecken, Harry

    2017-07-01

    Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC) and hydraulic conductivity (HCC) curves are typically derived from soil texture via pedotransfer functions (PTFs). Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller-Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem-van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional) climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based on the ROSETTA PTF

  7. A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves

    Directory of Open Access Journals (Sweden)

    C. Montzka

    2017-07-01

    Full Text Available Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC and hydraulic conductivity (HCC curves are typically derived from soil texture via pedotransfer functions (PTFs. Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller–Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem–van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based

  8. Deep rooting plants influence on soil hydraulic properties and air conductivity over time

    Science.gov (United States)

    Uteau, Daniel; Peth, Stephan; Diercks, Charlotte; Pagenkemper, Sebastian; Horn, Rainer

    2014-05-01

    Crop sequences are commonly suggested as an alternative to improve subsoil structure. A well structured soil can be characterized by enhanced transport properties. Our main hypothesis was, that different root systems can modify the soil's macro/mesopore network if enough cultivation time is given. We analyzed the influence of three crops with either shallower roots (Festuca arundinacea, fescue) or taproots (Cichorium intybus, chicory and Medicago sativa, alfalfa). The crops where cultivated on a Haplic Luvisol near Bonn (Germany) for one, two or three years. Undisturbed soil cores were taken for measurement of unsaturated hydraulic conductivity and air permeability. The unsaturated conductivity was measured using the evaporation method, monitoring the water content and tension at two depths of each undisturbed soil core. The van Genuchten-Mualem model (1991) was fitted to the measured data. Air permeability was measured in a permeameter with constant flow at low pressure gradient. The measurements were repeated at -1, -3, -6, -15, -30 and -50 kPa matric tension and the model of Ball et al. (1988) was used to describe permeability as function of matric tension. Furthermore, the cores equilibrated at -15 kPa matric tension were scanned with X-Ray computer tomography. By means of 3D image analysis, geometrical features as pore size distribution, tortuosity and connectivity of the pore network was analyzed. The measurements showed an increased unsaturated hydraulic conductivity associated to coarser pores at the taprooted cultivations. A enhanced pore system (related to shrink-swell processes) under alfalfa was observed in both transport measurements and was confirmed by the 3D image analysis. This highly functional pore system (consisting mainly of root paths, earthworm channels and shrinking cracks) was clearly visible below the 75 cm of depth and differentiated significantly from the other two treatments only after three years of cultivation, which shows the time

  9. Mapping of Soil Saturated Hydraulic Conductivity in Navroud-Assalem Watershed in Guilan Province

    Directory of Open Access Journals (Sweden)

    M.R. Khaledian

    2016-02-01

    Full Text Available Introduction: With increasing awareness of human beings towards the environment, researchers pay more attention to process and redistribution of water flow and solute transport in the soil and groundwater. Moreover, determination of soil hydraulic conductivity is necessary to determine the runoff from basins. Water movement within the unsaturated zone is often described by the formulae proposed by Richards. To solve this equation, initial and boundary conditions of the hydraulic conductivity and the soil water pressure should be determined as functions of soil water content. Beerkan method was developed to identify retention and hydraulic conductivity curves. In this method, van Gunechten with Burdine condition and Brooks and Corey equations were used to describe water retention and hydraulic conductivity curves. Recognition of the spatial pattern of studied parameter using semivariogram and then preparing zoning map with interpolation methods such as IDW and kriging can help us in relevant watershed management. The aim of this study was to spatial analyze of saturated hydraulic conductivity from 50 infiltration tests at watershed scale using Beerkan method and then preparing zoning map for the Navroud watershed. Materials and Methods: Navroud-Assalem watershed with an area of about 307 km2 is located in the west part of Guilan province, within the city of Talesh. Of the total watershed area of Navroud, about 41 km2 is plains and the rest of it is about 266 km2, corresponding to the mountainous area. The study area includes an area with a height above 130 m. In order to complete the database of the studied watershed the present study was designed to assess soil saturated hydraulic conductivity. In this study, a 2×2 km network was designed in Navroud watershed with a surface area of 307 km2, and then infiltration tests were carried out in each node using single ring of Beerkan. Beerkan method derives shape parameters from particle

  10. Impact of treated wastewater on growth, respiration and hydraulic conductivity of citrus root systems in light and heavy soils.

    Science.gov (United States)

    Paudel, Indira; Cohen, Shabtai; Shaviv, Avi; Bar-Tal, Asher; Bernstein, Nirit; Heuer, Bruria; Ephrath, Jhonathan

    2016-06-01

    Roots interact with soil properties and irrigation water quality leading to changes in root growth, structure and function. We studied these interactions in an orchard and in lysimeters with clay and sandy loam soils. Minirhizotron imaging and manual sampling showed that root growth was three times lower in the clay relative to sandy loam soil. Treated wastewater (TWW) led to a large reduction in root growth with clay (45-55%) but not with sandy loam soil (hydraulic conductivity was severely reduced in clay soil. Treated wastewater increased respiration rate and reduced hydraulic conductivity of all root orders in clay but only of the lower root orders in sandy loam soil. Loss of hydraulic conductivity increased with root order in clay and clay irrigated with TWW. Respiration and hydraulic properties of all root orders were significantly affected by sodium-amended TWW in sandy loam soil. These changes in root order morphology, anatomy, physiology and hydraulic properties indicate rapid and major modifications of root systems in response to differences in soil type and water quality.

  11. Effect of exchangeable Mg on saturated hydraulic conductivity, disaggregation and clay dispersion of disturbed soils

    Science.gov (United States)

    Zhang, X. C.; Norton, L. D.

    2002-03-01

    Different opinions exist regarding the specific effect of Mg on soil physical and chemical properties. We hypothesized that Mg 2+, compared with Ca 2+, reduces saturated hydraulic conductivity ( Ks) via promoting clay swelling, disaggregation, and clay dispersion. Two soils (mixed, mesic Typic Hapludalfs) in packed soil columns were leached with either Ca- or Mg-containing solutions at the successive concentrations of 250, 10, 2, 0.5, and 0 mM. Critical flocculation concentration (CFC) in either Ca or Mg systems was determined with flocculation series tests. Aggregate stability and mean weight diameter (MWD) were assessed by wet-sieving. The CFCs were higher in Mg than in Ca for both soils, indicating that Mg is more dispersive than Ca. The MWDs measured using 1-2 mm aggregates of both soils were significantly larger for Ca-soils than for Mg-soils ( P=0.05). The Ksr (normalized with initial Ks) started to decline at higher concentrations for Mg than for Ca, and the reduction was much greater in Mg than in Ca above 0.5 mM. The Ksr and percent transmittance (inversely related to turbidity) of leachate at a given eluted pore volume following 'steady state' were higher in Ca than in Mg for both soils ( P=0.1), indicating lower permeability and more clay dispersion with the Mg treatment. Swelling and disaggregation, which reduced large pores, appeared to be the dominant process causing the rapid initial decline of Ksr. Clay dispersion and subsequent pore plugging became progressively important when electrolyte concentration was reduced to below CFCs.

  12. Gamma ray transmission for hydraulic conductivity measurement of undisturbed soil columns

    Directory of Open Access Journals (Sweden)

    Anderson Camargo Moreira

    2007-03-01

    Full Text Available This work had the objective to determine the Hydraulic Conductivity K(theta function for different depth levels z, of columns of undisturbed soil, using the gamma ray transmission technique applied to the Sisson method. The results indicated a growing behavior for K(theta and a homogeneous soil density, both in relation to the increase of the depth. The methodology of gamma ray transmission showed satisfactory results on the determination of the hydraulic conductivity in columns of undisturbed soil, besides being very reliable and a nondestructive method.O estudo da condutividade hidráulica para solos não saturados é essencial quando aplicado às situações relacionadas à irrigação, drenagem e transporte de nutrientes no solo, é uma importante propriedade para desenvolvimentos de culturas agrícolas. Este trabalho tem o objetivo de determinar a função Condutividade Hidráulica K(teta, em diferentes níveis z de profundidade, em colunas de solo indeformado, utilizando a transmissão de raios gama aplicada ao método de Sisson. Os resultados indicam um comportamento crescente para K(teta e uma densidade de solo homogênea, ambos em relação ao aumento da profundidade. A metodologia de transmissão de raios gama mostrou resultados bastante satisfatórios na determinação da condutividade hidráulica em colunas de solo indeformado, além de ser muito confiável e não destrutivo.

  13. Effect of urban waste compost application on soil near-saturated hydraulic conductivity.

    Science.gov (United States)

    Schneider, S; Coquet, Y; Vachier, P; Labat, C; Roger-Estrade, J; Benoit, P; Pot, V; Houot, S

    2009-01-01

    Compost application tends to increase soil fertility and is likely to modify soil hydrodynamic properties by acting on soil structural porosity. Two composts, a municipal solid waste compost (MSW) and a co-compost of green wastes and sewage sludge (SGW), have been applied every other year for 6 yr to cultivated plots located on a silt loam soil in the Parisian Basin, France. Four soil zones were defined in the topsoil after plowing: the plowpan located at the base of the plowed layer, compacted (Delta) or noncompacted (Gamma) zones located within the plowed layer, and interfurrows created by plowing and containing a large quantity of crop residues together with the recently-applied compost. To assess the effect of compost application on the near-saturated soil hydraulic conductivity, infiltration rates were measured using a tension disc infiltrometer at three water pressure potentials -0.6, -0.2, and -0.05 kPa in the various zones of the soil profile. Compost addition decreased K((sat)) in the interfurrows after plowing by almost one order of magnitude with average values of 5.6 x 10(-5) m.s(-1) in the MSW plot and 4.1 x 10(-5) m.s(-1) in the SGW plot, against 2.2 x 10(-4) m.s(-1) in the control plot. This effect had disappeared 6 mo after plowing when the average K((sat)) in the control plot had decreased to 1.9 x 10(-5) m.s(-1) while that in the compost-amended plots remained stable.

  14. Effect of pH on saturated hydraulic conductivity and soil dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, D.L.; Roades, J.D.; Lavado, R.; Grieve, C.M.

    The adverse effects of exchangeable sodium on soil hydraulic conductivity (K) are well known, but at present only sodicity and total electrolyte concentration are used in evaluating irrigation water suitability. In arid areas, high sodicity is often associatd with high dissolved carbonate and thus high pH, but in humid areas high sodicity may be associated with low pH. To evaluate the effect of pH (as an independent variable) on K, solutions with the same SAR and electrolyte level were prepared at pH 6, 7, 8, and 9. Saturated K values were determined at constant flux in columns packed at a bulk density of 1.5 Mg m/sup -3/. At pH 9, saturated K values were lower than at pH 6 for a montmorillonitic and kaolinitic soil. For a vermiculitic soil with lower organic carbon and higher silt content, pH changes did not cause large K differences. Decreases in K were not reversible on application of waters with higher electrolyte levels. The results from the K experiments were generally consistent with optical transmission measurements of dispersion. Although anion adsorption was at or below detection limits and cation exchange capacity (CEC) was only slightly dependent on pH, differences in pH effects on K among soils are likely due to differences in quantities of variable-charge minerals and organic matter.

  15. Hydraulic conductivity of compacted zeolites.

    Science.gov (United States)

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  16. Spatial Variability of Soil Saturated Hydraulic Conductivity in a Small Watershed of Loess Hilly Region,China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Saturated hydraulic conductivity (Ks) is an important soil hydraulic parameter for charactering the rate of water flow across the soils and is mainly related to its high spatial variability. In a small watershed with the area of 0.27 km2 in the Loess Plateau, Ks of 197 soil samples under different vegetations and landforms were measured. Ks had a moderate variability for total samples. The forestland had high Ks with low coefficient of variation (CV), but the grassland in the watershed bottom had low Ks wit...

  17. Effect of the method of estimation of soil saturated hydraulic conductivity with regards to the design of stormwater infiltration trenches

    Science.gov (United States)

    Paiva coutinho, Artur; Predelus, Dieuseul; Lassabatere, Laurent; Ben Slimene, Erij; Celso Dantas Antonino, Antonio; Winiarski, Thierry; Joaquim da Silva Pereira Cabral, Jaime; Angulo-Jaramillo, Rafael

    2014-05-01

    Best management practices are based on the infiltration of stormwater (e.g. infiltration into basins or trenches) to reduce the risk of flooding of urban areas. Proper estimations of saturated hydraulic conductivity of the vadose zone are required to avoid inappropriate design of infiltration devices. This article aims at assessing (i) the method-dependency of the estimation of soils saturated hydraulic conductivity and (ii) the consequences of such dependency on the design of infiltration trenches. This is illustrated for the specific case of an infiltration trench to be constructed to receive stormwater from a specific parking surface, 250 m2 in area, in Recife (Brazil). Water infiltration experiments were conducted according to the Beerkan Method, i.e. application of a zero water pressure head through a disc source (D=15 cm) and measures of the amount of infiltrated water with time. Saturated hydraulic conductivity estimates are derived from the analysis of these infiltration tests using several different conceptual approaches: one-dimensional models of Horton(1933) and Philip(1957), three-dimensional methods recently developed (Lassabatere et al., 2006, Wu et al., 1999, and Bagarello et al., 2013) and direct 3-dimensional numerical inversion. The estimations for saturated hydraulic conductivity ranged between 65.5 mm/h and 94 mm/h for one-dimensional methods, whereas using three-dimensional methods saturated hydraulic conductivity ranged between 15.6 mm/h and 50 mm/h. These results shows the need for accounting for 3D geometry, and more generally, the physics of water infiltration in soils, if a proper characterization of soil saturated hydraulic conductivity is targeted. In a second step, each estimate of the saturated hydraulic conductivity was used to calculate the stormwater to be stored in the studied trench for several rainfall events of recurrence intervals of 2 to 25 years. The calculation of these volumes showed a great sensitivity with regards to the

  18. Effective Saturated Hydraulic Conductivity for Representing Field-Scale Infiltration and Surface Soil Moisture in Heterogeneous Unsaturated Soils Subjected to Rainfall Events

    Directory of Open Access Journals (Sweden)

    Richa Ojha

    2017-02-01

    Full Text Available Spatial heterogeneity in soil properties has been a challenge for providing field-scale estimates of infiltration rates and surface soil moisture content over natural fields. In this study, we develop analytical expressions for effective saturated hydraulic conductivity for use with the Green-Ampt model to describe field-scale infiltration rates and evolution of surface soil moisture over unsaturated fields subjected to a rainfall event. The heterogeneity in soil properties is described by a log-normal distribution for surface saturated hydraulic conductivity. Comparisons between field-scale numerical and analytical simulation results for water movement in heterogeneous unsaturated soils show that the proposed expressions reproduce the evolution of surface soil moisture and infiltration rate with time. The analytical expressions hold promise for describing mean field infiltration rates and surface soil moisture evolution at field-scale over sandy loam and loamy sand soils.

  19. The perceptual trap: Experimental and modelling examples of soil moisture, hydraulic conductivity and response units in complex subsurface settings.

    Science.gov (United States)

    Jackisch, Conrad; Demand, Dominic; Allroggen, Niklas; Loritz, Ralf; Zehe, Erwin

    2017-04-01

    In order to discuss hypothesis testing in hydrology, the question of the solid foundation of such tests has to be answered. But how certain are we about our measurements of the components of the water balance and the states and dynamics of the complex systems? What implicit assumptions or bias are already embedded in our perception of the processes? How can we find light in the darkness of heterogeneity? We will contribute examples from experimental findings, modelling approaches and landscape analysis to the discussion. Example soil moisture and the soil continuum: The definition of soil moisture as fraction of water in the porous medium assumes locally well-mixed conditions. Moreover, a unique relation of soil water retention presumes instant local thermodynamic equilibrium in the pore water arrangement. We will show findings from soil moisture responses to precipitation events, from irrigation experiments, and from a model study of initial infiltration velocities. The results highlight, that the implicit assumption relating soil moisture state dynamics with actual soil water flow is biased towards the slow end of the actual velocity distribution and rather blind for preferential flow acting in a very small proportion of the pore space. Moreover, we highlight the assumption of a well-defined continuum during the extrapolation of point-scale measurements and why spatially and temporally continuous observation techniques of soil water states are essential for advancing our understanding and development of subsurface process theories. Example hydraulic conductivity: Hydraulic conductivity lies at the heart of hydrological research and modelling. Its values can range across several orders of magnitude at a single site alone. Yet, we often consider it a crisp, effective parameter. We have conducted measurements of soil hydraulic conductivity in the lab and in the field. Moreover, we assessed infiltration capacity and conducted plot-scale irrigation experiments to

  20. Influence of temperature and hydraulic conductivity of soil on electrokinetic decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye-Nam; Kim, Seung-Soo; Jeong, Jung-Whan; Choi, Jong-Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The electrokinetic process holds great promise for the decontamination of contaminated soil because it has a high removal efficiency and is time-effective for low permeability. Electrokinetic decontamination can be used to treat soil contaminated with inorganic species and radionuclides. The main mechanisms of a contaminant's movement in an electrical field involved in electrokinetic technology are the electro-migration of the ionic species and electro-osmosis. Electro-migration probably contributes significantly to the removal of contaminants, especially at high concentrations of ionic contaminants and/or a high hydraulic permeability of soil. The cathode reaction should be depolarized to avoid the generation of hydroxides and their transport in soil. The selected liquid, also known as a purging reagent, should induce favorable pH conditions in soil, and/or interact with the incorporated heavy metals so that these heavy metals are removed from the soil. The removal efficiencies of uranium from contaminated soil in manufactured laboratory electrokinetic decontamination equipment were proportional to the elapsed time. The removal efficiencies of uranium for 2 days were 77-87%. In addition, the removal efficiencies according to the elapsed time after 2 days were reduced. When 75, 80, and 85℃ electrolyte temperatures in the cathode chamber were applied, the time required for the removal efficiency of uranium to reach 92% was 6, 5 and 4 days.

  1. Towards improved estimation of the unsaturated soil hydraulic conductivity in the near saturated range by a fully automated, pressure controlled unit gradient experiment.

    Science.gov (United States)

    Werisch, Stefan; Müller, Marius

    2017-04-01

    Determination of soil hydraulic properties has always been an important part of soil physical research and model applications. While several experiments are available to measure the water retention of soil samples, the determination of the unsaturated hydraulic conductivity is often more complicated, bound to strong assumption and time consuming. Although, the application of unit gradient experiments is recommended since the middle of the last century, as one method towards a (assumption free) direct measurement of the unsaturated hydraulic conductivity, data from unit gradient experiments is seldom to never reported in literature. We developed and build a fully automated, pressure controlled, unit gradient experiment, which allows a precise determination of the unsaturated soil hydraulic conductivity K(h) and water retention VWC(h), especially in the highly dynamic near saturated range. The measurement apparatus applies the concept of hanging water columns and imposes the required soil water pressure by dual porous plates. This concepts allows the simultaneous and direct measurement of water retention and hydraulic conductivity. Moreover, this approach results in a technically less demanding experiment than related flux controlled experiments, and virtually any flux can be measured. Thus, both soil properties can be measured in mm resolution, for wetting and drying processes, between saturation and field capacity for all soil types. Our results show, that it is important to establish separate measurements of the unsaturated hydraulic conductivity in the near saturated range, as the shape of the retention function and hydraulic conductivity curve do not necessarily match. Consequently, the prediction of the hydraulic conductivity curve from measurements of the water retention behavior in combination with a value for the saturated hydraulic conductivity can be misleading. Thus, separate parameterizations of the individual functions might be necessary and are

  2. Estimating the saturated soil hydraulic conductivity by the near steady-state phase of a beerkan infiltration run

    Science.gov (United States)

    Di Prima, Simone; Bagarello, Vincenzo; Iovino, Massimo

    2017-04-01

    Simple infiltration experiments carried out in the field allow an easy and inexpensive way of characterizing soil hydraulic behavior, maintaining the functional connection of the sampled soil volume with the surrounding soil. The beerkan method consists of a three-dimensional (3D) infiltration experiment at zero pressure head (Haverkamp et al., 1996). It uses a simple annular ring inserted to a depth of about 0.01 m to avoid lateral loss of the ponded water. Soil disturbance is minimized by the limited ring insertion depth. Infiltration time of small volumes of water repeatedly poured on the confined soil are measured to determine the cumulative infiltration. Different algorithms based on this methodology (the so-called BEST family of algorithms) were developed for the determination of soil hydraulic characteristic parameters (Bagarello et al., 2014a; Lassabatere et al., 2006; Yilmaz et al., 2010). Recently, Bagarello et al. (2014b) developed a Simplified method based on a Beerkan Infiltration run (SBI method) to determine saturated soil hydraulic conductivity, Ks, by only the transient phase of a beerkan infiltration run and an estimate of the α* parameter, expressing the relative importance of gravity and capillary forces during an infiltration process (Reynolds and Elrick, 1990). However, several problems yet arise with the existing BEST-algorithms and the SBI method, including (i) the need of supplementary field and laboratory measurements (Bagarello et al., 2013); (ii) the difficulty to detect a linear relationship between I / √t and √t in the early stage of the infiltration process (Bagarello et al., 2014b); (iii) estimation of negative Ks values for hydrophobic soils (Di Prima et al., 2016). In this investigation, a new Simplified method based on the analysis of the Steady-state Beerkan Infiltration run (SSBI method) was proposed and tested. In particular, analytical data were generated to simulate beerkan infiltration experiments for six contrasting

  3. Temporal changes of hydraulic conductivity of cultivated soil studied with help of multipoint tension infiltrometer and X-ray computed tomography

    Science.gov (United States)

    Klipa, Vladimir; Zumr, David; Snehota, Michal; Dohnal, Michal

    2016-04-01

    Soil aggregates, its shape, size and spatial distribution affect the pores arrangement and thus govern the hydraulic conductivity of soil and soil moisture regime. On arable lands the soil is exposed to rapid structural changes within each growing season due to agrotechnical practices, quick crop and root growth, soil biota and climatic conditions. This contribution is mainly focused on temporal changes of unsaturated hydraulic conductivity of cultivated soil. The research is supplemented by detailed analysis of CT images of soil samples for better understanding of structural change of soil during the year and its impact on soil hydraulic conductivity. The infiltration experiments were done using automated multipoint tension infiltrometer recently developed at CTU in Prague on the plots located on the Nucice experimental catchment. The catchment is situated in a moderately hilly area in central Bohemia (Czech Republic). Fourteen regular infiltration campaigns (77 individual infiltration experiments) were conducted from October 2012 until July 2015 on a single arable plot. In general, agricultural practice captured involved complete life cycle from sowing, through harvest, to postharvest stubble breaking. Weather conditions during infiltration experiments ranged from clear-sky to light rain, with temperatures between 8 and 30°C. All measurements were consistently performed with small suction of 3 cm and hydraulic conductivities were determined using extended semiempirical estimation procedure of Zhang. Results show that unsaturated hydraulic conductivity was the lowest in early spring and did increase at beginning of summer in the years 2012 - 2014. During the summer and autumn (2012 - 2014) the unsaturated hydraulic conductivity remained relatively unchanged. On the contrary, results in the year 2015 show opposite trend - the highest hydraulic conductivity was observed in early spring and did gradually decrease until the end of July. In both cases, however, the

  4. The hydraulic conductance of Fraxinus ornus leaves is constrained by soil water availability and coordinated with gas exchange rates.

    Science.gov (United States)

    Gortan, Emmanuelle; Nardini, Andrea; Gascó, Antonio; Salleo, Sebastiano

    2009-04-01

    Leaf hydraulic conductance (Kleaf) is known to be an important determinant of plant gas exchange and photosynthesis. Little is known about the long-term impact of different environmental factors on the hydraulic construction of leaves and its eventual consequences on leaf gas exchange. In this study, we investigate the impact of soil water availability on Kleaf of Fraxinus ornus L. as well as the influence of Kleaf on gas exchange rates and plant water status. With this aim, Kleaf, leaf conductance to water vapour (gL), leaf water potential (Psileaf) and leaf mass per area (LMA) were measured in F. ornus trees, growing in 21 different sites with contrasting water availability. Plants growing in arid sites had lower Kleaf, gL and Psileaf than those growing in sites with higher water availability. On the contrary, LMA was similar in the two groups. The Kleaf values recorded in sites with two different levels of soil water availability were constantly different from each other regardless of the amount of precipitation recorded over 20 days before measurements. Moreover, Kleaf was correlated with gL values. Our data suggest that down-regulation of Kleaf is a component of adaptation of plants to drought-prone habitats. Low Kleaf implies reduced gas exchange which may, in turn, influence the climatic conditions on a local/regional scale. It is concluded that leaf hydraulics and its changes in response to resource availability should receive greater attention in studies aimed at modelling biosphere-atmosphere interactions.

  5. Water infiltration and hydraulic conductivity in a natural Mediterranean oak forest: impacts of hydrology-oriented silviculture on soil hydraulic properties

    Science.gov (United States)

    Di Prima, Simone; Bagarello, Vincenzo; Bautista, Inmaculada; Cerdà, Artemi; Cullotta, Sebastiano; del Campo, Antonio; González-Sanchis, María; Iovino, Massimo; Maetzke, Federico

    2016-04-01

    In the last years researchers reported an increasing need to have more awareness on the intimate link between land use and soil hydrological properties (soil organic matter storage, water infiltration, hydraulic conductivity) and their possible effects on water retention (e.g., Bens et al., 2006; del Campo et al., 2014; González-Sanchis et al., 2015; Molina and del Campo, 2012). In the Mediterranean ecosystems, special attention needs to be paid to the forest-water relationships due to the natural scarcity of water. Adaptive forest management (AFM) aims to adapt the forest to water availability by means of an artificial regulation of the forest structure and density in order to promote tree and stand resilience through enhancing soil water availability (del Campo et al., 2014). The opening of the canopy, due to the removal of a certain number of trees, is an important practice for the management of forests. It results in important modifications to the microclimatic conditions that influence the ecophysiological functioning of trees (Aussenac and Granier, 1988). However, the effect of thinning may vary depending on the specific conditions of the forest (Andréassian, 2004; Brooks et al., 2003; Cosandey et al., 2005; Lewis et al., 2000; Molina and del Campo, 2012). Different authors reported that a reduction in forest cover increases water yield due to the subsequent reduction in evapotranspiration (Brooks et al., 2003; González-Sanchis et al., 2015; Hibbert, 1983; Zhang et al., 2001). On the other hand, the water increase may be easily evaporated from the soil surface (Andréassian, 2004). In this context, determining soil hydraulic properties in forests is essential for understanding and simulating the hydrological processes (Alagna et al., 2015; Assouline and Mualem, 2002), in order to adapt a water-saving management to a specific case, or to study the effects of a particular management practice. However, it must be borne in mind that changes brought about by

  6. Saturated hydraulic conductivity model computed from bimodal water retention curves for a range of New Zealand soils

    Directory of Open Access Journals (Sweden)

    J. A. P. Pollacco

    2017-06-01

    Full Text Available Descriptions of soil hydraulic properties, such as the soil moisture retention curve, θ(h, and saturated hydraulic conductivities, Ks, are a prerequisite for hydrological models. Since the measurement of Ks is expensive, it is frequently derived from statistical pedotransfer functions (PTFs. Because it is usually more difficult to describe Ks than θ(h from pedotransfer functions, Pollacco et al. (2013 developed a physical unimodal model to compute Ks solely from hydraulic parameters derived from the Kosugi θ(h. This unimodal Ks model, which is based on a unimodal Kosugi soil pore-size distribution, was developed by combining the approach of Hagen–Poiseuille with Darcy's law and by introducing three tortuosity parameters. We report here on (1 the suitability of the Pollacco unimodal Ks model to predict Ks for a range of New Zealand soils from the New Zealand soil database (S-map and (2 further adaptations to this model to adapt it to dual-porosity structured soils by computing the soil water flux through a continuous function of an improved bimodal pore-size distribution. The improved bimodal Ks model was tested with a New Zealand data set derived from historical measurements of Ks and θ(h for a range of soils derived from sandstone and siltstone. The Ks data were collected using a small core size of 10 cm diameter, causing large uncertainty in replicate measurements. Predictions of Ks were further improved by distinguishing topsoils from subsoil. Nevertheless, as expected, stratifying the data with soil texture only slightly improved the predictions of the physical Ks models because the Ks model is based on pore-size distribution and the calibrated parameters were obtained within the physically feasible range. The improvements made to the unimodal Ks model by using the new bimodal Ks model are modest when compared to the unimodal model, which is explained by the poor accuracy of measured total porosity. Nevertheless, the new bimodal

  7. Saturated hydraulic conductivity model computed from bimodal water retention curves for a range of New Zealand soils

    Science.gov (United States)

    Pollacco, Joseph Alexander Paul; Webb, Trevor; McNeill, Stephen; Hu, Wei; Carrick, Sam; Hewitt, Allan; Lilburne, Linda

    2017-06-01

    Descriptions of soil hydraulic properties, such as the soil moisture retention curve, θ(h), and saturated hydraulic conductivities, Ks, are a prerequisite for hydrological models. Since the measurement of Ks is expensive, it is frequently derived from statistical pedotransfer functions (PTFs). Because it is usually more difficult to describe Ks than θ(h) from pedotransfer functions, Pollacco et al. (2013) developed a physical unimodal model to compute Ks solely from hydraulic parameters derived from the Kosugi θ(h). This unimodal Ks model, which is based on a unimodal Kosugi soil pore-size distribution, was developed by combining the approach of Hagen-Poiseuille with Darcy's law and by introducing three tortuosity parameters. We report here on (1) the suitability of the Pollacco unimodal Ks model to predict Ks for a range of New Zealand soils from the New Zealand soil database (S-map) and (2) further adaptations to this model to adapt it to dual-porosity structured soils by computing the soil water flux through a continuous function of an improved bimodal pore-size distribution. The improved bimodal Ks model was tested with a New Zealand data set derived from historical measurements of Ks and θ(h) for a range of soils derived from sandstone and siltstone. The Ks data were collected using a small core size of 10 cm diameter, causing large uncertainty in replicate measurements. Predictions of Ks were further improved by distinguishing topsoils from subsoil. Nevertheless, as expected, stratifying the data with soil texture only slightly improved the predictions of the physical Ks models because the Ks model is based on pore-size distribution and the calibrated parameters were obtained within the physically feasible range. The improvements made to the unimodal Ks model by using the new bimodal Ks model are modest when compared to the unimodal model, which is explained by the poor accuracy of measured total porosity. Nevertheless, the new bimodal model provides an

  8. Enhanced biogeochemical cycling and subsequent reduction of hydraulic conductivity associated with soil-layer interfaces in the vadose zone.

    Science.gov (United States)

    Hansen, David J; McGuire, Jennifer T; Mohanty, Binayak P

    2011-01-01

    Biogeochemical dynamics in the vadose zone are poorly understood due to the transient nature of chemical and hydrologic conditions but are nonetheless critical to understanding chemical fate and transport. This study explored the effects of a soil layer on linked geochemical, hydrological, and microbiological processes. Three laboratory soil columns were constructed: a homogenized medium-grained sand, a homogenized organic-rich loam, and a sand-over-loam layered column. Upward and downward infiltration of water was evaluated during experiments to simulate rising water table and rainfall events, respectively. In situ collocated probes measured soil water content, matric potential, and Eh. Water samples collected from the same locations were analyzed for Br, Cl, NO, SO, NH, Fe, and total sulfide. Compared with homogeneous columns, the presence of a soil layer altered the biogeochemistry and water flow of the system considerably. Enhanced biogeochemical cycling was observed in the layered column over the texturally homogeneous soil columns. Enumerations of iron- and sulfate-reducing bacteria showed 1 to 2 orders of magnitude greater community numbers in the layered column. Mineral and soil aggregate composites were most abundant near the soil-layer interface, the presence of which likely contributed to an observed order-of-magnitude decrease in hydraulic conductivity. These findings show that quantifying coupled hydrologic-biogeochemical processes occurring at small-scale soil interfaces is critical to accurately describing and predicting chemical changes at the larger system scale. These findings also provide justification for considering soil layering in contaminant fate and transport models because of its potential to increase biodegradation or to slow the rate of transport of contaminants.

  9. A field-scale infiltration model accounting for spatial heterogeneity of rainfall and soil saturated hydraulic conductivity

    Science.gov (United States)

    Morbidelli, Renato; Corradini, Corrado; Govindaraju, Rao S.

    2006-04-01

    This study first explores the role of spatial heterogeneity, in both the saturated hydraulic conductivity Ks and rainfall intensity r, on the integrated hydrological response of a natural slope. On this basis, a mathematical model for estimating the expected areal-average infiltration is then formulated. Both Ks and r are considered as random variables with assessed probability density functions. The model relies upon a semi-analytical component, which describes the directly infiltrated rainfall, and an empirical component, which accounts further for the infiltration of surface water running downslope into pervious soils (the run-on effect). Monte Carlo simulations over a clay loam soil and a sandy loam soil were performed for constructing the ensemble averages of field-scale infiltration used for model validation. The model produced very accurate estimates of the expected field-scale infiltration rate, as well as of the outflow generated by significant rainfall events. Furthermore, the two model components were found to interact appropriately for different weights of the two infiltration mechanisms involved.

  10. Root tip morphology, anatomy, chemistry and potential hydraulic conductivity vary with soil depth in three temperate hardwood species.

    Science.gov (United States)

    Wang, Yan; Dong, Xueyun; Wang, Hongfeng; Wang, Zhengquan; Gu, Jiacun

    2016-01-01

    Root traits in morphology, chemistry and anatomy are important to root physiological functions, but the differences between shallow and deep roots have rarely been studied in woody plants. Here, we selected three temperate hardwood species, Juglans mandshurica Maxim., Fraxinus mandschurica Rupr. and Phellodendron amurense Rupr., in plantations in northeastern China and measured morphological, anatomical and chemical traits of root tips (i.e., the first-order roots) at surface (0-10 cm) and subsurface (20-30 cm) soil layers. The objectives of this study were to identify how those traits changed with soil depth and to reveal potential functional differences. The results showed that root diameters in deep root tips were greater in J. mandshurica and F. mandschurica, but smaller in P. amurense. However, root stele diameter and the ratio of stele to root diameter in the subsurface layer were consistently greater in all three species, which may enhance their abilities to penetrate into soil. All deep roots exhibited lower tissue nitrogen concentration and respiration rate, which were possibly caused by lower nutrient availability in the subsurface soil layer. Significant differences between shallow and deep roots were observed in xylem structure, with deep roots having thicker stele, wider maximum conduit and greater number of conduits per stele. Compared with shallow roots, the theoretical hydraulic conductivities in deep roots were enhanced by 133% (J. mandshurica), 78% (F. mandschurica) and 217% (P. amurense), respectively, indicating higher efficiency of transportation. Our results suggest that trees' root tip anatomical structure and physiological activity vary substantially with soil environment.

  11. Pedotransfer functions estimating soil hydraulic properties using different soil parameters

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Iversen, Bo Vangsø; Jacobsen, Ole Hørbye;

    2008-01-01

    Estimates of soil hydraulic properties using pedotransfer functions (PTF) are useful in many studies such as hydrochemical modelling and soil mapping. The objective of this study was to calibrate and test parametric PTFs that predict soil water retention and unsaturated hydraulic conductivity...... parameters. The PTFs are based on neural networks and the Bootstrap method using different sets of predictors and predict the van Genuchten/Mualem parameters. A Danish soil data set (152 horizons) dominated by sandy and sandy loamy soils was used in the development of PTFs to predict the Mualem hydraulic...... of the hydraulic properties of the studied soils. We found that introducing measured water content as a predictor generally gave lower errors for water retention predictions and higher errors for conductivity predictions. The best of the developed PTFs for predicting hydraulic conductivity was tested against PTFs...

  12. Does the soil's effective hydraulic conductivity adapt in order to obey the Maximum Entropy Production principle? A lab experiment

    Science.gov (United States)

    Westhoff, Martijn; Zehe, Erwin; Erpicum, Sébastien; Archambeau, Pierre; Pirotton, Michel; Dewals, Benjamin

    2015-04-01

    The Maximum Entropy Production (MEP) principle is a conjecture assuming that a medium is organized in such a way that maximum power is subtracted from a gradient driving a flux (with power being a flux times its driving gradient). This maximum power is also known as the Carnot limit. It has already been shown that the atmosphere operates close to this Carnot limit when it comes to heat transport from the Equator to the poles, or vertically, from the surface to the atmospheric boundary layer. To reach this state close to the Carnot limit, the effective thermal conductivity of the atmosphere is adapted by the creation of convection cells (e.g. wind). The aim of this study is to test if the soil's effective hydraulic conductivity also adapts itself in such a way that it operates close to the Carnot limit. The big difference between atmosphere and soil is the way of adaptation of its resistance. The soil's hydraulic conductivity is either changed by weathering processes, which is a very slow process, or by creation of preferential flow paths. In this study the latter process is simulated in a lab experiment, where we focus on the preferential flow paths created by piping. Piping is the process of backwards erosion of sand particles subject to a large pressure gradient. Since this is a relatively fast process, it is suitable for being tested in the lab. In the lab setup a horizontal sand bed connects two reservoirs that both drain freely at a level high enough to keep the sand bed always saturated. By adding water to only one reservoir, a horizontal pressure gradient is maintained. If the flow resistance is small, a large gradient develops, leading to the effect of piping. When pipes are being formed, the effective flow resistance decreases; the flow through the sand bed increases and the pressure gradient decreases. At a certain point, the flow velocity is small enough to stop the pipes from growing any further. In this steady state, the effective flow resistance of

  13. Scaling hydraulic properties of a macroporous soil

    Science.gov (United States)

    Mohanty, Binayak P.

    1999-06-01

    Macroporous soils exhibit significant differences in their hydraulic properties for different pore domains. Multimodal hydraulic functions may be used to describe the characteristics of multiporosity media. I investigated the usefulness of scaling to describe the spatial variability of hydraulic conductivity (K(-h)) functions of a macroporous soil in Las Nutrias, New Mexico. Piecewise-continuous hydraulic conductivity functions suitable for macroporous soils in conjunction with a hybrid similar media-functional normalization scaling approach were used. Results showed that gravity-dominated flow and the related hydraulic conductivity (K(minus;h) functions of the macropore region are more readily scalable than capillary-dominated flow properties of the mesopore and micropore regions. A possible reason for this behavior is that gravity-dominated flow in the larger pores is mostly influenced by the pore diameter which remains more uniform as compared to tortuous mesopores and micropores with variable neck and body sizes along the pore length.

  14. Determination of the saturated film conductivity to improve the EMFX model in describing the soil hydraulic properties over the entire moisture range

    Science.gov (United States)

    Wang, Yunquan; Ma, Jinzhu; Guan, Huade; Zhu, Gaofeng

    2017-06-01

    Difficulty in measuring hydraulic conductivity, particularly under dry conditions, calls for methods of predicting the conductivity from easily obtained soil properties. As a complement to the recently published EMFX model, a method based on two specific suction conditions is proposed to estimate saturated film conductivity from the soil water retention curve. This method reduces one fitting parameter in the previous EMFX model, making it possible to predict the hydraulic conductivity from the soil water retention curve over the complete moisture range. Model performance is evaluated with published data of soils in a broad texture range from sand to clay. The testing results indicate that 1) the modified EMFX model (namely the EMFX-K model), incorporating both capillary and adsorption forces, provides good agreement with the conductivity data over the entire moisture range; 2) a value of 0.5 for the tortuosity factor in the EMFX-K model as that in the Mualem's model gives comparable estimation of the relative conductivity associated with the capillary force; and 3) a value of -1.0 × 10-20 J for the Hamaker constant, rather than the commonly used value of -6.0 × 10-20 J, appears to be more appropriate to represent solely the effect of the van der Waals forces and to predict the film conductivity. In comparison with the commonly used van Genuchten-Mualem model, the EMFX-K model significantly improves the prediction of hydraulic conductivity under dry conditions. The sensitivity analysis result suggests that the uncertainty in the film thickness estimation is important in explaining the model underestimation of hydraulic conductivity for the soils with fine texture, in addition to the uncertainties from the measurements and the model structure. High quality data that cover the complete moisture range for a variety of soil textures are required to further test the method.

  15. Comparison of four methods to assess hydraulic conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C.H. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Civil and Environmental Engineering; Gunter, J.A. [Gunter (John A.), Round Rock, TX (United States); Boutwell, G.P. [STE, Inc., Baton Rouge, LA (United States); Trautwein, S.J. [Trautwein Soil Testing Equipment Co., Houston, TX (United States); Berzanskis, P.H. [Hoechst-Celanese, Inc., Pampa, TX (United States)

    1997-10-01

    A hydraulic conductivity assessment that was conducted on four test pads constructed to the same specifications with soil from the same source by four different contractors is described. The test pads had distinctly different field hydraulic conductivities, even though they were constructed with similar soil, to similar compaction conditions, and with similar machinery. Adequate hydration time was key in achieving low field hydraulic conductivity. More extensive processing was another factor responsible for low field hydraulic conductivity. Four different test methods were used to assess the hydraulic conductivity of each test pad: (1) sealed double-ring infiltrometers (SDRIs); (2) two-stage borehole permeameters; (3) laboratory hydraulic conductivity tests on large block specimens; and (4) laboratory hydraulic conductivity tests on small specimens collected in thin-wall sampling tubes. The tests were conducted independently by each of the writers. After the tests were completed, the results were submitted and compared. Analysis of the test results show that the three large-scale test methods generally yield similar hydraulic conductivities. For two of the test pads, however, the hydraulic conductivities of the specimens collected in sampling tubes were significantly lower than the field hydraulic conductivities. Both of these test pads had high field hydraulic conductivity. Thus, there is little value in using small specimens to assess field hydraulic conductivity.

  16. Dynamic effects of wet-dry cycles and crust formation on the saturated hydraulic conductivity of surface soils in the constructed Hühnerwasser ("Chicken Creek") catchment

    Science.gov (United States)

    Hinz, Christoph; Schümberg, Sabine; Kubitz, Anita; Frank, Franzi; Cheng, Zhang; Nanu Frechen, Tobias; Pohle, Ina

    2016-04-01

    Highly disturbed soils and substrates used in land rehabilitation undergo rapid changes after the first wetting events which in turn can lead to ecosystem degradation. Such changes were detected during the early development of the constructed Hühnerwasser ("Chicken Creek") catchment in Lusatia, Germany. Surface substrates consisting of quaternary sandy sediments formed surface seals during the first rainfall events leading to reduced infiltration and substantially increased surface runoff. Subsequently biological soil crusts formed and stabilised the surface. The aim of this study is to investigate the factors that cause the hydraulic conductivity to decrease using undisturbed and disturbed soil samples. Based on the hypothesis that physical and biological crusts lower the hydraulic conductivity, the first set of experiments with undisturbed soil cores from the Hühnerwasser catchment were carried out to measure the saturated hydraulic conductivity using the constant head method. Measurements were done with intact cores and repeated after the surface crust was removed. As the quaternary glacial sediments tend to display hard setting behaviour, we further hypothesised that the mobilisation of fine particles within the cores lead to pore clogging and that wet-dry cycles will therefore decrease hydraulic conductivity. A second set of experiments using the same methodology consisted of five repeated measurements of hydraulic conductivity after each drying cycle. These measurements were done with undisturbed core samples as well as repacked cores in order to assess how dry packing affects the dynamics of the hydraulic conductivity somewhat similar to the situation during the first wetting after completion of the catchment construction. For all experiments, the temporal evolution of hydraulic conductivity was measured and the turbidity of the effluent was recorded. The results clearly demonstrated that the substrate is highly unstable. The first set of experiments

  17. Using random forests to explore the effects of site attributes and soil properties on near-saturated and saturated hydraulic conductivity

    Science.gov (United States)

    Jorda, Helena; Koestel, John; Jarvis, Nicholas

    2014-05-01

    Knowledge of the near-saturated and saturated hydraulic conductivity of soil is fundamental for understanding important processes like groundwater contamination risks or runoff and soil erosion. Hydraulic conductivities are however difficult and time-consuming to determine by direct measurements, especially at the field scale or larger. So far, pedotransfer functions do not offer an especially reliable alternative since published approaches exhibit poor prediction performances. In our study we aimed at building pedotransfer functions by growing random forests (a statistical learning approach) on 486 datasets from the meta-database on tension-disk infiltrometer measurements collected from peer-reviewed literature and recently presented by Jarvis et al. (2013, Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrol. Earth Syst. Sci. 17(12), 5185-5195). When some data from a specific source publication were allowed to enter the training set whereas others were used for validation, the results of a 10-fold cross-validation showed reasonable coefficients of determination of 0.53 for hydraulic conductivity at 10 cm tension, K10, and 0.41 for saturated conductivity, Ks. The estimated average annual temperature and precipitation at the site were the most important predictors for K10, while bulk density and estimated average annual temperature were most important for Ks prediction. The soil organic carbon content and the diameter of the disk infiltrometer were also important for the prediction of both K10 and Ks. However, coefficients of determination were around zero when all datasets of a specific source publication were excluded from the training set and exclusively used for validation. This may indicate experimenter bias, or that better predictors have to be found or that a larger dataset has to be used to infer meaningful pedotransfer functions for saturated and near-saturated hydraulic conductivities. More research is in progress

  18. Microbial effect on soil hydraulic properties

    Science.gov (United States)

    Furman, Alex; Rosenzweig, Ravid; Volk, Elazar; Rosenkranz, Hella; Iden, Sascha; Durner, Wolfgang

    2014-05-01

    Although largely ignored, the soil contains large amount of biofilms (attached microbes) that can affect many processes. While biochemical processes are studied, biophysical processes receive only little attention. Biofilms may occupy some of the pore space, and by that affect the soil hydraulic properties. This effect on unsaturated soils, however, was not intensively studied. In this research we directly measure the hydraulic properties, namely the soil's unsaturated hydraulic conductivity function and retention curve, for soils containing real biofilm. To do that we inoculate soil with biofilm-forming bacteria and incubate it with sufficient amounts of nutrient until biofilm is formed. The hydraulic properties of the incubated soil are then measured using several techniques, including multi-step outflow and evaporation method. The longer measurements (evaporation method) are conducted under refrigeration conditions to minimize microbial activity during the experiment. The results show a clear effect of the biofilm, where the biofilm-affected soil (sandy loam in our case) behaves like a much finer soil. This qualitatively makes sense as the biofilm generates an effective pore size distribution that is characterized by smaller pores. However, the effect is much more complex and needs to be studied carefully considering (for example) dual porosity models. We compare our preliminary results with other experiments, including flow-through column experiments and experiments with biofilm analogues. Clearly a better understanding of the way microbial activity alters the hydraulic properties may help designing more efficient bioremediation, irrigation, and other soil-related processes.

  19. The Effects of Salinity and Sodium Adsorption Ratio on the Water Retention and Hydraulic Conductivity Curves of Soils From The Pampa del Tamarugal, Chile

    Science.gov (United States)

    Lagos, M. S.; Munoz, J.; Suarez, F. I.; Fierro, V.; Moreno, C.

    2015-12-01

    The Pampa del Tamarugal is located in the Atacama Desert, the most arid desert of the world. It has important reserves of groundwater, which are probably fed by infiltration coming from the Andes Mountain, with groundwater levels fluctuating between 3 and 10-70 m below the land surface. In zones where shallow groundwater exists, the capillary rise allows to have a permanently moist vadose zone, which sustain native vegetation such as the Tamarugos (Prosopis tamarugo Phil.) and Algarrobos (Prosopis alba Griseb.). The native vegetation relies on the soil moisture and on the evaporative fluxes, which are controlled by the hydrodynamic characteristics of the soils. The soils associated to the salt flats of the Pampa del Tamarugal are a mixture of sands and clays, which have high levels of sulfates, chloride, carbonates, sodium, calcium, magnesium, and potassium, with high pH and electrical conductivity, and low organic matter and cationic exchange capacity. In this research, we are interested in evaluating the impact of salinity and sodium adsorption ratio (SAR) on the hydrodynamic characteristics of the soil, i.e., water retention and hydraulic conductivity curves. Soils were collected from the Pampa del Tamarugal and brought to the laboratory for characterization. The evaporation method (HYPROP, UMS) was used to determine the water retention curve and the hydraulic conductivity curve was estimated combining the evaporation method with direct measurements using a variable head permeameter (KSAT, UMS). It was found that higher sodium concentrations increase the water retention capacity and decrease the soiĺs hydraulic conductivity. These changes occur in the moist range of the hydrodynamic characteristics. The soil's hydraulic properties have significant impact on evaporation fluxes, which is the mayor component of the water balance. Thus, it is important to quantify them and incorporate salt precipitation/dissolution effect on the hydrodynamic properties to correctly

  20. The effects of sustained forest use on hillslope soil hydraulic conductivity in the Middle Mountains of Central Nepal

    NARCIS (Netherlands)

    Ghimire, C.P.; Bruijnzeel, L. Adrian; Bonell, Mike; Coles, Neil A.; Lubczynski, M.; Gilmour, Don A.

    2013-01-01

    This work investigated the multi-decadal changes in field saturated hydraulic conductivity, Kfs, beneath severely degraded pasture, natural forest and two mature planted Pinus roxburghii stands between two sets of measurements made in 1986 and 2011 at the same locations in the Middle Mountains of

  1. Measurement and modeling of unsaturated hydraulic conductivity

    Science.gov (United States)

    Perkins, Kim S.; Elango, Lakshmanan

    2011-01-01

    The unsaturated zone plays an extremely important hydrologic role that influences water quality and quantity, ecosystem function and health, the connection between atmospheric and terrestrial processes, nutrient cycling, soil development, and natural hazards such as flooding and landslides. Unsaturated hydraulic conductivity is one of the main properties considered to govern flow; however it is very difficult to measure accurately. Knowledge of the highly nonlinear relationship between unsaturated hydraulic conductivity (K) and volumetric water content is required for widely-used models of water flow and solute transport processes in the unsaturated zone. Measurement of unsaturated hydraulic conductivity of sediments is costly and time consuming, therefore use of models that estimate this property from more easily measured bulk-physical properties is common. In hydrologic studies, calculations based on property-transfer models informed by hydraulic property databases are often used in lieu of measured data from the site of interest. Reliance on database-informed predicted values with the use of neural networks has become increasingly common. Hydraulic properties predicted using databases may be adequate in some applications, but not others. This chapter will discuss, by way of examples, various techniques used to measure and model hydraulic conductivity as a function of water content, K. The parameters that describe the K curve obtained by different methods are used directly in Richards’ equation-based numerical models, which have some degree of sensitivity to those parameters. This chapter will explore the complications of using laboratory measured or estimated properties for field scale investigations to shed light on how adequately the processes are represented. Additionally, some more recent concepts for representing unsaturated-zone flow processes will be discussed.

  2. Hydraulic Conductivity of Compacted Laterite Treated with Iron Ore Tailings

    Directory of Open Access Journals (Sweden)

    Umar Sa’eed Yusuf

    2016-01-01

    Full Text Available The objective of this study was to investigate the effect of iron ore tailings (IOT on hydraulic conductivity of compacted laterite. The IOT conforms to ASTM C 618-15 Type F designations. In the present study, soil was admixed with 0–20% IOT and compacted at moulding water content ranging from 10 to 25% using four types of compactive efforts. Hydraulic conductivities of the compacted soil-IOT mixtures were determined using deionized water and municipal solid waste leachate as the permeant fluids, respectively. Deionized water was the reference permeant fluid. Results of this study showed that hydraulic conductivity decreased with increase in IOT content as a result of improvement in mechanical properties of the soil. Permeation of the soil-IOT mixtures with leachate caused the hydraulic conductivity to drop to less than 1 × 10−9 m/s especially at higher compactive efforts. Also, bioclogging of the soil pores due to accumulation of biomass from bacteria and yeast present in the leachate tends to significantly reduce the hydraulic conductivity. From an economic point of view, it has been found from the results of this study that soil specimens treated with up to 20% IOT and compacted at the British Standard Light (BSL compactive effort met the maximum regulatory hydraulic conductivity of less than or equal to 1 × 10−9 m/s for hydraulic barrier system.

  3. Formulation of soil hydraulic conductivity from water retention curve, based on data inversion results, interpreted in terms of tortuosity, connectivity and flow turbulence.

    Science.gov (United States)

    du Gardin, Béryl; Lucas, Yves

    2014-05-01

    In order to refine hydraulic conductivity determination from soil water retention curve, we calculated the correcting factors, by data inversion, using a generalised formulation issued from Burdine or Mualem hydraulic conductivity. These formulations use the laminar flow, obeying Poiseuille law, through a bundle of cylinders of different radii, and correcting factors traducing the gap with real flow and real soil geometry. A general correcting factor is supposed to be proportional to water content, with an exponent a. An inner correcting factor is a function of pore size and/or water content and is inside the integral. We did not presuppose any analytical form for this inner correcting function. We used soil data obtained from clayey Amazonian tropical ferralsols composed of around 7/8 of clay fraction and fine silt (mainly kaolinite with some gibbsite and goethite) and 1/8 of coarse sand (quartz and kaolinite aggregates), with 0,2 to 1,5 % organic carbon content. Data were obtained using three different techniques : high pressurized water extraction disposal, evaporation experiment (Wind method) and in situ infiltration. The explored pore size domain was very large, ranging from 2 micrometers to 2 mm, completed by some data around 0,1 micrometer, so three to four orders of magnitude. We precised pore distribution in the range from 4 nm to 2 micrometers with mercury injection porosimetry corrected from drying effects. The pore distribution is bimodal, with a very small pore volume around 0,25 micrometer pore size. Such pore distribution allows observing separately the effects of pore size and water content on hydraulic conductivity, as water content is not a regularly increasing function of largest filled pores size. The results showed that a general correcting factor as an exponent of water content over all the described domain is inappropriate, as we encountered the smallest spreading of the inner correcting function when the exponent a is zero. The general

  4. HYDRAULIC CONDUCTIVITY IN ENVIRONMENTAL LINERS PRODUCED WITH SANDY SOIL, CHEMICALLY STABILIZED = CONDUTIVIDADE HIDRÁULICA DE BARREIRAS DE PROTEÇÃO PRODUZIDAS COM SOLO ARENOSO ESTABILIZADO QUIMICAMENTE

    Directory of Open Access Journals (Sweden)

    José Augusto de Lollo

    2004-01-01

    Full Text Available Hydraulic conductivity of barriers produced with sandy soil (65% sand and 27% clay stabilized with lime and cement was tested. Specimens produced with compacted mixtures and tested using variable charges and total surface tests in order to determine hydraulic conductivity. Some factors vary during the tests, like the kind of aditive (lime and cement, the amount of lime and cement, cure time and exposition condition. Obtained hydraulic conductivity values were smaller than 10-9 m/s, showing values fully compatible with the intended purpose. Is also proposed a sistematic procedure to aply this techinque in simmilar situations. = Foi testada a condutividade hidráulica de barreiras de proteção ambiental produzidas com solo arenoso (65% de areia e 27% de argila estabilizado quimicamente com cal e cimento. Foram ensaiados corpos de prova das misturas compactadas usando as técnicas de ensaio de permeabilidade a carga variável e em área plena considerando os fatores tipo de estabilizante, teor de estabilizante, tempo de cura e condição de exposição. Os resultados dos ensaios de permeabilidade mostraram valores de condutividade hidráulica inferiores a 10-9 m/s, portanto compatíveis com a finalidade pretendida. É proposta uma seqüência de procedimentos a ser adotada em situações similares nas quais se pretenda aplicar esta técnica.

  5. Measuring Disturbance Impact on Soil Hydraulic Properties

    Science.gov (United States)

    Hinshaw, S.; Mirus, B. B.

    2014-12-01

    Disturbances associated with land cover change such as forest clearing and mono-cropping can have a substantial impact on soil-hydraulic properties, which in turn have a cascading impact on surface and near-surface hydrologic response. Although disturbances and vegetation change can alter soil-water retention and conductivity relations, hydrologic models relying on traditional soil-texture based pedotransfer functions would not be able to capture the disturbance impact on infiltration and soil-moisture storage. Therefore, in-situ estimates of characteristic curves of soil water retention and hydraulic conductivity relations are needed to understand and predict hydrologic impacts of land cover change. We present a method for in-situ estimates of effective characteristic curves that capture hysteretic soil-water retention properties at the plot scale. We apply this method to two different forest treatments and in urban settings to investigate the impact of land-use disturbances on soil-hydraulic properties. We compare our in-situ estimation method to results for simple pedotransfer functions to illustrate how this approach can improve understanding of disturbance impacts on hydrologic processes and function.

  6. Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

    2009-09-27

    Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

  7. VARIABILITY OF HYDRAULIC CONDUCTIVITY DUE TO MULTIPLE FACTORS

    Directory of Open Access Journals (Sweden)

    Sanjit K. Deb

    2012-01-01

    Full Text Available Soil properties are greatly influenced by intrinsic factors of soil formation as well as extrinsic factors associated with land use and management and vary both in time and space. Intrinsic variability is caused by the pedogenesis and usually takes place at large time scales. The variability caused by extrinsic factors could take effect relatively quickly and could not be treated as regionalized. Saturated hydraulic conductivity is one of the most important soil properties for soil-water-plant interactions, water and contaminant movement and retention through the soil profile. It is a critically important parameter for estimation of various other soil hydrological parameters necessary for modeling flow through the naturally unsaturated vadose zone. Among different soil hydrological properties, saturated hydraulic conductivity is reported to have the greatest statistical variability, which is associated with soil types, land uses, positions on landscape, depths, instruments and methods of measurement and experimental errors. The variability of saturated hydraulic conductivity has a profound influence on the overall hydrology of the soil system. Therefore, focus of this review is centered on the variability of saturated/unsaturated hydraulic conductivity due to a large number of factors. This study reviews recent experimental and field studies addressing the measurements and variability of hydraulic conductivity. A synthesis of a large amount of data available in literature is presented and the possible sources of the variability and its implications are discussed. The variability of a soil hydraulic conductivity can be expressed by range, interquartile range, variance and standard deviation, coefficient of variation, skewness and kurtosis. The spatial and temporal variability of hydraulic conductivity and the influences of sample support, measurement devices/methods, soils, land uses and agricultural management on hydraulic conductivity are

  8. Water Infiltration and Hydraulic Conductivity in Sandy Cambisols

    DEFF Research Database (Denmark)

    Bens, Oliver; Wahl, Niels Arne; Fischer, Holger

    2006-01-01

    Soil hydrological properties like infiltration capacity and hydraulic conductivity have important consequences for hydrological properties of soils in river catchments and for flood risk prevention. They are dynamic properties due to varying land use management practices. The objective of this st......Soil hydrological properties like infiltration capacity and hydraulic conductivity have important consequences for hydrological properties of soils in river catchments and for flood risk prevention. They are dynamic properties due to varying land use management practices. The objective...... of this study was to characterize the variation of infiltration capacity, hydraulic conductivity and soil organoprofile development on forest sites with comparable geological substrate, soil type and climatic conditions, but different stand ages and tree species in terms of the effects of forest transformation...... from pure Scots pine stands towards pure European beech stands. The water infiltration capacity and hydraulic conductivity (K) of the investigated sandy-textured soils are low and very few macropores exist. Additionally these pores are marked by poor connectivity and therefore do not have any...

  9. Hydraulic conductivity of GCLs in MSW landfills

    Institute of Scientific and Technical Information of China (English)

    LI Guo-cheng; YANG Wu-chao; DAN Tang-hui

    2008-01-01

    The state of the art of the study on the hydraulic conductivity of GCLs is presented in terms of the in-fluence of the effective stress, chemical interactions, freeze - thaw cycles and temperature gradients. The chan-ges of void ratio caused by changes of effective stress have a direct linear effect on the hydraulic conductivity, regardless of the cation concentration or the thickness of the adsorbed layer. The hydraulic conductivity is relat-ed to the relative abundance of monovalent and divalent cation(RMD), and RMD has a great effect on the hy-draulic conductivity in weak solution. The long-term susceptibility of GCLs to increased hydraulic conductivity as a response to repeated freeze-thaw cycling is minimal, which has been proved after 150 freeze-thaw cycles. The potential of desiccation cracking increases with the increasing temperature gradient and is related to the ini-tial subsoil water content, the applied overburden stress, etc.

