Sample records for hydraulic coiled tubing

  1. An Experimental Investigation of Hydraulic Jet Fracturing Technology with Coiled Tubing

    Institute of Scientific and Technical Information of China (English)


    To solve the increasingly serious problem of "many wells, but low productivity" in China, the hydraulic jetting fracturing technology with coiled tubing, as a new measure for effectively improving the production rate of individual well and enhancing oil and gas recovery, merits much attention nowa- days. On the basis of study of the hydraulic jetting fracturing mechanism with coiled tubing and numerical simulation of pressure distribution inside the pores, the mechanism of pressure rise inside the pores caused by the pressure boost action within the jetting pore and the hydraulic isolation action is examined, and the influence of main parameters on the pressure distribution inside the pores is analyzed. 3 kinds of operating methods of hydraulic jetting fracturing with coiled tubing are raised with the tubular diameter of coiled tub- ing as an important feature parameter. According to the experimental study, the fracturing mechanism and computational resuks of numerical simulation are both examined. It is considered that under the same pres- sure drop of jet nozzle, the pressure inside the pores increases with the confining pressure nearly at a line- ar state. When the vertical depth of the borehole is rather big and the rupture pressure of the formation is higher, it is recommended to use higher pressure drop of jet nozzle for achieving better pressure boost and hydraulic isolation effect. For the hydraulic jetting fracturing with coiled tubing, the coiled tubing with tu- bular diameter not less than 50. 8 mm (2 in. ) is usually used.

  2. Experimental evaluation of helically coiled tube flocculators for ...

    African Journals Online (AJOL)

    Experimental evaluation of helically coiled tube flocculators for turbidity removal ... clarification system, while varying hydraulic and geometrical parameters in HCTs. ... of baffled tank processing times) were observed for high efficiency process ...

  3. Performance of multi tubes in tube helically coiled as a compact heat exchanger (United States)

    Nada, S. A.; El Shaer, W. G.; Huzayyin, A. S.


    Multi tubes in tube helically coiled heat exchanger is proposed as a compact heat exchanger. Effects of heat exchanger geometric parameters and fluid flow parameters; namely number of inner tubes, annulus hydraulic diameter, Reynolds numbers and input heat flux, on performance of the heat exchanger are experimentally investigated. Different coils with different numbers of inner tubes, namely 1, 3, 4 and 5 tubes, were tested. Results showed that coils with 3 inner tubes have higher values of heat transfer coefficient and compactness parameter (bar{h} Ah ). Pressure drop increases with increasing both of Reynolds number and number of inner tubes. Correlations of average Nusselt number were deduced from experimental data in terms of Reynolds number, Prandtl number, Number of inner coils tubes and coil hydraulic diameter. Correlations prediction was compared with experimental data and the comparison was fair enough.

  4. Helical coil thermal hydraulic model (United States)

    Caramello, M.; Bertani, C.; De Salve, M.; Panella, B.


    A model has been developed in Matlab environment for the thermal hydraulic analysis of helical coil and shell steam generators. The model considers the internal flow inside one helix and its associated control volume of water on the external side, both characterized by their inlet thermodynamic conditions and the characteristic geometry data. The model evaluates the behaviour of the thermal-hydraulic parameters of the two fluids, such as temperature, pressure, heat transfer coefficients, flow quality, void fraction and heat flux. The evaluation of the heat transfer coefficients as well as the pressure drops has been performed by means of the most validated literature correlations. The model has been applied to one of the steam generators of the IRIS modular reactor and a comparison has been performed with the RELAP5/Mod.3.3 code applied to an inclined straight pipe that has the same length and the same elevation change between inlet and outlet of the real helix. The predictions of the developed model and RELAP5/Mod.3.3 code are in fairly good agreement before the dryout region, while the dryout front inside the helical pipes is predicted at a lower distance from inlet by the model.

  5. Study on effect of erosion wear to residual life of coiled tubing for hydraulic fracturing%水力压裂冲蚀磨损对连续管剩余寿命影响研究

    Institute of Scientific and Technical Information of China (English)

    郑华林; 张益维; 刘少胡


    针对水力压裂中连续管内壁冲蚀磨损严重和连续管易失效的问题,基于液-固两相流和冲蚀理论,建立了连续管内部砂砾冲蚀模型.采用Grant和Tabakoff模型求解砂砾冲蚀速率,借助实验数据验证了CFD数值模型.利用该模型研究了连续管在不同弯曲度、砂砾粒度、压裂液注入量、质量流量、压裂液粘度对连续管内壁的冲蚀特性.研究表明:弯曲连续管比直连续管冲蚀磨损严重,且弯曲度对连续管内壁的冲蚀磨损影响较大.随着注入量的增加,壁厚平均损失值和壁厚损失峰值呈现快速递增趋势.支撑剂固体颗粒的粒度对连续管内壁的冲蚀磨损影响较大,粒度为40目时连续管冲蚀速率最大.随质量流量的增加,连续管剩余寿命呈线性下降.随压裂液粘度的增加,连续管内壁冲蚀速率总体呈现下降趋势.%Aiming at the problems that the erosion wear of internal wall in coiled tubing is serious and the coiled tubing is easy to fail in hydraulic fracturing, an internal sand erosion model of coiled tubing was established based on liquid -solid two-phaseflow and erosion theory.The sand erosion rate was solved by using Grant and Tabakoff model , and the CFD numerical model was verified by the experimental data .The erosion characteristics of different curvature , particle size of sand, injection volume, mass flow and viscosity of fracturing fluid on internal wall of coiled tubing were studied by using this model .The re-sultsshowed that the erosion of curving coiled tubing is more serious than that of straight coiled tubing , and the curvature has a larger influence on the erosion wear of internal wall in coiled tubing .With the increase of injection volume, the average loss and peak loss of wall thickness present the trend of rapid increasing .The size of solid particle in support agent has a larger influence on the erosion wear of internal wall in coiled tubing , with the maximum erosion rate

  6. Self-assembling segmented coiled tubing

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W.


    Self-assembling segmented coiled tubing is a concept that allows the strength of thick-wall rigid pipe, and the flexibility of thin-wall tubing, to be realized in a single design. The primary use is for a drillstring tubular, but it has potential for other applications requiring transmission of mechanical loads (forces and torques) through an initially coiled tubular. The concept uses a spring-loaded spherical `ball-and-socket` type joint to interconnect two or more short, rigid segments of pipe. Use of an optional snap ring allows the joint to be permanently made, in a `self-assembling` manner.

  7. Mechanical Analysis and Field Application of Coiled Tubing Hydraulic Jet Fracturing String%连续管水力喷射压裂管柱力学分析及现场应用

    Institute of Scientific and Technical Information of China (English)

    王鹏; 王思淇; 张倩


    To address the stability issue of coiled tubing operation, the stress and elongation of two kinds of hy⁃draulic jet annulus sand delivery fracturing string have been analyzed in the whole process of operation in Daqing oil⁃field�The main research include: (1) Stress and deformation analysis of the coiled tubing hydraulic jet fracturing string in the whole operation, and the corresponding mathematical model; (2) Analysis on the two common packer K344 and Y211 during fracturing; processing methods of the boundary conditions at the bottom of the fracturing string during the setting of different packers; (3) Calculation of the deformation and stress of the coiled tubing fracturing string during fracturing operation of Well Gulongnan P , and comparison with the field measured data�Analysis results showed that the mechanical model results have a small deviation with the measured data�The research results could provide theoretical guidance for coiled tubing hydraulic jet fracturing operation design and construction.%连续管水力喷射压裂技术结合了水力喷射射孔定点压裂的优越性与连续管的拖动灵活性,极大地提高了水力喷射压裂作业的工作效率。为解决该技术存在的连续管作业稳定性较差的问题,以大庆油田2种水力喷射环空加砂压裂工艺管柱为例,对管柱进行了全作业过程受力分析及伸长量分析,主要包括:(1)分析管柱全作业过程受力及变形,并给出了相应的计算模型;(2)分析K344和Y2112种常用封隔器压裂作业工况,给出了不同封隔器坐封时压裂管柱底部边界条件处理方法;(3)实例计算分析古龙南P井连续管压裂作业时管柱受力变形,并与现场实测数据进行了对比分析。分析结果表明:力学计算模型计算结果与现场实测数据偏差较小。研究成果能够为连续管水力喷射压裂作业设计施工提供理论指导。

  8. Sound Coiled-Tubing Drilling Practices

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Thomas; Deskins, Greg (Maurer Technology Inc.); Ward, Stephen L. (Advantage Energy Services Ltd); Hightower, Mel


    This Coiled-Tubing Drilling (CTD) Sound Practices Manual provides tools needed by CTD engineers and supervisors to plan, design and perform safe, successful CTD operations. As emphasized throughout, both careful planning and attention to detail are mandatory for success. A bibliography of many useful CTD references is presented in Chapter 6. This manual is organized according to three processes: 1) Pre-Job Planning Process, 2) Operations Execution Process, and 3) Post-Job Review Process. Each is discussed in a logical and sequential format.

  9. Analytical and experimental analysis of tube coil heat exchanger (United States)

    Smusz, R.


    The paper presents the analytical and experimental analysis of heat transfer for the finned tube coil heat exchanger immersed in thermal storage tank. The tank is equipped with three helical-shaped heating coils and cylindrical- shaped stratification device. Two coils, upper and lower, use the water as a heating medium. The third, double wall heat exchanger coil, located at the bottom head on the tank is filled by the refrigerant (freon). Calculations of thermal power of water coil were made. Correlations of heat transfer coefficients in curved tubes were applied. In order to verify the analytical calculations the experimental studies of heat transfer characteristic for coil heat exchanger were performed.

  10. A novel method for coiled tubing installation

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Peter J. [2H Offshore, Houston, TX (United States); Tibbetts, David [Aquactic Engineering and Construction Ltd., Aberdeen (United Kingdom)


    Installation of flexible pipe for offshore developments is costly due to the physical cost of the flexible pipe, expensive day rates and the availability of suitable installation vessels. Considering the scarcity of flexible pipe in today's increasingly demanding and busy market, operators are seeking a cost effective solution for installing piping in a range of water depths using vessels which are readily on hand. This paper describes a novel approach to installing reeled coiled tubing, from 1 inch to 5 inch diameter, from the back of a small vessel in water depths from 40 m up to around 1000 m. The uniqueness of the system is the fact that the equipment design is modular and compact. This means that when disassembled, it fits into standard 40 ft shipping containers, and the size allows it to be installed on even relatively small vessels of opportunity, such as anchor handling or installation vessels, from smaller, and cheaper quay side locations. Such an approach is the ideal solution to the problem faced by operators, in that it allows the installation of cheaper, readily available coiled tubing, from cost-effective vessels, which do not need to transit to a pick up the system. (author)

  11. Advanced Mud System for Microhole Coiled Tubing Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Oglesby


    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  12. Effects of coil length on tube compression in electromagnetic forming

    Institute of Scientific and Technical Information of China (English)


    The effects of the length of solenoid coil on tube compression in electromagnetic forming were investigated either by theory analysis or through sequential coupling numerical simulation. The details of the electromagnetic and the mechanical models in the simulation were described. The results show that the amplitude of coil current waveform and the current frequency decrease with the increase of the coil length. And the peak value of magnetic pressure is inversely proportional to the coil length. The distribution of the magnetic force acting on the tube is inhomogeneous while the tube is longer than the coil. The shortened coil length causes the increases of the maximum deformation and energy efficiency. The numerically calculated result and the experimental one of the final tube profile are in good agreement.

  13. Microhole High-Pressure Jet Drill for Coiled Tubing

    Energy Technology Data Exchange (ETDEWEB)

    Ken Theimer; Jack Kolle


    Tempress Small Mechanically-Assisted High-Pressure Waterjet Drilling Tool project centered on the development of a downhole intensifier (DHI) to boost the hydraulic pressure available from conventional coiled tubing to the level required for high-pressure jet erosion of rock. We reviewed two techniques for implementing this technology (1) pure high-pressure jet drilling and (2) mechanically-assisted jet drilling. Due to the difficulties associated with modifying a downhole motor for mechanically-assisted jet drilling, it was determined that the pure high-pressure jet drilling tool was the best candidate for development and commercialization. It was also determined that this tool needs to run on commingled nitrogen and water to provide adequate downhole differential pressure and to facilitate controlled pressure drilling and descaling applications in low pressure wells. The resulting Microhole jet drilling bottomhole assembly (BHA) drills a 3.625-inch diameter hole with 2-inch coil tubing. The BHA consists of a self-rotating multi-nozzle drilling head, a high-pressure rotary seal/bearing section, an intensifier and a gas separator. Commingled nitrogen and water are separated into two streams in the gas separator. The water stream is pressurized to 3 times the inlet pressure by the downhole intensifier and discharged through nozzles in the drilling head. The energy in the gas-rich stream is used to power the intensifier. Gas-rich exhaust from the intensifier is conducted to the nozzle head where it is used to shroud the jets, increasing their effective range. The prototype BHA was tested at operational pressures and flows in a test chamber and on the end of conventional coiled tubing in a test well. During instrumented runs at downhole conditions, the BHA developed downhole differential pressures of 74 MPa (11,000 psi, median) and 90 MPa (13,000 psi, peaks). The median output differential pressure was nearly 3 times the input differential pressure available from the

  14. Experimental Study of Free Convection in Coiled Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Harith Mohammed


    Full Text Available An experimental study has been conducted on steady-state natural convection heat transfer from helical coil tubes in vertical orientation. Water was used as a bath liquid without any mixing and cold water was used as a coolant fluid. A straight copper tube of 6 mm ID, 8 mm OD and 3 m length was bend to fabricate the helical coil. Four coils are used in this experiment has different curvature ratios and pitches. The data were correlated using tube diameter as the characteristic length. The results show that the overall heat transfer coefficient and Nusselt number increase when the flow rate of coolant and curvature ratio increase. The effect of coil pitch was investigated and the results show that when of the coil pitch (angle of inclination increases Nusselt number increase. A correlation was presented to calculate the outside average Nusselt number of coil.

  15. Experimental study on in-tube condensation heat transfer characteristics of helically coiled spiral tubes

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.U. [Sunchon First College, Sunchon (Korea); Kweon, Y.C. [Sun Moon University, Chonan (Korea); Han, K.I. [Pukyong National University, Pusan (Korea)


    An experimental study on condensation heat transfer characteristics of helically coiled spiral tubes was performed. The refrigerant is R-113. A refrigerant loop was established to measure the condensation heat transfer coefficients. Experiments were carried out uniform heat flux of 15 kW/m{sup 2}, refrigerant quality of 0.1 {approx} 0.9, curvature ratio of 0.016, 0.025 and 0.045. The curvature of a coil was defined as the ratio of the inside diameter of the tube to the diameter of the bending circle. To compare the condensation heat transfer coefficients of coiled spiral tubes, the previous results on coiled plain tubes and straight plain tubes were used. The results shows that the condensation heat transfer coefficients of coiled spiral tubes largely increase, as increasing Re and quality, compared to those of coiled plain tubes and straight plain tubes. As increasing degree of subcooling, however, the condensation heat transfer coefficients on coiled spiral tubes decrease. It is found that the heat transfer enhancement is more better than coiled plain tubes and straight plain tubes, as increasing curvature ratio. (author). 13 refs., 10 figs., 1 tab.

  16. High-quality Critical Heat Flux in Horizontally Coiled Tubes

    Institute of Scientific and Technical Information of China (English)


    An investigation on the high-quality dryout in two electrically heated coiled tubes with horizontally helix axes is reported.The temperature profiles both along the tube and around the circumference are measured.and it is found that the temperature profiles around the circumference are not identical for the corss-sections at different parts of the coil.The “local condition hypothesis” seems applicable under present conditions,and the critical heat flux qcr decreases with increasing critical quality xcr.The CHF increases as mass velocity and ratio of tube diameter to coil diameter(d/D) increases,and it seems not to be affected hby the system pressure.The CHF is larger with coils than that with straight tubes,and the difference increases with increasing mass velocity and d/D.

  17. Convective heat transfer enhancement inside tubes using inserted helical coils (United States)

    Ali, R. K.; Sharafeldeen, M. A.; Berbish, N. S.; Moawed, M. A.


    Convective heat transfer was experimentally investigated in tubes with helical coils inserts in turbulent flow regime within Reynolds number range of 14400 ≤ Re ≤ 42900. The present work aims to extend the experimental data available on wire coil inserts to cover wire diameter ratio from 0.044 to 0.133 and coil pitch ratio from 1 to 5. Uniform heat flux was applied to the external surface of the tube and air was selected as fluid. The effects of Reynolds number and wire diameter and coil pitch ratios on the Nusselt number and friction factor were studied. The enhancement efficiency and performance criteria ranges are of (46.9-82.6%) and (100.1-128%) within the investigated range of the different parameters, respectively. Correlations are obtained for the average Nusselt number and friction factor utilizing the present measurements within the investigated range of geometrical parameters and Re.

  18. Effects of solids loading on drag reduction in polymeric drilling fluids through straight and coiled tubings

    Energy Technology Data Exchange (ETDEWEB)

    Shah, S.N.; Tareen, M. [Oklahoma Univ., Norman, OK (United States); Clark, D. [Baker Hughes INTEQ, Calgary, AB (Canada)


    The effects of solids loading on drag reduction characteristics of commonly used polymeric drilling fluid flowing through straight and coiled tubing was studied. Energy is wasted to friction losses when fluids flow through pipes, whether it be for crude oil transportation, drilling, hydraulic fracturing or gas injection. This is seen in the form of pressure drop along the pipe. This is remedied by adding polymers to the fluid stream to help reduce pressure losses. In this study, polymeric fluids flowing through straight pipe without solids were first examined. The polymers investigated were partially hydrolyzed polyacrylamide (PHPA) and polysaccharide gum (XCD). They were dissolved in brines which were prepared by mixing potassium chloride and sodium formate in water. The fluid system which provided the least resistance to the flow was then determined and the study was extended by increasing solids and determining the effects on the flow of the polymeric fluid through straight and coiled tubing. The PHPA/potassium chloride solution was selected for this study because it exhibited the best drag resistance. The solution was then loaded with barite and bentonite to simulate solid cuttings. It was observed that when clear polymeric solutions were loaded with solids, drag reduction decreased significantly. The effect of curvature on the flow of solid-laden fluids was also studied. Frictional losses in coiled tubing was found to be nearly doubled that of straight tubing. 15 refs., 2 tabs., 15 figs.

  19. Evaluation of the heat transfer performance of helical coils of non-circular tubes

    Institute of Scientific and Technical Information of China (English)



    This study addresses heat transfer performance of various configurations of coiled non-circular tubes, e. g. , in-plane spiral ducts, helical spiral ducts, and conical spiral ducts. The laminar flow of a Newtonian fluid in helical coils made of square cross section tubes is simulated using the computational fluid dynamic approach. The effects of tube Reynolds number, fluid Prandtl number, coil diameter, etc. , are quantified and discussed. Both constant wall temperature and constant heat flux conditions are simulated. The effect of in-plane coil versus a cylindrical design of constant coil, as well as a conical coil design is discussed. Results are compared with those for a straight square tube of the same length as that used to form the coils. Advantages and limitations of using coiled tubes are discussed in light of the numerical results.

  20. A Simple and Robust Sliding Mode Velocity Observer for Moving Coil Actuators in Digital Hydraulic Valves

    DEFF Research Database (Denmark)

    Nørgård, Christian; Schmidt, Lasse; Bech, Michael Møller


    This paper focuses on estimating the velocity and position of fast switching digital hydraulic valves actuated by electromagnetic moving coil actuators, based on measurements of the coil current and voltage. The velocity is estimated by a simple first-order sliding mode observer architecture and ...


    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson


    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole

  2. Magnetic pressure in electromagnetic tube forming with echelon coil

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhi-heng; YU Hai-ping; LI Chun-feng; LI Zhong


    The effects of geometrical characteristics of echelon coil on the magnetic pressure distribution and their contribution to the final shape of parts were focused and investigated through experiments and numerical simulation using FEM software ANSYS.The results show that the geometrical characteristics of echelon coil play a key role in controlling the magnetic pressure acting on the tube.They show a hump·like distribution near the interface between bigger diameter region and transition region of echelon coil,and affect the final shape of tubular parts then.With the reduction of relative diameter,the magnetic pressure in smaller diameter region decreases and its distribution gradient in transition region increases.With the augment of relative length,the magnetic pressure increases in bigger diameter region,while it almost remains constant in smaller diameter region,and the gradient in transition region enhances sharply.The distribution of magnetic pressure in the axial direction of tube agrees well with the profile of specimen.

  3. Applications of a thru-tubing cement retainer conveyed on coiled tubing

    Energy Technology Data Exchange (ETDEWEB)

    Willems, T. (Baker Oil Tools, Houston, TX (Canada)); Tudor, E.H. (Canadian Fracmaster Ltd., Calgary, AB (Canada)); Cooke, J.A. (Chevron Canada Resources, Fox Creek, AB (Canada))


    A thru-tubing inflatable permanent cement retainer has been developed to selectively squeeze cement without pulling the production tubing or killing the well. The system has been run successfully on coiled tubing through 73 mm tubing and set in 177.8 mm casing. Due to the performance limitations of the inflatable cement retainer, unconventional methods were used to inflate the tool and perform a hesitation cement squeeze. Equipment and procedures used to selectively squeeze off water production in two wells in the Kaybob south field in central Alberta are described. Both wells are gas producers from a sour, underpressured carbonate formation. In order to control hydrostatic pressure and obtain the squeeze, nitrogen gas was used as the circulation and displacement medium. Workover design considerations, cement retainer differential pressure ratings, depth control, inflation procedure, cement slurry design, cement squeeze operation, and job procedure are described. 2 refs., 3 figs.

  4. Field Demonstraton of Existing Microhole Coiled Tubing Rig (MCTR) Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kent Perry; Samih Batarseh; Sheriff Gowelly; Thomas Hayes


    The performance of an advanced Microhole Coiled Tubing Rig (MCTR) has been measured in the field during the drilling of 25 test wells in the Niobrara formation of Western Kansas and Eastern Colorado. The coiled tubing (CT) rig designed, built and operated by Advanced Drilling Technologies (ADT), was documented in its performance by GTI staff in the course of drilling wells ranging in depth from 500 to nearly 3,000 feet. Access to well sites in the Niobrara for documenting CT rig performance was provided by Rosewood Resources of Arlington, VA. The ADT CT rig was selected for field performance evaluation because it is one of the most advanced commercial CT rig designs that demonstrate a high degree of process integration and ease of set-up and operation. Employing an information collection protocol, data was collected from the ADT CT rig during 25 drilling events that encompassed a wide range of depths and drilling conditions in the Niobrara. Information collected included time-function data, selected parametric information indicating CT rig operational conditions, staffing levels, and field observations of the CT rig in each phase of operation, from rig up to rig down. The data obtained in this field evaluation indicates that the ADT CT rig exhibited excellent performance in the drilling and completion of more than 25 wells in the Niobrara under varied drilling depths and formation conditions. In the majority of the 25 project well drilling events, ROP values ranged between 300 and 620 feet per hour. For all but the lowest 2 wells, ROP values averaged approximately 400 feet per hour, representing an excellent drilling capability. Most wells of depths between 500 and 2,000 feet were drilled at a total functional rig time of less than 16 hours; for wells as deep at 2,500 to 3,000 feet, the total rig time for the CT unit is usually well under one day. About 40-55 percent of the functional rig time is divided evenly between drilling and casing/cementing. The balance of

  5. Field Demonstraton of Existing Microhole Coiled Tubing Rig (MCTR) Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kent Perry; Samih Batarseh; Sheriff Gowelly; Thomas Hayes


    The performance of an advanced Microhole Coiled Tubing Rig (MCTR) has been measured in the field during the drilling of 25 test wells in the Niobrara formation of Western Kansas and Eastern Colorado. The coiled tubing (CT) rig designed, built and operated by Advanced Drilling Technologies (ADT), was documented in its performance by GTI staff in the course of drilling wells ranging in depth from 500 to nearly 3,000 feet. Access to well sites in the Niobrara for documenting CT rig performance was provided by Rosewood Resources of Arlington, VA. The ADT CT rig was selected for field performance evaluation because it is one of the most advanced commercial CT rig designs that demonstrate a high degree of process integration and ease of set-up and operation. Employing an information collection protocol, data was collected from the ADT CT rig during 25 drilling events that encompassed a wide range of depths and drilling conditions in the Niobrara. Information collected included time-function data, selected parametric information indicating CT rig operational conditions, staffing levels, and field observations of the CT rig in each phase of operation, from rig up to rig down. The data obtained in this field evaluation indicates that the ADT CT rig exhibited excellent performance in the drilling and completion of more than 25 wells in the Niobrara under varied drilling depths and formation conditions. In the majority of the 25 project well drilling events, ROP values ranged between 300 and 620 feet per hour. For all but the lowest 2 wells, ROP values averaged approximately 400 feet per hour, representing an excellent drilling capability. Most wells of depths between 500 and 2,000 feet were drilled at a total functional rig time of less than 16 hours; for wells as deep at 2,500 to 3,000 feet, the total rig time for the CT unit is usually well under one day. About 40-55 percent of the functional rig time is divided evenly between drilling and casing/cementing. The balance of

  6. Comparing Saddle, Slotted-tube and Parallel-plate Coils for Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Nespor D.


    Full Text Available The paper is concerned with a comparison of the properties of RF coils of three configurations for MRI measurements on small animals. In comparison with the classical saddle coil the proposed modification of slotted-tube coil exhibits identical homogeneity of B1 field in a larger space. The parallel-plate coil has a satisfactory homogeneity of B1 field over the whole internal space. The signal-to-noise ratio measured for all three coils is roughly the same and is given by the magnitude of RF pre-amplifier noise. As the slotted-tube and parallel-plate coils have a lower inductance compared with the saddle coil, they can be tuned to resonance on the 200 MHz frequency even at larger dimensions. The results show that the parallel-plate coil has very good properties for the measurement of small animals.

  7. Modelling of Moving Coil Actuators in Fast Switching Valves Suitable for Digital Hydraulic Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Roemer, Daniel Beck; Bech, Michael Møller


    The efficiency of digital hydraulic machines is strongly dependent on the valve switching time. Recently, fast switching have been achieved by using a direct electromagnetic moving coil actuator as the force producing element in fast switching hydraulic valves suitable for digital hydraulic...... machines. Mathematical models of the valve switching, targeted for design optimisation of the moving coil actuator, are developed. A detailed analytical model is derived and presented and its accuracy is evaluated against transient electromagnetic finite element simulations. The model includes...... an estimation of the eddy currents generated in the actuator yoke upon current rise, as they may have significant influence on the coil current response. The analytical model facilitates fast simulation of the transient actuator response opposed to the transient electro-magnetic finite element model which...

  8. A Built for Purpose Micro-Hole Coiled Tubing Rig (MCTR)

    Energy Technology Data Exchange (ETDEWEB)

    Bart Patton


    This report will serve as the final report on the work performed from the contract period October 2005 thru April 2007. The project 'A Built for Purpose Microhole Coiled Tubing Rig (MCTR)' purpose was to upgrade an existing state-of-the-art Coiled Tubing Drilling Rig to a Microhole Coiled Tubing Rig (MCTR) capable of meeting the specifications and tasks of the Department of Energy. The individual tasks outlined to meet the Department of Energy's specifications are: (1) Concept and development of lubricator and tool deployment system; (2) Concept and development of process control and data acquisition; (3) Concept and development of safety and efficiency improvements; and (4) Final unit integration and testing. The end result of the MCTR upgrade has produced a unit capable of meeting the following requirements: (1) Capable of handling 1-inch through 2-3/8-inch coiled tubing (Currently dressed for 2-3/8-inch coiled tubing and capable of running up to 3-1/2-inch coiled tubing); (2) Capable of drilling and casing surface, intermediate, production and liner hole intervals; (3) Capable of drilling with coiled tubing and has all controls and installation piping for a top drive; (4) Rig is capable of running 7-5/8-inch range 2 casing; and (5) Capable of drilling 5,000 ft true vertical depth (TVD) and 6,000 ft true measured depth (TMD).

  9. Mesh convergence study for hydraulic turbine draft-tube (United States)

    Devals, C.; Vu, T. C.; Zhang, Y.; Dompierre, J.; Guibault, F.


    Computational flow analysis is an essential tool for hydraulic turbine designers. Grid generation is the first step in the flow analysis process. Grid quality and solution accuracy are strongly linked. Even though many studies have addressed the issue of mesh independence, there is still no definitive consensus on mesh best practices, and research on that topic is still needed. This paper presents a mesh convergence study for turbulence flow in hydraulic turbine draft- tubes which represents the most challenging turbine component for CFD predictions. The findings from this parametric study will be incorporated as mesh control rules in an in-house automatic mesh generator for turbine components.

  10. Thermal-Hydraulic Issues in the ITER Toroidal Field Model Coil (TFMC) Test and Analysis (United States)

    Zanino, R.; Bagnasco, M.; Fillunger, H.; Heller, R.; Savoldi Richard, L.; Suesser, M.; Zahn, G.


    The International Thermonuclear Experimental Reactor (ITER) Toroidal Field Model Coil (TFMC) was tested in the Toska facility of Forschungszentrum Karlsruhe during 2001 (standalone) and 2002 (in the background magnetic field of the LCT coil). The TFMC is a racetrack coil wound in five double pancakes on stainless steel radial plates using Nb3Sn dual-channel cable-in-conduit conductor (CICC) with a thin circular SS jacket. The coil was cooled by supercritical helium in forced convection at nominal 4.5 K and 0.5 MPa. Instrumentation, all outside the coil, included voltage taps, pressure and temperature sensors, as well as flow meters. Additionally, differential pressure drop measurement was available on the two pancakes DP1.1 and DP1.2, equipped with heaters. Two major thermal-hydraulic issues in the TFMC tests will be addressed here: 1) the pressure drop along heated pancakes and the comparison with friction factor correlations; 2) the quench initiation and propagation. Other thermal-hydraulic issues like heat generation and exchange in joints, radial plates, coil case, or the effects of the resistive heaters on the helium dynamics, have been already addressed elsewhere.

  11. Applications of rotary jetting tool with coiled tubing offshore Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, Ricardo; Almeida, Victor; Mendez, Alfredo; Dean, Greg [BJ Services do Brasil Ltda., RJ (Brazil)


    It is well known that offshore operators are continuously looking for alternatives to reduce rig time, especially when it comes to work over operations due to high costs. The introduction of a Rotary Jetting Tool (RJT) in conjunction with coiled tubing was successfully tested and proved to be a better alternative not only because of its efficiency but also due to a reduction in the time of intervention operations. The RJT was created to remove scales and well obstructions by utilization of stress-cycling jetting. Stress cycling is a jetting mechanism that consists of pressuring and energizing fluid against a material. This mechanism breaks scales or obstructions and vibrates proppants in gravel pack completions. The RJT is composed of turbines that generate spinning and magnets that control the rotation. Most fluids used in the oil industry for remedial operations are compatible with this tool, hence its wide range of applications. This paper will present case histories that vary from hydrate and scale removal, and matrix stimulations including cleaning of gravel pack completions. The usage of this RJT has demonstrated effectiveness as a new alternative to improve well production and reduce rig time when compared to other methods commonly used in the area. (author)

  12. Thermal-hydraulic analysis of LTS cables for the DEMO TF coil using simplified models

    Directory of Open Access Journals (Sweden)

    Lewandowska Monika


    Full Text Available The conceptual design activities for the DEMOnstration reactor (DEMO – the prototype fusion power plant – are conducted in Europe by the EUROfusion Consortium. In 2015, three design concepts of the DEMO toroidal field (TF coil were proposed by Swiss Plasma Center (EPFL-SPC, PSI Villigen, Italian National Agency for New Technologies (ENEA Frascati, and Atomic Energy and Alternative Energies Commission (CEA Cadarache. The proposed conductor designs were subjected to complete mechanical, electromagnetic, and thermal-hydraulic analyses. The present study is focused on the thermal-hydraulic analysis of the candidate conductor designs using simplified models. It includes (a hydraulic analysis, (b heat removal analysis, and (c assessment of the maximum temperature and the maximum pressure in each conductor during quench. The performed analysis, aimed at verification whether the proposed design concepts fulfil the established acceptance criteria, provides the information for further improvements of the coil and conductors design.