  10. Anisotropy of Soil Hydraulic Properties Along Arable Slopes

    Institute of Scientific and Technical Information of China (English)

    JING Yuan-Shu; ZHANG Bin; A.THIMM; H.ZEPP

    2008-01-01

    The spatial variations of the soil hydraulic properties were mainly considered in vertical direction.The objectives of this study were to measure water-retention curves,θ(ψ),and unsaturated hydraulic conductivity functions,K(ψ),of the soils sampled at different slope positions in three directions,namely,in vertical direction,along the slope and along the contour,and to determine the effects of sampling direction and slope position of two soil catenas.At the upper slope positions,the surface soils (0-10 cm) sampled in the vertical direction had a lower soil water content,θ,at a certain soil water potential (-1500 kPa <ψ<-10 kPa) and had the greatest unsaturated hydraulic conductivity,K,at ψ> -10kPa.At the lower slope positions,K at ψ>-10 kPa was smaller in the vertical direction than in the direction along the slope.The deep soils (100-110 cm) had similar soil hydraulic properties in all the three directions.The anisotropic variations of the hydraulic properties of the surface soils were ascribed to the effects of natural wetting and drying cycles on the structural heterogeneity.These results suggested that the anisotropy of soil hydraulic properties might be significant in influencing soil water movement along the slope and need to be considered in modeling.

  11. Multivariate distributions of soil hydraulic parameters

    Science.gov (United States)

    Qu, Wei; Pachepsky, Yakov; Huisman, Johan Alexander; Martinez, Gonzalo; Bogena, Heye; Vereecken, Harry

    2014-05-01

    Statistical distributions of soil hydraulic parameters have to be known when synthetic fields of soil hydraulic properties need to be generated in ensemble modeling of soil water dynamics and soil water content data assimilation. Pedotransfer functions that provide statistical distributions of water retention and hydraulic conductivity parameters for textural classes are most often used in the parameter field generation. Presence of strong correlations can substantially influence the parameter generation results. The objective of this work was to review and evaluate available data on correlations between van Genuchten-Mualem (VGM) model parameters. So far, two different approaches were developed to estimate these correlations. The first approach uses pedotransfer functions to generate VGM parameters for a large number of soil compositions within a textural class, and then computes parameter correlations for each of the textural classes. The second approach computes the VGM parameter correlations directly from parameter values obtained by fitting VGM model to measured water retention and hydraulic conductivity data for soil samples belonging to a textural class. Carsel and Parish (1988) used the Rawls et al. (1982) pedotransfer functions, and Meyer et al. (1997) used the Rosetta pedotransfer algorithms (Schaap, 2002) to develop correlations according to the first approach. We used the UNSODA database (Nemes et al. 2001), the US Southern Plains database (Timlin et al., 1999), and the Belgian database (Vereecken et al., 1989, 1990) to apply the second approach. A substantial number of considerable (>0.7) correlation coefficients were found. Large differences were encountered between parameter correlations obtained with different approaches and different databases for the same textural classes. The first of the two approaches resulted in generally higher values of correlation coefficients between VGM parameters. However, results of the first approach application depend

  12. Litter thickness, but not root biomass, explains the average and spatial structure of soil hydraulic conductivity in secondary forests and coffee agroecosystems in Veracruz, Mexico.

    Science.gov (United States)

    Marín-Castro, B E; Negrete-Yankelevich, S; Geissert, D

    2017-12-31

    Secondary forests and coffee agroecosystems are considered good alternatives for conservation of a high capacity for water filtration in the soil where tropical montane cloud forests (TMCF) once grew; however, it is not clear which characteristics of the vegetation modulate the field saturated hydraulic conductivity of the soil (Kfs) and whether these characteristics persist in such derived systems. Here, we explore how changes in vegetation between secondary forests and coffee agroecosystems have consequences for the average value and spatial variation of litter thickness and root biomass, and whether these differences can explain the Kfs and its spatial distribution. We found that the thickest litter, greatest total biomass and thickest roots are in the secondary forest of the north of the study area. The litter is spatially structured in patches of ca. 12m at plot scale in the secondary forest and coffee agroecosystem of the southern area. Like the Kfs, the thickness of the litter and biomass of the thick (>2mm), medium (1-2mm) and fine (<1mm) roots are spatially distributed on a north to south gradient at landscape scale. Our linear model indicates that geographic area (north or south), land use and litter thickness explain the Kfs and its spatial distribution along this gradient. Even on inclusion of the antecedent soil moisture and percentage of clays (found to explain Kfs in a previous study), it was not possible to eliminate from the model geographic area and land use, due to their high explanatory power. However, antecedent soil moisture became redundant on inclusion of the litter layer, which had a greater explanatory power. Our modeling suggests that undiscovered differences prevail between the geographic areas and secondary forest and coffee agroecosystems (possibly related to the edaphogenesis and management practices) that determine the Kfs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effect of thermokarst lake on soil saturated hydraulic conductivity and analysis of its influenced factors%热融湖塘对青藏高原土壤饱和导水率的影响及因素分析

    Institute of Scientific and Technical Information of China (English)

    高泽永; 王一博; 刘国华

    2014-01-01

    Thermkarst lakes as a typical landform unit are widely distributed in permafrost areas of the source region of the Yangtze River. The thermokarst lakes can have huge impact on soil properties, permafrost distribution, eco-hydrological processes, etc. on the lakeshore area with its development process. In this study, we analyzed the influence factors on physical and chemical properties of soil and made comparative analysis of the spatial difference of soil saturated hydraulic conductivity in the undisturbed lakeshore area, the dead root area of lakeshore, saline soil area of lakeshore and different slope areas around a typical thermokarst lake in permafrost areas of the source region of Yangtze River. Our results showed that soil saturated hydraulic conductivity differed among soils from different areas. The soil saturated hydraulic conductivity was in an order of dead root area of lakeshore > undisturbed lakeshore area > saline soil area of lakeshore. Compared with the soil of undisturbed lakeshore area, the soil saturated hydraulic conductivity of the dead root area of lakeshore increased by 70.1%, while the saline soil area decreased by 33.8%. The results showed soil environment had a great change with the formation of thermkarst lakes. The results suggested that the formation of the dead root area of lakeshore led to an increase in soil saturated hydraulic conductivity and a decrease of runoff capacity. Opposite results were found with the saline soil. At different slope areas of lakeshore, the greater the slope was, the greater the soil saturated hydraulic conductivity. Furthermore the maximum difference appeared at the middle position of the slope while soil saturated hydraulic conductivity of slope bottom did not obviously changed. The results also showed that with the different effects of thermkarst lakes, the cause of the variation of soil saturated hydraulic conductivity at the different areas was coupled with the influences of vegetation coverage, soil

  14. HYDRAULIC CONDUCTIVITY OF THREE GEOSYNTHETIC CLAY LINERS

    Science.gov (United States)

    The hydraulic conductivity of three 2.9 m2 (32 sq ft) geosynthetic clay liners (GCLs) was measured. Tests were performed on individual sheets of the GCLs, on overlapped pieces of GCLs, and on composite liners consisting of a punctured geomembrane overlying a GCL. Hyd...

  15. Dentin permeability: determinants of hydraulic conductance.

    Science.gov (United States)

    Reeder, O W; Walton, R E; Livingston, M J; Pashley, D H

    1978-02-01

    A technique is described which permits measurements of the ease with which fluid permeates dentin. This value, the hydraulic conductance of dentin, increased as surface area increases and/or as dentin thickness decreases. It increased 32-fold when dentin was acid etched due to removal of surface debris occluding the tubules.

  16. A diagnosis of sub-surface water table dynamics in low hydraulic conductivity soils in the sugar cane fields of Pongola, South Africa

    Science.gov (United States)

    Malota, Mphatso; Senzanje, Aidan

    2016-04-01

    Water and land are the two natural resources restraining crop production in South Africa. With the increasing demand for food, emphasis has shifted from the sole reliance on rain fed crop production, to irrigation. The deterioration in irrigation water quality from surface water sources is, however, posing a big challenge to the sustainability of irrigated crop production. This is because more water is required for leaching, resulting in shallow water tables in agricultural lands. The installation of well designed subsurface drainage systems alone is not enough; the provision of timely maintenance is also necessary. In this study, the extent and severity of problems as a consequence of shallow water tables and their possible causes were investigated at three sugarcane fields in Pongola, South Africa, having low hydraulic conductivity soils. Also investigated were soil salinity levels and the temporal variation in the salinity of the irrigation water. A water table map of a 32 ha sugarcane field was generated, using observed water table depth (WTD) data from 36 piezometers monitored from September 2011 to February 2012. Out of the total 32 ha under cultivation, 12% was found to be affected by shallow WTDs of less than the 1.0 m design WTD. The inability of natural drainage to cope with subsurface drainage needs and the poor maintenance of subsurface drainage systems contributed to the shallow water tables in the area. Furthermore, the currently adopted drainage design criteria also proved unsatisfactory with mean observed water table depth and drainage discharge (DD) of 20% and 50%, respectively, less than their respective design levels. The salinity of the irrigation water was, on average, 32% higher than threshold tolerance level of sugarcane. The root zone soil salinity levels at the three study sites were greater than the 1.7 dS m-1 threshold for sugar cane. The subsurface drainage design criteria adopted at the site needs to be revisited by ensuring that the

  17. Estimación de la conductividad hidráulica saturada in situ en un suelo tratado con vinaza Field satured hydraulic conductivity estimation on vinasse trated soil

    Directory of Open Access Journals (Sweden)

    Ludwig M Rojas D

    2008-06-01

    Full Text Available Se estimaron los cambios en la conductividad hidráulica saturada mediante las técnicas de caída de carga" y "fuente localizada de agua en un suelo Ustipsamment típico arenoso isohipertérmico con dosis diluidas de vinazas. La investigación se realizó en el centro experimental de la Universidad Nacional de Colombia Sede Palmira (3° 25'39.81" N y 76° 25'45.70" o, 953 m.s.n.m, 24 °C y 60% HR, 1.020 mm. Los dos métodos no difirieron de forma significativa (pChanges of the satured hydraulic conductivity in a soil was estimated using the “falling head” and “point source” methods. The soil treated with vinasse was an Ustipsamment Typic Sandy Isohipertermic located at the experimental center of the National University of Colombia at Palmira (3° 25' 39.81" N, 76° 25' 45.70" W; 953 m.a.s.l., 24 °C, 60% RH. and 1020 mm.. The field methods used did not show statistical differences for the estimation of the satured hydraulic conductivity (p<0.05. However, a decreasing exponential relationship between hydraulic conductivity and vinasse concentration was found. The hydraulic conductivity was reduced about of 50% from the initial value to 2° Brix in a sandy soil, 5.3° brix to a sandy loam soil and 6.1° Brix to a clay loam soil.

  18. Prediction of spatially variable unsaturated hydraulic conductivity using scaled particle-size distribution functions

    NARCIS (Netherlands)

    Nasta, P.; Romano, N.; Assouline, S; Vrugt, J.A.; Hopmans, J.W.

    2013-01-01

    Simultaneous scaling of soil water retention and hydraulic conductivity functions provides an effective means to characterize the heterogeneity and spatial variability of soil hydraulic properties in a given study area. The statistical significance of this approach largely depends on the number of s

  19. Measurement and modeling of unsaturated hydraulic conductivity: Chapter 21

    Science.gov (United States)

    Perkins, Kim S.; Elango, Lakshmanan

    2011-01-01

    The unsaturated zone plays an extremely important hydrologic role that influences water quality and quantity, ecosystem function and health, the connection between atmospheric and terrestrial processes, nutrient cycling, soil development, and natural hazards such as flooding and landslides. Unsaturated hydraulic conductivity is one of the main properties considered to govern flow; however it is very difficult to measure accurately. Knowledge of the highly nonlinear relationship between unsaturated hydraulic conductivity (K) and volumetric water content () is required for widely-used models of water flow and solute transport processes in the unsaturated zone. Measurement of unsaturated hydraulic conductivity of sediments is costly and time consuming, therefore use of models that estimate this property from more easily measured bulk-physical properties is common. In hydrologic studies, calculations based on property-transfer models informed by hydraulic property databases are often used in lieu of measured data from the site of interest. Reliance on database-informed predicted values with the use of neural networks has become increasingly common. Hydraulic properties predicted using databases may be adequate in some applications, but not others.

  20. Modeling multidomain hydraulic properties of shrink-swell soils

    Science.gov (United States)

    Stewart, Ryan D.; Abou Najm, Majdi R.; Rupp, David E.; Selker, John S.

    2016-10-01

    Shrink-swell soils crack and become compacted as they dry, changing properties such as bulk density and hydraulic conductivity. Multidomain models divide soil into independent realms that allow soil cracks to be incorporated into classical flow and transport models. Incongruously, most applications of multidomain models assume that the porosity distributions, bulk density, and effective saturated hydraulic conductivity of the soil are constant. This study builds on a recently derived soil shrinkage model to develop a new multidomain, dual-permeability model that can accurately predict variations in soil hydraulic properties due to dynamic changes in crack size and connectivity. The model only requires estimates of soil gravimetric water content and a minimal set of parameters, all of which can be determined using laboratory and/or field measurements. We apply the model to eight clayey soils, and demonstrate its ability to quantify variations in volumetric water content (as can be determined during measurement of a soil water characteristic curve) and transient saturated hydraulic conductivity, Ks (as can be measured using infiltration tests). The proposed model is able to capture observed variations in Ks of one to more than two orders of magnitude. In contrast, other dual-permeability models assume that Ks is constant, resulting in the potential for large error when predicting water movement through shrink-swell soils. Overall, the multidomain model presented here successfully quantifies fluctuations in the hydraulic properties of shrink-swell soil matrices, and are suitable for use in physical flow and transport models based on Darcy's Law, the Richards Equation, and the advection-dispersion equation.

  1. 不同土壤转换函数预测砂土非饱和导水率的对比分析%Estimating unsaturated hydraulic conductivity of sandy soils using different pedotransfer functions

    Institute of Scientific and Technical Information of China (English)

    廖凯华; 徐绍辉; 吴吉春; 朱青

    2013-01-01

    以现有的4种土壤转换函数(Pedotransfer Functions,PTFs)(包括ROSETTA、RAWLS、CAMPBELL和VAUCLIN)为例,将其用于土壤水力性质数据库UNSODA中56个典型砂土样本的非饱和导水率预测,对4种PTFs的预测结果进行了误差分析,探讨了饱和导水率对非饱和导水率预测的影响.结果表明,当同种PTFs预测的饱和导水率作为输入时,在4种PTFs中VAUCLIN的预测精度最高,其次为ROSETTA和RAWLS,CAMPBELL的误差最大;当实测饱和导水率作为输入时,RAWLS、CAMPBELL和ROSETTA的预测精度有了不同程度提高,但VAUCLIN的预测误差反而有所增大;饱和导水率对非饱和导水率预测的影响较大,实测饱和导水率作为输入时CAMPBELL预测的非饱和导水率与实测值最为接近.%This study tested the ability of four published pedotransfer functions (PTFs) (including ROSETTA,RAWLS,CAMPBELL and VAUCLIN) to predict unsaturated hydraulic conductivity for 56 sandy soil samples from the UNSODA database.Different PTFs for the estimation of saturated hydraulic conductivity were also evaluated in this study.Results showed that among the four PTFs,VAUCLIN produced the best performance,followed by ROSETTA and RAWLS,and CAMPBELL gave the worst performance when saturated hydraulic conductivity predicted by the identical PTFs as input.The performance of RAWLS,CAMPBELL and ROSETTA has been improved to different extent when measured saturated hydraulic conductivity as input.However,VAUCLIN did not produce the best performance when measured saturated hydraulic conductivity as input.The influence of saturated hydraulic conductivity on the predictive accuracy of unsaturated hydraulic conductivity was significant.Overall,CAMPBELL gave the best performance when the measured saturated hydraulic conductivity was used in the functions for estimation of unsaturated hydraulic conductivity.

  2. Hydraulic conductivity and diffusion characterization of GCLs

    Energy Technology Data Exchange (ETDEWEB)

    Mukunoki, T.; Rowe, R.K.; Li, H.M.; Sangam, H.P.; Hurst, P.; Bathurst, R.J. [Queen' s Univ., Kingston, ON (Canada)]|[Royal Military Coll. of Canada, Kingston, ON (Canada); Badv, K. [Urmia Univ. (Iran, Islamic Republic of)

    2003-07-01

    This paper reports on the characterization of the hydraulic conductivity and diffusion of a geosynthetic clay liner (GCL) installed at a site off the southeast coast of Baffin Island, in the Canadian Arctic, following different levels of freeze-thaw exposure and under low temperature conditions. The authors presented a summary of the results obtained for hydraulic conductivity tests on GCLs subjected to freeze-thaw cycles, and specimens permeated with jet fuel (Arctic diesel). They also reported on diffusion tests conducted at 22 Celsius and 5 Celsius, followed by a discussion of the effect of temperature. The results indicate that there is no significant impact on GCL performance due to freeze-thaw cycles, permeation by jet fuel or diffusion at the lower temperatures expected in the north for the short term (up to approximately four years). Additional studies are needed to confirm long term behaviour. 24 refs., 2 tabs., 4 figs.

  3. Desenvolvimento de um modelo fractal para a estimativa da condutividade hidráulica de solos não saturados A fractal model to estimate the unsaturated hydraulic conductivity of soils

    Directory of Open Access Journals (Sweden)

    Carlos Fuentes

    2005-02-01

    Full Text Available Baseado nos conceitos da geometria fractal e nas leis de Laplace e de Poiseuille, foi criado um modelo geral para estimar a condutividade hidráulica de solos não saturados, utilizando a curva de retenção da água no solo, conforme representada por um modelo em potência. Considerando o fato de que este novo modelo da condutividade hidráulica introduz um parâmetro de interpolação ainda desconhecido, e que, por sua vez, depende das propriedades dos solos, a validação do modelo foi realizada, utilizando dois valores-limite fisicamente representativos. Para a aplicação do modelo, os parâmetros de forma da curva de retenção da água no solo foram escolhidos de maneira a se obter o modelo de van Genuchten. Com a finalidade de obter fórmulas algébricas da condutividade hidráulica, foram impostas relações entre seus parâmetros de forma. A comparação dos resultados obtidos com o modelo da condutividade e a curva experimental da condutividade dos dois solos, Latossolo Vermelho-Amarelo e Argissolo Amarelo, permitiu concluir que o modelo proposto é simples em sua utilização e é capaz de predizer satisfatoriamente a condutividade hidráulica dos solos não saturados.From a conceptual model based on fractal geometry and Laplace's and Poiseuille's laws, a versatile and general fractal model for the hydraulic conductivity to be used in the soils was developed. The soil-moisture retention curve is derived from a power model. Due to the fact that the proposed model of hydraulic conductivity introduces a still unknown interpolation parameter, which in turn is a function of soil properties, its limiting values were considered for the analysis. To apply the model in the soil, the form parameters of the soil-moisture retention curve were chosen so as to reproduce van Genuchten's equation. In order to obtain a closed-form equation for the hydraulic conductivity, relationships between the form parameters were imposed. The comparison between

  4. Geostatistical Estimations of Regional Hydraulic Conductivity Fields

    Science.gov (United States)

    Patriarche, D.; Castro, M. C.; Goovaerts, P.

    2004-12-01

    Direct and indirect measurements of hydraulic conductivity (K) are commonly performed, providing information on the magnitude of this parameter at the local scale (tens of centimeters to hundreds of meters) and at shallow depths. By contrast, field information on hydraulic conductivities at regional scales of tens to hundreds of kilometers and at greater depths is relatively scarce. Geostatistical methods allow for sparsely sampled observations of a variable (primary information) to be complemented by a more densely sampled secondary attribute. Geostatistical estimations of the hydraulic conductivity field in the Carrizo aquifer, a major groundwater flow system extending along Texas, are performed using available primary (e.g., transmissivity, hydraulic conductivity) and secondary (specific capacity) information, for depths up to 2.2 km, and over three regional domains of increasing extent: 1) the domain corresponding to a three-dimensional groundwater flow model previously built (model domain); 2) the area corresponding to the ten counties encompassing the model domain (County domain), and; 3) the full extension of the Carrizo aquifer within Texas (Texas domain). Two different approaches are used: 1) an indirect approach are transmissivity (T) is estimated first and (K) is retrieved through division of the T estimate by the screening length of the wells, and; 2) a direct approach where K data are kriged directly. Prediction performances of the tested geostatistical procedures (kriging combined with linear regression, kriging with known local means, kriging of residuals, and cokriging) are evaluated through cross validation for both log-transformed variables and back-transformed ones. For the indirect approach, kriging of log T residuals yields the best estimates for both log-transformed and back-transformed variables in the model domain. For larger regional scales (County and Texas domains), cokriging performs generally better than univariate kriging procedures

  5. Effects of Macropore on Soil Specific Water Capacity and Unsaturated Hydraulic Conductivity%大孔隙对土壤比水容重及非饱和导水率影响的实验研究

    Institute of Scientific and Technical Information of China (English)

    尚熳廷; 张建云; 刘九夫; 王小军

    2012-01-01

    以南京市栖霞区东阳镇的粉砂壤土为例,用土壤水分特征曲线(van Genuchten模型)拟合包含大孔隙原状土、不包含大孔隙扰动土的实测数据,得到了模型参数,进而得到比水容重和非饱和导水率与土壤含水量之间关系的表达式,在此基础上对比分析了原状土与扰动土水分运动参数之间的异同,并着重分析了土壤大孔隙对其影响。结果表明,受土壤大孔隙的影响,在同一含水量的情况下,扰动土的比水容重比原状土大1~2个数量级,并且随着吸力的增大,二者的差值逐渐减小;扰动土的非饱和导水率小于原状土,最大可相差2~3个数量级。%Take the silt loam soil of Dongyang town of Qixia district of Nanjing city for example,the van Genuchten model parameters of soil water characteristic curve were obtained by fitting measured date of undisturbed soil which include macropore and disturbed soil which not include macropore.Then,expressions of soil specific water capacity and unsaturated hydraulic conductivity were obtained.On this basis,comparative analysis is made with the soil water movement parameters' similarities and differences of undisturbed soil and disturbed soil,and emphatically analysised the influence of macropore to them.The results showed that,due to the effect of soil macropore,with the same soil water content,the specific water capacity of disturbed soil is 1 to 2 order of magnitude larger than undisturbed soil,and the difference of them is decreasing with the soil water suction increasing,the unsaturated soil hydraulic conductivity of disturbed is less than undisturbed soil,the difference maybe 2 to 3 order of magnitude.

  6. Near-saturated hydraulic conductivity: database development, meta-analysis and pedotransfer functions

    Science.gov (United States)

    Jarvis, Nicholas; Koestel, John; Messing, Ingmar; Lindahl, Anna

    2013-04-01

    Near-saturated hydraulic conductivity exerts a critical control on water flow and solute transport through the vadose zone, yet very little is known concerning how it is influenced by various soil properties and site factors and attributes. Starting from the 1980's, tension infiltrometers or disc permeameters have become an increasingly popular method to measure near-saturated hydraulic conductivity in undisturbed soil. In this presentation, we describe the development and organization of a large database of tension infiltrometer measurements (n>700) collated from the published literature. The raw datasets were standardized and summarized using a modified Kozeny-Carman model of near-saturated hydraulic conductivity (Jarvis, N.J. 2008. Near-saturated hydraulic properties of macroporous soils. Vadose Zone Journal, 7, 1302-1310). This model was found to accurately describe near-saturated conductivity for this large dataset (92% of cases had R2 values larger than 0.9). We will show the results of some initial analyses of the dataset, which show how hydraulic conductivity at pressure heads of -1 and -10 cm, as well as the slope of the near-saturated conductivity function, are affected by: i.) the choice of method to convert unconfined 3D infiltration to hydraulic conductivity, and ii.) interactions between soil properties such as texture and bulk density and site attributes such as land use and climate. We will also present some initial attempts to develop pedotransfer functions for parameters describing near-saturated hydraulic conductivity using the technique of random forests.

  7. Assessing soil hydraulic characteristics using HYPROP and BEST: a comparison

    Science.gov (United States)

    Leitinger, Georg; Obojes, Nikolaus; Lassabatère, Laurent

    2015-04-01

    Knowledge of ecohydrological characteristics with high spatial resolution is a prerequisite for large-scale hydrological modelling. Data on soil hydraulic characteristics are of major importance, but measurements are often seen as time consuming and costly. In order to accurately model grassland productivity and in particular evapotranspiration, soil sampling and infiltration experiments at 25 grassland sites ranging from 900m to 2300m a.s.l. were conducted in the long term socio-ecological research (LTSER) site Stubai Valley, Tyrolean Alps, Austria, covering 265 km². Here we present a comparison of two methods to determine important hydrological properties of soils: (1) the evaporation method HYPROP (Hydraulic Property Analyzer; UMS Munich, 2010), and (2) the BEST-model (Beerkan Estimation of Soil Transfer Parameters; Lassabatère et al. (2006)), each determining the soil hydraulic characteristics and in particular the water retention curve. For the most abundant soil types we compared the pf-curves calculated from HYPROP data suing the Van Genuchten equation to the ones resulting from the comparatively time efficient BEST approach to find out if the latter is a suitable method to determine pf curves of alpine grassland soils. Except for the soil type Rendzina, the comparison of HYPROP and BEST showed slightly variations in the pF curves and resulting hydraulic characteristics. At the starting point BEST curves presented a slower dehydration, HYPROP a fast and continuous water loss. HYPROP analyses showed the highest variability in the measured values of Rendzina. Regarding BEST, the Alluvial Soils showed the highest variability. To assess equivalence between HYPROP and BEST we deduced several hydraulic characteristics from the pF curves, e.g. saturated water content, field capacity, permanent wilting point, pore size distribution, and minimum water retention. The comparison of HYPROP and BEST revealed that the results of soil water characteristics may depend on

  8. Leaf hydraulic conductance declines in coordination with photosynthesis, transpiration and leaf water status as soybean leaves age regardless of soil moisture.

    Science.gov (United States)

    Locke, Anna M; Ort, Donald R

    2014-12-01

    Photosynthesis requires sufficient water transport through leaves for stomata to remain open as water transpires from the leaf, allowing CO2 to diffuse into the leaf. The leaf water needs of soybean change over time because of large microenvironment changes over their lifespan, as leaves mature in full sun at the top of the canopy and then become progressively shaded by younger leaves developing above. Leaf hydraulic conductance (K(leaf)), a measure of the leaf's water transport capacity, can often be linked to changes in microenvironment and transpiration demand. In this study, we tested the hypothesis that K(leaf) would decline in coordination with transpiration demand as soybean leaves matured and aged. Photosynthesis (A), stomatal conductance (g(s)) and leaf water potential (Ψ(leaf)) were also measured at various leaf ages with both field- and chamber-grown soybeans to assess transpiration demand. K(leaf) was found to decrease as soybean leaves aged from maturity to shading to senescence, and this decrease was strongly correlated with midday A. Decreases in K(leaf) were further correlated with decreases in g(s), although the relationship was not as strong as that with A. Separate experiments investigating the response of K(leaf) to drought demonstrated no acclimation of K(leaf) to drought conditions to protect against cavitation or loss of g(s) during drought and confirmed the effect of leaf age in K(leaf) observed in the field. These results suggest that the decline of leaf hydraulic conductance as leaves age keeps hydraulic supply in balance with demand without K(leaf)becoming limiting to transpiration water flux.

  9. Leaf hydraulic conductance declines in coordination with photosynthesis, transpiration and leaf water status as soybean leaves age regardless of soil moisture

    Science.gov (United States)

    Locke, Anna M.; Ort, Donald R.

    2014-01-01

    Photosynthesis requires sufficient water transport through leaves for stomata to remain open as water transpires from the leaf, allowing CO2 to diffuse into the leaf. The leaf water needs of soybean change over time because of large microenvironment changes over their lifespan, as leaves mature in full sun at the top of the canopy and then become progressively shaded by younger leaves developing above. Leaf hydraulic conductance (K leaf), a measure of the leaf’s water transport capacity, can often be linked to changes in microenvironment and transpiration demand. In this study, we tested the hypothesis that K leaf would decline in coordination with transpiration demand as soybean leaves matured and aged. Photosynthesis (A), stomatal conductance (g s) and leaf water potential (Ψleaf) were also measured at various leaf ages with both field- and chamber-grown soybeans to assess transpiration demand. K leaf was found to decrease as soybean leaves aged from maturity to shading to senescence, and this decrease was strongly correlated with midday A. Decreases in K leaf were further correlated with decreases in g s, although the relationship was not as strong as that with A. Separate experiments investigating the response of K leaf to drought demonstrated no acclimation of K leaf to drought conditions to protect against cavitation or loss of g s during drought and confirmed the effect of leaf age in K leaf observed in the field. These results suggest that the decline of leaf hydraulic conductance as leaves age keeps hydraulic supply in balance with demand without K leaf becoming limiting to transpiration water flux. PMID:25281701

  10. Formed Core Sampler Hydraulic Conductivity Testing

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. H.; Reigel, M. M.

    2012-09-25

    A full-scale formed core sampler was designed and functionally tested for use in the Saltstone Disposal Facility (SDF). Savannah River National Laboratory (SRNL) was requested to compare properties of the formed core samples and core drilled samples taken from adjacent areas in the full-scale sampler. While several physical properties were evaluated, the primary property of interest was hydraulic conductivity. Differences in hydraulic conductivity between the samples from the formed core sampler and those representing the bulk material were noted with respect to the initial handling and storage of the samples. Due to testing conditions, the site port samples were exposed to uncontrolled temperature and humidity conditions prior to testing whereas the formed core samples were kept in sealed containers with minimal exposure to an uncontrolled environment prior to testing. Based on the results of the testing, no significant differences in porosity or density were found between the formed core samples and those representing the bulk material in the test stand.

  11. A tensor approach to the estimation of hydraulic conductivities in ...

    African Journals Online (AJOL)

    2006-07-03

    Jul 3, 2006 ... The HC values computed from the data measured on the weathered or ... Keywords: hydraulic conductivity tensor, roughness, combined stress, hydraulic aperture, Table Mountain ... the anisotropic nature of studied media.

  12. Effects of biochars on hydraulic properties of clayey soil

    Science.gov (United States)

    Zhen, Jingbo; Palladino, Mario; Lazarovitch, Naftali; Bonanomi, Giuliano; Battista Chirico, Giovanni

    2017-04-01

    Biochar has gained popularity as an amendment to improve soil hydraulic properties. Since biochar properties depend on feedstocks and pyrolysis temperatures used for its production, proper selection of biochar type as soil amendment is of great importance for soil hydraulic properties improvement. This study investigated the effects of eight types of biochar on physical and hydraulic properties of clayey soil. Biochars were derived from four different feedstocks (Alfalfa hay, municipal organic waste, corn residues and wood chip) pyrolyzed at two different temperatures (300 and 550 °C). Clayey soil samples were taken from Leone farm (40° 26' 15.31" N, 14° 59' 45.54" E), Italy, and were oven-dried at 105 °C to determine dry bulk density. Biochars were mixed with the clayey soil at 5% by mass. Bulk densities of the mixtures were also determined. Saturated hydraulic conductivities (Ks) of the original clayey soil and corresponding mixtures were measured by means of falling-head method. Soil water retention measurements were conducted for clayey soil and mixtures using suction table apparatus and Richards' plate with the pressure head (h) up to 12000 cm. van Genuchten retention function was selected to evaluate the retention characteristics of clayey soil and mixtures. Available water content (AWC) was calculated by field capacity (h = - 500 cm) minus wilting pointing (h = -12000 cm). The results showed that biochar addition decreased the bulk density of clayey soil. The Ks of clayey soil increased due to the incorporation of biochars except for waste and corn biochars pyrolyzed at 550 °C. AWC of soils mixed with corn biochar pyrolyzed at 300 °C and wood biochar pyrolyzed at 550 °C, increased by 31% and 7%, respectively. Further analysis will be conducted in combination of biochar properties such as specific surface area and total pore volume. Better understanding of biochar impact on clayey soil will be helpful in biochar selection for soil amendment and

  13. Variation in reach-scale hydraulic conductivity of streambeds

    Science.gov (United States)

    Stewardson, M. J.; Datry, T.; Lamouroux, N.; Pella, H.; Thommeret, N.; Valette, L.; Grant, S. B.

    2016-04-01

    Streambed hydraulic conductivity is an important control on flow within the hyporheic zone, affecting hydrological, ecological, and biogeochemical processes essential to river ecosystem function. Despite many published field measurements, few empirical studies examine the drivers of spatial and temporal variations in streambed hydraulic conductivity. Reach-averaged hydraulic conductivity estimated for 119 surveys in 83 stream reaches across continental France, even of coarse bed streams, are shown to be characteristic of sand and finer sediments. This supports a model where processes leading to the accumulation of finer sediments within streambeds largely control hydraulic conductivity rather than the size of the coarse bed sediment fraction. After describing a conceptual model of relevant processes, we fit an empirical model relating hydraulic conductivity to candidate geomorphic and hydraulic drivers. The fitted model explains 72% of the deviance in hydraulic conductivity (and 30% using an external cross-validation). Reach hydraulic conductivity increases with the amplitude of bedforms within the reach, the bankfull channel width-depth ratio, stream power and upstream catchment erodibility but reduces with time since the last streambed disturbance. The correlation between hydraulic conductivity and time since a streambed mobilisation event is likely a consequence of clogging processes. Streams with a predominantly suspended load and less frequent streambed disturbances are expected to have a lower streambed hydraulic conductivity and reduced hyporheic fluxes. This study suggests a close link between streambed sediment transport dynamics and connectivity between surface water and the hyporheic zone.

  14. Novel evaporation experiment to determine soil hydraulic properties

    Directory of Open Access Journals (Sweden)

    K. Schneider

    2006-01-01

    Full Text Available A novel experimental approach to determine soil hydraulic material properties for the dry and very dry range is presented. Evaporation from the surface of a soil column is controlled by a constant flux of preconditioned air and the resulting vapour flux is measured by infrared absorption spectroscopy. The data are inverted under the assumptions that (i the simultaneous movement of water in the liquid and vapour is represented by Richards' equation with an effective hydraulic conductivity and that (ii the coupling between the soil and the well-mixed atmosphere can be modelled by a boundary layer with a constant transfer resistance. The optimised model fits the data exceptionally well. Remaining deviations during the initial phase of an experiment are thought to be well-understood and are attributed to the onset of the heat flow through the column which compensates the latent heat of evaporation.

  15. Cryo-Pedotransfer Functions for Estimating Hydraulic Properties of Soils in Cold Regions

    Science.gov (United States)

    Misra, D.; Mailapalli, D. R.; Thompson, A.

    2013-12-01

    One of the arduous tasks in engineering hydrology of cold regions is estimating the soil hydraulic properties such as soil freezing characteristics and hydraulic conductivity, which are important when studying transport process during freeze-thaw processes. Expensive data collection methods and existing isothermal models are limitations in understanding soil water dynamics in frozen soils. Pedotransfer functions (PTFs) have been effectively used in the earth and environmental related sciences to estimate soil physical and chemical properties easily, routinely, or cheaply for a specific non-frozen geographical region. Based on similarity between wetting and freezing processes in soil, we present a new approach to derive soil freezing characteristics from soil water characteristics of non-frozen soils using existing PTFs. We refer to these as the Cryo-PTFs. We consider a conventional soil water characteristic model and existing PTFs for determining the relationships; unfrozen water content vs. subzero temperature, and hydraulic conductivity vs. subzero temperature using Clapeyron equation. The proposed approach successfully simulated unfrozen water content and hydraulic conductivity for different soils including peat when compared with those reported in the literature. Furthermore, effect of soil bulk density and organic matter content on unfrozen water content and hydraulic conductivity at different subzero temperatures was analyzed for a range of soils.

  16. Mucilage: The hydraulic bridge between roots and soil

    Science.gov (United States)

    Carminati, Andrea; Zarabanadkouki, Mohsen; Kroener, Eva; Ahmed, Mutez A. A.

    2014-05-01

    As plant roots take up water and the soil dries, water depletion is expected to occur in the soil near the roots, the so called rhizosphere. Ultimately, as the soil hydraulic conductivity drops and the soil cannot sustain the transpiration demand, roots shrink and lose contact to the soil. Both, water depletion in the rhizosphere and formation of air-filled gaps at the root-soil interface potentially limit the availability of water to plants. How can plants overcome these potential hydraulic barriers at the root-soil interface? One strategy consists in the exudation of mucilage from the root tips. Mucilage is a polymeric gel that is capable of holding large volumes of water. When exuded into the soil, mucilage remains in the vicinity of roots thanks to its relatively high viscosity and reduced surface tension. As mucilage is mainly made of water, its slow penetration into the soil results in higher water content and hydraulic conductivity of the rhizosphere compared to the adjacent bulk soil. Recent measurements with a root pressure probe technique demonstrated that mucilage exudation facilitates the water flow in dry soils. Additionally, mucilage increases the adhesion of soil particles to the roots, reducing the formation of gaps at the root-soil interface. Based on these observations, it is very tempting to conclude that mucilage acts as an optimal hydraulic bridge across the root-soil interface. However, as mucilage dries and ages, it turns hydrophobic. Consequently, the rhizosphere becomes water repellent and its rewetting time increases. Our former experiments showed that after irrigation subsequent to a drying cycle, the rhizosphere of lupines remained markedly dry for 2 days. Recently, we demonstrated that the rhizosphere water repellency is concomitant with a decrease in local water uptake of 4-8 times. We conclude that after drying and rewetting, the rhzisophere temporarily limits root water uptake. In summary, the hydraulic properties of the root-soil

  17. Getting saturated hydraulic conductivity from surface Ground-Penetrating Radar measurements inside a ring infiltrometer

    Science.gov (United States)

    Leger, E.; Saintenoy, A.; Coquet, Y.

    2013-12-01

    Hydraulic properties of soils, described by the soil water retention and hydraulic conductivity functions, strongly influence water flow in the vadoze zone, as well as the partitioning of precipitation between infiltration into the soil and runoff along the ground surface. Their evaluation has important applications for modelling available water resources and for flood forecasting. It is also crucial to evaluate soil's capacity to retain chemical pollutants and to assess the potential of groundwater pollution. The determination of the parameters involved in soil water retention functions, 5 parameters when using the van Genuchten function, is usually done by laboratory experiments, such as the water hanging column. Hydraulic conductivity, on the other hand can be estimated either in laboratory, or in situ using infiltrometry tests. Among the large panel of existing tests, the single or double ring infiltrometers give the field saturated hydraulic conductivity by applying a positive charge on soils, whereas the disk infiltrometer allows to reconstruct the whole hydraulic conductivity curve, by applying different charges smaller than or equal to zero. In their classical use, volume of infiltrated water versus time are fitted to infer soil's hydraulic conductivity close to water saturation. Those tests are time-consuming and difficult to apply to landscape-scale forecasting of infiltration. Furthermore they involve many assumptions concerning the form of the infiltration bulb and its evolution. Ground-Penetrating Radar (GPR) is a geophysical method based on electromagnetic wave propagation. It is highly sensitive to water content variations directly related to the dielectric permittivity. In this study GPR was used to monitor water infiltration inside a ring infiltrometer and retrieve the saturated hydraulic conductivity. We carried out experiments in a quarry of Fontainebleau sand, using a Mala RAMAC system with antennae centered on 1600 MHz. We recorded traces at

  18. An easily installable groundwater lysimeter to determine waterbalance components and hydraulic properties of peat soils

    Directory of Open Access Journals (Sweden)

    K. Schwaerzel

    2003-01-01

    Full Text Available A simple method for the installation of groundwater lysimeters in peat soils was developed which reduces both time and financial effort significantly. The method was applied on several sites in the Rhinluch, a fen peat land 60 km northwest of Berlin, Germany. Over a two-year period, upward capillary flow and evapotranspiration rates under grassland with different groundwater levels were measured. The installation of tensiometers and TDR probes additionally allowed the in situ determination of the soil hydraulic properties (water retention and unsaturated hydraulic conductivity. The results of the measurements of the unsaturated hydraulic conductivity demonstrate that more than one single method has to be applied if the whole range of the conductivity function from saturation to highly unsaturated is to be covered. Measuring the unsaturated conductivity can be done only in the lab for an adequately wide range of soil moisture conditions. Keywords: peat soils, soil hydraulic properties, evapotranspiration, capillary flow, root distribution, unsaturated zone

  19. Evaluating models for predicting hydraulic characteristics of layered soils

    Science.gov (United States)

    Mavimbela, S. S. W.; van Rensburg, L. D.

    2012-01-01

    Soil water characteristic curve (SWCC) and unsaturated hydraulic conductivity (K-coefficient) are critical hydraulic properties governing soil water activity on layered soils. Sustainable soil water conservation would not be possible without accurate knowledge of these hydraulic properties. Infield rainwater harvesting (IRWH) is one conservation technique adopted to improve the soil water regime of a number of clay soils found in the semi arid areas of Free State province of South Africa. Given that SWCC is much easier to measure, most soil water studies rely on SWCC information to predict in-situ K-coefficients. This work validated this practice on the Tukulu, Sepane and Swartland layered soil profiles. The measured SWCC was first described using Brooks and Corey (1964), van Genuchten (1980) and Kasugi (1996) parametric models. The conductivity functions of these models were then required to fit in-situ based K-coefficients derived from instantaneous profile method (IPM). The same K-coefficient was also fitted by HYDRUS 1-D using optimised SWCC parameters. Although all parametric models fitted the measured SWCC fairly well their corresponding conductivity functions could not do the same when fitting the in-situ based K-coefficients. Overestimates of more than 2 orders of magnitude especially at low soil water content (SWC) were observed. This phenomenon was pronounced among the upper horizons that overlaid a clayey horizon. However, optimized α and n parameters using HYDRUS 1-D showed remarkable agreement between fitted and in-situ K-coefficient with root sum of squares error (RMSE) recording values not exceeding unity. During this exercise the Brooks and Corey was replaced by modified van Genuchten model (Vogel and Cislerova, 1988) since it failed to produce unique inverse solutions. The models performance appeared to be soil specific with van Genuchten-Mualem (1980) performing fairly well on the Orthic and neucutanic horizons while its modified form fitted very

  20. Evaluating models for predicting hydraulic characteristics of layered soils

    Directory of Open Access Journals (Sweden)

    S. S. W. Mavimbela

    2012-01-01

    Full Text Available Soil water characteristic curve (SWCC and unsaturated hydraulic conductivity (K-coefficient are critical hydraulic properties governing soil water activity on layered soils. Sustainable soil water conservation would not be possible without accurate knowledge of these hydraulic properties. Infield rainwater harvesting (IRWH is one conservation technique adopted to improve the soil water regime of a number of clay soils found in the semi arid areas of Free State province of South Africa. Given that SWCC is much easier to measure, most soil water studies rely on SWCC information to predict in-situ K-coefficients. This work validated this practice on the Tukulu, Sepane and Swartland layered soil profiles. The measured SWCC was first described using Brooks and Corey (1964, van Genuchten (1980 and Kasugi (1996 parametric models. The conductivity functions of these models were then required to fit in-situ based K-coefficients derived from instantaneous profile method (IPM. The same K-coefficient was also fitted by HYDRUS 1-D using optimised SWCC parameters. Although all parametric models fitted the measured SWCC fairly well their corresponding conductivity functions could not do the same when fitting the in-situ based K-coefficients. Overestimates of more than 2 orders of magnitude especially at low soil water content (SWC were observed. This phenomenon was pronounced among the upper horizons that overlaid a clayey horizon. However, optimized α and n parameters using HYDRUS 1-D showed remarkable agreement between fitted and in-situ K-coefficient with root sum of squares error (RMSE recording values not exceeding unity. During this exercise the Brooks and Corey was replaced by modified van Genuchten model (Vogel and Cislerova, 1988 since it failed to produce unique inverse solutions. The models performance appeared to be soil specific with van Genuchten-Mualem (1980 performing fairly well on the Orthic

  1. Characterization of unsaturated hydraulic parameters for homogeneous and heterogeneous soils

    Energy Technology Data Exchange (ETDEWEB)

    Wildenschild, Dorthe

    1997-09-01

    Application of numerical models for predicting future spreading of contaminants into ground water aquifers is dependent on appropriate characterization of the soil hydraulic properties controlling flow and transport in the unsaturated zone. This thesis reviews the current knowledge on two aspects of characterization of unsaturated hydraulic parameters; estimation of the basic hydraulic parameters for homogeneous soils and statistical representation of heterogeneity for spatially variable soils. The retention characteristic is traditionally measured using steady-state procedures, but new ideas based on dynamic techniques have been developed that reduce experimental efforts and that produce retention curves which compare to those measured by traditional techniques. The unsaturated hydraulic conductivity is difficult to establish by steady-state procedures, and extensive research efforts have been focused on alternative methods that are based on inverse estimation. The inverse methods have commonly been associated with problems of numerical instability and ill-posedness of the parameter estimates, but recent investigations have shown that the uniqueness of parameter estimates can be improved by including additional, independent information on, for instance, the retention characteristic. Also, uniqueness may be improved by careful selection of experimental conditions are parametric functions. (au) 234 refs.

  2. Data of hydraulic properties of North East and North Central German soils

    Directory of Open Access Journals (Sweden)

    U. Schindler

    2010-07-01

    Full Text Available The paper presents a data base of soil physical and hydrological properties of North East and North Central German soils. Included are measured data of the soil water retention curve and the unsaturated hydraulic conductivity function. Information on geo-reference, soil type and horizon are given. Soil hydraulic functions were measured with the evaporation method. The applied measurement technique is described and information to actual innovations and advanced technology is given. Additional soil physical data like particle size distribution, dry bulk density, organic matter content and other variables are presented. The data base includes original measurement results of 278 organic and of 497 mineral soil samples from 103 sites. The mineral soils cover a wide range of texture classes and dry bulk densities. The organic soils and samples represent different states of decomposition and mineralization. Furthermore hydraulic functions are included of soils anthropogenically altered by deep plough sand covering measures.

  3. Evaluation of Regression and Neuro_Fuzzy Models in Estimating Saturated Hydraulic Conductivity

    Directory of Open Access Journals (Sweden)

    J. Behmanesh

    2015-06-01

    Full Text Available Study of soil hydraulic properties such as saturated and unsaturated hydraulic conductivity is required in the environmental investigations. Despite numerous research, measuring saturated hydraulic conductivity using by direct methods are still costly, time consuming and professional. Therefore estimating saturated hydraulic conductivity using rapid and low cost methods such as pedo-transfer functions with acceptable accuracy was developed. The purpose of this research was to compare and evaluate 11 pedo-transfer functions and Adaptive Neuro-Fuzzy Inference System (ANFIS to estimate saturated hydraulic conductivity of soil. In this direct, saturated hydraulic conductivity and physical properties in 40 points of Urmia were calculated. The soil excavated was used in the lab to determine its easily accessible parameters. The results showed that among existing models, Aimrun et al model had the best estimation for soil saturated hydraulic conductivity. For mentioned model, the Root Mean Square Error and Mean Absolute Error parameters were 0.174 and 0.028 m/day respectively. The results of the present research, emphasises the importance of effective porosity application as an important accessible parameter in accuracy of pedo-transfer functions. sand and silt percent, bulk density and soil particle density were selected to apply in 561 ANFIS models. In training phase of best ANFIS model, the R2 and RMSE were calculated 1 and 1.2×10-7 respectively. These amounts in the test phase were 0.98 and 0.0006 respectively. Comparison of regression and ANFIS models showed that the ANFIS model had better results than regression functions. Also Nuro-Fuzzy Inference System had capability to estimatae with high accuracy in various soil textures.

  4. Calibration of effective soil hydraulic parameters of heterogeneous soil profiles

    NARCIS (Netherlands)

    Jhorar, R.K.; Dam, van J.C.; Bastiaanssen, W.G.M.; Feddes, R.A.

    2004-01-01

    Distributed hydrological models are useful tools to analyse the performance of irrigation systems at different levels. For the successful application of these models, it is imperative that effective soil hydraulic parameters at the scale of model application are known. The majority of previous

  5. Synthesis of soil-hydraulic properties and infiltration timescales in wildfire-affected soils

    Science.gov (United States)

    Ebel, Brian A.; Moody, John A.

    2017-01-01

    We collected soil-hydraulic property data from the literature for wildfire-affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field-saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil-structural changes, organic matter impacts, quantitative water repellency trends, and soil-water content along with soil-hydraulic properties could drive the

  6. Hydraulic conductivity in response to exchangeable sodium percentage and solution salt concentration

    Directory of Open Access Journals (Sweden)

    Jefferson Luiz de Aguiar Paes

    2014-10-01

    Full Text Available Hydraulic conductivity is determined in laboratory assays to estimate the flow of water in saturated soils. However, the results of this analysis, when using distilled or deionized water, may not correspond to field conditions in soils with high concentrations of soluble salts. This study therefore set out to determine the hydraulic conductivity in laboratory conditions using solutions of different electrical conductivities in six soils representative of the State of Pernambuco, with the exchangeable sodium percentage adjusted in the range of 5-30%. The results showed an increase in hydraulic conductivity with both decreasing exchangeable sodium percentage and increasing electrical conductivity in the solution. The response to the treatments was more pronounced in soils with higher proportion of more active clays. Determination of hydraulic conductivity in laboratory is routinely performed with deionized or distilled water. However, in salt affected soils, these determinations should be carried out using solutions of electrical conductivity different from 0 dS m-1, with values close to those determined in the saturation extracts.

  7. Soil hydraulic information for river basin studies in semi-arid regions

    NARCIS (Netherlands)

    Wösten, J.H.M.; Verzandvoort, S.J.E.; Leenaars, J.G.B.; Hoogland, T.; Wesseling, J.G.

    2013-01-01

    Water retention and hydraulic conductivity characteristics of the soil are indispensable for hydrological catchment modelling and for quantifying water limited agricultural production. However, these characteristics are often not available for regions and data scarcity for tropical zones is even

  8. Saturated hydraulic conductivity and porosity within macroaggregates modified by tillage

    Energy Technology Data Exchange (ETDEWEB)

    Park, E.J.; Smucker, A.J.M. (MSU)

    2010-07-20

    Greater knowledge of intraaggregate porosity modifications by tillage conveys new information for identifying additional hydrologic, ion retention, and aggregate stability responses to specific management practices. Macroaggregates, 2 to 4, 4 to 6.3, and 6.3 to 9.5 mm across, were separated into multiple concentric layers and their porosities were determined. Saturated hydraulic conductivity (K{sub s}) of multiple aggregate fractions from two soil types subjected to conventional tillage (CT), no tillage (NT), and native forest (NF) soils were measured individually to identify the effects of tillage on aggregate structure, porosity, and K{sub s}. Intraaggregate porosities were the highest in NF aggregates. Greater porosities were identified in exterior layers of soil aggregates from all treatments. Lowest intraaggregate porosities were observed in the central regions of CT aggregates. Soil aggregates, 6.3 to 9.5 mm across, had the greatest total porosities, averaging 37.5% for both soil types. Long-term CT reduced intraaggregate porosities and K, within macroaggregates, of the same size fraction, from both the Hoytville silty clay loam and Wooster silt loam soil types. Values for K, of NF aggregates, 5.0 x 10{sup -5} cm s{sup -1}, were reduced 50-fold by long-term CT treatments of the Hoytville series. The K, values through Wooster aggregates from NF, 16.0 x 10{sup -5} cm s{sup -1}, were reduced 80-fold by long-term CT treatments. The K{sub s} values through NF and NT aggregates were positively correlated with their intraaggregate porosities (R{sup 2} = 0.84 for NF and R{sup 2} = 0.45 for NT at P < 0.005). Additional studies are needed to identify rates at which pore geometries within macroaggregates are degraded by CT or improved by NT.

  9. A promising new device to assess key soil hydraulic properties

    Science.gov (United States)

    Alaoui, Abdallah; Schwilch, Gudrun

    2016-04-01

    Hydraulic functions measured at the core or plot scale are notoriously variable in natural soils, with properties such as infiltration rate ranging across several orders of magnitude within a typical field. Because the information required to create a continuous map of these properties' variability is unobtainable, plot- and field-scale models of flow processes generally use average or "effective" soil hydraulic properties to represent the processes. This makes it difficult to scale up knowledge from the local to the catchment scale, as soil heterogeneity increases with scale. Overcoming this difficulty requires an instrument that enables rapid and easy assessment of the relevant soil properties and their changes under varying land uses and climatic conditions. For this reason, we devised a new infiltrometer that makes it possible to rapidly and reliably assess soil infiltration capacity in the field. Based on laboratory and field data, we then developed a software (Soil Quality Analyzer) to determine key hydraulic properties such as saturated hydraulic conductivity, saturated water content, total porosity, and the van Genuchten parameters. Our device consists of a Plexiglas tube about 4 cm in diameter mounted on a semisoft, porous tube of the same diameter which easily adapts to surrounding soil, and ending in a conic steel point that facilitates insertion into the soil at different depths. We first calibrated our infiltrometer based on reconstructed soil columns of different textures with no coarse structures (i.e. organic material, macropores). A second series of infiltration experiments was carried out in situ in undisturbed soils under forest and grassland that had the same textures as those in the laboratory experiments. Finally, we analyzed all samples in the laboratory to determine the key hydraulic parameters. Linear relationships between the infiltrated water volume and the corresponding time intervals of infiltration were determined for each sample

  10. Predicting the impact of biochar additions on soil hydraulic properties

    Science.gov (United States)

    Spokas, Kurt; Lim, Tae Jun; Feyereisen, Gary; Novak, Jeff

    2015-04-01

    Different physical and chemical properties of biochar, which is made out of a variety of biomass materials, can impact water movement through amended soil. The objective of this research was to develop a decision support tool predicting the impact of biochar additions on soil saturated hydraulic conductivity (Ksat). Four different kinds of biochar were added to four different textured soils (coarse sand, fine sand, loam, and clay texture) to assess these effects at the rates of 0, 1, 2, and 5 % (w/w). The Ksat of the biochar amended soils were significantly influenced by the rate and type of biochar, as well as the original particle size of soil. The Ksat decreased when biochar was added to coarse and fine sands. Biochar with larger particles sizes (60%; >1 mm) decreased Ksat to a larger degree than the smaller particle size biochar (60%; soils. Increasing tortuosity in the amended sandy soil could explain this behavior. On the other hand, for the clay loam 1% and 2% biochar additions universally increased the Ksat with higher biochar amounts providing no further alterations. The developed model utilizes soil texture pedotransfer functions for predicting agricultural soil Ksat as a function of soil texture. The model accurately predicted the direction of the Ksat influence, even though the exact magnitude still requires further refinement.

  11. Variabilidade espacial de classes de textura, salinidade e condutividade hidráulica de solos em planície aluvial Spatial variability of textural classes, salinity and hydraulic conductivity of soil in an alluvial plain

    Directory of Open Access Journals (Sweden)

    Abelardo A. A. Montenegro

    2006-03-01

    , 320, and 520 m, respectively. It has been verified that the indicator geostatistics preserved the spatial correlation between texture and hydraulic conductivity, and between texture and electrical conductivity. Thus, the main soil classes can be adopted to represent different leaching and salinisation risk patterns. The discussed methodology has a potential for spatial variability investigations on soil physical properties in alluvial areas where contrasting soil classes prevail.

  12. Investigating the relationship between unsaturated hydraulic conductivity curve and confined compression curve

    Science.gov (United States)

    Bayat, Hossein; Sedaghat, Azadeh; Safari Sinegani, Ali Akbar; Gregory, Andrew S.

    2015-03-01

    This study was conducted to estimate the soil unsaturated hydraulic conductivity through the van Genuchten model using easy to measure soil properties by regression and artificial neural networks methods. In this study, 148 soil samples were taken from five provinces of Iran. Basic soil properties (clay, silt/sand and bulk density) and other soil properties were measured. Soil water retention curve was measured to obtain the unsaturated hydraulic conductivity curve using the van Genuchten-Mualem model. Confined compression curve was measured and the modified model of van Genuchten was fitted on its data. Two-thirds and one-third of the data were used for the training and testing steps, respectively. Confined compression curve parameters and other soil properties were used as predictors to estimate unsaturated hydraulic conductivity curve. Pedotransfer functions (PTFs) were developed in two separate parts: in 5 and 6 PTFs basic soil properties were or were not used as predictors, respectively. The artificial neural networks (ANNs) performed better than the regression methods. Among the ANN-developed PTFs which have not used basic soil properties as predictors, PTFa3, with the inputs of the parameters of confined compression curve (n∗, α∗ and e0), performed better than the others. Also, among the ANN-developed PTFs that used basic soil properties as predictors along with the other input variables, PTFb5 that used the σmc (stress at the maximum curvature) and σi (stress at the inflection point) as inputs along with basic soil properties, performed better than the other PTFs. The results showed a successful prediction of the hydraulic conductivity curve using confined compression curve.

  13. Field satured hydraulic conductivity estimation on vinasse trated soil Estimación de la conductividad hidráulica saturada in situ en un suelo tratado con vinaza

    Directory of Open Access Journals (Sweden)

    Menjívar Flórez Juan Carlos

    2008-06-01

    Full Text Available Changes for soil satured hydraulic conductivity were estimated by using the “falling head” and “point source” methods. The soil type trated with vinasse was Ustipsamment Typic Sandy Isohipertermic located at Colombia National University experimental center (3° 25' 39.81"; N, 76° 25' 45.70"; W; 953 m.s.n.m., 24 °C, 60% HR. and 1020 mm.. The used field methods did not show statistical differences for the estimation of the satured hydraulic conductivity (p<0.05, however a decreasing exponential relationship between hydraulic conductivity and vinasse concentration was found. The hydraulic conductivity was reduced about of 50% from the initial value to 2° brix in sandy soil, 5.3° brix to sandy loam soil and 6.1° brix to clay loam.Key words: Point source method; Simulation models; Falling head method; Irrigation.Se estimaron los cambios en la conductividad hidráulica saturada mediante las técnicas de “caída de carga” y “fuente localizada de agua” en un suelo Ustipsamment típico arenoso isohipertérmico con dosis diluidas de vinazas. La investigación se realizó en la Universidad Nacional de Colombia Sede Palmira (3° 25'39.81"; N y 76° 25'45.70"; O, 953 m.s.n.m, 24 °C y 60% HR, 1.020 mm. Los dos métodos no difirieron de forma significativa (p<0.05 en la estimación de la conductividad hidráulica saturada promedio, la cual se redujo de forma exponencial al incrementar la concentración de vinaza. Los resultados obtenidos nos indican una reducción de la conductividad hidráulica del 50% para una concentración de vinaza de 2° Brix en un suelo arenoso, 5.3° Brix en el suelo franco arenoso y 6.1° Brix en el suelo franco arcilloso.Hydraulic conductivity of a firn aquifer system in southeast Greenland

    Science.gov (United States)

    Miller, Olivia L.; Solomon, D. Kip; Miège, Clément; Koenig, Lora S.; Forster, Richard R.; Montgomery, Lynn N.; Schmerr, Nicholas; Ligtenberg, Stefan R. M.; Legchenko, Anatoly; Brucker, Ludovic

    2017-05-01

    Some regions of the Greenland ice sheet, where snow accumulation and melt rates are high, currently retain substantial volumes of liquid water within the firn pore space throughout the year. These firn aquifers, found between 10-30 m below the snow surface, may significantly affect sea level rise by storing or draining surface meltwater. The hydraulic gradient and the hydraulic conductivity control flow of meltwater through the firn. Here we describe the hydraulic conductivity of the firn aquifer estimated from slug tests and aquifer tests at six sites located upstream of Helheim Glacier in southeastern Greenland. We conducted slug tests using a novel instrument, a piezometer with a heated tip that melts itself into the ice sheet. Hydraulic conductivity ranges between 2.5x10-5 and 1.1x10-3 m/s. The geometric mean of hydraulic conductivity of the aquifer is 2.7x10-4 m/s with a geometric standard deviation of 1.4 from both depth specific slug tests (analyzed using the Hvorslev method) and aquifer tests during the recovery period. Hydraulic conductivity is relatively consistent between boreholes and only decreases slightly with depth. The hydraulic conductivity of the firn aquifer is crucial for determining flow rates and patterns within the aquifer, which inform hydrologic models of the aquifer, its relation to the broader glacial hydrologic system, and its effect on sea level rise.