  13. Experimental and numerical study on unsteady natural convection heat transfer in helically coiled tube heat exchangers (United States)

    Neshat, E.; Hossainpour, S.; Bahiraee, F.


    Both of experimental and numerical investigations were performed to understand unsteady natural convection from outer surface of helical coils. Four helical coils with two different curvature ratios were used. Each coil was mounted in the shell both vertically and horizontally. The cold water was entered the coil and the hot water in the shell was cooling by unsteady natural convection. A CFD code was developed to simulate natural convection heat transfer. Equations of tube and shell are solved simultaneously. Statistical analyses have been done on data points of temperature and natural convection Nusselt number. It was revealed that shell-side fluid temperature and the Nusselt number of the outer surface of coils are functions of in-tube fluid mass flow rate, specific heat of fluids and geometrical parameters including length, inner diameter of the tube and the volume of the shell, and time.

  14. Heat transfer characteristics of a new helically coiled crimped spiral finned tube heat exchanger (United States)

    Srisawad, Kwanchanok; Wongwises, Somchai


    In the present study, the heat transfer characteristics in dry surface conditions of a new type of heat exchanger, namely a helically coiled finned tube heat exchanger, is experimentally investigated. The test section, which is a helically coiled fined tube heat exchanger, consists of a shell and a helical coil unit. The helical coil unit consists of four concentric helically coiled tubes of different diameters. Each tube is constructed by bending straight copper tube into a helical coil. Aluminium crimped spiral fins with thickness of 0.5 mm and outer diameter of 28.25 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Ambient air is used as a working fluid in the shell side while hot water is used for the tube-side. The test runs are done at air mass flow rates ranging between 0.04 and 0.13 kg/s. The water mass flow rates are between 0.2 and 0.4 kg/s. The water temperatures are between 40 and 50°C. The effects of the inlet conditions of both working fluids flowing through the heat exchanger on the heat transfer coefficients are discussed. The air-side heat transfer coefficient presented in term of the Colburn J factor is proportional to inlet-water temperature and water mass flow rate. The heat exchanger effectiveness tends to increase with increasing water mass flow rate and also slightly increases with increasing inlet water temperature.

  15. Shallow gas well drilling with coiled tubing in the San Juan Basin

    Energy Technology Data Exchange (ETDEWEB)

    Moon, R.G.; Ovitz, R.W.; Guild, G.J.; Biggs, M.D.


    Coiled tubing is being utilized to drill new wells, for re-entry drilling to deepen or laterally extend existing wells, and for underbalanced drilling to prevent formation damage. Less than a decade old, coiled tubing drilling technology is still in its inaugral development stage. Initially, utilizing coiled tubing was viewed as a {open_quotes}science project{close_quotes} to determine the validity of performing drilling operations in-lieu of the conventional rotary rig. Like any new technology, the initial attempts were not always successful, but did show promise as an economical alternative if continued efforts were made in the refinement of equipment and operational procedures. A multiwell project has been completed in the San Juan Basin of Northwestern New Mexico which provides documentation indicating that coiled tubing can be an alternative to the conventional rotary rig. A 3-well pilot project, a 6-well project was completed uniquely utilizing the combined resources of a coiled tubing service company, a producing company, and a drilling contractor. This combination of resources aided in the refinement of surface equipment, personnel, mud systems, jointed pipe handling, and mobilization. The results of the project indicate that utilization of coiled tubing for the specific wells drilled was an economical alternative to the conventional rotary rig for drilling shallow gas wells.

  16. 4C code analysis of thermal-hydraulic transients in the KSTAR PF1 superconducting coil (United States)

    Savoldi Richard, L.; Bonifetto, R.; Chu, Y.; Kholia, A.; Park, S. H.; Lee, H. J.; Zanino, R.


    The KSTAR tokamak, in operation since 2008 at the National Fusion Research Institute in Korea, is equipped with a full superconducting magnet system including the central solenoid (CS), which is made of four symmetric pairs of coils PF1L/U-PF4L/U. Each of the CS coils is pancake wound using Nb3Sn cable-in-conduit conductors with a square Incoloy jacket. The coils are cooled with supercritical He in forced circulation at nominal 4.5 K and 5.5 bar inlet conditions. During different test campaigns the measured temperature increase due to AC losses turned out to be higher than expected, which motivates the present study. The 4C code, already validated against and applied to different types of thermal-hydraulic transients in different superconducting coils, is applied here to the thermal-hydraulic analysis of a full set of trapezoidal current pulses in the PF1 coils, with different ramp rates. We find the value of the coupling time constant nτ that best fits, at each current ramp rate, the temperature increase up to the end of the heating at the coil outlet. The agreement between computed results and the whole set of measured data, including temperatures, pressures and mass flow rates, is then shown to be very good both at the inlet and at the outlet of the coil. The nτ values needed to explain the experimental results decrease at increasing current ramp rates, consistently with the results found in the literature.

  17. The Effect of the Capillary Tube Coil Number on the Refrigeration System Performance

    Directory of Open Access Journals (Sweden)

    Thamir K. Salim


    Full Text Available The capillary tube performance for (R134a is experimentally investigated. The experimental setup is a real vapor compression refrigeration system. All properties of the refrigeration system are measured for various mass flow rate from (13 – 23 kg/hr and capillary tube coil number (0-4 with fixed length (150 cm and capillary diameter(2.5mm.The results showed that the theoretical compression power increases by (65.8 % as the condenser temperature increases by (2.71%, also the theoretical compression power decreases by (10.3 % as the capillary tube coil number increases.The study shows also that the cooling capacity increases by (65.3% as the evaporator temperature increases by (8.4 %, and the cooling capacity increases by (1.6%as the capillary tube coil number increases in the range (0-4.The coefficient of performance decreases by (43.4 %, as the mass flow rateincreases by (76.9%, also the coefficient of performance increases by (13.51 % as thecapillary tube coil number increases in the range (0-4.Through this study, it was found that the best coil number in refrigeration cycle at the lowest mass flow rate (31 Kg/hr and at high mass flow rate (23 Kg/hr is (coil number = 4, this will give the highest performance, cooling capacity and lowest theoretical compression power.

  18. Optimum Design of a Moving Coil Actuator for Fast-Switching Valves in Digital Hydraulic Pumps and Motors

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Bech, Michael Møller; Johansen, Per


    Fast-switching seat valves suitable for digital hydraulic pumps and motors utilize direct electromagnetic actuators, which must exhibit superior transient performance to allow efficient operation of the fluid power pump/motor. A moving coil actuator resulting in a minimum valve switching time.......5 bar at 600 L/min flow rate, enabling efficient operation of digital hydraulic pumps and motors....

  19. Development of Radar Navigation and Radio Data Transmission for Microhole Coiled Tubing Bottom Hole Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Stolarczyk; Gerald L. Stolarczyk; Larry Icerman; John Howard; Hooman Tehrani


    This Final Technical Report summarizes the research and development (R&D) work performed by Stolar Research Corporation (Stolar) under U.S. Department of Energy (DOE) Contract Number DE-FC26-04NT15477. This work involved the development of radar navigation and radio data transmission systems for integration with microhole coiled tubing bottom hole assemblies. Under this contract, Stolar designed, fabricated, and laboratory and field tested two advanced technologies of importance to the future growth of the U.S. oil and gas industry: (1) real-time measurement-while-drilling (MWD) for guidance and navigation of coiled tubing drilling in hydrocarbon reservoirs and (2) two-way inductive radio data transmission on coiled tubing for real-time, subsurface-to-surface data transmission. The operating specifications for these technologies are compatible with 3.5-inch boreholes drilled to a true vertical depth (TVD) of 5,000 feet, which is typical of coiled tubing drilling applications. These two technologies (i.e., the Stolar Data Transmission System and Drill String Radar) were developed into pre-commercial prototypes and tested successfully in simulated coiled tubing drilling conditions. Integration of these two technologies provides a real-time geosteering capability with extremely quick response times. Stolar is conducting additional work required to transition the Drill String Radar into a true commercial product. The results of this advanced development work should be an important step in the expanded commercialization of advanced coiled tubing microhole drilling equipment for use in U.S. hydrocarbon reservoirs.

  20. Comparative Study and Analysis between Helical Coil and Straight Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    N. D. Shirgire


    Full Text Available The purpose of this study is to determine the relative advantage of using a helically coiled heat exchanger against a straight tube heat exchanger. It is found that the heat transfer in helical circular tubes is higher as compared to Straight tube due to their shape. Helical coils offer advantageous over straight tubes due to their compactness and increased heat transfer coefficient. The increased heat transfer coefficients are a consequence of the curvature of the coil, which induces centrifugal forces to act on the moving fluid, resulting in the development of secondary flow. The curvature of the coil governs the centrifugal force while the pitch (or helix angle influences the torsion to which the fluid is subjected to the centrifugal force results in the development of secondary flow. Due to the curvature effect, the fluid streams in the outer side of the pipe moves faster than the fluid streams in the inner side of the pipe. In current work the fluid to fluid heat exchange is taken into consideration. Most of the investigations on heat transfer coefficients are for constant wall temperature or constant heat flux. The effectiveness, overall heat transfer coefficient, effect of cold water flow rate on effectiveness of heat exchanger when hot water mass flow rate is kept constant and effect of hot water flow rate on effectiveness when cold water flow rate kept constant studied and compared for parallel flow, counter flow arrangement of Helical coil and Straight tube heat exchangers. All readings were taken at steady state condition of heat exchanger. The result shows that the heat transfer coefficient is affected by the geometry of the heat exchanger. Helical coil heat exchanger are superior in all aspect studied here.

  1. Numerical studies of an eccentric tube-in-tube helically coiled heat exchanger for IHEP-ADS helium purification system

    CERN Document Server

    Zhang, Jianqin


    The tube-in-tube helically coiled (TTHC) heat exchanger is preferred in the purifier of IHEP-ADS helium purification system. The position of an internal tube is usually eccentric in a TTHC heat exchanger in practice, while most TTHC heat exchangers in the literature studied are concentric. In this paper, TTHC heat exchangers with different eccentricity ratios are numerically studied for turbulent flow and heat transfer characteristics under different flow rates. The fluid considered is helium at the pressure of 20Mpa, with temperature dependent thermo-physical properties for the inner tube and the annulus. The inner Nusselt number between the concentric and eccentric TTHC heat exchangers are compared, so is the annulus Nusselt number. The results show that with the eccentricity increasing, the annulus Nusselt number increases substantially. According to the numerical data, new empirical correlations of Nusselt number as a function of Reynolds number and eccentricity for the inner tube and the annulus are pres...

  2. Turbulent flow regime in coiled tubes: local heat-transfer coefficient (United States)

    Bozzoli, F.; Cattani, L.; Mocerino, A.; Rainieri, S.


    Wall curvature represents a widely adopted technique for enhancing heat transfer: the fluid flowing inside a coiled pipe experiences the centrifugal force and this phenomenon induces local maxima in the velocity distribution that locally increase the temperature gradients at the wall by enhancing the heat transfer both in the laminar and in the turbulent flow regime. Consequently, the distribution of the velocity field over the cross-section of the tube is strongly uneven thus leading to significant variations along the circumferential angular coordinate of the convective heat-transfer coefficient at the wall internal surface: in particular, it shows higher values at the outer bend side of the coil than at the inner bend side. The aim of the present work is to estimate experimentally the local convective heat-transfer coefficient at the fluid wall interface in coiled tubes when turbulent flow regime occurs. In particular, the temperature distribution maps on the external coil wall are employed as input data of the inverse heat conduction problem in the wall and a solution approach based on the Tikhonov regularisation is implemented. The results, obtained with water as working fluid, are focused on the fully developed region in the turbulent flow regime in the Reynolds number range of 5000 to 12,000. For the sake of completeness, the overall efficiency of the coiled tubes under test is assessed under a first-law performance evaluation criterion.

  3. Nanofluids heat transfer and flow analysis in vertical spirally coiled tubes using Eulerian two-phase turbulent model (United States)

    Naphon, P.; Arisariyawong, T.; Nualboonrueng, T.


    A computation fluid dynamics study has been performed to analyze the nanofluids heat transfer and flow characteristics in the spirally coiled tubes. Eulerian two-phase turbulent model is applied to simulate the heat transfer and flow characteristics in the vertical spirally coiled tube. The spirally coiled tubes are fabricated by bending a 8.50 mm inner diameter straight copper tube into a spiral-coil with two different curvature ratios of 0.035, 0.060. The predicted results are verified with the present measured data. Reasonable agreement is obtained from the comparison between the measured data and the predicted results. In addition, due to the centrifugal force, the induced secondary flow has significant effect on the heat transfer enhancement as flowing through the spirally coiled tube. Effects of curvature, nanofluids concentration and hot water temperature on the nanofluids heat transfer characteristics and pressure drop are considered.

  4. Thermal-hydraulic performance of oval tubes in a cross-flow of air (United States)

    Hasan, Ala


    The thermal-hydraulic performance of five oval tubes is experimentally investigated and compared with that for a circular tube in a cross-flow of air. The range of Reynolds numbers ReD is approximately between 1,000 and 11,000. The nominal axis ratios R (major axis/minor axis) for three of the investigated oval tubes are 2, 3, and 4. Two other configurations of oval tubes are also tested, an oval tube R=3 with two wires soldered on its upper and lower top positions, and a cut-oval tube. The performance of the tubes is corrected for the effects of area blockage and turbulence intensity. The measurement results show that the mean Nusselt numbers NuD for the oval tubes are close to that for the circular tube for ReDthermal-hydraulic performance is indicated by the ratio NuD/Cd, which shows a better combined performance for the oval tubes.

  5. Design, analyses, fabrication and characterization of Nb3Sn coil in 1 W pulse tube cryocooler (United States)

    Kundu, Ananya; Das, Subrat Kumar; Bano, Anees; Kumar, Nitish; Pradhan, Subrata


    A laboratory scale Nb3Sn coil is designed, analysed, fabricated and characterized in 1 W pulse tube cryocooler in solid nitrogen cooling mode and in conduction cooling mode. The magnetic field profile in axial and radial direction, Lorentz force component across the winding volume in operational condition are estimated in COMSOL. The coil is designed for 1.5 T at 100 A. It is fabricated in wind and react method. Before winding, the insulated Nb3Sn strand is wound on a copper mandrel which is thermally anchored with the 2nd stage of the cold head unit via a 10 mm thick copper ‘Z’ shaped plate The temperature distribution in 2nd cold stage, copper z plate and coil is monitored in both solid nitrogen cooling and conduction cooling mode. In solid nitrogen cooling mode, the quench of the coil occurs at 150 A for 0.01 A/s current ramp rate. The magnetic field at the centre of the coil bore is measured using transverse Hall sensor. The measured magnetic field value is compared with the analytical field value and they are found to be deviating ∼5% in magnitude. Again the coil is tested in conduction cooling mode maintaining the same current ramp rate and it is observed that the coil gets quenched at 70 A at temperature ∼ 10K.

  6. Research on automatic non-destructive testing system of oil coiled tubing (United States)

    Guo, Rong; Qiu, Wenbin; Wang, Yuhui; Ren, Jianguang


    A method using ultrasonic devices for on-line measurement of oil coiled tubing was proposed. The principle of ultrasonic testing was analyzed. Then, the structure of the system consisting of mechanical system, coupling system, measuring system, control system and system software was determinated. Based on the analysis of technology requirement, measuring technique in which the coiled tubing did not rotate and the probe was static was chosen. The ultrasonic testing probes were triggered in turn. After signal sampling, digital filtering and A / D conversion signal processing, the received echo signals were sent to computer. Through analyzing and accounting, the test results were obtained. Based on, A-type ultrasonic and C-type ultrasonic display software and the inspection data processing software were developed. Using Windows programming technology, the software structure and function library were totally open. Therefore, secondary development can be carried out conveniently. Based on the experimental studies, coiled tubing's ultrasonic testing system is developed. The testing results show that the system has specific advantages such as high-adaptation, highefficiency, high- stability, high reliability and can meet the need of the users. The ultrasonic testing technologies proposed in this paper can be applied extensively to other tubes.

  7. Effect of Ovality on Maximum External Pressure of Helically Coiled Steam Generator Tubes with a Rectangular Wear

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong In; Lim, Eun Mo; Huh, Nam Su [Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of); Choi, Shin Beom; Yu, Je Yong; Kim, Ji Ho; Choi, Suhn [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    A structural integrity of steam generator tubes of nuclear power plants is one of crucial parameters for safe operation of nuclear power plants. Thus, many studies have been made to provide engineering methods to assess integrity of defective tubes of commercial nuclear power plants considering its operating environments and defect characteristics. As described above, the geometric and operating conditions of steam generator tubes in integral reactor are significantly different from those of commercial reactor. Therefore, the structural integrity assessment of defective tubes of integral reactor taking into account its own operating conditions and geometric characteristics, i. e., external pressure and helically coiled shape, should be made to demonstrate compliance with the current design criteria. Also, ovality is very specific characteristics of the helically coiled tube because it is occurred during the coiling processes. The wear, occurring from FIV (Flow Induced Vibration) and so on, is main degradation of steam generator tube. In the present study, maximum external pressure of helically coiled steam generator tube with wear is predicted based on the detailed 3-dimensional finite element analysis. As for shape of wear defect, the rectangular shape is considered. In particular, the effect of ovality on the maximum external pressure of helically coiled tubes with rectangular shaped wear is investigated. In the present work, the maximum external pressure of helically coiled steam generator tube with rectangular shaped wear is investigated via detailed 3-D FE analyses. In order to cover a practical range of geometries for defective tube, the variables affecting the maximum external pressure were systematically varied. In particular, the effect of tube ovality on the maximum external pressure is evaluated. It is expected that the present results can be used as a technical backgrounds for establishing a practical structural integrity assessment guideline of

  8. Experimental studies on effect of wire coiled coil matrix turbulators with and without bonding on the wall of the test section of concentric tube heat exchanger

    Directory of Open Access Journals (Sweden)

    Selvam S.


    Full Text Available This paper presents the effect of bonding and without bonding of wire coiled coil matrix turbulator on the heat transfer for a fully developed turbulent flow. Experiments are conducted by maintaining constant wall temperature. Tests are performed on 3 different wire coiled coil matrix turbulators of different pitches of 5, 10 and 15 mm without bonding of the turbulator. Three similar types of heat exchangers are fabricated and the wire coiled coil matrix turbulators with different pitches of 5, 10 and 15mm are inserted in the heat exchangers and bonding is done on the surface of the tube section. Results have indicated that the heat transfer rate enhances inversely with the pitch of the wire coiled coil matrix turbulator with bonding. With a pitch of 5 mm, the turbulators without bonding have resulted in almost 25.4% enhancement when compared with plain tube. On the other hand, for pitches of 10 mm and 15 mm the enhancement were 20.7% and 16.8%, respectively. The empirical correlations developed for turbulators with and without bonding results in ±6% deviation for Nusselt number and ±3% for friction factor. Similarly with a pitch of 5 mm, the turbulators with bonding have resulted in almost 42% enhancement. For pitches of 10mm and 15mm the enhancements were 34.7% and 25%, respectively.

  9. Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes. (United States)

    Sasmito, Agus Pulung; Kurnia, Jundika Candra; Mujumdar, Arun Sadashiv


    Convective heat transfer can be enhanced by changing flow geometry and/or by enhancing thermal conductivity of the fluid. This study proposes simultaneous passive heat transfer enhancement by combining the geometry effect utilizing nanofluids inflow in coils. The two nanofluid suspensions examined in this study are: water-Al2O3 and water-CuO. The flow behavior and heat transfer performance of these nanofluid suspensions in various configurations of coiled square tubes, e.g., conical spiral, in-plane spiral, and helical spiral, are investigated and compared with those for water flowing in a straight tube. Laminar flow of a Newtonian nanofluid in coils made of square cross section tubes is simulated using computational fluid dynamics (CFD)approach, where the nanofluid properties are treated as functions of particle volumetric concentration and temperature. The results indicate that addition of small amounts of nanoparticles up to 1% improves significantly the heat transfer performance; however, further addition tends to deteriorate heat transfer performance.

  10. Fallopian tube insertion into the uterine cavity discovered accidentally during laparoscopic retrieval of a misplaced coil from the pelvic cavity


    Panayotidis, Costas; Foidart, Jean-Michel; Nisolle, Michelle


    This article presents for the first time in the literature a case of fallopian tube insertion into the uterine cavity discovered accidentally during laparoscopic retrieval of a misplaced coil from the pelvic cavity. Peer reviewed


    Institute of Scientific and Technical Information of China (English)


    This paper deal with the frictional resistance characteristics of gas-liquid two-phase flow in vertical-upward helical-coiled tubes under the system pressure 0.1-0.6MPa.By means of dimension analysis and π theorem, the correlation formulas were obtained for calculating the frictional resistance coefficients of gas-liquid two-phase flow in helical-coiled tubes.The calculated results agree well with the experimental results.


    Institute of Scientific and Technical Information of China (English)


    This article presents an experimental investigation on condensation heat transfer of R-134a in horizontal straight and helically coiled tube-in-tube heat exchangers. The experiments were carried out at three saturation temperatures(35℃, 40℃ and 45℃) with the refrigerant mass flux varying from 100 kg/m2 s to 400 kg/m2 s and the vapor quality ranging from 0.1 to 0.8. The effects of vapor quality and mass flux of R-134a on the condensation heat transfer coefficient were investigated. The results indicate that the condensation heat transfer coefficients of the helical section are 4%-13.8% higher than that of the straight section. The experimental results were compared with the data available in literature for helical and straight pipes.

  13. The Snake - a Reconnecting Coil in a Twisted Magnetic Flux Tube

    CERN Document Server

    Bicknell, G V; Bicknell, Geoffrey V.; Li, Jianke


    We propose that the curious Galactic Center filament known as ``The Snake'' is a twisted giant magnetic flux tube, anchored in rotating molecular clouds. The MHD kink instability generates coils in the tube and subsequent magnetic reconnection injects relativistic electrons. Electrons diffuse away from a coil at an energy-dependent rate producing a flat spectral index at large distances from it. Our fit to the data of \\citet{gray95a} shows that the magnetic field $\\sim 0.4 \\> \\rm mG$ is large compared to the ambient $\\sim 7 \\mu \\> \\rm G$ field, indicating that the flux tube is force-free. If the {\\em relative} level of turbulence in the Snake and the general interstellar medium are similar, then electrons have been diffusing in the Snake for about $3 \\times 10^5 \\> \\rm yr$, comparable to the timescale at which magnetic energy is annihilated in the major kink. Estimates of the magnetic field in the G359.19-0.05 molecular complex are similar to our estimate of the magnetic field in the Snake suggesting a strong...

  14. Going flat out : Collin Morris, a former roughneck-turned inventor, develops a radically different form of coiled tubing

    Energy Technology Data Exchange (ETDEWEB)

    Byfield, M.


    This article described a radically reshaped coiled tubing product developed by an engineer with CJS Coiled Tubing Supply Ltd. The method encapsulates multiple conduits and electric wires within a single coiled tubing umbilical. The product is manufactured in Texas where coiled tubing strings are braided and encased within a wrapping. The strings have to be braided to maintain uniform lengths when the tubing is spooled. CJS has developed a reputation as a technical coiled tubing problem solver, particularly for low-pressure gas wells where produced water must be removed in order to avoid build up. Round pipe is particularly difficult to braid if the various conduits are of different sizes and materials. The CJS solution is called FLATpak in which multiple conduits sit side by side, encased within a rectangular matrix of thermo plastic. Several configurations of conduit are possible, including various diameters and different electric wire. FLATpak is pressure-extruded as a single piece. The rectangular product coils tighter on a coiled tubing spool than round pipe, thereby reducing transportation costs. Steel blowout preventer (BOP) rams can be switched easily to the new shape as long as the rectangular form is solid and rounded at the corners. Many producers recognize the need to deploy artificial lift systems in low-rate gas wells. CJS has installed 30 permanent FLATpak systems in Canada, more than 10 in the United States, and is adding 4 or 5 more per month. CJS is also working to proof its umbilicals for higher pressures and temperatures, for possible offshore potential. 2 figs.

  15. Simulation of Somatotype of Hydraulic Turbine Draft-Tube

    Institute of Scientific and Technical Information of China (English)

    DU Ting-na; HUI Yuan


    Elbow draft-tubes are widely used in large- and medium-sized hydropower stations in many countries. During the application, handling the somatotype of elbow tubes has been found challenging: in order to maintain the designed shape of draft tube and to meet the requirement of construction lofting, the configuration of reinforcing bars and the fabrication of templates, the geometry of elbow tubes has to be accurately calculated to draw engineering graphics. Based on the derived equations in this paper, the motion of elbow tube curve envelope is simulated by using computers, which shows directly the smoothness of the curve and provides dynamic simulation for the study and optimization of the design and construction of elbow draft tubes, along with the front view and bottom view.

  16. A comparison of the CHF between tubes and annuli under PWR thermal-hydraulic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herer, C. [RRAMATOME EP/TC, Paris (France); Souyri, A. [EdF DER/RNE/TTA, Chatou (France); Garnier, J. [CEA DRN/DTP/STR/LETC, Grenoble (France)


    Critical Heat Flux (CHF) tests were carried out in three tubes with inside diameters of 8, 13, and 19.2 mm and in two annuli with an inner tube of 9.5 mm and an outer tube of 13 or 19.2 mm. All axial heat flux distributions in the test sections were uniform. The coolant fluid was Refrigerant 12 (Freon-12) under PWR thermal-hydraulic conditions (equivalent water conditions - Pressure: 7 to 20 MPa, Mass Velocity: 1000 to 6000 kg/m2/s, Local Quality: -75% to +45%). The effect of tube diameter is correlated for qualities under 15%. The change from the tube to the annulus configuration is correctly taken into account by the equivalent hydraulic diameter. Useful information is also provided concerning the effect of a cold wall in an annulus.

  17. Experimental Investigation of Forced Convective Boiling Flow Instabilities in Horizontal Helically Coiled Tubes

    Institute of Scientific and Technical Information of China (English)


    An experimental investigation is described for the characteristics of convective boiling flow instabilities in horizontally helically coiled tubes using a steam-water two-phase closed circulation test loop at pressure from 0.5 MPa to 3.5MPa.Three kinds of oscillation are reported.density waves;pressure drop excorsions;thermal fluctuations.We describe their dependence on main system parameters such as system pressure,mass flowrate,inlet subcooling,compressible volume and heat flux.Utilising the experimental data together with conservation constraints,a dimensionless correlation is proposed for the occurrence of density waves.

  18. Getting it straight : new production-logging tool for horizontal wells presents stiff competition for coiled tubing

    Energy Technology Data Exchange (ETDEWEB)

    Mahony, J.


    This article described a production logging system developed by Norway-based Ziebel AS. The new ZipLog production-logging tool for horizontal wells presents competition for coiled tubing. The article noted that the disadvantage of using coiled tubing is its tendency to resume downhole the curve it acquired on the spool, and a tendency to re-coil. Other issues regarding coiled tubing include weight and rigidity. The benefits of using ZipLog can be attributed to its carbon-epoxy construction. In particular, its lightweight, high strength and natural rigidity make the composite a natural for downhole use. The rod will also allow access to certain highly-deviated wells previously thought unloggable. Road-testing of tools were also presented. Differences related to mode of operation between coiled tubing and ZipLog's rod were also outlined. It was concluded that ZipLog could be used in production tubing, casings and in the open hole. Although the rod does not currently include any electrical cable, plans are underway to add one, enabling standard wireline logging to be added to the system's uses. In addition, the article noted that plans to introduce the system in Canada are under consideration. 1 ref., 3 figs.

  19. Experimental studies on pressure drop characteristics of cryogenic cross-counter flow coiled finned tube heat exchangers (United States)

    Gupta, Prabhat Kumar; Kush, P. K.; Tiwari, Ashesh


    Cross-counter flow coiled finned tube heat exchangers used in medium capacity helium liquefiers/refrigerators were developed in our lab. These heat exchangers were developed using integrated low finned tubes. Experimental studies have been performed to know the pressure drop characteristics of tube side and shell side flow of these heat exchangers. All experiments were performed at room temperature in the Reynolds number range of 3000-30,000 for tube side and 25-155 for shell side. The results of present experiments indicate that available correlations for tube side can not be used for prediction of tube side pressure drop data due to complex surface formation at inner side of tube during formation of fins over the outer surface. Results also indicate that surface roughness effect becomes more pronounced as the value of di/ D m increases. New correlations based on present experimental data are proposed for predicting the friction factors for tube side and shell side.

  20. Deformation Characterization of Friction-Stir-Welded Tubes by Hydraulic Bulge Testing (United States)

    Pang, Q.; Hu, Z. L.; Pan, X.; Zuo, X. Q.


    In this article, the large-diameter thin-walled aluminum alloy tubes were produced using a hybrid process combining friction-stir welding (FSW) and spinning. For this novel process, rolled aluminum alloy sheets with a thickness about 2-3 times the wall thickness of target tube, were FSW to form cylinders, and then the cylinders were subjected to spinning to get thin-walled aluminum alloy tubes. Both experimental and simulation study were conducted to investigate the deformation characterization of the FSW tube during hydraulic bulge testing, and the stress and strain states and thickness distribution of the FSW tube were investigated. It was found that the common defects of FSW tube can be significantly improved by specific welding devices. The ductility of the tube is considerably improved with nearly two times higher bulge ratio than as-spun tube after annealing treatment at 300°C. But the annealed tube still shows a high nonuniform wall thickness distribution due to the inhomogeneous deformation characteristics. With increasing deformation of the tube, the gap between the hoop and axial stress for the weld and base metal (BM) decreases. However, the hoop and axial stress of the weld are always greater than those of the BM at the same pressure.

  1. Hydraulic study of drilling fluid flow in circular and annular tubes

    Energy Technology Data Exchange (ETDEWEB)

    Scheid, C.M.; Calcada, L.A.; Braga, E.R.; Paraiso, E.C.H. [Universidade Federal Rural do Rio de Janeiro (PPGEQ/UFRRJ), Seropedica, RJ (Brazil). Programa de Pos-Graduacao em Engenharia Quimica. Dept. de Engenharia Qumica], E-mail:; Martins, A. L. [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas


    This study investigates the drilling fluid flow behavior of two water-based drilling fluids in circular and annular tubes. The study has four main objectives: 1) to evaluate correlations between the Power Law and the Casson rheological models, 2) to characterize the flow behavior, 3) to evaluate five hydraulic-diameter equations, and 4) to evaluate the correlations of five turbulent flow-friction factors. The experimental fluid flow loop consisted of one positive displacement pump of 25 HP connected to a 500-liter tank agitated by a 3-HP mixer. The fluids passed through six meters long tubes, arranged in three horizontal rows with independent inlets and outlets. The circular tubes had a 1 inch diameter and were configured as two concentric annular tubes. Annular Tube I had an outer diameter of 1 1/4 inch and an inner diameter of 1/2 inch. Annular Tube II had an outer diameter of 2 inches and an inner diameter of 3/4 inch. The results show that, for the fluids in exam, correlations proposed in the literature were inaccurate as far as predicting hydraulic diameter, estimating pressure drop, and defining the flow regime. In general, the performance of those correlations depended on the fluid properties and on the system's geometry. Finally, literature parameters for some of the correlations were estimated for the two drilling fluids studied. These estimations improved the predictive capacity of calculating the friction factor for real drilling fluids applications for both circular and annular tubes. (author)

  2. Hydraulic drag at the condensing steam flow in tubes (United States)

    Leontiev, A. I.; Milman, O. O.


    The dependency of condensing steam flow parameters in tubes and channels was studied as a function of different flow modes for the coolant: counter-flow, co-flow, cross-flow. The drop for the total pressure of steam is higher for the counter-flow than for the co-flow or cross-flow modes. The pressure drop was estimated with different computation models as a function flow mode. Calculation results were compared with experimental data.