  14. Hydraulic Conductivity of a Firn Aquifer in Southeast Greenland

    Directory of Open Access Journals (Sweden)

    Olivia L. Miller

    2017-05-01

    Full Text Available Some regions of the Greenland ice sheet, where snow accumulation and melt rates are high, currently retain substantial volumes of liquid water within the firn pore space throughout the year. These firn aquifers, found between ~10 and 30 m below the snow surface, may significantly affect sea level rise by storing or draining surface meltwater. The hydraulic gradient and the hydraulic conductivity control flow of meltwater through the firn. Here we describe the hydraulic conductivity of the firn aquifer estimated from slug tests and aquifer tests at six sites located upstream of Helheim Glacier in southeastern Greenland. We conducted slug tests using a novel instrument, a piezometer with a heated tip that melts itself into the ice sheet. Hydraulic conductivity ranges between 2.5 × 10−5 and 1.1 × 10−3 m/s. The geometric mean of hydraulic conductivity of the aquifer is 2.7 × 10−4 m/s with a geometric standard deviation of 1.4 from both depth specific slug tests (analyzed using the Hvorslev method and aquifer tests during the recovery period. Hydraulic conductivity is relatively consistent between boreholes and only decreases slightly with depth. The hydraulic conductivity of the firn aquifer is crucial for determining flow rates and patterns within the aquifer, which inform hydrologic models of the aquifer, its relation to the broader glacial hydrologic system, and its effect on sea level rise.

  15. 应用土壤质地预测干旱区葡萄园土壤饱和导水率空间分布%Predicting spatial distribution of soil saturated hydraulic conductivity by soil texture on vineyard in arid region

    Institute of Scientific and Technical Information of China (English)

    李涛; 李晓琳; 郝新梅; 康绍忠

    2014-01-01

    The surface soil saturated hydraulic conductivity on farmland is one of the most important factors affecting water infiltration and distribution in soils and is also an important parameter in most soil water flow models. Previous studies have shown that saturated hydraulic conductivity is a highly spatial varied parameter under field conditions. Therefore, understanding and quantifying spatial variability at field scale is valuable to better simulate soil water movement dynamics through incorporating spatially-distributed saturated hydraulic conductivity into soil water flow models. This could help to evaluate impacts from different management practices and to develop precision irrigation management practices. The objectives of this study were to characterize spatial variability of the surface soil saturated hydraulic conductivity and explore its potential association with soil properties. The experiment was conducted on a 7.6 hm2 vineyard in an arid region of northwest China. Soil saturated hydraulic conductivity and other properties (clay, silt, sand, soil bulk density and organic matter) were measured for 0-10 cm soil of the geo-referenced points, which were located on a regular grid of 25 m × 25 m. At each sampling point, the soil saturated hydraulic conductivity was determined by the variable water level method. Spatial structure of spatial saturated hydraulic conductivity was described by a fitted variogram model based on a computed sample variogram, and possible spatial relationship between saturated hydraulic conductivity and other soil properties were evaluated through cross-correlograms. The regression kriging, based on step-wise linear regression of the saturated hydraulic conductivity with other soil properties, was used to predict spatial saturated hydraulic conductivity. I Its performance was compared to ordinary kriging and simple linear regression methods based on ME and RMSE computed from observed and predicted saturated hydraulic conductivity

  16. Monitoring and modeling the soil hydraulic behavior in stony soils

    Science.gov (United States)

    Dragonetti, Giovanna; Lamaddalena, Nicola; Comegna, Alessandro; Coppola, Antonio

    2014-05-01

    Describing the soil hydrological behavior at applicative scales remains a complex task, mainly because of the spatial heterogeneity of the vadose zone. Addressing the impact of the unsaturated zone heterogeneity involves measuring and/or modeling water content evolution with fine spatial and temporal resolution. The presence of stones introduces difficulties for both the measurement of the water content and the soil hydraulic properties. In this context, the main objective of this study was to assess the role of stones on TDR-based water content measurements, as well as on the pattern of variability of simulated water contents at field-scale during water infiltration, drainage and evaporation processes. Also, the role of stones was evaluated as one possible explanation of the differences frequently observed between the measured hydraulic behavior and that estimated by using pedotransfer functions.

  17. Evaluation of Hydraulic Parameters Obtained by Different Measurement Methods for Heterogeneous Gravel Soil

    Directory of Open Access Journals (Sweden)

    Chen Zeng

    2012-01-01

    Full Text Available Knowledge of soil hydraulic parameters for the van Genuchten function is important to characterize soil water movement for watershed management. Accurate and rapid prediction of soil water flow in heterogeneous gravel soil has become a hot topic in recent years. However, it is difficult to precisely estimate hydraulic parameters in a heterogeneous soil with rock fragments. In this study, the HYDRUS-2D numerical model was used to evaluate hydraulic parameters for heterogeneous gravel soil that was irregularly embedded with rock fragments in a grape production base. The centrifugal method (CM, tensiometer method (TM and inverse solution method (ISM were compared for various parameters in the van Genuchten function. The soil core method (SCM, disc infiltration method (DIM and inverse solution method (ISM were also investigated for measuring saturated hydraulic conductivity. Simulation with the DIM approach revealed a problem of overestimating soil water infiltration whereas simulation with the SCM approach revealed a problem of underestimating water movement as compared to actual field observation. The ISM approach produced the best simulation result even though this approach slightly overestimated soil moisture by ignoring the impact of rock fragments. This study provides useful information on the overall evaluation of soil hydraulic parameters attained with different measurement methods for simulating soil water movement and distribution in heterogeneous gravel soil.

  18. PENGARUH SIFAT FISIK TANAH PADA KONDUKTIVITAS HIDROLIK JENUH DI 5 PENGGUNAAN LAHAN (STUDI KASUS DI KELURAHAN SUMBERSARI MALANG Effect of Soil Physical Properties on Saturated Hydraulic Conductivity in The 5 Land Use (A Case Study in Sumbersari Malang

    Directory of Open Access Journals (Sweden)

    Elsa Rosyidah

    2013-11-01

    Full Text Available Water movement in saturated soil will affect runoff and infiltration in an area, while water movement in soil processes influenced by soil physical properties. Changes in land use affect the soil physical properties. Changes in land use and differences in the nature of land which includes land use previously existing vegetation into land that does not exist or lack of vegetation resulted in infiltration and percolation rate be changed on the ground and allow the process of infiltration of large, causing the decrease in recharge areas direct rainwater and decrease the availability of ground water. Measurement of water movement in saturated soil conditions or soil Saturated Hydraulic Conductivity (SHC is very important because SHC role in determining water runoff, infiltration and percolation. The research aimed to know the value of saturated hydraulic conductivity of soil in different land use by using the constant head method and the physical properties of soil including soil texture, weight, density, and porosity in the five land use on three different soil depths. Research conducted in the area Sumbersari in December 2008 until October 2009. Research effect of soil physical properties on using constant head method on five land use is residential population (T1, field (T2, garden tomatoes (T3, shrubs (T4, irrigated rice field (T5 at three different depths ie 0-15 cm (K1, 15-30 cm (K2, and 30-45 cm (K3. The physical properties of soil analyzed include soil texture, weight, density, porosity, and soil moisture content. Results showed that the highest SHC value at all points of location is the location of irrigated rice fields with a depth of 30-45 cm. The main factor affecting the value of SHC is the weight value. Soil physical properties that influence the value of SHC is the soil texture and soil porosity. The results SHC recommended as a reference for land use conditions and other locations with similar soil physical properties. Keywords: Soil

  19. Spatial Variability and Geostatistical Prediction of Some Soil Hydraulic Coefficients of a Calcareous Soil

    Directory of Open Access Journals (Sweden)

    Ali Akbar Moosavi

    2017-02-01

    Full Text Available Introduction: Saturated hydraulic conductivity and the other hydraulic properties of soils are essential vital soil attributes that play role in the modeling of hydrological phenomena, designing irrigation-drainage systems, transportation of salts and chemical and biological pollutants within the soil. Measurement of these hydraulic properties needs some special instruments, expert technician, and are time consuming and expensive and due to their high temporal and spatial variability, a large number of measurements are needed. Nowadays, prediction of these attributes using the readily available soil data using pedotransfer functions or using the limited measurement with applying the geostatistical approaches has been receiving high attention. The study aimed to determine the spatial variability and prediction of saturated (Ks and near saturated (Kfs hydraulic conductivity, the power of Gardner equation (α, sorptivity (S, hydraulic diffusivity (D and matric flux potential (Фm of a calcareous soil. Material and Methods: The study was carried out on the soil series of Daneshkadeh located in the Bajgah Agricultural Experimental Station of Agricultural College, Shiraz University, Shiraz, Iran (1852 m above the mean sea level. This soil series with about 745 ha is a deep yellowish brow calcareous soil with textural classes of loam to clay. In the studied soil series 50 sampling locations with the sampling distances of 16, 8 , and 4 m were selected on the relatively regular sampling design. The saturated hydraulic conductivity (Ks, near saturated hydraulic conductivity (Kfs, the power of Gardner equation (α, sorptivity (S, hydraulic diffusivity (D and matric flux potential (Фm of the aforementioned sampling locations was determined using the Single Ring and Droplet methods. After, initial statistical processing, including a normality test of data, trend and stationary analysis of data, the semivariograms of each studied hydraulic attributes were

  1. Improving prediction of hydraulic conductivity by constraining capillary bundle models to a maximum pore size

    Science.gov (United States)

    Iden, Sascha; Peters, Andre; Durner, Wolfgang

    2017-04-01

    Soil hydraulic properties are required to solve the Richards equation, the most widely applied model for variably-saturated flow. While the experimental determination of the water retention curve does not pose significant challenges, the measurement of unsaturated hydraulic conductivity is time consuming and costly. The prediction of the unsaturated hydraulic conductivity curve from the soil water retention curve by pore-bundle models is a cost-effective and widely applied technique. A well-known problem of conductivity prediction for retention functions with wide pore-size distributions is the sharp drop in conductivity close to water saturation. This problematic behavior is well known for the van Genuchten model if the shape parameter n assumes values smaller than about 1.3. So far, the workaround for this artefact has been to introduce an explicit air-entry value into the capillary saturation function. However, this correction leads to a retention function which is not continuously differentiable and thus a discontinuous water capacity function. We present an improved parametrization of the hydraulic properties which uses the original capillary saturation function and introduces a maximum pore radius only in the pore-bundle model. Closed-form equations for the hydraulic conductivity function were derived for the unimodal and multimodal retention functions of van Genuchten and have been tested by sensitivity analysis and applied in curve fitting and inverse modeling of multistep outflow experiments. The resulting hydraulic conductivity function is smooth, increases monotonically close to saturation, and eliminates the sharp drop in conductivity close to saturation. Furthermore, the new model retains the smoothness and continuous differentiability of the water retention curve. We conclude that the resulting soil hydraulic functions are physically more reasonable than the ones predicted by previous approaches, and are thus ideally suited for numerical simulations

  2. Physico-empirical approach for mapping soil hydraulic behaviour

    Directory of Open Access Journals (Sweden)

    G. D'Urso

    1997-01-01

    Full Text Available Abstract: Pedo-transfer functions are largely used in soil hydraulic characterisation of large areas. The use of physico-empirical approaches for the derivation of soil hydraulic parameters from disturbed samples data can be greatly enhanced if a characterisation performed on undisturbed cores of the same type of soil is available. In this study, an experimental procedure for deriving maps of soil hydraulic behaviour is discussed with reference to its application in an irrigation district (30 km2 in southern Italy. The main steps of the proposed procedure are: i the precise identification of soil hydraulic functions from undisturbed sampling of main horizons in representative profiles for each soil map unit; ii the determination of pore-size distribution curves from larger disturbed sampling data sets within the same soil map unit. iii the calibration of physical-empirical methods for retrieving soil hydraulic parameters from particle-size data and undisturbed soil sample analysis; iv the definition of functional hydraulic properties from water balance output; and v the delimitation of soil hydraulic map units based on functional properties.

  3. Comparison among monitoring strategies to assess water flow dynamic and soil hydraulic properties in agricultural soils

    Directory of Open Access Journals (Sweden)

    Javier Valdes-Abellan

    2015-03-01

    Full Text Available Abstract Irrigated agriculture is usually performed in semi-arid regions despite scarcity of water resources. Therefore, optimal irrigation management by monitoring the soil is essential, and assessing soil hydraulic properties and water flow dynamics is presented as a first measure. For this purpose, the control of volumetric water content, θ, and pressure head, h, is required. This study adopted two types of monitoring strategies in the same experimental plot to control θ and h in the vadose zone: i non-automatic and more time-consuming; ii automatic connected to a datalogger. Water flux was modelled with Hydrus-1D using the data collected from both acquisition strategies independently (3820 daily values for the automatic; less than 1000 for the non-automatic. Goodness-of-fit results reported a better adjustment in case of automatic sensors. Both model outputs adequately predicted the general trend of θ and h, but with slight differences in computed annual drainage (711 mm and 774 mm. Soil hydraulic properties were inversely estimated from both data acquisition systems. Major differences were obtained in the saturated volumetric water content, θs, and the n and α van Genuchten model shape parameters. Saturated hydraulic conductivity, Ks, shown lower variability with a coefficient of variation range from 0.13 to 0.24 for the soil layers defined. Soil hydraulic properties were better assessed through automatic data acquisition as data variability was lower and accuracy was higher.

  4. Comparison among monitoring strategies to assess water flow dynamic and soil hydraulic properties in agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Valdes-Abellan, J.; Jiménez-Martínez, J.; Candela, L.; Tamoh, K.

    2015-07-01

    Irrigated agriculture is usually performed in semi-arid regions despite scarcity of water resources. Therefore, optimal irrigation management by monitoring the soil is essential, and assessing soil hydraulic properties and water flow dynamics is presented as a first measure. For this purpose, the control of volumetric water content, θ, and pressure head, h, is required. This study adopted two types of monitoring strategies in the same experimental plot to control θ and h in the vadose zone: i) non-automatic and more time-consuming; ii) automatic connected to a datalogger. Water flux was modelled with Hydrus-1D using the data collected from both acquisition strategies independently (3820 daily values for the automatic; less than 1000 for the non-automatic). Goodness-of-fit results reported a better adjustment in case of automatic sensors. Both model outputs adequately predicted the general trend of θ and h, but with slight differences in computed annual drainage (711 mm and 774 mm). Soil hydraulic properties were inversely estimated from both data acquisition systems. Major differences were obtained in the saturated volumetric water content, θs, and the n and α van Genuchten model shape parameters. Saturated hydraulic conductivity, Ks, shown lower variability with a coefficient of variation range from 0.13 to 0.24 for the soil layers defined. Soil hydraulic properties were better assessed through automatic data acquisition as data variability was lower and accuracy was higher. (Author)

  5. Xylem hydraulic conductivity related to conduit dimensions along chrysanthemum stems.

    NARCIS (Netherlands)

    Nijsse, J.; Heijden, van der G.W.A.M.; Ieperen, van W.; Keijzer, C.J.; Meeteren, van U.

    2001-01-01

    The stem xylem conduit dimensions and hydraulic conductivity of chrysanthemum plants (Dendranthemaxgrandiflorum Tzvelev cv. Cassa) were analysed and quantified. Simple exponential relations describe conduit length distribution, height dependency of conduit length distribution, and height dependency

  6. An Analytical Method for Relationship Between Hydraulic Diffusivity and Soil Sorptivity

    Institute of Scientific and Technical Information of China (English)

    WANG Quan-Jiu; ZHANG Jiang-Hui; FAN Jun

    2006-01-01

    A simple method was developed to relate soil sorptivity to hydraulic diffusivity and water absorption experiments were conducted utilizing one-dimensional horizontal soil columns to validate the relationship. In addition, an estimation method for hydraulic diffusivity with disc infiltrometer was developed. The results indicated a favorable fit of the theoretical relation to the experimental data. Also, the experiment with disc infiltrometer for estimating the diffusivity showed that the new method was feasible.

  7. Research Note:Determination of soil hydraulic properties using pedotransfer functions in a semi-arid basin, Turkey

    Directory of Open Access Journals (Sweden)

    M. Tombul

    2004-01-01

    Full Text Available Spatial and temporal variations in soil hydraulic properties such as soil moisture q(h and hydraulic conductivity K(q or K(h, may affect the performance of hydrological models. Moreover, the cost of determining soil hydraulic properties by field or laboratory methods makes alternative indirect methods desirable. In this paper, various pedotransfer functions (PTFs are used to estimate soil hydraulic properties for a small semi-arid basin (Kurukavak in the north-west of Turkey. The field measurements were a good fit with the retention curve derived using Rosetta SSC-BD for a loamy soil. To predict parameters to describe soil hydraulic characteristics, continuous PTFs such as Rosetta SSC-BD (Model H3 and SSC-BD-q33q1500 (Model H5 have been applied. Using soil hydraulic properties that vary in time and space, the characteristic curves for three soil types, loam, sandy clay loam and sandy loam have been developed. Spatial and temporal variations in soil moisture have been demonstrated on a plot and catchment scale for loamy soil. It is concluded that accurate site-specific measurements of the soil hydraulic characteristics are the only and probably the most promising method to progress in the future. Keywords: soil hydraulic properties, soil characteristic curves, PTFs

  8. Spatial variability in streambed hydraulic conductivity of contrasting stream morphologies

    DEFF Research Database (Denmark)

    Sebök, Éva; Calvache, Carlos Duque; Engesgaard, Peter Knudegaard;

    2015-01-01

    Streambed hydraulic conductivity is one of the main factors controlling variability in surface water-groundwater interactions, but only few studies aim at quantifying its spatial and temporal variability in different stream morphologies. Streambed horizontal hydraulic conductivities (Kh) were...... therefore determined from in-stream slug tests, vertical hydraulic conductivities (Kv) were calculated with in-stream permeameter tests and hydraulic heads were measured to obtain vertical head gradients at eight transects, each comprising five test locations, in a groundwater-dominated stream. Seasonal...... small-scale measurements were taken in December 2011 and August 2012, both in a straight stream channel with homogeneous elevation and downstream of a channel meander with heterogeneous elevation. All streambed attributes showed large spatial variability. Kh values were the highest at the depositional...

  9. Determination of saturated and unsaturated hydraulic conductivity ...

    African Journals Online (AJOL)

    ... over a period of 5 days using capacitance probe with trade name Diviner 2000. The Diviner 2000 uses the method that utilizes the high dielectric constant of water ... This reveals that soil water content can be obtained reasonably well from a ...

  10. Hydraulic properties of typical salt-affected soils in Jiangsu Province,China

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiaomin; SHEN Qirong; XU Yangchun

    2007-01-01

    Every year about 1,500 ha of land is reclaimed from the sea along the coastline of Jiangsu Province,China.It is important to characterize the hydraulic properties of this reclaimed land to be able to predict and manage salt and water movement for amelioration of these saline soils.In this paper,we report hydraulic properties of these salt-affected soils.The pressure-plate method,constant head method,the crust method and Klute's method were used in this study.The satu rated hydraulic conductivities of the soils ranged from 128.66 to 141.26 cm/day and decreased with increasing soil depth.The unsaturated hydraulic conductivities followed an expo nential function of pressure head.The soil water retention curves were similar for three soil layers in the soil.The satu rated water content,field capacity and wilting point decreased with increasing soil depth.Plant available water contents of the three layers in the soil profile were 0.21,0.20 and 0.19 cm3/cm3,respectively.The unsaturated soil water diffu sivity of the studied soils ranged from 0.07 to 10.46 cm2/min,and was related to the water content via an exponential relationship.

  11. Soil water balance in an unsaturated pyroclastic slope for evaluation of soil hydraulic behaviour and boundary conditions

    Science.gov (United States)

    Pirone, Marianna; Papa, Raffaele; Nicotera, Marco Valerio; Urciuoli, Gianfranco

    2015-09-01

    Flowslides in granular soils pose a major threat to life and the environment. Their initiation in unsaturated soils is regulated by rainfall infiltration which reduces the matric suction and hence shear strength. Analysis of such phenomena is of strategic importance especially when it aims to mitigate landslide risk by means of early warning systems (EWSs). In this framework, physically-based models need to reproduce the hydro-mechanical behaviour of the slopes through numerical analyses, whose main uncertainty concerns the hydraulic conditions at the boundaries of the studied domain and hydraulic conductivity functions of unsaturated soils. Hence consummate knowledge of both these factors is absolutely necessary for efficient predictions. In this paper hydraulic boundary conditions and hydraulic conductivity functions are investigated at the scale of the slope through an application of soil water balance based on in-situ monitoring at the test site of Monteforte Irpino (southern Italy). Meteorological data, matric suction and soil water content measurements were collected over four years at the test site. The soil water balance was analysed on a seasonal time scale with regard to the whole pyroclastic cover resting on the steep limestone substratum. Infiltration and runoff are estimated, interaction between the soil cover and the substratum is investigated, and the hydraulic conductivity functions operative at the site scale are defined.

  12. Estimating soil moisture and soil thermal and hydraulic properties by assimilating soil temperatures using a particle batch smoother

    Science.gov (United States)

    Dong, Jianzhi; Steele-Dunne, Susan C.; Ochsner, Tyson E.; Giesen, Nick van de

    2016-05-01

    This study investigates the potential of estimating the soil moisture profile and the soil thermal and hydraulic properties by assimilating soil temperature at shallow depths using a particle batch smoother (PBS) using synthetic tests. Soil hydraulic properties influence the redistribution of soil moisture within the soil profile. Soil moisture, in turn, influences the soil thermal properties and surface energy balance through evaporation, and hence the soil heat transfer. Synthetic experiments were used to test the hypothesis that assimilating soil temperature observations could lead to improved estimates of soil hydraulic properties. We also compared different data assimilation strategies to investigate the added value of jointly estimating soil thermal and hydraulic properties in soil moisture profile estimation. Results show that both soil thermal and hydraulic properties can be estimated using shallow soil temperatures. Jointly updating soil hydraulic properties and soil states yields robust and accurate soil moisture estimates. Further improvement is observed when soil thermal properties were also estimated together with the soil hydraulic properties and soil states. Finally, we show that the inclusion of a tuning factor to prevent rapid fluctuations of parameter estimation, yields improved soil moisture, temperature, and thermal and hydraulic properties.

  13. HYDRAULIC CONDUCTIVITY OF GCL WITH BENTONITE – SILICA FUME MATRIX

    OpenAIRE

    M. Andal; Chandrasekhar, M.; G. K. Viswanadh

    2012-01-01

    This paper presents the influence of partial replacement of bentonite by silica fume which is used in the manufacture of Geosynthetic Clay Liner (GCL). Geosynthetic Clay Liners consist bentonite (Sodium Based) sandwiched between two geotextile. Benotinite, having low permeability imparts better hydraulic performance to the GCL to act as liner. In this investigation, an attempt has been made to study the hydraulic conductivity of GCL with modified Bentonite. The bentonite is partially replaced...

  14. Rapid shoot‐to‐root signalling regulates root hydraulic conductance via aquaporins

    National Research Council Canada - National Science Library

    VANDELEUR, REBECCA K; SULLIVAN, WENDY; ATHMAN, ASMINI; JORDANS, CHARLOTTE; GILLIHAM, MATTHEW; KAISER, BRENT N; TYERMAN, STEPHEN D

    2014-01-01

    Investigating the relationship between transpiration and root hydraulic conductance Vandeleur et al report that leaf area reduction reduces root hydraulic conductance in grapevine, soybean and maize...

  15. Condutividade hidráulica de solos de Pernambuco em resposta à condutividade elétrica e RAS da água de irrigação Hydraulic conductivity of soils from Pernambuco in response to electrical conductivity and SAR of irrigation water

    Directory of Open Access Journals (Sweden)

    Maria B. G. dos S. Freire

    2003-04-01

    Full Text Available Objetivando-se avaliar a condutividade hidráulica em solos irrigados com águas de diferentes condutividades elétricas (CE e relações de adsorção de sódio (RAS realizaram-se ensaios em permeâmetros de coluna vertical e carga constante. Os tratamentos corresponderam a nove solos, três CE (175, 500 e 1.500 miS cm-1 e seis RAS (de 0 a 30 para solos arenosos, de 0 a 25 para solos de textura média e de 0 a 15 para solos de textura argilosa. De início, realizou-se o ajuste da relação Na:Ca no complexo de troca catiônico dos solos, utilizando-se soluções na concentração de 50 mmol c L-1, nos níveis de RAS descritos; depois, determinou-se a condutividade hidráulica em meio saturado (K0 e se calculou a condutividade hidráulica relativa (K0R, atribuindo-se o valor de 100% à máxima K0 média de cada solo. Os valores de K0R foram relacionados com a CE e a RAS dos tratamentos impostos, ajustando-se superfícies de resposta. As correlações entre K0 e a percentagem de sódio trocável (PST indicaram relação inversa entre as duas variáveis, na maioria dos solos estudados. O incremento da RAS levou à diminuição da K0R. Não foi possível se fixar um único valor de PST no estabelecimento de um limite para solos sódicos, devendo esta característica ser associada à CE da água de irrigação e a outras propriedades do solo, como textura e mineralogia.An experiment was carried out in permeameters provided on vertical soil columns with constant hydraulic head in order to evaluate the hydraulic conductivity of soils with contrasting characteristics, and treated with solutions of different electrical conductivities (EC and sodium adsorption ratios (SAR. The treatments consisted of nine soils, three EC values (175, 500 and 1.500 muS cm-1 and six SAR values of the irrigation water (0 to 30 for sandy soils, 0 to 25 for medium textured soils, and 0 to 15 for clay textured soils. Initially, an adjustment of the Na:Ca ratio in the cation

  16. Changes in Root Hydraulic Conductivity During Wheat Evolution

    Institute of Scientific and Technical Information of China (English)

    Chang-Xing ZHAO; Xi-Ping DENG; Lun SHAN; Ernst STEUDLE; Sui-Qi ZHANG; Qing YE

    2005-01-01

    A better understanding of the mechanisms of water uptake by plant roots should be vital for improving drought resistance and water use efficiency (WUE). In the present study, we have demonstrated correlations between root system hydraulic conductivity and root characteristics during evolution using six wheat evolution genotypes (solution culture) with different ploidy chromosome sets (Triticum boeoticum Bioss., T. monococcum L.: 2n = 2x = 14; T. dicoccides Koern., T. dicoccon (Schrank) Schuebl.: 2n = 4x = 28;T. vulgare Vill., T. aestivum L. cv. Xiaoyan No. 6: 2n = 6x = 42). The experimental results showed that significant correlations were found between root system hydraulic conductivity and root characteristics of the materials with the increase in ploidy chromosomes (2x→6x) during wheat evolution. Hydraulic conductivity of the wheat root system at the whole-plant level was increased with chromosome ploidy during evolution, which was positively correlated with hydraulic conductivity of single roots, whole plant biomass,root average diameter, and root growth (length, area), whereas the root/shoot ratio had an inverse correlation with the hydraulic conductivity of root system with increasing chromosome ploidy during wheat evolution. Therefore, it is concluded that that the water uptake ability of wheat roots was strengthened from wild to modern cultivated species during evolution, which will provide scientific evidence for genetic breeding to improve the WUE of wheat by genetic engineering.

  17. Sensitivity and uncertainty analysis of estimated soil hydraulic parameters for simulating soil water content

    Science.gov (United States)

    Gupta, Manika; Garg, Naveen Kumar; Srivastava, Prashant K.

    2014-05-01

    The sensitivity and uncertainty analysis has been carried out for the scalar parameters (soil hydraulic parameters (SHPs)), which govern the simulation of soil water content in the unsaturated soil zone. The study involves field experiments, which were conducted in real field conditions for wheat crop in Roorkee, India under irrigated conditions. Soil samples were taken for the soil profile of 60 cm depth at an interval of 15 cm in the experimental field to determine soil water retention curves (SWRCs). These experimentally determined SWRCs were used to estimate the SHPs by least square optimization under constrained conditions. Sensitivity of the SHPs estimated by various pedotransfer functions (PTFs), that relate various easily measurable soil properties like soil texture, bulk density and organic carbon content, is compared with lab derived parameters to simulate respective soil water retention curves. Sensitivity analysis was carried out using the monte carlo simulations and the one factor at a time approach. The different sets of SHPs, along with experimentally determined saturated permeability, are then used as input parameters in physically based, root water uptake model to ascertain the uncertainties in simulating soil water content. The generalised likelihood uncertainty estimation procedure (GLUE) was subsequently used to estimate the uncertainty bounds (UB) on the model predictions. It was found that the experimentally obtained SHPs were able to simulate the soil water contents with efficiencies of 70-80% at all the depths for the three irrigation treatments. The SHPs obtained from the PTFs, performed with varying uncertainties in simulating the soil water contents. Keywords: Sensitivity analysis, Uncertainty estimation, Pedotransfer functions, Soil hydraulic parameters, Hydrological modelling

  18. Hydraulic conductivities of fractures and matrix in Slovenian carbonate aquifers

    Directory of Open Access Journals (Sweden)

    Timotej Verbovšek

    2008-12-01

    Full Text Available Hydraulic conductivities and specific storage coefficients of fractures and matrix in Slovenian carbonate aquifers were determined by Barker’s method for pumping test analysis, based on fractional flow dimension. Values are presented for limestones and mainly for dolomites, and additionally for separate aquifers, divided by age andlithology in several groups. Data was obtained from hydrogeological reports for 397 water wells, and among these, 79 pumping tests were reinterpreted. Hydraulic conductivities of fractures are higher than the hydraulic conductivities of matrix, and the differences are highly statistically significant. Likewise, differences are significant for specific storage, and the values of these coefficients are higher in the matrix. Values of all coefficients vary in separate aquifers, and the differences can be explained by diagenetic effects, crystal size, degree of fracturing, andcarbonate purity. Comparison of the methods, used in the reports, and the Barker’s method (being more suitable for karstic and fractured aquifers, shows that the latter fits real data better.

  19. FEASIBILITY OF HYDRAULIC FRACTURING OF SOILS TO IMPROVE REMEDIAL ACTIONS

    Science.gov (United States)

    Hydraulic fracturing, a technique commonly used to increase the yields of oil wells, could improve the effectiveness of several methods of in situ remediation. This project consisted of laboratory and field tests in which hydraulic fractures were created in soil. Laboratory te...

  20. Impact of root growth and root hydraulic conductance on water availability of young walnut trees

    Science.gov (United States)

    Jerszurki, Daniela; Couvreur, Valentin; Hopmans, Jan W.; Silva, Lucas C. R.; Shackel, Kenneth A.; de Souza, Jorge L. M.

    2015-04-01

    Walnut (Juglans regia L.) is a tree species of high economic importance in the Central Valley of California. This crop has particularly high water requirements, which makes it highly dependent on irrigation. The context of decreasing water availability in the state calls for efficient water management practices, which requires improving our understanding of the relationship between water application and walnut water availability. In addition to the soil's hydraulic conductivity, two plant properties are thought to control the supply of water from the bulk soil to the canopy: (i) root distribution and (ii) plant hydraulic conductance. Even though these properties are clearly linked to crop water requirements, their quantitative relation remains unclear. The aim of this study is to quantitatively explain walnut water requirements under water deficit from continuous measurements of its water consumption, soil and stem water potential, root growth and root system hydraulic conductance. For that purpose, a greenhouse experiment was conducted for a two month period. Young walnut trees were planted in transparent cylindrical pots, equipped with: (i) rhizotron tubes, which allowed for non-invasive monitoring of root growth, (ii) pressure transducer tensiometers for soil water potential, (iii) psychrometers attached to non-transpiring leaves for stem water potential, and (iv) weighing scales for plant transpiration. Treatments consisted of different irrigation rates: 100%, 75% and 50% of potential crop evapotranspiration. Plant responses were compared to predictions from three simple process-based soil-plant-atmosphere models of water flow: (i) a hydraulic model of stomatal regulation based on stem water potential and vapor pressure deficit, (ii) a model of plant hydraulics predicting stem water potential from soil-root interfaces water potential, and (iii) a model of soil water depletion predicting the water potential drop between the bulk soil and soil-root interfaces

  1. Alteration of soil hydraulic properties and soil water repellency by fire and vegetation succession in a sagebrush steppe ecosystem

    Science.gov (United States)

    Chandler, D. G.; Seyfried, M. S.

    2016-12-01

    This study explores the impacts of fire and plant community succession on soil water repellency (SWR) and infiltration properties to improve understanding the long term impacts of prescribed fire on SWR and infiltration properties in sagebrush-steppe ecosystem. The objectives of this study were: 1) To explore the temporal effects of prescribed burning in sagebrush dominated landscape; 2) To investigate spatial variability of soil hydrologic properties; 3) To determine the relationship among soil organic fraction, soil hydrophobicity and infiltration properties. Fieldwork was conducted in paired catchments with three dominant vegetation cover communities: Low sage, big mountain sage and aspen. Detailed, heavily replicated analyses were conducted for unsaturated hydraulic conductivity, sorptivity water drop penetration time and static soil-water-air contact angle. The results show that the severity and presence of surface soil water repellency were considerably reduced six years after fire and that hydraulic conductivity increased significantly in each vegetation cover compared to pre-burn condition. Comparisons among soil hydrological properties shows that hydraulic conductivity is not strongly related to SWR, and that sorptivity is negatively correlated with SWR. The spatial variance of hydraulic properties within the burned high sage and low sage, in particularly, spatial variability of hydraulic conductivity is basically controlled by soil texture and sorptivity is affected by soil wettability. The average water repellency in Low Sage area was significantly different with Big Sage and Aspen as the gap of organic content between Low Sage and other vegetation area. The result of contact angle measurement and organic content analysis shows a strong positive correlation between SWR and organic matter.

  2. Modeling soil detachment capacity by rill flow using hydraulic parameters

    Science.gov (United States)

    Wang, Dongdong; Wang, Zhanli; Shen, Nan; Chen, Hao

    2016-04-01

    The relationship between soil detachment capacity (Dc) by rill flow and hydraulic parameters (e.g., flow velocity, shear stress, unit stream power, stream power, and unit energy) at low flow rates is investigated to establish an accurate experimental model. Experiments are conducted using a 4 × 0.1 m rill hydraulic flume with a constant artificial roughness on the flume bed. The flow rates range from 0.22 × 10-3 m2 s-1 to 0.67 × 10-3 m2 s-1, and the slope gradients vary from 15.8% to 38.4%. Regression analysis indicates that the Dc by rill flow can be predicted using the linear equations of flow velocity, stream power, unit stream power, and unit energy. Dc by rill flow that is fitted to shear stress can be predicted with a power function equation. Predictions based on flow velocity, unit energy, and stream power are powerful, but those based on shear stress, especially on unit stream power, are relatively poor. The prediction based on flow velocity provides the best estimates of Dc by rill flow because of the simplicity and availability of its measurements. Owing to error in measuring flow velocity at low flow rates, the predictive abilities of Dc by rill flow using all hydraulic parameters are relatively lower in this study compared with the results of previous research. The measuring accuracy of experiments for flow velocity should be improved in future research.

  3. Slide stability of hydraulic structures on subbed soil

    Institute of Scientific and Technical Information of China (English)

    Zhou Junliang

    2013-01-01

    The study on slide stability of hydraulic structures on subbed soil was made. Using the slide test results of dragged concreting base plates on subbed soil pits,the decreased value of bearing capacity on slide after re-bound and repression influence of subbed soil was determined,and the envelope of ultimate slide shear resistance was also quantitatively determined. Due to the lack of similar mechanisms of slide stability on subbed soil and base plate of hydraulic structures,different safety coefficients for the slide stability were adopted. It was suggested to use the maximum compressive stress σmax of eccentric load to predict structure displacement,slide and creepy slippage of subbed soil,to determine the sliding creepy contour and limit the maximum load on subbed soil. Two hydraulic structures that had been put into operation were reviewed by this method,and the results accorded with the real conditions.

  4. Variability and scaling of hydraulic properties for 200 Area soils, Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, R.; Freeman, E.J.

    1995-10-01

    Over the years, data have been obtained on soil hydraulic properties at the Hanford Site. Much of these data have been obtained as part of recent site characterization activities for the Environmental Restoration Program. The existing data on vadose zone soil properties are, however, fragmented and documented in reports that have not been formally reviewed and released. This study helps to identify, compile, and interpret all available data for the principal soil types in the 200 Areas plateau. Information on particle-size distribution, moisture retention, and saturated hydraulic conductivity (K{sub s}) is available for 183 samples from 12 sites in the 200 Areas. Data on moisture retention and K{sub s} are corrected for gravel content. After the data are corrected and cataloged, hydraulic parameters are determined by fitting the van Genuchten soil-moisture retention model to the data. A nonlinear parameter estimation code, RETC, is used. The unsaturated hydraulic conductivity relationship can subsequently be predicted using the van Genuchten parameters, Mualem`s model, and laboratory-measured saturated hydraulic conductivity estimates. Alternatively, provided unsaturated conductivity measurements are available, the moisture retention curve-fitting parameters, Mualem`s model, and a single unsaturated conductivity measurement can be used to predict unsaturated conductivities for the desired range of field moisture regime.

  5. Alternativa para caracterização da condutividade hidráulica saturada do solo utilizando probabilidade de ocorrência Alternative of characterization to the soil hydraulic conductivity utilizing probability of occurrence

    Directory of Open Access Journals (Sweden)

    Maria da Glória Bastos de Freitas Mesquita

    2007-12-01

    Full Text Available A Condutividade Hidráulica Saturada (Ksat devido à sua importância em informar sobre a capacidade de transporte de água, solutos e substâncias químicas no solo deve ser bem caracterizada, pois de um modo geral, seu valor é utilizado nos cálculos de fluxos no solo. Com o objetivo de propor uma alternativa para caracterizá-la, a partir de uma série de dados, utilizou-se a função densidade de probabilidade lognormal para obter os valores da propriedade correspondentes aos níveis de 5 a 95% de probabilidade de ocorrência, visando descrever e indicar melhores valores a serem adotados como Ksat para a área considerada. Como resultado obteve-se uma análise da variável em termos de probabilidade de ocorrência. Essa representação, na medida em que associa o nível de probabilidade ao valor adotado para a propriedade, permite ao pesquisador avaliar o risco na estimativa de medidas dependentes de Ksat, visto que esta propriedade no solo apresenta alta variabilidade.The Saturated Hydraulic Conductivity of the soil (Ksat due to its importance in inform about the capacity of transport of water, solutes and chemical substances in the soil should be well characterized, since in general, this value is used in calculations of flows in the soil. Aiming at proposing an alternative to characterize the Ksat, starting from a series of data, the function density of probability lognormal was used to obtain the values of the property which corresponde to the levels of occurrence probability from 5 to 95%, in order to describe and to indicate better values to be adopted as Ksat for the considered area. As a result, it was obtained an analysis of the values of the variable in terms of occurrence probability. This representation, associating each value to a probability level, allows to the researcher to evaluate the error on estimation of measurements that depend on Ksat, due to the fact that, this property in the soil presents high variability.

  6. Hydraulic Conductivity Functions in Relation to Some Chemical Properties in a Cultivated Oxisols of a Humid Region, Delta State, Nigeria

    Directory of Open Access Journals (Sweden)

    Egbuchua, C. N.

    2014-04-01

    Full Text Available The study was conducted to evaluate hydraulic conductivity functions in relation to some soil chemical properties in an oxisols of the tropics. Field and laboratory studies were carried out and data collected, subjected to statistical analytical procedure for computing coefficient of variability and correlation among soil properties. Results of the study showed that hydraulic conductivity functions varied spatially and temporarily across the experimental points with a moderate mean value of 0.0026 cm/h and a coefficient o variation of 31.45% soil chemical properties showed that the soils were acidic with a mean pH value of 5.12. Organic carbon, total nitrogen and available phosphorus were low with mean values of 1.29%, 0.68% and 4.43 mgkg-1. Coefficient of variability among soil properties indicated less to moderately variable. Soil pH had negative correlation with all the soil properties evaluated.

  7. Dynamic aspects of soil water availability for isohydric plants: Focus on root hydraulic resistances

    Science.gov (United States)

    Couvreur, V.; Vanderborght, J.; Draye, X.; Javaux, M.

    2014-11-01

    Soil water availability for plant transpiration is a key concept in agronomy. The objective of this study is to revisit this concept and discuss how it may be affected by processes locally influencing root hydraulic properties. A physical limitation to soil water availability in terms of maximal flow rate available to plant leaves (Qavail) is defined. It is expressed for isohydric plants, in terms of plant-centered variables and properties (the equivalent soil water potential sensed by the plant, ψs eq; the root system equivalent conductance, Krs; and a threshold leaf water potential, ψleaf lim). The resulting limitation to plant transpiration is compared to commonly used empirical stress functions. Similarities suggest that the slope of empirical functions might correspond to the ratio of Krs to the plant potential transpiration rate. The sensitivity of Qavail to local changes of root hydraulic conductances in response to soil matric potential is investigated using model simulations. A decrease of radial conductances when the soil dries induces earlier water stress, but allows maintaining higher night plant water potentials and higher Qavail during the last week of a simulated 1 month drought. In opposition, an increase of radial conductances during soil drying provokes an increase of hydraulic redistribution and Qavail at short term. This study offers a first insight on the effect of dynamic local root hydraulic properties on soil water availability. By better understanding complex interactions between hydraulic processes involved in soil-plant hydrodynamics, better prospects on how root hydraulic traits mitigate plant water stress might be achieved.

  8. 冻融循环作用下宽级配砾质土的渗透特性%HYDRAULIC CONDUCTIVITY OF COMPACTED WIDE GRADING GRAVEL SOILS UNDER FREEZE-THAW CYCLING

    Institute of Scientific and Technical Information of China (English)

    王红雨; 唐少容; 邢毓航; 张学科

    2015-01-01

    针对西北地区特殊的气候条件和砾质土料源丰富的实际情况,提出采用宽级配砾质土代替黏土作为土工合成材料膨润土垫(GCls)的保护层共同构成垃圾填埋场复合防渗系统的构想。文中选取宁夏银川地区冲-洪积作用形成的天然砾质土料,经人工掺和制配成满足规范对 GCls 防渗垫保护层渗透系数要求的宽级配砾质土样,在实验室对该土样进行了冻融循环作用下的渗透性能试验研究。结果显示,随着冻融次数的逐渐增加,土样的冻胀率逐渐变大,渗透系数也相应增大,经过12次冻融循环后,渗透系数约增大1~2个数量级;冻融循环初期,冻融作用对土样的影响最为剧烈,随着冻融循环次数的增加以及时间的延续,土样性状逐渐趋于稳定。由于宽级配砾质土对冻融循环作用的敏感性小于粉质黏性土,故采用宽级配砾质土作为 Cls/GM的保护层共同组成填埋场复合防渗系统是值得期待的。%The design conception of composite liners is consisted of a geomembrane(GM),geosynthetic clay liners (GCls) and compacted gravel soils in landfills.This conception is presented on the basis of the climate characteristics,gravel soils material rich in nature,and GCls that have been exported all over the world for various applications.The artificially graded gravel soils are taken from natural sediment zone for flood alluvial at Yinchuan suburb in Ningxia.The gravel soil is figured out to meet the requirement of permeability coefficient through the compaction and penetration experiment.The frost-heaving ratio and hydraulic conductivity of gravel soil samples are tested under freeze-thaw cycling in this paper.The test results indicate that the frost-heaving ratio increases as the number of freeze-thaw increases.As the number of freeze-thaw increases,the permeability coefficient also increases. The permeability coefficient is increased by one to

  9. Selected soil thermal conductivity models

    Directory of Open Access Journals (Sweden)

    Rerak Monika

    2017-01-01

    Full Text Available The paper presents collected from the literature models of soil thermal conductivity. This is a very important parameter, which allows one to assess how much heat can be transferred from the underground power cables through the soil. The models are presented in table form, thus when the properties of the soil are given, it is possible to select the most accurate method of calculating its thermal conductivity. Precise determination of this parameter results in designing the cable line in such a way that it does not occur the process of cable overheating.

  10. EVALUATION OF HYDRAULIC CONDUCTIVITIES CALCULATED FROM MULTIPORT-PERMEAMETER MEASUREMENTS

    Science.gov (United States)

    A multiport permeameter was developed for use in estimating hydraulic conductivity over intact sections of aquifer core using the core liner as the permeameter body. Six cores obtained from one borehole through the upper 9 m of a stratified glacial-outwash aquifer were used to ev...

  11. Verification of HYDRASTAR: Analysis of hydraulic conductivity fields and dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Morris, S.T.; Cliffe, K.A. [AEA Technology, Harwell (United Kingdom)

    1994-10-01

    HYDRASTAR is a code for the stochastic simulation of groundwater flow. It can be used to simulate both time-dependent and steady-state groundwater flow at constant density. Realizations of the hydraulic conductivity field are generated using the Turning Bands algorithm. The realizations can be conditioned on measured values of the hydraulic conductivity using Kriging. This report describes a series of verification studies that have been carried out on the code. The first study concerns the accuracy of the implementation of the Turning Bands algorithm in HYDRASTAR. The implementation has been examined by evaluating the ensemble mean and covariance of the generated fields analytically and comparing them with their prescribed values. Three other studies were carried out in which HYDRASTAR was used to solve problems of uniform mean flow and to calculate the transport and dispersion of fluid particles. In all three cases the hydraulic conductivity fields were unconditioned. The first two were two-dimensional: one at small values of the variance of the logarithm of the hydraulic conductivity for which there exists analytical results that the code can be compared with, and one at moderate variance where the results can only be compared with those obtained by another code. The third problem was three dimensional with a small variance and again analytical results are available for comparison. 14 refs, 24 figs.

  12. Comment on "Column-scale unsaturated hydraulic conductivity estimates in coarse-textured homogeneous and layered soils derived under steady-state evaporation from a water table" by M. Sadeghi, M. Tuller, M.R. Gohardoust and S.B. Jones

    Science.gov (United States)

    Lehmann, Peter; Assouline, Shmuel; Or, Dani

    2015-10-01

    The authors presented a new solution for steady-state evaporation during stage II from coarse-textured porous media (under isothermal conditions) that enables to (i) compute the maximum distance Dmax between the water table and the vaporization plane (where water phase change from liquid to vapor occurs) for a certain evaporation rate e and (ii) estimate the unsaturated hydraulic conductivity K(h) as a function of capillary head h by measuring e(Dmax). The mathematical procedure presented is correct and interesting, however, the study makes various unsubstantiated claims regarding potential generalization of the results that deserve some scrutiny considering the wealth of experimental and other physically-based theoretical studies of this important phenomenon. The general outcome is that we consider the conclusion as presented in the abstract ;The presented approach offers an alternative method for determination of unsaturated hydraulic conductivity of homogeneous coarse-textured soils and a new solution for prediction of the effective unsaturated hydraulic conductivity of layered coarse-textured soils; unfounded. In the comment below we address (i) the confusion between different definitions of hydraulic continuity of the liquid phase, (ii) the limited application of the method to a small range of evaporative fluxes, (iii) the plausibility of interpretations assuming hydraulic continuity across 10's of meters, (iv) the correctness of the estimations of maximum hydraulic continuity length Dmax from water table depth D for the coarse textured media considered in the study, and (v) a questionable application of the method for layered profiles. We first comment on some of the key derivations and their relations to soil properties and boundary conditions, and then discuss the physical validity of some of the generalization claims.

  13. Vertical variations of soil hydraulic properties within two soil profiles and its relevance for soil water simulations

    Science.gov (United States)

    Schwen, Andreas; Zimmermann, Michael; Bodner, Gernot

    2014-08-01

    Numerical simulations of soil water dynamics can be valuable tools for the assessment of different soil and land management practices. For accurate simulations, the soil hydraulic properties (SHP), i.e. the hydraulic conductivity and water retention function have to be properly known. They can be either estimated from physical soil properties by pedotransfer functions (PTF) or measured. In most studies, soil profiles are analyzed and sampled with respect to their pedogenic horizons. While considerable effort has been put on horizontal spatial SHP variations, vertical changes within soil profiles have not been analyzed in detail. Therefore, the objectives of this study were (i) the SHP measurement along vertical transects within two soil profiles, (ii) to evaluate their spatial variation and correlation with physical soil properties, and (iii) to assess the impact of the SHP determination method and its spatial discretization on simulated soil water balance components. Two soils, an agriculturally used silty-loam Chernozem and a forested sandy Cambisol were sampled in 0.05 m increments along vertical transects. The parameters of a dual porosity model were derived using the evaporation method and scaling was applied to derive representative mean SHP parameters and scaling factors as a measure of spatial variability. State-space models described spatial variations of the scaling factors by physical soil properties. Simulations with HYDRUS 1D delivered the soil water balance for different climatic conditions with the SHP being estimated from horizon-wise PTFs, or discretized either sample-wise, according to the pedogenic horizons, or as hydrologically relevant units (hydropedological approach). Considerable SHP variations were found for both soil profiles. In the Chernozem, variations of the hydraulic conductivity were largest within the ploughed Ap-horizon and could be attributed to variations in soil structure (macropores). In the subsoil, soil water retention showed

  14. Characterizing hydraulic conductivity with the direct-push permeameter

    Science.gov (United States)

    Butler, J.J.; Dietrich, P.; Wittig, V.; Christy, T.

    2007-01-01

    The direct-push permeameter (DPP) is a promising approach for obtaining high-resolution information about vertical variations in hydraulic conductivity (K) in shallow unconsolidated settings. This small-diameter tool, which consists of a short screened section with a pair of transducers inset in the tool near the screen, is pushed into the subsurface to a depth at which a K estimate is desired. A short hydraulic test is then performed by injecting water through the screen at a constant rate (less than 4 L/min) while pressure changes are monitored at the transducer locations. Hydraulic conductivity is calculated using the injection rate and the pressure changes in simple expressions based on Darcy's Law. In units of moderate or higher hydraulic conductivity (more than 1 m/d), testing at a single level can be completed within 10 to 15 min. Two major advantages of the method are its speed and the insensitivity of the K estimates to the zone of compaction created by tool advancement. The potential of the approach has been assessed at two extensively studied sites in the United States and Germany over a K range commonly faced in practical field investigations (0.02 to 500 m/d). The results of this assessment demonstrate that the DPP can provide high-resolution K estimates that are in good agreement with estimates obtained through other means. ?? 2007 National Ground Water Association.

  15. Dynamic Effect of the Dissolution Time of PAM on Soil Saturated Hydraulic Conductivity%干粉PAM溶解时间对土壤饱和导水率的动态影响

    Institute of Scientific and Technical Information of China (English)

    韩冬; 魏占民; 于健; 宋日权

    2016-01-01

    本试验选取两种质地土壤(黏壤土和砂壤土),采用3种干粉PAM施用水平(0、22.5 kg/hm2和45 kg/hm2),测定土样在10.25 mm/h入渗速度下的土壤饱和导水率(KS),然后根据土样团聚体含量和稳定性及团聚结构的微观图片,分析干粉PAM影响下土壤结构的变化特征,进而说明干粉PAM溶解时间对KS的影响机理。结果表明:施用PAM后, KS随干粉PAM在水中溶解时间的延长而逐渐减小,最终趋于稳定;干粉PAM溶解时间较短时,PAM处理的KS高于对照,其中PAM施用水平45 kg/hm2时砂壤土KS提高幅度最大,较对照提高26.87%,但不同PAM施用量处理间的KS差异不显著。干粉PAM溶解时间足够长时,PAM处理的KS均显著低于对照,其中PAM施用水平45 kg/hm2时黏壤土 KS降低幅度最大,较对照降低10.86%,但是不同施用量处理间 KS差异不显著。从影响机理上分析,PAM主要是通过增加土壤团聚体含量及稳定性来提高 KS;而干粉 PAM 溶解时间足够长时,由于 PAM 易吸附土壤颗粒,水解后的PAM分子链不断伸张延长,堵塞了土壤孔隙,加上PAM本身的黏滞特性,从而降低了KS。研究干粉PAM溶解时间对KS的动态影响,可以为PAM在改善土壤导水能力方面的应用提供理论依据。%Two soils (clay loam and sandy loam) and three addition levels of PAM (0, 22.5, 45 kg/hm2) were used to measure the dynamic changes of soil saturated hydraulic conductivity(KS) under constant water flow (10.25 mm/h), the content and stability of soil aggregates and thus to investigate the mechanisms for the effect of the dissolution time of PAM on KS. Results showed thatKS decreased as the dissolving time of PAM increased, and finally researched a stable state. When the dissolving time of PAM was shorter, theKS of the PAM treatment was higher than that of control. The sandy loam soil with PAM of 45 kg/hm2 had the highest grow rate ofKS, and theKS was

  16. Flood quantiles scaling with upper soil hydraulic properties for different land uses at catchment scale

    Science.gov (United States)

    Peña, Luis E.; Barrios, Miguel; Francés, Félix

    2016-10-01

    Changes in land use within a catchment are among the causes of non-stationarity in the flood regime, as they modify the upper soil physical structure and its runoff production capacity. This paper analyzes the relation between the variation of the upper soil hydraulic properties due to changes in land use and its effect on the magnitude of peak flows: (1) incorporating fractal scaling properties to relate the effect of the static storage capacity (the sum of capillary water storage capacity in the root zone, canopy interception and surface puddles) and the upper soil vertical saturated hydraulic conductivity on the flood regime; (2) describing the effect of the spatial organization of the upper soil hydraulic properties at catchment scale; (3) examining the scale properties in the parameters of the Generalized Extreme Value (GEV) probability distribution function, in relation to the upper soil hydraulic properties. This study considered the historical changes of land use in the Combeima River catchment in South America, between 1991 and 2007, using distributed hydrological modeling of daily discharges to describe the hydrological response. Through simulation of land cover scenarios, it was demonstrated that it is possible to quantify the magnitude of peak flows in scenarios of land cover changes through its Wide-Sense Simple Scaling with the upper soil hydraulic properties.

  17. Measurement of Fracture Geometry for Accurate Computation of Hydraulic Conductivity

    Science.gov (United States)

    Chae, B.; Ichikawa, Y.; Kim, Y.

    2003-12-01

    Fluid flow in rock mass is controlled by geometry of fractures which is mainly characterized by roughness, aperture and orientation. Fracture roughness and aperture was observed by a new confocal laser scanning microscope (CLSM; Olympus OLS1100). The wavelength of laser is 488nm, and the laser scanning is managed by a light polarization method using two galvano-meter scanner mirrors. The system improves resolution in the light axis (namely z) direction because of the confocal optics. The sampling is managed in a spacing 2.5 μ m along x and y directions. The highest measurement resolution of z direction is 0.05 μ m, which is the more accurate than other methods. For the roughness measurements, core specimens of coarse and fine grained granites were provided. Measurements were performed along three scan lines on each fracture surface. The measured data were represented as 2-D and 3-D digital images showing detailed features of roughness. Spectral analyses by the fast Fourier transform (FFT) were performed to characterize on the roughness data quantitatively and to identify influential frequency of roughness. The FFT results showed that components of low frequencies were dominant in the fracture roughness. This study also verifies that spectral analysis is a good approach to understand complicate characteristics of fracture roughness. For the aperture measurements, digital images of the aperture were acquired under applying five stages of uniaxial normal stresses. This method can characterize the response of aperture directly using the same specimen. Results of measurements show that reduction values of aperture are different at each part due to rough geometry of fracture walls. Laboratory permeability tests were also conducted to evaluate changes of hydraulic conductivities related to aperture variation due to different stress levels. The results showed non-uniform reduction of hydraulic conductivity under increase of the normal stress and different values of

  18. 科尔沁不同沙地土壤饱和导水率比较研究%A COMPARISON OF SOIL SATURATED HYDRAULIC CONDUCTIVITY(KFS)IN DIFFERENT HORQIN SAND LAND

    Institute of Scientific and Technical Information of China (English)

    姚淑霞; 赵传成; 张铜会

    2013-01-01

    In situ measurements with a Guelph Permeator were performed to investigate the saturated hydraulic conductivity of soils (Kfs) at various desertified sand lands,such as grassland,fixed sand dune and mobile sand dune of Horqin Sand Land.Based on analyzing the relationships of Kfs with the sand land types,soil depths,slope position of sand dunes and soilphysical and chemical properties,the results indicated that:(l) The average Kfs increased in the order:grassland (potential desertification),fixed sand dune (light desertification) and mobile sand dune (serve desertification),and the value was 2.15,4.79 and 5.89 mm min-1,respectively.That was,the more serious desertified,the higher infiltration capacity.A statistically significant differences (p < 0.05) in Kfs were found among the three sites and between the slope positions of the two dunes.So,the Kfs at Horqin Sand Land has showed a higher heterogeneity ; (2) The changes of Kfs was considerably with the increase of soil profile depths.The changes of Kfs with soil depths at grassland could be fitted with parabola models,and for fixed sand dune by exponential models; (3) The stepwise regression revealed that the soil organic matter content,the fine sand fraction (0.1 ~ 0.05 mm) and the clay and silt content (< 0.05 mm) were some key factors affecting Kfs with a significantly negative relationship,but there was a significantly positive correlation with the coarse sand fraction (2 ~ 0.1 mm).%用Guelph入渗仪对科尔沁沙地不同沙漠化阶段土壤不同层次的土壤饱和导水率(Kfs)进行测定,分析研究了Kfs与沙地类型、土层厚度、沙丘坡位及土壤理化性质的关系.结果表明:(1)草地(潜在沙漠化)、固定沙丘(轻度沙漠化)和流动沙丘(严重沙漠化)的Kfs依次增大,平均值分别为2.15、4.79和5.89 mm min-1,呈现出土壤入渗能力随沙漠化程度的增强而增强的趋势;三种沙地间Kfs差异显著,沙丘不同坡位Kfs也有较大差异,表明

  19. Improving prediction of hydraulic conductivity by constraining capillary bundle models to a maximum pore size

    Science.gov (United States)

    Iden, Sascha C.; Peters, Andre; Durner, Wolfgang

    2015-11-01

    The prediction of unsaturated hydraulic conductivity from the soil water retention curve by pore-bundle models is a cost-effective and widely applied technique. One problem for conductivity predictions from retention functions with continuous derivatives, i.e. continuous water capacity functions, is that the hydraulic conductivity curve exhibits a sharp drop close to water saturation if the pore-size distribution is wide. So far this artifact has been ignored or removed by introducing an explicit air-entry value into the capillary saturation function. However, this correction leads to a retention function which is not continuously differentiable. We present a new parameterization of the hydraulic properties which uses the original saturation function (e.g. of van Genuchten) and introduces a maximum pore radius only in the pore-bundle model. In contrast to models using an explicit air entry, the resulting conductivity function is smooth and increases monotonically close to saturation. The model concept can easily be applied to any combination of retention curve and pore-bundle model. We derive closed-form expressions for the unimodal and multimodal van Genuchten-Mualem models and apply the model concept to curve fitting and inverse modeling of a transient outflow experiment. Since the new model retains the smoothness and continuous differentiability of the retention model and eliminates the sharp drop in conductivity close to saturation, the resulting hydraulic functions are physically more reasonable and ideal for numerical simulations with the Richards equation or multiphase flow models.

  20. Effect of formation characteristics on hydraulic conductivity in unconfined bed in Etchie, rivers state of Nigeria

    Directory of Open Access Journals (Sweden)

    Solomon Ndubuisi Eluozo

    2013-01-01

    Full Text Available Formation characteristics determine the hydraulic conductivity of the soil, the major parameter that determine the rate of hydraulic conductivity of the soil in study location are void ratio and permeability of the soil, degree of void ratio and permeability where determine to evaluate the rate of hydraulic conductivity and storage coefficient,the results from these two parameters  shows the variation deposition of void ratio and permeability in the study location. Ground water hydrogeological data where found to be unavailable in the study area this condition has resulted to a lots of abortive well, this has also cause a lot of abandoned ground water project done by government, this type of economic waste is a serious concern and need to be addressed., the study is imperative because it will improve the result of ground water exploration in the study area, the result from this study will definitely serve as baseline for professional to apply in   the development of ground water system in the study area .

  1. Optimal Choice of Soil Hydraulic Parameters for Simulating the Unsaturated Flow: A Case Study on the Island of Miyakojima, Japan

    Directory of Open Access Journals (Sweden)

    Ken Okamoto

    2015-10-01

    Full Text Available We examined the influence of input soil hydraulic parameters on HYDRUS-1D simulations of evapotranspiration and volumetric water contents (VWCs in the unsaturated zone of a sugarcane field on the island of Miyakojima, Japan. We first optimized the parameters for root water uptake and examined the influence of soil hydraulic parameters (water retention curve and hydraulic conductivity on simulations of evapotranspiration. We then compared VWCs simulated using measured soil hydraulic parameters with those using pedotransfer estimates obtained with the ROSETTA software package. Our results confirm that it is important to always use soil hydraulic parameters based on measured data, if available, when simulating evapotranspiration and unsaturated water flow processes, rather than pedotransfer functions.