  3. 连续管作业机的研制与应用%Development and Application of coiled tubing unit

    Institute of Scientific and Technical Information of China (English)



    This paper describes the application of coiled tubing nitrogen lift drainage and desalination plug removal in oil-gas production.%本文概述了连续油管注氮气举排液、冲盐解堵等技术在油气生产中的应用情况。

  4. Experimental residual stress evaluation of hydraulic expansion transitions in Alloy 690 steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, R.; Doherty, P. [Babcock and Wilcox International, Cambridge, Ontario (Canada); Hornbach, D. [Lambda Research Inc., Cincinnati, OH (United States); Abdelsalam, U. [McMaster Univ., Hamilton, Ontario (Canada)


    Nuclear Steam Generator (SG) service reliability and longevity have been seriously affected worldwide by corrosion at the tube-to-tubesheet joint expansion. Current SG designs for new facilities and replacement projects enhance corrosion resistance through the use of advanced tubing materials and improved joint design and fabrication techniques. Here, transition zones of hydraulic expansions have undergone detailed experimental evaluation to define residual stress and cold-work distribution on and below the secondary-side surface. Using X-ray diffraction techniques, with supporting finite element analysis, variations are compared in tubing metallurgical condition, tube/pitch geometry, expansion pressure, and tube-to-hole clearance. Initial measurements to characterize the unexpanded tube reveal compressive stresses associated with a thin work-hardened layer on the outer surface of the tube. The gradient of cold-work was measured as 3% to 0% within .001 inch of the surface. The levels and character of residual stresses following hydraulic expansion are primarily dependent on this work-hardened surface layer and initial stress state that is unique to each tube fabrication process. Tensile stresses following expansion are less than 25% of the local yield stress and are found on the transition in a narrow circumferential band at the immediate tube surface (< .0002 inch/0.005 mm depth). The measurements otherwise indicate a predominance of compressive stresses on and below the secondary-side surface of the transition zone. Excellent resistance to SWSCC initiation is offered by the low levels of tensile stress and cold-work. Propagation of any possible cracking would be deterred by the compressive stress field that surrounds this small volume of tensile material.

  5. Localization of defects in steam generator tubes using a multi-coil eddy current probe dedicated to high speed inspection

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, P.-Y.; Le Bihan, Y.; Placko, D. [Ecole Normale Superieure de Cachan (France). Laboratoire d' Electricite Signaux et Robotique


    Steam generator (SG) tubing of pressurized water reactor in nuclear plants must be rapidly and accurately checked in order to detect defects in their early stages. In this paper, the authors present a multi-coil eddy current (EC) probe allowing both high speed inspection and circumferential localization of defects in the tube wall. A method of multi-coil EC signal processing, based on a continuous wavelet transform combined with a maximum likelihood diagnosis, is elaborated in order to enhance the detection performances and to provide automatic localization of defects. The inspection of SG tube samples shows good localization performances for defects as small as 10% deep, 15 mm long and 100 {mu}m wide outer diameter notches, of both circumferential and axial orientations. (author)

  6. Computational fluid dynamics simulation and geometric design of hydraulic turbine draft tube

    Directory of Open Access Journals (Sweden)

    JB Sosa


    Full Text Available Any hydraulic reaction turbine is installed with a draft tube that impacts widely the entire turbine performance, on which its functions are as follows: drive the flux in appropriate manner after it releases its energy to the runner; recover the suction head by a suction effect; and improve the dynamic energy in the runner outlet. All these functions are strongly linked to the geometric definition of the draft tube. This article proposes a geometric parametrization and analysis of a Francis turbine draft tube. Based on the parametric definition, geometric changes in the draft tube are proposed and the turbine performance is modeled by computational fluid dynamics; the boundary conditions are set by measurements performed in a hydroelectric power plant. This modeling allows us to see the influence of the draft tube shape on the entire turbine performance. The numerical analysis is based on the steady-state solution of the turbine component flows for different guide vanes opening and multiple modified draft tubes. The computational fluid dynamics predictions are validated using hydroelectric plant measurements. The prediction of the turbine performance is successful and it is linked to the draft tube geometric features; therefore, it is possible to obtain a draft tube parameter value that results in a desired turbine performance.


    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-bing; ZENG Yong-zhong; CAO Shu-you


    The three-dimensional unsteady turbulent flow is studied numerically in the whole flow passage of hydraulic turbine, and vortex flow in the draft tube is predicted accurately in this paper. The numerical prediction is based on the Navier-Stokes equations and Large-Eddy Simulation (LES) model. The SIMPLE algorithm with the body-fitted coordinate and tetrahedroid grid system is applied for the solution of the discretization governing equations.

  8. Experimental investigation of TiO2/water nanofluid laminar forced convective heat transfer through helical coiled tube (United States)

    Kahani, M.; Zeinali Heris, S.; Mousavi, S. M.


    Coiled tubes and nanofludics are two significant techniques to enhance the heat transfer ability of thermal equipments. The forced convective heat transfer and the pressure drop of nanofluid inside straight tube and helical coiled one with a constant wall heat flux were studied experimentally. Distilled water was used as a host fluid and Nanofluids of aqueous TiO2 nanoparticles (50 nm) suspensions were prepared in various volume concentrations of 0.25-2 %. The heat transfer coefficient of nanofluids is obtained for different nanoparticle concentrations as well as various Reynolds numbers. The experiments covered a range of Reynolds number of 500-4,500. The results show the considerable enhancement of heat transfer rate, which is due to the nanoparticles present in the fluid. Heat transfer coefficient increases by increasing the volume concentration of nanoparticles as well as Reynolds number. Moreover, due to the curvature of the tube when fluid flows inside helical coiled tube instead of straight one, both convective heat transfer coefficient and the pressure drop of fluid grow considerably. Also, the thermal performance factors for tested nanofluids are greater than unity and the maximum thermal performance factor of 3.72 is found with the use of 2.0 % volume concentration of nanofluid at Reynolds number of 1,750.

  9. Development of modelling tools for thermo-hydraulic analyses and design of JT-60SA TF coils

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, Benoit, E-mail: [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Portafaix, Christophe [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Barabaschi, Pietro [Fusion For Energy, D-85748 Garching (Germany); Duchateau, Jean-Luc; Hertout, Patrick; Lamaison, Valerie; Nicollet, Sylvie; Reynaud, Pascal [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Villari, Rosaria [Euratom-ENEA Association, IT-00044 Frascati (Italy); Zani, Louis [Fusion For Energy, D-85748 Garching (Germany)


    In the framework of the JT-60SA project, the Toroidal Field (TF) coils design has required to address reliably the choice between multiple design options and to calculate the temperature margin criterion for the superconductor. For this purpose, a tool was developed in two stages, interfacing the ANSYS code, used to model the thermal diffusion between the casing and the winding pack, with the GANDALF code which solves the 1D thermo-hydraulics inside each conductor. The first version of this Thermo-hydraulic EXtended TOol (TEXTO) was developed for producing conservative results and has allowed to simulate the fast discharge of the magnet, providing valuable results such as the mass flow expelled from each pancake. In the second stage, the ANSYS code was configured for modelling the helium transport in the casing and in the winding pack, thus computing more realistic transverse heat fluxes to be injected into the GANDALF code for an accurate calculation of the temperature margin. This second version of TEXTO, which integrates the TACOS (Thermo-hydraulic Ansys COmputation Semi 3D) module, has been used for studying the feasibility of positioning the helium inlets in the electrical connections. The temperature margin has then been found close but below the criterion of 1 K.

  10. CFD analysis of the two-phase bubbly flow characteristics in helically coiled rectangular and circular tube heat exchangers (United States)

    Hussain, Alamin; Fsadni, Andrew M.


    Due to their ease of manufacture, high heat transfer efficiency and compact design, helically coiled heat exchangers are increasingly being adopted in a number of industries. The higher heat transfer efficiency over straight pipes is due to the secondary flow that develops as a result of the centrifugal force. In spite of the widespread use of helically coiled heat exchangers, and the presence of bubbly two-phase flow in a number of systems, very few studies have investigated the resultant flow characteristics. This paper will therefore present the results of CFD simulations for the two-phase bubbly flow in helically coiled heat exchangers as a function of the volumetric void fraction and the tube cross-section design. The CFD results are compared to the scarce flow visualisation experimental results available in the open literature.

  11. Development of a Special Application Coiled Tubing Applied Plug for Geothermal Well Casing Remediation

    Energy Technology Data Exchange (ETDEWEB)



    Casing deformation in producing geothermal wells is a common problem in many geothermal fields, mainly due to the active geologic formations where these wells are typically located. Repairs to deformed well casings are necessary to keep the wells in production and to occasionally enter a well for approved plugging and abandonment procedures. The costly alternative to casing remediation is to drill a new well to maintain production and/or drill a well to intersect the old well casing below the deformation for abandonment purposes. The U.S. Department of Energy and the Geothermal Drilling Organization sponsored research and development work at Sandia National Laboratories in an effort to reduce these casing remediation expenditures. Sandia, in cooperation with Halliburton Energy Services, developed a low cost, bridge-plug-type, packer for use in casing remediation work in geothermal well environments. This report documents the development and testing of this commercially available petal-basket packer called the Special Application Coiled Tubing Applied Plug (SACTAP).

  12. Modelling of Moving Coil Actuators in Fast Switching Valves Suitable for Digital Hydraulic Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Roemer, Daniel Beck; Bech, Michael Møller


    an estimation of the eddy currents generated in the actuator yoke upon current rise, as they may have significant influence on the coil current response. The analytical model facilitates fast simulation of the transient actuator response opposed to the transient electro-magnetic finite element model which...

  13. Deformation behavior of A6063 tube with initial thickness deviation in free hydraulic bulging

    Institute of Scientific and Technical Information of China (English)

    YANG Lian-fa; GUO Cheng; DENG Yang


    Experiment on seamless tubes of aluminum alloy A6063 with initial thickness deviation of 0-20% was conducted through a free hydraulic bulging with tube ends free. The influence of initial thickness deviation on the cross-section profile, thickness distribution, maximum internal pressure and maximum radial expansion was investigated. FEM simulation was also performed in order to examine and help explaining the experimental results. The results indicate that the internal pressure and maximum internal pressure appear to be little influenced by the initial thickness deviation, and that the cross-section profile of the bulged tube changes diversely and can not be a perfect circle. The results also suggest that the increase in initial thickness deviation may lead to a remarkable decrease in maximum radial expansion, and a rapid increase in thickness deviation and the center eccentricity of the inner and outer profiles.

  14. Experimental investigation of heat transfer and pressure drop of turbulent flow inside tube with inserted helical coils (United States)

    Sharafeldeen, M. A.; Berbish, N. S.; Moawed, M. A.; Ali, R. K.


    The heat transfer and pressure drop were experimentally investigated in a coiled wire inserted tube in turbulent flow regime in the range of Reynolds number of 14,400 ≤ Re ≤ 42,900. The present work aims to extend the experimental data available on wire coil inserts to cover wire diameter ratio of 0.044 ≤ e/d ≤ 0.133 and coil pitch ratio of 1 ≤ p/d ≤ 5. Uniform heat flux was applied to the external surface of the tube and air was selected as fluid. The effects of Reynolds number and wire diameter and coil pitch ratios on the Nusselt number and friction factor were studied. The enhancement efficiency and performance criteria ranges are of (46.9-82.6 %) and (100.1-128 %) within the investigated range of the different parameters, respectively. Correlations are obtained for the average Nusselt number and friction factor utilizing the present measurements within the investigated range of geometrical parameters and Re. The maximum deviation between correlated and experimental values for Nusselt number and friction factor are ±5 and ±6 %, respectively.

  15. Heat transfer enhancement in smooth tube with wire coil insert in laminar and transitional non-newtonian flow


    García Pinar, Alberto; Solano Fernández, Juan Pedro; Viedma Robles, Antonio; Martínez Hernández, David Sebastián


    This work presents an experimental study on the heat transfer enhancement by means of a tube with wire-coil insert,for non-Newtonian laminar and transitional flow. The dimensionless pitch and wire diameter (based on the plain tube inner diameter) were chosen as p/D= 1 and e/D=0.09. Two pseudoplastic test fluids have been used: 1% by weight aqueous solutions of carboxymethyl cellulose (CMC) with high viscosity and medium viscosity. A wide range of flow conditions has been covered: Reynolds ...

  16. Performance of a split-type air conditioner matched with coiled adiabatic capillary tubes using HCFC22 and HC290

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Guobing [School of Energy and Power Engineering, North China Electric Power University, Beijing 102206 (China); Zhang, Yufeng [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China)


    This paper experimentally investigated the system performance of a split-type air conditioner matching with different coiled adiabatic capillary tubes for HCFC22 and HC290. Experiments were carried out in a room-type calorimeter. The results have shown that (1) similar cooling effects can be achieved by matching various capillary tubes of different inner diameters; (2) parallel capillary tubes presented better system performance and flow stability with weaker inlet pressure fluctuations than the single capillary tube; (3) with the coil diameter of the capillary tube increasing from 40 mm to 120 mm, the mass flow rate tended to increase slightly. But the cooling capacity, input power and energy efficiency ratio (EER) did not show evident tendency of change; (4) the refrigerant charge and mass flow rate for HC290 were only 44% and 47% of that for HCFC22, respectively, due to the much lower density. And HC290 had 4.7-6.7% lower cooling capacity and 12.1-12.3% lower input power with respect to HCFC22. However, the EER of HC290 can be 8.5% higher than that of HCFC22, which exhibits the advantage of using HC290. In addition, the experimental uncertainties were analyzed and some application concerns of HC290 were discussed. (author)

  17. Experimental Study of Heat Transfer Enhancement in a Heated Tube Caused by Wire-Coil and Rings

    Directory of Open Access Journals (Sweden)

    Saeed Vahidifar


    Full Text Available This study investigates heat transfer characteristics and the pressure drop of a horizontal double pipe heat exchanger with wire coil inserts. The amplification of convection heat transfer coefficient in the heat exchanger reduces the weight, size and cost of heat exchanger. One way of augmenting the heat transfer is to disturb the boundary layer. When an object is placed in a boundary layer, it affects the flow structure and alters the velocity and thermal profiles. The change is affected by the formation of jets and wakes in the boundary layer as it alters modifies transfer and friction coefficients on the wall. This paper studies the characteristics of the heat transfer and the pressure drop of a double pipe horizontal tube heat exchanger with an inserted wire coil and rings. Wire coil acts as a swirl flow, which increases turbulence and roughness whereas rings increase heat transfer as a promoter of turbulence and roughness. The experimental data sets were extracted from wire coils and rings tested within a geometrical range with a pitch of (P/D=1, 2, 4 and wire diameter of (d/D=0.05, 0.07, 0.11. For wire coil with d/D=0.11, P/D =1 and Reynolds number of 10000, the overall enhancement efficiency amounted to 128%.

  18. Hydraulics. (United States)

    Decker, Robert L.; Kirby, Klane

    This curriculum guide contains a course in hydraulics to train entry-level workers for automotive mechanics and other fields that utilize hydraulics. The module contains 14 instructional units that cover the following topics: (1) introduction to hydraulics; (2) fundamentals of hydraulics; (3) reservoirs; (4) lines, fittings, and couplers; (5)…

  19. An experimental study of the flow of LPG as refrigerant inside an adiabatic helical coiled capillary tube in vapour compression refrigeration system (United States)

    Punia, Sanjeev Singh; Singh, Jagdev


    This paper presents an experimental investigation for the flow of liquefied petroleum gas (LPG) as a refrigerant inside an adiabatic helically coiled capillary tube in vapour compression refrigeration system. The effect of various geometric parameters and operating conditions like capillary tube inner diameter, length of capillary tube, coil diameter and different inlet subcoolings on the mass flow rate of LPG through the helical coiled capillary tube geometry has been investigated. It has been established that the coil diameter significantly influences the mass flow rate of LPG through the adiabatic helical capillary tube. It has been concluded that the effect of coiling of capillary tube reduces the mass flow rate by 5-12 % as compared to those of the straight capillary tube operating under similar conditions. The data obtained from the experiments are analyzed and a dimensionless correlation has been developed. The proposed correlation predicts that more than 90 % of experimental data which is in agreement with measured data in an error band of ±10 %.

  20. Calculation of RABBIT and Simulator Worth in the HFIR Hydraulic Tube and Comparison with Measured Values

    Energy Technology Data Exchange (ETDEWEB)

    Slater, CO


    To aid in the determinations of reactivity worths for target materials in a proposed High Flux Isotope Reactor (HFIR) target configuration containing two additional hydraulic tubes, the worths of cadmium rabbits within the current hydraulic tube were calculated using a reference model of the HFIR and the MCNP5 computer code. The worths were compared to measured worths for both static and ejection experiments. After accounting for uncertainties in the calculations and the measurements, excellent agreement between the two was obtained. Computational and measurement limitations indicate that accurate estimation of worth is only possible when the worth exceeds 10 cents. Results indicate that MCNP5 and the reactor model can be used to predict reactivity worths of various samples when the expected perturbations are greater than 10 cents. The level of agreement between calculation and experiment indicates that the accuracy of such predictions would be dependent solely on the quality of the nuclear data for the materials to be irradiated. Transients that are approximated by ''piecewise static'' computational models should likewise have an accuracy that is dependent solely on the quality of the nuclear data.

  1. Thermal-hydraulic performance of novel louvered fin using flat tube cross-flow heat exchanger

    Institute of Scientific and Technical Information of China (English)

    Junqi DONG; Jiangping CHEN; Zhijiu CHEN


    Experimental studies were conducted to investigate the air-side heat transfer and pressure drop characteristics of a novel louvered fins and flat tube heat exchangers. A series of tests were conducted for 9 heat exchangers with different fin space and fin length, at a constant tube-side water flow rate of 2.8 m/h. The air side thermal performance data were analyzed using the effectiveness-NTU method. Results were presented as plot of Colburn j factor and friction factor f against the Reynolds number in the range of 500-6500. The characteristics of the heat transfer and pressure drop of different fin space and fin length were analyzed and compared. In addition, the curves of the heat transfer coefficients vs. pumping power per unit heat transfer area were plotted. Finally, the area optimization factor was used to evaluate the thermal hydraulic performance of the louvered fins with differential geometries. The results showed that the j and ffactors increase with the decrease of the fin space and fin length, and the fin space has more obvious effect on the thermal hydraulic characteristics of the novel louvered fins.

  2. Influence of wire-coil inserts on the thermo-hydraulic performance of a flat-plate solar collector (United States)

    Herrero Martín, R.; García, A.; Pérez-García, J.


    Enhancement techniques can be applied to flat-plate liquid solar collectors towards more compact and efficient designs. For the typical operating mass flow rates in flat-plate solar collectors, the most suitable technique is inserted devices. Based on previous studies from the authors, wire coils were selected for enhancing heat transfer. This type of inserted device provides better results in laminar, transitional and low turbulence fluid flow regimes. To test the enhanced solar collector and compare with a standard one, an experimental side-by-side solar collector test bed was designed and constructed. The testing set up was fully designed following the requirements of EN12975-2 and allow us to accomplish performance tests under the same operating conditions (mass flow rate, inlet fluid temperature and weather conditions). This work presents the thermal efficiency curves of a commercial and an enhanced solar collector, for the standardized mass flow rate per unit of absorber area of 0.02 kg/sm2 (in useful engineering units 144 kg/h for water as working fluid and 2 m2 flat-plate solar collector of absorber area). The enhanced collector was modified inserting spiral wire coils of dimensionless pitch p/D = 1 and wire-diameter e/D = 0.0717. The friction factor per tube has been computed from the overall pressure drop tests across the solar collectors. The thermal efficiency curves of both solar collectors, a standard and an enhanced collector, are presented. The enhanced solar collector increases the thermal efficiency by 15%. To account for the overall enhancement a modified performance evaluation criterion (R3m) is proposed. The maximum value encountered reaches 1.105 which represents an increase in useful power of 10.5% for the same pumping power consumption.

  3. Application of Multi-cylinders Synchronization Hydraulic Servo Control in the Coil-Press%多缸同步液压伺服控制系统在线圈压床的应用

    Institute of Scientific and Technical Information of China (English)

    陈彪; 姜新生


    介绍了多缸同步液压伺服控制系统在线圈压床中的组成、控制原理,及在线圈压床中的实际应用效果.%The components of multi-cylinders synchronization hydraulic servo control in the coil-press and controlled theory of hydraulic servo control system were introduced. Its infect of actual used in the coil-press was presented.

  4. Simulating the Effects of Structural Parameters on the Hydraulic Performances of Venturi Tube

    Directory of Open Access Journals (Sweden)

    Yanqi Sun


    Full Text Available The effects of Venturi structural parameters on its hydraulic performance were studied, which provided theoretical basis for the design of Venturi injector. With an inlet diameter of 50 mm, based on the method of computational fluid dynamics (CFD, the effects of the structural parameters (such as throat taper, throat contraction ratio, and throat length on their hydraulic performance (such as outlet faceted average velocity, minimum pressure, and critical pressure were studied under different inlet pressures and pressure differences between inlet and outlet. A power function relationship existed between the mean velocity in outlet section and pressure difference, with an approximate flow stance index of 0.53. Minimum pressure occurred in the throat inlet wall and there was a linear relationship between the minimum pressure and the pressure difference at the inlet and outlet. The throat contraction ratio was the main factor on the effect of Venturi injector performance, which was positively correlated with outlet velocity, negatively to critical pressure, the minimal in-tube pressure, coefficient of local head loss, and fertilizer absorption ratio. For designing Venturi injector, contraction ratio should be reasonably selected according to the coefficient of local head loss and fertilizer absorption ratio.

  5. Heat Transfer Enhancement in a Helically Coiled Tube with Al2O3/WATER Nanofluid Under Laminar Flow Condition (United States)

    Kumar, P. C. Mukesh; Kumar, J.; Suresh, S.; Babu, K. Praveen


    In this experimental investigation, the heat transfer coefficients of a shell and helically coiled tube heat exchanger using Al2O3/water nanofluid under laminar flow condition were studied. The Al2O3 nanoparticles were characterized by X-Ray diffraction (XRD). The Al2O3/water nanofluid at 0.1%, 0.4% and 0.8% particle volume concentration were prepared by using two step method. The prepared nanofluid was characterized by scanning electron microscope (SEM). It is observed that the overall heat transfer coefficient, inner heat transfer coefficient and experimental inner Nusselt number increase while increasing particle volume concentration and increasing inner Dean number. The enhancement of overall heat transfer coefficient was found to be 7%, 16.9% and 24.2% at 0.1%, 0.4% and 0.8% Al2O3/water nanofluid respectively when compared with water. The enhancement of tube side experimental Nusselt number was found to be 17%, 22.9% and 28% at 0.1%, 0.4% and 0.8% particle volume concentration of Al2O3/water nanofluid respectively when compared with water at fixed Dean number. The tests were conducted in the range of 1600 tube.

  6. Pressure tubes as GRP coiled pipes in hydropower constructions; Druckrohre als GFK-Wickelrohre im Wasserkraftwerksbau

    Energy Technology Data Exchange (ETDEWEB)



    The times when steel was the material of choice in power plant construction are long gone. GFRP is a high-tech material for pipe construction which had a lightning career in hydropower engineering during the past few years. It has excellent construction and performance characteristics and is a good supplement or replacement material for steel. The GFRP coiled pipe system (FLOWTITE) produced by Amitech Germany at Mochau is a special type of pipe which is described in this article. (orig.)

  7. Study of thermal effectiveness and its relation with NTU in shell and helically coiled tube heat exchangers

    Directory of Open Access Journals (Sweden)

    Ashkan Alimoradi


    Full Text Available In the present study, the effect of operational and geometrical parameters on the thermal effectiveness of shell and helically coiled tube heat exchangers was investigated. Analysis was performed for the steady state. The working fluid of both sides is water, that its viscosity and thermal conductivity were assumed to be dependent on temperature. Based on the results, two correlations have been developed to predict the thermal effectiveness, for wide ranges of mass flow rates ratio, dimensionless geometrical parameters and product of Reynolds numbers. Furthermore, it was found for same values of NTU and Cr, the effectiveness is averagely 12.6% less than the effectiveness of parallel flow heat exchangers and this difference is approximately constant.

  8. Experimental studies into the thermal-hydraulic performance of the VK-300 reactor based on a draft tube model

    Directory of Open Access Journals (Sweden)

    N.P. Serdun


    Full Text Available The paper presents an experimental study into the thermal-hydraulic performance of the VK-300 reactor based on a model of a single draft tube at a pressure of 3.4MPa, various flow rates and the model inlet relative enthalpies of –0.05 to 0.2. The experimental procedures include generation of a steam-water mixture circulation with a preset flow rate and a relative enthalpy through the test section at a pressure of 3.3 to 3.4MPa, and measurement of thermal-hydraulic parameters within the circuit's representative upflow and downflow lengths of practical interest. There have been confirmed the designs used to support the reactor facility serviceability and the assumptions concerning the thermal-hydraulic performance of a natural circulation circuit used in the analysis thereof. It has been shown that, across the analyzed range of the relative enthalpy values, the draft tube has an annular-dispersed or an annular flow of the steam-water mixture, both providing for the significant separation of the steam-water mixture (Ksep=0.4 at the draft tube edges and in the mixing chamber. The perforation in the upper part of the draft tubes allows the separation coefficient to be increased at the first stage and creates more favorable conditions for the second-stage separation. The measured values of the void fraction in the mixing chamber and in the draft tube are in a satisfactory agreement with calculations based on Z.L. Miropolskiy's method and the RELAP code and may be used to verify the VK-300 thermal-hydraulic codes. It has been shown that steam may enter the ring slit that simulates the annular space and reach the reactor core inlet. Further investigations need to be conducted to study this effect for its guaranteed exclusion and for the development of emergency response procedures.

  9. Comparison of thermal and hydraulic performances of eccentric and concentric annular-fins of heat exchanger tubes (United States)

    Benmachiche, Abdelmoumène Hakim; Tahrour, Farouk; Aissaoui, Faris; Aksas, Mounir; Bougriou, Cherif


    The present study is an experimental and 3-D computational fluid dynamics. It is used to compare between the heat transfer characteristics and pressure drops of eccentric and concentric annular-finned tube bundles. The RNG k-ɛ turbulence model of fluent is used to determine the optimum tube position in the circular fin that gives the highest thermal and hydraulic performances for both staggered and aligned arrangements. Then, experiments and numerical simulations were performed to examine the effects of bundle configurations, the Reynolds number (ranging from 5500 to 29,700) and the tube location inside the heat exchangers. A satisfactory qualitative and quantitative agreement was obtained between the numerical and experimental results. For both aligned and staggered heat exchangers, the thermal characteristics of the eccentric annular-finned tube are greater than that of the concentric ones. This gain is associated with reduction in pressure drop.

  10. Comparison of thermal and hydraulic performances of eccentric and concentric annular-fins of heat exchanger tubes (United States)

    Benmachiche, Abdelmoumène Hakim; Tahrour, Farouk; Aissaoui, Faris; Aksas, Mounir; Bougriou, Cherif


    The present study is an experimental and 3-D computational fluid dynamics. It is used to compare between the heat transfer characteristics and pressure drops of eccentric and concentric annular-finned tube bundles. The RNG k-ɛ turbulence model of fluent is used to determine the optimum tube position in the circular fin that gives the highest thermal and hydraulic performances for both staggered and aligned arrangements. Then, experiments and numerical simulations were performed to examine the effects of bundle configurations, the Reynolds number (ranging from 5500 to 29,700) and the tube location inside the heat exchangers. A satisfactory qualitative and quantitative agreement was obtained between the numerical and experimental results. For both aligned and staggered heat exchangers, the thermal characteristics of the eccentric annular-finned tube are greater than that of the concentric ones. This gain is associated with reduction in pressure drop.

  11. A self propelled drilling system for hard-rock, horizontal and coiled tube drilling

    Energy Technology Data Exchange (ETDEWEB)

    Biglin, D.; Wassell, M.


    Several advancements are needed to improve the efficiency and reliability of both hard rock drilling and extended reach drilling. This paper will present a Self Propelled Drilling System (SPDS) which can grip the borehole wall in order to provide a stable platform for the application of weight on bit (WOB) and resisting the reactive torque created by the downhole drilling motor, bit and formation interaction. The system will also dampen the damaging effects of drill string vibration. This tool employs two hydraulically activated anchors (front and rear) to grip the borehole wall, and a two-way thrust mandrel to apply both the drilling force to the bit, and a retraction force to pull the drill string into the hole. Forward drilling motion will commence by sequencing the anchor pistons and thrust mandrel to allow the tool to walk in a stepping motion. The SPDS has a microprocessor to control valve timing, sensing and communication functions. An optional Measurement While Drilling (MWD) interface can provide two-way communication of critical operating parameters such as hydraulic pressure and piston location. This information can then be telemetered to the surface, or used downhole to autonomously control system parameters such as anchor and thrust force or damping characteristics.

  12. Heat transfer enhancement and pressure drop analysis in a helically coiled tube using Al{sub 2}O{sub 3} / water nanofluid

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. C. Mukesh; Tamilarasan, R.; Nathan, S. Sendhil [University College of Engineering Pattukkottai, Rajamadam (India); Kumar, J. [Sasurie College of Engineering, Tiruppur (India); Suresh, S. [National Institute of Technology, Tiruchirappalli (India)


    In this experimental investigation, the heat transfer and pressure drop analysis of a shell and helically coiled tube heat exchanger by using Al{sub 2}O{sub 3} / water nanofluids have been carried out under turbulent flow condition. The Al{sub 2}O{sub 3} / water nanofluids of 0.1%, 0.4%, and 0.8% particle volume concentration have been prepared by using two step method. The tube side experimental Nusselt number of 0.1%, 0.4% and 0.8% nanofluids were found to be 28%, 36% and 56%, respectively higher than water. These enhancements are due to higher thermal conductivity of nanofluid, better fluid mixing and strong secondary flow formation in coiled tube. The pressure drop of 0.1%, 0.4% and 0.8% were found to be 4%, 6%, and 9%, respectively higher than water. The increase in pressure drop is due to increase in nanofluid viscosity while adding nanoparticles. The measurement of nanofluid thermal performance factor is found to be greater than unity. It is concluded that the Al{sub 2}O{sub 3} nanofluid can be applied as a coolant in helically coiled tube heat exchanger to enhance heat transfer with negligible pressure drop.