  2. Test of the rosetta pedotransfer function for saturated hydraulic conductivity

    NARCIS (Netherlands)

    Alvarez-Acosta, C.; Lascano, R.J.; Stroosnijder, L.

    2012-01-01

    Simulation models are tools that can be used to explore, for example, effects of cultural practices on soil erosion and irrigation on crop yield. However, often these models require many soil related input data of which the saturated hy- draulic conductivity (Ks) is one of the most important ones. T

  3. Regional groundwater characteristics and hydraulic conductivity based on geological units in Korean peninsula

    Science.gov (United States)

    Kim, Y.; Suk, H.

    2011-12-01

    In this study, about 2,000 deep observation wells, stream and/or river distribution, and river's density were analyzed to identify regional groundwater flow trend, based on the regional groundwater survey of four major river watersheds including Geum river, Han river, Youngsan-Seomjin river, and Nakdong river in Korea. Hydrogeologial data were collected to analyze regional groundwater flow characteristics according to geological units. Additionally, hydrological soil type data were collected to estimate direct runoff through SCS-CN method. Temperature and precipitation data were used to quantify infiltration rate. The temperature and precipitation data were also used to quantify evaporation by Thornthwaite method and to evaluate groundwater recharge, respectively. Understanding the regional groundwater characteristics requires the database of groundwater flow parameters, but most hydrogeological data include limited information such as groundwater level and well configuration. In this study, therefore, groundwater flow parameters such as hydraulic conductivities or transmissivities were estimated using observed groundwater level by inverse model, namely PEST (Non-linear Parameter ESTimation). Since groundwater modeling studies have some uncertainties in data collection, conceptualization, and model results, model calibration should be performed. The calibration may be manually performed by changing parameters step by step, or various parameters are simultaneously changed by automatic procedure using PEST program. In this study, both manual and automatic procedures were employed to calibrate and estimate hydraulic parameter distributions. In summary, regional groundwater survey data obtained from four major river watersheds and various data of hydrology, meteorology, geology, soil, and topography in Korea were used to estimate hydraulic conductivities using PEST program. Especially, in order to estimate hydraulic conductivity effectively, it is important to perform

  4. Numerical modeling of consolidation processes in hydraulically deposited soils

    Science.gov (United States)

    Brink, Nicholas Robert

    Hydraulically deposited soils are encountered in many common engineering applications including mine tailing and geotextile tube fills, though the consolidation process for such soils is highly nonlinear and requires the use of advanced numerical techniques to provide accurate predictions. Several commercially available finite element codes poses the ability to model soil consolidation, and it was the goal of this research to assess the ability of two of these codes, ABAQUS and PLAXIS, to model the large-strain, two-dimensional consolidation processes which occur in hydraulically deposited soils. A series of one- and two-dimensionally drained rectangular models were first created to assess the limitations of ABAQUS and PLAXIS when modeling consolidation of highly compressible soils. Then, geotextile tube and TSF models were created to represent actual scenarios which might be encountered in engineering practice. Several limitations were discovered, including the existence of a minimum preconsolidation stress below which numerical solutions become unstable.

  5. Stabilization of soil hydraulic properties under a long term no-till system

    Directory of Open Access Journals (Sweden)

    Luis Alberto Lozano

    2014-08-01

    Full Text Available The area under the no-tillage system (NT has been increasing over the last few years. Some authors indicate that stabilization of soil physical properties is reached after some years under NT while other authors debate this. The objective of this study was to determine the effect of the last crop in the rotation sequence (1st year: maize, 2nd year: soybean, 3rd year: wheat/soybean on soil pore configuration and hydraulic properties in two different soils (site 1: loam, site 2: sandy loam from the Argentinean Pampas region under long-term NT treatments in order to determine if stabilization of soil physical properties is reached apart from a specific time in the crop sequence. In addition, we compared two procedures for evaluating water-conducting macroporosities, and evaluated the efficiency of the pedotransfer function ROSETTA in estimating the parameters of the van Genuchten-Mualem (VGM model in these soils. Soil pore configuration and hydraulic properties were not stable and changed according to the crop sequence and the last crop grown in both sites. For both sites, saturated hydraulic conductivity, K0, water-conducting macroporosity, εma, and flow-weighted mean pore radius, R0ma, increased from the 1st to the 2nd year of the crop sequence, and this was attributed to the creation of water-conducting macropores by the maize roots. The VGM model adequately described the water retention curve (WRC for these soils, but not the hydraulic conductivity (K vs tension (h curve. The ROSETTA function failed in the estimation of these parameters. In summary, mean values of K0 ranged from 0.74 to 3.88 cm h-1. In studies on NT effects on soil physical properties, the crop effect must be considered.

  6. HYDRAULIC CONDUCTIVITY OF GCL WITH BENTONITE – SILICA FUME MATRIX

    Directory of Open Access Journals (Sweden)

    Mudimby Andal

    2012-12-01

    Full Text Available This paper presents the influence of partial replacement of bentonite by silica fume which is used in the manufacture of Geosynthetic Clay Liner (GCL. Geosynthetic Clay Liners consist bentonite (Sodium Based sandwiched between two geotextile. Benotinite, having low permeability imparts better hydraulic performance to the GCL to act as liner. In this investigation, an attempt has been made to study the hydraulic conductivity of GCL with modified Bentonite. The bentonite is partially replaced by silica fume, a waste product of ferroalloy industries. Silica fume reduces the cracking characteristics of bentonite on desiccation. The replacement levels varied from 0% to 50% at a gradual increment of 5%. The test results indicated that partial replacement of bentonite by silica fume did not affected the permeability of bentonite even at 30%. Beyond 45% replacement levels the bentonite- silica fume mixtures showed increased permeability. This increased permeability also well within permeability limits of liners 1×10-9 m/sec.

  7. HYDRAULIC CONDUCTIVITY OF GCL WITH BENTONITE - SILICA FUME MATRIX

    Directory of Open Access Journals (Sweden)

    M. Andal

    2012-01-01

    Full Text Available This paper presents the influence of partial replacement of bentonite by silica fume which is used in the manufacture of Geosynthetic Clay Liner (GCL. Geosynthetic Clay Liners consist bentonite (Sodium Based sandwiched between two geotextile. Benotinite, having low permeability imparts better hydraulic performance to the GCL to act as liner. In this investigation, an attempt has been made to study the hydraulic conductivity of GCL with modified Bentonite. The bentonite is partially replaced by silica fume, a waste product of ferroalloy industries. Silica fume reduces the cracking characteristics of bentonite on desiccation. The replacement levels varied from 0% to 50% at a gradual increment of 5%. The test results indicated that partial replacement of bentonite by silica fume did not affected the permeability of bentonite even at 30%. Beyond 45% replacement levels the bentonite- silica fume mixtures showed increased permeability. This increased permeability also well within permeability limits of liners 1×10-9m/sec.

  8. Changes in soil hydraulic properties caused by construction of a simulated waste trench at the Idaho National Engineering Laboratory, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Shakofsky, S.

    1995-03-01

    In order to assess the effect of filled waste disposal trenches on transport-governing soil properties, comparisons were made between profiles of undisturbed soil and disturbed soil in a simulated waste trench. The changes in soil properties induced by the construction of a simulated waste trench were measured near the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL) in the semiarid southeast region of Idaho. The soil samples were collected, using a hydraulically-driven sampler to minimize sample disruption, from both a simulated waste trench and an undisturbed area nearby. Results show that the undisturbed profile has distinct layers whose properties differ significantly, whereas the soil profile in the simulated waste trench is, by comparison, homogeneous. Porosity was increased in the disturbed cores, and, correspondingly, saturated hydraulic conductivities were on average three times higher. With higher soil-moisture contents (greater than 0.32), unsaturated hydraulic conductivities for the undisturbed cores were typically greater than those for the disturbed cores. With lower moisture contents, most of the disturbed cores had greater hydraulic conductivities. The observed differences in hydraulic conductivities are interpreted and discussed as changes in the soil pore geometry.

  9. Estimating the hydraulic conductivity of two-dimensional fracture networks

    Science.gov (United States)

    Leung, C. T.; Zimmerman, R. W.

    2010-12-01

    Most oil and gas reservoirs, as well as most potential sites for nuclear waste disposal, are naturally fractured. In these sites, the network of fractures will provide the main path for fluid to flow through the rock mass. In many cases, the fracture density is so high as to make it impractical to model it with a discrete fracture network (DFN) approach. For such rock masses, it would be useful to have recourse to analytical, or semi-analytical, methods to estimate the macroscopic hydraulic conductivity of the fracture network. We have investigated single-phase fluid flow through stochastically generated two-dimensional fracture networks. The centres and orientations of the fractures are uniformly distributed, whereas their lengths follow either a lognormal distribution or a power law distribution. We have considered the case where the fractures in the network each have the same aperture, as well as the case where the aperture of each fracture is directly proportional to the fracture length. The discrete fracture network flow and transport simulator NAPSAC, developed by Serco (Didcot, UK), is used to establish the “true” macroscopic hydraulic conductivity of the network. We then attempt to match this conductivity using a simple estimation method that does not require extensive computation. For our calculations, fracture networks are represented as networks composed of conducting segments (bonds) between nodes. Each bond represents the region of a single fracture between two adjacent intersections with other fractures. We assume that the bonds are arranged on a kagome lattice, with some fraction of the bonds randomly missing. The conductance of each bond is then replaced with some effective conductance, Ceff, which we take to be the arithmetic mean of the individual conductances, averaged over each bond, rather than over each fracture. This is in contrast to the usual approximation used in effective medium theories, wherein the geometric mean is used. Our

  10. An Integrated View of Whole-Tree Hydraulic Architecture. Does Stomatal or Hydraulic Conductance Determine Whole Tree Transpiration?

    Directory of Open Access Journals (Sweden)

    Juan Rodríguez-Gamir

    Full Text Available Hydraulic conductance exerts a strong influence on many aspects of plant physiology, namely: transpiration, CO2 assimilation, growth, productivity or stress response. However we lack full understanding of the contribution of root or shoot water transport capacity to the total water balance, something which is difficult to study in trees. Here we tested the hypothesis that whole plant hydraulic conductance modulates plant transpiration using two different seedlings of citrus rootstocks, Poncirus trifoliata (L. Raf. and Cleopatra mandarin (Citrus reshni Hort ex Tan.. The two genotypes presented important differences in their root or shoot hydraulic conductance contribution to whole plant hydraulic conductance but, even so, water balance proved highly dependent on whole plant conductance. Further, we propose there is a possible equilibrium between root and shoot hydraulic conductance, similar to that between shoot and root biomass production, which could be related with xylem anatomy.

  11. An Integrated View of Whole-Tree Hydraulic Architecture. Does Stomatal or Hydraulic Conductance Determine Whole Tree Transpiration?

    Science.gov (United States)

    Rodríguez-Gamir, Juan; Primo-Millo, Eduardo; Forner-Giner, María Ángeles

    2016-01-01

    Hydraulic conductance exerts a strong influence on many aspects of plant physiology, namely: transpiration, CO2 assimilation, growth, productivity or stress response. However we lack full understanding of the contribution of root or shoot water transport capacity to the total water balance, something which is difficult to study in trees. Here we tested the hypothesis that whole plant hydraulic conductance modulates plant transpiration using two different seedlings of citrus rootstocks, Poncirus trifoliata (L.) Raf. and Cleopatra mandarin (Citrus reshni Hort ex Tan.). The two genotypes presented important differences in their root or shoot hydraulic conductance contribution to whole plant hydraulic conductance but, even so, water balance proved highly dependent on whole plant conductance. Further, we propose there is a possible equilibrium between root and shoot hydraulic conductance, similar to that between shoot and root biomass production, which could be related with xylem anatomy.

  12. Frequency-dependent effective hydraulic conductivity of strongly heterogeneous media.

    Science.gov (United States)

    Caspari, E; Gurevich, B; Müller, T M

    2013-10-01

    The determination of the transport properties of heterogeneous porous rocks, such as an effective hydraulic conductivity, arises in a range of geoscience problems, from groundwater flow analysis to hydrocarbon reservoir modeling. In the presence of formation-scale heterogeneities, nonstationary flows, induced by pumping tests or propagating elastic waves, entail localized pressure diffusion processes with a characteristic frequency depending on the pressure diffusivity and size of the heterogeneity. Then, on a macroscale, a homogeneous equivalent medium exists, which has a frequency-dependent effective conductivity. The frequency dependence of the conductivity can be analyzed with Biot's equations of poroelasticity. In the quasistatic frequency regime of this framework, the slow compressional wave is a proxy for pressure diffusion processes. This slow compressional wave is associated with the out-of-phase motion of the fluid and solid phase, thereby creating a relative fluid-solid displacement vector field. Decoupling of the poroelasticity equations gives a diffusion equation for the fluid-solid displacement field valid in a poroelastic medium with spatial fluctuations in hydraulic conductivity. Then, an effective conductivity is found by a Green's function approach followed by a strong-contrast perturbation theory suggested earlier in the context of random dielectrics. This theory leads to closed-form expressions for the frequency-dependent effective conductivity as a function of the one- and two-point probability functions of the conductivity fluctuations. In one dimension, these expressions are consistent with exact solutions in both low- and high-frequency limits for arbitrary conductivity contrast. In 3D, the low-frequency limit depends on the details of the microstructure. However, the derived approximation for the effective conductivity is consistent with the Hashin-Shtrikman bounds.

  13. Permeâmetro de carga decrescente associado a programa computacional para a determinação da condutividade hidráulica do solo saturado Falling head permeameter and software to determine the hydraulic conductivity of saturated soil

    Directory of Open Access Journals (Sweden)

    Paulo Ivonir Gubiani

    2010-06-01

    Full Text Available A condutividade hidráulica do solo saturado (Kθs é uma propriedade com grande variabilidade, o que exige a utilização de um número maior de determinações para que sua descrição possa ser feita adequadamente pela função densidade de probabilidade normal. Consequentemente, há aumento de trabalho e de tempo para a obtenção dos resultados, principalmente se as determinações forem feitas com equipamentos de pouca praticidade. A construção de equipamentos de maior praticidade e o desenvolvimento de ferramentas computacionais podem tornar o processo de análise mais rápido e preciso. Com esse objetivo, foi construído um permeâmetro de carga decrescente e desenvolvido um software para a aquisição de dados. As medidas de Kθs obtidas com esses equipamentos, em amostras de um Argissolo, mostraram menor variabilidade, avaliada pelo coeficiente de variação, o que resultou em maior precisão das determinações. Além disso, o tempo de análise foi reduzido em 30 %.The soil saturated hydraulic conductivity (Kθs is a property with great variability, which requires the use of a greater number of determinations so that they can be described by the normal probability density function. Consequently, there is an increase in time and labor to obtain Kθs results if determined by conventional equipment. The use of more practical equipment and computational tools allows a faster and more accurate analysis. With this aim a falling head permeameter was built and a software for data acquisition was developed. Values of Kθs obtained with this equipment in Hapludalf samples showed less variability, as assessed by the coefficient of variation, resulting in more precise measurements. Moreover, the time of analysis was reduced by 30 %.

  14. Effects Of Evaporation Rate of Some Common Organic Contaminants on Hydraulic Conductivity of Aquifer Sand

    Science.gov (United States)

    Saud, Q. J.; Hasan, S. E.

    2014-12-01

    As part of a larger study to investigate potential effects of hydrocarbons on the geotechnical properties of aquifer solids, a series of laboratory experiments were carried out to ascertain the influence of evaporation rate of some common and widespread organic contaminants on the hydraulic conductivity of aquifer sand. Gasoline and its constituent chemicals-benzene, toluene, ethylbenzene, xylene (BTEX), isooctane- and trichloroethylene (TCE) were used to contaminate sand samples collected from the aquifer and vadose zone, at varying concentrations for extended periods of time. The goal was to study any change in the chemical makeup of the contaminants and its control on hydraulic conductivity of the sand. It was found that: (a) gasoline breaks down into constituent compounds when subjected to evaporation, e.g. during oil spills and leaks; and (b) lighter compounds volatilize faster and in the following order: TCE> benzene > isooctane > toluene > gasoline> ethylbenzene > xylene. In addition, these contaminants also caused a decrease in hydraulic conductivity of sand by up to 60% as compared to the uncontaminated sand. The inherent differences in the chemical structure of contaminating chemicals influenced hydraulic conductivity such that the observed decrease was greater for aliphatic than aromatic and chlorinated hydrocarbons. The presentation includes details of the experimental set up; evaporation rate, and geotechnical tests; X-ray diffraction and scanning electron microscope studies; and data analyses and interpretation. Rate of evaporation test indicates that residual LNAPLs will occupy a certain portion of the pores in the soil either as liquid or vapor phase in the vadose zone, and will create a coating on the adjacent solid mineral grains in the aquifer. Replacement of air by the LNAPLs along with grain coatings and the intramolecular forces would impede groundwater movement, thus affecting overall permeability of contaminated aquifers. Keywords: aquifer

  15. Root hydraulic conductivity and adjustments in stomatal conductance: hydraulic strategy in response to salt stress in a halotolerant species.

    Science.gov (United States)

    Vitali, Victoria; Bellati, Jorge; Soto, Gabriela; Ayub, Nicolás D; Amodeo, Gabriela

    2015-11-24

    Recent advances at the molecular level are introducing a new scenario that needs to be integrated into the analysis of plant hydraulic properties. Although it is not yet clear to what extent this scenario alters the current proposal for the hydraulic circuit models, it introduces new insights when studying plants that are able to easily overcome water restrictions. In this context, our aim was to explore water adjustments in a halotolerant model (Beta vulgaris) by studying the coordination between the root in terms of root hydraulic conductivity (Lpr) and the shoot as reflected in the stomatal conductance (gs). The root water pathways were also analysed in terms of root suberization (apoplastic barrier) and aquaporin transcript levels (cell-to-cell pathway). Beta vulgaris showed the ability to rapidly lose (4 h) and gain (24 h) turgor when submitted to salt stress (200 mM). The reduction profile observed in Lpr and gs was consistent with a coupled process. The tuning of the root water flow involved small variations in the studied aquaporin's transcripts before anatomical modifications occurred. Exploring Lpr enhancement after halting the stress contributed to show not only a different profile in restoring Lpr but also the capacity to uncouple Lpr from gs. Beta vulgaris root plays a key role and can anticipate water loss before the aerial water status is affected.

  16. Linking hydraulic properties of fire-affected soils to infiltration and water repellency

    Science.gov (United States)

    Moody, J.A.; Kinner, D.A.; Ubeda, X.

    2009-01-01

    Heat from wildfires can produce a two-layer system composed of extremely dry soil covered by a layer of ash, which when subjected to rainfall, may produce extreme floods. To understand the soil physics controlling runoff for these initial conditions, we used a small, portable disk infiltrometer to measure two hydraulic properties: (1) near-saturated hydraulic conductivity, Kf and (2) sorptivity, S(??i), as a function of initial soil moisture content, ??i, ranging from extremely dry conditions (??i capillarity, and adsorption in a transitional domain corresponding to extremely dry soil, and moreover, it may explain the observed non-linear behavior, and the critical soil-moisture threshold of water repellent soils. Laboratory measurements of Kf and S(??i) are the first for ash and fire-affected soil, but additional measurements are needed of these hydraulic properties for in situ fire-affected soils. They provide insight into water repellency behavior and infiltration under extremely dry conditions. Most importantly, they indicate how existing rainfall-runoff models can be modified to accommodate a possible two-layer system in extremely dry conditions. These modified models can be used to predict floods from burned watersheds under these initial conditions.

  17. Relations between soil hydraulic properties and burn severity

    NARCIS (Netherlands)

    Moody, J.A.; Ebel, B.A.; Stoof, C.R.; Nyman, P.; Martin, D.A.; McKinley, R.

    2016-01-01

    Wildfire can affect soil hydraulic properties, often resulting in reduced infiltration. The magnitude of change in infiltration varies depending on the burn severity. Quantitative approaches to link burn severity with changes in infiltration are lacking. This study uses controlled laboratory measure

  18. Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    KAUST Repository

    Dimitrov, Marin

    2014-01-01

    We coupled a radiative transfer model and a soil hydrologic model (HYDRUS 1D) with an optimization routine to derive soil hydraulic parameters, surface roughness, and soil moisture of a tilled bare soil plot using measured brightness temperatures at 1.4 GHz (L-band), rainfall, and potential soil evaporation. The robustness of the approach was evaluated using five 28-d data sets representing different meteorological conditions. We considered two soil hydraulic property models: the unimodal Mualem-van Genuchten and the bimodal model of Durner. Microwave radiative transfer was modeled by three different approaches: the Fresnel equation with depth-averaged dielectric permittivity of either 2-or 5-cm-thick surface layers and a coherent radiative transfer model (CRTM) that accounts for vertical gradients in dielectric permittivity. Brightness temperatures simulated by the CRTM and the 2-cm-layer Fresnel model fitted well to the measured ones. L-band brightness temperatures are therefore related to the dielectric permittivity and soil moisture in a 2-cm-thick surface layer. The surface roughness parameter that was derived from brightness temperatures using inverse modeling was similar to direct estimates from laser profiler measurements. The laboratory-derived water retention curve was bimodal and could be retrieved consistently for the different periods from brightness temperatures using inverse modeling. A unimodal soil hydraulic property function underestimated the hydraulic conductivity near saturation. Surface soil moisture contents simulated using retrieved soil hydraulic parameters were compared with in situ measurements. Depth-specific calibration relations were essential to derive soil moisture from near-surface installed sensors. © Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA.

  19. Changes in entrapped gas content and hydraulic conductivity with pressure.

    Science.gov (United States)

    Marinas, Maricris; Roy, James W; Smith, James E

    2013-01-01

    Water table fluctuations continuously introduce entrapped air bubbles into the otherwise saturated capillary fringe and groundwater zone, which reduces the effective (quasi-saturated) hydraulic conductivity, K(quasi), thus impacting groundwater flow, aquifer recharge and solute and contaminant transport. These entrapped gases will be susceptible to compression or expansion with changes in water pressure, as would be expected with water table (and barometric pressure) fluctuations. Here we undertake laboratory experiments using sand-packed columns to quantify the effect of water table changes of up to 250 cm on the entrapped gas content and the quasi-saturated hydraulic conductivity, and discuss our ability to account for these mechanisms in ground water models. Initial entrapped air contents ranged between 0.080 and 0.158, with a corresponding K(quasi) ranging between 2 and 6 times lower compared to the K(s) value. The application of 250 cm of water pressure caused an 18% to 26% reduction in the entrapped air content, resulting in an increase in K(quasi) by 1.16 to 1.57 times compared to its initial (0 cm water pressure) value. The change in entrapped air content measured at pressure step intervals of 50 cm, was essentially linear, and could be modeled according to the ideal gas law. Meanwhile, the changes in K(quasi) with compression-expansion of the bubbles because of pressure changes could be adequately captured with several current hydraulic conductivity models. © Ground Water 2012 and © Her Majesty the Queen in Right of Canada 2012. Ground Water © 2012, National Ground Water Association.

  20. Simple Predictive Models for Saturated Hydraulic Conductivity of Technosands

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Razzaghi, Fatemeh; Møldrup, Per

    2012-01-01

    Accurate estimation of saturated hydraulic conductivity (Ks) of technosands (gravel-free, coarse sands with negligible organic matter content) is important for irrigation and drainage management of athletic fields and golf courses. In this study, we developed two simple models for predicting Ks......-connectivity parameter (m) obtained for pure coarse sand after fitting to measured Ks data was 1.68 for both models and in good agreement with m values obtained from recent solute and gas diffusion studies. Both the modified K-C and R-C models are easy to use and require limited parameter input, and both models gave...

  1. The effect of the shape parameters of a sample on the hydraulic conductivity

    Science.gov (United States)

    Kucza, Jarosław; Ilek, Anna

    2016-03-01

    The present study is a complement to the research investigating a laboratory method for measuring the saturated hydraulic conductivity of mountain forest soils, the results of which were presented in a paper by Ilek and Kucza (2014). The aim of the study is to analyse the influence of variation of particular cross-sections of samples and their enlarged side surface on the hydraulic conductivity measurement. The results show that a narrowing in the upper section of the sample results in an approximately twice lower disturbance of the laminar water flow than the narrowing occurring inside the sample. For that reason, the extent of the effect of the cross-section narrowing on the hydraulic conductivity measurement error is dependent on the location of the narrowing. An enlarged side surface of a sample, as described by the coefficient of side surface development, is on average 30% larger than the surface of a sample having the same volume and the same average cross-sectional area but a regular shape. The values of the coefficient of side surface development for a given sample were adopted in the range of 1.10-1.56. Among the shape parameters of the analysed irregular soil samples, the greatest impact on the measurement error is exerted by their enlarged lateral surface, which almost entirely explains the whole error of hydraulic conductivity measurement. The variability of successive cross-sectional areas of samples appears to be of marginal importance for the occurrence of this error, whose mean value was 1.15%.

  2. Alterations of hydraulic soil properties influenced by land-use changes and agricultural management systems

    Science.gov (United States)

    Weninger, Thomas; Kreiselmeier, Janis; Chandrasekhar, Parvathy; Jülich, Stefan; Schwärzel, Kai; Schwen, Andreas

    2016-04-01

    Estimation and modeling of soil water movement and the hydrologic balance of soils requires sound knowledge about hydraulic soil properties (HSP). The soil water characteristics, the hydraulic conductivity function and the pore size distribution (PSD) are commonly used instruments for the mathematical representation of HSP. Recent research highlighted the temporal variability of these functions caused by meteorological or land-use influences. State of the art modeling software for the continuous simulation of soil water movement uses a stationary approach for the HSP which means that their time dependent alterations and the subsequent effects on soil water balance is not considered. Mathematical approaches to describe the evolution of PSD are nevertheless known, but there is a lack of sound data basis for parameter estimation. Based on extensive field and laboratory measurements at 5 locations along a climatic gradient across Austria and Germany, this study will quantify short-term changes in HSP, detect driving forces and introduce a method to predict the effects of soil and land management actions on the soil water balance. Amongst several soil properties, field-saturated and unsaturated hydraulic conductivities will be determined using a hood infiltration experiments in the field as well as by evaporation and dewpoint potentiometer method in the lab. All measurements will be carried out multiple times over a span of 2 years which will allow a detailed monitoring of changes in HSP. Experimental sites where we expect significant inter-seasonal changes will be equipped with sensors for soil moisture and matric potential. The choice of experimental field sites follows the intention to involve especially the effects of tillage operations, different cultivation strategies, microclimatically effective structures and land-use changes. The international project enables the coverage of a broad range of soil types as well as climate conditions and hence will have broad

  3. Reduction of saltwater intrusion by modifying hydraulic conductivity

    Science.gov (United States)

    Strack, O. D. L.; Stoeckl, L.; Damm, K.; Houben, G.; Ausk, B. K.; de Lange, W. J.

    2016-09-01

    We present an approach for reducing saltwater intrusion in coastal aquifers by artificially reducing the hydraulic conductivity in the upper part of selected areas by using a precipitate. We apply a previously presented analytical approach to develop formulas useful for the design of artificial barriers. Equations for the location of the tip of the saltwater wedge are presented and verified through a sand-tank experiment. The analysis is capable of computing discharges exactly, but requires the Dupuit-Forchheimer approximation to compute points of the interface between flowing fresh and stationary saltwater. We consider a vertical coastline and boundaries in the freshwater zone of either given discharge or given head. We demonstrate in the paper that reduction of the hydraulic conductivity in the upper part of a coastal aquifer will result in a decrease of saltwater intrusion, and present analytic expressions that can be used for design purposes. The previously presented analytical approach can be applied to design systems to reduce saltwater intrusion caused by pumping inland from the zone that contains saline groundwater.

  4. Effects of the hydraulic conductivity microstructure on macrodispersivity

    Science.gov (United States)

    Di Dato, Mariaines; de Barros, Felipe P. J.; Fiori, Aldo; Bellin, Alberto

    2016-09-01

    Heterogeneity of the hydraulic properties is one of the main causes of the seemingly random distribution of solute concentration observed in contaminated aquifers, with macrodispersivity providing a global measure of spreading. Earlier studies on transport of solutes in heterogeneous formations, either theoretical or numerical, expressed dispersivity as a function of the geostatistical properties of the hydraulic conductivity K. In most cases, K follows a second-order statistical characterization, which may not be adequate when heterogeneity is high. In this work, we adopt the Multi-Indicator Model-Self Consistent Approach (MIMSCA) to compute the longitudinal and transverse macrodispersivity. This methodology enables to model the K field by using geological inclusions of different shapes and orientation (defined here as the microstructure), while replicating the heterogeneous macrostructure obtained by the second-order statistics. The above scheme attempts to reproduce the effect on macrodispersion of different distribution and orientation of local facies, and for instance it may represent the orientation and spatial features of the layers that are often observed in aquifers. The relevant impact of the microstructure on effective conductivity, longitudinal and transverse macrodispersivities is analyzed and discussed, for both binary and lognormally distributed K fields.

  5. Effect of Soil Washing for Lead and Zinc Removal on Soil Hydraulic Properties

    Science.gov (United States)

    Kammerer, Gerhard; Zupanc, Vesna; Gluhar, Simon; Lestan, Domen

    2017-04-01

    Soil washing as a metal pollution remediation process, especially part with intensive mixing of the soil slurry and soil compression after de-watering, significantly deteriorates physical properties of soil compared to those of non-remediated soil. Furthermore, changed physical characteristics of remediated soil influence interaction of plant roots with soil system and affect soil water regime. Remediated soils showed significant differences to their original state in water retention properties and changed structure due to the influence of artificial structure created during remediation process. Disturbed and undisturbed soil samples of remediated and original soils were analyzed. We evaluated soil hydraulic properties as a possible constraint for re-establishing soil structure and soil fertility after the remediation procedure.

  6. Novel method for the simultaneous quantification of soil hydraulic functions in the laboratory under consideration of shrinkage

    Science.gov (United States)

    Schindler, Uwe; Mueller, Lothar

    2013-04-01

    Knowledge about the soil hydraulic properties - water retention curve and unsaturated hydraulic conductivity - is required for soil water modelling and various soil hydrological studies. In general, soils and their pore size system are assumed to be rigid during the loss of water on drying. This is different from reality for many soils, especially for soils with high contents of clay or organic matter which are shrinking dependent on the pore pressure. As a result, the porosity, the pore size distribution and the bulk density of these soils are changing. Measurements of soil hydraulic functions with the classical methods are time consuming, the equipment is costly and the measuring results are affected by uncertainties. Methods enabling the quantification of soil hydraulic functions under consideration of shrinkage are missing. A method frequently used for the simultaneous determination of both the hydraulic functions of unsaturated soil samples is the evaporation method. Due to the limited range of common tensiometers, all methodological variations of the evaporation method in the past suffered from the limitation that the hydraulic functions could only be determined to a maximum tension of 50 kPa. The extended evaporation method (EEM) overcomes this restriction. Using new boyling delay tensiometers and applying the air-entry pressure of the tensiometer's porous ceramic cup as final tension value allows the quantification of the soil hydraulic functions in a range to close to the wilting point. Based on EEM a practicable method was developed which additionally allows the consideration of shrinkage. The experimental setup followed the system HYPROP which is a commercial device with vertically aligned tensiometers that is optimized to perform evaporation measurements. Preliminary investigations were conducted to study the geometrical change of 24 samples different in texture and origin. The samples were enwrapped with a rubber membrane impermeable for water and air

  7. Spatial Prediction of Hydraulic Zones from Soil Properties and Secondary Data Using Factorial Kriging Analysis

    Science.gov (United States)

    Bevington, James; Morari, Francesco; Scudiero, Elia; Teatini, Pietro; Vellidis, George

    2015-04-01

    The development of pedotransfer functions (PTF) is an important topic in soil science research because there is a critical need for incorporation of vadose zone phenomena into large scale climate models. Soil measurements are inherently spatially dependent and therefore application of geospatial statistics provides an avenue for estimating soil properties. The aim of this study is to define management zones based on soil hydraulic properties. Samples were collected from 50 locations at 4 depths in a 20.8ha field located in the Po River delta in Italy. Water retention curves (WRC) and unsaturated hydraulic conductivity curves (UHC) and were determined via inversion of measurements taken using the Wind (Dane and Topp, 1994) method. This region is in known to have paleo-channel structures and highly heterogeneous soils. Factorial kriging analysis (FKA) was applied to hydraulic parameters in one data set and soil physical properties in another data set at 4 depths. The mapped principal components (PCs) were used in a fuzzy-c means algorithm to define zones of like properties. To examine the physical significance of these zones, curve parameters and hydraulic curves were investigated. Zones were able to distinguish between θ_s(saturated water content), n (shape parameter) and α (inverse of air entry) while θr (residual water content) and Ks (saturated conductivity) were not statistically different between the groups. For curve comparisons, WRC were found to be significantly different between zones at all tensions while effective saturation curves (Se) differ for the majority of tensions (except at 28cm), but UHC did not differ. The spatial relevance of the zones was examined by overlaying hydraulic zones with zones defined using the FKA and fuzzy-c means approach from soil physical properties such as texture and bulk density. The hydraulic zones overlaid with areal accuracy ranging from 46.66% to 92.41%. As there is much similarity between these sets of zones, there

  8. Establishing temporally and spatially variable soil hydraulic data for use in a runoff simulation in a loess region of the Netherlands

    NARCIS (Netherlands)

    Stolte, J.; Ritsema, C.J.; Veerman, G.J.; Hamminga, W.

    1996-01-01

    Soil hydraulic functions for run-off simulation were collected in catchment areas in a loess region. Each soil horizon was sampled and water retention and hydraulic conductivity characteristics were determined. Run-off generation during standard rain events was quantified by simulation. Based on the

  9. Determining the unsaturated hydraulic conductivity of a compacted sand-bentonite mixture under constant volume and free-swell conditions

    CERN Document Server

    Cui, Yu-Jun; Loiseau, Cyril; Delage, Pierre; 10.1016/j.pce.2008.10.017

    2008-01-01

    Highly compacted sand-bentonite mixtures are often considered as possible engineered barriers in deep high-level radioactive waste disposals. In-situ, the saturation of these barriers from their initially unsaturated state is a complex hydro-mechanical coupled process in which temperature effects also play a role. The key parameter of this process is the unsaturated hydraulic conductivity of the barrier. In this paper, isothermal infiltration experiments were conducted to determine the unsaturated hydraulic conductivity according to the instantaneous profile method. To do so, total suction changes were monitored at different locations along the soil specimen by using resistivity relative humidity probes. Three constant volume infiltration tests were conducted showing, unexpectedly, a decrease of the hydraulic conductivity during infiltration. One test performed under free-swell conditions showed the opposite and standard trend. These observations were interpreted in terms of microstructure changes during wett...

  10. Dentin permeability: effects of temperature on hydraulic conductance.

    Science.gov (United States)

    Pashley, D H; Thompson, S M; Stewart, F P

    1983-09-01

    The rates of fluid movement across dentin discs, in vitro, were measured at 10, 20, 30, 40, and 50 degrees C in unetched and acid-etched dentin. Increasing the temperature 40 degrees (i.e., from 10 to 50 degrees C) resulted in a 1.8-fold increase in fluid flow in unetched dentin, which was of a magnitude similar to the decrease in viscosity that occurred over the same temperature range. In acid-etched dentin, the 40 degrees C temperature change produced more than a four-fold increase in fluid conductance, more than double that which could be accounted for by changes in viscosity. Analysis of the data suggests that this additional increment in hydraulic conductance is due to thermal expansion-induced increases in tubular diameter.

  11. Multiobjective Optimization of Effective Soil Hydraulic Properties on a Lysimeter from a Layered, Gravelly Vadose Zone

    Science.gov (United States)

    Werisch, Stefan; Lennartz, Franz

    2013-04-01

    Estimation of effective soil hydraulic parameters for characterization of the vadose zone properties is important for many applications from prediction of solute and pesticide transport to water balance modeling in small catchments. Inverse modeling has become a common approach to infer the parameters of the water retention and hydraulic conductivity functions from dynamic experiments under varying boundary conditions. To gain further inside into to the water transport behavior of an agricultural field site with a layered, gravelly vadose zone, a lysimeter was taken and equipped with a total of 48 sensors (24 tensiometers and 24 water content probes). The sensors were arranged in 6 vertical arrays consisting of 4 sensor pairs, respectively. Pressure heads and water contents were measured in four depths in each of the arrays allowing for the estimation of the soil hydraulic properties of the three individual soil layers by inverse modeling. For each of the soil horizons, a separate objective function was defined to fit the model to the observation. We used the global multiobjective multimethod search algorithm AMALGAM (Vrugt et al., 2007) in combination with the water flow and solute transport model Hydrus1D (Šimúnek et al., 2008) to estimate the soil hydraulic properties of the Mualem van Genuchten model (van Genuchten, 1980). This experimental design served for the investigation of two important questions: a) do effective soil hydraulic properties at the lysimeter scale exist, more specifically: can a single representative parameter set be found which describes the hydraulic behavior in each of the arrays with acceptable performance? And b) which degree of freedom is necessary or required for an accurate description of the one dimensional water flow at each of the arrays? Effective soil hydraulic parameters were obtained for each of the sensor arrays individually, resulting in good agreement between the model predictions and the observations for the individual

  12. Hydraulic characterization of a sealed loamy soil in a Mediterranean vineyard

    Science.gov (United States)

    Alagna, Vincenzo; Di Prima, Simone; Bagarello, Vincenzo; Guaitoli, Fabio; Iovino, Massimo; Keesstra, Saskia; Cerdà, Artemi

    2017-04-01

    Water infiltration measurements constitute a common way for an indirect characterization of sealed/crusted soils (Alagna et al., 2013). The Beerkan Estimation of Soil Transfer (BEST) parameters procedure by Lassabatere et al. (2006) is very attractive for practical use since it allows an estimation of both the soil water retention and hydraulic conductivity functions. The BEST method considers certain analytical formulae for the hydraulic characteristic curves and estimates their shape parameters, which are texture dependent, from particle-size analysis by physical-empirical pedotransfer functions. Structure dependent scale parameters are estimated by a beerkan experiment, i.e. a three-dimensional (3D) field infiltration experiment at ideally zero pressure head. BEST substantially facilitates the hydraulic characterization of unsaturated soils, and it is gaining popularity in soil science (Bagarello et al., 2014a; Di Prima, 2015; Di Prima et al., 2016b). Bagarello et al. (2014b) proposed a beerkan derived procedure to explain surface runoff and disturbance phenomena at the soil surface occurring during intense rainfall events. Di Prima et al. (2016a) applied this methodology in a vineyard with a sandy-loam texture. These authors compared this simple methodology with rainfall simulation experiments establishing a physical link between the two methodologies through the kinetic energy of the rainfall and the gravitational potential energy of the water used for the beerkan runs. They also indirectly demonstrated the occurrence of a certain degree of compaction and mechanical breakdown using a minidisk infiltrometer (Decagon, 2014). With this device, they reported a reduction of the unsaturated hydraulic conductivity by 2.3 times, due to the seal formation. The ability of the BEST method to distinguish between crusted and non-crusted soils was demonstrated by Souza et al. (2014). However, the potential of the beerkan runs to detect the effect of the seal on flow and

  13. ESTIMATION OF HYDRAULIC CONDUCTIVITY AND CONTENT OF FINES FROM EXPERIMENTAL LAWS THAT CORELATE HYDRAULIC AND ELECTRIC PARAMETERS

    Directory of Open Access Journals (Sweden)

    Héctor José Peinado-Guevara

    2010-09-01

    Full Text Available Hydraulic conductivity is a basic element in the advancement of knowledge of a geological environment in both the flow and transport processes of pollutants for conservation projects, managementand environmental management and also for the development of public policies for protection of ecosystems, among others. The aim of this paper is to obtain the hydraulic conductivity (K and the finescontent (C of saturated granular half using two empirical laws. One correlates the electrical conductivity of saturated granular media σo and water saturated σw which depends on the formation factor(F, cation exchange capacity (CEC and the fines content in the saturated soil. Using data obtained from materials of 18 samples from 6 wells the relationships between F-C and CEC-C were obtained,so the equation reduces to a σo function in terms of σw and C, with a correlation coefficient of R = 0.97. A second experimental law is the one that results from the experimental relationship between K and C,being 1.4054 K 0.1804.C with a correlation coefficient of R = 0.96. From both experimental expressions relationships between K and C, a and C,and C are created so from every pair knowing one of them you get to know the other one. Under the scheme outlined electrical conductivity sections for the saturated medium and fines content are obtained,finding that the groundwater in the study area consists of a thin top layer and beneath it there is a predominantly sandy environment.

  14. The effect of subsurface military detonations on vadose zone hydraulic conductivity, contaminant transport and aquifer recharge

    Science.gov (United States)

    Lewis, Jeffrey; Burman, Jan; Edlund, Christina; Simonsson, Louise; Berglind, Rune; Leffler, Per; Qvarfort, Ulf; Thiboutot, Sonia; Ampleman, Guy; Meuken, Denise; Duvalois, Willem; Martel, Richard; Sjöström, Jan

    2013-03-01

    Live fire military training involves the detonation of explosive warheads on training ranges. The purpose of this experiment is to evaluate the hydrogeological changes to the vadose zone caused by military training with high explosive ammunition. In particular, this study investigates artillery ammunition which penetrates underground prior to exploding, either by design or by defective fuze mechanisms. A 105 mm artillery round was detonated 2.6 m underground, and hydraulic conductivity measurements were taken before and after the explosion. A total of 114 hydraulic conductivity measurements were obtained within a radius of 3 m from the detonation point, at four different depths and at three different time periods separated by 18 months. This data was used to produce a three dimensional numerical model of the soil affected by the exploding artillery round. This model was then used to investigate potential changes to aquifer recharge and contaminant transport caused by the detonating round. The results indicate that an exploding artillery round can strongly affect the hydraulic conductivity in the vadose zone, increasing it locally by over an order of magnitude. These variations, however, appear to cause relatively small changes to both local groundwater recharge and contaminant transport.

  15. Implications of Using Thermal Desorption to Remediate Contaminated Agricultural Soil: Physical Characteristics and Hydraulic Processes.

    Science.gov (United States)

    O'Brien, Peter L; DeSutter, Thomas M; Casey, Francis X M; Derby, Nathan E; Wick, Abbey F

    2016-07-01

    Given the recent increase in crude oil production in regions with predominantly agricultural economies, the determination of methods that remediate oil contamination and allow for the land to return to crop production is increasingly relevant. Ex situ thermal desorption (TD) is a technique used to remediate crude oil pollution that allows for reuse of treated soil, but the properties of that treated soil are unknown. The objectives of this research were to characterize TD-treated soil and to describe implications in using TD to remediate agricultural soil. Native, noncontaminated topsoil and subsoil adjacent to an active remediation site were separately subjected to TD treatment at 350°C. Soil physical characteristics and hydraulic processes associated with agricultural productivity were assessed in the TD-treated samples and compared with untreated samples. Soil organic carbon decreased more than 25% in both the TD-treated topsoil and the subsoil, and total aggregation decreased by 20% in the topsoil but was unaffected in the subsoil. The alteration in these physical characteristics explains a 400% increase in saturated hydraulic conductivity in treated samples as well as a decrease in water retention at both field capacity and permanent wilting point. The changes in soil properties identified in this study suggest that TD-treated soils may still be suitable for sustaining vegetation, although likely at a slightly diminished capacity when directly compared with untreated soils.

  16. How Can Soil Electrical Conductivity Measurements Control Soil Pollution?

    Directory of Open Access Journals (Sweden)

    Mohammad Reza

    2010-10-01

    Full Text Available Soil pollution results from the build up of contaminants, toxic compounds, radioactive materials, salts, chemicals and cancer-causing agents. The most common soil pollutants are hydrocarbons, heavy metals (cadmium, lead, chromium, copper, zinc, mercury and arsenic, herbicides, pesticides, oils, tars, PCBs and dioxins. Soil Electrical Conductivity (EC is one of the soil physical properties w hich have a good relationship with the other soil characteristics. As measuring soil electrical conductivity is easier, less expensive and faster than other soil properties measurements, using a detector that can do on the go soil EC measurements is a good tool for obtaining useful information about soil pollution condition.

  17. Borehole Heat Exchanger Systems: Hydraulic Conductivity and Frost-Resistance of Backfill Materials

    Science.gov (United States)

    Anbergen, Hauke; Sass, Ingo

    2016-04-01

    constant radial stress boundary conditions (sigma 2 = sigma 3 = constant) • radial freezing from inside out, following the in-situ freezing direction The results differ substantially from prior test procedures (such as standardized frost tests for concrete or soft soils). Concentric frost-induced cracking was observed. The cracking pattern is in good agreement with cryostatic suction processes and frost heave in fine grained soils. The hydraulic conductivity of the system depends on the composition of the grout. With the developed testing device (and procedure) a unified and independent assessment and quality control becomes feasible. Adequate materials for advanced shallow geothermal systems can be clearly identified.

  18. Optimization of Soil Hydraulic Model Parameters Using Synthetic Aperture Radar Data: An Integrated Multidisciplinary Approach

    DEFF Research Database (Denmark)

    Pauwels, Valentijn; Balenzano, Anna; Satalino, Giuseppe

    2009-01-01

    It is widely recognized that Synthetic Aperture Radar (SAR) data are a very valuable source of information for the modeling of the interactions between the land surface and the atmosphere. During the last couple of decades, most of the research on the use of SAR data in hydrologic applications has...... been focused on the retrieval of land and biogeophysical parameters (e.g., soil moisture contents). One relatively unexplored issue consists of the optimization of soil hydraulic model parameters, such its, for example, hydraulic conductivity, values, through remote sensing. This is due to the fact...... that no direct relationships between the remote-sensing observations, more specifically radar backscatter values, and the parameter values can be derived. However, land surface models can provide these relationships. The objective of this paper is to retrieve a number of soil physical model parameters through...

  19. Hydraulic fracturing to enhance the remediation of DNAPL in low permeability soils

    Energy Technology Data Exchange (ETDEWEB)

    Murdoch, L. [Univ. of Cincinnati, OH (United States); Slack, B. [FRX Inc., Cincinnati, OH (United States)

    1996-08-01

    Meager rates of fluid flow are a major obstacle to in situ remediation of low permeability soils. This paper describes methods designed to avoid that obstacle by creating fractures and filling them with sand to increase well discharge and change paths of fluid flow in soil. Gently dipping fractures 10 m in maximum dimension and 1 to 2 cm thick can be created in some contaminated soils at depths of a few in or greater. Hydraulic fractures can also be used to create electrically conductive layers or to deliver granules of chemically or biologically active compounds that will degrade contaminants in place. Benefits of applying hydraulic fractures to DNAPL recovery include rates of fluid recovery, enhancing upward gradients to improve hydrodynamic stabilization, forming flat-lying reactive curtains to intersect compounds moving downward, or improving the performance of electrokinetics intended to recover compounds dissolved in water. 30 refs., 7 figs., 1 tab.

  20. DEPTH CONTINUOUS HYDRAULIC CONDUCTIVITY PROFILING USING AN ACTIVE SOURCE PENETROMETER

    Science.gov (United States)

    Fitzgerald, M.; Elsworth, D.

    2009-12-01

    A method is developed to recover depth-continuous hydraulic conductivity profiles of an unconsolidated saturated aquifer using an active source penetrometer, the Hydraulic Profiling Tool (HPT). The tool yields estimates of K through continuous injection of fluid in the subsurface from a small port on the probe shaft while controlled measurements of net applied fluid pressure required to maintain a specified flow rate (typically 350 mL/min) are recorded. The tool gathers these data of flow rate and measured applied pressure during halted and constant-rate penetration (typically 2cm/sec) of the probe. The analysis is developed in two parts, first to explore the interplay between advective effects controlled by penetration rate and secondly flow volume effects controlled by the targeted flow rate. These two effects are analyzed through their respective influence on the measured applied pressure response in ΔP/σv’-Q/ΔP space, which shows a linear relationship for the flow rate to applied pressure response when Q/ΔP > 1 and when Q/ΔP 1. The analysis shows that penetration rate does not significantly influence the applied pressure response at the tested penetration rates (0 ≤ U(cm/s)≤ 4). The targeted applied flow rate does however influence the applied pressure response as flow rates less than ~300 mL/min show a scattering of the data in ΔP/σv’-Q/ΔP space, where above 300 mL/min the data begins to form a linear response. A targeted flow rate of QT = 400mL/min is suggested as a suitable flow rate based on this analysis. Measurements of hydraulic conductivity are then obtained for the HPT data through the derivation of an equation based on a recast form of Darcy’s law where considerations of the flow geometry as K = (QHPT/ΔP)(δw/πΦ). K profiles obtained for the HPT system are then compared against K profiles obtained from an independent method (PSU permeameter) and yield a good correlation between the two methods.

  1. The effect of rock fragments on the hydraulic properties of soils

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, R.W.; Bodvarsson, G.S.

    1995-04-01

    Many soils contain rock fragments the sizes of which are much larger than the average pore size of the sieved soil. Due to the fact that these fragments are often fairly large in relation to the soil testing apparatus, it is common to remove them before performing hydrologic tests on the soil. The question then arises as to whether or not there is a simple way to correct the laboratory-measured values to account for the fragments, so as to arrive at property values that can apply to the soil in situ. This question has arisen in the surface infiltration studies that are part of the site characterization program at Yucca Mountain, where accurate values of the hydraulic conductivities of near-surface soils are needed in order to accurately estimate infiltration rates. Although this problem has been recognized for some time, and numerous review articles have been written there are as yet no proven models to account for the effect of rock fragments on hydraulic conductivity and water retention. In this report we will develop some simple physically-based models to account for the effects of rock fragments on gross hydrological properties, and apply the resulting equations to experimental data taken from the literature. These models are intended for application to data that is currently being collected by scientists from the USGS on near-surface soils from Yucca Mountain.

  2. Temporal and spatial variability of soil hydraulic properties with implications on soil moisture simulations and irrigation scheduling

    Science.gov (United States)

    Feki, Mouna; Ravazzani, Giovanni; Mancini, Marco

    2017-04-01

    matter, bulk density) together with soil hydraulic parameters. Soil water retention curves parameters were measured following the evaporation method, using the HYPROP-device (Hydraulic Property Analyzer; UMS Munich, 2010). The saturated hydraulic conductivity was measured in the laboratory using KSAT-UMS falling head method. Results show that soil properties, often considered as static within hydrological models simulations are subjected to significant changes, with implications on infiltration and soil moisture movement modeling, and prediction on stress condition that is fundamental for irrigation scheduling.

  3. Interstitial hydraulic conductivity and interstitial fluid pressure for avascular or poorly vascularized tumors.

    Science.gov (United States)

    Liu, L J; Schlesinger, M

    2015-09-07

    A correct description of the hydraulic conductivity is essential for determining the actual tumor interstitial fluid pressure (TIFP) distribution. Traditionally, it has been assumed that the hydraulic conductivities both in a tumor and normal tissue are constant, and that a tumor has a much larger interstitial hydraulic conductivity than normal tissue. The abrupt transition of the hydraulic conductivity at the tumor surface leads to non-physical results (the hydraulic conductivity and the slope of the TIFP are not continuous at tumor surface). For the sake of simplicity and the need to represent reality, we focus our analysis on avascular or poorly vascularized tumors, which have a necrosis that is mostly in the center and vascularization that is mostly on the periphery. We suggest that there is an intermediary region between the tumor surface and normal tissue. Through this region, the interstitium (including the structure and composition of solid components and interstitial fluid) transitions from tumor to normal tissue. This process also causes the hydraulic conductivity to do the same. We introduce a continuous variation of the hydraulic conductivity, and show that the interstitial hydraulic conductivity in the intermediary region should be monotonically increasing up to the value of hydraulic conductivity in the normal tissue in order for the model to correspond to the actual TIFP distribution. The value of the hydraulic conductivity at the tumor surface should be the lowest in value.

  4. On simple methods for unsaturated soil hydraulic conductivity determination Sobre métodos simplificados de determinação da condutividade hidráulica do solo

    Directory of Open Access Journals (Sweden)

    O.O.S. Bacchi

    1993-09-01

    Full Text Available The simple methods of LIBARDI et al. (1980 and SISSON et al. (1980 for K(theta estimation, although developed on completely different theoretical basis, are rigorously identical for the exponential hydraulic conductivity model. The unit gradient approximation used in these methods seems valid for practical purposes but is theoretically in valid.Os métodos simplicados de LIBARDI et al (1980 e de SISSON et al (1980, para determinação da função K(teta, apesar de serem desenvolvidos sobre bases teóricas completamente diferentes, são rigorosamente iguais para o modelo exponencial de condutividade hidráulica. A hipótese do gradiente unitário utilizada nestes métodos parece ser válida apenas para efeito prático, mas não o sendo teoricamente.

  5. Variation of soil hydraulic properties with alpine grassland degradation in the eastern Tibetan Plateau

    Science.gov (United States)

    Pan, Tao; Hou, Shuai; Wu, Shaohong; Liu, Yujie; Liu, Yanhua; Zou, Xintong; Herzberger, Anna; Liu, Jianguo

    2017-05-01

    Ecosystems in alpine mountainous regions are vulnerable and easily disturbed by global environmental change. Alpine swamp meadow, a unique grassland type in the eastern Tibetan Plateau that provides important ecosystem services to the upstream and downstream regions of international rivers of Asia and other parts of the world, is undergoing severe degradation, which can dramatically alter soil hydraulic properties and water cycling processes. However, the effects of alpine swamp meadow degradation on soil hydraulic properties and the corresponding influencing mechanisms are still poorly understood. In this study, soil moisture content (SMC), field capacity (FC) and saturated hydraulic conductivity (Ks) together with several basic soil properties under lightly degraded (LD), moderately degraded (MD) and severely degraded (SD) alpine swamp meadow were investigated; the variations in SMC, FC and Ks with alpine swamp meadow degradation and their dominant influencing factors were analysed. The results showed that SMC and FC decreased consistently from LD to SD, while Ks decreased from LD to MD and then increased from MD to SD, following the order of LD > SD > MD. Significant differences in soil hydraulic properties between degradation degrees were found in the upper soil layers (0-20 cm), indicating that the influences of degradation were most pronounced in the topsoils. FC was positively correlated with capillary porosity, water-stable aggregates, soil organic carbon, and silt and clay content; Ks was positively correlated with non-capillary porosity (NCP). Relative to other soil properties, soil porosity is the dominant factor influencing FC and Ks. Capillary porosity explained 91.1 % of total variance in FC, and NCP explained 97.3 % of total variance in Ks. The combined effect of disappearing root activities and increasing sand content was responsible for the inconsistent patterns of NCP and Ks. Our findings suggest that alpine swamp meadow degradation would

  6. Effects of distance from the pulp and thickness on the hydraulic conductance of human radicular dentin.

    Science.gov (United States)

    Fogel, H M; Marshall, F J; Pashley, D H

    1988-11-01

    The purposes of this study were: (1) to measure the effect of distance from the pulp on the hydraulic conductance of human radicular dentin; (2) to determine the influence of dentin thickness on the rates of fluid flow; and (3) to attempt to correlate dentinal tubule densities and diameters with root dentin hydraulic conductance. Dentin slabs prepared from extracted, unerupted, human third molar teeth were placed in a split-chamber device to permit quantitation of fluid filtration rate (hydraulic conductance). In the SEM portion of the study, dentinal tubule numbers and diameters were recorded. The results indicated that radicular dentin hydraulic conductance decreased with distance from the pulp and with increasing dentin thickness. Tubule density and diameter correlated well with the measured hydraulic conductances. The relatively low hydraulic conductance of outer root dentin makes it a significant barrier to fluid movement across root structure.

  7. [Effects of invertebrate bioturbation on vertical hydraulic conductivity of streambed for a river].

    Science.gov (United States)

    Ren, Chao-Liang; Song, Jin-Xi; Yang, Xiao-Gang; Xue, Jian

    2013-11-01

    Streambed hydraulic conductivity is a key factor influencing water exchange between surface water and groundwater. However, the streambed invertebrate bioturbation has a great effect on the hydraulic conductivity. In order to determine the impact of invertebrate bioturbation on streambed hydraulic conductivity, the investigation of invertebrate bioturbation and in-situ test of vertical hydraulic conductivity of streambed are simultaneously conducted at five points along the main stream of the Weihe River. Firstly, correlation between the streambed vertical hydraulic conductivity and grain size distribution is analyzed. Secondly, type and density of the invertebrate and their correlation to hydraulic conductivity are determined. Finally, the effect of invertebrate bioturbation on the streambed hydraulic conductivity is illustrated. The results show that the vertical hydraulic conductivity and biological density of invertebrate are 18.479 m x d(-1) and 139 ind x m(-2), respectively for the Caotan site, where sediment composition with a large amount of sand and gravel particles. For Meixian site, the sediment constitutes a large amount of silt and clay particles, in which the vertical hydraulic conductivity and biological density of invertebrate are 2.807 m x d(-1) and 2 742 ind x m(-2) respectively. Besides, for the low permeability of four sites (Meixian, Xianyang, Lintong and Huaxian), grain size particles are similar while the vertical hydraulic conductivity and biological density of invertebrate are significantly different from one site to another. However, for each site, the vertical hydraulic conductivity closely related to biological density of invertebrate, the Pearson correlation coefficient is 0.987. It can be concluded that both grain size particles and invertebrate bioturbation influence sediment permeability. For example, higher values of streambed hydraulic conductivity from strong permeability site mainly due to the large amount of large-size particles

  8. The strength/moisture relations and hydraulic conductivity of Mexican tepetate

    Energy Technology Data Exchange (ETDEWEB)

    Nimlos, T.J. (Univ. of Montana, Missoula (USA)); Hillery P.A. (Environmental Information Center, Helena, MT (USA))

    1990-07-01

    Indurated soil material formed from volcanic-ash-flow tuff is widespread in the Pacific rim portions of Latin America. This material is called tepetate in Mexico where, in some areas, all soil overlying tepetate has been removed by erosion, leaving a barren landscape with a very slowly permeable surface that contributes to overland flow and flooding. Reclamation of this land involves ripping to break up the upper part of the tepetate or terracing to retain water so that it may infiltrate. Tepetate strength and hydraulic conductivity influence both treatments. The authors determined the change in tepetate strength with moisture. Unconfined compressive strength of eight typical samples was measured at four moisture contents. Strength declined with increasing moisture, especially in samples of high or moderate strength. These data suggest that tepetate of moderate or high strength should be reclaimed during the wet season, whereas low-strength tepetate can be reclaimed at any season. They also determined tepetate's saturated hydraulic conductivity; it varied from 1.5 {times} 10{sup {minus}7} to 36.0 {times} 10{sup {minus}7} m/s. These low values demonstrate the very slowly permeable nature of tepetate and account for the extensive erosion and flooding frequency.

  9. Modeling biofilm dynamics and hydraulic properties in variably saturated soils using a channel network model

    Science.gov (United States)

    Rosenzweig, Ravid; Furman, Alex; Dosoretz, Carlos; Shavit, Uri

    2014-07-01

    Biofilm effects on water flow in unsaturated environments have largely been ignored in the past. However, intensive engineered systems that involve elevated organic loads such as wastewater irrigation, effluent recharge, and bioremediation processes make understanding how biofilms affect flow highly important. In the current work, we present a channel-network model that incorporates water flow, substrate transport, and biofilm dynamics to simulate the alteration of soil hydraulic properties, namely water retention and conductivity. The change in hydraulic properties due to biofilm growth is not trivial and depends highly on the spatial distribution of the biofilm development. Our results indicate that the substrate mass transfer coefficient across the water-biofilm interface dominates the spatiotemporal distribution of biofilm. High mass transfer coefficients lead to uncontrolled biofilm growth close to the substrate source, resulting in preferential clogging of the soil. Low mass transfer coefficients, on the other hand, lead to a more uniform biofilm distribution. The first scenario leads to a dramatic reduction of the hydraulic conductivity with almost no change in water retention, whereas the second scenario has a smaller effect on conductivity but a larger influence on retention. The current modeling approach identifies key factors that still need to be studied and opens the way for simulation and optimization of processes involving significant biological activity in unsaturated soils.

  10. Estimating the Hydraulic Properties of Mountainous Podzol Soils Using Inverse Modeling Methods

    Science.gov (United States)

    Kuraz, Michal; Jacka, Lukas; Havlicek, Vojtech; Pavlasek, Jirka; Pech, Pavel

    2016-04-01

    The aim of this research is an evaluation of the soil hydraulic parameters (SHP) for a mountainous podzolic soil profile. The SHPs for the lower layers can be identified using standard approaches - a single ring (SR) infiltration experiment and a Guelph permeameter (GP) measurement. However, the thickness of the top soil layer is often much lower than the depth required to embed an SR or GP device, and the SHP for the top soil layer exhibits large temporal and spatial changes due to changes in vegetation activity during the seasons and a distinct alternation of wetting and drying cycles. SHPs for the top soil layer are therefore very difficult to measure directly. The SHPs for the top soil layer were therefore identified here by inverse modeling of the SR infiltration process, where, especially, the initial unsteady part of the experiment can provide very useful data for evaluating the retention curve parameters and the saturated hydraulic conductivity. This inverse analysis is the main topic of this paper. We discuss issues in assigning the initial and boundary condition setup, and the influence of spatial and temporal discretization on the values of the identified SHPs. Since the infiltration process is a typical case of a model that describes the progressive breakthrough of the wetting curve, we made use of adaptive domain decomposition (dd-adaptivity) described by Kuraz et al. (2013, 2014, 2015) for sequential activation and deactivation of the segments of our computational domain. Finally, we conducted a sensitivity analysis of our objective function on the SHP set.

  11. [Hydraulic limitation on photosynthetic rate of old Populus simonii trees in sandy soil of north Shaanxi Province].

    Science.gov (United States)

    Zuo, Li-Xiang; Li, Yang-Yang; Chen, Jia-Cun

    2014-06-01

    'Old and dwarf trees' on the loess plateau region mainly occurred among mature trees rather than among small trees. To elucidate the mechanism of tree age on 'old and dwarf trees' formation, taking Populus simonii, a tree species that accounted for the largest portion of 'old and dwarf trees' on the loess plateau, as an example, the growth, photosynthesis and hydraulic traits of P. simonii trees with different ages (young: 13-15 years, mid-aged: 31-34 years, and old: 49-54 years) were measured. The results showed that the dieback length increased, and net photosynthetic rate, stomatal conductance, transpiration rate, and whole plant hydraulic conductance decreased significantly with the increasing tree age. Both net photosynthetic rate and stomatal conductance measured at different dates were significantly and positively related to the whole plant hydraulic conductance, suggesting that the decreasing photosynthetic rate of old trees was possibly caused by the declined hydraulic conductance. Although the resistance to cavitation in stems and leaves was stronger in old trees than in young and mid-aged trees, there were no differences in midday native stem embolization degree and leaf hydraulic conductance based on the vulnerability curve estimation, suggesting that the increased hydraulic resistance of the soil-root system is probably the most important reason for decreasing the whole plant hydraulic conductance of old trees.

  12. Transport of heavy metals and chemical compatibility of hydraulic conductivity of a compacted sand-bentonite mixture

    Directory of Open Access Journals (Sweden)

    Nanthanit Charoenthaisong

    2008-03-01

    Full Text Available Clayey soils are usually used as barrier material in landfill liners because of its low hydraulic conductivity and high sorption capacity. Bentonite, which consists mainly of montmorillonite, has a high cation exchange capacity resulting in a high retention capacity of heavy metals. Sand is a permeable material but its hydraulic conductivity decreases significantly when mixed with bentonite. However, using a sand-bentonite mixture as landfill liners is questionable, because the hydraulic conductivity of the sand-bentonite mixture may increase when permeated with heavy metal solutions, which are normally found in landfill leachates. In this paper, transport of heavy metals through a compacted sand-bentonite mixture and its chemical compatibility were studied through the batch adsorption test, the column test, and the hydraulic conductivity test.Experimental results indicate that the sorption capacity of the bentonite, ranked in descending order, was Cr3+, Pb2+, Cd2+, Zn2+, and Ni2+, respectively. The diffusion coefficients of the sand-bentonite mixture were in the order of 10-5 cm2/s and the retardation factors were 130, 115, 111, and 90 for Pb2+, Ni2+, Zn2+, and Cd2+, respectively. The hydraulic conductivity of thesand-bentonite mixture was only compatible with a chromium solution having a concentration not greater than 0.001 M.

  13. Beneficial impact of polymer treatment of Ca-bentonites on long term hydraulic conductivity

    OpenAIRE

    Di Emidio, Gemmina; De Camillis, Michela; Bezuijen, Adam; Verastegui Flores, R.D.

    2014-01-01

    The hydraulic conductivity of geosynthetic clay liners for the confinement of waste disposal facilities mainly depends on the hydraulic conductivity of the core bentonite clay encased between the two geotextiles. Bentonite clay is the most common material for geosynthetic clay liners. Even thought, sodium bentonite has the lowest hydraulic conductivity to water, calcium bentonite is widely used because of low cost and availability. This research concerns the evaluation of the treatment of cal...

  14. Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis.

    Science.gov (United States)

    Pivovaroff, Alexandria L; Sack, Lawren; Santiago, Louis S

    2014-08-01

    Coordination of water movement among plant organs is important for understanding plant water use strategies. The hydraulic segmentation hypothesis (HSH) proposes that hydraulic conductance in shorter lived, 'expendable' organs such as leaves and longer lived, more 'expensive' organs such as stems may be decoupled, with resistance in leaves acting as a bottleneck or 'safety valve'. We tested the HSH in woody species from a Mediterranean-type ecosystem by measuring leaf hydraulic conductance (Kleaf) and stem hydraulic conductivity (KS). We also investigated whether leaves function as safety valves by relating Kleaf and the hydraulic safety margin (stem water potential minus the water potential at which 50% of conductivity is lost (Ψstem-Ψ50)). We also examined related plant traits including the operating range of water potentials, wood density, leaf mass per area, and leaf area to sapwood area ratio to provide insight into whole-plant water use strategies. For hydrated shoots, Kleaf was negatively correlated with KS , supporting the HSH. Additionally, Kleaf was positively correlated with the hydraulic safety margin and negatively correlated with the leaf area to sapwood area ratio. Consistent with the HSH, our data indicate that leaves may act as control valves for species with high KS , or a low safety margin. This critical role of leaves appears to contribute importantly to plant ecological specialization in a drought-prone environment.

  15. Soil water balance scenario studies using predicted soil hydraulic parameters

    NARCIS (Netherlands)

    Nemes, A.; Wösten, J.H.M.; Bouma, J.; Várallyay, G.

    2006-01-01

    Pedotransfer functions (PTFs) have become a topic drawing increasing interest within the field of soil and environmental research because they can provide important soil physical data at relatively low cost. Few studies, however, explore which contributions PTFs can make to land-use planning, in ter

  16. Measurement of 3-D hydraulic conductivity in aquifer cores at in situ effective stresses.

    Science.gov (United States)

    Wright, Martin; Dillon, Peter; Pavelic, Paul; Peter, Paul; Nefiodovas, Andrew

    2002-01-01

    An innovative and nondestructive method to measure the hydraulic conductivity of drill core samples in horizontal and vertical directions within a triaxial cell has been developed. This has been applied to characterizing anisotropy and heterogeneity of a confined consolidated limestone aquifer. Most of the cores tested were isotropic, but hydraulic conductivity varied considerably and the core samples with lowest values were also the most anisotropic. Hydraulic conductivity decreased with increasing effective stress due to closure of microfractures caused by sampling for all core samples. This demonstrates the importance of replicating in situ effective stresses when measuring hydraulic conductivity of cores of deep aquifers in the laboratory.

  17. Laboratory evaporation experiments in undisturbed peat columns for determining peat soil hydraulic properties

    Science.gov (United States)

    Dettmann, U.; Frahm, E.; Bechtold, M.

    2013-12-01

    Knowledge about hydraulic properties of organic soils is crucial for the interpretation of the hydrological situation in peatlands. This in turn is the basis for designing optimal rewetting strategies, for assessing the current and future climatic water balance and for quantifying greenhouse gas emissions of CO2, CH4 and N2O, which are strongly controlled by the depth of the peat water table. In contrast to mineral soils, the hydraulic properties of organic soils differ in several aspects. Due to the high amount of organic components, strong heterogeneity, and shrinkage and swelling of peat, accompanied by changing soil volume and bulk density, the applicability of standard hydraulic functions developed for mineral soils for describing peat soil moisture dynamics is often questioned. Hence, the objective of this study was to investigate the applicability of the commonly applied van Genuchten-Mualem (VGM) parameterization and to evaluate model errors for various peat types. Laboratory column experiments with undisturbed peat soils (diameter: 30 cm, height: 20 cm) from 5 different peatlands in Germany were conducted. In numerical simulations using HYDRUS-1D the experimental data were used for an inverse estimation of the soil hydraulic parameters. Using the VGM parameterization, the model errors between observed and measured pressure heads were quantified with a root mean square error (RMSE) of 20 - 65 cm. The RMSE increased for soils with higher organic carbon content and higher porosity. Optimizing the VGM 'tortuosity' parameter (τ) instead of fixing it to its default of 0.5 strongly reduced the RMSE, especially for the soils that showed high pressure head gradients during the experiment. Due to the fact, that very negative pressure heads in peatlands occur rarely, we reduced the range of pressured heads in the inversion to a 'field-relevant' range from 0 to -200 cm which strongly reduced the RMSE to 6 - 12 cm and makes the VGM parameterization applicable for all

  18. Inverse modeling of soil water content to estimate the hydraulic properties of a shallow soil and the associated weathered bedrock

    Science.gov (United States)

    Le Bourgeois, O.; Bouvier, C.; Brunet, P.; Ayral, P.-A.

    2016-10-01

    Modeling soil water flow requires the knowledge of numerous parameters associated to the water content and the soil hydraulic properties. Direct estimations of those parameters in laboratory require expensive equipment and the obtained parameters are generally not representative at the field scale because of the limitation of core sample size. Indirect methods such as inverse modeling are known to get efficient estimations and are easier to set up and process for large-scale studies. In this study, we investigated the capacity of an inverse modeling procedure to estimate the soil and the bedrock hydrodynamic properties only from in situ soil water content measurements at multiple depths under natural conditions. Multi-objective parameter optimization was performed using the HYDRUS-1D software and an external optimization procedure based on the NSGA-II algorithm. In a midslope shallow soil, water content was monitored at 3 depths, 20, 40, and 60 cm during 12 intense rainfall events, whose amounts ranged between 50 and 250 mm and duration between 1 and 5 days. The vertical profile was considered as 2 layers of soils above a third layer representing the weathered schist rock. This deep layer acted as a deep boundary condition, which features the bedrock permeability and water storage. Each layer was described trough the 6 parameters of the Mualem-van Genuchten formulation. The calibrated parameters appeared to have very low uncertainty while allowing a good modelisation of the observed water content variations. The calibrated saturated water content was close to the laboratory porosity measurements while the saturated hydraulic conductivity showed that the soil was highly permeable, as measured in the field. The inverse modeling approach allowed an estimation of the hydraulic properties of the bedrock layer where no measurement was available. The bedrock layer was found to have a low saturated hydraulic conductivity (model failed sometimes to reproduce the saturation

  19. May We Identify The Spatial Variability of Soil Hydraulic Properties Based On Measurements With "spatial Tdr"? A) Model Study

    Science.gov (United States)

    Zehe, E.; Becker, R.; Schädel, W.

    A dynamic system left without external disturbances, will always tend to a stable equilibrium state that is consistent with the internal physics. For natural soils such an equilibrium state is reached when the gradients of the total hydraulic potential tend to zero. This statement is still valid for heterogeneous soils, because the hydraulic po- tential is an intensive state variable and therefore continuous at discontinuities of the pore space. In contrary the soil water content is as an extensive property discontinu- ous at discontinuities of the pore space. Hence, a small scale soil moisture pattern that persists if the soil state tends to hydraulic equilibrium, reflects the lateral small scale variability of the pore space. The objectives of our study are to show a) whether and how we could use TDR observations to identify the small scale variability of the pore space. For that purpose we analyse artificial TDR measurements, taken from physi- cally based simulations of soil water dynamics in heterogeneous media. b) We want to introduce a new TDR technology which we call "Spatial TDR", that is suitable for that purposes. To produce the artificial TDR-datasets we generate random fields of soil porosity and saturated hydraulic conductivity with different statistical properties based on field data in a Luvisol and simulate artificial water dynamics in this model soil based on Richards-equation. Within this model soil we define several hypothetical "Spatial TDR" clusters, that differ in the lateral spacing and the number of the probes, in the temporal resolution of the hypothetical measurements and in the assumed mea- surement accuracy. If the model soil approaches hydraulic equilibrium, the remaining soil moisture pattern will be dominated by the statistical properties of the porosity. In contrary the variability of the hydraulic conductivity will dominate the soil moisture patterns during infiltration events. The hypothetical Spatial TDR measurements within the

  20. DETERMINAÇÃO DA CONDUTIVIDADE HIDRÁULICA E DA SORVIDADE DE UM SOLO NÃO-SATURADO UTILIZANDO-SE PERMEÂMETRO A DISCO DETERMINATION OF UNSATURATED HYDRAULIC CONDUCTIVITY AND SORPTIVITY OF A SOIL USING A DISK PERMEAMETER

    Directory of Open Access Journals (Sweden)

    EDVANE BORGES

    1999-11-01

    Full Text Available Dois métodos, utilizando permeâmetros a disco, foram usados para medir a sorvidade e a condutividade hidráulica em três horizontes de um solo de Santa Maria da Boa Vista, Pernambuco, utilizando-se potenciais de fornecimento de água de 0, -2,5, -5 e -10 cm de água. No primeiro método, a condutividade hidráulica foi obtida através de estimativas da sorvidade e do fluxo estacionário, utilizando-se apenas um permeâmetro. No segundo, as medidas da sorvidade e da condutividade hidráulica foram feitas utilizando-se valores dos fluxos estacionários, obtidos a partir de dois permeâmetros de diferentes raios. Esse segundo método apresentou resultados mais consistentes dos tempos -- gravitacional e geométrico --, e do raio característico de poros que o primeiro método. A sorvidade foi tão importante quanto a condutividade hidráulica para caracterizar o processo de infiltração. A redução brusca dos valores dos raios característicos de poros do horizonte A2/B, com mudanças no potencial de fornecimento de água, revelou a heterogeneidade da estrutura deste horizonte, permitindo identificar a influência dos volumes argilosos compactados sobre o processo de infiltração.Sorptivity and hydraulic conductivity were determined by two methods using disc permeameters. Infiltration experiments were carried out on three horizons of a representative soil of the semi-arid region, located in Santa Maria da Boa Vista, State of Pernambuco, Brazil. Water was supplied to this soil by disc permeameters at potentials of 0, -2.5, -5 and -10 cm of water. In the first method, hydraulic conductivity was measured using estimates of sorptivity and steady state fluxes. In the second, sorptivity and hydraulic conductivity were determined using measurements of steady state fluxes with two disc permeameters of different radius. Results of the second method, regarding characteristic times and characteristic pore radius, were more consistent than those of the

  1. Influences of soil hydraulic and mechanical parameters on land subsidence and ground fissures caused by groundwater exploitation

    Institute of Scientific and Technical Information of China (English)

    陈兴贤; 骆祖江; 周世玲

    2014-01-01

    In order to study the influences of hydraulic and mechanical parameters on land subsidence and ground fissure caused by groundwater exploitation, based on the Biot’s consolidation theory and combined with the nonlinear rheological theory of soil, the constitutive relation in Biot’s consolidation theory is extended to include the viscoelastic plasticity, and the dynamic relationship among the porosity, the hydraulic conductivity, the parameters of soil deformation and effective stress is also considered, a three-dimensional full coupling mathematical model is established and applied to the study of land subsidence and ground fissures of Cangzhou in Hebei Province, through the analysis of parameter sensitivity, the influences of soil hydraulic and mechanical parame-ters on land subsidence and ground fissure are revealed. It is shown that the elastic modulus E , the Poisson ratio, the specific yield m and the soil cohesion c have a great influence on the land subsidence and the ground fissures. In addition, the vertical hydraulic conductivity zk and the horizontal hydraulic conductivity ks also have a great influence on the land subsidence and the ground fissures.

  2. Effect of Corn Residue Biochar on the Hydraulic Properties of Sandy Loam Soil

    Directory of Open Access Journals (Sweden)

    Avanthi Deshani Igalavithana

    2017-02-01

    Full Text Available Biochar has an ability to alter the biological, chemical, and physical properties of soil due to its physicochemical properties such as surface area, porosity, nutrient retention ability, available nutrient contents, aromaticity, etc. The present study was designed to evaluate the impact of physical properties and application rate of biochar on the hydraulic properties of a sandy loam soil in the short term. Biochar was produced at 500 °C from dried corn residue (BC500. The BC500 was incorporated at the rates of 0, 2.5%, 5.0%, 7.5%, and 10% (w·w−1 into the sandy loam soil and filled up to a height of 4 cm, in cores having 5 cm diameter and height. Each treatment was performed in triplicate and equilibrated for 30 days. Then saturated hydraulic conductivity (Ksat, water holding capacity (WHC, and bulk density were determined in each sample after four days of saturation at room temperature in a water bath. The BC500 particle size distribution, pores, and surface functional groups were assessed. The Ksat exhibited a highly significant exponential reduction from 0% to 7.5% of BC500 application and approached an asymptote at 10% BC500. Bulk density showed a significant negative correlation to biochar application rate. The WHC and BC500 application rate illustrated a strong positive relationship. Biochar surface was free from hydrophobic functional groups. The addition of BC500 has a positive influence on soil hydraulic properties, primarily due to the increased soil porosity. The BC500 is composed of a microporous structure and hydrophilic surface that retain water in sandy textured soils. The application of BC500 would be a wise investment to maximize the water use efficiency in soils for agricultural production.

  3. A hydraulic model is compatible with rapid changes in leaf elongation under fluctuating evaporative demand and soil water status.

    Science.gov (United States)

    Caldeira, Cecilio F; Bosio, Mickael; Parent, Boris; Jeanguenin, Linda; Chaumont, François; Tardieu, François

    2014-04-01

    Plants are constantly facing rapid changes in evaporative demand and soil water content, which affect their water status and growth. In apparent contradiction to a hydraulic hypothesis, leaf elongation rate (LER) declined in the morning and recovered upon soil rehydration considerably quicker than transpiration rate and leaf water potential (typical half-times of 30 min versus 1-2 h). The morning decline of LER began at very low light and transpiration and closely followed the stomatal opening of leaves receiving direct light, which represent a small fraction of leaf area. A simulation model in maize (Zea mays) suggests that these findings are still compatible with a hydraulic hypothesis. The small water flux linked to stomatal aperture would be sufficient to decrease water potentials of the xylem and growing tissues, thereby causing a rapid decline of simulated LER, while the simulated water potential of mature tissues declines more slowly due to a high hydraulic capacitance. The model also captured growth patterns in the evening or upon soil rehydration. Changes in plant hydraulic conductance partly counteracted those of transpiration. Root hydraulic conductivity increased continuously in the morning, consistent with the transcript abundance of Zea maize Plasma Membrane Intrinsic Protein aquaporins. Transgenic lines underproducing abscisic acid, with lower hydraulic conductivity and higher stomatal conductance, had a LER declining more rapidly than wild-type plants. Whole-genome transcriptome and phosphoproteome analyses suggested that the hydraulic processes proposed here might be associated with other rapidly occurring mechanisms. Overall, the mechanisms and model presented here may be an essential component of drought tolerance in naturally fluctuating evaporative demand and soil moisture.

  4. Hydraulic conductance of Acacia phyllodes (foliage) is driven by primary nerve (vein) conductance and density.

    Science.gov (United States)

    Sommerville, Katy E; Sack, Lawren; Ball, Marilyn C

    2012-01-01

    We determined effects of venation traits on hydraulic conductance of phyllodes (foliage), using an array of Acacia s.str. species with diverse phyllode morphologies as the source of variation. Measurements were made on phyllodes from 44 species, grown in common gardens but originating from different positions along a precipitation gradient. K(phyllode) varied 18-fold and was positively correlated with primary nerve hydraulic conductance, and with primary nerve (vein) density but not with minor nerve density, in contrast with previous studies of true leaves in other dicotyledons. Phyllodes with higher primary nerve density also had greater mass per area (PMA) and larger bundle sheath extensions (BSEs) from their minor nerves. We suggest that higher primary nerve conductivity and density may decrease the distance travelled in the high-resistance extra-xylem pathways of the phyllode. Further, larger BSEs may increase the area available for dispersion of water from the xylem to the extra-xylem tissue. High PMA phyllodes were more common in acacias from areas receiving lower annual precipitation. Maximizing efficient water movement through phyllodes may be more important where rainfall is meagre and infrequent, explaining relationships between nerve patterns and the climates of origin in Australian phyllodinous Acacia.

  5. Hydraulics.

    Science.gov (United States)

    Decker, Robert L.; Kirby, Klane

    This curriculum guide contains a course in hydraulics to train entry-level workers for automotive mechanics and other fields that utilize hydraulics. The module contains 14 instructional units that cover the following topics: (1) introduction to hydraulics; (2) fundamentals of hydraulics; (3) reservoirs; (4) lines, fittings, and couplers; (5)…

  6. MEASURING VERTICAL PROFILES OF HYDRAULIC CONDUCTIVITY WITH IN SITU DIRECT-PUSH METHODS

    Science.gov (United States)

    U.S. EPA (Environmental Protection Agency) staff developed a field procedure to measure hydraulic conductivity using a direct-push system to obtain vertical profiles of hydraulic conductivity. Vertical profiles were obtained using an in situ field device-composed of a Geopr...

  7. New empirical relationship between grain size distribution and hydraulic conductivity for ephemeral streambed sediments

    KAUST Repository

    Rosas, Jorge

    2014-07-19

    Grain size distribution, porosity, and hydraulic conductivity were determined for 39 sediment samples collected from ephemeral streams (wadis) in western Saudi Arabia. The measured hydraulic conductivity values were then compared to values calculated using 20 different empirical equations commonly used to estimate hydraulic conductivity from grain size analyses. It was found that most of the hydraulic conductivity values estimated from the empirical equations correlated very poorly with the measured hydraulic conductivity values. Modifications of the empirical equations, including changes to special coefficients and statistical offsets, were made to produce modified equations that considerably improved the hydraulic conductivity estimates from grain size data for wadi sediments. The Chapuis, Hazen, Kozeny, Slichter, Terzaghi, and Barr equations produced the best correlations, but still had relatively high predictive errors. The Chapius equation was modified for wadi sediments by incorporating mud percentage and the standard deviation (in phi units) into a new equation that reduced the predicted hydraulic conductivity error to ±14.1 m/day. The equation is best applied to ephemeral stream samples that have hydraulic conductive values greater than 2 m/day.

  8. Comparison of empirical, semi-empirical and physically based models of soil hydraulic functions derived for bi-modal soils.

    Science.gov (United States)

    Kutílek, M; Jendele, L; Krejca, M

    2009-02-16

    The accelerated flow in soil pores is responsible for a rapid transport of pollutants from the soil surface to deeper layers up to groundwater. The term preferential flow is used for this type of transport. Our study was aimed at the preferential flow realized in the structural porous domain in bi-modal soils. We compared equations describing the soil water retention function h(theta) and unsaturated hydraulic conductivity K(h), eventually K(theta) modified for bi-modal soils, where theta is the soil water content and h is the pressure head. The analytical description of a curve passing experimental data sets of the soil hydraulic function is typical for the empirical equation characterized by fitting parameters only. If the measured data are described by the equation derived by the physical model without using fitting parameters, we speak about a physically based model. There exist several transitional subtypes between empirical and physically based models. They are denoted as semi-empirical, or semi-physical. We tested 3 models of soil water retention function and 3 models of unsaturated conductivity using experimental data sets of sand, silt, silt loam and loam. All used soils are typical by their bi-modality of the soil porous system. The model efficiency was estimated by RMSE (Root mean square error) and by RSE (Relative square error). The semi-empirical equation of the soil water retention function had the lowest values of RMSE and RSE and was qualified as "optimal" for the formal description of the shape of the water retention function. With this equation, the fit of the modelled data to experiments was the closest one. The fitting parameters smoothed the difference between the model and the physical reality of the soil porous media. The physical equation based upon the model of the pore size distribution did not allow exact fitting of the modelled data to the experimental data due to the rigidity and simplicity of the physical model when compared to the

  9. Spatial variability of hydraulic conductivity of an unconfined sandy aquifer determined by a mini slug test

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Hinsby, Klaus; Christensen, Thomas Højlund;

    1992-01-01

    The spatial variability of the hydraulic conductivity in a sandy aquifer has been determined by a mini slug test method. The hydraulic conductivity (K) of the aquifer has a geometric mean of 5.05 × 10−4 m s−1, and an overall variance of 1n K equal to 0.37 which corresponds quite well to the results...... obtained by two large scale tracer experiments performed in the aquifer. A geological model of the aquifer based on 31 sediment cores, proposed three hydrogeological layers in the aquifer concurrent with the vertical variations observed with respect to hydraulic conductivity. The horizontal correlation...... length of the hydraulic conductivity has been determined for each of the three hydrogeological layers and is found to be small (1–2.5 m). The asymptotic longitudinal dispersivity of the aquifer has been estimated from the variance in hydraulic conductivity and the horizontal correlation length...

  10. Leaf hydraulic conductance for a tank bromeliad: axial and radial pathways for moving and conserving water.

    Science.gov (United States)

    North, Gretchen B; Lynch, Frank H; Maharaj, Franklin D R; Phillips, Carly A; Woodside, Walter T

    2013-01-01

    Epiphytic plants in the Bromeliaceae known as tank bromeliads essentially lack stems and absorptive roots and instead take up water from reservoirs formed by their overlapping leaf bases. For such plants, leaf hydraulic conductance is plant hydraulic conductance. Their simple strap-shaped leaves and parallel venation make them suitable for modeling leaf hydraulic conductance based on vasculature and other anatomical and morphological traits. Plants of the tank bromeliad Guzmania lingulata were investigated in a lowland tropical forest in Costa Rica and a shaded glasshouse in Los Angeles, CA, USA. Stomatal conductance to water vapor and leaf anatomical variables related to hydraulic conductance were measured for both groups. Tracheid diameters and numbers of vascular bundles (veins) were used with the Hagen-Poiseuille equation to calculate axial hydraulic conductance. Measurements of leaf hydraulic conductance using the evaporative flux method were also made for glasshouse plants. Values for axial conductance and leaf hydraulic conductance were used in a model based on leaky cable theory to estimate the conductance of the radial pathway from the vein to the leaf surface and to assess the relative contributions of both axial and radial pathways. In keeping with low stomatal conductance, low stomatal density, low vein density, and narrow tracheid diameters, leaf hydraulic conductance for G. lingulata was quite low in comparison with most other angiosperms. Using the predicted axial conductance in the leaky cable model, the radial resistance across the leaf mesophyll was predicted to predominate; lower, more realistic values of axial conductance resulted in predicted radial resistances that were closer to axial resistance in their impact on total leaf resistance. Tracer dyes suggested that water uptake through the tank region of the leaf was not limiting. Both dye movement and the leaky cable model indicated that the leaf blade of G. lingulata was structurally and

  11. Hydraulic redistribution in dwarf Rhizophora mangle trees driven by interstitial soil water salinity gradients: impacts on hydraulic architecture and gas exchange.

    Science.gov (United States)

    Hao, Guang-You; Jones, Tim J; Luton, Corene; Zhang, Yong-Jiang; Manzane, Eric; Scholz, Fabian G; Bucci, Sandra J; Cao, Kun-Fang; Goldstein, Guillermo

    2009-05-01

    Rhizophora mangle L. trees of Biscayne National Park (Florida, USA) have two distinct growth forms: tall trees (5-10 m) growing along the coast and dwarf trees (1 m or less) growing in the adjacent inland zone. Sharp decreases in salinity and thus increases in soil water potential from surface soil to about a depth of 1 m were found at the dwarf mangrove site but not at the tall mangrove site. Consistent with our prediction, hydraulic redistribution detected by reverse sap flow in shallow prop roots was observed during nighttime, early morning and late afternoon in dwarf trees, but not in tall trees. In addition, hydraulic redistribution was observed throughout the 24-h period during a low temperature spell. Dwarf trees had significantly lower sapwood-specific hydraulic conductivity, smaller stem vessel diameter, lower leaf area to sapwood area ratio (LA/SA), smaller leaf size and higher leaf mass per area. Leaves of dwarf trees had lower CO(2) assimilation rate and lower stomatal conductance compared to tall trees. Leaf water potentials at midday were more negative in tall trees that are consistent with their substantially higher stomatal conductance and LA/SA. The substantially lower water transport efficiency and the more conservative water use of dwarf trees may be due to a combination of factors such as high salinity in the surface soil, particularly during dry periods, and substantial reverse sap flow in shallow roots that make upper soil layers with high salinity a competing sink of water to the transpiring leaves. There may also be a benefit for the dwarf trees in having hydraulic redistribution because the reverse flow and the release of water to upper soil layers should lead to dilution of the high salinity in the rhizosphere and thus relieve its potential harm to dwarf R. mangle trees.

  12. High-resolution hydraulic parameter maps for surface soils in tropical South America

    Science.gov (United States)

    Marthews, T. R.; Quesada, C. A.; Galbraith, D. R.; Malhi, Y.; Mullins, C. E.; Hodnett, M. G.; Dharssi, I.

    2014-05-01

    Modern land surface model simulations capture soil profile water movement through the use of soil hydraulics sub-models, but good hydraulic parameterisations are often lacking, especially in the tropics. We present much-improved gridded data sets of hydraulic parameters for surface soil for the critical area of tropical South America, describing soil profile water movement across the region to 30 cm depth. Optimal hydraulic parameter values are given for the Brooks and Corey, Campbell, van Genuchten-Mualem and van Genuchten-Burdine soil hydraulic models, which are widely used hydraulic sub-models in land surface models. This has been possible through interpolating soil measurements from several sources through the SOTERLAC soil and terrain data base and using the most recent pedotransfer functions (PTFs) derived for South American soils. All soil parameter data layers are provided at 15 arcsec resolution and available for download, this being 20x higher resolution than the best comparable parameter maps available to date. Specific examples are given of the use of PTFs and the importance highlighted of using PTFs that have been locally parameterised and that are not just based on soil texture. We discuss current developments in soil hydraulic modelling and how high-resolution parameter maps such as these can improve the simulation of vegetation development and productivity in land surface models.

  13. Incorporating Soil Hydraulic Parameter Statistics in Developing Pedo-transfer Functions

    Science.gov (United States)

    Zhao, Y.; Zhu, J.; Ye, M.; Meyer, P. D.; Pan, F.; Hassan, A. E.

    2007-12-01

    In this study, we develop artificial neural network (ANN) based pedotransfer functions (PTFs) to predict soil hydraulic properties. The PTF approach is an efficient way of translating less costly available data, such as particle-size distributions, soil textures and other geophysical measurements, to soil hydraulic parameters required for numerical simulations and other applications. The ANN PTFs need to be trained before being used to transfer indirect measurements to soil hydraulic parameters. The traditional training process, in general, is to adjust ANN's coefficients to solely minimize the difference between the estimated and measured soil hydraulic parameters. The training process, however, did not consider the distributions of soil hydraulic parameters and the trained neural networks may yield improper distributions, which may severely affect probabilistic predictions. We incorporate the distributions of the soil hydraulic parameters into the ANN PTF development. In addition, it has been observed that PTFs can introduce unrealistic correlations between the output parameters. The unwanted artificial correlations need to be penalized during the training process, since it is well known that parameter correlations have significant effect on predictions. We achieve these two goals by adding two regularization terms to the ANN objective functions. A suite of new neural network models are developed to estimate soil hydraulic parameters. These neural network models have the same input and output variables, but different objective functions, which incorporate sequentially the site soil hydraulic parameter measurements, parameter probability distributions, and parameter correlations.

  14. IN-SERVICE HYDRAULIC CONDUCTIVITY OF GCLS IN LANDFILL COVERS - LABORATORY AND FIELD STUDIES

    Science.gov (United States)

    Laboratory experiments using multi-species inorganic solutions (containing calcium and sodium) were conducted on specimens of a new geosynthetic clay liner (GCL) containing sodium bentonite to determine how cation exchange and desiccation affected the hydraulic conductivity. Calc...

  15. A Preliminary Description of the Moisture Moment Method to Describe Unsaturated Soil Hydraulic Properties

    Science.gov (United States)

    Tyner, J. S.; Cihan, A.; Lee, J.; Gentry, R. W.

    2007-12-01

    We will present a new experimental procedure to elicit unsaturated soil hydraulic properties from a bench-scale test. A slightly wetted horizontal soil column is hung from two load cells and water is slowly injected into one end. A data logger records the cumulative change of force acting on each load cell due to redistribution of water. A tensiometer present at the inlet measures soil tension throughout the test. Unlike previous horizontal infiltration tests, the proposed technique does not necessitate maintaining a constant water content at the inlet/outlet of the soil column (i.e. no Boltzmann transformation). By analyzing the change in forces on the two load cells, one can describe water retention curve and unsaturated hydraulic conductivity curve. In the future, we plan to test the procedure on a range of soil textures from sand to clay. We will validate our water retention curve predictions by measuring the actual water retention within the column using a computer controlled gamma-ray attenuation system. The new method requires a few hours to more than a day.

  16. Hydraulic conductivity obtained by instantaneous profile method using retention curve and neutron probes and Genuchten model; Condutividade hidraulica obtida pelo metodo do perfil instantaneo utilizando curva de retencao e sonda de neutrons e pelo modelo de Genuchten

    Energy Technology Data Exchange (ETDEWEB)

    Berretta, Ana Lucia Olmedo

    1999-07-01

    The hydraulic conductivity is one of the most important parameters to understand the movement of water in the unsaturated zone. Reliable estimations are difficult to obtain, once the hydraulic conductivity is highly variable. This study was carried out at 'Escola Superior de Agricultura Luiz de Queiroz', Universidade de Sao Paulo, in a Kandiudalfic Eutrudox soil. The hydraulic conductivity was determined by a direct and an indirect method. The instantaneous profile method was described and the hydraulic conductivity as a function of soil water content was determined by solving the Richards equation. Tensiometers were used to estimate the total soil water potential, and the neutron probe and the soil retention curve were used to estimate soil water content in the direct method. The neutron probe showed to be not adequately sensible to the changes of soil water content in this soil. Despite of the soil retention curve provides best correlation values to soil water content as a function of water redistribution time, the soil water content in this soil did not vary too much till the depth of 50 cm, reflecting the influence of the presence of a Bt horizon. The soil retention curve was well fitted by the van Genuchten model used as an indirect method. The values of the van Genuchten and the experimental relative hydraulic conductivity obtained by the instantaneous profile method provided a good correlation. However, the values estimated by the model were always lower than that ones obtained experimentally. (author)

  17. MEASUREMENT OF HYDRAULIC CONDUCTIVITY DISTRIBUTIONS: A MANUAL OF PRACTICE

    Science.gov (United States)

    The ability of hydrologists to perform field measurements of aquifer hydraulic properties must be enhanced in order to significantly improve the capacity to solve groundwater contamination problems at Superfund and other sites. The primary purpose of this manual is to provide ne...

  18. Root water extraction and limiting soil hydraulic conditions estimated by numerical simulation

    NARCIS (Netherlands)

    Jong van Lier, de Q.; Metselaar, K.; Dam, van J.C.

    2006-01-01

    Root density, soil hydraulic functions, and hydraulic head gradients play an important role in the determination of transpiration-rate-limiting soil water contents. We developed an implicit numerical root water extraction model to solve the Richards equation for the modeling of radial root water

  19. Sensitivity of soil water content simulation to different methods of soil hydraulic parameter characterization as initial input values

    Science.gov (United States)

    Rezaei, Meisam; Seuntjens, Piet; Shahidi, Reihaneh; Joris, Ingeborg; Boënne, Wesley; Cornelis, Wim

    2016-04-01

    Soil hydraulic parameters, which can be derived from in situ and/or laboratory experiments, are key input parameters for modeling water flow in the vadose zone. In this study, we measured soil hydraulic properties with typical laboratory measurements and field tension infiltration experiments using Wooding's analytical solution and inverse optimization along the vertical direction within two typical podzol profiles with sand texture in a potato field. The objective was to identify proper sets of hydraulic parameters and to evaluate their relevance on hydrological model performance for irrigation management purposes. Tension disc infiltration experiments were carried out at five different depths for both profiles at consecutive negative pressure heads of 12, 6, 3 and 0.1 cm. At the same locations and depths undisturbed samples were taken to determine the water retention curve with hanging water column and pressure extractors and lab saturated hydraulic conductivity with the constant head method. Both approaches allowed to determine the Mualem-van Genuchten (MVG) hydraulic parameters (residual water content θr, saturated water content θs,, shape parameters α and n, and field or lab saturated hydraulic conductivity Kfs and Kls). Results demonstrated horizontal differences and vertical variability of hydraulic properties. Inverse optimization resulted in excellent matches between observed and fitted infiltration rates in combination with final water content at the end of the experiment, θf, using Hydrus 2D/3D. It also resulted in close correspondence of  and Kfs with those from Logsdon and Jaynes' (1993) solution of Wooding's equation. The MVG parameters Kfs and α estimated from the inverse solution (θr set to zero), were relatively similar to values from Wooding's solution which were used as initial value and the estimated θs corresponded to (effective) field saturated water content θf. We found the Gardner parameter αG to be related to the optimized van

  20. A Self-Consistent Approach for Calculating the Effective Hydraulic Conductivity of a Bimodal, Heterogeneous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Pozdniakov, Sergey; Tsang, Chin-Fu

    2004-01-02

    In this paper, we consider an approach for estimating the effective hydraulic conductivity of a 3D medium with a binary distribution of local hydraulic conductivities. The medium heterogeneity is represented by a combination of matrix medium conductivity with spatially distributed sets of inclusions. Estimation of effective conductivity is based on a self-consistent approach introduced by Shvidler (1985). The tensor of effective hydraulic conductivity is calculated numerically by using a simple system of equations for the main diagonal elements. Verification of the method is done by comparison with theoretical results for special cases and numerical results of Desbarats (1987) and our own numerical modeling. The method was applied to estimating the effective hydraulic conductivity of a 2D and 3D fractured porous medium. The medium heterogeneity is represented by a combination of matrix conductivity and a spatially distributed set of highly conductive fractures. The tensor of effective hydraulic conductivity is calculated for parallel- and random-oriented sets of fractures. The obtained effective conductivity values coincide with Romm's (1966) and Snow's (1969) theories for infinite fracture length. These values are also physically acceptable for the sparsely-fractured-medium case with low fracture spatial density and finite fracture length. Verification of the effective hydraulic conductivity obtained for a fractured porous medium is done by comparison with our own numerical modeling for a 3D case and with Malkovsky and Pek's (1995) results for a 2D case.

  1. Estimating soil hydraulic properties from soil moisture time series by inversion of a dual-permeability model

    Science.gov (United States)

    Dalla Valle, Nicolas; Wutzler, Thomas; Meyer, Stefanie; Potthast, Karin; Michalzik, Beate

    2017-04-01

    Dual-permeability type models are widely used to simulate water fluxes and solute transport in structured soils. These models contain two spatially overlapping flow domains with different parameterizations or even entirely different conceptual descriptions of flow processes. They are usually able to capture preferential flow phenomena, but a large set of parameters is needed, which are very laborious to obtain or cannot be measured at all. Therefore, model inversions are often used to derive the necessary parameters. Although these require sufficient input data themselves, they can use measurements of state variables instead, which are often easier to obtain and can be monitored by automated measurement systems. In this work we show a method to estimate soil hydraulic parameters from high frequency soil moisture time series data gathered at two different measurement depths by inversion of a simple one dimensional dual-permeability model. The model uses an advection equation based on the kinematic wave theory to describe the flow in the fracture domain and a Richards equation for the flow in the matrix domain. The soil moisture time series data were measured in mesocosms during sprinkling experiments. The inversion consists of three consecutive steps: First, the parameters of the water retention function were assessed using vertical soil moisture profiles in hydraulic equilibrium. This was done using two different exponential retention functions and the Campbell function. Second, the soil sorptivity and diffusivity functions were estimated from Boltzmann-transformed soil moisture data, which allowed the calculation of the hydraulic conductivity function. Third, the parameters governing flow in the fracture domain were determined using the whole soil moisture time series. The resulting retention functions were within the range of values predicted by pedotransfer functions apart from very dry conditions, where all retention functions predicted lower matrix potentials

  2. Determination of hydraulic conductivity from grain-size distribution for different depositional environments.

    Science.gov (United States)

    Rosas, Jorge; Lopez, Oliver; Missimer, Thomas M; Coulibaly, Kapo M; Dehwah, Abdullah H A; Sesler, Kathryn; Lujan, Luis R; Mantilla, David

    2014-01-01

    Over 400 unlithified sediment samples were collected from four different depositional environments in global locations and the grain-size distribution, porosity, and hydraulic conductivity were measured using standard methods. The measured hydraulic conductivity values were then compared to values calculated using 20 different empirical equations (e.g., Hazen, Carman-Kozeny) commonly used to estimate hydraulic conductivity from grain-size distribution. It was found that most of the hydraulic conductivity values estimated from the empirical equations correlated very poorly to the measured hydraulic conductivity values with errors ranging to over 500%. To improve the empirical estimation methodology, the samples were grouped by depositional environment and subdivided into subgroups based on lithology and mud percentage. The empirical methods were then analyzed to assess which methods best estimated the measured values. Modifications of the empirical equations, including changes to special coefficients and addition of offsets, were made to produce modified equations that considerably improve the hydraulic conductivity estimates from grain size data for beach, dune, offshore marine, and river sediments. Estimated hydraulic conductivity errors were reduced to 6 to 7.1 m/day for the beach subgroups, 3.4 to 7.1 m/day for dune subgroups, and 2.2 to 11 m/day for offshore sediments subgroups. Improvements were made for river environments, but still produced high errors between 13 and 23 m/day.

  3. Determination of hydraulic conductivity from grain-size distribution for different depositional environments

    KAUST Repository

    Rosas, Jorge

    2013-06-06

    Over 400 unlithified sediment samples were collected from four different depositional environments in global locations and the grain-size distribution, porosity, and hydraulic conductivity were measured using standard methods. The measured hydraulic conductivity values were then compared to values calculated using 20 different empirical equations (e.g., Hazen, Carman-Kozeny) commonly used to estimate hydraulic conductivity from grain-size distribution. It was found that most of the hydraulic conductivity values estimated from the empirical equations correlated very poorly to the measured hydraulic conductivity values with errors ranging to over 500%. To improve the empirical estimation methodology, the samples were grouped by depositional environment and subdivided into subgroups based on lithology and mud percentage. The empirical methods were then analyzed to assess which methods best estimated the measured values. Modifications of the empirical equations, including changes to special coefficients and addition of offsets, were made to produce modified equations that considerably improve the hydraulic conductivity estimates from grain size data for beach, dune, offshore marine, and river sediments. Estimated hydraulic conductivity errors were reduced to 6 to 7.1m/day for the beach subgroups, 3.4 to 7.1m/day for dune subgroups, and 2.2 to 11m/day for offshore sediments subgroups. Improvements were made for river environments, but still produced high errors between 13 and 23m/day. © 2013, National Ground Water Association.

  4. How do alternative root water uptake models affect the inverse estimation of soil hydraulic parameters and the prediction of evapotranspiration?

    Science.gov (United States)

    Gayler, Sebastian; Salima-Sultana, Daisy; Selle, Benny; Ingwersen, Joachim; Wizemann, Hans-Dieter; Högy, Petra; Streck, Thilo

    2016-04-01

    Soil water extraction by roots affects the dynamics and distribution of soil moisture and controls transpiration, which influences soil-vegetation-atmosphere feedback processes. Consequently, root water uptake requires close attention when predicting water fluxes across the land surface, e.g., in agricultural crop models or in land surface schemes of weather and climate models. The key parameters for a successful simultaneous simulation of soil moisture dynamics and evapotranspiration in Richards equation-based models are the soil hydraulic parameters, which describe the shapes of the soil water retention curve and the soil hydraulic conductivity curve. As measurements of these parameters are expensive and their estimation from basic soil data via pedotransfer functions is rather inaccurate, the values of the soil hydraulic parameters are frequently inversely estimated by fitting the model to measured time series of soil water content and evapotranspiration. It is common to simulate root water uptake and transpiration by simple stress functions, which describe from which soil layer water is absorbed by roots and predict when total crop transpiration is decreased in case of soil water limitations. As for most of the biogeophysical processes simulated in crop and land surface models, there exist several alternative functional relationships for simulating root water uptake and there is no clear reason for preferring one process representation over another. The error associated with alternative representations of root water uptake, however, contributes to structural model uncertainty and the choice of the root water uptake model may have a significant impact on the values of the soil hydraulic parameters estimated inversely. In this study, we use the agroecosystem model system Expert-N to simulate soil moisture dynamics and evapotranspiration at three agricultural field sites located in two contrasting regions in Southwest Germany (Kraichgau, Swabian Alb). The Richards

  5. Linking hydraulic properties of fire-affected soils to infiltration and water repellency

    Science.gov (United States)

    Moody, John A.; David Kinner,; Xavier Úbeda,

    2009-01-01

    Heat from wildfires can produce a two-layer system composed of extremely dry soil covered by a layer of ash, which when subjected to rainfall, may produce extreme floods. To understand the soil physics controlling runoff for these initial conditions, we used a small, portable disk infiltrometer to measure two hydraulic properties: (1) near-saturated hydraulic conductivity, Kf and (2) sorptivity, S(θi), as a function of initial soil moisture content, θi, ranging from extremely dry conditions (θi water repellency that influences Kf and S(θi).Values of Kf ranged from 4.5 × 10−3 to 53 × 10−3 cm s−1 for ash; from 0.93 × 10−3 to 130 × 10−3 cm s−1 for reference soils; and from 0.86 × 10−3 to 3.0 × 10−3 cm s−1, for soil unaffected by fire, which had the lowest values of Kf. Measurements indicated that S(θi) could be represented by an empirical non-linear function of θi with a sorptivity maximum of 0.18–0.20 cm s−0.5, between 0.03 and 0.08 cm3 cm−3. This functional form differs from the monotonically decreasing non-linear functions often used to represent S(θi) for rainfall–runoff modeling. The sorptivity maximum may represent the combined effects of gravity, capillarity, and adsorption in a transitional domain corresponding to extremely dry soil, and moreover, it may explain the observed non-linear behavior, and the critical soil-moisture threshold of water repellent soils. Laboratory measurements of Kf and S(θi) are the first for ash and fire-affected soil, but additional measurements are needed of these hydraulic properties for in situ fire-affected soils. They provide insight into water repellency behavior and infiltration under extremely dry conditions. Most importantly, they indicate how existing rainfall–runoff models can be modified to accommodate a possible two-layer system in extremely dry conditions. These modified models can be used to predict floods from burned watersheds

  6. Assessment of Temporal and spatial variability of soil hydraulic properties and its implications on soil water content predictions for a maize field in Northern Italy

    Science.gov (United States)

    Feki, Mouna; Ravazzani, Giovanni; Ceppi, Alessandro; Mancini, Marco

    2016-04-01

    Use of hydrological models to simulate water movement from soil surface to groundwater requires intensive, time consuming and expensive soil related parameters collection, such as, water retention curve (WRC) parameters and hydraulic conductivity (K).Typically, soils to be characterized, , exhibit large variations in space and time as well during the cropping cycle, due to biological processes and agricultural management practices : tillage , irrigation , fertilization and harvest. Soil properties are subjected to diverse physical and chemical changes that leads to a non-stability in term of water and chemical movements within the soil as well to the groundwater. The aim of this study is to assess the variability of soil hydraulic properties dynamics over a cropping cycle. The study site is a surface irrigated Maize field (typical in this area) located in Secugnago (45°13'31.70'' N, 9°36'26.82 E), in Northern Italy-Lombardy region. The field belongs to the Consortium Muzza Bassa Lodigiana, within which meteorological data together with soil moisture were monitored during the cropping season of 2015 . To investigate soil properties variations, both measurements in the field and laboratory tests on both undisturbed and disturbed collected samples were performed. Soil samples were taken from different locations within the study area and at different depths( 0cm , 20cm and 40cm) as well at different growth stages of the plant ,after irrigation events or tillage and as well after harvest. During three measuring campaigns, for each soil samples several parameters were monitored (Organic matter , bulk density) together with soil-water related parameters (Soil water retention curve parameters , saturated hydraulic conductivity). Soil water retention curves parameters were measured following the evaporative method, using the Hyprop (Hydraulic Property Analyzer; UMS Munich, 2010). Parameters were assessed using Hyprop-fit software, by fitting data to Brooks and Corey and

  7. Hydraulic resistance partitioning between shoot and root system and plant water status of Haloxyolon ammodendron growing at sites of contrasting soil texture

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Hydraulic resistance components and water relations were studied on Haloxyolon ammoden-dron,a small xeric tree,growing at sites significantly differed in soil texture.Soil water content,leaf water potential(ψl),xylem water potential(ψx),root water potential(ψroot),leaf transpiration rate(TR) and stomatal conductance(gs) were measured at the two sites during the growing season of 2005 and 2006.Leaf spe-cific hydraulic resistance(Rplant) during the whole growing season,hydraulic resistance of plants(Rp),shoots(Rshoot) and roots(Rroot) in the August of both years were calculated and expressed on leaf area basis.The results showed the proportion of the hydraulic resistance of the aerial part(Rshoot) to the Rp was the same to the proportion of the hydraulic resistance of the soil part(Rroot) to the Rp,indicating that both parts were equivalent important to plant water hydraulic system from soil to leaf.Positive significant corre-lations were found between Rp and Rroot,suggesting that root hydraulics resistance was a major determinant of plant hydraulic resistance(Rp) and transpiration rate.The integrated effect of stomatal control,hy-draulic regulation and morphology adjustment enabled plants at heavy soil site surviving the extreme water deficit period.

  8. Spatial Estimation of Saturated Hydraulic Conductivity from Terrain Attributes Using Regression, Kriging, and Artificial Neural Networks*1

    Institute of Scientific and Technical Information of China (English)

    H. R. MOTAGHIAN; J. MOHAMMADI

    2011-01-01

    Several methods, including stepwise regression, ordinary kriging, cokriging, kriging with external drift, kriging with varying local means, regression-kriging, ordinary artificial neural networks, and kriging combined with artificial neural networks, were compared to predict spatial variation of saturated hydraulic conductivity from environmental covariates. All methods except ordinary kriging allow for inclusion of secondary variables. The secondary spatial information used was terrain attributes including elevation, slope gradient,slope aspect, profile curvature and contour curvature. A multiple jackknifing procedure was used as a validation method. Root mean square error (RMSE) and mean absolute error (MAE) were used as the validation indices, with the mean RMSE and mean MAE used to judge the prediction quality. Prediction performance by ordinary kriging was poor, indicating that prediction of saturated hydraulic conductivity can be improved by incorporating ancillary data such as terrain variables. Kriging combined with artificial neural networks performed best. These prediction models made better use of ancillary information in predicting saturated hydraulic conductivity compared with the competing models. The combination of geostatistical predictors with neural computing techniques offers more capability for incorporating ancillary information in predictive soil mapping. There is great potential for further research and development of hybrid methods for digital soil mapping.

  9. Effects of Carboxymethylcelluloses (CMC) on Some Hydraulic Properties of Sandy Soil

    Institute of Scientific and Technical Information of China (English)

    ANDRY Henintsoa; INOUE Mitsuhiro; MORITANI Shigeoki; UZOMA Kingsley Chinyere

    2010-01-01

    The property of hydrophilic polymers capable absorbing huge volumes of water led to many practical applications of these new materials in arid regions for improving the water retention in sandy soils. Effects of four carboxymethylcelluloses (CMC), mixed at various rates with the sandy soil, on the water-holding capacity and hydraulic conductivity (Ks) when leached with distilled water (simulating rain), tap water, and saline water were evaluated. The maximum water absorption of CMCs ranged between 80 and 100 kg. kg-1 of polymer; however, the absorbent swelling capacity decreased significantly with increasing the salt concentration in the solution. The water absorption capacity of CMCs decreased significantly when incorporated in the sandy soil compared to that of the absorbent alone. Application of CMC increased significantly the available water content up to 3 ±0.5 times. All soils treated with CMCs showed a significant lower in Ks compared to the control soil. Meanwhile, Ks was found increased with increasing the salt concentration in the leaching solution. This understanding of characteristics of the absorbents and the interactions among absorbents, soil, and irrigation water quality would be of help in water management of sandy soil.

  10. Hydraulic Tomography and High-Resolution Slug Testing to Determine Hydraulic Conductivity Distributions - Year 1

    Science.gov (United States)

    2005-12-01

    the addition into a well of a known volume of water or a physical slug. More recently, pneumatic methods have become popular ( Zemansky and McElwee...and Zemansky , 2000), (Sellwood, 2001) and (Ross, 2004)]. The aquifer material at GEMS exhibits linear and non-linear responses to slug testing...1976; Zurbuchen et al., 2002; and Zemansky and McElwee, 2005). Slug tests have been a common method for obtaining information about the hydraulic

  11. Hamiltonian Monte Carlo algorithm for the characterization of hydraulic conductivity from the heat tracing data

    Science.gov (United States)

    Djibrilla Saley, A.; Jardani, A.; Soueid Ahmed, A.; Raphael, A.; Dupont, J. P.

    2016-11-01

    Estimating spatial distributions of the hydraulic conductivity in heterogeneous aquifers has always been an important and challenging task in hydrology. Generally, the hydraulic conductivity field is determined from hydraulic head or pressure measurements. In the present study, we propose to use temperature data as source of information for characterizing the spatial distributions of the hydraulic conductivity field. In this way, we performed a laboratory sandbox experiment with the aim of imaging the heterogeneities of the hydraulic conductivity field from thermal monitoring. During the laboratory experiment, we injected a hot water pulse, which induces a heat plume motion into the sandbox. The induced plume was followed by a set of thermocouples placed in the sandbox. After the temperature data acquisition, we performed a hydraulic tomography using the stochastic Hybrid Monte Carlo approach, also called the Hamiltonian Monte Carlo (HMC) algorithm to invert the temperature data. This algorithm is based on a combination of the Metropolis Monte Carlo method and the Hamiltonian dynamics approach. The parameterization of the inverse problem was done with the Karhunen-Loève (KL) expansion to reduce the dimensionality of the unknown parameters. Our approach has provided successful reconstruction of the hydraulic conductivity field with low computational effort.

  12. Effects of the hydraulic conductivity of the matrix/macropore interface on cumulative infiltrations into dual-permeability media

    Science.gov (United States)

    Lassabatere, L.; Peyrard, X.; Angulo-Jaramillo, R.; Simunek, J.

    2009-12-01

    Modeling of water infiltration into the vadose zone is important for better understanding of movement of water-transported contaminants. There is a great need to take into account the soil heterogeneity and, in particular, the presence of macropores or cracks that could generate preferential flow. Several mathematical models have been proposed to describe unsaturated flow through heterogeneous soils. The dual-permeability model (referred to as the 2K model) assumes that flow is governed by Richards equation in both porous regions (matrix and macropores). Water can be exchanged between the two regions following a first-order rate law. Although several studies have dealt with such modeling, no study has evaluated the influence of the hydraulic conductivity of the matrix/macropore interface on water cumulative infiltration. And this is the focus of this study. An analytical scaling method reveals the role of the following main parameters for given boundary and initial conditions: the saturated hydraulic conductivity ratio (R_Ks), the water pressure scale parameter ratio (R_hg), the saturated volumetric water content ratio (R_θs), and the shape parameters of the water retention and hydraulic conductivity functions. The last essential parameter is related to the interfacial hydraulic conductivity (Ka) between the macropore and matrix regions. The scaled 2K flow equations were solved using HYDRUS-1D 4.09 for the specific case of water infiltrating into an initially uniform soil profile and a zero pressure head at the soil surface. A sensitivity of water infiltration was studied for different sets of scale parameters (R_Ks, R_hg, R_θs, and shape parameters) and the scaled interfacial conductivity (Ka). Numerical results illustrate two extreme behaviors. When the interfacial conductivity is zero (i.e., no water exchange), water infiltrates separately into matrix and macropore regions, producing a much deeper moisture front in the macropore domain. In the opposite case

  13. Validation of soil hydraulic pedotransfer functions at the local and catchment scale for an Indonesian basin

    Science.gov (United States)

    Booij, Martijn J.; Oldhoff, Ruben J. J.; Rustanto, Andry

    2016-04-01

    In order to accurately model the hydrological processes in a catchment, information on the soil hydraulic properties is of great importance. These data can be obtained by conducting field work, which is costly and time consuming, or by using pedotransfer functions (PTFs). A PTF is an empirical relationship between easily obtainable soil characteristics and a soil hydraulic parameter. In this study, PTFs for the saturated hydraulic conductivity (Ks) and the available water content (AWC) are investigated. PTFs are area-specific, since for instance tropical soils often have a different composition and hydraulic behaviour compared to temperate soils. Application of temperate soil PTFs on tropical soils might result in poor performance, which is a problem as few tropical soil PTFs are available. The objective of this study is to determine whether Ks and AWC can be accurately approximated using PTFs, by analysing their performance at both the local scale and the catchment scale. Four published PTFs for Ks and AWC are validated on a data set of 91 soil samples collected in the Upper Bengawan Solo catchment on Java, Indonesia. The AWC is predicted very poorly, with Nash-Sutcliffe Efficiency (NSE) values below zero for all selected PTFs. For Ks PTFs better results were found. The Wösten and Rosetta-3 PTFs predict the Ks moderately accurate, with NSE values of 0.28 and 0.39, respectively. New PTFs for both AWC and Ks were developed using multiple linear regression and NSE values of 0.37 (AWC) and 0.55 (Ks) were obtained. Although these values are not very high, they are significantly higher than for the published PTFs. The hydrological SWAT model was set up for the Keduang, a sub-catchment of the Upper Bengawan Solo River, to simulate monthly catchment streamflow. Eleven cases were defined to validate the PTFs at the catchment scale. For the Ks-PTF cases NSE values of around 0.84 were obtained for the validation period. The use of AWC PTFs resulted in slightly lower NSE

  14. Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity

    Directory of Open Access Journals (Sweden)

    G. Baroni

    2010-02-01

    Full Text Available Data of soil hydraulic properties forms often a limiting factor in unsaturated zone modelling, especially at the larger scales. Investigations for the hydraulic characterization of soils are time-consuming and costly, and the accuracy of the results obtained by the different methodologies is still debated. However, we may wonder how the uncertainty in soil hydraulic parameters relates to the uncertainty of the selected modelling approach. We performed an intensive monitoring study during the cropping season of a 10 ha maize field in Northern Italy. The data were used to: i compare different methods for determining soil hydraulic parameters and ii evaluate the effect of the uncertainty in these parameters on different variables (i.e. evapotranspiration, average water content in the root zone, flux at the bottom boundary of the root zone simulated by two hydrological models of different complexity: SWAP, a widely used model of soil moisture dynamics in unsaturated soils based on Richards equation, and ALHyMUS, a conceptual model of the same dynamics based on a reservoir cascade scheme. We employed five direct and indirect methods to determine soil hydraulic parameters for each horizon of the experimental profile. Two methods were based on a parameter optimization of: a laboratory measured retention and hydraulic conductivity data and b field measured retention and hydraulic conductivity data. The remaining three methods were based on the application of widely used Pedo-Transfer Functions: c Rawls and Brakensiek, d HYPRES, and e ROSETTA. Simulations were performed using meteorological, irrigation and crop data measured at the experimental site during the period June – October 2006. Results showed a wide range of soil hydraulic parameter values generated with the different methods, especially for the saturated hydraulic conductivity Ksat and the shape parameter α of the van Genuchten curve. This is reflected in a variability of

  15. Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity

    Directory of Open Access Journals (Sweden)

    G. Baroni

    2009-06-01

    Full Text Available Data of soil hydraulic properties forms often a limiting factor in unsaturated zone modelling, especially at the larger scales. Investigations for the hydraulic characterization of soils are time-consuming and costly, and the accuracy of the results obtained by the different methodologies is still debated. However, we may wonder how the uncertainty in soil hydraulic parameters relates to the uncertainty of the selected modelling approach.