  13. 长水平段连续管钻塞过程的软件模拟应用∗%Software Simulation of Plug Drilling by Coiled Tubing in Long Horizontal Section

    Institute of Scientific and Technical Information of China (English)

    辛永安; 盖志亮; 吕维平; 朱峰; 费节高; 金志雄


    As long horizontal well multistage fracturing is still the main means of shale gas development, when the horizontal section length exceed 1 500 m, effectively coiled tubing operation and milling is one of the main challenges of the field operation�Software simulation is the key technology to guide the field staff to address the problem�Taking actual well operation as case study, the applications of software simulation in several key aspects have been introduced�Simulation results show that: ①hydraulic oscillator could extend the reach of coiled tubing;②using hydraulic oscillator, 3�75 kN WOB could be applied on the bridge plug at depth of 4 455 m, and the milling operation could be done by coiled tubing; ③the relationship between the surface weight difference and WOB could be used to precisely control WOB, helping successful milling operation; ④regression analysis showed that the friction coefficient of tripping down and up coiled tubing at the operating block were 0�26 and 0�23 respec⁃tively, and the simulation results and actual data matched well.%长水平井多级压裂依然是页岩气开发的主要手段,水平段长度超过1500 m以后,如何有效地实施连续管钻磨作业是现场施工的主要难题之一,软件模拟是指导现场人员解决这一难题的关键技术。结合现场施工的实际井例,介绍软件模拟在几个关键环节的应用。模拟分析结果表明:①使用水力振荡器可延长连续管在本井的作业深度;②使用水力振荡器可在4455 m处的桥塞施加3750 N以上的钻压,能用连续管完成该井的钻磨作业;③利用地面悬重差与钻压的关系可精确控制钻压,成功完成钻磨作业;④回归分析表明,该区块连续管下入和起出过程的摩擦因数分别为0�26和0�23的模拟计算结果与实际作业数据非常接近。研究结果对于长水平段连续管钻塞现场施工具有一定的参考作用。

  14. Development of the LG380/60 Coiled Tubing Unit(CTU)%LG380/60连续管作业机的研制

    Institute of Scientific and Technical Information of China (English)



    The LG380/60 coiled tubing unit (CTU) is developed specially for the severe natural environment and operating condi-tions based on the designed LG230 CTU. The CTU adopts the twin truck-mounted self-propelled scheme. It consists of the hydraulically lifted control room, sinking quickly replaceable CT reel, three hose reels, blowout prevention system, injector head and hydraulic gooseneck. The chassis of the overall unit has a strong cross-country capacity. The beam of the chassis with variable cross section is customized. So a sinking chassis design is adopted to increase the capacity of the CT reel. The hydraulic system which is of structural simplicity and high reliability can realize the linkage control of the injector head and CT reel. The control system has functions of human-computer interaction and CAN communication. In addition the unit is equipped with the wellhead anti-collision device to reduce the risk. It has such strengths as strong lifting capacity, large reel capacity, desirable transportability, and extensive applicability. The field application shows that the low gear of the unit reaches the maximum CT tripping speed of 25 m/min in operation. The lowering depth is 3 134 m. The operation and control of the equipment are normal,reaching the design standard.%针对国内油田复杂的作业环境及实际作业需求,在成功研制的LG230连续管作业机的基础上,开发了LG380/60大直径连续管作业机。该作业机主要包括可升降操作室、可升降油管滚筒、软管滚筒工作组、井口防喷装置、大提升力注入头以及动力鹅颈管等部件。该作业机底盘采用变截面大梁结构,油管滚筒能够下沉安装,满足滚筒大容量的要求;液压系统组成简单、可靠性高,提高了注入头与油管滚筒联动性;自动控制系统具有CAN通信和人机交互功能。同时,还配备井口防碰装置,降低作业风险。整机提升能力强,适应管径大,滚筒容

  15. Experimental Research and Numerical Simulation on Gas-Liquid Separation Performance at High Gas Void Fraction of Helically Coiled Tube Separator

    Directory of Open Access Journals (Sweden)

    Yongxue Zhang


    Full Text Available The industrial removal process of the light hydrocarbon and water from wet natural gas can be simulated in laboratory with the independently designed helically coiled tube gas-liquid separator. Experiment and numerical simulation are combined to analyze the influences of various inlet velocities and gas void fractions on the gas-liquid separation efficiency and pressure-drop between the inlet and outlet of the helically coiled tube. The results show that, at the inlet velocity of 4 m/s to 18 m/s and the gas void fraction of 88% to 97% for the gas-liquid mixture, the gas-liquid separation efficiency increases at the beginning and then decreases with increasing inlet velocity. Afterwards there is another increasing trend again. The gradient of pressure-drop increases slowly and then fast with the increasing inlet velocity. On the other hand, the gas-liquid separation efficiency first increases with the gas void fraction and then shows a decreasing trend while the pressure-drop keeps falling down with the gas void fraction increasing. Above all the optimal operating parameters of the helically coiled tube separator are inlet velocity of 13 m/s and gas void fraction of 93%, and the separation efficiency and pressure-drop are 95.2% and 0.3 MPa, respectively.

  16. Comparative Study of Shell and Helically-Coiled Tube Heat Exchangers with Various Dimple Arrangements in Condensers for Odor Control in a Pyrolysis System

    Directory of Open Access Journals (Sweden)

    Sun-Min Kim


    Full Text Available This study performed evaluations of the shell and helically-coiled tube heat exchangers with various dimple arrangements, that is, flat, inline, staggered, and bulged, at different Dean numbers (De and inlet temperatures of a hot channel. Conjugated heat transfer was analyzed to evaluate the heat transfer performance of the exchangers through temperature difference between the inlet and outlet, Nusselt number inside the coiled tube, and pressure drop of the coiled tube by using 3-D Reynolds-averaged Navier–Stokes (RANS equations with shear stress transport turbulence closure. A grid dependency test was performed to determine the optimal number of the grid system. The numerical results were validated using the experimental data, and showed good agreement. The inline and staggered arrangements show the highest temperature differences through all De. The staggered arrangement shows the best heat transfer performance, whereas the inline arrangement shows the second highest performance with all ranges of De and the hot channel’s inlet temperature. The inline and staggered arrangements show the highest pressure drop among all inlet temperatures of the hot channel.

  17. 螺旋管中二次流强度的数值研究%A Numerical Study of the Intensity of Secondary Flow in Helical Coiled Tube

    Institute of Scientific and Technical Information of China (English)

    郭小勇; 赵创要; 王良璧; 林志敏


    The intensity of secondary flow in helical coiled tube is studied by numerical method in the case of fully developed laminar flow. A dimensionless parameter which describes the intensity of secondary flow is defined in the present study,and it is named as the secondary intensity Reynolds number. The relationships between Dean number, friction factor,and the secondary flow intensity Reynolds number, the ration of the flow rate in helical coiled tube to the flow rate in straight tube are obtained. Our studies have found a perfect linear relation existing between Dean number and the secondary flow intensity Reynolds number. The linear relationship shows that the physical meaning of Dean number is a measurement of the secondary flow intensity in helical coiled tube.%对螺旋管中充分发展的层流状态下二次流强度进行了数值分析,定义了二次流强度的无量纲化参数——二次流强度雷诺数,得到了迪恩数与阻力系数、二次流强度雷诺数、流量比之间的关系.发现迪恩数与提出的二次流强度雷诺数具有良好的线性关系,这表明迪恩数的另一物理意义是螺旋管中二次流强度的度量.

  18. The Heat Exchanger Performance of Shell and Multi Tube Helical Coil as a Heater through the Utilization of a Diesel Machine’s Exhaust Gas

    Directory of Open Access Journals (Sweden)

    . Zainuddin


    Full Text Available A review on reutilization of heat waste from a diesel machine is absolutely important. This is because the exhaust gas potential of a Diesel machine keeps increasing and not much has been utilized by the industry. One of the techniques of reutilizing the heat waste in industry is by using a heat exchanger. The technique is also very useful for the environment because it can reduce air pollution caused by the exhaust gas of the diesel machine. The main purpose of the research is to find out the capability of shell and multi-tube helical coil HE as an air heater by utilizing the exhaust gas of the Diesel machine. The heat exchanger of shell and multi-tube helical coil  utilizes the exhaust thermal gas of the Diesel machine as the air heater already made. The apparatus has the following dimension: the shell length of 1.05 m, diameter 0.1524 m, tube length of 3.25 m with 20 coils, tube diameter of 0.011 m, coil diameter of 0.0508 m with 4 helical coils. The type of Diesel machine to use in the testing is 4FB1 Isuzu Diesel engine. The machine has the maximum machine power and rotation of 54 kW and 3,600 rpm. The performance testing of heat exchanger has been conducted in some variations of Diesel machine rotations of 1,500 rpm, 1,750 rpm, 2,000 rpm, 2,250 rpm and 2,500 rpm. The testing result shows a maximum effectiveness to happen at the machine rotation of 1,500 rpm. The maximum effectiveness to get is 67.8% and then it goes down drastically in accordance with the increase of air mass flow rate. The hot air temperature created is from 47.1°C to 52.3°C so that it can be used for the purpose of drying up the unhulled rice.

  19. Experimental investigation on thermo-physical properties and overall performance of MWCNT-water nanofluid flow inside horizontal coiled wire inserted tubes (United States)

    Akhavan-Behabadi, M. A.; Shahidi, Mohamad; Aligoodarz, M. R.; Ghazvini, Mohammad


    The present study is aimed to measure and analyze the thermo-physical properties and overall performance of MWCNT-water nanofluid in turbulent flow regimes under constant heat flux conditions inside horizontal coiled wire inserted tubes. For this purpose, stable MWCNT-water nanofluids with different particle weight fractions of 0.05, 0.1 and 0.2 % as well as deionized water were utilized as the working fluids. It was found that the existing theoretical models could not predict the thermo-physical property values accurately, especially in case of specific heat capacity. Therefore, new empirical correlations are presented based on the obtained experimental results to predict such properties for the nanofluids. In addition, the overall performance of heat transfer techniques considered in this paper was evaluated based on thermal performance factor. The results revealed that thermal performance factor for all cases are greater than unity which indicate that simultaneous usage of nanofluids and wire coil inserts enhances the heat transfer without huge penalty in pumping power. Hence, using nanofluids as the working fluid in combination with coiled wire inserted tubes can be considered for some practical applications.

  20. Predictive 1-D thermal-hydraulic analysis of the prototype HTS current leads for the ITER correction coils (United States)

    Heller, R.; Bauer, P.; Savoldi, L.; Zanino, R.; Zappatore, A.


    We present an analysis of the prototype high-temperature superconducting (HTS) current leads (CLs) for the ITER correction coils, which will operate at 10 kA. A copper heat exchanger (HX) of the meander-flow type is included in the CL design and covers the temperature range between room temperature and 65 K, whereas the HTS module, where Bi-2223 stacked tapes are positioned on the outer surface of a stainless steel hollow cylindrical support, covers the temperature range between 65 K and 4.5 K. The HX is cooled by gaseous helium entering at 50 K, whereas the HTS module is cooled by conduction from the cold end of the CL. We use the CURLEAD code, developed some years ago and now supplemented by a new set of correlations for the helium friction factor and heat transfer coefficient in the HX, recently derived using Computational Fluid Dynamics. Our analysis is aimed first of all at a "blind" design-like prediction of the CL performance, for both steady state and pulsed operation. In particular, the helium mass flow rate needed to guarantee the target temperature at the HX-HTS interface, the temperature profile, and the pressure drop across the HX will be computed. The predictive capabilities of the CURLEAD model are then assessed by comparison of the simulation results with experimental data obtained in the test of the prototype correction coil CLs at ASIPP, whose results were considered only after the simulations were performed.

  1. Thermal-hydraulic modeling of the steady-state operating conditions of a fire-tube boiler

    Directory of Open Access Journals (Sweden)

    Rahmani Ahmed


    Full Text Available In this work, we are interested to simulate the thermal-hydraulic behavior of three-pass type fire-tube boiler. The plant is designed to produce 4.5 tons per hour of saturated steam at 8 bar destined principally for heating applications. A calculation program is developed in order to simulate the boiler operation under several steady-state operating conditions. This program is based upon heat transfer laws between hot gases and the fire-tube internal walls. In the boiler combustion chamber, the heat transfer has been simulated using the well-stirred furnace model. In the convection section, heat balance has been carried out to estimate the heat exchanges between the hot gases and the tube banks. The obtained results are compared to the steady-state operating data of the considered plant. A comparative analysis shows that the calculation results are in good agreement with the boiler operating data. Furthermore, a sensitivity study has been carried out to assess the effects of input parameters, namely the fuel flow rate, air excess, ambient temperature, and operating pressure, upon the boiler thermal performances.

  2. The prediction and fuzzy optimal selection of the coiled tubing fatigue life%连续油管疲劳寿命的预测及模糊优选

    Institute of Scientific and Technical Information of China (English)

    王优强; 张嗣伟


    连续油管的失效主要是弯曲疲劳失效。疲劳寿命是衡量其可靠性的关键指标。而目前连续油管疲劳寿命预测理论还很不成熟。现文利用等效应力建立了连续油管的疲劳寿命估计模型;并根据理论模型,综合考虑连续油管使用的实际条件和有关因素,对连续油管的疲劳寿命预测模型进行了模糊处理,得到了连续油管的模糊可靠性寿命,并用现场实例进行了验证说明。%The bending fatigue is the main failure of the coiled tubing, so the fatigue life becomes the key index for appraising the coiled tubing's reliability. The coiled tubing fatigue belongs to over-low cycle fatigue at multi-axial stress state. The prediction theory of this field is far more complete. The coiled tubing fatigue study method was outlined in this paper. Based on the equivalent stress formula of the coiled tubing, the life prediction model was put forward and a semi-empiric formula for prediction was obtained. Based on the theoretical model, considering the real working conditions of the coiled tubing, the prediction life was optimal selected and the fuzzy reliability life of the coiled tubing was obtained. In the end, the results were verified by experimental data and oilfield application.

  3. Thermal-hydraulic instabilities in pressure tube graphite - moderated boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tsiklauri, G.; Schmitt, B.


    Thermally induced two-phase instabilities in non-uniformly heated boiling channels in RBMK-1000 reactor have been analyzed using RELAP5/MOD3 code. The RELAP5 model of a RBMK-1000 reactor was developed to investigate low flow in a distribution group header (DGH) supplying 44 fuel pressure tubes. The model was evaluated against experimental data. The results of the calculations indicate that the period of oscillation for the high power tube varied from 3.1s to 2.6s, over the power range of 2.0 MW to 3.0 MW, respectively. The amplitude of the flow oscillation for the high powered tube varied from +100% to -150% of the tube average flow. Reverse flow did not occur in the lower power tubes. The amplitude of oscillation in the subcooled region at the inlet to the fuel region is higher than in the saturated region at the outlet. In the upper fuel region and outlet connectors the flow oscillations are dissipated. The threshold of flow instability for the high powered tubes of a RBMK reactor is compared to Japanese data and appears to be in good agreement.

  4. Application of the mechanical cutting technology for coiled tubing in Yong 25-11 well%连续油管机械切割技术在永25-11井的应用

    Institute of Scientific and Technical Information of China (English)

    刘海明; 叶红; 田明; 吴国洲; 肖宝军


    The methods,such as back-off on neutral point and explosive cutting,are commonly used to deal withФ73 mm stuck tubing inФ139.7 mm casing.The back-off technique has disadvantages of low efficiency,high labor intensity, and high workover cost.The explosive cutting,being easily affected by downhole deviation,and the dirt and scale adhere to tubing inwall,and the cutter tool can not run into the predetermined position,the effective cutting can not be implemented. To solve the problems,it was carried out the improvement of cutting technology of general mechanical internal cutter.By applying coiled tubing to transmit general machinery cutter tools,using hydraulic motor as power tools,the stuck tubing was successfully cut in Yong25-11 well,which can provide a new way for processing the stuck tubing.%处理139.7 mm套管内遇卡Ф73 mm油管的常用方法有中和点倒扣法和爆炸切割法,倒扣解卡方式效率低、劳动强度大、修井费用高;而爆炸切割法易受到井斜及油管内壁脏物、油污影响,切割弹往往下不到预定位置,无法实现有效切割。为解决现有工艺问题,对普通机械内割刀切割技术进行研究,改进传统机械内割刀切割技术,应用连续油管传输普通机械内割刀工具,采用液压马达作为动力工具,现场应用,成功切割永25-11井遇卡油管,为处理遇卡油管积累经验,提供新思路。

  5. Computer Simulation of Turbulent Flow through a Hydraulic Turbine Draft Tube

    Institute of Scientific and Technical Information of China (English)

    HU Ying; CHENG Heming; WANG Quanlong; YU Zhikun


    Based on the Navier-Stokes equations and the standard k-ε turbulence model, this paper presents the derivation of the governing equations for the turbulent flow field in a draft tube. The mathematical model for the turbulent flow through a draft tube is set up when the boundary conditions, including the inlet boundary conditions, the outlet boundary conditions and the wall boundary conditions, have been implemented. The governing equations are formulated in a discrete form on a staggered grid system by the finite volume method. The second-order central difference approximation and hybrid scheme are used for discretization. The computation and analysis on internal flow through a draft tube have been carried out by using the simplec algorithm and cfx-tasc flow software so as to obtain the simulated flow fields. The calculation results at the design operating condition for the draft tube are presented in this paper. Thereby, an effective method for simulating the internal flow field in a draft tube has been explored.

  6. Nonlinear dynamic analysis and robust controller design for Francis hydraulic turbine regulating system with a straight-tube surge tank (United States)

    Liang, Ji; Yuan, Xiaohui; Yuan, Yanbin; Chen, Zhihuan; Li, Yuanzheng


    The safety and stability of hydraulic turbine regulating system (HTRS) in hydropower plants become increasingly important since the rapid development and the broad application of hydro energy technology. In this paper, a novel mathematical model of Francis hydraulic turbine regulating system with a straight-tube surge tank based on a few state-space equations is introduced to study the dynamic behaviors of the HTRS system, where the existence of possible unstable oscillations of this model is studied extensively and presented in the forms of the bifurcation diagram, time waveform plot, phase trajectories, and power spectrum. To eliminate these undesirable behaviors, a specified fuzzy sliding mode controller is designed. In this hybrid controller, the sliding mode control law makes full use of the proposed model to guarantee the robust control in the presence of system uncertainties, while the fuzzy system is applied to approximate the proper gains of the switching control in sliding mode technique to reduce the chattering effect, and particle swarm optimization is developed to search the optimal gains of the controller. Numerical simulations are presented to verify the effectiveness of the designed controller, and the results show that the performances of the nonlinear HTRS system assisted with the proposed controller is much better than that with the commonly used optimal PID controller.

  7. 连续油管电缆安装系统的开发%Development of a Coiled Tubing Cable Installation System

    Institute of Scientific and Technical Information of China (English)



    A system has been developed which installs and de-installs an electric wireline cable in Coiled Tubing (CT) while the CT is still on the reel. This paper discuss the need for such a system, the theory used to develop this system, the various concepts considered, the system that was developed and test installation cases. The working pressure of this cable installation system is 51.72 MPa(7 500 psi). This cable installation system reduces the cost of a cable installation significantly compared with previous installation methods, and can fully meet the requiremetns of installation cable in long coiled tubing.%开发出了一个可以缠绕在卷筒上的连续油管内注入、注出电力电缆安装系统。介绍了该安装系统的油田需求、开发此系统所用理论、该安装系统的各部分装置以及应用案例。该电缆安装系统工作压力为51.72 MPa(7500 psi),与以前的安装方法相比,大大降低了电缆安装成本,完全满足在较长连续油管内安装电缆的需求。

  8. Mapping sea urchins tube feet proteome--a unique hydraulic mechano-sensory adhesive organ. (United States)

    Santos, Romana; Barreto, Angela; Franco, Catarina; Coelho, Ana Varela


    Marine organisms secrete adhesives for substrate attachment that to be effective require functional assembly underwater and displacement of water, ions, and weakly bound polyions that are ubiquitous in seawater. Therefore, understanding the characteristics of these protein/carbohydrate-based marine adhesives is imperative to decipher marine adhesion and also, to accelerate the development of new biomimetic underwater adhesives and anti-fouling agents. The present study, aims at mapping the proteome of the sea urchin Paracentrotus lividus adhesive organs using a combination of complementary protein separation techniques (1-D-nanoLC and 2-DE), databases and search algorithms. This strategy resulted in the identification of 328 non-redundant proteins, constituting the first comprehensive list of sea urchin tube feet proteins. Given the known importance of phosphorylation and glycosylation in marine adhesion, the 2DE proteome was re-analyzed with specific fluorescent stains for these two PTMs, resulting in the identification of 69 non-redundant proteins. The obtained results demonstrate that tube feet are unique mechano-sensory adhesive organs and highlight putative adhesive proteins, that although requiring further confirmation, constitute a step forward in the quest to decipher sea urchins temporary adhesion.

  9. Experimental Study of Heat Transfer Enhancement in a Heated Tube Caused by Wire-Coil and Rings


    Saeed Vahidifar; M. Kahrom


    This study investigates heat transfer characteristics and the pressure drop of a horizontal double pipe heat exchanger with wire coil inserts. The amplification of convection heat transfer coefficient in the heat exchanger reduces the weight, size and cost of heat exchanger. One way of augmenting the heat transfer is to disturb the boundary layer. When an object is placed in a boundary layer, it affects the flow structure and alters the velocity and thermal profiles. The change is affected by...

  10. Experimental and Dynamic Study of the Piston Rod Lateral Friction for the Twin-Tube Hydraulic Shock Absorber

    Directory of Open Access Journals (Sweden)

    Yanqing Liu


    Full Text Available In this paper, dynamic loads acting on a twin-tube hydraulic shock absorber are derived out both in wheel and axle planes by modeling mechanically car rear suspensions, and internal and external forces that yield lateral surface damage and wear-out of the piston rod for the absorber are analyzed according to bench and real road test measures. From viewpoint of vehicle system dynamics and experiment, such key factors as road unevenness, very high car speed and severe shock induced vibrations are investigated, by which stochastic bending moments and dramatically increasing shock loading are introduced directly to the piston rod. From viewpoint of the whole car assembly, on the other hand, due to hardly perfectly placements of the piston rods in their positions between the car suspension and body, unacceptable manufacturing quality of the body may cause additional dynamic forces on the piston rod. Significant results obtained by theoretical and experimental analysis of lateral frictions of the piston rod are presented systematically for improving design of the shock absorber.

  11. Development and testing of the cooling coil cleaning end effector

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K.I.; Mullen, O.D.; Powell, M.R.; Daly, D.S.; Engel, D.W.


    The Retrieval Process Development and Enhancement (KPD{ampersand}E) program has developed and tested an end effector to support the waste retrieval mission at the Idaho National Engineering and Environmental Laboratory (INEEL). The end effector was developed specifically to remove a sticky waste material from the cooling coils in the High Level Liquid Waste (HLLW) tank, and to vacuum up a sediment layer that has settled beneath the cooling coils. An extensive testing program was conducted in the hydraulic test bed (HTB) at the Pacific Northwest National Laboratory (PNNL) to evaluate the performance of the end effector under simulated in-tank conditions. A mock up of the cooling coils was installed in the test bed tank, and simulated waste materials were included to represent the sticky waste on the tubes and the particulate waste settled beneath them. The testing program focused on assessing long-duration mining strategies for cleaning the cooling coils and removing the particulate waste forms. The report describes the results of the end effector testing program at PNNL. Section 2 describes the physical characteristics of the HLLW tanks, including the layout of the cooling coils, and it also describes what is known of the waste forms in the tanks. Section 3 describes the cleaning and retrieval strategy that was used in developing the end effector design. Section 4 describes the cooling coil mockup in the hydraulic test bed. Section 5 discusses the rationale used in selecting the simulants for the tarry waste and particulate waste forms. Section 6 describes the tests that were performed to evaluate cleaning of the cooling coils and retrieval of the particulate simulant. Section 7 summarizes the cleaning and retrieval tests, assesses the relative importance of cleaning the cooling coils and retrieving the particulate waste, and suggests modifications that would simplify the end effector design.

  12. Hydraulic demand characteristics of self-supported C-IV-N and K-I-N I&E fuel elements in a zirconium C-Reactor tube

    Energy Technology Data Exchange (ETDEWEB)

    Waters, E.D.


    This report discusses the isothermal hydraulic demand characteristics were determined by laboratory experiment for full charges of self-supported I&E fuel elements in a zirconium process tube. Pressure drop, flow rate data, and the calculations of annulus-to-hole flow ratio are presented. For self-supported fuel elements, pressure drop does not vary with temperature as much as it dies for non-self-supported furl elements.

  13. 国内外连续管标准简介%Brief Introduction for Coiled Tubing (CT) Standard at Home and Abroad

    Institute of Scientific and Technical Information of China (English)

    付宏强; 郜飞


    介绍了目前国内外现行的连续管制造及使用方面的相关标准,包括API RP 5C7:1996, API SPEC 5LCP:2006, API SPEC 5ST:2010, API RP 16ST:2009, API RP 5C8草案,加拿大石油和天然气工业推荐作法(IRP)第21册(2010)连续油管作业草案以及我国SY/T 6698, SY/T 6700—2014, SY/T 6895—2012, Q/SY 1082—2010和Q/SY 1512—2012等。重点讨论了API RP 5C7, API SPEC 5LCP和API SPEC 5ST的背景、主要内容以及使用过程中的问题。通过研究国内外连续管标准,以期对国内连续管科研、生产以及相关标准使用者提供帮助。%In this article, it briefly introduced the current standards of CT manufacture and use at home and abroad, including API RP 5C7:1996,API SPEC 5LCP:2006,API SPEC 5ST:2010,API RP 16ST:2009 , API RP 5C8 draft, Coiled Tubing Operations—An Industry Recommended Practice(IRP) for the Canadian Oil and Gas Industry Volume 21—2010, as well as China’s some standards, such as SY/T 6698, SY/T 6700—2014, SY/T 6895—2012, Q/SY 1082—2010 and Q/SY 1512—2012 etc. The background, main content and the problems occurred in the use procedure of API RP 5C7,API SPEC 5LCP and API SPEC 5ST were detailedly introduced. By studying CT standards at home and abroad, wishes it can provide help for scientific research, production and the related standard user of domestic coiled tubing.

  14. Field application. Selective stimulation of reservoirs or perforated intervals with use of coiled tubing equipped with real-time data communication system in combination with straddle packer assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Oberascher, R.; Breimer, G. [GDF SUEZ E and P Deutschland GmbH, Lingen (Germany); Jonge, R.M. de [Baker Hughes (Netherlands)


    In two German gas wells a decline in production and wellhead pressures had been observed. Production logging data obtained by PLT surveys were evaluated, which showed that certain intervals within the reservoir section did not contribute, or showed a restricted contribution to the overall gas production. The restricted contribution was suspected to be caused by near-wellbore damage. To restore or enhance the production of the perforated intervals an acid treatment was considered in these wells in order to remove skin damage. To restore or enhance the production of the wells, an acid treatment of the perforated intervals was designed. For obtaining the required selective placement of the acid across the zones of interest, the use of coiled tubing (CT) in combination with a resettable straddle packer assembly was selected. The accuracy of the setting depth of the straddle packer was a critical issue for the execution of the well intervention operations. In order to obtain the required depth accuracy, the CT string was equipped with an intelligent CT communication system, which transfers real-time downhole data to surface. For the first time, a reservoir stimulation project was executed by combining CT equipped with a real-time data communication system (TeleCoil) and the Inflatable Straddle Acidizing Packer (ISAP) assembly. Inside the CT an encapsulated monoconductor cable was installed to transmit real-time data from the CT Bottom Hole Assembly (BHA) to surface. The BHA consists of a Casing Collar Locator (CCL) and downhole pressure and temperature gauges. Due to the protective jacket of the monoconductor cable, there are no restrictions in the use of different fluids in combination with the system. Information provided by the CCL monitoring tool ensures accurate depth correlations, whereas differential pressure measurements from the down-hole pressure gauges provide positive information about the setting and sealing conditions of the straddle packer assembly. The

  15. Thermal-hydraulic analysis of Tcs measurement in conductor 1A of the ITER Central Solenoid Model Coil using the M&M code (United States)

    Savoldi, L.; Zanino, R.


    We present a first study of current sharing temperature ( Tcs) tests performed over the last few months in the Central Solenoid Model Coil (CSMC) experiment at JAERI, Naka, Japan. The CSMC is a superconducting magnet, layer-wound two-in-hand using 18 layers of Nb 3Sn two-channel cable-in-conduit conductors, which very recently reached a record 13 T at 46 kA DC operation. Here we apply the multi-conductor Mithrandir (M&M) code to a selected set of shots with different transport currents (30, 40, and 46 kA) and we concentrate on conductor 1A on the innermost (i.e., with highest magnetic field) layer. In the test, resistive heaters located upstream of layers 1 and 2 are used to progressively and quasi-steadily increase the supercritical helium inlet temperature in the coil. The Tcs is reached when a threshold of 0.5 mV resistive voltage is measured across the coil, after which the heaters are turned off and the coil current is dumped. Computed results are compared with experimental data, showing good agreement in the inlet and outlet temperatures of all four heated conductors, both as Tcs is reached (30, 40 kA) and during the whole hour-long transient from nominal conditions to Tcs reached (46 kA).

  16. Field synergy theory based convective heat transfer in an enhanced tube with multiple spiral coils%基于场协同的多叶螺旋线圈强化管内对流换热研究

    Institute of Scientific and Technical Information of China (English)

    金光; 王正文; 田瑞; 于晔


    To solve the prominent problem of convective heat transfer enhancement in solar collector tubes, experimental investigation on enhancing heat transfer between tube well and medium by copper inserts with double multiple spiral coils and three multiple spiral coils was conducted,by using field synergy theory.The results show that,the convective field synergy number Fc increases sharply with the synergy angle cosine cosβin the multiple spiral coils tubes.Moreover,the velocity field and temperature field also show a good cooperativity.The working fluid with three spiral coils has the best comprehensive heat trans-fer performance,under the condition with constant heat flow (240

  17. α/β coiled coils. (United States)

    Hartmann, Marcus D; Mendler, Claudia T; Bassler, Jens; Karamichali, Ioanna; Ridderbusch, Oswin; Lupas, Andrei N; Hernandez Alvarez, Birte


    Coiled coils are the best-understood protein fold, as their backbone structure can uniquely be described by parametric equations. This level of understanding has allowed their manipulation in unprecedented detail. They do not seem a likely source of surprises, yet we describe here the unexpected formation of a new type of fiber by the simple insertion of two or six residues into the underlying heptad repeat of a parallel, trimeric coiled coil. These insertions strain the supercoil to the breaking point, causing the local formation of short β-strands, which move the path of the chain by 120° around the trimer axis. The result is an α/β coiled coil, which retains only one backbone hydrogen bond per repeat unit from the parent coiled coil. Our results show that a substantially novel backbone structure is possible within the allowed regions of the Ramachandran space with only minor mutations to a known fold.

  18. 基于ANSYS的某型飞机液压管路应力测试%Stress Test of Hydraulic Tubing in Aircraft Based on ANSYS

    Institute of Scientific and Technical Information of China (English)

    史杰; 胡文


    In order to minimize the quantity of strain gauges and improve the accuracy in the stress test of hydraulic tubing.Stress analysis based on ANSYS before the test is proposed in this paper. The CATIA mockups of the hydraulic tubing are imported to ANSYS and the stress analysis is carried out by Workbench. The locations of sensors are optimized according to the calculated stress distribution. The data measured in the test is used to optimize the finite element model. The quantity of strain gauges used in the stress test can be minimized and accuracy can be improved in the field test by implementing the proposed method.%为了优化液压管路应力测试,减少测点数量,提高测试准确度,提出在应力测试前用ANSYS对管路进行受力分析,试验后用试验数据进行模型修正。通过对管路进行三维建模,将模型导入ANSYS,分析管路振动时应力分布,根据受力情况确定传感器的安装位置。后将测得的数据修正模型参数,通过模型计算最大应力。通过ANSYS优化应力测试,减少了传感器布置的数量,提高了测试的准确度。

  19. 连续油管酸洗在WAA-1井应用效果评价%Application effect evaluation of coiled tubing acid washing in Well WAA-1

    Institute of Scientific and Technical Information of China (English)

    袁辉; 杨柳


    Considering the practical production figures and block mechanism analysis of Well WAA-1, the coiled tubing acid washing measure for removing pollution is proposed, and then the operation background, project design, operation process as well as effect evaluation of coiled tubing acid washing treatment are illustrated in this paper. By adopting the way of tripping the coiled tubing and controlling the lift speed and injecting rate, the acidizing fluid can be distributed equally in the horizontal interval. While wash head impulse vibrate, it will produce pressure agitation to screen pipe to wash deeply and remove damage.%针对南海西部油田WAA-1井的实际生产情况,在堵塞机理分析基础上提出了适合该井解堵的连续油管酸洗措施,对连续油管酸洗作业实施背景、方案设计、施工过程及效果进行了阐述.通过对水平井段采取连续油管拖动以及控制连续油管的上提速度和注入排量来实现水平井段均匀布酸;冲洗头通过脉冲震荡,在管柱内产生压力激动作用于筛管,达到深度清洗、解除污染的目的.

  20. 连续管线管在青海油田地面集输管线的应用%Coiled Tubing Application in Qinghai Oil Field Ground Gathering Pipeline

    Institute of Scientific and Technical Information of China (English)

    魏强; 王琪; 秦跃平; 张阿军


    针对目前油田地面集输管线采用无缝管单根焊接方式造成的焊口多、空气污染严重、劳动强度高等问题,使用连续管线管替代无缝管进行地面集输管线项目试验.介绍了试验用连续管线管的拉伸性能,以及试验现场布管、焊接、焊后水压试验、防腐层补伤等工艺过程.试验结果表明,与无缝管相比,连续管线管用作地面集输管线具有施工效率高、安全性及质量可靠等优点.%Aiming at some problems occurred in adopting seamless steel pipe to conduct each single pipe welding in oil field ground gathering pipeline, such as many welded junction, serious air pollution, high labour intensity and so on. It adopted coiled tubing to replace seamless steel pipe to carry out ground gathering pipeline trial project, introduced the tensile performance of coiled tubing used in experiment, layout pipe in field, welding, hydrostatic test after welding, coating repaire and other process. The test results indicated that compared with seamless steel pipe, coiled tubing used for ground gathering pipeline is with high construction efficiency, high safety, reliable quality and etc.

  1. A Condition for a Translation Quiver to Be a Coil

    Institute of Scientific and Technical Information of China (English)

    Bin ZHU; Zong Yi HU


    We single out a class of translation quivers and prove combinatorially that the translationquivers in this class are coils. These coils form a class of special coils. They are easier to visualize, butstill show all the strange behaviour of general coils, and contain quasi-stable tubes as special examples.