    We performed an intensive monitoring study during the cropping season of a 10 ha maize field in Northern Italy. These data were used to: i compare different methods for determining soil hydraulic parameters and ii evaluate the effect of the uncertainty in these parameters on different outputs (i.e. evapotranspiration, water content in the root zone, fluxes through the bottom boundary of the root zone of two hydrological models with different complexity: SWAP, a widely used model of soil moisture dynamics in unsaturated soils based on Richards equation, and ALHyMUS, a conceptual model of the same dynamics based on a reservoir cascade scheme. We employed five direct and indirect methods to determine soil hydraulic parameters for each horizon of the experimental field. Two methods were based on a parameter optimization of: a laboratory measured retention and hydraulic conductivity data and b field measured retention and hydraulic conductivity data. Three methods were based on the application of widely used Pedo-Transfer Functions: c Rawls and Brakensiek; d HYPRES; and e ROSETTA. Simulations were performed using meteorological, irrigation and crop data measured at the experimental site during the period June–October 2006.

    Results showed a wide range of soil hydraulic parameter values evaluated with the different methods, especially for the saturated hydraulic conductivity Ksat and the shape parameter α of the Van Genuchten curve. This is reflected in a variability of the

  16. Phoenix Conductivity Probe Inserted into Martian Soil

    Science.gov (United States)

    2008-01-01

    NASA's Phoenix Mars Lander inserted the four needles of its thermal and conductivity probe into Martian soil during the 98th Martian day, or sol, of the mission and left it in place until Sol 99 (Sept. 4, 2008). The Robotic Arm Camera on Phoenix took this image on the morning of Sol 99 while the probe's needles were in the ground. The science team informally named this soil target 'Gandalf.' The thermal and conductivity probe measures how fast heat and electricity move from one needle to an adjacent one through the soil or air between the needles. Conductivity readings can be indicators about water vapor, water ice and liquid water. The probe is part of Phoenix's Microscopy, Electrochemistry and Conductivity suite of instruments. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Rapid measurement of field-saturated hydraulic conductivity for areal characterization

    Science.gov (United States)

    Nimmo, J.R.; Schmidt, K.M.; Perkins, K.S.; Stock, J.D.

    2009-01-01

    To provide an improved methodology for characterizing the field-saturated hydraulic conductivity (Kfs) over broad areas with extreme spatial variability and ordinary limitations of time and resources, we developed and tested a simplified apparatus and procedure, correcting mathematically for the major deficiencies of the simplified implementation. The methodology includes use of a portable, falling-head, small-diameter (???20 cm) single-ring infiltrometer and an analytical formula for Kfs that compensates both for nonconstant falling head and for the subsurface radial spreading that unavoidably occurs with small ring size. We applied this method to alluvial fan deposits varying in degree of pedogenic maturity in the arid Mojave National Preserve, California. The measurements are consistent with a more rigorous and time-consuming Kfs measurement method, produce the expected systematic trends in Kfs when compared among soils of contrasting degrees of pedogenic development, and relate in expected ways to results of widely accepted methods. ?? Soil Science Society of America. All rights reserved.

  18. A Comparison of Land Surface Model Soil Hydraulic Properties Estimated by Inverse Modeling and Pedotransfer Functions

    Science.gov (United States)

    Gutmann, Ethan D.; Small, Eric E.

    2007-01-01

    Soil hydraulic properties (SHPs) regulate the movement of water in the soil. This in turn plays an important role in the water and energy cycles at the land surface. At present, SHPS are commonly defined by a simple pedotransfer function from soil texture class, but SHPs vary more within a texture class than between classes. To examine the impact of using soil texture class to predict SHPS, we run the Noah land surface model for a wide variety of measured SHPs. We find that across a range of vegetation cover (5 - 80% cover) and climates (250 - 900 mm mean annual precipitation), soil texture class only explains 5% of the variance expected from the real distribution of SHPs. We then show that modifying SHPs can drastically improve model performance. We compare two methods of estimating SHPs: (1) inverse method, and (2) soil texture class. Compared to texture class, inverse modeling reduces errors between measured and modeled latent heat flux from 88 to 28 w/m(exp 2). Additionally we find that with increasing vegetation cover the importance of SHPs decreases and that the van Genuchten m parameter becomes less important, while the saturated conductivity becomes more important.

  19. The relationship between hydraulic conductivity and diffusion in granitic rock matrix

    Science.gov (United States)

    Najser, J.; Gvozdik, L.; Havlova, V.; Sosna, K.; Vecernik, P.; Zaruba, J.

    2012-12-01

    In the Czech Republic, granite is being considered as the host rock for a radioactive waste repository. The aim of the current research project is to study of the hydraulic properties of the low-permeable rock matrix. 45 granitic samples from ten sites have been subjected to hydraulic conductivity (K) and diffusivity (De) tests. Hydraulic conductivity was measured in pressure cells. A constant pressure difference of Δ = 50 kPa was applied by pressure controllers and the volume of water that passed through the sample was recorded. The effective diffusion coefficient De was measured using 3H tracer in through-diffusion experiments. The activities in both input and output reservoirs were regularly monitored using liquid scintillation spectrometry. The hydraulic conductivities of fresh granite varied from 1.65 x 10-10 to 1 x 10-14 m.s-1 while the effective diffusion coefficient ranged from 7.4 x 10-12 to 4 x 10-13 m2.s-1. Comparison of measured "K" and "De" values reveals significant scatter, despite clear trends. Numerical simulation of both hydraulic conductivity and diffusivity was undertaken using finite-element code NAPSAC. The results show that reduced microcrack length influences the connectivity of the microcrack network, increases diffusivity, and decreases hydraulic conductivity. The imperfect correlation between experimental "K" and "De" is explained by the different geometries of the microcrack networks within the studied granites.

  20. Inverse modelling of in situ soil water dynamics: investigating the effect of different prior distributions of the soil hydraulic parameters

    NARCIS (Netherlands)

    B. Scharnagl; J.A. Vrugt; H. Vereecken; M. Herbst

    2011-01-01

    In situ observations of soil water state variables under natural boundary conditions are often used to estimate the soil hydraulic properties. However, many contributions to the soil hydrological literature have demonstrated that the information content of such data is insufficient to accurately and

  1. Estimation of soil hydraulic parameters by integrated hydrogeophysical inversion of time-lapse GPR data measured at Selhausen, Germany

    KAUST Repository

    Jadoon, Khan

    2012-06-01

    We present an integrated hydrogeophysical inversion approach that uses time-lapse off-ground ground-penetrating radar (GPR) data to estimate soil hydraulic parameters, and apply it to a dataset collected in the field. Off-ground GPR data are mainly sensitive to the near-surface water content profile and dynamics, and are thus related to soil hydraulic parameters, such as the parameters of the hydraulic conductivity and water retention functions. The hydrological simulator HYDRUS 1-D was used with a two-layer single- and dual-porosity model. To monitor the soil water content dynamics, time-lapse GPR and time domain reflectometry (TDR) measurements were performed, whereby only GPR data was used in the inversion. The dual porosity model provided better results compared to the single porosity model for describing the soil water dynamics, which is supported by field observations of macropores. Furthermore, the GPR-derived water content profiles reconstructed from the integrated hydrogeophysical inversion were in good agreement with TDR observations. These results suggest that the proposed method is promising for non-invasive characterization of the shallow subsurface hydraulic properties and monitoring water dynamics at the field scale.

  2. Development and use of a database of hydraulic properties of European soils

    NARCIS (Netherlands)

    Wösten, J.H.M.; Nemes, A.; Lilly, A.; Bas, Le C.

    1999-01-01

    Many environmental studies on the protection of European soil and water resources make use of soil water simulation models. A major obstacle to the wider application of these models is the lack of easily accessible and representative soil hydraulic properties. In order to overcome this apparent lack

  3. HYDRAULIC REDISTRIBUTION OF SOIL WATER DURING SUMMER DROUGHT IN TWO CONTRASTING PACIFIC NORTHWEST CONIFEROUS FORESTS

    Science.gov (United States)

    The magnitude of hydraulic redistribution of soil water by roots and its impact on soil water balance were estimated by monitoring time courses of soil water status at multiple depths and root sap flow during droughted conditions in a dry ponderosa pine ecosystem and a moist Doug...

  4. Influência de resíduo de serragem de mármore na condutividade hidráulica do solo e na qualidade da água Influence of marble cutting waste on soil hydraulic conductivity and water quality

    Directory of Open Access Journals (Sweden)

    Ana Paula Almeida Bertossi

    2011-01-01

    Full Text Available A grande quantidade de resíduos gerada na serragem de rochas ornamentais e as características destes materiais indicam possibilidades de uso no enriquecimento mineral e na correção de acidez de solos. No entanto, seus efeitos no meio ambiente são ainda desconhecidos, sendo necessário realizar estudos que garantam sua utilização de forma segura, sem oferecer riscos à qualidade da água e do solo. Nesse sentido, com objetivo de avaliar a influência da adição de resíduos provenientes da serragem de mármore na condutividade hidráulica de solos e na qualidade da água percolada, foram realizados ensaios em colunas preenchidas com misturas de solo e resíduo, interligadas a um permeâmetro de carga constante. Os valores de condutividade hidráulica obtidos nas misturas de solo e resíduo de mármore, comparados com solo sem adição de resíduo mostraram que não houve influência na velocidade de percolação da água. Na água percolada houve aumento da condutividade elétrica, do pH e dos teores de Ca e Mg, e diminuição do Mn. Os parâmetros de qualidade da água foram comparados com a normatização do Conselho Nacional de Meio Ambiente (CONAMA, que fixa os limites aceitáveis para a água subterrânea. Também foram feitas comparações quanto ao grau de restrição do uso da água para irrigação, buscando verificar possíveis riscos ao crescimento vegetal.The high quantities of wastes that have been produced by dimension stone industry and the characteristics of these materials indicate possibilities of using them as soil enriching and corrective of soil acidity. However, their environmental effects are not known requiring studies to guarantee a safe utilization. Tests using a constant head permeameter interconnected to columns filled with mixture of soil and marble waste were conducted aiming to analyze the influence of wastes on soil hydraulic conductivity and quality of percolated water. Results showed that the aggregation

  5. Effects of leachate infiltration and desiccation cracks on hydraulic conductivity of compacted clay

    Directory of Open Access Journals (Sweden)

    Jun HE

    2015-04-01

    Full Text Available Both cracks in clay liner and the complex composition of landfill leachate might have effects on the hydraulic conductivity of a compacted clay liner. In this study, the hydraulic conductivities of natural clay and bentonite-modified clay with and without desiccation cracks were measured, respectively, using three types of liquids as permeating liquid: 2 500 mg/L acetic acid solution, 0.5 mol/L CaCl2 solution, and tap water. When tap water was adopted as the permeating liquid, desiccation cracks resulted in increases in the average value of hydraulic conductivity: a 25-fold increase for the natural clay and a 5.7-fold increase for the bentonite-modified clay. It was also found out that the strong self-healing capability of bentonite helped to reduce the adverse impact of cracks on hydraulic performance. In contrast to tap water, simulated leachates (acetic acid and CaCl2 solutions show no adverse effect on the hydraulic conductivities of natural and bentonite-modified clays. It is concluded that desiccation cracks and bentonite have more significant effects on hydraulic performance than simulated leachates.

  6. Analysis of Grain Size Distribution and Hydraulic Conductivity for a Variety of Sediment Types with Application to Wadi Sediments

    KAUST Repository

    Rosas Aguilar, Jorge

    2013-05-01

    Grain size distribution, porosity, and hydraulic conductivity from over 400 unlithified sediment samples were analized. The measured hydraulic conductivity values were then compared to values calculated using 20 different empirical equations commonly used to estimate hydraulic conductivity from grain size analyses. It was found that most of the hydraulic conductivity values estimated from the empirical equations correlated very poorly to the measured hydraulic conductivity values. Modifications of the empirical equations, including changes to special coefficients and statistical off sets, were made to produce modified equations that considerably improve the hydraulic conductivity estimates from grain size data for beach, dune, off shore marine, and wadi sediments. Expected hydraulic conductivity estimation errors were reduced. Correction factors were proposed for wadi sediments, taking mud percentage and the standard deviation (in phi units) into account.

  7. Soil Hydraulic Properties Influenced by Corn Stover Removal from No-Till Corn in Ohio.

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Canqui, H.; Lal, Rattan; Post, W. M.; Izaurralde, R Cesar C.; Shipitalo, M. J.

    2007-01-01

    Corn (Zea mays L.) stover removal for biofuel production and other uses may alter soil hydraulic properties, but site-specific information needed to determine the threshold levels of removal for the U.S. Corn Belt region is limited. We quantified impacts of systematic removal of corn stover on soil hydraulic parameters after one year of stover management under no-till (NT) systems in three soils in Ohio including Rayne silt loam (fine-loamy, mixed, mesic Typic Hapludult) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston. Interrelationships among soil properties and saturated hydraulic conductivity (Ksat) predictions were also studied. Earthworm middens, Ksat, bulk density (ρb), soil-water retention (SWR), pore-size distribution, and air permeability (ka) were determined for six stover treatments including 0 (T0), 25 (T25), 50 (T50), 75 (T75), 100 (T100), and 200 (T200) % of corn stover corresponding to 0, 1.25, 2.50, 3.75, 5.00, and 10.00 Mg ha-1 of stover, respectively. Stover removal reduced the number of middens, Ksat, SWR, and ka at all sites (P<0.01). Complete stover removal reduced earthworm middens by 20-fold across sites, decreased geometric mean Ksat from 6.3 to 0.1 mm h-1 at Coshocton, 3.2 to 0.3 mm h-1 at Hoytville, and 5.8 to 0.6 mm h-1 at Charleston, and increased ρb in the 0- to 10-cm depth by about 15% relative to double stover plots. The SWR for T100 was 1.3 times higher than that for T0 at 0 to -6 kPa. The log ka for T200, T100, and T75 significantly exceeded that under T50, T25, and T0 at Coshocton and Charleston. Measured parameters were strongly correlated, and ka was a potential Ksat predictor. Stover harvesting at rates above 1.25 Mg ha-1 affects soil hydraulic properties and earthworm activity, but further monitoring is needed to ascertain the threshold levels of stover removal.Corn (Zea mays L.) stover removal for

  8. Variation of soil hydraulic properties with alpine grassland degradation in the eastern Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    T. Pan

    2017-05-01

    hydrological effects of vegetation degradation. Further hydrological modelling studies in the Tibetan Plateau and similar regions are recommended to understand the effects of degraded alpine swamp meadows on soil hydraulic properties.

  9. A semi-analytical generalized Hvorslev formula for estimating riverbed hydraulic conductivity with an open-ended standpipe permeameter

    Science.gov (United States)

    Pozdniakov, Sergey P.; Wang, Ping; Lekhov, Mikhail V.

    2016-09-01

    The well-known Hvorslev (1951) formula was developed to estimate soil permeability using single-well slug tests and has been widely applied to determine riverbed hydraulic conductivity using in situ standpipe permeameter tests. Here, we further develop a general solution of the Hvorslev (1951) formula that accounts for flow in a bounded medium and assumes that the bottom of the river is a prescribed head boundary. The superposition of real and imaginary disk sources is used to obtain a semi-analytical expression of the total hydraulic resistance of the flow in and out of the pipe. As a result, we obtained a simple semi-analytical expression for the resistance, which represents a generalization of the Hvorslev (1951). The obtained expression is benchmarked against a finite-element numerical model of 2-D flow (in r-z coordinates) in an anisotropic medium. The results exhibit good agreement between the simulated and estimated riverbed hydraulic conductivity values. Furthermore, a set of simulations for layered, stochastically heterogeneous riverbed sediments was conducted and processed using the proposed expression to demonstrate the potential associated with measuring vertical heterogeneity in bottom sediments using a series of standpipe permeameter tests with different lengths of pipe inserted into the riverbed sediments.

  10. Effect of rainfall and tillage direction on the evolution of surface crusts, soil hydraulic properties and runoff generation for a sandy loam soil

    Science.gov (United States)

    Ndiaye, Babacar; Esteves, Michel; Vandervaere, Jean-Pierre; Lapetite, Jean-Marc; Vauclin, Michel

    2005-06-01

    The study was aimed at evaluating the effect of rainfall and tillage-induced soil surface characteristics on infiltration and runoff on a 2.8 ha catchment located in the central region of Senegal. This was done by simulating 30 min rain storms applied at a constant rate of about 70 mm h -1, on 10 runoff micro-plots of 1 m 2, five being freshly harrowed perpendicularly to the slope and five along the slope (1%) of the catchment. Runoff was automatically recorded at the outlet of each plot. Hydraulic properties such as capillary sorptivity and hydraulic conductivity of the sandy loam soil close to saturation were determined by running 48 infiltration tests with a tension disc infiltrometer. That allowed the calculation of a mean characteristic pore size hydraulically active and a time to ponding. Superficial water storage capacity was estimated using data collected with an electronic relief meter. Because the soil was subject to surface crusting, crust-types as well as their spatial distribution within micro-plots and their evolution with time were identified and monitored by taking photographs at different times after tillage. The results showed that the surface crust-types as well as their tillage dependent dynamics greatly explain the decrease of hydraulic conductivity and sorptivity as the cumulative rainfall since tillage increases. The exponential decaying rates were found to be significantly greater for the soil harrowed along the slope (where the runoff crust-type covers more than 60% of the surface after 140 mm of rain) than across to the slope (where crusts are mainly of structural (60%) and erosion (40%) types). That makes ponding time smaller and runoff more important. Also it was shown that soil hydraulic properties after about 160 mm of rain were close to those of untilled plot not submitted to any rain. That indicates that the effects of tillage are short lived.

  11. Use of LANDSAT images of vegetation cover to estimate effective hydraulic properties of soils

    Science.gov (United States)

    Eagleson, Peter S.; Jasinski, Michael F.

    1988-01-01

    The estimation of the spatially variable surface moisture and heat fluxes of natural, semivegetated landscapes is difficult due to the highly random nature of the vegetation (e.g., plant species, density, and stress) and the soil (e.g., moisture content, and soil hydraulic conductivity). The solution to that problem lies, in part, in the use of satellite remotely sensed data, and in the preparation of those data in terms of the physical properties of the plant and soil. The work was focused on the development and testing of a stochastic geometric canopy-soil reflectance model, which can be applied to the physically-based interpretation of LANDSAT images. The model conceptualizes the landscape as a stochastic surface with bulk plant and soil reflective properties. The model is particularly suited for regional scale investigations where the quantification of the bulk landscape properties, such as fractional vegetation cover, is important on a pixel by pixel basis. A summary of the theoretical analysis and the preliminary testing of the model with actual aerial radiometric data is provided.

  12. Drought effects on hydraulic conductivity and xylem vulnerability to embolism in diverse species and provenances of Mediterranean cedars.

    Science.gov (United States)

    Ladjal, Mehdi; Huc, Roland; Ducrey, Michel

    2005-09-01

    We studied hydraulic traits of young plants of the Mediterranean cedar species Cedrus atlantica (Endl.) G. Manetti ex Carrière (Luberon, France), C. brevifolia (Hook. f.) Henry (Cyprus), C. libani A. Rich (Hadeth El Jebbe, Lebanon) and C. libani (Armut Alani, Turkey). With an optimum water supply, no major differences were observed among species or provenances in either stem hydraulic conductivity (Ks) or leaf specific conductivity (Kl) measured on the main shoot. A moderate soil drought applied for 10 weeks induced marked acclimation through a reduction in Ks, particularly in the Lebanese provenance of C. libani, and a decrease in tracheid lumen size in all species. Cedrus atlantica, which had the smallest tracheids, was the species most vulnerable to embolism: a 50% loss in hydraulic conductivity (PsiPLC50) occurred at a water potential of -4.4 MPa in the well-watered treatment, and at -6.0 MPa in the moderate drought treatment. In the other species, PsiPLC50 was unaffected by moderate soil drought, and only declined sharply at water potentials between -6.4 and -7.5 MPa in both irrigation treatments. During severe drought, Ks of twigs and stomatal conductance (g(s)) were measured simultaneously as leaf water potential declined. For all species, lower vulnerability to embolism based on loss of Ks was recorded on current-year twigs. The threshold for stomatal closure (10% of maximum g(s)) was reached at a predawn water potential (Psi(pd)) of -2.5 MPa in C. atlantica (Luberon) and at -3.1 MPa in C. libani (Lebanon), whereas the other provenance and species had intermediate Psi(pd) values. Cedrus brevifolia, with a Psi(pd) (-3.0 MPa) close to that of C. libani (Lebanon), had the highest stomatal conductance of the study species. The importance of a margin of safety between water potential causing stomatal closure and that causing xylem embolism induction is discussed.

  13. Tree level hydrodynamic approach for resolving aboveground water storage and stomatal conductance and modeling the effects of tree hydraulic strategy

    Science.gov (United States)

    Mirfenderesgi, Golnazalsadat; Bohrer, Gil; Matheny, Ashley M.; Fatichi, Simone; Moraes Frasson, Renato Prata; Schäfer, Karina V. R.

    2016-07-01

    The finite difference ecosystem-scale tree crown hydrodynamics model version 2 (FETCH2) is a tree-scale hydrodynamic model of transpiration. The FETCH2 model employs a finite difference numerical methodology and a simplified single-beam conduit system to explicitly resolve xylem water potentials throughout the vertical extent of a tree. Empirical equations relate water potential within the stem to stomatal conductance of the leaves at each height throughout the crown. While highly simplified, this approach brings additional realism to the simulation of transpiration by linking stomatal responses to stem water potential rather than directly to soil moisture, as is currently the case in the majority of land surface models. FETCH2 accounts for plant hydraulic traits, such as the degree of anisohydric/isohydric response of stomata, maximal xylem conductivity, vertical distribution of leaf area, and maximal and minimal xylem water content. We used FETCH2 along with sap flow and eddy covariance data sets collected from a mixed plot of two genera (oak/pine) in Silas Little Experimental Forest, NJ, USA, to conduct an analysis of the intergeneric variation of hydraulic strategies and their effects on diurnal and seasonal transpiration dynamics. We define these strategies through the parameters that describe the genus level transpiration and xylem conductivity responses to changes in stem water potential. Our evaluation revealed that FETCH2 considerably improved the simulation of ecosystem transpiration and latent heat flux in comparison to more conventional models. A virtual experiment showed that the model was able to capture the effect of hydraulic strategies such as isohydric/anisohydric behavior on stomatal conductance under different soil-water availability conditions.

  14. Aerenchyma Formed Under Phosphorus Deficiency Contributes to the Reduced Root Hydraulic Conductivity in Maize Roots

    Institute of Scientific and Technical Information of China (English)

    Mingshou Fan; Ruiqin Bai; Xuefeng Zhao; Jianhua Zhang

    2007-01-01

    Root hydraulic conductivity has been shown to decrease under phosphorus (P) deficiency. This study investigated how the formation of aerenchyma is related to this change. Root anatomy, as well as root hydraulic conductivity was studied in maize (Zea mays L.) roots under different phosphorus nutrition conditions. Plant roots under P stress showed enhanced degradation of cortical cells and the aerenchyma formation was associated with their reduced root hydraulic conductivity, supporting our hypothesis that air spaces that form in the cortex of phosphorusstressed roots impede the radial transport of water in a root cylinder. Further evidence came from the variation in aerenchyma formation due to genotypic differences. Five maize inbred lines with different porosity in their root cortex showed a significant negative correlation with their root hydraulic conductivity. Shoot relative water content was also found lower in P-deficient maize plants than that in P-sufficient ones when such treatment was prolonged enough, suggesting a limitation of water transport due to lowered root hydraulic conductivity of P-deficient piants.

  15. Conductivity and transit time estimates of a soil liner

    Science.gov (United States)

    Krapac, I.G.; Cartwright, K.; Panno, S.V.; Hensel, B.R.; Rehfeldt, K.H.; Herzog, B.L.

    1990-01-01

    A field-scale soil linear was built to assess the feasibilty of constructing a liner to meet the saturated hydraulic conductivity requirement of the U.S. EPA (i.e., less than 1 ?? 10-7 cm/s), and to determine the breakthrough and transit times of water and tracers through the liner. The liner, 8 ?? 15 ?? 0.9 m, was constructed in 15-cm compacted lifts using a 20,037-kg pad-foot compactor and standard engineering practices. Estimated saturated hydraulic conductivities were 2.4 ?? 10-9 cm/s, based on data from large-ring infiltrometers; 4.0 ?? 10-8 cm/s from small-ring infiltrometers; and 5.0 ?? 10-8 cm/s from a water-balance analysis. These estimates were derived from 1 year of monitoring water infiltration into the linear. Breakthrough of tracers at the base of the liner was estimated to be between 2 and 13 years, depending on the method of calculation and the assumptions used in the calculation.

  16. Assessing Tillage Effects on Soil Hydraulic Properties via Inverse Parameter Estimation using Tension Infiltrometry

    Science.gov (United States)

    Schwen, Andreas; Bodner, Gernot; Loiskandl, Willibald

    2010-05-01

    Hydraulic properties are key factors controlling water and solute movement in soils. While several recent studies have focused on the assessment of the spatial variability of hydraulic properties, the temporal dynamics are commonly not taken into account, primarily because its measurement is costly and time-consuming. However, there is extensive empirical evidence that these properties are subject to temporal changes, particularly in the near-saturated range where soil structure strongly influences water flow. One main source of temporal variability is soil tillage. It can improve macroporosity by loosening the soil and thereby changing the pore-size distribution. Since these modifications are quite unstable over time, the pore space partially collapses after tillage. This effect should be largest for conventional tillage (CT), where the soil is ploughed after harvest every year. Assessing the effect of different tillage treatments on the temporal variability of hydraulic properties requires adequate measurement techniques. Tension infiltrometry has become a popular and convenient method providing not only the hydraulic conductivity function but also the soil rentention properties. The inverse estimation of parameters from infiltration measurements remains challenging, despite some progress since the first approach of Šimůnek et al. (1998). Measured data like the cumulative infiltration, the initial and final volumetric water content, as well as independently measured retention data from soil core analysis with laboratory methods, have to be considered to find an optimum solution describing the soil's pore space. In the present study we analysed tension infiltration measurements obtained several times between August 2008 and December 2009 on an arable field in the Moravian Basin, Lower Austria. The tillage treatments were conventional tillage including ploughing (CT), reduced tillage with chisel only (RT), and no-tillage treatment using a direct seeding

  17. Hydraulic Conductivity Estimate via Tracer Test and Ensemble Kalman Filter Data Assimilation: Theoretical and Numerical Fundamentals

    Science.gov (United States)

    Crestani, E.; Camporese, M.; Salandin, P.

    2011-12-01

    Hydraulic properties of natural aquifers, such as porosity, hydraulic conductivity, and storativity, exhibit an erratic spatial variability at different scales that is difficult to recognize without expensive in situ sampling campaigns, laboratory analyses, and, when available, spatially distributed pumping tests. Nevertheless, the importance of the heterogeneous structure of natural formations on solute transport is well recognized, being the non-Fickian evolution of contaminant plumes and the relevant dispersive phenomena controlled by the variability of the hydraulic conductivity K at the local scale. Tracer test analyses have been widely adopted to identify the complex distribution of in situ hydraulic properties. In particular, the use of geophysical methods like the borehole Electrical Resistivity Tomography (ERT) have been in rapid increase, due to their potential to accurately describe the spatio-temporal evolution of the injected solute. Under the assumptions that the solute spreads as a passive tracer and with high values of the Peclet number, the plume evolution is controlled by the porosity and the spatial distribution of hydraulic conductivity. Combining the Lagrangian formulation of transport and the ensemble Kalman filter (EnKF) data assimilation technique, the purpose of this study is to infer the spatial distribution of K at the local scale from a sequence of time-lapse concentration imaging. The capabilities of the proposed approach are investigated simulating various assimilation experiments via synthetic tracer tests in a three-dimensional finite domain reproducing a heterogeneous aquifer. In a first scenario, all the available concentration measurements are assimilated and the entire hydraulic conductivity field is updated, while in the remaining scenarios the K values are updated only in a limited number of nodes by assimilating the concentrations in these same nodes, the hydraulic conductivity in the rest of the domain being the result of a

  18. Effects of variations in hydraulic conductivity and flow conditions on groundwater flow and solute transport in peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Kellner, Erik [Dept. of Forest Ecology, Univ. of Helsinki (Finland)

    2007-02-15

    In this report it is examined to what extent the variation in hydraulic conductivity within a peatland and adjoining sediments would affect the flow patterns within it under some certain hydraulic-head gradients and other certain border conditions. The first part of the report contains a short review of organic and mineral-soil sediment types and characteristics and what we know about present peatlands and underlying sediments in the SKB investigation areas today. In the next part, a 2-dimensional model is used to simulate flows and transports in different settings of a peatland, with the objective of studying the effects of some particular factors: 1. The magnitude of the hydraulic conductivity of the peat and of underlying layers. 2. Presence and positions of cracks in underlying clay layers. 3. Anisotropy and heterogeneity in peat hydraulic conductivity. 4. The size of the water recharge at the peatland surface. 5. The seasonal variation of the water recharge. The modelling results show that the importance of flow direction decreases with decreasing hydraulic conductivity in the peatland. This occurs as the convective flux is slowed down and the transport is taken over by the diffusive flux. Because the lowest hydraulic conductivity layer to large extent determines the size of the flow, presence of a low-conductivity layer, such as a layer of clay, is an important factor. Presence of cracks in such tight layers can increase the transport of solutes into the peat. The highest inflow rates are reached when such cracks occur in discharge areas with strong upward flow. On the other hand, a conservative solute can spread efficiently if there is a crack in low-flow locations. The effect of anisotropy is found to be small, partly because the horizontal gradients become smaller as distances are larger. The effect of layers with high or low permeability varies depending on the location and the prevailing gradients. One tight layer has a strong effect on the flow pattern

  19. Scaling of material properties for Yucca Mountain: literature review and numerical experiments on saturated hydraulic conductivity

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, S.A.; Rautman, C.A.

    1996-08-01

    A review of pertinent literature reveals techniques which may be practical for upscaling saturated hydraulic conductivity at Yucca Mountain: geometric mean, spatial averaging, inverse numerical modeling, renormalization, and a perturbation technique. Isotropic realizations of log hydraulic conductivity exhibiting various spatial correlation lengths are scaled from the point values to five discrete scales through these techniques. For the variances in log{sub 10} saturated hydraulic conductivity examined here, geometric mean, numerical inverse and renormalization adequately reproduce point scale fluxes across the modeled domains. Fastest particle velocities and dispersion measured on the point scale are not reproduced by the upscaled fields. Additional numerical experiments examine the utility of power law averaging on a geostatistical realization of a cross-section similar to the cross-sections that will be used in the 1995 groundwater travel time calculations. A literature review on scaling techniques for thermal and mechanical properties is included. 153 refs., 29 figs., 6 tabs.

  20. Method for estimating spatially variable seepage loss and hydraulic conductivity in intermittent and ephemeral streams

    Science.gov (United States)

    Niswonger, R.G.; Prudic, D.E.; Fogg, G.E.; Stonestrom, D.A.; Buckland, E.M.

    2008-01-01

    A method is presented for estimating seepage loss and streambed hydraulic conductivity along intermittent and ephemeral streams using streamflow front velocities in initially dry channels. The method uses the kinematic wave equation for routing streamflow in channels coupled to Philip's equation for infiltration. The coupled model considers variations in seepage loss both across and along the channel. Water redistribution in the unsaturated zone is also represented in the model. Sensitivity of the streamflow front velocity to parameters used for calculating seepage loss and for routing streamflow shows that the streambed hydraulic conductivity has the greatest sensitivity for moderate to large seepage loss rates. Channel roughness, geometry, and slope are most important for low seepage loss rates; however, streambed hydraulic conductivity is still important for values greater than 0.008 m/d. Two example applications are presented to demonstrate the utility of the method. Copyright 2008 by the American Geophysical Union.

  1. Understanding the influence of biofilm accumulation on the hydraulic properties of soils: a mechanistic approach based on experimental data

    Science.gov (United States)

    Carles Brangarí, Albert; Sanchez-Vila, Xavier; Freixa, Anna; Romaní, Anna M.; Fernàndez-Garcia, Daniel

    2017-04-01

    The distribution, amount, and characteristics of biofilms and its components govern the capacity of soils to let water through, to transport solutes, and the reactions occurring. Therefore, unraveling the relationship between microbial dynamics and the hydraulic properties of soils is of concern for the management of natural systems and many technological applications. However, the increased complexity of both the microbial communities and the geochemical processes entailed by them causes that the phenomenon of bioclogging remains poorly understood. This highlights the need for a better understanding of the microbial components such as live and dead bacteria and extracellular polymeric substances (EPS), as well as of their spatial distribution. This work tries to shed some light on these issues, providing experimental data and a new mechanistic model that predicts the variably saturated hydraulic properties of bio-amended soils based on these data. We first present a long-term laboratory infiltration experiment that aims at studying the temporal variation of selected biogeochemical parameters along the infiltration path. The setup consists of a 120-cm-high soil tank instrumented with an array of sensors plus soil and liquid samplers. Sensors measured a wide range of parameters in continuous, such as volumetric water content, electrical conductivity, temperature, water pressure, soil suction, dissolved oxygen, and pH. Samples were kept for chemical and biological analyses. Results indicate that: i) biofilm is present at all depths, denoting the potential for deep bioclogging, ii) the redox conditions profile shows different stages, indicating that the community was adapted to changing redox conditions, iii) bacterial activity, richness and diversity also exhibit zonation with depth, and iv) the hydraulic properties of the soil experienced significant changes as biofilm proliferated. Based on experimental evidences, we propose a tool to predict changes in the

  2. Evaluation of actual and estimated hydraulic conductivity of sands with different gradation and shape.

    Science.gov (United States)

    Cabalar, Ali Firat; Akbulut, Nurullah

    2016-01-01

    Hydraulic conductivities of sands with different gradation and grain shape were estimated experimentally at a relative density (Dr) of about 40 % and a 22 ± 2 °C of constant temperature. Narli Sand (NS) with 0.67 of sphericity (S) and 0.72 of roundness (R), and Crushed Stone Sand (CSS) with 0.55 of S and 0.15 of R values were artificially graded into sixteen different grain-size fractions (4.75-2, 2-1.18, 1.18-0.6, 0.6-0.425, 0.425-0.3, 0.3-0.075, 4.75-0.075, 2-0.075, 1.18-0.075, 0.6-0.075, 0.425-0.075, 4.75-0.6, 2-0.6, 4.75-0.425, 2-0.425, 1.18-0.425 mm). Hydraulic conductivities of the NS estimated by use of constant head test ranged from 1.61 to 0.01 cm/s, whilst those of the CSS estimated by the same test ranged from 2.45 to 0.012 cm/s. It was observed that the hydraulic conductivity values of the NS are lower than those of the CSS samples, which is likely to be the result of differences in shape, particularly in R values. The results clearly demonstrated that the hydraulic conductivity can be significantly influenced by grading characteristics (d10, d20, d30, d50, d60, cu, cc, n, Io). Furthermore, comparisons between results obtained in the present study and hydraulic conductivity estimated with other formulas available in the literature were made. The comparisons indicated that the best estimation of hydraulic conductivity changes based on the gradation and shape properties of the sands tested.

  3. Steady state method to determine unsaturated hydraulic conductivity at the ambient water potential

    Science.gov (United States)

    HUbbell, Joel M.

    2014-08-19

    The present invention relates to a new laboratory apparatus for measuring the unsaturated hydraulic conductivity at a single water potential. One or more embodiments of the invented apparatus can be used over a wide range of water potential values within the tensiometric range, requires minimal laboratory preparation, and operates unattended for extended periods with minimal supervision. The present invention relates to a new laboratory apparatus for measuring the unsaturated hydraulic conductivity at a single water potential. One or more embodiments of the invented apparatus can be used over a wide range of water potential values within the tensiometric range, requires minimal laboratory preparation, and operates unattended for extended periods with minimal supervision.

  4. Evaluating lysimeter drainage against soil deep percolation modeled with profile soil moisture, field tracer propagation, and lab measured soil hydraulic properties

    DEFF Research Database (Denmark)

    Vasquez, Vicente; Thomsen, Anton Gårde; Iversen, Bo Vangsø;

    them have been reported. To compare among methods, one year of four large-scale lysimeters drainage (D) was evaluated against modeled soil deep percolation using either profile soil moisture, bromide breakthrough curves from suction cups, or measured soil hydraulic properties in the laboratory...... model using field q, and 572 mm with the laboratory measured soil hydraulic properties. In conclusion, lysimeters presented the lowest D and can be considered as a lower bound for D; whereas either laboratory measured soil hydraulic properties or models calibrated with profile soil moisture yielded......Quantifying recharge to shallow aquifers via soil deep percolation is needed for sustainable management of water resources. This includes modeled predictions to address the effects of climate change on recharge. Different methods to estimate soil deep percolation exist but few comparisons among...

  5. Field experiments in a fractured clay till. 1. Hydraulic conductivity and fracture aperture

    Science.gov (United States)

    McKay, Larry D.; Cherry, John A.; Gillham, Robert W.

    1993-04-01

    Field values of horizontal hydraulic conductivity measured in the upper 1.5-5.5 m of a weathered and fractured clay-rich till were strongly influenced by smearing around piezometer intakes, which occurs during augering, and by the physical scale of the measuring device. Values measured in conventional augered piezometers were typically 1-2 orders of magnitude lower than those measured in piezometers designed to reduce smearing. Measurements of hydraulic conductivity in small-scale seepage collectors or piezometers, which typically intersect fewer than 10 fractures, vary over a much greater range, 10-10 to 10-6 m/s, than large-scale values based on infiltration into 5.5-m-deep trenches which intersect thousands of fractures (range 10-7 to 3×10-7 m/s). Values of hydraulic fracture aperture, 1-43 μm, and fracture porosity, 3×10-5 to 2×10-3, were calculated using the cubic law with fracture orientation/distribution measurements and the small-scale hydraulic conductivity measurements. This paper provides the first reliable determination of the magnitude and spatial distribution of hydraulically derived fracture parameters in a clay deposit. The absence of such data has, until now, severely limited the application of quantitative groundwater flow and contaminant transport models in this type of deposit.

  6. Parameter estimation of soil hydraulic and thermal property functions for unsaturated porous media using the HYDRUS-2D code

    Directory of Open Access Journals (Sweden)

    Nakhaei Mohammad

    2014-03-01

    Full Text Available Knowledge of soil hydraulic and thermal properties is essential for studies involving the combined effects of soil temperature and water input on water flow and redistribution processes under field conditions. The objective of this study was to estimate the parameters characterizing these properties from a transient water flow and heat transport field experiment. Real-time sensors built by the authors were used to monitor soil temperatures at depths of 40, 80, 120, and 160 cm during a 10-hour long ring infiltration experiment. Water temperatures and cumulative infiltration from a single infiltration ring were monitored simultaneously. The soil hydraulic parameters (the saturated water content θ s, empirical shape parameters α and n, and the saturated hydraulic conductivity Ks and soil thermal conductivity parameters (coefficients b1, b2, and b3 in the thermal conductivity function were estimated from cumulative infiltration and temperature measurements by inversely solving a two-dimensional water flow and heat transport using HYDRUS-2D. Three scenarios with a different, sequentially decreasing number of optimized parameters were considered. In scenario 1, seven parameters (θ s, Ks, α, n, b1, b2, and b3 were included in the inverse problem. The results indicated that this scenario does not provide a unique solution. In scenario 2, six parameters (Ks, α, n, b1, b2, and b3 were included in the inverse problem. The results showed that this scenario also results in a non-unique solution. Only scenario 3, in which five parameters (α, n, b1, b2, and b3 were included in the inverse problem, provided a unique solution. The simulated soil temperatures and cumulative infiltration during the ring infiltration experiment compared reasonably well with their corresponding observed values.

  7. Spatial variability of soil water conductivities obtained with classical laboratory methods and their relation to electrical resistivity measurements

    Science.gov (United States)

    Dathe, Annette; Nemes, Attila; Bloem, Esther; Patterson, Matthew; Giménez, Daniel; Szõcs, Júlia; Koestel, Johannes; Jarvis, Nicholas

    2017-04-01

    Soil water conductivity plays a critical role when estimating water transport using the Richard's equation. Modelers often take one value of the saturated hydraulic conductivity (Ksat) per soil layer and that value is decreased for unsaturated conditions following the equations of Mualem and van Genuchten. This approach can lead to inconsistencies between model and natural soil, because in the field Ksat can vary by several orders of magnitude on short (centimeter) distances and Ksat often expresses water movement through macropores which cannot be downscaled without caution towards matrix flux. To improve existing knowledge we established a field experiment on an agriculturally used silty clay loam (Stagnosol) in SE Norway. More than 100 undisturbed soil samples were taken to determine soil water retention, saturated and unsaturated hydraulic conductivities and bulk density in the laboratory. A subset of these samples was scanned at the computer tomography facility at the Swedish University of Agricultural Sciences in Uppsala with special emphasis on characterizing macroporosity. Centimeter to decimeter scale heterogeneities were investigated in the field by using electrical resistivity tomography (ERT) in a quasi-3D and a real 3D approach. The latter covered the soil volume of 2x1x1 m where the soil samples were taken. We will present comparisons between hydraulic conductivities obtained in the laboratory using different methods, and between laboratory hydraulic conductivity results and electrical resistivities obtained in the field.

  8. Light response of hydraulic conductance in bur oak (Quercus macrocarpa) leaves.

    Science.gov (United States)

    Voicu, Mihaela C; Zwiazek, Janusz J; Tyree, Melvin T

    2008-07-01

    A four- to seven-fold enhancement of leaf hydraulic conductance by light has been reported in three temperate tree species. The enhancement occurs in the liquid-flow pathway between the petiole and the site of water evaporation. The enhancement occurs within 1 h, and dissipates in darkness over a period of 1 to 10 h depending on species. Here we report light-induced enhancement of leaf hydraulic conductance in a fourth species, bur oak (Quercus macrocarpa Michx.), the dependence of the effect on light flux and color, its absence in leaves of seedlings, and the impact on the response of leaf vein severance and several metabolic inhibitors. The light response of leaf hydraulic conductance approached saturation at a photosynthetic photon flux of 150 mumol m(-2) s(-1). Hydraulic enhancement was greater in response to blue and green light than to visible radiation of longer wavelengths, although at the same irradiance, the response to white light was greater than to light of any single color. Atrazine (a photosystem II inhibitor), fusicoccin (which stimulates plasma membrane-bound H(+)-ATPase) and HgCl(2) (an aquaporin blocker) reduced the light response of leaf lamina hydraulic conductance. When 2-mercaptoethanol was added following mercury treatment, the light response was totally suppressed. Our results are consistent with the notion that the effect of light on leaf lamina hydraulic conductance is controlled by factors acting outside the leaf veins, possibly through light-induced changes in membrane permeability of either mesophyll or bundle sheath cells, or both.

  9. Averaging hydraulic head, pressure head, and gravitational head in subsurface hydrology, and implications for averaged fluxes, and hydraulic conductivity

    Directory of Open Access Journals (Sweden)

    G. H. de Rooij

    2009-07-01

    Full Text Available Current theories for water flow in porous media are valid for scales much smaller than those at which problem of public interest manifest themselves. This provides a drive for upscaled flow equations with their associated upscaled parameters. Upscaling is often achieved through volume averaging, but the solution to the resulting closure problem imposes severe restrictions to the flow conditions that limit the practical applicability. Here, the derivation of a closed expression of the effective hydraulic conductivity is forfeited to circumvent the closure problem. Thus, more limited but practical results can be derived. At the Representative Elementary Volume scale and larger scales, the gravitational potential and fluid pressure are treated as additive potentials. The necessary requirement that the superposition be maintained across scales is combined with conservation of energy during volume integration to establish consistent upscaling equations for the various heads. The power of these upscaling equations is demonstrated by the derivation of upscaled water content-matric head relationships and the resolution of an apparent paradox reported in the literature that is shown to have arisen from a violation of the superposition principle. Applying the upscaling procedure to Darcy's Law leads to the general definition of an upscaled hydraulic conductivity. By examining this definition in detail for porous media with different degrees of heterogeneity, a series of criteria is derived that must be satisfied for Darcy's Law to remain valid at a larger scale.

  10. Reactive transport modelling to infer changes in soil hydraulic properties induced by non-conventional water irrigation

    Science.gov (United States)

    Valdes-Abellan, Javier; Jiménez-Martínez, Joaquín; Candela, Lucila; Jacques, Diederik; Kohfahl, Claus; Tamoh, Karim

    2017-06-01

    The use of non-conventional water (e.g., treated wastewater, desalinated water) for different purposes is increasing in many water scarce regions of the world. Its use for irrigation may have potential drawbacks, because of mineral dissolution/precipitation processes, such as changes in soil physical and hydraulic properties (e.g., porosity, permeability), modifying infiltration and aquifer recharge processes or blocking root growth. Prediction of soil and groundwater impacts is essential for achieving sustainable agricultural practices. A numerical model to solve unsaturated water flow and non-isothermal multicomponent reactive transport has been modified implementing the spatio-temporal evolution of soil physical and hydraulic properties. A long-term process simulation (30 years) of agricultural irrigation with desalinated water, based on a calibrated/validated 1D numerical model in a semi-arid region, is presented. Different scenarios conditioning reactive transport (i.e., rainwater irrigation, lack of gypsum in the soil profile, and lower partial pressure of CO2 (pCO2)) have also been considered. Results show that although boundary conditions and mineral soil composition highly influence the reactive processes, dissolution/precipitation of carbonate species is triggered mainly by pCO2, closely related to plant roots. Calcite dissolution occurs in the root zone, precipitation takes place under it and at the soil surface, which will lead a root growth blockage and a direct soil evaporation decrease, respectively. For the studied soil, a gypsum dissolution up to 40 cm depth is expected at long-term, with a general increase of porosity and hydraulic conductivity.

  11. Effects of subsoil compaction on hydraulic properties and preferential flow in a Swedish clay soil

    DEFF Research Database (Denmark)

    Mossadeghi-Björklund, M; Arvidsson, J.; Keller, Thomas;

    2016-01-01

    Soil compaction by vehicular traffic modifies the pore structure and soil hydraulic properties. These changes potentially influence the occurrence of preferential flow, which so far has been little studied. Our aim was to study the effect of compaction on soil hydraulic and transport properties in su...

  12. A wilty mutant of rice has impaired hydraulic conductance.

    Science.gov (United States)

    Koizumi, Koji; Ookawa, Taiichiro; Satoh, Hikaru; Hirasawa, Tadashi

    2007-08-01

    The rice CM2088 mutant is the wilty phenotype and wilts markedly under well-watered sunny conditions. The leaf water potential and epidermal (mainly stomatal) conductance of CM2088 plants decreased significantly under conditions that induced intense transpiration, as compared with those of wild-type plants, revealing that the wilty phenotype was not the result of abnormal stomatal behavior but was due to an increase in resistance to water transport. The resistance to water transport was dramatically elevated in the node and the sheath and blade of a leaf of the mutant, but not in the root or stem. The diameter of xylem vessels in the large vascular bundles of the leaf sheath and the internode tended to be small, and the numbers of vessel elements with narrowed or scalariform perforation plates in the leaf blade and sheath were greater in the mutant than in the wild type. Most xylem vessels were occluded, with air bubbles in the leaf sheath of the mutant during the midday hours under intense transpiration conditions, while no bubbles were observed in plants that were barely transpiring, revealing that the significant increase in resistance to water transport was a result of the cavitation. The additive effects of cavitation in xylem vessels and the decreased diameter and deformed plates of vessel elements might be responsible for the wilty phenotype of CM2088.

  13. A MATLAB program for estimation of unsaturated hydraulic soil parameters using an infiltrometer technique

    DEFF Research Database (Denmark)

    Mollerup, Mikkel; Hansen, Søren; Petersen, Carsten

    2008-01-01

    We combined an inverse routine for assessing the hydraulic soil parameters of the Campbell/Mualem model with the power series solution developed by Philip for describing one-dimensional vertical infiltration into a homogenous soil. We based the estimation routine on a proposed measurement procedure...

  14. A MATLAB program for estimation of unsaturated hydraulic soil parameters using an infiltrometer technique

    DEFF Research Database (Denmark)

    Mollerup, Mikkel; Hansen, Søren; Petersen, Carsten

    2008-01-01

    We combined an inverse routine for assessing the hydraulic soil parameters of the Campbell/Mualem model with the power series solution developed by Philip for describing one-dimensional vertical infiltration into a homogenous soil. We based the estimation routine on a proposed measurement procedu...

  15. HYDRAULIC REDISTRIBUTION OF SOIL WATER IN TWO OLD-GROWTH CONIFEROUS FORESTS: QUANTIFYING PATTERNS AND CONTROLS

    Science.gov (United States)

    Although hydraulic redistribution of soil water (HR) by roots is a widespread phenomenon, the processes governing spatial and temporal patterns of HR are not well understood. We incorporated soil/plant biophysical properties into a simple model based on Darcy's law to predict sea...

  16. Evaluating temporal changes in hydraulic conductivities near karst-terrain dams: Dokan Dam (Kurdistan-Iraq)

    Science.gov (United States)

    Dafny, Elad; Tawfeeq, Kochar Jamal; Ghabraie, Kazem

    2015-10-01

    Dam sites provide an outstanding opportunity to explore dynamic changes in the groundwater flow regime because of the high hydraulic gradient rapidly induced in their surroundings. This paper investigates the temporal changes of the hydraulic conductivities of the rocks and engineered structures via a thorough analysis of hydrological data collected at the Dokam Dam, Iraq, and a numerical model that simulates the Darcian component of the seepage. Analysis of the data indicates increased seepage with time and suggests that the hydraulic conductivity of the rocks increased as the conductivity of the grout curtain decreased. Conductivity changes on the order of 10-8 m/s, in a 20-yr period were quantified using the numerical analysis. It is postulated that the changes in hydraulic properties in the vicinity of Dokan Dam are due to suspension of fine materials, interbedded in small fissures in the rocks, and re-settlement of these materials along the curtain. Consequently, the importance of the grout curtain to minimize the downstream seepage, not only as a result of the conductivity contrast with the rocks, but also as a barrier to suspended clay sediments, is demonstrated. The numerical analysis also helped us to estimate the proportion of the disconnected karstic conduit flow to the overall flow.

  17. Bayesian inverse modelling of in situ soil water dynamics: using prior information about the soil hydraulic properties

    Directory of Open Access Journals (Sweden)

    B. Scharnagl

    2011-02-01

    Full Text Available In situ observations of soil water state variables under natural boundary conditions are often used to estimate field-scale soil hydraulic properties. However, many contributions to the soil hydrological literature have demonstrated that the information content of such data is insufficient to reliably estimate all the soil hydraulic parameters. In this case study, we tested whether prior information about the soil hydraulic properties could help improve the identifiability of the van Genuchten-Mualem (VGM parameters. Three different prior distributions with increasing complexity were formulated using the ROSETTA pedotransfer function (PTF with input data that constitutes basic soil information and is readily available in most vadose zone studies. The inverse problem was posed in a formal Bayesian framework and solved using Markov chain Monte Carlo (MCMC simulation with the DiffeRential Evolution Adaptive Metropolis (DREAM algorithm. Synthetic and real-world soil water content data were used to illustrate our approach. The results of this study corroborate and explicate findings previously reported in the literature. Indeed, soil water content data alone contained insufficient information to reasonably constrain all VGM parameters. The identifiability of these soil hydraulic parameters was substantially improved when an informative prior distribution was used with detailed knowledge of the correlation structure among the respective VGM parameters. A biased prior did not distort the results, which inspires confidence in the robustness and effectiveness of the presented method. The Bayesian framework presented in this study can be applied to a wide range of vadose zone studies and provides a blueprint for the use of prior information in inverse modelling of soil hydraulic properties at various spatial scales.

  18. Effects of temperature and thermally-induced microstructure change on hydraulic conductivity of Boom Clay

    Directory of Open Access Journals (Sweden)

    W.Z. Chen

    2017-06-01

    Full Text Available Boom Clay is one of the potential host rocks for deep geological disposal of high-level radioactive nuclear waste in Belgium. In order to investigate the mechanism of hydraulic conductivity variation under complex thermo-mechanical coupling conditions and to better understand the thermo-hydro-mechanical (THM coupling behaviour of Boom Clay, a series of permeability tests using temperature-controlled triaxial cell has been carried out on the Boom Clay samples taken from Belgian underground research laboratory (URL HADES. Due to its sedimentary nature, Boom Clay presents across-anisotropy with respect to its sub-horizontal bedding plane. Direct measurements of the vertical (Kv and horizontal (Kh hydraulic conductivities show that the hydraulic conductivity at 80 °C is about 2.4 times larger than that at room temperature (23 °C, and the hydraulic conductivity variation with temperature is basically reversible during heating–cooling cycle. The anisotropic property of Boom Clay is studied by scanning electron microscope (SEM tests, which highlight the transversely isotropic characteristics of intact Boom Clay. It is shown that the sub-horizontal bedding feature accounts for the horizontal permeability higher than the vertical one. The measured increment in hydraulic conductivity with temperature is lower than the calculated one when merely considering the changes in water kinematic viscosity and density with temperature. The nuclear magnetic resonance (NMR tests have also been carried out to investigate the impact of microstructure variation on the THM properties of clay. The results show that heating under unconstrained boundary condition will produce larger size of pores and weaken the microstructure. The discrepancy between the hydraulic conductivity experimentally measured and predicted (considering water viscosity and density changes with temperature can be attributed to the microstructural weakening effect on the thermal volume change

  19. Final Report - Hydraulic Conductivity with Depth for Underground Test Area (UGTA) Wells

    Energy Technology Data Exchange (ETDEWEB)

    P. Oberlander; D. McGraw; C. Russell

    2007-10-31

    Hydraulic conductivity with depth has been calculated for Underground Test Area (UGTA) wells in volcanic tuff and carbonate rock. The following wells in volcanic tuff are evaluated: ER-EC-1, ER-EC-2a, ER-EC-4, ER-EC-5, ER-5-4#2, ER-EC-6, ER-EC-7, and ER-EC-8. The following wells in carbonate rock are evaluated: ER-7-1, ER-6-1, ER-6-1#2, and ER-12-3. There are a sufficient number of wells in volcanic tuff and carbonate rock to associate the conductivity values with the specific hydrogeologic characteristics such as the stratigraphic unit, hydrostratigraphic unit, hydrogeologic unit, lithologic modifier, and alteration modifier used to describe the hydrogeologic setting. Associating hydraulic conductivity with hydrogeologic characteristics allows an evaluation of the data range and the statistical distribution of values. These results are relevant to how these units are considered in conceptual models and represented in groundwater models. The wells in volcanic tuff illustrate a wide range of data values and data distributions when associated with specific hydrogeologic characteristics. Hydraulic conductivity data within a hydrogeologic characteristic can display normal distributions, lognormal distributions, semi-uniform distribution, or no identifiable distribution. There can be multiple types of distributions within a hydrogeologic characteristic such as a single stratigraphic unit. This finding has implications for assigning summary hydrogeologic characteristics to hydrostratigraphic and hydrogeologic units. The results presented herein are specific to the hydrogeologic characteristic and to the wells used to describe hydraulic conductivity. The wells in carbonate rock are associated with a fewer number of hydrogeologic characteristics. That is, UGTA wells constructed in carbonate rock have tended to be in similar hydrogeologic materials, and show a wide range in hydraulic conductivity values and data distributions. Associations of hydraulic conductivity and

  20. Linking hydropedology and ecosystem services: differential controls of surface field saturated hydraulic conductivity in a volcanic setting in central Mexico

    Directory of Open Access Journals (Sweden)

    A. Gómez-Tagle

    2009-03-01

    Full Text Available In this study the variation of field saturated soil hydraulic conductivity (Kfs as key control variable and descriptor of infiltration was examined by means of a constant head single ring infiltrometer. The study took place in five coverage types and land uses in a volcanic setting in central Mexico. The tested hypothesis was that there exist a positive relationship between plant cover and surface Kfs for the study area. The examined coverage types included; Second growth pine-oak forest, pasture land, fallow land, gully and Cupresus afforestation. Results indicate that Kfs did not depend exclusively of plant cover; it was related to surface horizontal expression of the unburied soil horizons and linked to land use history. Therefore the Kfs measured at a certain location did not depend exclusively of the actual land use, it was also influenced by soil bioturbation linked to plant succession patterns and land use management practices history. The hypothesis accounts partially the variation between sites. Kfs under dense plant cover at the Cupresus afforestation was statistically equal to that measured at the fallow land or the gully sites, while second growth pine-oak forest Kfs figures were over an order of magnitude higher than the rest of the coverage types. The results suggest the relevance of unburied soil horizons in the soil hydrologic response when present at the surface. Under these conditions loosing surface soil horizons due to erosion, not only fertility is lost, but environmental services generation potential. A conceptual model within the hydropedological approach is proposed. It explains the possible controls of Kfs, for this volcanic setting. Land use history driven erosion plays a decisive role in subsurface horizon presence at the surface and soil matrix characteristic determination, while plant succession patterns seem to be strongly linked to soil bioturbation and

  1. Inverse modelling of in situ soil water dynamics: investigating the effect of different prior distributions of the soil hydraulic parameters

    Directory of Open Access Journals (Sweden)

    B. Scharnagl

    2011-10-01

    Full Text Available In situ observations of soil water state variables under natural boundary conditions are often used to estimate the soil hydraulic properties. However, many contributions to the soil hydrological literature have demonstrated that the information content of such data is insufficient to accurately and precisely estimate all the soil hydraulic parameters. In this case study, we explored to which degree prior information about the soil hydraulic parameters can help improve parameter identifiability in inverse modelling of in situ soil water dynamics under natural boundary conditions. We used percentages of sand, silt, and clay as input variables to the ROSETTA pedotransfer function that predicts the parameters in the van Genuchten-Mualem (VGM model of the soil hydraulic functions. To derive additional information about the correlation structure of the predicted parameters, which is not readily provided by ROSETTA, we employed a Monte Carlo approach. We formulated three prior distributions that incorporate to different extents the prior information about the VGM parameters derived with ROSETTA. The inverse problem was posed in a formal Bayesian framework and solved using Markov chain Monte Carlo (MCMC simulation with the DiffeRential Evolution Adaptive Metropolis (DREAM algorithm. Synthetic and real-world soil water content data were used to illustrate the approach. The results of this study demonstrated that prior information about the soil hydraulic parameters significantly improved parameter identifiability and that this approach was effective and robust, even in case of biased prior information. To be effective and robust, however, it was essential to use a prior distribution that incorporates information about parameter correlation.

  2. A simplified transfer function for estimating saturated hydraulic conductivity of porous drainage filters

    DEFF Research Database (Denmark)

    Canga, Eriona; Iversen, Bo Vangsø; Kjærgaard, Charlotte

    2013-01-01

    Knowledge of the saturated hydraulic conductivity (Ksat) of porous filters used in water treatment technologies is important for optimizing the retention of nutrients and pollutants. This parameter determines the hydraulic capacity, which together with the Chemical properties of the filter media......, bulk density, uniformity coefficient, particle density, and porosity of 46 porous media fractions. The fractions ranged in grain size from 0.5 to 20 mm and were obtained from seven commercial available coarse filter materials. A backward stepwise regression analysis was performed between Ksat and 10...