  2. Numerical simulation of heat transfer enhancement by strip-coil-baffles in tube-bundle for a tube-shell heat exchanger%螺旋折流片强化管壳式换热器内管束传热数值模拟

    Institute of Scientific and Technical Information of China (English)

    陈亚平; 梅娜; 施明恒


    介绍了一种用于强化管壳式换热器壳侧传热和支撑管束的螺旋折流片新型结构,该结构是对换热器管子相间地套上螺旋折流片以产生旋涡流动.研究模型是在正方形布置的4个管子中的2个对角管子套上螺旋折流片后形成的通道,利用FLUENT软件对该上述四管通道模型的流场和温度分布情况进行了数值模拟;分析了四管通道模型中螺旋折流片对强化传热和流动阻力随雷诺数的变化关系的影响.算例结果显示该新型结构可比相同尺寸的光管通道中的情形传热系数提高约40%~55%,同时也将伴随较高的流动阻力.可以相信螺旋折流片式换热器将会在许多工业领域有良好的应用前景.%A novel strip-coil-baffle structure used to enhance heat transfer and support the tube bundle for a tube-shell heat exchanger is proposed.The new structure can sleeve the tubes in bundle alternatively to create a vortex flow in a heat exchanger.The numerical simulation on the flow and heat transfer characteristics for this new structure heat exchanger is conducted.The computational domain consists of two strip-coil sleeved tubes and two bare tubes oppositely placed at each corner of a square.The velocity and temperature fields in such strip-coil-baffled channel are simulated using FLUENT software.The effects of the strip-coil-baffles on heat transfer enhancement and flow resistance in relation to the Reynolds number are analyzed.The results show that this new structure bundle can enhance the heat transfer coefficient up to a range of 40% to 55% in comparison with a bare tube bundle;meanwhile,higher flow resistance is also accompanied.It is believe that the strip-coil-baffled heat exchanger should have promising applications in many industry fields.

  3. 内置螺旋线圈换热管换热分析及数值模拟%Thermal Analysis and Numerical Simulation for Heat Exchange Tube with Wire Coil Internally Installed

    Institute of Scientific and Technical Information of China (English)

    徐志明; 刘枫; 朱宏娟


    概述了螺旋线圈装置的强化传热原理。通过建立光管和内置螺旋线圈换热管的三维流动模型,利用Fluent软件以黏性流体变压器油为研究对象对换热管内速度场、温度场、压力场以及换热过程进行了数值模拟。对比两种模拟结果表明,内置螺旋线圈的换热管内流体流动比较复杂,流体在近壁面处呈明显的螺旋流动,流体的径向速度和切向速度都有提高。总的来说,换热管内布置了螺旋线圈以后流体在其中的流动比在光管内有更强的湍流度,且能够打破流体的速度边界层,增强了流体的对流换热,极大提高了传热系数。%The strengthening heat transfer principle of the wire coil equipment is summarized. The three-di-mensional simulation of the plain tube and heat exchange tube with wire coil has been performed using the FLUENT software. The velocity,temperature and pressure distribution as well as thermal process is obtained. The results showed that the flow characteristics in the heat exchange tube with wire coil was more complex than that in the plain one and the fluid near the wall presented apparent spiral flow. Meanwhile,the radial and tan-gential velocity both increased obviously. In general,the turbulence intensity was strengthened in the heat ex-change tube with wire coil. Moreover,the velocity boundary layer was broken,and the heat convection was en-hanced. So,the heat coefficient was improved tremendously.

  4. Dryout occurrence in a helically coiled steam generator for nuclear power application

    Directory of Open Access Journals (Sweden)

    Santini L.


    Full Text Available Dryout phenomena have been experimentally investigated in a helically coiled steam generator tube. The experiences carried out in the present work are part of a wide experimental program devoted to the study of a GEN III+ innovative nuclear power plant [1].The experimental facility consists in an electrically heated AISI 316L stainless steel coiled tube. The tube is 32 meters long, 12.53 mm of inner diameter, with a coil diameter of 1m and a pitch of 0.79 m, resulting in a total height of the steam generator of 8 meters. The thermo-hydraulics conditions for dryout investigations covered a spectrum of mass fluxes between 199 and 810 kg/m2s, the pressures ranges from 10.7 to 60.7 bar, heat fluxes between 43.6 to 209.3 kW/m2.Very high first qualities dryout, between 0.72 and 0.92, were found in the range of explored conditions, comparison of our results with literature available correlations shows the difficulty in predicting high qualities dryout in helical coils., immediately following the heading. The text should be set to 1.15 line spacing. The abstract should be centred across the page, indented 15 mm from the left and right page margins and justified. It should not normally exceed 200 words.

  5. Effect of Spacing between Coils in Pulsed Remote Field Eddy Current Testing for Ferromagnetic Tube%铁磁性管道脉冲远场涡流检测中线圈间距影响

    Institute of Scientific and Technical Information of China (English)

    喻星星; 付跃文; 蔚道祥; 徐进军; 江茫


    依据分析检测原理,对铁磁性管道脉冲远场涡流检测时激励线圈与接收线圈之间的间距对缺陷检测结果的影响进行试验研究. 给出了试验所得的检测线圈衰减曲线、检测灵敏度曲线以及感应电压剖面曲线. 对材质为J55,尺寸为?73. 8 mm × 5. 7 mm的油管进行检测试验,结果显示当线圈间距由60 mm逐步增加到210 mm时,检测线圈感应电压衰减曲线发生明显变化,缺陷检测灵敏度|Δu|/u由0. 35逐步增加到143,最高灵敏度对应的接收时间点前移2 511μs;但线圈间距增加到240 mm时,灵敏度|Δu|/u降为73. 试验结果表明:线圈间距为210 mm时,其检测灵敏度最佳. 该研究对脉冲远场涡流检测探头的设计具有参考价值.%Based on analysis of the principle, experiments are designed and performed to study the effect of the spacing between exciting coil and receiving coil on the detection sensitivity in pulsed remote field eddy current testing for ferromagnetic tube. Voltage decay curves of the receiving coil, sensitivity-time curves and time slices of voltage are given in the experiments. J55 oil well tube sample with a gauge of ?73. 8 mm × 5. 7 mm is inspected and the experimental results show that the increase of the spacing between the exciting coil and the receiving coil will cause several changes. When the spacing varies from 60 mm to 210 mm, voltage descending curves of the receiving coil have significant changes, detection sensitivity |Δu|/u varies from 0. 35 to 143 and the peak of detection sensitivity moves forward 2 511 μs, but detection sensitivity |Δu|/u falls to 73 when coil spacing increases to 240 mm. The experimental results show that the detection sensitivity is best when the distance reaches 210 mm. The results are of help to the design of pulsed remote field eddy current probe.

  6. 内置螺旋弹簧换热管内流动与传热三维数值模拟%3D numerical simulation of fluid flow and heat transfer in heat exchange tube with helical coil inserts

    Institute of Scientific and Technical Information of China (English)

    徐建民; 彭坤; 胡小霞; 黄伟; 余海燕


    In order to investigate single-tube heat transfer enhancement principles of heat exchange tube with helical coil inserts,the flow and heat transfer characteristics were simulated using Fluent software.The effects of spring application on flow field,pressure drop and heat transfer performance were investigated.The pitch of coil spring was set as 2 mm,4 mm,5 mm.The effects of spring pitch on the heat transfer enhancement performance were analyzed.The numerical results showed that the fluid in tube with helical coil inserts presents the helical flow,the cutting speed and the radial velocity of flow near the wall had been improved to some extent.Thus the fluid was mixed completely,boundary layer was disturbed fully and heat was exchanged thoroughly.And the temperature difference between inlet and outlet increased as well,with the maximum increase of 0.9 ℃.Under the conditions of the same Reynolds number,the Nusselt number in tube with helical coil inserts was higher than plain tube,but pressure drop and friction factor increased obviously.With the reduced spring pitch,heat transfer was enhanced and friction factor was increased.%为研究内置螺旋弹簧换热管单管强化传热原理,采用Fluent软件对内置螺旋弹簧换热管内流体流动与传热特性进行数值模拟,考察了弹簧的应用对管内流场、压降和换热性能的影响,并分别取螺旋弹簧节距p分别为2 mm、4 mm、5 mm初步研究了弹簧的节距对强化传热效果的影响。模拟结果显示:弹簧管内流体呈螺旋流动状态,管壁附近流体切向速度和径向速度有一定程度的提高,从而加剧了管内流体的混合及边界层的扰动,充分换热,弹簧管进出口温度差较光管有所增加,最高增加了0.9℃;相同雷诺数条件下,内置螺旋弹簧换热管Nu数均高于光管,而压降和阻力系数相比光管有明显增加,随着弹簧节距减小换热增强而摩擦阻力系数增加。

  7. 异向流斜管沉淀池水力特性研究%Study on Hydraulic Characteristic of the Tube Settler

    Institute of Scientific and Technical Information of China (English)

    崔晓峰; 于永海


    异向流斜管沉淀池在现有的文献上没有类似的可供计算水头损失的公式和系数,在设计时取值困难。以计算流体力学软件FLUENT为平台,采用标准k-ε湍流模型与SIMPLEC算法,采用速度进口与自由出流边界条件以及按无应力边界条件处理的自由水面对异向流斜管沉淀池中的水流运动进行数值模拟计算,对水流流态、断面流速分布与压强分布等水力特性进行了研究。基于数值模拟计算得到了沉淀池的水头损失,与实际工程测量结果吻合较好,找到了一种沉淀池水头损失的计算方法。%Little information could be found about formulas and coefficients for calculating the head loss of tube settler ,which makes it difficult for the designers to get the values .Herein ,using computational fluid dynamics software FLUENT as the platform ,the hydraulic characteristics involving in water flow regime ,velocity distribution and pressure distribution of flow were studied via the standard k-εturbulence model with the SIMPLEC algorithm and numerical simulation on the flow in tube settler based on the as‐sumptions that the free water surface remains flat as a stress-free plane of symmetry and the velocity distribution and free outflow are prescribed on inlet and outlet boundaries respectively .The head loss of the tube settler was obtained from the numerical simulation , which was in good agreement with the measurement for actual engineering .

  8. Numerical modeling of the thermal-hydraulic behavior of wire-on-tube condensers operating with HFC-134a using homogeneous equilibrium model: evaluation of some void fraction correlations (United States)

    Guzella, Matheus dos Santos; Cabezas-Gómez, Luben; da Silva, José Antônio; Maia, Cristiana Brasil; Hanriot, Sérgio de Morais


    This study presents a numerical evaluation of the influence of some void fraction correlations over the thermal-hydraulic behavior of wire-on-tube condensers operating with HFC-134a. The numerical model is based on finite volume method considering the homogeneous equilibrium model. Empirical correlations are applied to provide closure relations. Results show that the choice of void fraction correlation influences the refrigerant charge and pressure drop calculations, while no influences the heat transfer rate.

  9. 多孔管子管板液压胀接性能影响的分析%Hydraulic Expansion Infection Analysis of Multi-hole Tube to Tubesheet Joint

    Institute of Scientific and Technical Information of China (English)

    和广庆; 杨圆明; 李翠翠


    对单孔和多孔的管子管板的液压胀接进行理论计算和有限元分析,计算结果表明,在相同和不同胀接参数下,多孔胀接后和单孔胀接的残余接触压力有明显差异;选取不同布孔的管进行拉脱力试验,试验结果表明,多孔胀接后,管子拉脱力数值与孔区布置具有相关性。模拟分析和试验结果对胀接评定试样的制作、多孔胀接性能的评价提供了参考。%The residual contact pressure of single hole and multi-hole are different for tube to tubesheet hydraulic expansion by calculation and element analysis.The result shown that tube pull out force value have relationship with tube position in multi-hole tubesheet by hydraulic expansion test.It provide a refer-ence for hydraulic expansion qualification mockup manufacture and expansion evaluation of multi-hole tubesheet joint.

  10. Hydraulic hammer drilling technology: Developments and capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Melamed, Y.; Kiselev, A. [SKB Geotechnika, Moscow (Russian Federation); Gelfgat, M. [Aquatic Co., Moscow (Russian Federation); Dreesen, D.; Blacic, J. [Los Alamos National Lab., NM (United States). GeoEngineering Group


    Percussion drilling technology was considered many years ago as one of the best approaches for hard rock drilling. Unfortunately the efficiency of most hydraulic hammer (HH) designs was very low (8% maximum), so they were successfully used in shallow boreholes only. Thirty years of research and field drilling experience with HH application in Former Soviet Union (FSU) countries led to the development of a new generation of HH designs with a proven efficiency of 40%. That advance achieved good operational results in hard rock at depths up to 2,000 m and more. The most recent research has shown that there are opportunities to increase HH efficiency up to 70%. This paper presents HH basic design principles and operational features. The advantages of HH technology for coiled-tubing drilling is shown on the basis of test results recently conducted in the US.

  11. Numerical Simulation on Cuttings Carrying Regularity for Horizontal Wells Drilled with Coiled Tubing%连续油管钻水平井岩屑运移规律数值模拟

    Institute of Scientific and Technical Information of China (English)

    宋先知; 李根生; 王梦抒; 易灿; 苏新亮


    During the course of drilling horizontal well with coiled tubing ,cuttings easily settle on the low side of borehole to form cuttings bed due to action of gravity .The features in the coiled tubing drilling , such as small pumping rate and no rotation in drill string etc ,have made hole cleaning efficiency very low . In view of this problem ,considering the interphase slip velocity and particle flow influence based on the Eu-lerian coordinate system ,a mixture drift model of cuttings carrying in a horizontal slim-hole was estab-lished ,w hich uses Realize κεturbulence model and the SIM PLEC algorithm for numerical calculation ,and studied the effects on eccentric annular cuttings migration by flow rate ,annular eccentricity ,cuttings size , mud viscosity and hole angle ,to determine distribution pattern of cuttings velocity and concentration in an-nular space under all conditions .The study shows that cuttings carrying efficiency will increase in coiled tubing drilling horizontal wells with the change of several factors ,i .e .the increase of flow rate of drilling fluid ,the decrease of annular eccentricity ,decrease of cuttings size and well inclination ,and the increase of mud viscosity .%连续油管钻水平井过程中,井底岩屑在重力作用下容易沉积在井壁下侧,形成岩屑床;连续油管又受到排量小、钻柱无法旋转等因素限制,造成井眼净化效率较低。针对这一问题,在欧拉坐标系下考虑相间滑移速度和颗粒流的影响,建立了微小井眼水平井岩屑运移的混合物漂移模型,采用Realize κε湍流模式及SIMPLEC算法进行数值计算,研究了钻井液排量、环空偏心度、岩屑直径、井斜角和钻井液黏度等参数对偏心环空岩屑运移的影响,得到了各种条件下环空岩屑速度和浓度的分布规律。研究表明:随着钻井液排量增大、环空偏心度减小、岩屑直径减小、井斜角减小及钻井液黏度提高,连续

  12. Coil measurement data acquisition and curing press control system for SSC dipole magnet coils

    Energy Technology Data Exchange (ETDEWEB)

    Dickey, C.E.


    A coil matching program, similar in theory to the methods used to match Tevatron coils, is being developed at Fermilab. Modulus of elasticity and absolute coil size will be determined at 18-inch intervals along the coils while in the coil curing press immediately following the curing process. A data acquisition system is under construction to automatically acquire and manage the large quantities of data that result. Data files will be transferred to Fermilab's VAX Cluster for long-term storage and actual coil matching. The data acquisition system will also provide the control algorithm for the curing press hydraulic system. A description of the SSC Curing Press Data Acquisition and Controls System will be reported. 20 figs.

  13. Research on hydraulic forming loading paths of aluminium alloy anti-collision energy-absorbing tube%铝合金防碰撞吸能管液压成形加载路径研究

    Institute of Scientific and Technical Information of China (English)

    汪奇超; 雷君相; 骆协海


    According to the need of the double diameter tube part forming, the axial feeding compensation and hydraulic pressure loading control to the hydraulic bulging process of aluminium alloy 6061 tube were put forward. By numerical simulation method and the analysis software ABAQUS 6. 10 , aluminum alloy 6061 tube hydraulic bulging loading paths were studied. Taking eventual thickness distribution of the forming parts and forming failure control as the basis, the axial feeding and liquid pressure loading path on forming quality was analyzed. Research shows that when the axle feeding rate is 27 mm and hydraulic pressure is 85 Mpa, the max thinning rate of the anti-collision energy-absorb ing tube is 20. 5%, the quality of parts is nice and the forming of S shape transition region in a pair of mould can be fin ished.%针对防碰撞吸能管成形需要,提出了对铝合金6061圆管液压胀形过程的轴向进给补偿-液压力加载路径控制过程.通过数值模拟方法,采用分析软件ABAQUS 6.10对铝合金6061管材液压胀形的加载路径进行了研究.以成形件不发生起皱、破裂两种失效方式以及最终成形壁厚分布为依据,分析了不同轴向进给和液压力加载路径对成形件质量的影响.研究表明,采用轴向进给量为27mm,液压力为85 MPa的加载路径,获得吸能管的最大减薄率为20.5%,成形质量较好,并在一副模具中同时完成S型过渡区域的成形.

  14. Coiled-Coil Design: Updated and Upgraded. (United States)

    Woolfson, Derek N


    α-Helical coiled coils are ubiquitous protein-folding and protein-interaction domains in which two or more α-helical chains come together to form bundles. Through a combination of bioinformatics analysis of many thousands of natural coiled-coil sequences and structures, plus empirical protein engineering and design studies, there is now a deep understanding of the sequence-to-structure relationships for this class of protein architecture. This has led to considerable success in rational design and what might be termed in biro de novo design of simple coiled coils, which include homo- and hetero-meric parallel dimers, trimers and tetramers. In turn, these provide a toolkit for directing the assembly of both natural proteins and more complex designs in protein engineering, materials science and synthetic biology. Moving on, the increased and improved use of computational design is allowing access to coiled-coil structures that are rare or even not observed in nature, for example α-helical barrels, which comprise five or more α-helices and have central channels into which different functions may be ported. This chapter reviews all of these advances, outlining improvements in our knowledge of the fundamentals of coiled-coil folding and assembly, and highlighting new coiled coil-based materials and applications that this new understanding is opening up. Despite considerable progress, however, challenges remain in coiled-coil design, and the next decade promises to be as productive and exciting as the last.

  15. Development of a 1D thermal-hydraulic analysis code for once-through steam generator in SMRs using straight tubes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngjae; Kim, Iljin; Kim, Hyungdae [Kyung Hee University, Yongin (Korea, Republic of)


    Diverse integral/small-modular reactors (SMRs) have been developed. Once-through steam generator (OTSG) which generates superheated steam without steam separator and dryer was used in the SMRs to reduce volume of steam generator. It would be possible to design a new steam generator with best estimate thermal-hydraulic codes such as RELAP and MARS. However, it is not convenience to use the general purpose thermal-hydraulic analysis code to design a specific component of nuclear power plants. A widely used simulation tool for thermal-hydraulic analysis of drum-type steam generators is ATHOS, which allows 3D analysis. On the other hand, a simple 1D thermal-hydraulic analysis code might be accurate enough for the conceptual design of OTSG. In this study, thermal-hydraulic analysis code for conceptual design of OTSG was developed using 1D homogeneous equilibrium model (HEM). A benchmark calculation was also conducted to verify and validate the prediction accuracy of the developed code by comparing with the analysis results with MARS. Finally, conceptual design of OTSG was conducted by the developed code. A simple 1D thermal-hydraulic analysis code was developed for the purpose of conceptual design OTSG for SMRs. A set of benchmark calculations was conducted to verify and validate the analysis accuracy of the developed code by comparing results obtained with a best-estimated thermal-hydraulic analysis code, MARS. Finally, analysis of two different OTSG design concepts with superheating and recirculation was demonstrated using the developed code.

  16. Designing Stable Antiparallel Coiled Coil Dimers

    Institute of Scientific and Technical Information of China (English)

    曾宪纲; 周海梦


    The history of antiparallel coiled coil dimer design is briefly reviewed and the main principles governing the successful designs are explained. They include analysis of the inter-subunit electrostatic repulsion for determining partners for dimerization and of the buried polar interaction for determining the relative orientation of the partners. A theory is proposed to explain the lack of antiparallel coiled coil homodimers in nature.

  17. Coiled Tubing Fishing Process Application Problems and Measures in Horizontal Well%连续油管打捞工艺在水平井的应用问题及措施

    Institute of Scientific and Technical Information of China (English)

    吴永兴; 朱培珂; 熊伟


    coiled tubing in horizontal well is used for fishing operation,the method for judging whether get the fish by the changing of hang weight and the raising of instantaneous pump pres-sure in horizontal section is infeasible.13-meter-long down hole tool fell into the horizontal sec-tion in the combination process of pumping bridge and perforation in well X2-2,one shale gas.The cause of the failure in the three previous fishing operations is analyzed.Lastly,the fishing was a-chieved successfully by improving the method for aligning the fishing tool and fish,employing screw motor and changing fishing socket.%在水平井中采用连续油管进行打捞作业,不能通过悬重变化和泵压的瞬时升高来判定是否抓住落鱼,打捞的难度大。以某页岩气区块 X2-2井为例,在泵送桥塞与射孔联作的过程中,13 m 长的工具串落入水平井的水平段内。分析了前3次打捞失败的原因。通过改进打捞工具与落井工具的对中方法,增加螺杆马达,更换打捞筒,第4次打捞获得成功。

  18. Magnetomotive forming for precision sizing and joining of large-diameter tubes (United States)

    Bennight, J. D.; Schwinghamer, R. J.


    Portable electromagnetic coil enables high precision expansion or constriction and joining of large diameter metal tubes. A nonconducting mandrel or forming die is used on the side of the tubes wall opposite the coil. The coil is insulated from the tube by a thin plastic sleeve.

  19. Coil Welding Aid (United States)

    Wiesenbach, W. T.; Clark, M. C.


    Positioner holds coil inside cylinder during tack welding. Welding aid spaces turns of coil inside cylinder and applies contact pressure while coil is tack-welded to cylinder. Device facilitates fabrication of heat exchangers and other structures by eliminating hand-positioning and clamping of individual coil turns.

  20. N80-1油管在水力压裂作业过程中开裂原因分析%Cause analysis of N80-1 tubing fracture during hydraulic fracturing operation

    Institute of Scientific and Technical Information of China (English)

    蔡亚西; 赵映辉; 陈先富; 刘涛; 孙建安


    N80-1油管在进行油层水力压裂作业过程中发生脆性开裂,采用断口宏观分析、断口微观分析、金相检验等方法,对其开裂原因进行了系统的分析。结果表明,失效油管理化性能均符合API SPEC 5 CT—2011标准规定值。该油管内壁存在一条深0.2~0.8 mm的缺陷是导致该油管在压裂过程中发生开裂的主要原因。经对失效油管实物以及金相组织形态观察,初步认定缺陷为芯棒划伤。另外,N80-1油管的断裂韧性KIC值较低亦加速该油管发生脆性开裂。改选用断裂韧性KIC值高的油管进行压裂作业将会降低压裂过程中油管发生脆性开裂的概率。%Brittle fracture occurs to N80-1 tubing during hydraulic fracturing operation at oil reservoir . Adopting the methods of macro analysis on fracture , micro analysis on fracture , metallographic test , etc, systematic analysis on the reasons to fracture was performed .The test results showed that properties of the failure tubing conform to API SPEC 5CT-2011.The results indicated that the primary reason of the fracture was the scratch of 0.2-0.8 mm existed in the inner wall of tubing , which happened due to mandrel .In addition, low fracture toughness K IC of N80-1 tubing also enhanced the brittle fracture to this tubing .When the tubing with higher fracture toughness KIC was selected , it would reduce the probability of brittle fracture to tubing during fracturing process .

  1. Starfire poloidal coil systems

    Energy Technology Data Exchange (ETDEWEB)

    Evans, K. Jr.; Kim, S.H.; Turner, L.R.; Wang, S.T.


    The poloidal coils for STARFIRE consists of three systems: (1) equilibrium field (EF) coils; (2) ohmic heating (OH) coils; and (3) correction field (CF) coils. The EF coils are superconducting and lie outside the toroidal field (TF) coils. These coils provide the bulk of the equilibrium field necessary to keep the plasma positioned in the vacuum chamber with the desired cross sectional shape and pressure and current distributions. Having these coils outside of the TF coils requires that they have a larger stored energy and larger currents but eases the assembly, maintenance, and reliability of the coils. The STARFIRE OH system is relatively small compared to tokamaks in which the current is entirely ohmically driven. It is designed to provide sufficient flux in the early startup to raise the plasma current to the point (1 to 2 MA) where the rf current drive can take over.

  2. 大规模水力压裂过程中超级13Cr 油管冲蚀预测模型建立%Erosion prediction model for super 13Cr tubing during large-scale hydraulic fracturing

    Institute of Scientific and Technical Information of China (English)

    王治国; 杨向同; 窦益华; 罗生俊


    大规模水力压裂过程中,高速流动的携砂压裂液会对油管内壁造成冲蚀,导致油管壁厚减薄,承载能力降低。为了准确预测大规模水力压裂过程中油管的冲蚀速率,利用自制的冲蚀实验装置,采用0.2%胍胶压裂液与40/70目石英砂混合形成的液固两相流体,实验研究了冲蚀角度和流体流速对超级13Cr 油管冲蚀速率的影响,建立了适用于大排量高砂比压裂的冲蚀预测模型,运用新模型,可以比较准确地预测注入总液量和排量对超级13Cr 油管壁厚损失的影响。算例分析结果表明,大规模压裂过程中,超级13Cr油管的壁厚损失范围为0.2~1.3 mm,应该控制排量和砂含量,防止油管壁由于冲蚀而导致安全性降低。%Sand-carrying fracturing fluid flowing at high-speed during large-scale hydraulic fracturing can erode inner walls of tubing, resulting in thinning of tubing sidewall and reduction of tubing loading capacity. To predict erosion rate of tubing during large-scale hydraulic fracturing accurately, the impacts of erosion angle and fluid flow speed on erosion rate of the super 13Cr tubing have been tested with an erosion testing unit made by ourselves, solid-liquid dual-phase fluid made of 0.2 % guar fracturing fluid and quartz sand of 40/70 meshes, and an erosion prediction model for fracturing with large discharging rate and high sand proportion has been constructed. By using the newly constructed model, impact of total fluid volume and discharging rate on wall thickness loss of the super 13Cr tubing can be predicted accurately. Case study results show the super 13Cr tubing may lose sidewall thicknesses of 0.2-1.3 mm during large-scale fracturing. Therefore, cares shall be taken to control discharging rate and sand content properly to maintain necessary safety performance of tubing sidewalls in case of erosion.


    Directory of Open Access Journals (Sweden)



    Full Text Available This numerical research is introducing the concept of helical cone coils and their enhanced heat transfer characteristics compared to the ordinary helical coils. Helical and spiral coils are known to have better heat and mass transfer than straight tubes, which is attributed to the generation of a vortex at the helical coil known as Dean Vortex. The Dean number which is a dimensionless number used to describe the Dean vortex is a function of Reynolds number and the square root of the curvature ratio, so varying the curvature ratio for the same coil would vary the Dean number. Two scenarios were adopted to study the effect of changing the taper angle (curvature ratio on the heat transfer characteristics of the coil; the commercial software FLUENT was used in the investigation. It was found that Nusselt number increased with increasing the taper angle. A MATLAB code was built based on empirical correlation of Manlapaz and Churchill for ordinary helical coils to calculate the Nusselt number at each coil turn, and then calculate the average Nusselt number for the entire coil turns, the CFD simulation results were found acceptable when compared with the MATLAB results.

  4. Mechanical-hydraulic Co-simulation Analysis on Righting Manipulator Pushing Oil Tube Process%扶正机械手推送油管的机液联合仿真分析

    Institute of Scientific and Technical Information of China (English)

    肖易萍; 常玉连; 李晋; 仲继彬; 李伟; 殷兆国; 燕涛


    During the working process of righting manipulator pushing oil tube system, the righting manipulator push oil tube to the desired area which is the key to ensure smooth movement and emission of oil tube, in order to ensure the oil tube not detachment from the righting manipulator and the oil tube not interfere with slope,a suitable swimming velocity of travelling block must be found. The integration of mechanism and fluid virtual prototype of righting manipulator push oil tube system was established by the use of SolidWorks 3D software and ADAMS software. the simulations and analysis of righting manipulator pushing oil pipe process were completed under different velocities of travelling block, the most reasonable and ideal velocity of the travelling block was obtained,which was upward with 0.2 m/s,the hydraulic cylinder force curve and connecting blocks vice-reaction curve under this velocity were also obtained,the foundation for the analysis and designation of actual system was laid by these curves.%扶正机械手将油管顺利推送到所需区域是保证油管顺利移运、排放的关键.为找到合适游动滑车运动速度,保证油管与扶正机械手不发生脱离,以及油管与斜坡不发生干涉,利用三维软件SolidWorks和ADAMS软件建立了该系统的机液一体化虚拟样机.在游动滑车的不同速度下,对扶正机械手推送油管过程进行了仿真分析,得出游动滑车以0.2 m/s速度向上运动是最合理的,并得到了该速度下的液压缸作用力变化曲线,及连接座固定副反作用力变化曲线,为实际系统的分析与设计奠定了基础.

  5. Protective link for superconducting coil (United States)

    Umans, Stephen D.


    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  6. Pulse tube cooler having 1/4 wavelength resonator tube instead of reservoir (United States)

    Gedeon, David R. (Inventor)


    An improved pulse tube cooler having a resonator tube connected in place of a compliance volume or reservoir. The resonator tube has a length substantially equal to an integer multiple of 1/4 wavelength of an acoustic wave in the working gas within the resonator tube at its operating frequency, temperature and pressure. Preferably, the resonator tube is formed integrally with the inertance tube as a single, integral tube with a length approximately 1/2 of that wavelength. Also preferably, the integral tube is spaced outwardly from and coiled around the connection of the regenerator to the pulse tube at a cold region of the cooler and the turns of the coil are thermally bonded together to improve heat conduction through the coil.

  7. Effect of tube size on electromagnetic tube bulging

    Institute of Scientific and Technical Information of China (English)


    The commercial finite code ANSYS was employed for the simulation of the electromagnetic tube bulging process. The finite element model and boundary conditions were thoroughly discussed. ANSYS/EMAG was used to model the time varying electromagnetic field in order to obtain the radial and axial magnetic pressure acting on the tube. The magnetic pressure was then used as boundary conditions to model the high velocity deformation of various length tube with ANSYS/LSDYNA. The time space distribution of magnetic pressure on various length tubes was presented. Effect of tube size on the distribution of radial magnetic pressure and axial magnetic pressure and high velocity deformation were discussed. According to the radial magnetic pressure ratio of tube end to tube center and corresponding dimensionless length ratio of tube to coil, the free electromagnetic tube bulging was studied in classification. The calculated results show good agreements with practice.

  8. Hydraulic structures

    CERN Document Server

    Chen, Sheng-Hong


    This book discusses in detail the planning, design, construction and management of hydraulic structures, covering dams, spillways, tunnels, cut slopes, sluices, water intake and measuring works, ship locks and lifts, as well as fish ways. Particular attention is paid to considerations concerning the environment, hydrology, geology and materials etc. in the planning and design of hydraulic projects. It also considers the type selection, profile configuration, stress/stability calibration and engineering countermeasures, flood releasing arrangements and scouring protection, operation and maintenance etc. for a variety of specific hydraulic structures. The book is primarily intended for engineers, undergraduate and graduate students in the field of civil and hydraulic engineering who are faced with the challenges of extending our understanding of hydraulic structures ranging from traditional to groundbreaking, as well as designing, constructing and managing safe, durable hydraulic structures that are economical ...

  9. HYDRAULIC SERVO (United States)

    Wiegand, D.E.


    A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

  10. Dual coil ignition system

    Energy Technology Data Exchange (ETDEWEB)

    Huberts, Garlan J.; Qu, Qiuping; Czekala, Michael Damian


    A dual coil ignition system is provided. The dual coil ignition system includes a first inductive ignition coil including a first primary winding and a first secondary winding, and a second inductive ignition coil including a second primary winding and a second secondary winding, the second secondary winding connected in series to the first secondary winding. The dual coil ignition system further includes a diode network including a first diode and a second diode connected between the first secondary winding and the second secondary winding.