  3. Simulation of Hydraulic Fracture in Unsaturated Soils with High Degree of Saturation

    Directory of Open Access Journals (Sweden)

    Tielin Chen

    2014-01-01

    Full Text Available A numerical simulation approach of hydraulic fracture process, considering the couplings of the stress distribution, the fluid flow of the water-air mixture, the compression and dissolution of air, and the element damage evolution, has been developed to investigate the mechanisms of crack initiation and propagation in porous media during hydraulic fracturing. The concept of homogenized pore fluid has been adopted to represent the water air mixture. A large number of numerical analysis on hydraulic fracturing in clay with incipient injection slot have been carried out to study the mechanism of hydraulic fracturing in unsaturated soil with the characteristic of critical model I type of crack loading using stress intensity factor KIc. The results provide a numerical picture depicting the mechanisms of crack initiation and propagation during hydraulic fracturing. The numerical results are in good agreement with the experimental results, which confirms the adequacy and the power of the numerical approach.

  4. Links between matrix bulk density, macropore characteristics and hydraulic behavior of soils

    DEFF Research Database (Denmark)

    Katuwal, Sheela; Møldrup, Per; Lamandé, Mathieu

    2013-01-01

    The relationship of soil bulk density with the hydraulic behavior of soil and the role of macropores in preferential flow and transport has been extensively studied in literatures. Yet, the influence of soil structural heterogeneity as simultaneous variation of bulk density and macropore characte......The relationship of soil bulk density with the hydraulic behavior of soil and the role of macropores in preferential flow and transport has been extensively studied in literatures. Yet, the influence of soil structural heterogeneity as simultaneous variation of bulk density and macropore...... resolution X-ray CT and linked them with laboratory measurements of air permeability and leaching experiment. In addition to macropore characteristics, we also quantified the CT-number of the matrix as a measure of the bulk density of the matrix, i.e., excluding macropores in the soil. Soils from the two...... field sites had similar texture (loam or sandy loam), yet the sand content was higher in Faardrup soils and clay and organic carbon content were higher in Silstrup soils. In general, Silstrup soil had more macropores (>1.2mm) than Faardrup soils but both the soils exhibited similar relationships between...

  5. A low cost apparatus for measuring the xylem hydraulic conductance in plants

    Directory of Open Access Journals (Sweden)

    Luciano Pereira

    2012-01-01

    Full Text Available Plant yield and resistance to drought are directly related to the efficiency of the xylem hydraulic conductance and the ability of this system to avoid interrupting the flow of water. In this paper we described in detail the assembling of an apparatus proposed by TYREE et al. (2002, and its calibration, as well as low cost adaptations that make the equipment accessible for everyone working in this research area. The apparatus allows measuring the conductance in parts of roots or shoots (root ramifications or branches, or in the whole system, in the case of small plants or seedlings. The apparatus can also be used to measure the reduction of conductance by embolism of the xylem vessels. Data on the hydraulic conductance of eucalyptus seedlings obtained here and other reports in the literature confirm the applicability of the apparatus in physiological studies on the relationship between productivity and water stress.

  6. Effects of two arbuscular mycorrhizae fungi on some soil hydraulic properties and nutrient uptake by spring barley in an alkaline soil under greenhouse conditions

    Directory of Open Access Journals (Sweden)

    2015-06-01

    Full Text Available In order to investigate the effects of mycorrhizal symbiosis on some soil hydraulic properties and nutrients uptake by spring barley, a greenhouse experiment was conducted based on a completely randomized blocks design with four replications, using two mycorrhizl fungi including Glomus intraradices (GI and Glomus etunicatum (GE and non-mycorrhizal (control treatments, in an alkaline coarse-textured soil. Results showed that GE and GI significantly increased (P< 0.01 field capacity (FC water content by 24.7 and 12.6%, permanent wilting point (PWP water content by 20.1 and 11.1%, available water capacity (AWC by 27.1 and 13.3%, micropores by 14.1 and 5%, mesopores by 27.8 and 20.8% and decreased macropores by 17.3 and 9.5% and saturated hydraulic conductivity by 88.2 and 68.8% relative to the control, respectively. Also, GE and GI fungi significantly increased (P< 0.01 uptake of phosphorus in barely seeds by 44.1 and 20.3% and in stem by 181 and 50.6% and potassium in seeds by 290.8 and 167.9%, respectively. It is concluded that mycorrhizal symbiosis, as a biological and sustainable method, improved hydraulic and chemical quality of the alkaline coarse-textured soil.

  7. Contrasting xylem vessel constraints on hydraulic conductivity between native and non-native woody understory species

    Directory of Open Access Journals (Sweden)

    Maria S Smith

    2013-11-01

    Full Text Available We examined the hydraulic properties of 82 native and non-native woody species common to forests of Eastern North America, including several congeneric groups, representing a range of anatomical wood types. We observed smaller conduit diameters with greater frequency in non-native species, corresponding to lower calculated potential vulnerability to cavitation index. Non-native species exhibited higher vessel-grouping in metaxylem compared with native species, however, solitary vessels were more prevalent in secondary xylem. Higher frequency of solitary vessels in secondary xylem was related to a lower potential vulnerability index. We found no relationship between anatomical characteristics of xylem, origin of species and hydraulic conductivity, indicating that non-native species did not exhibit advantageous hydraulic efficiency over native species. Our results confer anatomical advantages for non-native species under the potential for cavitation due to freezing, perhaps permitting extended growing seasons.

  8. Effects of branch height on leaf gas exchange, branch hydraulic conductance and branch sap flux in open-grown ponderosa pine.

    Science.gov (United States)

    Hubbard, Robert M; Bond, Barbara J; Senock, Randy S; Ryan, Michael G

    2002-06-01

    Recent studies have shown that stomata respond to changes in hydraulic conductance of the flow path from soil to leaf. In open-grown tall trees, branches of different heights may have different hydraulic conductances because of differences in path length and growth. We determined if leaf gas exchange, branch sap flux, leaf specific hydraulic conductance, foliar carbon isotope composition (delta13C) and ratios of leaf area to sapwood area within branches were dependent on branch height (10 and 25 m) within the crowns of four open-grown ponderosa pine (Pinus ponderosa Laws.) trees. We found no difference in leaf gas exchange or leaf specific hydraulic conductance from soil to leaf between the upper and lower canopy of our study trees. Branch sap flux per unit leaf area and per unit sapwood area did not differ between the 10- and 25-m canopy positions; however, branch sap flux per unit sapwood area at the 25-m position had consistently lower values. Branches at the 25-m canopy position had lower leaf to sapwood area ratios (0.17 m2 cm-2) compared with branches at the 10-m position (0.27 m2 cm-2) (P = 0.03). Leaf specific conductance of branches in the upper crown did not differ from that in the lower crown. Other studies at our site indicate lower hydraulic conductance, sap flux, whole-tree canopy conductance and photosynthesis in old trees compared with young trees. This study suggests that height alone may not explain these differences.

  9. Thermal Conductivity Measurements on consolidated Soil Analogs

    Science.gov (United States)

    Seiferlin, K.; Heimberg, M.; Thomas, N.

    2007-08-01

    Heat transport in porous media such as soils and regolith is significantly reduced compared to the properties of compact samples of the same material. The bottle neck for solid state heat transport is the contact area between adjacent grains. For "dry" and unconsolidated materials the contact areas and thus the thermal conductivity are extremely small. Sintering and cementation are two processes that can increase the cross section of interstitial bonds signifcantly. On Mars, cementation can be caused by condensation of water or carbon dioxide ice from the vapor phase, or from salts and minerals that fall out from aqueous solutions. We produced several artificially cemented samples, using small glass beads of uniform size as soil analog. The cementation is achieved by initially molten wax that is mixed with the glass beads while liqiud. The wax freezes preferably at the contact points between grains, thus minimizing surface energy, and consolidates the samples. The thermal conductivity of these samples is then measured in vacuum. We present the results of these measurements and compare them with theoretical models. The observed range of thermal conductivity values can explain some, but not all of the variations in thermal intertia that can be seen in TES remote sensing data.

  10. Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance.

    Science.gov (United States)

    Augé, Robert M; Toler, Heather D; Sams, Carl E; Nasim, Ghazala

    2008-03-01

    Stomatal conductance (gs) and transpiration rates vary widely across plant species. Leaf hydraulic conductance (k leaf) tends to change with g (s), to maintain hydraulic homeostasis and prevent wide and potentially harmful fluctuations in transpiration-induced water potential gradients across the leaf (Delta Psi leaf). Because arbuscular mycorrhizal (AM) symbiosis often increases gs in the plant host, we tested whether the symbiosis affects leaf hydraulic homeostasis. Specifically, we tested whether k leaf changes with gs to maintain Delta Psi leaf or whether Delta Psi leaf differs when gs differs in AM and non-AM plants. Colonization of squash plants with Glomus intraradices resulted in increased gs relative to non-AM controls, by an average of 27% under amply watered, unstressed conditions. Stomatal conductance was similar in AM and non-AM plants with exposure to NaCl stress. Across all AM and NaCl treatments, k leaf did change in synchrony with gs (positive correlation of gs and k leaf), corroborating leaf tendency toward hydraulic homeostasis under varying rates of transpirational water loss. However, k leaf did not increase in AM plants to compensate for the higher gs of unstressed AM plants relative to non-AM plants. Consequently, Delta Psi leaf did tend to be higher in AM leaves. A trend toward slightly higher Delta Psi leaf has been observed recently in more highly evolved plant taxa having higher productivity. Higher Delta Psi leaf in leaves of mycorrhizal plants would therefore be consistent with the higher rates of gas exchange that often accompany mycorrhizal symbiosis and that are presumed to be necessary to supply the carbon needs of the fungal symbiont.

  11. Land-use effects on flood generation – considering soil hydraulic measurements in modelling

    Directory of Open Access Journals (Sweden)

    A. Münch

    2009-08-01

    Full Text Available The investigation in the catchment of the Mulde (51°0'55" N, 13°15'54" E Saxony, Germany researches the effect of afforestation measures on the soil hydraulic properties. The concept of a "false chronosequence" was used to quantify the time-dependent dynamical character of the forest impact. Four adjacent plots were identified at a test location with comparable pedological start conditions and a set of tree stands of different age: (1 arable field (initial state; (2 6-year-old afforestation; (3 50-year-old afforestation; (4 ancient natural forest ("target" stocking. Water retention curves and unsaturated conductivities were analysed in the lab. In the field, the undisturbed infiltration capacities were measured quantitatively (hood infiltrometer and qualitatively (brilliant blue tracer. Pronounced differences between all 4 plots were detected. The afforestation causes an increased infiltration and soil water retention potential. Especially the topsoil layers showed a distinct increase in conductivity and portion of coarse/middle pores. The influence of these changes on rainfall-runoff calculations at the test location was analysed in this study.

  12. Deciphering transmissivity and hydraulic conductivity of the aquifer by vertical electrical sounding (VES) experiments in Northwest Bangladesh

    Science.gov (United States)

    Sattar, Golam Shabbir; Keramat, Mumnunul; Shahid, Shamsuddin

    2016-03-01

    The vertical electrical soundings (VESs) are carried out in 24 selective locations of Chapai-Nawabganj area of northwest Bangladesh to determine the transmissivity and hydraulic conductivity of the aquifer. Initially, the transmissivity and hydraulic conductivity are determined from the pumping data of nearby available production wells. Afterwards, the T and K are correlated with geoelectrical resistance and the total resistivity of the aquifer. The present study deciphers the functional analogous relations of the geoelectrical resistance with the transmissivity and the total resistivity with the hydraulic conductivity of the aquifer in northwest Bangladesh. It has been shown that the given equations provide reasonable values of transmissivity and hydraulic conductivity where pumping test information is unavailable. It can be expected that the aquifer properties viz. transmissivity and hydraulic conductivity of geologically similar area can be determined with the help of the obtained equations by conducting VES experiments.

  13. Phoenix Conductivity Probe Inserted in Martian Soil

    Science.gov (United States)

    2008-01-01

    This series of six images from the Robotic Arm Camera on NASA's Phoenix Mars Lander records the first time that the four spikes of the lander's thermal and electrical conductivity probe were inserted into Martian soil. The images were taken on July 8, 2008, during the Phoenix mission's 43rd Martian day, or sol, since landing. The insertion visible from the shadows cast on the ground on that sol was a validation test of the procedure. The spikes on the probe are about 1.5 centimeters or half an inch long. The science team will use the probe tool to assess how easily heat and electricity move through the soil from one spike to another. Such measurements can provide information about frozen or unfrozen water in the soil. The probe is mounted on the 'knuckle' of Phoenix's Robotic Arm. It has already been used for assessing water vapor in the atmosphere when it is held above the ground. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Toward A 3-D Picture of Hydraulic Conductivity With Multilevel Slug Tests

    Science.gov (United States)

    McElwee, C. D.; McElwee, C. D.; Ross, H. C.

    2001-12-01

    The GEMS (Geohydrologic Experiment and Monitoring Site) field area has been established (in the Kansas River valley near Lawrence, Kansas) for a variety of reasons relating to research and teaching in hydrogeology at the University of Kansas. Over 70 wells have been installed for various purposes. The site overlies an alluvial aquifer with a total thickness of about 70 feet. The water table is typically about 20 feet below the surface, giving a total saturated thickness of about 50 feet. The upper part of the aquifer is finer material consisting of silt and clay. Typically, the lower 35 feet of the aquifer is sand and gravel. A number of wells through out the site are fully screened through the sand and gravel aquifer. Some of these fully screened wells are larger diameters; however, most wells are constructed of 2 inch PVC casing. Slug tests are widely used in hydrogeology to measure hydraulic conductivity. Over the last several years we have been conducting research to improve the slug test method. We have previously reported the detailed structure of hydraulic conductivity that can be seen in a 5 inch well (McElwee and Zemansky, EOS, v. 80, no. 46, p. F397, 1999) at this site, using multilevel slug tests. The existing 2 inch, fully screened wells are spread out over the site and offer the opportunity for developing a 3-D picture of the hydraulic conductivity distribution. However, it is difficult to develop a system that allows multilevel slug tests to be done accurately and efficiently in a 2 inch well. This is especially true in regions of very high hydraulic conductivity, where the water velocity in the casing will be relatively high. The resistance caused by frictional forces in the equipment must be minimized and a model taking account of these forces must be used. We have developed a system (equipment, software, and technique) for performing multilevel slug tests in 2 inch wells. Some equipment configurations work better than others. The data that we have

  15. Models for Unsaturated Hydraulic Conductivity Based on Truncated Lognormal Pore-size Distributions

    CERN Document Server

    Malama, Bwalya

    2013-01-01

    We develop a closed-form three-parameter model for unsaturated hydraulic conductivity associated with a three-parameter lognormal model of moisture retention, which is based on lognormal grainsize distribution. The derivation of the model is made possible by a slight modification to the theory of Mualem. We extend the three-parameter lognormal distribution to a four-parameter model that also truncates the pore size distribution at a minimum pore radius. We then develop the corresponding four-parameter model for moisture retention and the associated closed-form expression for unsaturated hydraulic conductivity. The four-parameter model is fitted to experimental data, similar to the models of Kosugi and van Genuchten. The proposed four-parameter model retains the physical basis of Kosugi's model, while improving fit to observed data especially when simultaneously fitting pressure-saturation and pressure-conductivity data.

  16. Comparison of Measured and Modelled Hydraulic Conductivities of Fractured Sandstone Cores

    Science.gov (United States)

    Baraka-Lokmane, S.; Liedl, R.; Teutsch, G.

    - A new method for characterising the detailed fracture geometry in sandstone cores is presented. This method is based on the impregnation of samples with coloured resin, without significant disturbance of the fractures. The fractures are made clearly visible by the resin, thus allowing the fracture geometry to be examined digitally. In order to model the bulk hydraulic conductivity, the samples are sectioned serially perpendicular to the flow direction. The hydraulic conductivity of individual sections is estimated by summing the contribution of the matrix and each fracture from the digital data. Finally, the hydraulic conductivity of the bulk sample is estimated by a harmonic average in series along the flow path. Results of this geometrical method are compared with actual physical conductivity values measured from fluid experiments carried out prior to sectioning. The predicted conductivity from the fracture geometry parameters (e.g., fracture aperture, fracture width, fracture length and fracture relative roughness all measured using an optical method) is in good agreement with the independent physical measurements, thereby validating the approach.

  17. Study on Hydraulic Parameters of Irrigating Warped Soil in Ningxia Irrigation Area%宁夏黄灌区灌淤土水力参数研究

    Institute of Scientific and Technical Information of China (English)

    易军; 尚三林; 杨正礼; 吴海卿; 马克星; 朱东海; 张晴雯

    2011-01-01

    A systematic research on hydraulic parameters of irrigating warped soil in Ningxia irrigation area is shown in this article. The results indicated as: the variation of saturated hydraulic conductivity of undisturbed soil and disturbed soil is 10~100 cm/d and 3~50 cm/d respectively. The dynamics of saturated hydraulic conductivity along the soil profile of the undisturbed soil is consisting with that of the disturbed soil: the saturated hydraulic conductivity presents reciprocating change with the increase of depth. The saturated hydraulic conductivity of undisturbed soil and disturbed soil are affected by clay content, bulk density, and porosity, except organic matter content. The saturated hydraulic conductivity of undisturbed soil is bigger than disturbed soil, with the general ratio of 2~5 times, and the variability is bigger too.Tendencies of soil water retention curves of all soil layers are similar, the soil volumetric water content decreased with the increase of soil water suctions, and it will stable when the suction reach a certain value,the soil water retention curve is affected by the clay content dramatically. The soil moisture diffusivity of all soil layers is changeable from 1. O× 10-3~6 cm2/min, and the soil moisture diffusivity of upper soils are far smaller than the lowers. Relationship between soil moisture diffusivities and soil volumetric water content in every soil layer are sharply positive exponential function, which was fitted by the empirical equation: D (θ)=aeω. The soil moisture diffusivity is affected by soil clay content, porosity, soil bulk density, and organic matter content.%对宁夏黄灌区灌淤土水力参数进行了较为系统的研究.研究结果表明,原状土与扰动土饱和导水率变化范围分别为10~100 cm/d和3~50 cm/d.原状土饱和导水率随土壤剖面变化规律与扰动土一致:随着土壤深度的增加,饱和导水率呈现高低往复变化.原状土和扰动土的饱和导水率

  18. Temporal changes in hydraulic conductivity of sand porous media biofilters during wastewater infiltration due to biomat formation

    Science.gov (United States)

    Beach, Deborah N. H.; McCray, John E.; Lowe, Kathryn S.; Siegrist, Robert L.

    2005-09-01

    Porous media biofilters (PMBs) are commonly used to treat domestic wastewater. Biomats develop at the infiltrative surface of PMBs due to continued wastewater application and create an impedance to flow. The goal of this research is to quantify the temporal evolution of normalized biomat hydraulic conductivity ( Kbm/ bbm) and effective hydraulic conductivity ( Ke). Ke is the overall hydraulic conductivity of the infiltrative zone, including biomat and unsaturated media below the biomat. Research was conducted using eight one-dimensional (1D) sand columns with gravel-free and gravel-laden infiltrative surfaces. The columns were loaded at design rates of 100-200 cm/d for 20 weeks of column operation. The Ke values for these continuously loaded columns were determined from analyses of bromide-tracer tests, falling-head permeability tests, and volumetric water content measurements during biomat development. The reduction in the Ke due to biomat formation is due to two factors: reduced hydraulic conductivity of the thin biomat, and a reduced hydraulic conductivity of the subsoil due to development of a biomat-induced unsaturated flow regime. Unsaturated hydraulic conductivities of the subsoil below the biomat ( Kss) were estimated from capillary curves and water content measurements. For observed final biomat thicknesses (less than 1 cm), the biomat hydraulic conductivity, Kbm, is three orders of magnitude smaller than the unsaturated hydraulic conductivity ( Kss). However, the relatively large thickness of the vadose zone causes the Kss to be an important contributor to the overall Ke value. For these columns, the final Ke values were approximately two orders of magnitude smaller than the original value. Because the exact thickness of the biomat ( bbm) is unknown during the flow experiments, the hydraulic conductance of the biomat zone is presented using a normalized hydraulic conductivity function ( Kbm/ bbm). A similar Kbm/ bbm is reached regardless of wastewater

  19. Estimating Hydraulic Conductivities in a Fractured Shale Formation from Pressure Pulse Testing and 3d Modeling

    Science.gov (United States)

    Courbet, C.; DICK, P.; Lefevre, M.; Wittebroodt, C.; Matray, J.; Barnichon, J.

    2013-12-01

    In the framework of its research on the deep disposal of radioactive waste in shale formations, the French Institute for Radiological Protection and Nuclear Safety (IRSN) has developed a large array of in situ programs concerning the confining properties of shales in their underground research laboratory at Tournemire (SW France). One of its aims is to evaluate the occurrence and processes controlling radionuclide migration through the host rock, from the disposal system to the biosphere. Past research programs carried out at Tournemire covered mechanical, hydro-mechanical and physico-chemical properties of the Tournemire shale as well as water chemistry and long-term behaviour of the host rock. Studies show that fluid circulations in the undisturbed matrix are very slow (hydraulic conductivity of 10-14 to 10-15 m.s-1). However, recent work related to the occurrence of small scale fractures and clay-rich fault gouges indicate that fluid circulations may have been significantly modified in the vicinity of such features. To assess the transport properties associated with such faults, IRSN designed a series of in situ and laboratory experiments to evaluate the contribution of both diffusive and advective process on water and solute flux through a clay-rich fault zone (fault core and damaged zone) and in an undisturbed shale formation. As part of these studies, Modular Mini-Packer System (MMPS) hydraulic testing was conducted in multiple boreholes to characterize hydraulic conductivities within the formation. Pressure data collected during the hydraulic tests were analyzed using the nSIGHTS (n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator) code to estimate hydraulic conductivity and formation pressures of the tested intervals. Preliminary results indicate hydraulic conductivities of 5.10-12 m.s-1 in the fault core and damaged zone and 10-14 m.s-1 in the adjacent undisturbed shale. Furthermore, when compared with neutron porosity data from borehole

  20. Characterisation of river-aquifer exchange fluxes: The role of spatial patterns of riverbed hydraulic conductivities

    Science.gov (United States)

    Tang, Q.; Kurtz, W.; Brunner, P.; Vereecken, H.; Hendricks Franssen, H.-J.

    2015-12-01

    Interactions between surface water and groundwater play an essential role in hydrology, hydrogeology, ecology, and water resources management. A proper characterisation of riverbed structures might be important for estimating river-aquifer exchange fluxes. The ensemble Kalman filter (EnKF) is commonly used in subsurface flow and transport modelling for estimating states and parameters. However, EnKF only performs optimally for MultiGaussian distributed parameter fields, but the spatial distribution of streambed hydraulic conductivities often shows non-MultiGaussian patterns, which are related to flow velocity dependent sedimentation and erosion processes. In this synthetic study, we assumed a riverbed with non-MultiGaussian channel-distributed hydraulic parameters as a virtual reference. The synthetic study was carried out for a 3-D river-aquifer model with a river in hydraulic connection to a homogeneous aquifer. Next, in a series of data assimilation experiments three different groups of scenarios were studied. In the first and second group of scenarios, stochastic realisations of non-MultiGaussian distributed riverbeds were inversely conditioned to state information, using EnKF and the normal score ensemble Kalman filter (NS-EnKF). The riverbed hydraulic conductivity was oriented in the form of channels (first group of scenarios) or, with the same bimodal histogram, without channelling (second group of scenarios). In the third group of scenarios, the stochastic realisations of riverbeds have MultiGaussian distributed hydraulic parameters and are conditioned to state information with EnKF. It was found that the best results were achieved for channel-distributed non-MultiGaussian stochastic realisations and with parameter updating. However, differences between the simulations were small and non-MultiGaussian riverbed properties seem to be of less importance for subsurface flow than non-MultiGaussian aquifer properties. In addition, it was concluded that both En

  1. Using scaling factors for evaluating spatial and temporal variability of soil hydraulic properties within one elevation transect

    Science.gov (United States)

    Nikodem, Antonín; Kodešová, Radka; Jakšík, Ondřej; Fér, Miroslav; Klement, Aleš

    2016-04-01

    This study was carried out in Southern Moravia, in the Czech Republic. The original soil unit in the wider area is a Haplic Chernozem developed on loess. The intensive agricultural exploitation in combination with terrain morphology has resulted in a highly diversified soil spatial pattern. Nowadays the original soil unit is preserved only on top of relatively flat parts, and is gradually transformed by water erosion up to Regosols on the steepest slopes, while colluvial soils are formed in terrain depressions and at toe slopes due to sedimentation of previously eroded material. Soils within this area has been intensively investigated during the last several years (e.g. Jakšík et al., 2015; Vašát et al., 2014, 2015a,b). Soil sampling (disturbed and undisturbed 100-cm3 soil samples) was performed at 5 points of one elevation transect in November 2010 (after wheat sowing) and August 2011 (after wheat harvest). Disturbed soil samples were used to determine basic soil properties (grain size distribution and organic carbon content etc.). Undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. Scaling factors (alpha-h for pressure head, alpha-theta for soil water contents and alpha-k for hydraulic conductivities) were used here to express soil hydraulic properties variability. Evaluated scaling factors reflected position within the elevation transect as well as time of soil sampling. In general large values of alpha-h, lower values of alpha-k and similar values of alpha-theta were obtained in 2010 in comparison to values obtained in 2011, which indicates development of soil structure during the vegetation season. Jakšík, O., Kodešová, R., Kubiš, A., Stehlíková, I., Drábek, O., Kapička, A. (2015): Soil aggregate stability within morphologically diverse areas. Catena, 127, 287-299. Vašát, R., Kode

  2. Profile constructing and elevation design of soil reclaimed by hydraulic dredge pump in mining areas

    Energy Technology Data Exchange (ETDEWEB)

    Longqian, C.; Aiqin, S.; Tianjian, Z. [China Univ. of Mining and Technology, Xuzhou, Jiangsu (China). School of Environmental Science and Spatial Informatics; Mei, L. [China Univ. of Mining and Technology, Xuzhou, Jiangsu (China)

    2007-07-01

    Underground coal mining is the main method of coal mining in China. The hydraulic dredge pump reclamation method is the basic method used for repairing hydraulic erosion. This paper reviewed land reclamation by hydraulic dredge pump in the Yi'an coal mine of Xuzhou mining area in the east of China, and analyzed the constructing theory of soil profiling. It examined factors such as the height of the ground-water table; the thickness of plough horizon; the length of crops root and the state of soil erosion; and the methods of profile construction and elevation design of soil reclaimed by hydraulic dredge pump. A relevant mathematical model was also developed. The paper discussed the general situation of the study site as well as the basic theory of profile constructing and the profile constructing method. The paper also discussed the elevation design of the reclaimed land. It was concluded that the practice has proved that the methods can make the reclaimed soil keep a similar characteristics to that of original cropped soil, and meet the requirements for elevation of reclaimed land. 8 refs., 1 tab., 2 figs.

  3. Determination of hydraulic conductivities of low permeability materials in the Sierra Ladrones Formation, Albuquerque basin

    Energy Technology Data Exchange (ETDEWEB)

    Planert, C.S.

    1995-06-01

    Low permeability materials in the Sierra Ladrones Formation were sampled and analyzed to determine their hydraulic conductivities using the falling head centrifugation method (fc) as described by Nimmo et al. (1991). The method is similar to the traditional falling head method, only it uses greatly increased centrifugal forces, allowing measurements to make in a relatively short amount of time. Using these measurements, variations in saturated hydraulic conductivities between different sediment types were analyzed using Analysis of Variance (ANOVA). Sampling resulted in useable data chiefly from the clay and silt facies of the formation. The range of conductivities determined are representative of brown and red clays, and silts which make up the overbank deposits of this region. Hydraulic conductivities for these overbank fines were found to range from approximately log K = {minus}9 m/s to log K = {minus}7 m/s. The upper measurement limit of the centrifuge apparatus was determined to be approximately 1.43 {times} 10{sup {minus}7} m/s and the lower limit was approximately 7.6 {times} 10{sup {minus}12} m/s.

  4. Spatial and temporal variability of soil electrical conductivity related to soil moisture

    OpenAIRE

    José Paulo Molin; Gustavo Di Chiacchio Faulin

    2013-01-01

    Soil electrical conductivity (ECa) is a soil quality indicator associated to attributes interesting to site-specific soil management such as soil moisture and texture. Soil ECa provides information that helps guide soil management decisions, so we performed spatial evaluation of soil moisture in two experimental fields in two consecutive years and modeled its influence on soil ECa. Soil ECa, moisture and clay content were evaluated by statistical, geostatistical and regression analyses. Semiv...

  5. Influence of hydroponic culture method on morphology and hydraulic conductivity of roots of honey locust.

    Science.gov (United States)

    Graves, W R

    1992-09-01

    The morphology and hydraulic conductivity of root systems of Gleditsia triacanthos L. var. inermis Willd. (honey locust) grown hydroponically in sand and solution cultures were compared. Total root system length was similar in the two cultures. However, root systems grown in solution had longer primary roots, fewer lateral roots and root hairs, and a greater distance between the tip of the primary root and the junction of the youngest secondary root and the primary root than root systems grown in sand. Hydraulic conductivities of root systems grown hydroponically for 21 or 35 days in sand or solution culture were similar. These findings show that different methods of hydroponic culture can affect root morphology without altering root resistance to water transport.

  6. EVALUATION OF THE BENTONITE CONTENT IN SPENT FOUNDRY SANDS AS A FUNCTION OF HYDRAULIC CONDUCTIVITY COEFFICIENT

    Directory of Open Access Journals (Sweden)

    Schirlene Chegatti

    2013-06-01

    Full Text Available This study evaluates the relationship of the bentonite content and hydraulic conductivity coefficient (k of waste foundry sands in tests of hydraulic conductivity in a flexible wall permeameter. The test samples had concentrations of activated sodium bentonite and natural sodium bentonite between 4% and 15%. It was also analyzed chemically the liquid leachate (aluminum, barium, chromium, cadmium, lead, phenols, iron, fluoride, and manganese, following de standard tests of Standard Methods 3111 B e D for the determination of this components in liquid samples. The experiments were supplemented with cation exchange capacity analysis. The results indicate that the values of are is related to the content of bentonite in waste foundry sand and the percolation from this waste disposal.

  7. Estimating Saturated Hydraulic Conductivity from Surface Ground-Penetrating Radar Monitoring of Infiltration

    CERN Document Server

    Léger, Emmanuel; Coquet, Yves

    2013-01-01

    In this study we used Hydrus-1D to simulate water infiltration from a ring infiltrometer. We generated water content profiles at each time step of infiltration, based on a particular value of the saturated hydraulic conductivity while knowing the other van Genuchten parameters. Water content profiles were converted to dielectric permittivity profiles using the Complex Refractive Index Method relation. We then used the GprMax suite of programs to generate radargrams and to follow the wetting front using arrival time of electromagnetic waves recorded by a Ground-Penetrating Radar (GPR). Theoretically, the depth of the inflection point of the water content profile simulated at any infiltration time step is related to the peak of the reflected amplitude recorded in the corresponding trace in the radargram. We used this relationship to invert the saturated hydraulic conductivity for constant and falling head infiltrations. We present our method on synthetic examples and on two experiments carried out on sand. We f...

  8. ROOT HYDRAULIC CONDUCTIVITY AND PHOTOSYNTHETIC CAPACITY OF EUCALYPT CLONAL CUTTINGS WITH ROOT MALFORMATION INDUCTIONS

    Directory of Open Access Journals (Sweden)

    Fábio Afonso Mazzei Moura de Assis Figueiredo

    2014-06-01

    Full Text Available http://dx.doi.org/10.5902/1980509814566The gain reduction of wood biomass in trees has been assigned to root deformations even in the nursery phase. The objective of this work was the evaluation of the root system hydraulic conductivity, gas exchanges and photochemical efficiency of eucalypt clonal cuttings with and without root deformation inductions. The treatments were: 1 operational cuttings without root malformation inductions (grown according to the used methodology of Fibria Cellulose S.A.; 2 root deformation inductions. These inductions did not promote decrease in the root volume. However, the deformations brought reduction of the root system hydraulic conductivity. Lower photosynthetic rates were also observed along the day in the cuttings in the root deformed cuttings. This decreasing rate is connected to stomatal and non stomatal factors.

  9. Sand box experiments with bioclogging of porous media: Hydraulic conductivity reductions

    DEFF Research Database (Denmark)

    Seifert, Dorte; Engesgaard, Peter

    2012-01-01

    Tracer experiments during clogging and de-clogging experiments in a 2D sand box were via an image analysis used to establish a data set on the relation between changes in hydraulic conductivity (K) and relative porosity (β). Clogging appears to create a finger-like tracer transport, which could...... and closer to the substrate source during the experiments suggesting that the zone of clogging moved upstream. Three clogging models, K(β), from the literature were tested for their ability to describe the temporal changes in clogging at the scale of the sand box; the model of Clement et al. (1996......) that makes no assumption on biomass distribution, the plug formation model of Thullner et al. (2002a), and the biofilm-plug formation model of Vandevivere (1995). The plug formation and biofilm-plug formation models both match the observed changes between the hydraulic conductivity of the sand box...

  10. Temporal stability of electrical conductivity in a sandy soil

    Science.gov (United States)

    Pedrera-Parrilla, Aura; Brevik, Eric C.; Giráldez, Juan V.; Vanderlinden, Karl

    2016-07-01

    Understanding of soil spatial variability is needed to delimit areas for precision agriculture. Electromagnetic induction sensors which measure the soil apparent electrical conductivity reflect soil spatial variability. The objectives of this work were to see if a temporally stable component could be found in electrical conductivity, and to see if temporal stability information acquired from several electrical conductivity surveys could be used to better interpret the results of concurrent surveys of electrical conductivity and soil water content. The experimental work was performed in a commercial rainfed olive grove of 6.7 ha in the `La Manga' catchment in SW Spain. Several soil surveys provided gravimetric soil water content and electrical conductivity data. Soil electrical conductivity values were used to spatially delimit three areas in the grove, based on the first principal component, which represented the time-stable dominant spatial electrical conductivity pattern and explained 86% of the total electrical conductivity variance. Significant differences in clay, stone and soil water contents were detected between the three areas. Relationships between electrical conductivity and soil water content were modelled with an exponential model. Parameters from the model showed a strong effect of the first principal component on the relationship between soil water content and electrical conductivity. Overall temporal stability of electrical conductivity reflects soil properties and manifests itself in spatial patterns of soil water content.

  11. Bayesian Model Averaging of Artificial Intelligence Models for Hydraulic Conductivity Estimation

    Science.gov (United States)

    Nadiri, A.; Chitsazan, N.; Tsai, F. T.; Asghari Moghaddam, A.

    2012-12-01

    This research presents a Bayesian artificial intelligence model averaging (BAIMA) method that incorporates multiple artificial intelligence (AI) models to estimate hydraulic conductivity and evaluate estimation uncertainties. Uncertainty in the AI model outputs stems from error in model input as well as non-uniqueness in selecting different AI methods. Using one single AI model tends to bias the estimation and underestimate uncertainty. BAIMA employs Bayesian model averaging (BMA) technique to address the issue of using one single AI model for estimation. BAIMA estimates hydraulic conductivity by averaging the outputs of AI models according to their model weights. In this study, the model weights were determined using the Bayesian information criterion (BIC) that follows the parsimony principle. BAIMA calculates the within-model variances to account for uncertainty propagation from input data to AI model output. Between-model variances are evaluated to account for uncertainty due to model non-uniqueness. We employed Takagi-Sugeno fuzzy logic (TS-FL), artificial neural network (ANN) and neurofuzzy (NF) to estimate hydraulic conductivity for the Tasuj plain aquifer, Iran. BAIMA combined three AI models and produced better fitting than individual models. While NF was expected to be the best AI model owing to its utilization of both TS-FL and ANN models, the NF model is nearly discarded by the parsimony principle. The TS-FL model and the ANN model showed equal importance although their hydraulic conductivity estimates were quite different. This resulted in significant between-model variances that are normally ignored by using one AI model.

  12. Estimation of hydraulic conductivity of a coastal aquifer using satellite imagery

    Science.gov (United States)

    Rebolledo-Vieyra, M.; Iglesias-Prieto, R.; Marino-Tapia, I.

    2012-12-01

    The northern Yucatan Peninsula is characterized by a young and dynamic karstic system that yields very high secondary porosity and permeability. However, we have little, if none, knowledge about the hydraulic conductivity and the amount of groundwater being discharged in to ocean. Here we present and estimation of the hydraulic conductivity and quantity of groundwater being discharged by the northern Yucatan Peninsula coastal aquifer into the Gulf of Mexico, using the Sea Surface Temperature (SST) Images offshore the Yucatan coast, where we have detected a thermal anomaly that appears few hours after heavy rainfall in northern Yucatan. We associated these thermal anomalies of the SST to the groundwater being discharged into the ocean. To test our hypothesis we conducted a review of extreme rainfall events in the last 10 years; in parallel we used data from pressure and flow direction gauges installed in a known submarine groundwater discharge (SGD) to estimate the hydraulic conductivity and the quantity of groundwater being discharged. The satellite imagery and the rainfall data, allowed us to estimate the time lag between the rainfall and the SGD beginning, along with the hydraulic data from the gauges we have estimated the hydrogeological parameters of the coastal aquifer. This data is very important to contribute to the understanding the hydrogeological setting of the Yucatan coastal aquifer and its implications of the impact of human activities on the water quality. July 29th, 2005, NOAA's Sea Surface Temperature (SST) image of the Gulf of Mexico taken a week after hurricane Emily (2005). A thermal low is present offshore northern Yucatan.

  13. Silicon Enhances Water Stress Tolerance by Improving Root Hydraulic Conductance in Solanum lycopersicum L.

    Science.gov (United States)

    Shi, Yu; Zhang, Yi; Han, Weihua; Feng, Ru; Hu, Yanhong; Guo, Jia; Gong, Haijun

    2016-01-01

    Silicon (Si) can improve drought tolerance in plants, but the mechanism is still not fully understood. Previous research has been concentrating on Si's role in leaf water maintenance in Si accumulators, while little information is available on its role in water uptake and in less Si-accumulating plants. Here, we investigated the effects of Si on root water uptake and its role in decreasing oxidative damage in relation to root hydraulic conductance in tomato (Solanum lycopersicum 'Zhongza No.9') under water stress. Tomato seedlings were subjected to water stress induced by 10% (w/v) polyethylene glycol-6000 in the absence or presence of 2.5 mM added silicate. The results showed that Si addition ameliorated the inhibition in tomato growth and photosynthesis, and improved water status under water stress. The root hydraulic conductance of tomato plants was decreased under water stress, and it was significantly increased by added Si. There was no significant contribution of osmotic adjustment in Si-enhanced root water uptake under water stress. The transcriptions of plasma membrane aquaporin genes were not obviously changed by Si under water stress. Water stress increased the production of reactive oxygen species and induced oxidative damage, while added Si reversed these. In addition, Si addition increased the activities of superoxide dismutase and catalase and the levels of ascorbic acid and glutathione in the roots under stress. It is concluded that Si enhances the water stress tolerance via enhancing root hydraulic conductance and water uptake in tomato plants. Si-mediated decrease in membrane oxidative damage may have contributed to the enhanced root hydraulic conductance.

  14. Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L.

    Directory of Open Access Journals (Sweden)

    Yu eShi

    2016-02-01

    Full Text Available Silicon (Si can improve drought tolerance in plants, but the mechanism is still not fully understood. Previous research has been concentrating on Si’s role in leaf water maintenance in Si accumulators, while little information is available on its role in water uptake and in less Si-accumulating plants. Here, we investigated the effects of Si on root water uptake and its role in decreasing oxidative damage in relation to root hydraulic conductance in tomato (Solanum lycopersicum ‘Zhongza No.9’ under water stress. Tomato seedlings were subjected to water stress induced by 10% (w/v polyethylene glycol-6000 in the absence or presence of 2.5 mM added silicate. The results showed that Si addition ameliorated the inhibition in tomato growth and photosynthesis, and improved water status under water stress. The root hydraulic conductance of tomato plants was decreased under water stress, and it was significantly increased by added Si. There was no significant contribution of osmotic adjustment in Si-enhanced root water uptake under water stress. The transcriptions of plasma membrane aquaporin genes were not obviously changed by Si under water stress. Water stress increased the production of reactive oxygen species and induced oxidative damage, while added Si reversed these. In addition, Si addition increased the activities of superoxide dismutase and catalase and the levels of ascorbic acid and glutathione in the roots under stress. It is concluded that Si enhances the water stress tolerance via enhancing root hydraulic conductance and water uptake in tomato plants. Si-mediated decrease in membrane oxidative damage may have contributed to the enhanced root hydraulic conductance.

  15. Pinhole test for identifying susceptibility of soils to piping erosion: effect water quality and hydraulic head

    Energy Technology Data Exchange (ETDEWEB)

    Nadal Romero, E.; Verachtert, E.; Poesen, J.

    2009-07-01

    Piping has been observed in both natural and soils, as well as under different types of land uses and vegetation covers. Despite its importance, no standard widely-applied methodology exists to assess susceptibility of soils to piping. This study aims at evaluating the pinhole test for assessing the susceptibility of soils to piping under different conditions. More precisely, the effects of hydraulic head and water quality are being assessed. Topsoil samples (remoulded specimens) with a small range of water contents were taken in Central Belgium (Heverlee) and the susceptibility of these soil samples are investigated under standardized laboratory conditions with a pinhole test device. Three hydraulic heads (50,180 and 380 mm) and two water qualities (tap and distilled water) were used, reflecting dominant field conditions. (Author) 6 refs.

  16. Ensemble Kalman filter versus ensemble smoother for assessing hydraulic conductivity via tracer test data assimilation

    Directory of Open Access Journals (Sweden)

    E. Crestani

    2013-04-01

    Full Text Available Estimating the spatial variability of hydraulic conductivity K in natural aquifers is important for predicting the transport of dissolved compounds. Especially in the nonreactive case, the plume evolution is mainly controlled by the heterogeneity of K. At the local scale, the spatial distribution of K can be inferred by combining the Lagrangian formulation of the transport with a Kalman-filter-based technique and assimilating a sequence of time-lapse concentration C measurements, which, for example, can be evaluated on site through the application of a geophysical method. The objective of this work is to compare the ensemble Kalman filter (EnKF and the ensemble smoother (ES capabilities to retrieve the hydraulic conductivity spatial distribution in a groundwater flow and transport modeling framework. The application refers to a two-dimensional synthetic aquifer in which a tracer test is simulated. Moreover, since Kalman-filter-based methods are optimal only if each of the involved variables fit to a Gaussian probability density function (pdf and since this condition may not be met by some of the flow and transport state variables, issues related to the non-Gaussianity of the variables are analyzed and different transformation of the pdfs are considered in order to evaluate their influence on the performance of the methods. The results show that the EnKF reproduces with good accuracy the hydraulic conductivity field, outperforming the ES regardless of the pdf of the concentrations.

  17. A model for hydraulic redistribution incorporating coupled soil-root moisture transport

    Directory of Open Access Journals (Sweden)

    G. G. Amenu

    2007-10-01

    Full Text Available One of the adaptive strategies of vegetation, particularly in water limited ecosystems, is the development of deep roots and the use of hydraulic redistribution which enables them to make optimal use of resources available throughout the soil column. Hydraulic redistribution refers to roots acting as a preferential pathway for the movement of water from wet to dry soil layers driven by the moisture gradient – be it from the shallow to deep layers or vice versa. This occurs during the nighttime while during the daytime moisture movement is driven to fulfill the transpiration demand at the canopy. In this study, we develop a model to investigate the effect of hydraulic redistribution by deep roots on the terrestrial climatology. Sierra Nevada eco-region is chosen as the study site which has wet winters and dry summers. Hydraulic redistribution enables the movement of moisture from the upper soil layers to deeper zones during the wet months and this moisture is then available to meet the transpiration demand during the late dry season. It results in significant alteration of the profiles of soil moisture and water uptake as well as increase in the canopy transpiration, carbon assimilation, and the associated water-use-efficiency during the dry summer season. This also makes the presence of roots in deeper soil layers much more important than their proportional abundance would otherwise dictate. Comparison with observations of latent heat from a flux tower demonstrates improved predictability and provides validation of the model results. Hydraulic redistribution serves as a mechanism for the interaction between the variability of deep layer soil-moisture and the land-surface climatology and could have significant implications for seasonal and sub-seasonal climate prediction.

  18. A model for hydraulic redistribution incorporating coupled soil-root moisture transport

    Directory of Open Access Journals (Sweden)

    G. G. Amenu

    2008-01-01

    Full Text Available One of the adaptive strategies of vegetation, particularly in water limited ecosystems, is the development of deep roots and the use of hydraulic redistribution which enables them to make optimal use of resources available throughout the soil column. Hydraulic redistribution refers to roots acting as a preferential pathway for the movement of water from wet to dry soil layers driven by the moisture gradient – be it from the shallow to deep layers or vice versa. This occurs during the nighttime while during the daytime moisture movement is driven to fulfill the transpiration demand at the canopy. In this study, we develop a model to investigate the effect of hydraulic redistribution by deep roots on the terrestrial climatology. Sierra Nevada eco-region is chosen as the study site which has wet winters and dry summers. Hydraulic redistribution enables the movement of moisture from the upper soil layers to deeper zones during the wet months and this moisture is then available to meet the transpiration demand during the late dry season. It results in significant alteration of the profiles of soil moisture and water uptake as well as increase in the canopy transpiration, carbon assimilation, and the associated water-use-efficiency during the dry summer season. This also makes the presence of roots in deeper soil layers much more important than their proportional abundance would otherwise dictate. Comparison with observations of latent heat from a flux tower demonstrates improved predictability and provides validation of the model results. Hydraulic redistribution serves as a mechanism for the interaction between the variability of deep layer soil-moisture and the land-surface climatology and could have significant implications for seasonal and sub-seasonal climate prediction.

  19. Improving the use of the fallout radionuclide 7Be as a sediment tracer by incorporating the hydraulic conductivity in the conversion model

    Science.gov (United States)

    Ryken, Nick; Al-Barri, Bashar; Blake, Will; Taylor, Alex; Boeckx, Pascal; Verdoodt, Ann

    2016-04-01

    There is growing interest in the application of the natural fallout radionuclide 7Be as a soil erosion and sediment tracer. Development of robust datasets is, however, hampered by unquantified spatial variability in its distribution within the surface soil. Models that convert 7Be inventory measurements to soil erosion estimates are all based on the observed depth distribution of 7Be, described by the relaxation mass depth (h0) parameter. Previous work, however, has not considered potential spatial variation in h0 linked to variability in soil physical properties, which could have major implications for the reliability of soil erosion estimates. This work addresses the close relation between infiltration rate and the 7Be depth distribution. During a laboratory rainfall simulation experiment, water spiked with stable 9Be was used to study the variability in 9Be depth distribution for eight compacted and eight non-compacted natural undisturbed soil cores, whereby 9Be was used as a substitute for 7Be. X-ray Computed Tomography (CT) scans were used to characterize the porosity of both groups, showing significant lower, strongly horizontally oriented, total porosity of the compacted soil cores. The average saturated hydraulic conductivity (ksat) of the different groups was 0.89 m day-1 and 17 m day-1 for the compacted and the non-compacted samples respectively. This physical compaction resulted in a clear distinction in 9Be depth distribution between both groups. With an average h0 of 4.66 ± 1.1 kg m-2, 9Be penetrated deeper in the non-compacted soil cores, while the compacted cores showed an average h0 of 2.42 ± 0.26 kg m-2. The reported h0 values at the former site were also characterized by a larger coefficient of variation (24%) than those at the latter site (11%), similar to the variations in soil structure observed by the CT-scans. Furthermore, the correlation between the hydraulic conductivity and the 9Be depth distribution is under investigation by

  20. Indirect measurements of field-scale hydraulic conductivity of waste from two landfill sites.

    Science.gov (United States)

    Fleming, I R

    2011-12-01

    Management and prediction of the movement and distribution of fluids in large landfills is important for various reasons. Bioreactor landfill technology shows promise, but in arid or semi-arid regions, the natural content of landfilled waste may be low, thus requiring addition of significant volumes of water. In more humid locations, landfills can become saturated, flooding gas collection systems and causing sideslope leachate seeps or other undesirable occurrences. This paper compares results from two different approaches to monitoring water in waste. At the Brock West Landfill in eastern Canada, positive pore pressures were measured at various depths in saturated waste. The downward seepage flux through the waste is known, thus the vertical saturated hydraulic conductivity of the waste at this landfill was determined to be 3 × 10(-7)cm/s. By comparison, the Spadina Landfill in western Canada is predominantly unsaturated. The infiltration of moisture into the waste was measured using moisture sensors installed in boreholes which determined arrival time for moisture fronts resulting from major precipitation events as well as longer-term change in moisture content resulting from unsaturated drainage during winter when frozen ground prevented infiltration. The unsaturated hydraulic conductivity calculated from these data ranged from approximately 10(-6)cm/s for the slow winter drainage in the absence of significant recharge to 10(-2)cm/s or higher for shallow waste subject to high infiltration through apparent preferential pathways. These two very different approaches to field-scale measurements of vertical hydraulic conductivity provide insight into the nature of fluid movement in saturated and unsaturated waste masses. It is suggested that the principles of unsaturated seepage apply reasonably well for landfilled waste and that the hydraulic behavior of waste is profoundly influenced by the nature and size of voids and by the degree of saturation prevailing in the

  1. Changes of soil thermal and hydraulic regimes in the Heihe River Basin.

    Science.gov (United States)

    Peng, Xiaoqing; Mu, Cuicui

    2017-09-02

    Soil thermal and hydraulic regimes are critical factors influencing terrestrial processes in cold regions. Collection of field data from frozen ground has occurred at point scales, but limited data exist that characterize changes of soil thermal and hydraulic regimes at the scale of the whole Heihe River Basin. This study uses a long-term regional climate model coupled with land surface model to investigate the soil thermal and hydraulic regime changes at a large spatial scale. It also explores potential factors, including the climate and non-climate factors. Results show that there is significant variability in mean annual air temperature (MAAT) of about 0.47 °C/decade during 1980-2013. A time series of area-averaged mean annual soil temperature (MAST) over the whole Heihe River Basin shows a significant increase between 0.25 and 0.36 °C/decade during 1984-2013, with a net change of 0.9 °C. A trend of increasing wetness is found in soil moisture. Frozen days (FD) decreased significantly both in seasonally frozen ground (SFG) regions and permafrost regions, with a net change between 7 and 13 days during 1984-2013. Freezing index (FI) had a positive effect on FD, while thawing index (TI), MAAT, precipitation, and normalized difference vegetation index (NDVI) had a negative effect. These results are important to understand dynamic mechanisms of soil freeze/thaw cycles.

  2. Integration of Tracer Test Data to Refine Geostatistical Hydraulic Conductivity Fields Using Sequential Self-Calibration Method

    Institute of Scientific and Technical Information of China (English)

    Bill X Hu; Jiang Xiaowei; Wan Li

    2007-01-01

    On the basis of local measurements of hydraulic conductivity, geostatistical methods have been found to be useful in heterogeneity characterization of a hydraulic conductivity field on a regional scale. However, the methods are not suited to directly integrate dynamic production data, such as,hydraulic head and solute concentration, into the study of conductivity distribution. These data, which record the flow and transport processes in the medium, are closely related to the spatial distribution of hydraulic conductivity. In this study, a three-dimensional gradient-based inverse method-the sequential self-calibration (SSC) method-is developed to calibrate a hydraulic conductivity field,initially generated by a geostatistical simulation method, conditioned on tracer test results. The SSC method can honor both local hydraulic conductivity measurements and tracer test data. The mismatch between the simulated hydraulic conductivity field and the reference true one, measured by its mean square error (MSE), is reduced through the SSC conditional study. In comparison with the unconditional results, the SSC conditional study creates the mean breakthrough curve much closer to the reference true curve, and significantly reduces the prediction uncertainty of the solute transport in the observed locations. Further, the reduction of uncertainty is spatially dependent, which indicates that good locations, geological structure, and boundary conditions will affect the efficiency of the SSC study results.

  3. The hydraulic conductivity of the xylem in conifer needles (Picea abies and Pinus mugo).

    Science.gov (United States)

    Charra-Vaskou, Katline; Mayr, Stefan

    2011-08-01

    Main resistances of the plant water transport system are situated in leaves. In contrast to angiosperm leaves, knowledge of conifer needle hydraulics and of the partitioning of resistances within needles is poor. A new technique was developed which enabled flow-meter measurements through needles embedded in paraffin and thus quantification of the specific hydraulic conductivity (K(s)) of the needle xylem. In Picea abies, xylem K(s) of needle and axes as well as in needles of different age were compared. In Pinus mugo, resistance partitioning within needles was estimated by measurements of xylem K(s) and leaf conductance (K(leaf), measured via 'rehydration kinetics'). Mean K(s) in P. abies needles was 3.5×10(-4) m(2) s(-1) MPa(-1) with a decrease in older needles, and over all similar to K(s) of corresponding axes xylem. In needles of P. mugo, K(s) was 0.9×10(-4) m(2) s(-1) MPa(-1), and 24% of total needle resistance was situated in the xylem. The results indicate species-specific differences in the hydraulic efficiency of conifer needle xylem. The vascular section of the water transport system is a minor but relevant resistance in needles.

  4. Using environmental tracers and transient hydraulic heads to estimate groundwater recharge and conductivity

    Science.gov (United States)

    Erdal, Daniel; Cirpka, Olaf A.

    2017-04-01

    Regional groundwater flow strongly depends on groundwater recharge and hydraulic conductivity. While conductivity is a spatially variable field, recharge can vary in both space and time. None of the two fields can be reliably observed on larger scales, and their estimation from other sparse data sets is an open topic. Further, common hydraulic-head observations may not suffice to constrain both fields simultaneously. In the current work we use the Ensemble Kalman filter to estimate spatially variable conductivity, spatiotemporally variable recharge and porosity for a synthetic phreatic aquifer. We use transient hydraulic-head and one spatially distributed set of environmental tracer observations to constrain the estimation. As environmental tracers generally reside for a long time in an aquifer, they require long simulation times and carries a long memory that makes them highly unsuitable for use in a sequential framework. Therefore, in this work we use the environmental tracer information to precondition the initial ensemble of recharge and conductivities, before starting the sequential filter. Thereby, we aim at improving the performance of the sequential filter by limiting the range of the recharge to values similar to the long-term annual recharge means and by creating an initial ensemble of conductivities that show similar pattern and values to the true field. The sequential filter is then used to further improve the parameters and to estimate the short term temporal behavior as well as the temporally evolving head field needed for short term predictions within the aquifer. For a virtual reality covering a subsection of the river Neckar it is shown that the use of environmental tracers can improve the performance of the filter. Results using the EnKF with and without this preconditioned initial ensemble are evaluated and discussed.

  5. The influence of topology on hydraulic conductivity in a sand-and-gravel aquifer

    Science.gov (United States)

    Morin, R.H.; LeBlanc, D.R.; Troutman, B.M.

    2010-01-01

    A field experiment consisting of geophysical logging and tracer testing was conducted in a single well that penetrated a sand-and-gravel aquifer at the U.S. Geological Survey Toxic Substances Hydrology research site on Cape Cod, Massachusetts. Geophysical logs and flowmeter/pumping measurements were obtained to estimate vertical profiles of porosity ??, hydraulic conductivity K, temperature, and bulk electrical conductivity under background, freshwater conditions. Saline-tracer fluid was then injected into the well for 2 h and its radial migration into the surrounding deposits was monitored by recording an electromagnetic-induction log every 10 min. The field data are analyzed and interpreted primarily through the use of Archie's (1942) law to investigate the role of topological factors such as pore geometry and connectivity, and grain size and packing configuration in regulating fluid flow through these coarse-grained materials. The logs reveal no significant correlation between K and ??, and imply that groundwater models that link these two properties may not be useful at this site. Rather, it is the distribution and connectivity of the fluid phase as defined by formation factor F, cementation index m, and tortuosity ?? that primarily control the hydraulic conductivity. Results show that F correlates well with K, thereby indicating that induction logs provide qualitative information on the distribution of hydraulic conductivity. A comparison of ??, which incorporates porosity data, with K produces only a slightly better correlation and further emphasizes the weak influence of the bulk value of ?? on K. Copyright ?? 2009 The Author(s) are Federal Government Employees. Journal compilation ?? 2009 National Ground Water Association.

  6. Low-field NMR logging sensor for measuring hydraulic parameters of model soils

    Science.gov (United States)

    Sucre, Oscar; Pohlmeier, Andreas; Minière, Adrien; Blümich, Bernhard

    2011-08-01

    SummaryKnowing the exact hydraulic parameters of soils is very important for improving water management in agriculture and for the refinement of climate models. Up to now, however, the investigation of such parameters has required applying two techniques simultaneously which is time-consuming and invasive. Thus, the objective of this current study is to present only one technique, i.e., a new non-invasive method to measure hydraulic parameters of model soils by using low-field nuclear magnetic resonance (NMR). Hereby, two model clay or sandy soils were respectively filled in a 2 m-long acetate column having an integrated PVC tube. After the soils were completely saturated with water, a low-field NMR sensor was moved up and down in the PVC tube to quantitatively measure along the whole column the initial water content of each soil sample. Thereafter, both columns were allowed to drain. Meanwhile, the NMR sensor was set at a certain depth to measure the water content of that soil slice. Once the hydraulic equilibrium was reached in each of the two columns, a final moisture profile was taken along the whole column. Three curves were subsequently generated accordingly: (1) the initial moisture profile, (2) the evolution curve of the moisture depletion at that particular depth, and (3) the final moisture profile. All three curves were then inverse analyzed using a MATLAB code over numerical data produced with the van Genuchten-Mualem model. Hereby, a set of values ( α, n, θr and θs) was found for the hydraulic parameters for the soils under research. Additionally, the complete decaying NMR signal could be analyzed through Inverse Laplace Transformation and averaged on the 1/ T2 space. Through measurement of the decay in pure water, the effect on the relaxation caused by the sample could be estimated from the obtained spectra. The migration of the sample-related average with decreasing saturation speaks for a enhancement of the surface relaxation as the soil dries, in

  7. Improved estimation of hydraulic conductivity by combining stochastically simulated hydrofacies with geophysical data.

    Science.gov (United States)

    Zhu, Lin; Gong, Huili; Chen, Yun; Li, Xiaojuan; Chang, Xiang; Cui, Yijiao

    2016-03-01

    Hydraulic conductivity is a major parameter affecting the output accuracy of groundwater flow and transport models. The most commonly used semi-empirical formula for estimating conductivity is Kozeny-Carman equation. However, this method alone does not work well with heterogeneous strata. Two important parameters, grain size and porosity, often show spatial variations at different scales. This study proposes a method for estimating conductivity distributions by combining a stochastic hydrofacies model with geophysical methods. The Markov chain model with transition probability matrix was adopted to re-construct structures of hydrofacies for deriving spatial deposit information. The geophysical and hydro-chemical data were used to estimate the porosity distribution through the Archie's law. Results show that the stochastic simulated hydrofacies model reflects the sedimentary features with an average model accuracy of 78% in comparison with borehole log data in the Chaobai alluvial fan. The estimated conductivity is reasonable and of the same order of magnitude of the outcomes of the pumping tests. The conductivity distribution is consistent with the sedimentary distributions. This study provides more reliable spatial distributions of the hydraulic parameters for further numerical modeling.

  8. A mutation that eliminates bundle sheath extensions reduces leaf hydraulic conductance, stomatal conductance and assimilation rates in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Zsögön, Agustin; Negrini, Ana Clarissa Alves; Peres, Lázaro Eustáquio Pereira; Nguyen, Hoa Thi; Ball, Marilyn C

    2015-01-01

    Bundle sheath extensions (BSEs) are key features of leaf structure whose distribution differs among species and ecosystems. The genetic control of BSE development is unknown, so BSE physiological function has not yet been studied through mutant analysis. We screened a population of ethyl methanesulfonate (EMS)-induced mutants in the genetic background of the tomato (Solanum lycopersicum) model Micro-Tom and found a mutant lacking BSEs. The leaf phenotype of the mutant strongly resembled the tomato mutant obscuravenosa (obv). We confirmed that obv lacks BSEs and that it is not allelic to our induced mutant, which we named obv-2. Leaves lacking BSEs had lower leaf hydraulic conductance and operated with lower stomatal conductance and correspondingly lower assimilation rates than wild-type leaves. This lower level of function occurred despite similarities in vein density, midvein vessel diameter and number, stomatal density, and leaf area between wild-type and mutant leaves, the implication being that the lack of BSEs hindered water dispersal within mutant leaves. Our results comparing near-isogenic lines within a single species confirm the hypothesised role of BSEs in leaf hydraulic function. They further pave the way for a genetic model-based analysis of a common leaf structure with deep ecological consequences.