  11. A current limiter with superconducting coil for magnetic field shielding (United States)

    Kaiho, K.; Yamaguchi, H.; Arai, K.; Umeda, M.; Yamaguchi, M.; Kataoka, T.


    The magnetic shield type superconducting fault current limiter have been built and successfully tested in ABB corporate research and so on. The device is essentially a transformer in which the secondary winding is the superconducting tube. However, due to the large AC losses and brittleness of the superconducting bulk tube, they have not yet entered market. A current limiter with superconducting coil for the magnetic field shielding is considered. By using the superconducting coil made by the multi-filamentary high Tc superconductor instead of the superconducting bulk tube, the AC losses can be reduced due to the reduced superconductor thickness and the brittleness of the bulk tube can be avoidable. This paper presents a preliminary consideration of the magnetic shield type superconducting fault current limiter with superconducting coil as secondary winding and their AC losses in comparison to that of superconducting bulk in 50 Hz operation.

  12. Theoretical signal-to-noise ratio of a slotted surface coil for magnetic resonance imaging

    CERN Document Server

    Ocegueda, K; Solis, S E; Rodriguez, A O


    The analytical expression for the signal-to-noise ratio of a slotted surface coil with an arbitrary number of slots was derived using the quasi-static approach. This surface coil based on the vane-type magnetron tube. To study the coil perfomance, the theoretical signal-to-noise ratio predictions of this coil design were computed using a different number of slots. Results were also compared with theoretical results obtained for a circular coil with similar dimensions. It can be appreciated that slotted surface coil performance improves as the number of coils increases and, outperformed the circular-shaped coil. This makes it a good candidate for other MRI applications involving coil array techniques.

  13. Bioaerosol deposition on an air-conditioning cooling coil (United States)

    Wu, Yan; Chen, Ailu; Luhung, Irvan; Gall, Elliott T.; Cao, Qingliang; Chang, Victor Wei-Chung; Nazaroff, William W.


    This study is concerned with the role of a fin-and-tube heat exchanger in modifying microbial indoor air quality. Specifically, depositional losses of ambient bioaerosols and particles onto dry (not cooled) and wet (cool) coil surfaces were measured for different airspeeds passing through the test coil. Total, bacterial and fungal DNA concentrations in condensate water produced by a wet coil were also quantified by means of fluorescent dsDNA-binding dye and qPCR assays. Results revealed that the deposition of bioaerosols and total particles is substantial on coil surfaces, especially when wet and cool. The average deposition fraction was 0.14 for total DNA, 0.18 for bacterial DNA and 0.22 for fungal DNA on the dry coil, increasing to 0.51 for total DNA, 0.50 for bacterial DNA and 0.68 for fungal DNA on the wet coil. Overall, as expected, deposition fractions increased with increasing particle size and increasing airspeed. Deposited DNA was removed from the cooling coil surfaces through the flow of condensing water at a rate comparable to the rate of direct deposition from air. A downward trend of bacterial and fungal DNA measured in condensate water over time provides suggestive evidence of biological growth on heat exchangers during nonoperational times of a ventilation system. This investigation provides new information about bioaerosol deposition onto a conventional fin-and-tube cooling coil, a potentially important factor influencing indoor exposure to microbial aerosols in air-conditioned buildings.

  14. Basic hydraulics

    CERN Document Server

    Smith, P D


    BASIC Hydraulics aims to help students both to become proficient in the BASIC programming language by actually using the language in an important field of engineering and to use computing as a means of mastering the subject of hydraulics. The book begins with a summary of the technique of computing in BASIC together with comments and listing of the main commands and statements. Subsequent chapters introduce the fundamental concepts and appropriate governing equations. Topics covered include principles of fluid mechanics; flow in pipes, pipe networks and open channels; hydraulic machinery;

  15. Analysis of clinical value of hydraulic pressure method in diagnosis of fallobian tube patency%输卵管通液测压诊断输卵管通畅性的临床价值分析

    Institute of Scientific and Technical Information of China (English)

    王本立; 郝天然; 张学鸿; 徐自全


    Objective To evaluate the clinical value of hydraulic pressure method in diagnosis of fallobian tube patency. Methods Summarize and analyze the hydrotubation diagnosis and hysterosal-pingography (HSG) data of 158 patients with infertility diseases. Use SJ - 1 fallobian tube hydraulic pressure diagnostic and therapeutic instrument to cany out hydrotubation and HSG diagnosis and compare the results of each diagnosis. The results of hydrotubation include patency, incomplete patency and tubal nowhere. The results of HSG diagnosis include normal, incomplete jam and jam. Then analyze the accuracy of the two methods in diagnosis of tubal patency and tubal diseases and conduct x2 examination. Results Using the hydrotubation method, among the 158 cases, we have found 100 cases of patency, 36 cases of incomplete patency and 22 cases of tubal nowhere. Using the HSG method, we have found 66 cases of normal, 7 cases of incomplete jam and 8 cases of jam in regard of light tubal diseases. In regard of serious tubal diseases and using the HSG method, we have found 39 cases of normal, 12 cases of incomplete jam and 18 cases of jam.x2 examination showed that the two methods differ significantly in diagnosis. Conclustions The hydraulic pressure method may cause many errors in diagnosis, for it is unable to distinguish the part, nature and degree of diseases. Thus it doesnt have much clinical vaulue and is not suitable in diagnosis.%目的 评价输卵管通液测压诊断输卵管通畅性的临床价值.方法 总结分析158例不孕症患者通液诊断和子宫输卵管造影( hysterosalpingography,HSG)资料,应用SJ -1宫腔输卵管注液测压诊疗仪分别进行通液诊断、HSG诊断,对比分析每例通液诊断结果与相应HSG诊断结果,通液诊断结果分通畅、不全通畅、不通,HSG相应诊断正常、不全阻塞、阻塞,分别评价两种检查方法诊断输卵管通畅性及输卵管病变的准确性,进行X2检验.结果 158例通液诊断通畅100

  16. Optimum Location of Tube Blank in Electromagnetic Bulging

    Institute of Scientific and Technical Information of China (English)


    Using analytical method, this paper gets the mutual inductance between coil and workpiece in tube blank electromagnetic bulging. According to this, we obtain the optimum locations of tube blank with different length of coil and workpiece. There is a good agreement between results calculated and the experimental data.

  17. Coil system for plasmoid thruster (United States)

    Eskridge, Richard H. (Inventor); Lee, Michael H. (Inventor); Martin, Adam K. (Inventor); Fimognari, Peter J. (Inventor)


    A coil system for a plasmoid thruster includes a bias coil, a drive coil and field coils. The bias and drive coils are interleaved with one another as they are helically wound about a conical region. A first field coil defines a first passage at one end of the conical region, and is connected in series with the bias coil. A second field coil defines a second passage at an opposing end of the conical region, and is connected in series with the bias coil.

  18. Hydraulic Structures (United States)

    Department of Homeland Security — This table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the FIRM, channels containing the...

  19. Liquid rope coiling

    NARCIS (Netherlands)

    N.M. Ribe; M. Habibi; D. Bonn


    A thin stream or rope of viscous fluid falling from a sufficient height onto a surface forms a steadily rotating helical coil. Tabletop laboratory experiments in combination with a numerical model for slender liquid ropes reveal that finite-amplitude coiling can occur in four distinct regimes (visco

  20. Optimal Bitter Coil Solenoid

    CERN Document Server

    Kobelev, V


    Bitter coil is an electromagnet used for the generation of exceptionally strong magnetic fields. The upper bound of magnet flux density is restricted by several factors. One principal restriction is the high stresses due to Lorentz forces in the coil. The Lorentz forces generate the distributed body force, which acts as the pressure of magnetic field. The common radial thickness profile of the Bitter coil is constant. In this paper the possibility of optimization by means of non-constant radial thickness profile of the Bitter coil is studied. The close form expression for optimal thickness profile is obtained. Both designs are compared and the considerable improvement of magnetic flux density is demonstrated. Moreover, the optimal design improves the shape of cooling channels. Namely, the highest cross-section of cooling channel is at the most thermally loaded inner surface of the coil.

  1. Development and experimental validation of a computational model for a helically coiled steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Colorado, D.; Hernandez, J.A. [Centro de Investigacion en Ingenieria y Ciencia Aplicadas (CIICAp), Universidad Autonoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos (Mexico); Papini, D.; Santini, L.; Ricotti, M.E. [Department of Energy, CeSNEF-Nuclear Engineering Division, Politecnico di, Milano, Via La Masa, 34, 20156, Milan (Italy)


    A computational model is developed to describe the thermo-fluid-dynamic behaviour of a helically coiled steam generator device working with water and widely adopted in the nuclear industry. The discretized governing equations are coupled using an implicit step by step method. The mathematical model includes: a subcooled liquid region, a two-phase flow region, and a superheated vapour region (according to the once-through nature of the heat exchanger). All the flow variables (enthalpies, temperatures, pressures, vapour qualities, velocities, heat fluxes, etc.), together with the thermo-physical properties, are evaluated at each point of the grid in which the domain is discretized. A full-scale experimental investigation carried out at SIET thermal-hydraulics labs in Piacenza (Italy), and aimed at characterizing the fluid-dynamic behaviour of two-phase flows in helically coiled tubes, is referenced in the present paper. Two-phase pressure drops data reduction allowed optimizing a suitable form of the friction factor multiplier required by momentum balance equation. Comparisons of the numerical simulations with a wide range of two-phase pressure drops measurements (experiments conducted both in diabatic and adiabatic conditions) are shown in order to validate the proposed model. (authors)

  2. A Micro Saddle Coil with Switchable Sensitivity for Local High-Resolution Imaging of Luminal Tissue


    Tetsuji Dohi; Kousuke Murashige


    This paper reports on a micro saddle coil for local high-resolution magnetic resonance imaging (MRI) fabricated by embedding a flexible coil pattern into a polydimethyilsiloxane (PDMS) tube. We can change the sensitivity of the micro coil by deforming the shape of the coil from a saddle-shaped mode to a planar-shaped mode. The inductance, the resistance, and the Q-factor of the coil in the saddle-shaped mode were 2.45 μH, 3.31 Ω, and 39.9, respectively. Those of the planar-shaped mode were 3....

  3. Commercial applications for COIL (United States)

    Solomon, Wayne C.; Carroll, David L.; King, D. M.; Fockler, L. A.; Stromberg, D. S.; Sexauer, M.; Milmoe, A.; Sentman, Lee H.


    The chemical oxygen-iodine laser (COIL) is a high power, fiber deliverable tool, which can be used for a number of different industrial applications. COIL is of particular interest because of its short fiber deliverable wavelength, high scaleable continuous wave power, and excellent material interaction properties. In past research the University of Illinois at Urbana-Champaign identified and decommissioning and decontamination (DD) of nuclear facilities as a primary focus for COIL technology. DD will be a major challenge in the coming decades. The use of a robotically driven fiber delivered cutting/ablation tool in contaminated areas promises to lower risks to workers for the DD mission. Further, the high cutting speed of COIL will significantly reduce the time required to cut contaminated equipment, reducing costs. The high power of COIL will permit the dismantling of thick stacks of piping and equipment as well as reactor vessels. COIL is very promising for the removal of material from contaminated surfaces, perhaps to depths thicker than an inch. Laser cutting and ablation minimizes dust and fumes, which reduces the required number of high efficiency particulate accumulator filters, thus reducing costly waste disposal. Other potential industrial applications for COIL are shipbuilding, automotive manufacturing, heavy machinery manufacturing, tasks requiring underwater cutting or welding, and there appear to be very promising applications for high powers lasers in the oil industry.

  4. Investigation of a twisted-tube type shell-and-tube heat exchanger


    Danielsen, Sven Olaf


    This master thesis investigates twisted tube type shell-and-tube heat exchangers with emphasis on thermal-hydraulic characteristics, fouling and vibration properties. An extensive literature study has been carried out in order to map all published research reports written on the topic. The mapping of performed research shows that the available information is limited.Mathematical correlations for twisted tube thermal-hydraulic characteristics are extracted from the research reports found in th...

  5. Magnetically Damped Furnace Bitter Magnet Coil 1 (United States)

    Bird, M. D.


    A magnet has been built by the National High Magnetic Field Laboratory for NASA on a cost reimbursement contract. The magnet is intended to demonstrate the technology and feasibility of building a magnet for space based crystal growth. A Bitter magnet (named after Francis Bitter, its inventor) was built consisting of four split coils electrically in series and hydraulically in parallel. The coils are housed in a steel vessel to reduce the fringe field and provide some on-axis field enhancement. The steel was nickel plated and Teflon coated to minimize interaction with the water cooling system. The magnet provides 0.14 T in a 184 mm bore with 3 kW of power.

  6. Study of the Process of Mixing, Temperature, and Small Signal Gain in the Active Medium of Supersonic COIL With Advanced Nozzle Bank and DC Discharge Method of O2(1 Delta) Production in a Vortex Tube (United States)


    laser”. Kvantovaya Electronica (Moscow) 537-543, (1989). 6.2. Mikheyev P.A., Shepelenko A.A., Kupryayev N.V., Voronov A.I. Exited oxygen in for powerful industrial lasers.DC glow discharge was investigated as means to produce gaseous medium with high concentration of singlet this case. It’s necessary to develop the scaleable ejector nozzle bank for real industrial COIL with small mixing space scale and to weaken “choke

  7. Numerical discretization analysis of a HTR steam generator model for the thermal-hydraulics code trace

    Directory of Open Access Journals (Sweden)

    Esch Markus


    Full Text Available For future high temperature reactor projects, e. g., for electricity production or nuclear process heat applications, the steam generator is a crucial component. A typical design is a helical coil steam generator consisting of several tubes connected in parallel forming cylinders of different diameters. This type of steam generator was a significant component used at the thorium high temperature reactor. In the work presented the temperature profile is being analyzed by the nodal thermal hydraulics code TRACE for the thorium high temperature reactor steam generator. The influence of the nodalization is being investigated within the scope of this study and compared to experimental results from the past. The results of the standard TRACE code are compared to results using a modified Nusselt number for the primary side. The implemented heat transfer correlation was developed within the past German HTR program. This study shows that both TRACE versions are stable and provides a discussion of the nodalization requirements.

  8. A periodic table of coiled-coil protein structures. (United States)

    Moutevelis, Efrosini; Woolfson, Derek N


    Coiled coils are protein structure domains with two or more alpha-helices packed together via interlacing of side chains known as knob-into-hole packing. We analysed and classified a large set of coiled-coil structures using a combination of automated and manual methods. This led to a systematic classification that we termed a "periodic table of coiled coils," which we have made available at In this table, coiled-coil assemblies are arranged in columns with increasing numbers of alpha-helices and in rows of increased complexity. The table provides a framework for understanding possibilities in and limits on coiled-coil structures and a basis for future prediction, engineering and design studies.

  9. Ear Tubes (United States)

    ... ENTCareers Marketplace Find an ENT Doctor Near You Ear Tubes Ear Tubes Patient Health Information News media ... and throat specialist) may be considered. What are ear tubes? Ear tubes are tiny cylinders placed through ...

  10. LHCb magnet coils arrive

    CERN Multimedia

    Maximilien Brice


    Each of the two coils for the LHCb magnet comprises 15 individual monolayer 'pancakes' of identical trapezoidal racetrack shape, and is bent at 45 degrees on the two transverse sides. Each pancake consists of eight turns of conductor, wound from a single length (approx. 290 m) of extruded aluminium. The coils have arrived at CERN; one of them is seen here being unloaded above the LHCb experimental cavern.

  11. Experimental investigation on heat transfer analysis of conical coil heat exchanger with 90° cone angle (United States)

    Purandare, Pramod S.; Lele, Mandar M.; Gupta, Raj Kumar


    In the present study, an experimental investigation on thermal performance of the conical coil heat exchanger with 90° conical coil heat exchanger is reported. Three different conical coil heat exchangers of same mean coil diameter (Dm = 200 mm) with different tube diameters ( di = 8, 10, 12.5 mm) are analyzed under steady state condition. The analysis is carried out for the tube side hot fluid flow range of 10-100 lph ( Re = 500-5,000), while the shell side flow range of 30-90 lph. The data available from experimentation leads to evaluate heat transfer coefficients for inside and outside the tube of the conical coil heat exchanger by Wilsons plot method. The calculations are further extended to estimate Nusselt Number ( Nu) and effectiveness. The empirical correlations are proposed for predicting Nu and the outlet temperatures of hot and cold fluids. The predicted empirical correlations show reasonable agreement with the experimental results within the given range of parameters.

  12. Coiling of yield stress fluids

    NARCIS (Netherlands)

    Y. Rahmani; M. Habibi; A. Javadi; D. Bonn


    We present an experimental investigation of the coiling of a filament of a yield stress fluid falling on a solid surface. We use two kinds of yield stress fluids, shaving foam and hair gel, and show that the coiling of the foam is similar to the coiling of an elastic rope. Two regimes of coiling (el

  13. Linear Rogowski coil (United States)

    Nassisi, V.; Delle Side, D.


    Nowadays, the employment and development of fast current pulses require sophisticated systems to perform measurements. Rogowski coils are used to diagnose cylindrical shaped beams; therefore, they are designed and built with a toroidal structure. Recently, to perform experiments of radiofrequency biophysical stresses, flat transmission lines have been developed. Therefore, in this work we developed a linear Rogowski coil to detect current pulses inside flat conductors. The system is first approached by means of transmission line theory. We found that, if the pulse width to be diagnosed is comparable with the propagation time of the signal in the detector, it is necessary to impose a uniform current as input pulse, or to use short coils. We further analysed the effect of the resistance of the coil and the influence of its magnetic properties. As a result, the device we developed is able to record pulses lasting for some hundreds of nanoseconds, depending on the inductance, load impedance, and resistance of the coil. Furthermore, its response is characterized by a sub-nanosecond rise time (˜100 ps). The attenuation coefficient depends mainly on the turn number of the coil, while the fidelity of the response depends both on the magnetic core characteristics and on the current distribution along the plane conductors.

  14. Steam generator tube failures

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.


    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  15. Heat Transfer Characteristics and Performance of a Spirally Coiled Heat Exchanger under Sensible Cooling Conditions (United States)

    Wongwises, Somchai; Naphon, Paisarn

    In the present study, new experimental data on the heat transfer characteristics and the performance of a spirally coiled heat exchanger under sensible cooling conditions is presented. The spiral-coil heat exchanger consists of a steel shell and a spirally coiled tube unit. The spiral-coil unit consists of six layers of concentric spirally coiled tubes. Each tube is fabricated by bending a 9.27mm diameter straight copper tube into a spiral-coil of five turns. The innermost and outermost diameters of each spiral-coil are 67.7 and 227.6mm, respectively. Air and water are used as working fluids in shell side and tube side, respectively. A mathematical model based on the conservation of energy is developed to determine the heat transfer characteristics. There is a reasonable agreement between the results obtained from the experiment and those obtained from the model and a good agreement for the high air mass flow rate region. The results obtained from the parametric study are also discussed.

  16. Coiled coils and SAH domains in cytoskeletal molecular motors. (United States)

    Peckham, Michelle


    Cytoskeletal motors include myosins, kinesins and dyneins. Myosins move along tracks of actin filaments, whereas kinesins and dyneins move along microtubules. Many of these motors are involved in trafficking cargo in cells. However, myosins are mostly monomeric, whereas kinesins are mostly dimeric, owing to the presence of a coiled coil. Some myosins (myosins 6, 7 and 10) contain an SAH (single α-helical) domain, which was originally thought to be a coiled coil. These myosins are now known to be monomers, not dimers. The differences between SAH domains and coiled coils are described and the potential roles of SAH domains in molecular motors are discussed.

  17. Optimization of Moving Coil Actuators for Digital Displacement Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Bech, Michael Møller; Roemer, Daniel Beck;


    This paper focuses on deriving an optimal moving coil actuator design, used as force pro-ducing element in hydraulic on/off valves for Digital Displacement machines. Different moving coil actuator geometry topologies (permanent magnet placement and magnetiza-tion direction) are optimized...... for actuating annular seat valves in a digital displacement machine. The optimization objectives are to the minimize the actuator power, the valve flow losses and the height of the actuator. Evaluation of the objective function involves static finite element simulation and simulation of an entire operation...

  18. Comparison of four methods to assess hydraulic conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C.H. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Civil and Environmental Engineering; Gunter, J.A. [Gunter (John A.), Round Rock, TX (United States); Boutwell, G.P. [STE, Inc., Baton Rouge, LA (United States); Trautwein, S.J. [Trautwein Soil Testing Equipment Co., Houston, TX (United States); Berzanskis, P.H. [Hoechst-Celanese, Inc., Pampa, TX (United States)


    A hydraulic conductivity assessment that was conducted on four test pads constructed to the same specifications with soil from the same source by four different contractors is described. The test pads had distinctly different field hydraulic conductivities, even though they were constructed with similar soil, to similar compaction conditions, and with similar machinery. Adequate hydration time was key in achieving low field hydraulic conductivity. More extensive processing was another factor responsible for low field hydraulic conductivity. Four different test methods were used to assess the hydraulic conductivity of each test pad: (1) sealed double-ring infiltrometers (SDRIs); (2) two-stage borehole permeameters; (3) laboratory hydraulic conductivity tests on large block specimens; and (4) laboratory hydraulic conductivity tests on small specimens collected in thin-wall sampling tubes. The tests were conducted independently by each of the writers. After the tests were completed, the results were submitted and compared. Analysis of the test results show that the three large-scale test methods generally yield similar hydraulic conductivities. For two of the test pads, however, the hydraulic conductivities of the specimens collected in sampling tubes were significantly lower than the field hydraulic conductivities. Both of these test pads had high field hydraulic conductivity. Thus, there is little value in using small specimens to assess field hydraulic conductivity.

  19. Liquid nitrogen tests of a Torus coil for the Jefferson Lab 12GeV accelerator upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Fair, Ruben J. [JLAB; Ghoshal, Probir K. [JLAB; Bruhwel, Krister B. [JLAB; Kashy, David H. [JLAB; Machie, Danny [JLAB; Bachimanchi, Ramakrishna [JLAB; Taylor, William; Fischer, John W. [JLAB; Legg, Robert A. [JLAB; Powers, Jacob R. [JLAB


    A magnet system consisting of six superconducting trapezoidal racetrack-type coils is being built for the Jefferson Lab 12-GeV accelerator upgrade project. The magnet coils are wound with Superconducting Super Collider-36 NbTi strand Rutherford cable soldered into a copper channel. Each superconducting toroidal coil is force cooled by liquid helium, which circulates in a tube that is in good thermal contact with the inside of the coil. Thin copper sheets are soldered to the helium cooling tube and enclose the superconducting coil, providing cooling to the rest of the coil pack. As part of a rigorous risk mitigation exercise, each of the six coils is cooled with liquid nitrogen (LN2) to 80 K to validate predicted thermal stresses, verify the robustness and integrity of electrical insulation, and evaluate the efficacy of the employed conduction cooling method. This paper describes the test setup, the tests performed, and the findings.

  20. TESLA Coil Research (United States)


    Sloan’s work was actually predated by the earlier work of Nikola Tesla . Sloan mistakenly identified " Tesla Coils" as lumped tuned resonators. The...Lefvw WsnJ L REPORT o]i 3. REPRT TYPE AND OATES COVEIRD May 1992 Special/Aug 1992 - May 1992 Z TITLE AND 5U§nUT S. FUNDING NUMIHRS Tesla Coil Research...STATEMENT 1211. ’ISTRIUUTION COOD Approved for public release; dis~ribution is unlimited 13. ABSTRACT (Masrmum 200 worw) High repetition rate Tesla

  1. Meiosis specific coiled-coil proteins in Shizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Okuzaki Daisuke


    Full Text Available Abstract Many meiosis-specific proteins in Schizosaccharomyces pombe contain coiled-coil motifs which play essential roles for meiotic progression. For example, the coiled-coil motifs present in Meu13 and Mcp7 are required for their function as a putative recombinase cofactor complex during meiotic recombination. Mcp6/Hrs1 and Mcp5/Num1 control horsetail chromosome movement by astral microtubule organization and anchoring dynein respectively. Dhc1 and Ssm4 are also required for horsetail chromosome movement. It is clear from these examples that the coiled-coil motif in these proteins plays an important role during the progression of cells through meiosis. However, there are still many unanswered questions on how these proteins operate. In this paper, we briefly review recent studies on the meiotic coiled-coil proteins in Sz. pombe.

  2. 利用普通车床珩磨单体液压支柱缸体内孔%Honing cylinder tube's internal_hole of hydraulic prop on general lathe

    Institute of Scientific and Technical Information of China (English)



    The paper presents a new structure of honing internal_hole of hydraulic prop on general lathe.The main feature is that the h oning tool can automatically spread by hydraulic pressure.%介绍一种在普通车床上珩磨液压支柱内孔的新结构。它的主要特点是珩磨头可液压自动张开。

  3. Graphene-coated coupling coil for AC resistance reduction (United States)

    Miller, John M


    At least one graphene layer is formed to laterally surround a tube so that the basal plane of each graphene layer is tangential to the local surface of the tube on which the graphene layer is formed. An electrically conductive path is provided around the tube for providing high conductivity electrical path provided by the basal plane of each graphene layer. The high conductivity path can be employed for high frequency applications such as coupling coils for wireless power transmission to overcome skin depth effects and proximity effects prevalent in high frequency alternating current paths.

  4. Planar, monolithically integrated coil

    NARCIS (Netherlands)

    Roozeboom, F.; Reefman, D.; Klootwijk, J.H.; Tiemeijer, L.F.; Ruigrok, J.


    The present invention provides a means to integrate planar coils on silicon, while providing a high inductance. This high inductance is achieved through a special back- and front sided shielding of a material. In many applications, high-value inductors are a necessity. In particular, this holds for

  5. An orientable search coil (United States)

    Holt, P. J.; Poblocki, M.


    We provide a design for a low cost orientable search coil that can be used to investigate the variation of magnetic flux with angle. This experiment is one of the required practical activities in the current A level physics specification for the AQA examination board in the UK. We demonstrate its performance and suggest other suitable investigations that can be undertaken.


    Energy Technology Data Exchange (ETDEWEB)

    Richard A. Corbett; Dave Severance


    Formicary corrosion is an insidious form of localized pitting corrosion. Notoya (1997b) wrote, ?In Japan, this type of corrosion is found in approximately 10% of cases of premature failure of copper tubes.? Attack characteristically features very small surface pits which are not visible to the un-aided eye, and random directional changes in the underlying copper metal. Attack is rapid. Failures have occurred before installation, shortly thereafter, or within several years later. Objectives of this Research Project Conduct an in depth literature search on the subject of formicary corrosion. Define the corrosion mechanism. Develop a test method that will reproduce formicary corrosion. Develop a test method for screening candidate materials that could cause formicary corrosion.

  7. Aeronautical tubes and pipes (United States)

    Beauclair, N.


    The main and subcomponent French suppliers of aircraft tubes and pipes are discussed, and the state of the industry is analyzed. Quality control is essential for tubes with regard to their i.d. and metallurgical compositions. French regulations do not allow welded seam tubes in hydraulic circuits unless no other form is available, and then rustproofed steel must be installed. The actual low level of orders for any run of tubes dictates that the product is only one of several among the manufacturers' line. Automation, both in NDT and quality control, assures that the tubes meet specifications. A total of 10 French companies participate in the industry, serving both civil and military needs, with some companies specializing only in titanium, steel, or aluminum materials. Concerns wishing to enter the market must upgrade their equipment to meet the higher aeronautical specifications and be prepared to furnish tubes and pipes that serve both functional and structural purposes simultaneously. Additionally, pipe-bending machines must also perform to tight specifications. Pipes can range from 0.2 mm exterior diameter to 40 mm, with wall thicknesses from 0.02 mm to 3 mm. A chart containing a list of manufacturers and their respective specifications and characteristics is presented, and a downtrend in production with reduction of personnel is noted.

  8. Heat transfer in bundles of finned tubes in crossflow

    Energy Technology Data Exchange (ETDEWEB)

    Stasiulevicius, J.; Skrinska, A.; Zukauskas, A.; Hewitt, G.F.


    This book provides correlations of heat transfer and hydraulic data for bundles of finned tubes in crossflow at high Reynolds numbers. Results of studies of the effectiveness of the fin, local, and mean heat transfer coefficients are presented. The effect of geometric parameters of the fins and of the location of tubes in the bundle on heat transfer and hydraulic drag are described. The resistance of the finned tube bundles under study and other factors are examined.

  9. 梭锥管混浊流体分离装置流场PIV测试及分析%Test and analysis on flow field in the shuttle-conical tube turbid flow hydraulic separation Device by PIV techniques

    Institute of Scientific and Technical Information of China (English)

    李琳; 杨海华; 王苗; 邱秀云


    Particle image uelocimotrg (PIV) was used to test the water and sediment flow velocity field in the Shuttle-conical Tube Turbid Flow hydraulic separation Device (SCT) with two cases. The distributions of sediment flow velocity vector and the velocity diagram at various planes in different locations of the SCT have been offered. The results indicate that the test results are consistent with the physical experimental phenomenon and theoretical analysis. The SCT is divided into many sedimentation spaces by multilayer cone rings so that the sedimentation distance of SCT is shorter than the common device without any cone ring and all the sedimentation spaces are independent from each other. The turbid flow with suspension flow into the SCT, and sediment free settlement distance has been shortened, and in the water-sediment separation space composed by adjacent two cone rings,the sediment flow is downward along the upper sur-face of one cone ring, and the clear water flow is upward along the lower surface of the other cone ring. Then the water and sediment flow respectively along different path, the former flows into the clear water passage arranged at the sides of the wall, and the latter flows into the sand drainage channel at the center of the SCT. In the process of the separation and drainage, the clear water doesn’t mix and interfere with sediment flow so that the separation efficiency of water & sediment by the SCT has been improved.%利用粒子图像测速技术,测试了两种工况下梭锥管混浊流体分离装置(简称梭锥管)内的水沙两相流的速度场,给出了梭锥管内泥沙运动的流速矢量分布及流速大小云图。对测试结果的分析表明,实测结果与理论分析结果一致。含沙水流进入梭锥管后,其内设置的多层锥圈把泥沙沉降区域分割成若干个沉降距离较短且相互独立的沉降空间,缩短了泥沙的自由沉降距离。相邻锥圈组成的水沙分离空间内,形

  10. Numerical Simulation of Effect of Disc Plate's Openings on Shell Side Properties of Coiled Heat Exchanger with Convergent-Divergent Tubes%圆盘板开孔对缩放管盘环式换热器壳程性能影响的数值研究

    Institute of Scientific and Technical Information of China (English)



    利用CFD技术对圆盘板上开不同直径孔的缩放管盘环式换热器壳程进行了数值模拟.结果表明,田盘板开孔能在一定程度上改善圆盘板后侧流体的流动状况,且开孔后圆盘与圆环折流板之间的流体压力分布较均匀;开孔直径越大,挟热器的壳程传热系数和压降均越小,综合性能越好;开孔直径不宜过小,适当地开孔才能有效地提高换热器的综合性能.%Making use of CFD,the shell side properties of coiled heat exchanger with convergent — divergent tubes were simulated.The results show that,the disc plate' s opening can improve fluid' s flow condition at disc plate' s rear side and can bring a well-distributed fluid pressure between disc and baffle plate ; and the openings'larger diameter can bring smaller shell side heat transfer coefficient and pressure drop.The opening's proper diameter can benefit the improvement of comprehensive properties of heat exchangers.

  11. Minimax Current Density Coil Design

    CERN Document Server

    Poole, Michael; Lopez, Hector Sanchez; Ng, Michael; Crozier, Stuart; 10.1088/0022-3727/43/9/095001


    'Coil design' is an inverse problem in which arrangements of wire are designed to generate a prescribed magnetic field when energized with electric current. The design of gradient and shim coils for magnetic resonance imaging (MRI) are important examples of coil design. The magnetic fields that these coils generate are usually required to be both strong and accurate. Other electromagnetic properties of the coils, such as inductance, may be considered in the design process, which becomes an optimization problem. The maximum current density is additionally optimized in this work and the resultant coils are investigated for performance and practicality. Coils with minimax current density were found to exhibit maximally spread wires and may help disperse localized regions of Joule heating. They also produce the highest possible magnetic field strength per unit current for any given surface and wire size. Three different flavours of boundary element method that employ different basis functions (triangular elements...