  9. Property-Transfer Modeling to Estimate Unsaturated Hydraulic Conductivity of Deep Sediments at the Idaho National Laboratory, Idaho

    Science.gov (United States)

    Perkins, Kim S.; Winfield, Kari A.

    2007-01-01

    The unsaturated zone at the Idaho National Laboratory is complex, comprising thick basalt flow sequences interbedded with thinner sedimentary layers. Understanding the highly nonlinear relation between water content and hydraulic conductivity within the sedimentary interbeds is one element in predicting water flow and solute transport processes in this geologically complex environment. Measurement of unsaturated hydraulic conductivity of sediments is costly and time consuming, therefore use of models that estimate this property from more easily measured bulk-physical properties is desirable. A capillary bundle model was used to estimate unsaturated hydraulic conductivity for 40 samples from sedimentary interbeds using water-retention parameters and saturated hydraulic conductivity derived from (1) laboratory measurements on core samples, and (2) site-specific property transfer regression models developed for the sedimentary interbeds. Four regression models were previously developed using bulk-physical property measurements (bulk density, the median particle diameter, and the uniformity coefficient) as the explanatory variables. The response variables, estimated from linear combinations of the bulk physical properties, included saturated hydraulic conductivity and three parameters that define the water-retention curve. The degree to which the unsaturated hydraulic conductivity curves estimated from property-transfer-modeled water-retention parameters and saturated hydraulic conductivity approximated the laboratory-measured data was evaluated using a goodness-of-fit indicator, the root-mean-square error. Because numerical models of variably saturated flow and transport require parameterized hydraulic properties as input, simulations were run to evaluate the effect of the various parameters on model results. Results show that the property transfer models based on easily measured bulk properties perform nearly as well as using curve fits to laboratory-measured water

  10. Contrasting Hydraulic Strategies during Dry Soil Conditions in Quercus rubra and Acer rubrum in a Sandy Site in Michigan

    Directory of Open Access Journals (Sweden)

    Julia E. Thomsen

    2013-12-01

    Full Text Available Correlation analyses were carried out for the dynamics of leaf water potential in two broad-leaf deciduous tree species in a sandy site under a range of air vapor pressure deficits and a relatively dry range of soil conditions. During nights when the soil is dry, the diffuse-porous, isohydric and shallow-rooted Acer rubrum does not recharge its xylem and leaf water storage to the same capacity that is observed during nights when the soil is moist. The ring-porous, deep-rooted Quercus rubra displays a more anisohydric behavior and appears to be capable of recharging to capacity at night-time even when soil moisture at the top 1 m is near wilting point, probably by accessing deeper soil layers than A. rubrum. Compared to A. rubrum, Q. rubra displays only a minimal level of down-regulation of stomatal conductance, which leads to a reduction of leaf water potential during times when vapor pressure deficit is high and soil moisture is limiting. We determine that the two species, despite typically being categorized by ecosystem models under the same plant functional type—mid-successional, temperate broadleaf—display different hydraulic strategies. These differences may lead to large differences between the species in water relations, transpiration and productivity under different precipitation and humidity regimes.

  11. Is inversion based high resolution characterization of spatially heterogeneous river bed hydraulic conductivity needed and possible?

    Directory of Open Access Journals (Sweden)

    W. Kurtz

    2013-05-01

    Full Text Available River-aquifer exchange fluxes influence local and regional water balances and affect groundwater and river water quality and quantity. Unfortunately, river-aquifer exchange fluxes tend to be strongly spatially variable and it is an open research question to which degree river bed heterogeneity has to be represented in a~model in order to achieve reliable estimates of river-aquifer exchange fluxes. This research question is addressed in this paper with help of synthetic simulation experiments, which mimic the Limmat aquifer in Zurich (Switzerland, where river-aquifer exchange fluxes and groundwater management activities play an important role. The solution of the unsaturated-saturated subsurface hydrological flow problem including river-aquifer interaction is calculated for ten different synthetic realities where the strongly heterogeneous river bed hydraulic conductivities (L are perfectly known. Hydraulic head data (100 in the default scenario are sampled from the synthetic realities. In subsequent data assimilation experiments, where L is unknown now, the hydraulic head data are used as conditioning information, with help of the Ensemble Kalman Filter (EnKF. For each of the ten synthetic realities, four different ensembles of L are tested in the experiments with EnKF; one ensemble estimates high resolution L-fields with different L values for each element, and the other three ensembles estimate effective L values for 5, 3 or 2 zones. The calibration of higher resolution L-fields (i.e., fully heterogeneous or 5 zones gives better results than the calibration of L for only 3 or 2 zones in terms of reproduction of states, stream-aquifer exchange fluxes and parameters. Effective L for a limited number of zones cannot always reproduce the true states and fluxes well and results in biased estimates of net exchange fluxes between aquifer and stream. Also in case only 10 head data are used for conditioning, the high resolution L-fields outperform the

  12. Estimating hydraulic conductivity of fractured rocks from high‐pressure packer tests with an Izbash's law‐based empirical model

    National Research Council Canada - National Science Library

    Chen, Yi‐Feng; Hu, Shao‐Hua; Hu, Ran; Zhou, Chuang‐Bing

    2015-01-01

    ...‐pressure groundwater flow conditions. The interpretation of the HPPT data, however, remains difficult due to the transition of flow conditions in the conducting structures and the hydraulic fracturing...

  13. Integrating models to simulate emergent behaviour: effects of organic matter on soil hydraulics in the ICZ-1D soil-vegetation model

    Science.gov (United States)

    Valstar, Johan; Rowe, Ed; Konstantina, Moirogiorgou; Giannakis, Giorgos; Nikolaidis, Nikolaos

    2014-05-01

    Soil develops as a result of interacting processes, many of which have been described in more or less detailed models. A key challenge in developing predictive models of soil function is to integrate processes that operate across a wide range of temporal and spatial scales. Many soil functions could be classified as "emergent", since they result from the interaction of subsystems. For example, soil organic matter (SOM) dynamics are commonly considered in relation to carbon storage, but can have profound effects on soil hydraulic properties that are conventionally considered to be static. Carbon fixed by plants enters the soil as litterfall, root turnover or via mycorrhizae. Plants need water and nutrients to grow, and an expanding root system provides access to a larger volume of soil for uptake of water and nutrients. Roots also provide organic exudates, such as oxalate, which increase nutrient availability. Carbon inputs are transformed at various rates into soil biota, CO2, and more persistent forms of organic matter. The SOM is partly taken up into soil aggregates of variable sizes, which slows down degradation. Water availability is an important factor as both plant growth and SOM degradation can be limited by shortage of water. Water flow is the main driver for transport of nutrients and other solutes. The flow of water in turn is influenced by the presence of SOM as this influences soil water retention and hydraulic conductivity. Towards the top of the unsaturated zone, bioturbation by the soil fauna transports both solid material and solutes. Weathering rates of minerals determine the availability of many nutrients and are in turn dependent on parameters such as pH, water content, CO2 pressure and oxalate concentration. Chemical reactions between solutes, dissolution and precipitation, and exchange on adsorption sites further influence solute concentrations. Within the FP7 SoilTrEC project, we developed a model that incorporates all of these processes, to

  14. 2D aquifer characterization and improved prediction of hydraulic conductivity using surface Nuclear Magnetic Resonance

    Science.gov (United States)

    Dlugosch, Raphael; Günther, Thomas; Müller-Petke, Mike; Yaramanci, Ugur

    2014-05-01

    We present recent studies on the characterization of shallow aquifers using Nuclear Magnetic Resonance (NMR). NMR can help to gather detailed information about the water content and pore size related NMR relaxation time, of porous and water saturated material. The field application of surface NMR uses large wire loops placed at the surface of the Earth allows imaging the subsurface down to around hundred meters. First, a sophisticated inversion scheme is presented to simultaneously determine the two-dimensional (2D) distribution of the water content and the NMR relaxation time (T2*) in the subsurface from a surface NMR survey. The outstanding features of the new inversion scheme are its robustness to noisy data and the potential to distinguish aquifers of different lithology due to their specific NMR relaxation time. The successful application of the inversion scheme is demonstrated on two field cases both characterized by channel structures in the glacial sediments of Northern Germany. Second, we revise the prediction of hydraulic conductivity from NMR measurements for coarse-grained and unconsolidated sediments, commonly found in shallow aquifers. The presented Kozeny-Godefroy model replaces the empirical factors in known relations with physical, structural, and intrinsic NMR parameters. It additionally accounts for bulk water relaxation and is not limited to fast diffusion conditions. This improves the prediction of the hydraulic conductivity for clay-free sediments with grain sizes larger than medium sand. The model is validated by laboratory measurements on glass beads and sand samples. Combining the new inversion scheme and petrophysical model allows 2D imaging of the hydraulic conductivity in the subsurface from a surface NMR survey.

  15. Ensemble Kalman filter versus ensemble smoother for assessing hydraulic conductivity via tracer test data assimilation

    Directory of Open Access Journals (Sweden)

    E. Crestani

    2012-11-01

    Full Text Available The significance of estimating the spatial variability of the hydraulic conductivity K in natural aquifers is relevant to the possibility of defining the space and time evolution of a non-reactive plume, since the transport of a solute is mainly controlled by the heterogeneity of K. At the local scale, the spatial distribution of K can be inferred by combining the Lagrangian formulation of the transport with a Kalman filter-based technique and assimilating a sequence of time-lapse concentration C measurements, which, for example, can be evaluated on-site through the application of a geophysical method. The objective of this work is to compare the ensemble Kalman filter (EnKF and the ensemble smoother (ES capabilities to retrieve the hydraulic conductivity spatial distribution in a groundwater flow and transport modeling framework. The application refers to a two-dimensional synthetic aquifer in which a tracer test is simulated. Moreover, since Kalman filter-based methods are optimal only if each of the involved variables fit to a Gaussian probability density function (pdf and since this condition may not be met by some of the flow and transport state variables, issues related to the non-Gaussianity of the variables are analyzed and different transformation of the pdfs are considered in order to evaluate their influence on the performance of the methods. The results show that the EnKF reproduces with good accuracy the hydraulic conductivity field, outperforming the ES regardless of the pdf of the concentrations.

  16. Relationship between hydraulic properties and plant coverage of the closed-landfill soils in Piacenza (Po Valley, Italy)

    Science.gov (United States)

    Cassinari, C.; Manfredi, P.; Giupponi, L.; Trevisan, M.; Piccini, C.

    2015-07-01

    In this paper the results of a study of soil hydraulic properties and plant coverage of a landfill located in Piacenza (Po Valley, Italy) are presented, together with the attempt to relate the hydraulic properties in relation with plant coverage. The measured soil water retention curve was first compared with the output of pedotransfer functions taken from the literature and then compared with the output of the same pedotransfer functions applied to a reference soil. The landfill plant coverage was also studied. The relationship between soil hydraulic properties and plant coverage showed that the landfill soils have a low water content available for plants. The soils' low water content, together with a lack of depth and a compacted structure, justifies the presence of a nitrophilous, disturbed-soil vegetation type, dominated by ephemeral annual species (therophytes).

  17. Role of leaf hydraulic conductance in the regulation of stomatal conductance in almond and olive in response to water stress.

    Science.gov (United States)

    Hernandez-Santana, Virginia; Rodriguez-Dominguez, Celia M; Fernández, J Enrique; Diaz-Espejo, Antonio

    2016-06-01

    The decrease of stomatal conductance (gs) is one of the prime responses to water shortage and the main determinant of yield limitation in fruit trees. Understanding the mechanisms related to stomatal closure in response to imposed water stress is crucial for correct irrigation management. The loss of leaf hydraulic functioning is considered as one of the major factors triggering stomatal closure. Thus, we conducted an experiment to quantify the dehydration response of leaf hydraulic conductance (Kleaf) and its impact on gs in two Mediterranean fruit tree species, one deciduous (almond) and one evergreen (olive). Our hypothesis was that a higher Kleaf would be associated with a higher gs and that the reduction in Kleaf would predict the reduction in gs in both species. We measured Kleaf in olive and almond during a cycle of irrigation withholding. We also compared the results of two methods to measure Kleaf: dynamic rehydration kinetics and evaporative flux methods. In addition, determined gs, leaf water potential (Ψleaf), vein density, photosynthetic capacity and turgor loss point. Results showed that gs was higher in almond than in olive and so was Kleaf (Kmax = 4.70 and 3.42 mmol s(-1) MPa(-1) m(-2), in almond and olive, respectively) for Ψleaf > -1.2 MPa. At greater water stress levels than -1.2 MPa, however, Kleaf decreased exponentially, being similar for both species, while gs was still higher in almond than in olive. We conclude that although the Kleaf decrease with increasing water stress does not drive unequivocally the gs response to water stress, Kleaf is the variable most strongly related to the gs response to water stress, especially in olive. Other variables such as the increase in abscisic acid (ABA) may be playing an important role in gs regulation, although in our study the gs-ABA relationship did not show a clear pattern.

  18. Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L.

    OpenAIRE

    Yu eShi; Yi eZhang; Weihua eHan; Ru eFeng; Yanhong eHu; Jia eGuo; Haijun eGong

    2016-01-01

    Silicon (Si) can improve drought tolerance in plants, but the mechanism is still not fully understood. Previous research has been concentrating on Si’s role in leaf water maintenance in Si accumulators, while little information is available on its role in water uptake and in less Si-accumulating plants. Here, we investigated the effects of Si on root water uptake and its role in decreasing oxidative damage in relation to root hydraulic conductance in tomato (Solanum lycopersicum ‘Zhongza No.9...

  19. Silicon Enhances Water Stress Tolerance by Improving Root Hydraulic Conductance in Solanum lycopersicum L.

    OpenAIRE

    SHI, YU; Zhang, Yi; Han, Weihua; Feng, Ru; Hu, Yanhong; Guo, Jia; Gong, Haijun

    2016-01-01

    Silicon (Si) can improve drought tolerance in plants, but the mechanism is still not fully understood. Previous research has been concentrating on Si’s role in leaf water maintenance in Si accumulators, while little information is available on its role in water uptake and in less Si-accumulating plants. Here, we investigated the effects of Si on root water uptake and its role in decreasing oxidative damage in relation to root hydraulic conductance in tomato (Solanum lycopersicum ‘Zhongza No.9...

  20. Hydraulic conductance and viscous coupling of three-phase layers in angular capillaries

    Science.gov (United States)

    Dehghanpour, H.; Aminzadeh, B.; Dicarlo, D. A.

    2011-06-01

    Predicting three-phase relative permeability by network models requires reliable models for hydraulic conductance of films and layers stabilized by capillary forces at the pore level. We solve the creeping flow approximation of the Navier-Stokes equation for stable wetting and intermediate layers in the corner of angular capillaries by using a continuity boundary condition at the layer interface. We find significant coupling between the condensed phases and calculate the generalized mobilities by solving cocurrent and countercurrent flow of wetting and intermediate layers. Finally, we present a simple heuristic model for the generalized mobilities as a function of the geometry and viscosity ratio.

  1. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer.

    Science.gov (United States)

    Lens, Frederic; Sperry, John S; Christman, Mairgareth A; Choat, Brendan; Rabaey, David; Jansen, Steven

    2011-05-01

    • Vulnerability to cavitation and conductive efficiency depend on xylem anatomy. We tested a large range of structure-function hypotheses, some for the first time, within a single genus to minimize phylogenetic 'noise' and maximize detection of functionally relevant variation. • This integrative study combined in-depth anatomical observations using light, scanning and transmission electron microscopy of seven Acer taxa, and compared these observations with empirical measures of xylem hydraulics. • Our results reveal a 2 MPa range in species' mean cavitation pressure (MCP). MCP was strongly correlated with intervessel pit structure (membrane thickness and porosity, chamber depth), weakly correlated with pit number per vessel, and not related to pit area per vessel. At the tissue level, there was a strong correlation between MCP and mechanical strength parameters, and some of the first evidence is provided for the functional significance of vessel grouping and thickenings on inner vessel walls. In addition, a strong trade-off was observed between xylem-specific conductivity and MCP. Vessel length and intervessel wall characteristics were implicated in this safety-efficiency trade-off. • Cavitation resistance and hydraulic conductivity in Acer appear to be controlled by a very complex interaction between tissue, vessel network and pit characteristics.

  2. Method development for determining the hydraulic conductivity of fractured porous media

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Kenneth L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-09-30

    Plausible, but unvalidated, theoretical model constructs for unsaturated hydraulic conductivity of fractured porous media are currently used in Performance Assessment (PA) modeling for cracked saltstone and concrete (Flach 2011). The Nuclear Regulatory Commission (NRC) has expressed concern about the lack of model support for these assumed Moisture Characteristic Curves (MCC) data, as noted in Requests for Additional Information (RAIs) PA-8 and SP-4 (Savannah River Remediation, LLC, 2011). The objective of this task was to advance PA model support by developing an experimental method for determining the hydraulic conductivity of fractured cementitious materials under unsaturated conditions, and to demonstrate the technique on fractured saltstone samples. The task was requested through Task Technical Request (TTR) HLW-SSF-TTR-2012-0016 and conducted in accordance with Task Technical & Quality Assurance Plan (TTQAP) SRNL-TR-2012-00090. Preliminary method development previously conducted by Kohn et al. (2012) identified transient outflow extraction as the most promising method for characterizing the unsaturated properties of fractured porous media. While the research conducted by Kohn et al. (2012) focused on fractured media analogs such as stacked glass slides, the current task focused directly on fractured saltstone. For this task, four sample types with differing fracture geometries were considered: 1) intact saltstone, 2) intact saltstone with a single saw cut, smooth surface fracture, 3) micro-fractured saltstone (induced by oven drying), and 4) micro-fractured saltstone with a single, fully-penetrating, rough-surface fracture. Each sample type was tested initially for saturated hydraulic conductivity following method ASTM D 5084 using a flexible wall permeameter. Samples were subsequently tested using the transient outflow extraction method to determine cumulative outflow as a function of time and applied pressure. Of the four sample types tested, two yielded

  3. Importance of internal hydraulic redistribution for prolonging the lifespan of roots in dry soil.

    Science.gov (United States)

    Bauerle, T L; Richards, J H; Smart, D R; Eissenstat, D M

    2008-02-01

    Redistribution of water within plants could mitigate drought stress of roots in zones of low soil moisture. Plant internal redistribution of water from regions of high soil moisture to roots in dry soil occurs during periods of low evaporative demand. Using minirhizotrons, we observed similar lifespans of roots in wet and dry soil for the grapevine 'Merlot' (Vitis vinifera) on the rootstock 101-14 Millardet de Gramanet (Vitis riparia x Vitis rupestris) in a Napa County, California vineyard. We hypothesized that hydraulic redistribution would prevent an appreciable reduction in root water potential and would contribute to prolonged root survivorship in dry soil zones. In a greenhouse study that tested this hypothesis, grapevine root systems were divided using split pots and were grown for 6 months. With thermocouple psychrometers, we measured water potentials of roots of the same plant in both wet and dry soil under three treatments: control (C), 24 h light + supplemental water (LW) and 24 h light only (L). Similar to the field results, roots in the dry side of split pots had similar survivorship as roots in the wet side of the split pots (P = 0.136) in the C treatment. In contrast, reduced root survivorship was directly associated with plants in which hydraulic redistribution was experimentally reduced by 24 h light. Dry-side roots of plants in the LW treatment lived half as long as the roots in the wet soil despite being provided with supplemental water (P < 0.0004). Additionally, pre-dawn water potentials of roots in dry soil under 24 h of illumination (L and LW) exhibited values nearly twice as negative as those of C plants (P = 0.034). Estimates of root membrane integrity using electrolyte leakage were consistent with patterns of root survivorship. Plants in which nocturnal hydraulic redistribution was reduced exhibited more than twice the amount of electrolyte leakage in dry roots compared to those in wet soil of the same plant. Our study demonstrates that

  4. Practical estimates of field-saturated hydraulic conductivity of bedrock outcrops using a modified bottomless bucket method

    Science.gov (United States)

    Mirus, Benjamin B.; Perkins, Kim S.

    2012-01-01

    The bottomless bucket (BB) approach (Nimmo et al., 2009a) is a cost-effective method for rapidly characterizing field-saturated hydraulic conductivity Kfs of soils and alluvial deposits. This practical approach is of particular value for quantifying infiltration rates in remote areas with limited accessibility. A similar approach for bedrock outcrops is also of great value for improving quantitative understanding of infiltration and recharge in rugged terrain. We develop a simple modification to the BB method for application to bedrock outcrops, which uses a non-toxic, quick-drying silicone gel to seal the BB to the bedrock. These modifications to the field method require only minor changes to the analytical solution for calculating Kfs on soils. We investigate the reproducibility of the method with laboratory experiments on a previously studied calcarenite rock and conduct a sensitivity analysis to quantify uncertainty in our predictions. We apply the BB method on both bedrock and soil for sites on Pahute Mesa, which is located in a remote area of the Nevada National Security Site. The bedrock BB tests may require monitoring over several hours to days, depending on infiltration rates, which necessitates a cover to prevent evaporative losses. Our field and laboratory results compare well to Kfs values inferred from independent reports, which suggests the modified BB method can provide useful estimates and facilitate simple hypothesis testing. The ease with which the bedrock BB method can be deployed should facilitate more rapid in-situ data collection than is possible with alternative methods for quantitative characterization of infiltration into bedrock.

  5. Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar-sand mixtures

    Science.gov (United States)

    Liu, Zuolin; Dugan, Brandon; Masiello, Caroline A.; Barnes, Rebecca T.; Gallagher, Morgan E.; Gonnermann, Helge

    2016-02-01

    The amendment of soil with biochar can sequester carbon and alter hydrologic properties by changing physical and chemical characteristics of soil. To understand the effect of biochar amendment on soil hydrology, we measured the hydraulic conductivity (K) of biochar-sand mixtures as well as dissolved organic carbon (DOC) in leachate. Specifically, we assessed the effects of biochar concentration and particle size on K and amount of DOC in the soil leachate. To better understand how physical properties influenced K, we also measured the skeletal density of biochars and sand, and the bulk density, the water saturation, and the porosity of biochar-sand mixtures. Our model soil was sand (0.251-0.853 mm) with biochar rates from 2 to 10 wt% (g biochar/g total soil × 100%). As biochar (concentration increased from 0 to 10 wt%, K decreased by 72 ± 3%. When biochar particle size was equal to, greater than, and less than particle size of sand, we found that biochar in different particle sizes have different effects on K. For a 2 wt% biochar rate, K decreased by 72 ± 2% when biochar particles were finer than sand particles, and decreased by 15 ± 2% when biochar particles were coarser than sand particles. When biochar and sand particle size were comparable, we observed no significant effect on K. We propose that the decrease of K through the addition of fine biochar was because finer biochar particles filled spaces between sand particles, which increased tortuosity and reduced pore throat size of the mixture. The decrease of K associated with coarser biochar was caused by the bimodal particle size distribution, resulting in more compact packing and increased tortuosity. The loss of biochar C as DOC was related to both biochar rate and particle size. The cumulative DOC loss was 1350% higher from 10 wt% biochar compared to pure sand. This large increase reflected the very small DOC yield from pure sand. In addition, DOC in the leachate decreased as biochar particle size

  6. Taking into account the temporal variation of hydraulic conductivity when calibrating overland flow models on tilled fields.

    Science.gov (United States)

    Chahinian, N.; Andrieux, P.; Moussa, R.; Voltz, M.

    2003-04-01

    Tillage operations are known to change the structure of agricultural soils. In this paper we seek a calibration methodology to take into account the impact of tillage on overland flow simulation at the scale of a tilled field located in southern France. The study site is a 3240 m2 vineyard equipped with a Venturi flume and a tipping bucket rain gauge. 20 monitored rainfall events were used for the study, equally divided between calibration and validation sets. The overland flow model used consists of a modified Green &Ampt equation to simulate infiltration, a surface detention module, and an overland flow routing module based on the unit hydrograph concept. The model parameters that were calibrated for each event are the saturated hydraulic conductivity and the random roughness. The calibrated Ks values decreased monotonously according to the total amount of rainfall since tillage. No clear relationship was observed between the random roughness and cumulated rainfall. A regression curve was fitted to the calibrated Ks values. This curve was then used to determine Ks values for any rainfall event considering the total rainfall since tillage. Fairly good agreement was observed between the simulated and measured hydrographs of the calibration set. The validation results were relatively poorer but remain satisfactory given the uncertainties related to the initial soil moisture conditions. The calibration methodology developed seems robust and may be transposed to other sites.

  7. Influence of the heterogeneity on the hydraulic conductivity of a real aquifer

    Science.gov (United States)

    Carmine, Fallico; Aldo Pedro, Ferrante; Chiara, Vita Maria; Bartolo Samuele, De

    2010-05-01

    Many factors influence the flux in the porous media therefore the values of the representative parameters of the aquifer such as the hydraulic conductivity (k). A lot of studies have shown that this parameter increases with the portion of the aquifer tested. The main cause of this behaviour is the heterogeneity in the aquifer (Sànchez-Vila et al., 1996). It was also verified that the scale dependence of hydraulic conductivity does not depend on the specific method of measurement (Schulze-Makuch and Cherkauer, 1998). An experimental approach to study this phenomenon is based on sets of measurements carried out at different scales. However, one should consider that for the lower scale values k can be determined by direct measurements, performed in the laboratory using samples of different dimensions; whyle, for the large scales the measurement of the hydraulic conductivity requires indirect methods (Johnson and Sen, 1988; Katz and Thompson, 1986; Bernabé and Revil, 1995). In this study the confined aquifer of Montalto Uffugo test field was examined. This aquifer has the geological characteristics of a recently formed valley, with conglomeratic and sandy alluvial deposits; specifically the layer of sands and conglomerates, with a significant percentage of silt at various levels, lies about 55-60 m below the ground surface, where there is a heavy clay formation. Moreover in the test field, for the considered confined aquifer, there are one completely penetrating well, five partially penetrating wells and two completely penetrating piezometers. Along two vertical lines a series of cylindrical samples (6.4 cm of diameter and 15 cm of head) were extracted and for each one of them the k value was measured in laboratory by direct methods, based on the use of flux cells. Also indirect methods were used; in fact, a series of slug tests was carried out, determining the corresponding k values and the radius of influence (R). Moreover another series of pumping tests was

  8. Soil hydraulic properties affected by topsoil thickness in cultivated switchgrass and corn-soybean rotation production systems

    Science.gov (United States)

    Loss of productive topsoil by soil erosion over time can reduce the productive capacity of soil and can significantly affect soil hydraulic properties. This study evaluated the effects of reduced topsoil thickness and perennial switchgrass (Panicum virgatum L.) versus corn (Zea mays L.)/soybean [Gly...

  9. Digging Soil Experiments for Micro Hydraulic Excavators based on Model Predictive Tracking Control

    Science.gov (United States)

    Tomatsu, Takumi; Nonaka, Kenichiro; Sekiguchi, Kazuma; Suzuki, Katsumasa

    2016-09-01

    Recently, the increase of burden to operators and lack of skilled operators are the issue in the work of the hydraulic excavator. These problems are expected to be improved by autonomous control. In this paper, we present experimental results of hydraulic excavators using model predictive control (MPC) which incorporates servo mechanism. MPC optimizes digging operations by the optimal control input which is calculated by predicting the future states and satisfying the constraints. However, it is difficult for MPC to cope with the reaction force from soil when a hydraulic excavator performs excavation. Servo mechanism suppresses the influence of the constant disturbance using the error integration. However, the bucket tip deviates from a specified shape by the sudden change of the disturbance. We can expect that the tracking performance is improved by combining MPC and servo mechanism. Path-tracking controls of the bucket tip are performed using the optimal control input. We apply the proposed method to the Komatsu- made micro hydraulic excavator PC01 by experiments. We show the effectiveness of the proposed method through the experiment of digging soil by comparing servo mechanism and pure MPC with the proposed method.

  10. Ear Rachis Xylem Occlusion and Associated Loss in Hydraulic Conductance Coincide with the End of Grain Filling for Wheat.

    Science.gov (United States)

    Neghliz, Hayet; Cochard, Hervé; Brunel, Nicole; Martre, Pierre

    2016-01-01

    Seed dehydration is the normal terminal event in the development of orthodox seeds and is physiologically related to the cessation of grain dry mass accumulation and crop grain yield. For a better understanding of grain dehydration, we evaluated the hypothesis that hydraulic conductance of the ear decreases during the latter stages of development and that this decrease results from disruption or occlusion of xylem conduits. Whole ear, rachis, and stem nodes hydraulic conductance and percentage loss of xylem conductivity were measured from flowering to harvest-ripeness on bread wheat (Triticum aestivum L.) cv. Récital grown under controlled environments. Flag leaf transpiration, stomatal conductance, chlorophyll content and grain and ear water potentials were also measured during grain development. We show that grain dehydration was not related with whole plant physiology and leaf senescence, but closely correlated with the hydraulic properties of the xylem conduits irrigating the grains. Indeed, there was a substantial decrease in rachis hydraulic conductance at the onset of the grain dehydration phase. This hydraulic impairment was not caused by the presence of air embolism in xylem conduits of the stem internodes or rachis but by the occlusion of the xylem lumens by polysaccharides (pectins and callose). Our results demonstrate that xylem hydraulics plays a key role during grain maturation.

  11. Sand box experiments with bioclogging of porous media: hydraulic conductivity reductions.

    Science.gov (United States)

    Seifert, Dorte; Engesgaard, Peter

    2012-08-01

    Tracer experiments during clogging and de-clogging experiments in a 2D sand box were via an image analysis used to establish a data set on the relation between changes in hydraulic conductivity (K) and relative porosity (β). Clogging appears to create a finger-like tracer transport, which could be caused by an initial heterogeneous distribution of biomass in the sand box. De-clogging occurs at a slower rate possibly due to the presence of inert biomass that is not affected by the starvation conditions by sudden removal of the substrate source. The tracer front was observed to get disturbed closer and closer to the substrate source during the experiments suggesting that the zone of clogging moved upstream. Three clogging models, K(β), from the literature were tested for their ability to describe the temporal changes in clogging at the scale of the sand box; the model of Clement et al. (1996) that makes no assumption on biomass distribution, the plug formation model of Thullner et al. (2002a), and the biofilm-plug formation model of Vandevivere (1995). The plug formation and biofilm-plug formation models both match the observed changes between the hydraulic conductivity of the sand box and the relative porosity. Unfortunately our experiments did not reach low relative porosities where the two models predict different behaviors. The model by Clement et al. (1996) underestimates clogging.

  12. Control of Leaf Expansion by Nitrogen Nutrition in Sunflower Plants : ROLE OF HYDRAULIC CONDUCTIVITY AND TURGOR.

    Science.gov (United States)

    Radin, J W; Boyer, J S

    1982-04-01

    Nitrogen nutrition strongly affected the growth rate of young sunflower (Helianthus annuus L.) leaves. When plants were grown from seed on either of two levels of N availability, a 33% decrease in tissue N of expanding leaves was associated with a 75% overall inhibition of leaf growth. Almost all of the growth inhibition resulted from a depression of the daytime growth rate. Measurements of pressure-induced water flux through roots showed that N deficiency decreased root hydraulic conductivity by about half. Thus, N deficiency lowered the steady-state water potential of expanding leaves during the daytime when transpiration was occurring. As a result, N-deficient leaves were unable to maintain adequate turgor for growth in the daytime. N deficiency also decreased the hydraulic conductivity for water movement into expanding leaf cells in the absence of transpiration, but growth inhibition at night was much less than in the daytime. N nutrition had no detectable effects on plastic extensibility or the threshold turgor for growth.

  13. Root architecture and hydraulic conductance in nutrient deprived Pistacia lentiscus L. seedlings.

    Science.gov (United States)

    Trubat, Roman; Cortina, Jordi; Vilagrosa, Alberto

    2012-12-01

    Plants respond to low nutrient availability by modifying root morphology and root system topology. Root responses to nitrogen (N) and phosphorus (P) limitation may affect plant capacity to withstand water stress. But studies on the effect of nutrient availability on plant ability to uptake and transport water are scarce. In this study, we assess the effect of nitrogen and phosphorus limitation on root morphology and root system topology in Pistacia lentiscus L seedlings, a common Mediterranean shrub, and relate these changes to hydraulic conductivity of the whole root system. Nitrogen and phosphorus deprivation had no effect on root biomass, but root systems were more branched in nutrient limited seedlings. Total root length was higher in seedlings subjected to phosphorus deprivation. Root hydraulic conductance decreased in nutrient-deprived seedlings, and was related to the number of root junctions but not to other architectural traits. Our study shows that changes in nutrient availability affect seedling water use by modifying root architecture. Changes in nutrient availability should be taken into account when evaluating seedling response to drought.

  14. Comparative Analysis of Soluble Phosphate Amendments for the Remediation of Heavy Metal Contaminants: Effect on Sediment Hydraulic Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, Dawn M.; Icenhower, Jonathan P.; Owen, Antionette T.

    2006-07-10

    A series of conventional, saturated column experiments were conducted to evaluate the effect of utilizing in situ phosphate amendments, for subsurface, metal remediation, on sediment hydraulic conductivity. Experiments were conducted under mildly alkaline/calcareous conditions representative of conditions commonly encountered at sites across the arid western United States, which have been used in weapons and fuel production and display significant subsurface contamination. Results indicate the displacement of a single pore volume of either sodium monophosphate or phytic acid amendments causes approximately a 30% decrease in the hydraulic conductivity of the sediment. Long-chain polyphosphate amendments afford no measurable reduction in hydraulic conductivity. These results demonstrate (1) the utility of long-chain polyphosphate amendments for subsurface metal sequestration and (2) the necessity of conducting column experiments to completely evaluate the effects of subsurface remediation.

  15. Relation between hydraulic properties and plant coverage of the closed-landfill soils in Piacenza (Po Valley, Italy)

    Science.gov (United States)

    Cassinari, C.; Manfredi, P.; Giupponi, L.; Trevisan, M.; Piccini, C.

    2015-02-01

    In this paper the results of a study of soil hydraulic properties and plant coverage of a landfill located in Piacenza (Po Valley, Italy) are presented, together with the attempt to put the hydraulic properties in relation with plant coverage. The measured soil water retention curve was first compared with the output of some pedotransfer functions taken from the literature and then with the output of the same pedotransfer functions applied to a reference soil. The landfill plant coverage was also studied. The relation between soil hydraulic properties and plant coverage showed that the landfill soils have a low water content available for plants and this fact, together with their lack of depth and compacted structure, justifies the presence of a nitrophilous, disturbed-soil vegetation type, dominated by ephemeral annual species (therophytes).

  16. Variations in hydraulic conductivity with scale of measurement during aquifer tests in heterogeneous, porous carbonate rocks

    Science.gov (United States)

    Schulze-Makuch, Dirk; Cherkauer, Douglas S.

    Previous studies have shown that hydraulic conductivity of an aquifer seems to increase as the portion of the aquifer tested increases. To date, such studies have all relied on different methods to determine hydraulic conductivity at each scale of interest, which raises the possibility that the observed increase in hydraulic conductivity is due to the measurement method, not to the scale. This study analyzes hydraulic conductivity with respect to scale during individual aquifer tests in porous, heterogeneous carbonate rocks in southeastern Wisconsin, USA. Results from this study indicate that hydraulic conductivity generally increases during an individual test as the volume of aquifer impacted increases, and the rate of this increase is the same as the rate of increase determined by using different measurement methods. Thus, scale dependence of hydraulic conductivity during single tests does not depend on the method of measurement. This conclusion is supported by 22 of 26 aquifer tests conducted in porous-flow-dominated carbonate units within the aquifer. Instead, scale dependency is probably caused by heterogeneities within the aquifer, a conclusion supported by digital simulation. All of the observed types of hydraulic-conductivity variations with scale during individual aquifer tests can be explained by a conceptual model of a simple heterogeneous aquifer composed of high-conductivity zones within a low-conductivity matrix. Résumé Certaines études ont montré que la conductivité hydraulique d'un aquifère semble augmenter en même temps que la partie testée de l'aquifère s'étend. Jusqu'à présent, ces études ont toutes reposé sur des méthodes de détermination de la conductivité hydraulique différentes pour chaque niveau d'échelle, ce qui a conduit à penser que l'augmentation observée de la conductivité hydraulique pouvait être due aux méthodes de mesure et non à l'effet d'échelle. Cette étude analyse la conductivité hydraulique par

  17. Is high-resolution inverse characterization of heterogeneous river bed hydraulic conductivities needed and possible?

    Directory of Open Access Journals (Sweden)

    W. Kurtz

    2013-10-01

    Full Text Available River–aquifer exchange fluxes influence local and regional water balances and affect groundwater and river water quality and quantity. Unfortunately, river–aquifer exchange fluxes tend to be strongly spatially variable, and it is an open research question to which degree river bed heterogeneity has to be represented in a model in order to achieve reliable estimates of river–aquifer exchange fluxes. This research question is addressed in this paper with the help of synthetic simulation experiments, which mimic the Limmat aquifer in Zurich (Switzerland, where river–aquifer exchange fluxes and groundwater management activities play an important role. The solution of the unsaturated–saturated subsurface hydrological flow problem including river–aquifer interaction is calculated for ten different synthetic realities where the strongly heterogeneous river bed hydraulic conductivities (L are perfectly known. Hydraulic head data (100 in the default scenario are sampled from the synthetic realities. In subsequent data assimilation experiments, where L is unknown now, the hydraulic head data are used as conditioning information, with the help of the ensemble Kalman filter (EnKF. For each of the ten synthetic realities, four different ensembles of L are tested in the experiments with EnKF; one ensemble estimates high-resolution L fields with different L values for each element, and the other three ensembles estimate effective L values for 5, 3 or 2 zones. The calibration of higher-resolution L fields (i.e. fully heterogeneous or 5 zones gives better results than the calibration of L for only 3 or 2 zones in terms of reproduction of states, stream–aquifer exchange fluxes and parameters. Effective L for a limited number of zones cannot always reproduce the true states and fluxes well and results in biased estimates of net exchange fluxes between aquifer and stream. Also in case only 10 head data are used for conditioning, the high

  18. Flowing fluid electrical conductivity logging of a deep borehole during and following drilling: estimation of transmissivity, water salinity and hydraulic head of conductive zones

    Science.gov (United States)

    Doughty, Christine; Tsang, Chin-Fu; Rosberg, Jan-Erik; Juhlin, Christopher; Dobson, Patrick F.; Birkholzer, Jens T.

    2016-11-01

    Flowing fluid electrical conductivity (FFEC) logging is a hydrogeologic testing method that is usually conducted in an existing borehole. However, for the 2,500-m deep COSC-1 borehole, drilled at Åre, central Sweden, it was done within the drilling period during a scheduled 1-day break, thus having a negligible impact on the drilling schedule, yet providing important information on depths of hydraulically conductive zones and their transmissivities and salinities. This paper presents a reanalysis of this set of data together with a new FFEC logging data set obtained soon after drilling was completed, also over a period of 1 day, but with a different pumping rate and water-level drawdown. Their joint analysis not only results in better estimates of transmissivity and salinity in the conducting fractures intercepted by the borehole, but also yields the hydraulic head values of these fractures, an important piece of information for the understanding of hydraulic structure of the subsurface. Two additional FFEC logging tests were done about 1 year later, and are used to confirm and refine this analysis. Results show that from 250 to 2,000 m depths, there are seven distinct hydraulically conductive zones with different hydraulic heads and low transmissivity values. For the final test, conducted with a much smaller water-level drawdown, inflow ceased from some of the conductive zones, confirming that their hydraulic heads are below the hydraulic head measured in the wellbore under non-pumped conditions. The challenges accompanying 1-day FFEC logging are summarized, along with lessons learned in addressing them.

  19. Flowing fluid electrical conductivity logging of a deep borehole during and following drilling: estimation of transmissivity, water salinity and hydraulic head of conductive zones

    Science.gov (United States)

    Doughty, Christine; Tsang, Chin-Fu; Rosberg, Jan-Erik; Juhlin, Christopher; Dobson, Patrick F.; Birkholzer, Jens T.

    2017-03-01

    Flowing fluid electrical conductivity (FFEC) logging is a hydrogeologic testing method that is usually conducted in an existing borehole. However, for the 2,500-m deep COSC-1 borehole, drilled at Åre, central Sweden, it was done within the drilling period during a scheduled 1-day break, thus having a negligible impact on the drilling schedule, yet providing important information on depths of hydraulically conductive zones and their transmissivities and salinities. This paper presents a reanalysis of this set of data together with a new FFEC logging data set obtained soon after drilling was completed, also over a period of 1 day, but with a different pumping rate and water-level drawdown. Their joint analysis not only results in better estimates of transmissivity and salinity in the conducting fractures intercepted by the borehole, but also yields the hydraulic head values of these fractures, an important piece of information for the understanding of hydraulic structure of the subsurface. Two additional FFEC logging tests were done about 1 year later, and are used to confirm and refine this analysis. Results show that from 250 to 2,000 m depths, there are seven distinct hydraulically conductive zones with different hydraulic heads and low transmissivity values. For the final test, conducted with a much smaller water-level drawdown, inflow ceased from some of the conductive zones, confirming that their hydraulic heads are below the hydraulic head measured in the wellbore under non-pumped conditions. The challenges accompanying 1-day FFEC logging are summarized, along with lessons learned in addressing them.

  20. Retrieving Soil Hydraulic Properties by Diffuse Spectral Reflectance Data in Vis-NIR-SWIR Range

    Science.gov (United States)

    Babaeian, E.; Homaee, M.; Vereecken, H.; Montzka, C.; Norouzi, A. A.; Van Genuchten, M.

    2014-12-01

    Information about the soil water characteristics is necessary for modeling water flow and solute transport processes in vadose zone. Soil spectroscopy in the visible, near-infrared and shortwave infrared (Vis-NIR-SWIR) range has been widely used as a rapid, cost-effective and non-destructive technique to predict basic soil properties. In this paper we used three different approaches to retrieve soil hydraulic parameters from spectral data in the visible, near-infrared and shortwave-infrared (Vis-NIR-SWIR) region and basic soil properties. Using stepwise multiple linear statistics coupled with bootstrapping, we derived and validated three types of point and parametric transfer functions: i) spectral transfer functions (STFs), ii) pedotransfer functions (PTFs) and iii) spectral pedotransfer functions (SPTFs) which respectively used spectral data, basic soil properties and spectral based basic soil predictions as their inputs. We further evaluated a direct fit of the van Genuchten (VG) and Brooks-Corey (BC) retention models to the predicted water contents obtained with each approach. According to the results, soil water contents, the VG and BC parameters as well as basic soil properties showed significant (pwater contents in the mid and dry parts of retention curve. In the wet range, PTFs were found to perform better than the other two approaches. Compared to the STFs, however, better water content estimates were obtained using the SPTFs in the wet range. The parametric STFs and SPTFs of both the VG and BC models developed from spectral data performed slightly better than parametric PTFs for the retention curve. The best predictions were obtained with a direct fit of the retention models to soil water contents estimated with point transfer functions. Our findings suggest that spectral information, as a promising approach, may be used to accurately predict soil water contents, and indirectly the water retention curve. Using spectral data as an input of PTFs provides an

  1. A SIMPLE INFILTRATION METHOD FOR ESTIMATING SOIL HYDRAULIC PROPERTIES OF UNSATURATED SOILS Ⅱ. EXPERIMENTAL RESULTS%推求土壤水分运动参数的简单入渗法Ⅱ.实验验证

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To predict water flow, knowledge of soil hydraulic properties is required. Horizontal infiltration of water into soil columns can be observed in order to determine hydraulic properties. Required physical and mathematical analysis of the observation is based on an integral solution of Richards′equation. The parameters of the soil water characteristic curve are estimated by the observed characteristic length of wetted zone and sorptivity. Unsaturated hydraulic conductivity is estimated from the parameters determined in the soil water characteristic curve and the measurement of saturated hydraulic conductivity. Three soils ranging from sandy loam to clay loam are included in this research. Soil water charactehstic curves for the three soils estimaed by the infiltration method are in good agreement with measured soil water characteristic curves. Unsaturated hydraulic conductivity, estimated by the infiltration method for the sandy loam, also compares well with measured values. To further check the method, water content of the three soils are calculated through the numeric method and the integral method based on the calculated hydraulic parameters. The calculation results indicate that the method is accurate.%预报土壤中水分流动需要的土壤导水特性可通过观测水平土柱的入渗过程来确定,这一观测过程的分析是基于对Richards方程求积分解。土壤水分特征曲线中的参数由观测的水平土柱的特征湿润长度和吸力来确定,非饱和土壤导水率由已确定的特征曲线中的参数和测定的饱和导水率导出。供试土壤有三种,它们的质地从砂壤到粘壤。由这种方法所确定的这三种土壤的水分特征曲线与实测的特征曲线符合良好,所确定的砂壤的非饱和导水率与实测值的比较令人满意。利用数值法和积分法分别计算了土壤含水量剖面,计算结果吻合良好,说明了这种方法的合理性。

  2. Variable conductivity and embolism in roots, trunks and branches of tree species growing under future atmospheric CO2 concentration (DUKE FACE site): impacts on whole-plant hydraulic performance and carbon assimilation

    Science.gov (United States)

    domec, J.; Palmroth, S.; Oren, R.; Johnson, D. M.; Ward, E. J.; McCulloh, K.; Gonzalez, C.; Warren, J.

    2013-12-01

    Anatomical and physiological acclimation to water stress of the tree hydraulic system involves tradeoffs between maintenance of stomatal conductance and loss of hydraulic conductivity, with short-term impacts on photosynthesis and long-term consequences to survival and growth. Here we study the role of variations in root, trunk and branch maximum hydraulic specific conductivity (Ks-max) under high and low soil moisture in determining whole-tree hydraulic conductance (Ktree) and in mediating stomatal control of gas exchange in loblolly pine trees growing under ambient and elevated CO2 (CO2a and CO2e). We hypothesized that Ktree would adjust to CO2e, through an increase in root and branch Ks-max in response to anatomical adjustments. Embolism in roots explained the loss of Ktree and therefore indirectly constituted a hydraulic signal involved in stomatal regulation and in the reduction of canopy conductance and carbon assimilation. Across roots, trunk and branches, the increase in Ks-max was associated with a decrease resistance to drought, a consequence of structural acclimation such as larger conduits and lower wood density. In loblolly pine, higher xylem dysfunction under CO2e might impact tree performance in a future climate when increased evaporative demand could cause a greater loss of hydraulic function. The results contributed to our knowledge of the physiological and morphological mechanisms underpinning the responses of tree species to drought and more generally to global change.

  3. Verification of combined thermal-hydraulic and heat conduction analysis code FLOWNET/TRUMP

    Science.gov (United States)

    Maruyama, Soh; Fujimoto, Nozomu; Kiso, Yoshihiro; Murakami, Tomoyuki; Sudo, Yukio

    1988-09-01

    This report presents the verification results of the combined thermal-hydraulic and heat conduction analysis code, FLOWNET/TRUMP which has been utilized for the core thermal hydraulic design, especially for the analysis of flow distribution among fuel block coolant channels, the determination of thermal boundary conditions for fuel block stress analysis and the estimation of fuel temperature in the case of fuel block coolant channel blockage accident in the design of the High Temperature Engineering Test Reactor(HTTR), which the Japan Atomic Energy Research Institute has been planning to construct in order to establish basic technologies for future advanced very high temperature gas-cooled reactors and to be served as an irradiation test reactor for promotion of innovative high temperature new frontier technologies. The verification of the code was done through the comparison between the analytical results and experimental results of the Helium Engineering Demonstration Loop Multi-channel Test Section(HENDEL T(sub 1-M)) with simulated fuel rods and fuel blocks.

  4. Hydraulic conductivity how subsidy in evaluation of the contaminated area in the petrochemical industry; Condutividade hidraulica como subsidio na avaliacao de area contaminada em industria petroquimica

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Julia Brazil; Polivanov, Helena; Moraes, Patricia [Universidade Federal do Rio de Janeiro, RJ (Brazil)]. E-mail: juliabrazilsousa@yahoo.com

    2003-07-01

    The activities here described were undertaken in the scope of the Environmental Management System (EMS) of Petroflex Ind. e Com. S.A., done in cooperation with the Geosciences Institute (Instituto de Geociencias) of the UFRJ. In order to determine the hydraulic conductivity of the media in the lab, and to estimate the influence of this property on the retention of a contamination plume resulted from unsuitable disposal of industrial residues, five undisturbed samples of marine organic clay were tested. The hydraulic conductivity values obtained in laboratory vary from 10{sup -5} to 10{sup -7} cm/s. Slug tests done by the company personnel yielded results with a magnitude of 10{sup -8} cm/s. The small values of hydraulic conductivity, associated to chemical and mineralogical properties from the material, lead to the conclusion that the possibly existing contamination plume would hardly pass through the organic clay layer without having its concentration modified, since many factors provide interaction between soil and contaminant, reducing the substance concentration in fluid (water) and providing good conditions to remediation measures. (author)

  5. Evolution of neural networks for the prediction of hydraulic conductivity as a function of borehole geophysical logs: Shobasama site, Japan.

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Paul C.; McKenna, Sean Andrew

    2004-06-01

    This report describes the methodology and results of a project to develop a neural network for the prediction of the measured hydraulic conductivity or transmissivity in a series of boreholes at the Tono, Japan study site. Geophysical measurements were used as the input to EL feed-forward neural network. A simple genetic algorithm was used to evolve the architecture and parameters of the neural network in conjunction with an optimal subset of geophysical measurements for the prediction of hydraulic conductivity. The first attempt was focused on the estimation of the class of the hydraulic conductivity, high, medium or low, from the geophysical logs. This estimation was done while using the genetic algorithm to simultaneously determine which geophysical logs were the most important and optimizing the architecture of the neural network. Initial results showed that certain geophysical logs provided more information than others- most notably the 'short-normal', micro-resistivity, porosity and sonic logs provided the most information on hydraulic conductivity. The neural network produced excellent training results with accuracy of 90 percent or greater, but was unable to produce accurate predictions of the hydraulic conductivity class. The second attempt at prediction was done using a new methodology and a modified data set. The new methodology builds on the results of the first attempts at prediction by limiting the choices of geophysical logs to only those that provide significant information. Additionally, this second attempt uses a modified data set and predicts transmissivity instead of hydraulic conductivity. Results of these simulations indicate that the most informative geophysical measurements for the prediction of transmissivity are depth and sonic log. The long normal resistivity and self potential borehole logs are moderately informative. In addition, it was found that porosity and crack counts (clear, open, or hairline) do not inform predictions

  6. Experimental investigation of the dielectric properties of soil under hydraulic loading

    Science.gov (United States)

    Bittner, Tilman; Bore, Thierry; Wagner, Norman; Karlovšek, Jurij; Scheuermann, Alexander

    2017-04-01

    An experimental set-up was developed in order to determine the coupled hydraulic, dielectric and mechanical properties of granular media under hydraulic loading. The set-up consisted of a modified column for permeability tests involving a flow meter and pressure transducers along the sample to quantify the hydraulic gradient. A newly developed open-ended coaxial probe allowed the measurement of the frequency dependent dielectric permittivity of the material under test. The shear strength of the sample within the column was measured using a conventional vane shear device. In this paper, the overall set-up is introduced with focus on the open-ended coaxial probe. The design and calibration of the probe are introduced in detail. A numerical study showed that the sensitive cylindrical volume of the probe was approximately 150 mm in diameter with a depth of 65 mm. An investigation with glass beads showed that the set-up allowed the parameterization of the hydraulic, mechanic and dielectric parameters of granular materials under the influence of vertical flow. A satisfactorily good correlation between porosity and the real part of the dielectric permittivity was detected. The critical hydraulic gradient defining the transition of a fixed bed of particles to fluidization was characterized by a sharp peak in the evolution of the hydraulic conductivity and could easily be determined from the measurements. The shear strength of the material under test reduces linearly with increasing hydraulic gradient. Future investigations will be carried out to provide the required parameterizations for experimental and numerical investigations of the internal erosion of granular media.

  7. Detection of QTL for exudation rate at ripening stage in rice and its contribution to hydraulic conductance.

    Science.gov (United States)

    Yamamoto, Toshio; Suzuki, Tadafumi; Suzuki, Kenji; Adachi, Shunsuke; Sun, Jian; Yano, Masahiro; Ookawa, Taiichiro; Hirasawa, Tadashi

    2016-01-01

    Dry matter production of crops is determined by how much light they intercept and how efficiently they use it for carbon fixation; i.e., photosynthesis. The high-yielding rice cultivar, Akenohoshi, maintains a high photosynthetic rate in the middle of the day owing to its high hydraulic conductance in comparison with the elite commercial rice cultivar, Koshihikari. We developed 94 recombinant inbred lines derived from Akenohoshi and Koshihikari and measured their exudation rate to calculate hydraulic conductance to osmotic water transport in a paddy field. A quantitative trait locus (QTL) for exudation rate was detected on the long arm of chromosome 2 at the heading and ripening stages. We developed chromosome segment substitution lines which carried Akenohoshi segments in the Koshihikari genetic background, and measured hydraulic conductance to both osmotic and passive water transport. The QTL was confirmed to be located within a region of about 4.2Mbp on the distal end of long arm of chromosome 2. The Akenohoshi allele increased root surface area and hydraulic conductance, but didn't increase hydraulic conductivity of a plant.

  8. Optimality and Conductivity for Water Flow: From Landscapes, to Unsaturated Soils, to Plant Leaves

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.H.

    2012-02-23

    Optimality principles have been widely used in many areas. Based on an optimality principle that any flow field will tend toward a minimum in the energy dissipation rate, this work shows that there exists a unified form of conductivity relationship for three different flow systems: landscapes, unsaturated soils and plant leaves. The conductivity, the ratio of water flux to energy gradient, is a power function of water flux although the power value is system dependent. This relationship indicates that to minimize energy dissipation rate for a whole system, water flow has a small resistance (or a large conductivity) at a location of large water flux. Empirical evidence supports validity of the relationship for landscape and unsaturated soils (under gravity dominated conditions). Numerical simulation results also show that the relationship can capture the key features of hydraulic structure for a plant leaf, although more studies are needed to further confirm its validity. Especially, it is of interest that according to this relationship, hydraulic conductivity for gravity-dominated unsaturated flow, unlike that defined in the classic theories, depends on not only capillary pressure (or saturation), but also the water flux. Use of the optimality principle allows for determining useful results that are applicable to a broad range of areas involving highly non-linear processes and may not be possible to obtain from classic theories describing water flow processes.

  9. Applicability of different hydraulic parameters to describe soil detachment in eroding rills.

    Science.gov (United States)

    Wirtz, Stefan; Seeger, Manuel; Zell, Andreas; Wagner, Christian; Wagner, Jean-Frank; Ries, Johannes B

    2013-01-01

    This study presents the comparison of experimental results with assumptions used in numerical models. The aim of the field experiments is to test the linear relationship between different hydraulic parameters and soil detachment. For example correlations between shear stress, unit length shear force, stream power, unit stream power and effective stream power and the detachment rate does not reveal a single parameter which consistently displays the best correlation. More importantly, the best fit does not only vary from one experiment to another, but even between distinct measurement points. Different processes in rill erosion are responsible for the changing correlations. However, not all these procedures are considered in soil erosion models. Hence, hydraulic parameters alone are not sufficient to predict detachment rates. They predict the fluvial incising in the rill's bottom, but the main sediment sources are not considered sufficiently in its equations. The results of this study show that there is still a lack of understanding of the physical processes underlying soil erosion. Exerted forces, soil stability and its expression, the abstraction of the detachment and transport processes in shallow flowing water remain still subject of unclear description and dependence.

  10. A Numerical Method for the Estimation of Distributed Hydraulic Conductivity Using Richards Equation

    Science.gov (United States)

    Cockett, R.; Haber, E.

    2013-12-01

    Characterizing groundwater flow in the vadose zone has many important and practical applications in near surface hydrogeology. The spatial estimation of the hydraulic conductivity function, which is the regulator of unsaturated groundwater flow, is an critical step in any hydrogeologic site characterization. However, this estimation is difficult and simplifications are consistently used to avert these conceptual and computational difficulties. Comprehensive time-lapse data of in situ saturations, or proxies of saturation from geophysical methods, are increasingly available. Using these large data sets appropriately, and maximizing the utility of the data to recover estimates of heterogeneous hydraulic conductivity, requires innovative numerical methods. This inverse problem has been approached in many different ways in the literature from stochastic methods to various gradient based methods. However, the way in which the computational complexity of the inverse method scales becomes important as problem size increases; as computational memory and time often become the bottleneck of solving the inverse problem when the problem is solved for heterogeneous hydraulic conductivity in two- and particularly in three-dimensions. For the inverse problem involving Richards equation, some version of a Gauss-Newton method (e.g. Levenberg-Marquardt) with a direct calculation of the sensitivity matrix is commonly used. However, while these approaches allow to deal with moderate scale problems they have one major drawback: the sensitivity matrix is a large dense matrix and its computation requires dense linear algebra and, for large scale problems, a non-trivial amount of storage. Furthermore, previous work use either numerical or automatic differentiation in order to compute the sensitivity matrix and this can generate inaccuracies in its computation and tarry convergence of the optimization algorithm. We suggest a modern numerical method that allows for the solution of the

  11. Modeling Flow Rate to Estimate Hydraulic Conductivity in a Parabolic Ceramic Water Filter

    Directory of Open Access Journals (Sweden)

    Ileana Wald

    2012-01-01

    Full Text Available In this project we model volumetric flow rate through a parabolic ceramic water filter (CWF to determine how quickly it can process water while still improving its quality. The volumetric flow rate is dependent upon the pore size of the filter, the surface area, and the height of water in the filter (hydraulic head. We derive differential equations governing this flow from the conservation of mass principle and Darcy's Law and find the flow rate with respect to time. We then use methods of calculus to find optimal specifications for the filter. This work is related to the research conducted in Dr. James R. Mihelcic's Civil and Environmental Engineering Lab at USF.

  12. Scale-dependency of effective hydraulic conductivity on fire-affected hillslopes

    Science.gov (United States)

    Langhans, Christoph; Lane, Patrick N. J.; Nyman, Petter; Noske, Philip J.; Cawson, Jane G.; Oono, Akiko; Sheridan, Gary J.

    2016-07-01

    Effective hydraulic conductivity (Ke) for Hortonian overland flow modeling has been defined as a function of rainfall intensity and runon infiltration assuming a distribution of saturated hydraulic conductivities (Ks). But surface boundary condition during infiltration and its interactions with the distribution of Ks are not well represented in models. As a result, the mean value of the Ks distribution (KS¯), which is the central parameter for Ke, varies between scales. Here we quantify this discrepancy with a large infiltration data set comprising four different methods and scales from fire-affected hillslopes in SE Australia using a relatively simple yet widely used conceptual model of Ke. Ponded disk (0.002 m2) and ring infiltrometers (0.07 m2) were used at the small scales and rainfall simulations (3 m2) and small catchments (ca 3000 m2) at the larger scales. We compared KS¯ between methods measured at the same time and place. Disk and ring infiltrometer measurements had on average 4.8 times higher values of KS¯ than rainfall simulations and catchment-scale estimates. Furthermore, the distribution of Ks was not clearly log-normal and scale-independent, as supposed in the conceptual model. In our interpretation, water repellency and preferential flow paths increase the variance of the measured distribution of Ks and bias ponding toward areas of very low Ks during rainfall simulations and small catchment runoff events while areas with high preferential flow capacity remain water supply-limited more than the conceptual model of Ke predicts. The study highlights problems in the current theory of scaling runoff generation.

  13. Thermal Conductivity Prediction of Soil in Complex Plant Soil System using Artificial Neural Networks

    Science.gov (United States)

    Wardani, A. K.; Purqon, A.

    2016-08-01

    Thermal conductivity is one of thermal properties of soil in seed germination and plants growth. Different soil types have different thermal conductivity. One of soft-computing promising method to predict thermal conductivity of soil types is Artificial Neural Network (ANN). In this study, we estimate the t