  12. Serpentine Coil Topology for BNL Direct Wind Superconducting Magnets

    CERN Document Server

    Parker, Brett


    BNL direct wind technology, with the conductor pattern laid out without need for extra tooling (no collars, coil presses etc.) began with RHIC corrector production. RHIC patterns were wound flat and then wrapped on cylindrical support tubes. Later for the HERA-II IR magnets we improved conductor placement precision by winding directly on a support tube. To meet HERA-II space and field quality goals took sophisticated coil patterns, (some wound on tapered tubes). We denote such patterns, topologically equivalent to RHIC flat windings, "planar patterns." Multi-layer planar patterns run into trouble because it is hard to wind across existing turns and magnet leads get trapped at poles. So we invented a new "Serpentine" winding style, which goes around 360 degrees while the conductor winds back and forth on the tube. To avoid making solenoidal fields, we wind Serpentine layers in opposite handed pairs. With a Serpentine pattern each turn can have the same projection on the coil axis and integral field harmonics t...

  13. Experimental investigation on heat transfer and pressure drop of conical coil heat exchanger

    Directory of Open Access Journals (Sweden)

    Purandare Pramod S.


    Full Text Available The heat transfer and pressure drop analysis of conical coil heat exchanger with various tube diameters, fluid flow rates, and cone angles is presented in this paper. Fifteen coils of cone angles 180° (horizontal spiral, 135°, 90°, 45°, and 0° (vertical helical are fabricated and analysed with, same average coil diameter, and tube length, with three different tube diameters. The experimentation is carried out with hot and cold water of flow rate 10 to 100 L per hour (Reynolds range 500 to 5000, and 30 to 90 L per hour, respectively. The temperatures and pressure drop across the heat exchanger are recorded at different mass flow rates of cold and hot fluid. The various parameters: heat transfer coefficient, Nusselt number, effectiveness, and friction factor, are estimated using the temperature, mass flow rate, and pressure drop across the heat exchanger. The analysis indicates that, Nusselt number and friction factor are function of flow rate, tube diameter, cone angle, and curvature ratio. Increase in tube side flow rate increases Nusselt number, whereas it reduces with increase in shell side flow rate. Increase in cone angle and tube diameter, reduces Nusselt number. The effects of cone angle, tube diameter, and fluid flow rates on heat transfer and pressure drop characteristics are detailed in this paper. The empirical correlations are proposed to bring out the physics of the thermal aspects of the conical coil heat exchangers.

  14. Introduction to COIL


    Kane, David


    By reciprocal arrangement between WIT and the National College of Ireland, you are now able to access their collection directly - more than 100,000 items. This form of direct consortial borrowing has never been tried before in Ireland. Before you borrow your first book, you will have to set up a COIL account, which is straightforward. The items which you reserve online will be posted to us, for you to collect, at the front desk in the Luke Wadding library, afterwards. The Initiat...

  15. ITER Side Correction Coil Quench model and analysis (United States)

    Nicollet, S.; Bessette, D.; Ciazynski, D.; Duchateau, J. L.; Gauthier, F.; Lacroix, B.


    Previous thermohydraulic studies performed for the ITER TF, CS and PF magnet systems have brought some important information on the detection and consequences of a quench as a function of the initial conditions (deposited energy, heated length). Even if the temperature margin of the Correction Coils is high, their behavior during a quench should also be studied since a quench is likely to be triggered by potential anomalies in joints, ground fault on the instrumentation wires, etc. A model has been developed with the SuperMagnet Code (Bagnasco et al., 2010) for a Side Correction Coil (SCC2) with four pancakes cooled in parallel, each of them represented by a Thea module (with the proper Cable In Conduit Conductor characteristics). All the other coils of the PF cooling loop are hydraulically connected in parallel (top/bottom correction coils and six Poloidal Field Coils) are modeled by Flower modules with equivalent hydraulics properties. The model and the analysis results are presented for five quench initiation cases with/without fast discharge: two quenches initiated by a heat input to the innermost turn of one pancake (case 1 and case 2) and two other quenches initiated at the innermost turns of four pancakes (case 3 and case 4). In the 5th case, the quench is initiated at the middle turn of one pancake. The impact on the cooling circuit, e.g. the exceedance of the opening pressure of the quench relief valves, is detailed in case of an undetected quench (i.e. no discharge of the magnet). Particular attention is also paid to a possible secondary quench detection system based on measured thermohydraulic signals (pressure, temperature and/or helium mass flow rate). The maximum cable temperature achieved in case of a fast current discharge (primary detection by voltage) is compared to the design hot spot criterion of 150 K, which includes the contribution of helium and jacket.

  16. Triple Halo Coil: Development and Comparison with Other TMS Coils (United States)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation technique that can be used for the treatment of various neurological disorders such as Parkinson's Disease, PTSD, TBI and anxiety by regulating synaptic activity. TMS is FDA approved for the treatment of major depressive disorder. There is a critical need to develop deep TMS coils that can stimulate deeper regions of the brain without excessively stimulating the cortex in order to provide an alternative to surgical methods. We have developed a novel multi-coil configuration called ``Triple Halo Coil'' (THC) that can stimulate deep brain regions. Investigation of induced electric and magnetic field in these regions have been achieved by computer modelling. Comparison of the results due to THC configuration have been conducted with other TMS coils such as ``Halo Coil'', circular coil and ``Figure of Eight'' coil. There was an improvement of more than 15 times in the strength of magnetic field, induced by THC configuration at 10 cm below the vertex of the head when compared with the ``Figure of Eight'' coil alone. Carver Charitable Trust.

  17. Economical Comparison for Temperature Adjustment Effect of Coil Tubes of Two Kinds of Material in Industrial Breeding Tank%工厂化养殖池中两种材质盘管调温效果的经济性比较

    Institute of Scientific and Technical Information of China (English)

    刁劭譞; 丁玲


    At present ,our factory aquaculture mode is still in its infancy ,in facilities ,process ,output , efficiency ,etc .are yet to be improved .This article through to the existing factory farming thermal control system for research ,su mmed up the typical standards shall be the coil tube type heat ex‐changer thermal control system .T hrough theoretical research methods ,acquired tube heat exchanger was derived formula for selection formula and the total investment .According to the heat exchange pipes and the aquaculture water aquaculture water and air and the wall between the heat transfer char‐acteristics of flow and heat transfer mathematical model was set up .Using the CFD (Computational Fluid Dynamics) method to simulate water temperature 3 d field distribution in the breeding ,the numerical simulation data using SPSS regression analysis ,heating time and can be a function of pipe diameter ,the time needed for heating can be accurate calculation .Combining with the microeconomic theory of consumer ,draw two different coil of budget constraints and budget line .Ac‐cording to different pipe diameter ,different material and quantity ,to obtain a preliminary economic a‐nalysis of the different boundary conditions ,provides the design basis for the practical engineering de‐sign based on the equipment type selection .%目前我国工厂化水产养殖模式还处于初级阶段,在设施、工艺、产量、效益等方面都有待提高。本文通过对现有工厂化养殖调温系统进行调研,总结出典型的标准的换热器调温系统应为盘管式系统。通过理论研究的方法,推导出盘管式换热器的选型公式以及总投资公式。根据换热管道与养殖水体间以及养殖水体与空气和池壁之间的热交换特点,建立流动与传热的数学模型。采用CFD(Computational Fluid Dynamics计算流体力学)方法模拟得到养殖池内水温的三维场分布,从而直观地得出温度场分布,

  18. Tracheostomy tubes. (United States)

    Hess, Dean R; Altobelli, Neila P


    Tracheostomy tubes are used to administer positive-pressure ventilation, to provide a patent airway, and to provide access to the lower respiratory tract for airway clearance. They are available in a variety of sizes and styles from several manufacturers. The dimensions of tracheostomy tubes are given by their inner diameter, outer diameter, length, and curvature. Differences in dimensions between tubes with the same inner diameter from different manufacturers are not commonly appreciated but may have important clinical implications. Tracheostomy tubes can be cuffed or uncuffed and may be fenestrated. Some tracheostomy tubes are designed with an inner cannula. It is important for clinicians caring for patients with a tracheostomy tube to appreciate the nuances of various tracheostomy tube designs and to select a tube that appropriately fits the patient. The optimal frequency of changing a chronic tracheostomy tube is controversial. Specialized teams may be useful in managing patients with a tracheostomy. Speech can be facilitated with a speaking valve in patients with a tracheostomy tube who are breathing spontaneously. In mechanically ventilated patients with a tracheostomy, a talking tracheostomy tube, a deflated cuff technique with a speaking valve, or a deflated cuff technique without a speaking valve can be used to facilitate speech. Copyright © 2014 by Daedalus Enterprises.

  19. Thermal Hydraulic Stability in a Coaxial Thermosyphon

    Institute of Scientific and Technical Information of China (English)

    YANG Jianhui; LU Wenqiang; LI Qing; LI Qiang; ZHOU Yuan


    The heat transfer and thermal hydraulic stability in a two-phase thermosyphon with coaxial riser and down-comer has been experimentally investigated and theoretically analyzed to facilitate its application in cold neutron source. The flow in a coaxial thermosyphon was studied experimentally for a variety of heating rates, transfer tube lengths, charge capacities, and area ratios. A numerical analysis of the hydraulic balance between the driving pressure head and the resistance loss has also been performed. The results show that the presented coaxial thermosyphon has dynamic performance advantages relative to natural circulation in a boiling water reactor.

  20. Modeling of an once through helical coil steam generator of a superheated cycle for sizing analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Sik; Sim, Yoon Sub; Kim, Eui Kwang [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    A thermal sizing code, named as HSGSA (Helical coil Steam Generator Sizing Analyzer), for a sodium heated helical coil steam generator is developed for KALIMER (Korea Advanced LIquid MEtal Reactor) design. The theoretical modeling of the shell and tube sides is described and relevant correlations are presented. For assessment of HSGSA, a reference plant design case is compared to the calculational outputs from HSGSA simulation. 9 refs., 6 figs. (Author)

  1. Experimental study on steam-water two-phase flow frictional pressure drops in helical coils

    Institute of Scientific and Technical Information of China (English)


    Experiments of steam-water two-phase flow frictional pressure drop in a vertical helical coil were carried out in the high-pressure water test loop of Xi'an jiaotong University,The coil is made of stainless steel tube with an inner diameter of 16mm,the helix diameter measured from tube axis to tube axis is 1.3m,and helix angle of the coil is 3.65°,The experimental conditions are:pressurep=4-18MPa,mass velocity G=400-1400kg/(m2.s),inner wall heat flux q=100-700kW/m2,Based on these data,a correlation for predicting the steam-water two-phase flow frictional pressure drop was derived,it can be used for the design of steam generator of HTGR.


    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydraulic analysis for estimating flood stages for a flood insurance study. It...

  3. Hydraulic Hybrid Vehicles (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  4. Structural and biochemical characterizations of an intramolecular tandem coiled coil protein. (United States)

    Shin, Donghyuk; Kim, Gwanho; Kim, Gyuhee; Zheng, Xu; Kim, Yang-Gyun; Lee, Sangho


    Coiled coil has served as an excellent model system for studying protein folding and developing protein-based biomaterials. Most designed coiled coils function as oligomers, namely intermolecular coiled coils. However, less is known about structural and biochemical behavior of intramolecular coiled coils where coiled coil domains are covalently linked in one polypeptide. Here we prepare a protein which harbors three coiled coil domains with two short linkers, termed intramolecular tandem coiled coil (ITCC) and characterize its structural and biochemical behavior in solution. ITCC consists of three coiled coil domains whose sequences are derived from Coil-Ser and its domain swapped dimer. Modifications include positioning E (Glu) residue at "e" and K (Lys) at "g" positions throughout heptad repeats to enhance ionic interaction among its constituent coiled coil domains. Molecular modeling of ITCC suggests a compact triple helical bundle structure with the second and the third coiled coil domains forming a canonical coiled coil. ITCC exists as a mixture of monomeric and dimeric species in solution. Small-angle X-ray scattering reveals ellipsoidal molecular envelopes for both dimeric and monomeric ITCC in solution. The theoretically modeled structures of ITCC dock well into the envelopes of both species. Higher ionic strength shifts the equilibrium into monomer with apparently more compact structure while secondary structure remains unchanged. Taken together, our results suggest that our designed ITCC is predominantly monomeric structure through the enhanced ionic interactions, and its conformation is affected by the concentration of ionic species in the buffer.

  5. A Method for Evaluating the Magnetic Field Homogeneity of a Radiofrequency Coil by Its Field Histogram (United States)

    Yang, Q. X.; Li, S. H.; Smith, M. B.

    The magnetic field homogeneity of a radiofrequency coil is very important in both magnetic resonance imaging and spectroscopy. In this report, a method is proposed for quantitatively evaluating the RF magnetic field homogeneity from its histogram, which is obtained by either experimental measurement or theoretical calculation. The experimental histogram and theoretical histogram can be compared directly to verify the theoretical findings. The RF field homogeneities of the bird-cage coil, slotted-tube resonator, cosine wire coil, and a new radial plate coil design were evaluated using this method. The results showed that the experimental histograms and the corresponding theoretical histograms are consistent. This method provides an easy and sensitive way of evaluating the magnetic field homogeneity and facilitates the design and evaluation of new RF coil configurations.

  6. Performance of Helical Coil Heat Recovery Exchanger using Nanofluid as Coolant

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan


    Full Text Available Nanofluids are expected to be a promising coolant condidate in chemical processes for heat transfer system size reduction. This paper focuses on reducing the number of turns in a helical coil heat recovery exchanger with a given heat exchange capacity in a biomass heating plant using γ-Al2O3/n-decane nanofluid as coolant. The nanofluid flows through the tubes and the hot n-hexane flows through the shell. The numerical results show that using nanofluid as coolant in a helical coil heat exchanger can reduce the manufacturing cost of the heat exchanger and pumping power by reducing the number of turns of the coil.


    Energy Technology Data Exchange (ETDEWEB)

    Korinko, John S. [Savannah River National Laboratory (SRNL); BobbittIII, John T. [Savannah River National Laboratory (SRNL); Morgan, Michael J. [Savannah River National Laboratory (SRNL); Reigel, Marissa [Savannah River National Laboratory (SRNL); List III, Frederick Alyious [ORNL; Babu, Suresh S. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL)


    Additive Manufacturing has garnered significant levels of interest in recent years as a primary manufacturing method. While the general technology has been around for over 20 years, with increased computing capacity, higher powered directed energy sources, e.g., lasers and electron beams, it is coming of age as a viable technique for high value added, low production quantity components. The Savannah River National Laboratory is interested in AM as a technique to build hydrogen isotope separation components called Thermal Cycling Absorption Process (TCAP) columns. The TCAP operates from cryogenic to moderate temperatures in a cyclic manner and is a pressure boundary. The current technique for fabricating TCAP columns is to form a flat coil of 0.375 to 0.5 inch diameter tube and braze two coils together. During the brazing operation, the two nested coils often move and this movement results in gaps between the coils. Since one coil contains the working fluid, i.e., liquid nitrogen, and the other the process fluid, hydrogen isotopes, these gaps result in poor heat transfer. Additive manufacturing is being explored as a replacement technology since the adjacent tubes can be fabricated simultaneously and in intimate contact and they can also share a common wall to improve heat transfer. AM allows designers to develop unique tube structures that overcome several of the shortcomings of the coil and braze technique, such as the braze gap in fabrication and slow cooling during operation. Simple test samples with various internal geometries were designed and built from Type 316L stainless steel using a laser powder bed process. Three test article geometries that were built include a simple tube, a pair of stacked tubes, and a tube partially surrounded by two kidney shaped tubes with cooling fins that would extend into the process fluid, these tube sections incorporated thermowells or heat trace channels, selectively. The test samples will be subjected to heat transfer

  8. Hydraulic characterization of " Furcraea andina (United States)

    Rivera-Velasquez, M. F.; Fallico, C.; Molinari, A.; Santillan, P.; Salazar, M.


    The present level of pollution, increasingly involving groundwaters, constitutes a serious risk for environment and human health. Therefore the remediation of saturated and unsaturated soils, removing pollutant materials through innovative and economic bio-remediation techniques is more frequently required. Recent studies on natural fiber development have shown the effectiveness of these fibers for removal of some heavy metals, due to the lignin content in the natural fibers which plays an important role in the adsorption of metal cations (Lee et al., 2004; Troisi et al., 2008; C. Fallico, 2010). In the context of remediation techniques for unsaturated and/or saturated zone, an experimental approach for the hydraulic characterization of the "Furcraea andina" (i.e., Cabuya Blanca) fiber was carried out. This fiber is native to Andean regions and grows easily in wild or cultivated form in the valleys and hillsides of Colombia, Ecuador, and Peru. Fibers of "Furcraea andina" were characterized by experimental tests to determine their hydraulic conductivity or permeability and porosity in order to use this medium for bioremediation of contaminated aquifer exploiting the physical, chemical and microbial capacity of natural fiber in heavy metal adsorption. To evaluate empirically the hydraulic conductivity, laboratory tests were carried out at constant head specifically on the fibers manually extracted. For these tests we used a flow cell (used as permeameter), containing the "Furcraea andina" fibers to be characterized, suitably connected by a tygon pipe to a Marriott's bottle, which had a plastic tube that allow the adjustment of the hydraulic head for different tests to a constant value. By this experiment it was also possible to identify relationships that enable the estimation of permeability as a function of density, i.e. of the compaction degree of the fibers. Our study was carried out for three values of hydraulic head (H), namely 10, 18, and 25 cm and for each

  9. Energy transformation and flow topology in an elbow draft tube

    Directory of Open Access Journals (Sweden)

    Štefan D.


    Full Text Available Paper presents a computational study of energy transformation in two geometrical configurations of Kaplan turbine elbow draft tube. Pressure recovery, hydraulic efficiency and loss coefficient are evaluated for a series of flow rates and swirl numbers corresponding to operating regimes of the turbine. These integral characteristics are then correlated with local flow field properties identified by extraction of topological features. Main focus is to find the reasons for hydraulic efficiency drop of the elbow draft tube.

  10. CCHMM_PROF: a HMM-based coiled-coil predictor with evolutionary information

    DEFF Research Database (Denmark)

    Bartoli, Lisa; Fariselli, Piero; Krogh, Anders;


    MOTIVATION: The widespread coiled-coil structural motif in proteins is known to mediate a variety of biological interactions. Recognizing a coiled-coil containing sequence and locating its coiled-coil domains are key steps towards the determination of the protein structure and function. Different...... tools are available for predicting coiled-coil domains in protein sequences, including those based on position-specific score matrices and machine learning methods. RESULTS: In this article, we introduce a hidden Markov model (CCHMM_PROF) that exploits the information contained in multiple sequence...... alignments (profiles) to predict coiled-coil regions. The new method discriminates coiled-coil sequences with an accuracy of 97% and achieves a true positive rate of 79% with only 1% of false positives. Furthermore, when predicting the location of coiled-coil segments in protein sequences, the method reaches...

  11. Coiled-coil conformation of a pentamidine-DNA complex. (United States)

    Moreno, Tadeo; Pous, Joan; Subirana, Juan A; Campos, J Lourdes


    The coiled-coil structure formed by the complex of the DNA duplex d(ATATATATAT)(2) with pentamidine is presented. The duplex was found to have a mixed structure containing Watson-Crick and Hoogsteen base pairs. The drug stabilizes the coiled coil through the formation of cross-links between neighbouring duplexes. The central part of the drug is found in the minor groove as expected, whereas the charged terminal amidine groups protrude and interact with phosphates from neighbouring molecules. The formation of cross-links may be related to the biological effects of pentamidine, which is used as an antiprotozoal agent in trypanosomiasis, leishmaniasis and pneumonias associated with AIDS. The DNA sequence that was used is highly abundant in most eukaryotic genomes. However, very few data are available on DNA sequences which only contain A.T base pairs.

  12. Optimization of the Single Staggered Wire and Tube Heat Exchanger


    Arsana I Made; Susianto; Budhikarjono Kusno; Altway Ali


    Wire and tube heat exchanger consists of a coiled tube, and wire is welded on the two sides of it in normal direction of the tube. Generally,wire and tube heat exchanger uses inline wire arrangement between the two sides, whereas in this study, it used staggered wire arrangement that reduces the restriction of convection heat transfer. This study performed the optimization of single staggered wire and tube heat exchanger to increase the capacity and reduce the mass of the heat exchanger. Opti...

  13. Experimental evaluation of helically coiled tube flocculators for ...

    African Journals Online (AJOL)

    mass flow by an intense agitation, usually measured by G, the mean velocity ... et al., 1977; Camp and Stein, 1943; Fair and Gemmell, 1964;. Harris et al., 1966; ..... The mean error value for turbidity removal efficiency measurements was 1.5%.

  14. CFD Simulation Studies on the Performance of Rectangular Coil Heat Exchanger (United States)

    Samsudeen, N.; Anantharaman, N.; Raviraj, Pol.


    The simulation studies are made to understand the concept of heat transfer by convection in a rectangular coiled type heat exchanger. The rectangular coil heat exchanger consists of inner and outer coil arrangements with several straight portions and bends so that the exterior flow is very similar to flow within tube-bundles. The present work focuses mainly on exploring the various flow pattern and temperature distribution through the pipe. Computer simulation studies were performed for four different angle of tube bundle inclination (0°, 30°, 60°, and 90°) with two set flow arrangements (inline and staggered arrangement) in the shell side of the heat exchanger. The simulation results show that the effect of the tube bundle inclination on the fluid velocity distribution and the heat transfer performance is observed maximum for the coil with tube bundle inclination angle between 30 degrees and 60 degrees with the staggered arrangement than with the inline arrangement due to proper mixing in the shell side and the outside flow over the tube bundle helps to create turbulence without increasing the velocity in the shell side of the heat exchanger.

  15. Can Magnetic Coil Ease Tinnitus? (United States)

    ... Research Updates Technology Horizons Can magnetic coil ease tinnitus? VA trial aims to find out February 3, ... pain. See, for example, this 2009 review study . Tinnitus and Veterans Tinnitus has been one of the ...

  16. First coil for the SC

    CERN Multimedia

    CERN PhotoLab


    The coils for the SC magnet were stored in the large hangar of the Cointrin Airport (to make sure that they would be available before snow and ice would block the roads and canals from Belgium, where they were built).

  17. Adjustable Induction-Heating Coil (United States)

    Ellis, Rod; Bartolotta, Paul


    Improved design for induction-heating work coil facilitates optimization of heating in different metal specimens. Three segments adjusted independently to obtain desired distribution of temperature. Reduces time needed to achieve required temperature profiles.

  18. Nylon screws make inexpensive coil forms (United States)

    Aucoin, G.; Rosenthal, C.


    Standard nylon screws act as coil form copper wire laid down in spiral thread. Completed coil may be bonded to printed-circuit board. However, it is impossible to tune coil by adjusting spacing between windings, technique sometimes used with air-core coils.

  19. Nylon screws make inexpensive coil forms (United States)

    Aucoin, G.; Rosenthal, C.


    Standard nylon screws act as coil form copper wire laid down in spiral thread. Completed coil may be bonded to printed-circuit board. However, it is impossible to tune coil by adjusting spacing between windings, technique sometimes used with air-core coils.


    Directory of Open Access Journals (Sweden)

    P. N. Dobrodeyev


    Full Text Available The optimal configuration of the double Helmholtz coils for measuring of the magnetic dipole moments was defined. It was determined that measuring coils should have round shape and compensative coils – the square one. Analytically confirmed the feasibility of the proposed configuration of these coils as primary transmitters of magnetic dipole moments.

  1. Dynamic models of heating and cooling coils with one-dimensional air distribution (United States)

    Wang, Zijie; Krauss, G.


    This paper presents the simulation models of the plate-fin, air-to-water (or water vapour) heat exchangers used as air-heating or air-cooling and dehumidifying coils in the HVAC (Heating, Ventilation and Air-Conditioning) systems. The thermal models are used to calculate the heat exchange between distributing air and coil pipes and outlet temperatures of air and heat or chilled fluid. The aerodynamic models are used to account for the pressure drop of the air crossing the coil tubes. They can also be used to optimize the structures of such coils. The models are based on principal laws of heat and mass conservation and fluid mechanics. They are transparent and easy to use. In our work, a coil is considered as an assembly of numbers of basic elements in which all the state variables are unique. Therefore we can conveniently simulate the coils with different structures and different geometric parameters. Two modular programs TRNSYS (Transient System Simulation) and ESACAP are utilized as supporting softwares which make the programming and simulation greatly simplified. The coil elements and a real coil were simulated. The results were compared with the data offered by the manufacturer (company SOFICA) and also with those obtained using critical methods such as NTU method, etc. and good agreement is attained.


    Institute of Scientific and Technical Information of China (English)

    LAI Xi-de


    With the development of large-capacity hydro turbines, the hydraulic instability of bydro turbines has become one of the most important problems that affect the stable operation of the hydro-electric units. The hydraulic vibration and unstable operation of Francis hydro turbines are primarily caused by the unsteady pressure pulsations inside draft tubes.The forced rotating vortex core at the runner exit and the channel vortices inside Francis turbine runners are origins of the unsteady pressure pulsations when operating at partial load. This paper briefly analyzes the hydraulic instability of operation caused by the vortex core and channel vortices at partial load, then, presents a way to estimate the hydraulic stability by calculation of the flow behavior at the runner exit.The validity of estimation is examined by comparison with experimental data. This will be helpful to evaluate the alternative design and predict the hydraulic stability for both the prototype and model hydro turbines.

  3. 3D model of a matrix source of negative ions: RF driving by a large area planar coil (United States)

    Demerdzhiev, A.; Lishev, St.; Tarnev, Kh.; Shivarova, A.


    Based on three-dimensional (3D) modeling, different manners of a planar-coil inductive discharge driving of a plasma source completed as a matrix of small-radius hydrogen discharges are studied regarding a proper choice of an efficient and alike rf power deposition into the separate discharges of the matrix. Driving the whole matrix by a single coil and splitting it to blocks of discharge tubes, with single coil driving of each block, are the two cases considered. The results from the self-consistent model presented for a block of discharge tubes show its reliability in ensuring the same spatial distribution of the plasma parameters in the discharges completing the block. Since regarding the construction of the matrix, its driving as a whole by a single coil is the most reasonable decision, three modifications of the coil design have been tested: two zigzag coils with straight conductors passing, respectively, between and through the bottoms of the discharge tubes and a coil with an "omega" shaped conductor on the bottom of each tube. Among these three configurations, the latter ‒ a coil with an Ω-shaped conductor on the bottom of each tube ‒ shows up with the highest rf efficiency of an inductive discharge driving, shown by results for the rf current induced in the discharges obtained from an electrodynamical description. In all the cases considered the spatial distribution of the induced current density is analysed based on the manner of the penetration into the plasma of the wave field sustaining the inductive discharges.

  4. Computational analysis of residue contributions to coiled-coil topology. (United States)

    Ramos, Jorge; Lazaridis, Themis


    A variety of features are thought to contribute to the oligomeric and topological specificity of coiled coils. In previous work, we examined the determinants of oligomeric state. Here, we examine the energetic basis for the tendency of six coiled-coil peptides to align their α-helices in antiparallel orientation using molecular dynamics simulations with implicit solvation (EEF1.1). We also examine the effect of mutations known to disrupt the topology of these peptides. In agreement with experiment, ARG or LYS at a or d positions were found to stabilize the antiparallel configuration. The modeling suggests that this is not due to a-a' or d-d' repulsions but due to interactions with e' and g' residues. TRP at core positions also favors the antiparallel configuration. Residues that disfavor parallel dimers, such as ILE at d, are better tolerated in, and thus favor the antiparallel configuration. Salt bridge networks were found to be more stabilizing in the antiparallel configuration for geometric reasons: antiparallel helices point amino acid side chains in opposite directions. However, the structure with the largest number of salt bridges was not always the most stable, due to desolvation and configurational entropy contributions. In tetramers, the extent of stabilization of the antiparallel topology by core residues is influenced by the e' residue on a neighboring helix. Residues at b and c positions in some cases also contribute to stabilization of antiparallel tetramers. This work provides useful rules toward the goal of designing coiled coils with a well-defined and predictable three-dimensional structure.

  5. Numerical Analysis of Flow Distribution in a Sodium Chamber of a Finned-tube Sodium-to-Air Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Youngchul; Son, Seokkwon; Kim, Hyungmo; Eoh, Jaehyuk; Jeong, Jiyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    DHR systems consist of two diverse heat removal loops such as passive and active DHR systems, and the heat load imposed on the primary sodium pool is safely rejected into the environment through different kinds of sodium-to-air heat exchangers, e.g. M-shape and helical-coil type air-coolers. The former is called as an FHX(Forced-draft sodium-to-air Heat Exchanger) and the latter is simply called as an AHX(natural-draft sodium-to-Air Heat Exchanger). In a general sodium-to-air heat exchanger design, convection resistance in a shell-side air flow path becomes dominant factor affecting the mechanism of conjugate heat transfer from the sodium flow inside the tube to the air path across the sodium tube wall. Hence verification of the flow and heat transfer characteristics is one of the most important tasks to demonstrate decay heat removal performance. To confirm a kind of ultimate heat sink heat exchanger, a medium-scale Sodium thermal-hydraulic Experiment Loop for Finned-tube sodium-to-Air Heat exchanger (here after called the SELFA) has been designed and is recently being constructed at KAERI site. The introduction of the flow baffle inside the upper sodium chamber of the model FHX unit in the SELFA facility is briefly proposed and discussed as well. The present study aims at introducing a flow baffle design inside the upper sodium chamber to make more equalized flowrates flowing into each heat transfer tube of the model FHX unit. In the cases without the flow baffle geometry, it was observed lager discrepancies in flowrates at the heat transfer tubes. However it was also found that those kinds of discrepancies could be definitely decreased at around 1/10 by employing a flow baffle.

  6. Thermally Actuated Hydraulic Pumps (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi


    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  7. Gastrostomy Tube (G-Tube) (United States)

    ... the recovery room, sometimes called the "post-op" (post-operative) room or PACU (post-anesthesia care unit), and ... site; discharge that's yellow, green, or foul-smelling; fever) excessive bleeding or drainage from the tube site ...

  8. Revisiting Coiled Flocculator Performance for Particle Aggregation. (United States)


    This work summarizes recent studies evaluating the torsion and curvature parameters in the flocculation efficiency using a hydraulic plug-flow flocculator named as Flocs Generator Reactor (FGR). Colloidal Fe(OH)3 and coal particles were used as suspension models and a cationic polyacrylamide was used for the flocculation. The effectiveness of the aggregation process (in the distinct curvature and torsion parameters and hydrodynamic conditions) was evaluated by the settling rate of the Fe(OH)3 flocs and flocs size by photographic analysis. Due to curvature, a secondary flow is induced and the profiles of the flow quantities differ from those for a straight pipe. Results showed that the difference in the flocculator design influences the Fe(OH)3 flocs size and settling rates, reaching values about 13 and 4 mh-1, for the coiled and straight pipes respectively. Coal flocs generation also showed to be dependent on the flocculator design and shear rate. Results showed that turbulent kinetic energy increases due to curvature when the torsion parameter is kept constant (pitch close to zero) enhancing the flocs formation.

  9. The structure of the GemC1 coiled coil and its interaction with the Geminin family of coiled-coil proteins

    Energy Technology Data Exchange (ETDEWEB)

    Caillat, Christophe; Fish, Alexander [The Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands); Pefani, Dafni-Eleftheria; Taraviras, Stavros; Lygerou, Zoi [University of Patras, 26505 Rio, Patras (Greece); Perrakis, Anastassis, E-mail: [The Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands)


    The GemC1 coiled-coil structure has subtle differences compared with its homologues Geminin and Idas. Co-expression experiments in cells and biophysical stability analysis of the Geminin-family coiled coils suggest that the GemC1 coiled coil alone is unstable. GemC1, together with Idas and Geminin, an important regulator of DNA-replication licensing and differentiation decisions, constitute a superfamily sharing a homologous central coiled-coil domain. To better understand this family of proteins, the crystal structure of a GemC1 coiled-coil domain variant engineered for better solubility was determined to 2.2 Å resolution. GemC1 shows a less typical coiled coil compared with the Geminin homodimer and the Geminin–Idas heterodimer structures. It is also shown that both in vitro and in cells GemC1 interacts with Geminin through its coiled-coil domain, forming a heterodimer that is more stable that the GemC1 homodimer. Comparative analysis of the thermal stability of all of the possible superfamily complexes, using circular dichroism to follow the unfolding of the entire helix of the coiled coil, or intrinsic tryptophan fluorescence of a unique conserved N-terminal tryptophan, shows that the unfolding of the coiled coil is likely to take place from the C-terminus towards the N-terminus. It is also shown that homodimers show a single-state unfolding, while heterodimers show a two-state unfolding, suggesting that the dimer first falls apart and the helices then unfold according to the stability of each protein. The findings argue that Geminin-family members form homodimers and heterodimers between them, and this ability is likely to be important for modulating their function in cycling and differentiating cells.

  10. Deformation of Linked Polymer Coils

    Institute of Scientific and Technical Information of China (English)

    董朝霞; 李明远; 吴肇亮; 林梅钦


    Linked polymer solution (LPS) is defined as the solution of linked polymer coils (LPCs) dispersed in water, composed of low concentration partially hydrolyzed polyacrylamide (HPAM) and aluminum citrate (crosslinker). In the work, the conformational changes of LPCs under different conditions were investigated by the methods of membrane filtering under low pressure, dynamic light scattering and core flooding experiments. The results showed that in some conditions the LPCs could be compressed mechanically to 1/158.5 of their original volume because of relatively lower HPAM cross-linking. The hydration property of LPCs was similar to that of normal polymer coils. The deformation of LPCs was more restricted than that of ordinary polymer coils under the flow shear stress or the shift of hydration equilibrium caused in the variation of the electrolyte concentration which is responsible for the effective plugging in the throats of porous media when LPCs are used for deep diverting.

  11. Superconducting coil development for the Wendelstein 7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Sapper, J. (Max-Planck-Inst. fuer Plasmaphysik, EURATOM Association, Garching (Germany)); W 7-X Technical Group


    At the Max-Planck-Institut fuer Plasmaphysik (IPP), Garching, the Wendelstein 7-X stellarator (W 7-X) is in the stage of the beginning R and D phase. The experiment will be a large modular machine with nonplanar coils, following the Garching development line. It fits into the range of next step devices. The main technical parameters are: Major radius: R[sub 0]=5.5 m, magnetic induction: B[sub 0]=3 T, stored magnetic energy: W[sub m]=600 MJ, average plasma radius: r[sub 0]=0.53 m. The expected plasma parameters are: Central temperatures: T[sub i](0), T[sub e](0)=2-5 keV, central electron density: n[sub e](0)=0.1-2x10[sup 20] m[sup -3], energy confinement time: [tau][sub E]=0.1-0.5 s, average beta value: <[beta]>[<=]0.05. The design has to allow steady-state plasma operation. Consequently the coil system is superconducting. An internally cooled cable-in-conduit conductor with copper stabilized NbTi strands will be used at 4 K (LHe). The paper presents an overview of the design features of the machine and describes in particular the conductor design, the coil arrangement with electrical, hydraulic and mechanical parameters as well as the sequence of prototype steps which are foreseen for establishing a well-developed series production of the magnet. (orig.).

  12. Coil Optimization for HTS Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    for different tape parameters Ici, ni and Ci, where Ici, ni and Ci are critical current, n - value and price of the ith tape respectively and i=1, 2, 3…, further optimization with respect to cost vs. HTS losses has been performed. Allowing for different types of HTS tapes in the coils, a guidance to which tape....... The proposed coil design is optimized with respect to minimizing the perpendicular field while still maximizing the amplitude of fundamental space harmonic. This guarantees the lowest HTS loss density and best utilization of expensive HTS material in the field winding of the SM. Additionally, accounting...

  13. Electromagnetic Gun With Commutated Coils (United States)

    Elliott, David G.


    Proposed electromagnetic gun includes electromagnet coil, turns of which commutated in sequence along barrel. Electrical current fed to two armatures by brushes sliding on bus bars in barrel. Interaction between armature currents and magnetic field from coil produces force accelerating armature, which in turn, pushes on projectile. Commutation scheme chosen so magnetic field approximately coincides and moves with cylindrical region defined by armatures. Scheme has disadvantage of complexity, but in return, enables designer to increase driving magnetic field without increasing armature current. Attainable muzzle velocity increased substantially.

  14. Optimisation of Double Pipe Helical Tube Heat Exchanger and its Comparison with Straight Double Tube Heat Exchanger (United States)

    Kareem, Rashid


    Optimization of double pipe helical coil heat exchanger with various optimizing parameters and its comparison with double pipe straight tube are the prime objectives of this paper. Numerical studies were performed with the aid of a commercial computational fluid dynamics package ANSYS FLUENT 14. In this paper the double pipe helical coil is analysed under turbulent flow conditions for optimum heat exchanger properties. The parameters used for optimization are cross-sectional shape and taper angles. Optimization analysis is being carried out for finding best cross sectional shape of heat exchanger coils by using rectangular, square, triangular and circular cross-sections. The tapered double pipe helical coil is then analysed for best heat transfer and pressure drop characteristics by varying the angle of taper. Finally, an optimum coil on the basis of all the analysis is selected. This optimized double pipe helical coil is compared with double pipe straight tube of equivalent cross-sectional area and length as that of unwounded length of double pipe helical coil.

  15. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong


    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  16. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E


    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  17. [Two Cases of Ruptured Cerebral Aneurysm Complicated with Delayed Coil Protrusion after Coil Embolization]. (United States)

    Furukawa, Takashi; Ogata, Atsushi; Ebashi, Ryo; Takase, Yukinori; Masuoka, Jun; Kawashima, Masatou; Abe, Tatsuya


    We report two cases of delayed coil protrusion after coil embolization for ruptured cerebral aneurysms. Case 1:An 82-year-old woman with a subarachnoid hemorrhage due to a ruptured small anterior communicating artery aneurysm underwent successful coil embolization. Eighteen days after the procedure, coil protrusion from the aneurysm into the right anterior cerebral artery was observed without any symptoms. Further coil protrusion did not develop after 28 days. Case 2:A 78-year-old woman with a subarachnoid hemorrhage due to a ruptured small left middle cerebral artery aneurysm underwent successful coil embolization. Twenty days after the procedure, coil protrusion from the aneurysm into the left middle cerebral artery was observed, with a transient ischemic attack. Further coil protrusion did not develop. Both patients recovered with antithrombotic treatment. Even though delayed coil protrusion after coil embolization is rare, it should be recognized as a long-term complication of coil embolization for cerebral aneurysms.

  18. Dynamic Models of Heating and Cooling Coils with One—Dimensional Air Distribution

    Institute of Scientific and Technical Information of China (English)

    WangZijie; G.Krauss


    This paper presents the simulation models of the plate-fin,air-to-water(or water vapour) heat exchangers used as air-heating or air-cooling and dehumidifying colis in the HVAC(Heating,Ventilation and AIr-Conditioning)systems.The thermal models are used to calculate the heat exchange between distributing air and coil pipes and outlet temperatures of air and heat or chilled fluid.The aerodynamic models are used to account for the pressure drop of the air crossing the coil tubes,They can also be used to optimize the structres of such coils.The models are based on principal laws of teat and mass conservation and fluid mechanics.They are transparent and easy to use.In our work,a coil is considered as an assembly of numbers of basic elements in which all the state variables are unique.Therefore we can conveniently simulate the coils with different structures and different geometric parameters.Two modular programs TRNSYS(Transient System Simulation)and ESACAP are utilized as supporting softwares which make the programming and simulation greatly simplified.The coil elements and a real coil were simulated.The results were compared with the data offered by the manufacturer(company SOFICA) and also with those obtained using critical methods such as NTU method ,etc.and good agreement is attained.

  19. Effect of γ-Al2O3/water nanofluid on the thermal performance of shell and coil heat exchanger with different coil torsions (United States)

    Elshazly, K. M.; Sakr, R. Y.; Ali, R. K.; Salem, M. R.


    This work investigated experimentally the thermal performance of shell and coil heat exchanger with different coil torsions (λ) for γ-Al2O3/water nanofluid flow. Five helically coiled tube (HCT) with 0.0442 ≤ λ ≤ 0.1348 were tested within turbulent flow regime. The average size of γ-Al2O3 particles is 40 nm and volume concentration (φ) is varied from 0 to 2%. Results showed that reducing coil torsion enhances the heat transfer rate and increases HCT-friction factor (fc). Also, it is noticed that HCT average Nusselt number (Nut) and fc of nanofluids increase with increasing γ-Al2O3 volume concentration. The thermal performance index, TPI = (ht,nf/ht,bf)/(ΔPc,nf/ΔPc,bf). increases with increasing nanoparticles concentration, coil torsion, HCT-side inlet temperature and nanofluid flow rate. Over the studied range of HCT-Reynolds number, the average value of TPI is of 1.34 and 2.24 at φ = 0.5% and φ = 2%, respectively. The average value of TPI is of 1.64 at λ = 0.0442 while its average value at λ = 0.1348 is of 2.01. One of the main contributions is to provide heat equipments designers with Nut and fc correlations for practical configurations shell and coil heat exchangers with a wide range of nanofluid concentration.

  20. Hydraulically controlled flexible arm can bend in any direction (United States)

    Griffin, F. D.


    Arm assembly consisting of four flexible tubes controlled by a four-way hydraulic or pneumatic valve can bend in any direction. The flexible arm could be used for probing areas that cannot be reached by ordinary tools, handling hazardous materials, and for graph recording.

  1. Coupled Coils, Magnets and Lenz's Law (United States)

    Thompson, Frank


    Great scientists in the past have experimented with coils and magnets. Here we have a variation where coupling occurs between two coils and the oscillatory motion of two magnets to give somewhat surprising results. (Contains 6 figures and 1 footnote.)

  2. Generalization of Helmholtz coil problem

    Directory of Open Access Journals (Sweden)

    Petković Dejan M.


    Full Text Available The primary intent of this work is to propose a simple analytical method for designing coil systems for homogeneous and gradient magnetostatic field generation. Coil system consists of two identical coaxial (regular polygonal current loops. In the space between the loops, there is nearly homogeneous or nearly linear distribution of the magnetic field along the axes depending on the currents' direction. First, we derived a suitable, simple and general expression for the magnetic field along the axes due to a polygonal current loop. We emphasize the importance of the role of this expression for further analysis. The total on-axes magnetic field is the result of superposition of the magnetic fields that each loop generates separately. The proper distance between the loops and the current orientation make the system to become either Helmholtz coil or anti-Helmholtz coil. In this paper we give exact, analytical and general expression for this optimal distance that provides the magnetic field to be homogeneous (linear as much as possible. We based our study on Taylor series expansion of the total magnetic field, demanding that the first contaminating term must be canceled, in both, symmetric and asymmetric case.

  3. Rotor assembly including superconducting magnetic coil

    Energy Technology Data Exchange (ETDEWEB)

    Snitchler, Gregory L. (Shrewsbury, MA); Gamble, Bruce B. (Wellesley, MA); Voccio, John P. (Somerville, MA)


    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  4. Heat and mass transfer analysis of a helical coil rectifier in an ammonia-water absorption system

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Seara, Jose; Sieres, Jaime; Vazquez, Manuel [Area de Maquinas y Motores Termicos, Escuela Tecnica Superior de Ingenieros Industriales de Vigo, Campus Lagoas-Marcosende, No 9, 36200, Vigo (Spain)


    This paper presents a detailed study on the ammonia-water vapour rectification process in absorption systems using a helical coil rectifier. A differential mathematical model has been developed on the basis of mass and energy balances and heat and mass transfer equations. The differential volume has been defined in each coil turn by a differential angle on the turn and a second differential angle on the coiled tube cross section. It contains the corresponding differential portion of coolant, coiled tube wall, condensate film and vapour. Simultaneous heat and mass transfer processes have been taken into account in the vapour and liquid phases. The model equations have been solved using the finite-difference method. Results have been obtained for characteristic data from an ammonia-water absorption refrigeration system. Most significant calculated variable profiles along the coil height as well as in the coiled tube cross section are presented and discussed. The influence of the heat and mass transfer coefficients on the rectifier performance has also been considered. (authors)

  5. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif

    DEFF Research Database (Denmark)

    Céspedes, Nora; Habel, Catherine; Lopez-Perez, Mary


    Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous...

  6. The many types of interhelical ionic interactions in coiled coils - an overview. (United States)

    Meier, Markus; Stetefeld, Jörg; Burkhard, Peter


    Coiled coils represent the most frequent protein oligomerization motif in nature and are involved in many important biological processes. The prototype interhelical ionic interaction for coiled coils described in literature is an i to i+5 ionic interaction from heptad position g to e', but other possible ionic interactions have also been described. Here we use a statistical approach to systematically analyze all high-quality coiled-coil structures in the RCSB protein database for their interhelical ionic interactions. We provide a complete listing of all possible arrangements and analyze the frequency of their occurrence in the primary sequence together with their probability of formation in the quaternary structure of the coiled coils. We show that the classical i to i+5 ionic interaction is indeed characteristic for parallel dimeric and trimeric coiled coils. But we also show that there are many more i to i+2 ionic interactions in parallel tetrameric and pentameric coiled coils, and in antiparallel coiled coils the classical i to i+5 ionic interaction is in none of the oligomerizations states the most frequently observed ionic interaction. We also demonstrate that many ionic interactions involve residues at the core positions that are usually occupied by hydrophobic residues and that such interhelical ionic interactions are a hallmark feature of dimeric coiled coils.

  7. Eddy sensors for small diameter stainless steel tubes.

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Jack L.; Morales, Alfredo Martin; Grant, J. Brian; Korellis, Henry James; LaFord, Marianne Elizabeth; Van Blarigan, Benjamin; Andersen, Lisa E.


    The goal of this project was to develop non-destructive, minimally disruptive eddy sensors to inspect small diameter stainless steel metal tubes. Modifications to Sandia's Emphasis/EIGER code allowed for the modeling of eddy current bobbin sensors near or around 1/8-inch outer diameter stainless steel tubing. Modeling results indicated that an eddy sensor based on a single axial coil could effectively detect changes in the inner diameter of a stainless steel tubing. Based on the modeling results, sensor coils capable of detecting small changes in the inner diameter of a stainless steel tube were designed, built and tested. The observed sensor response agreed with the results of the modeling and with eddy sensor theory. A separate limited distribution SAND report is being issued demonstrating the application of this sensor.

  8. Effects of Microneedle Design Parameters on Hydraulic Resistance (United States)

    Hood, R. Lyle; Kosoglu, Mehmet A.; Parker, Matthew; Rylander, Christopher G.


    Microneedles have been an expanding medical technology in recent years due to their ability to penetrate tissue and deliver therapy with minimal invasiveness and patient discomfort. Variations in design have allowed for enhanced fluid delivery, biopsy collection, and the measurement of electric potentials. Our novel microneedle design attempts to combine many of these functions into a single length of silica tubing capable of both light and fluid delivery terminating in a sharp tip of less than 100 microns in diameter. This manuscript focuses on the fluid flow aspects of the design, characterizing the contributions to hydraulic resistance from the geometric parameters of the microneedles. Experiments consisted of measuring the volumetric flow rate of de-ionized water at set pressures (ranging from 69-621 kPa) through a relevant range of tubing lengths, needle lengths, and needle tip diameters. Data analysis showed that the silica tubing (~150 micron bore diameter) adhered to within ±5% of the theoretical prediction by Poiseuille’s Law describing laminar internal pipe flow at Reynolds numbers less than 700. High hydraulic resistance within the microneedles correlated with decreasing tip diameter. The hydraulic resistance offered by the silica tubing preceding the microneedle taper was approximately 1-2 orders of magnitude less per unit length, but remained the dominating resistance in most experiments as the tubing length was >30 mm. These findings will be incorporated into future design permutations to produce a microneedle capable of both efficient fluid transfer and light delivery. PMID:22211159

  9. Design of a shielded coil element of a matrix gradient coil (United States)

    Jia, Feng; Littin, Sebastian; Layton, Kelvin J.; Kroboth, Stefan; Yu, Huijun; Zaitsev, Maxim


    The increasing interest in spatial encoding with non-linear magnetic fields has intensified the need for coils that generates such fields. Matrix coils consisting of multiple coil elements appear to offer a high flexibility in generating customized encoding fields and are particularly promising for localized high resolution imaging applications. However, coil elements of existing matrix coils were primarily designed and constructed for better shimming and therefore are not expected to achieve an optimal performance for local spatial encoding. Moreover, eddy current properties of such coil elements were not fully explored. In this work, an optimization problem is formulated based on the requirement of local non-linear encoding and eddy current reduction that results in novel designs of coil elements for an actively-shielded matrix gradient coil. Two metrics are proposed to assess the performance of different coil element designs. The results are analyzed to reveal new insights into coil element design.

  10. Scaffolds, levers, rods and springs: diverse cellular functions of long coiled-coil proteins. (United States)

    Rose, A; Meier, I


    Long alpha-helical coiled-coil proteins are involved in a variety of organizational and regulatory processes in eukaryotic cells. They provide cables and networks in the cyto- and nucleoskeleton, molecular scaffolds that organize membrane systems, motors, levers, rotating arms and possibly springs. A growing number of human diseases are found to be caused by mutations in long coiled-coil proteins. This review summarizes our current understanding of the multifaceted group of long coiled-coil proteins in the cytoskeleton, nucleus, Golgi and cell division apparatus. The biophysical features of coiled-coil domains provide first clues toward their contribution to the diverse protein functions and promise potential future applications in the area of nanotechnology. Combining the power of fully sequenced genomes and structure prediction algorithms, it is now possible to comprehensively summarize and compare the complete inventory of coiled-coil proteins of different organisms.

  11. Repeats in transforming acidic coiled-coil (TACC) genes. (United States)

    Trivedi, Seema


    Transforming acidic coiled-coil proteins (TACC1, 2, and 3) are essential proteins associated with the assembly of spindle microtubules and maintenance of bipolarity. Dysregulation of TACCs is associated with tumorigenesis, but studies of microsatellite instability in TACC genes have not been extensive. Microsatellite or simple sequence repeat instability is known to cause many types of cancer. The present in silico analysis of SSRs in human TACC gene sequences shows the presence of mono- to hexa-nucleotide repeats, with the highest densities found for mono- and di-nucleotide repeats. Density of repeats is higher in introns than in exons. Some of the repeats are present in regulatory regions and retained introns. Human TACC genes show conservation of many repeat classes. Microsatellites in TACC genes could be valuable markers for monitoring numerical chromosomal aberrations and or cancer.

  12. A Micro Saddle Coil with Switchable Sensitivity for Local High-Resolution Imaging of Luminal Tissue

    Directory of Open Access Journals (Sweden)

    Tetsuji Dohi


    Full Text Available This paper reports on a micro saddle coil for local high-resolution magnetic resonance imaging (MRI fabricated by embedding a flexible coil pattern into a polydimethyilsiloxane (PDMS tube. We can change the sensitivity of the micro coil by deforming the shape of the coil from a saddle-shaped mode to a planar-shaped mode. The inductance, the resistance, and the Q-factor of the coil in the saddle-shaped mode were 2.45 μH, 3.31 Ω, and 39.9, respectively. Those of the planar-shaped mode were 3.07 μH, 3.92 Ω, and 42.9, respectively. In MRI acquired in saddle-shaped mode, a large visible area existed around the coil. Although the sensitive area was considerably reduced in the planar-shaped mode, clear MRI images were obtained. The signal-to-noise ratios (SNR of the saddle-shaped and planar-shaped modes were 194.9 and 505.9, respectively, at voxel size of 2.0 × 2.0 × 2.0 mm3 and 11.7 and 37.4, respectively, at voxel size of 0.5 × 0.5 × 1.0 mm3. The sensitivity of the saddle-shaped and the planar-shaped modes were about 3 times and 10 times higher, respectively, than those of the medical head coil at both voxel sizes. Thus, the micro saddle coil enabled large-area imaging and highly sensitive imaging by switching the shape of the coil.

  13. Research on homogeneous deformation of electromagnetic incremental tube bulging


    Cui, Xiaohui; Mo, Jianhua; Li, Jianjun


    The electromagnetic incremental forming (EMIF) method is used for tube forming process. Suitable 2D FE models are designed to predict the forming process with a moving coil. In comparison with experimental values, simulation method can obtain accurate results. Then, effect factors named overlapping ration of adjacent discharge positions, discharge voltage, forming sequence and die dimension on tube homogeneous deformation are discussed. The result demonstrates that it is feasib...

  14. Experimental Validation of Mathematical Framework for Fast Switching Valves used in Digital Hydraulic Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Roemer, Daniel Beck; Bech, Michael Møller


    A prototype of a fast switching valve designed for a digital hydraulic transmission has been manufactured and experimentally tested. The valve is an annular seat valve composed of a plunger connected with a direct electromagnetic moving coil actuator as the force producing element. Based on an el......A prototype of a fast switching valve designed for a digital hydraulic transmission has been manufactured and experimentally tested. The valve is an annular seat valve composed of a plunger connected with a direct electromagnetic moving coil actuator as the force producing element. Based...... of 10 kW during switching (mean of approximately 250 W) and a pressure loss below 0.5 bar at 600 l/min. The main goal of this article is validate parts of the mathematical framework based on a series of experiments. Furthermore, this article aims to document the experience gained from the experimental...... work and to study and assess a moving coil actuators suitability for the application....

  15. Coil Migration through a Neuroform 3 Stent during Endovascular Coiling. A Case Report.

    LENUS (Irish Health Repository)

    O'Hare, A


    Summary: A 43-year-old woman attended for stent assisted coiling. A Neuroform 30 x 4.5 mm stent had been successfully placed over the left periophthalmic aneurysm. During the coiling the first coil migrated through the crowns in the stent, lodging at the MCA bifurcation. We believe that the coil herniated through the overlying stent due to the carotid siphon curvature and the open cell design. Furthermore the distal markers of the stent impeded coil extraction with a MERCI device.

  16. FEMA DFIRM Hydraulic Structures (United States)

    Minnesota Department of Natural Resources — This layer and accompanying attribute table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the...

  17. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn


    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  18. Constant-Pressure Hydraulic Pump (United States)

    Galloway, C. W.


    Constant output pressure in gas-driven hydraulic pump would be assured in new design for gas-to-hydraulic power converter. With a force-multiplying ring attached to gas piston, expanding gas would apply constant force on hydraulic piston even though gas pressure drops. As a result, pressure of hydraulic fluid remains steady, and power output of the pump does not vary.

  19. Chest tube insertion (United States)

    ... tube insertion; Insertion of tube into chest; Tube thoracostomy; Pericardial drain ... Kirsch TD, Sax J. Tube thoracostomy. In: Roberts JR, ed. Roberts and ... . 6th ed. Philadelphia, PA: Elsevier Saunders; 2014:chap 10.

  20. Jejunostomy feeding tube (United States)

    ... page: // Jejunostomy feeding tube To use the sharing features on this ... vomiting Your child's stomach is bloated Alternate Names Feeding - jejunostomy tube; G-J tube; J-tube; Jejunum ...

  1. Seismic analysis of ITER fourth PF (Poloidal Field Coil) feeder

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Sumei, E-mail: [School of Engineering, Anhui Agricultural University, Hefei 230036 (China); Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China); Chen, Wei [School of Engineering, Anhui Agricultural University, Hefei 230036 (China); Song, Yuntao; Ni, Xiaojun; Wang, Zhongwei [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China); Chen, Yonghua; Gong, Chenyu [Magnet Division, TKM, ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul Lez Durance (France)


    The ITER feeder systems connect the ITER magnet systems located inside the main cryostat to the cryo-plant, power-supply and control system interfaces outside the cryostat. The main purpose of the feeders is to convey the cryogenic supply and electrical power to the coils as well as house the instrumentation wiring. The PF busbar which carries 52 kA current will suffer from high Lorentz force due to the background magnetic field inspired by the coils and the self-field between every pair of busbars. Except their mechanical strength and thermal insulation performance must be achieved, the dynamic mechanism on PF structure should be assessed. This paper presents the simulation and seismic analysis on ITER 4th PF feeder including the Coil Terminal Box and S-bend Box (CTB and SBB), the Cryostat Feed-through (CFT), the In-Cryostat-Feeder (ICF), especially for the ground supports and main outer-tube firstly. This analysis aims to study seismic resistance on system design under local seismograms with floor response spectrum, the structural response vibration mode and response duration results of displacement, membrane stress, and bending stress on structure under different directions actuating signals were obtained by using the single-seismic spectrum analysis and Dead Weight analysis respectively. Based on the simulative and analytical results, the system seismic resistance and the integrity of the support structure in the 4th PF feeder have been studied and the detail design confirmed.

  2. Usefulness of multifunctional gastrointestinal coil catheter for colorectal stent placement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae-Hyung; Shin, Ji Hoon; Kim, Jin Hyoung; Lim, Jin-Oh; Kim, Kyung Rae [Asan Medical Center, Radiology and Research Institute of Radiology, Seoul (Korea); Song, Ho-Young [Asan Medical Center - Radiology, Songpa-gu, Seoul (Korea); Park, In Kook [Dongguk University, Life Science, Seoul (Korea); Choi, Eugene K. [Weill Medical College of Cornell University, New York, NY (United States)


    The purpose of this study was to evaluate the usefulness of a multifunctional gastrointestinal coil catheter for stent placement in 98 patients with colorectal strictures. The catheter was used in 98 consecutive patients for stent placement in the rectum (n = 24), recto-sigmoid (n = 13), sigmoid (n = 38), descending (n = 6), transverse (n = 11), splenic flexure (n = 3), hepatic flexure (n = 2), and ascending (n = 1) colon. The catheter was made of a stainless steel coil (1.3 mm in inner diameter), a 0.4-mm nitinol wire, a polyolefin tube, and a hemostasis valve. Usefulness of the catheter was evaluated depending on whether the catheter could pass a stricture over a guide wire and whether measurement of the stricture length was possible. The passage of the catheter over a guide wire beyond the stricture was technically successful and well tolerated in 93 (94.9%) of 98 patients. In the failed five patients, it was not possible to negotiate the guide wire due to presence of nearly complete small bowel obstruction. The average length of stricture was 6.15 cm (range, 3 cm to 20 cm) in patients with the colorectal stricture. There were no procedure-related complications. In conclusion, the multifunctional coil catheter seems to be useful in colorectal stent placement. (orig.)

  3. Performance evaluation of matrix gradient coils. (United States)

    Jia, Feng; Schultz, Gerrit; Testud, Frederik; Welz, Anna Masako; Weber, Hans; Littin, Sebastian; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim


    In this paper, we present a new performance measure of a matrix coil (also known as multi-coil) from the perspective of efficient, local, non-linear encoding without explicitly considering target encoding fields. An optimization problem based on a joint optimization for the non-linear encoding fields is formulated. Based on the derived objective function, a figure of merit of a matrix coil is defined, which is a generalization of a previously known resistive figure of merit for traditional gradient coils. A cylindrical matrix coil design with a high number of elements is used to illustrate the proposed performance measure. The results are analyzed to reveal novel features of matrix coil designs, which allowed us to optimize coil parameters, such as number of coil elements. A comparison to a scaled, existing multi-coil is also provided to demonstrate the use of the proposed performance parameter. The assessment of a matrix gradient coil profits from using a single performance parameter that takes the local encoding performance of the coil into account in relation to the dissipated power.

  4. A New Type of Hydraulic Muscle

    Directory of Open Access Journals (Sweden)

    Nitai Drimer


    Full Text Available This paper presents the invention and development of a new fundamental type of hydraulic actuator, aimed at delivering better actuation efficiency. This actuator is a flexible tube, composed of two different materials, which deflects while applying inner pressure. This concept is simple to produce, and allows adaptation of the deflected shape by the design parameters (radius, wall thickness, geometry, etc.. Among other applications, it is mostly suitable for the activation of fins of nature-like marine robots. Theoretical formulation, production of prototypes and actuation experiments are presented, as well as material hysteresis research and an application example.

  5. Quenching in coupled adiabatic coils

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.E.C.


    The prediction of the effects of a quench on stress and temperature is an important aspect of the design of superconducting magnets. Of particular interest, and the exclusive topic of this study, is the prediction of the effects of quenching in coupled adiabatic coils, such as the multi-section windings of a high field NMR spectrometer magnet. The predictive methods used here are based on the measurement of the time of propagation of quench between turns. From this measurement an approximate algorithum for the propagation time is used in a code which solves the linear differential equations for the coil currents and calculates the movement of normal zone boundaries and hence the associated winding resistance.

  6. Starch gelatinization in coiled heaters. (United States)

    Kelder, J D H; Ptasinski, K J; Kerkhof, P J A M


    A gelatinizing model food derived from a 5% w/w cross-linked waxy maize starch suspension was simulated in coiled heaters to assess the impact of centrifugal forces on flow and heat transfer. For four coil diameters (D = 0.25, 1, 2.5, and infinity m) and three flow rates (w = 0.5, 1, and 2 m/s), heat transfer, viscous development, and the severity of channeling were evaluated. Increasing curvature proved to suppress channeling as a result of more uniform heating and gelatinization. The maximum attainable viscosity was also higher, implying a lower starch consumption for a target viscosity. Higher flow rates necessitated longer heaters, and the maximum viscosity decreased. Moderate product velocities are therefore recommended.

  7. Coiled transmission line pulse generators

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Kenneth Fox (Columbia, MO)


    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  8. Self-correction coil: operation mechanism of self-correction coil

    Energy Technology Data Exchange (ETDEWEB)

    Hosoyama, K.


    We discuss here the operation mechanism of self-correction coil with a simple model. At the first stage, for the ideal self-correction coil case we calculate the self-inductance L of self-correction coil, the mutual inductance M between the error field coil and the self-correction coil, and using the model the induced curent in the self-correction coil by the external magnetic error field and induced magnetic field by the self-correction coil. And at the second stage, we extend this calculation method to non-ideal self-correction coil case, there we realize that the wire distribution of self-correction coil is important to get the high enough self-correction effect. For measure of completeness of self-correction effect, we introduce the efficiency eta of self-correction coil by the ratio of induced magnetic field by the self-correction coil and error field. As for the examples, we calculate L, M and eta for two cases; one is a single block approximation of self-correction coil winding and the other is a two block approximation case. By choosing the adequate angles of self-correction coil winding, we can get about 98% efficiency for single block approximation case and 99.8% for two block approximation case. This means that by using the self-correction coil we can improve the field quality about two orders.

  9. Demonstration for the Applicability of the EPRI ETSS on the SG Tube Wear Defects Formed at the Tube Support Structure

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ki Seok; Cheon, Keun Young; Nam, Min Woo [Korea Hydro and Nuclear Power Co. Ltd, Daejeon (Korea, Republic of); Min, Kyong Mahn [Universal Monitoring and Inspection Inc., Daejeon (Korea, Republic of)


    tubes of domestic OPR-1000 were found by Eddy Current Testing(ECT) and those abnormally greater defects were not expected considering the known growth rate of the wear defects. To obtain the precise depth and profile of the wear defect, specific wear scar standard tube containing a variety of wear depth was fabricated and Bobbin coils and MRPC{sup R} (Motorized Rotating Pancake Coils) were applied to the STD tube and subsequently the SG tubes were examined by those probes.

  10. Coiled-coil protein composition of 22 proteomes – differences and common themes in subcellular infrastructure and traffic control

    Directory of Open Access Journals (Sweden)

    Meier Iris


    Full Text Available Abstract Background Long alpha-helical coiled-coil proteins are involved in diverse organizational and regulatory processes in eukaryotic cells. They provide cables and networks in the cyto- and nucleoskeleton, molecular scaffolds that organize membrane systems and tissues, motors, levers, rotating arms, and possibly springs. Mutations in long coiled-coil proteins have been implemented in a growing number of human diseases. Using the coiled-coil prediction program MultiCoil, we have previously identified all long coiled-coil proteins from the model plant Arabidopsis thaliana and have established a searchable Arabidopsis coiled-coil protein database. Results Here, we have identified all proteins with long coiled-coil domains from 21 additional fully sequenced genomes. Because regions predicted to form coiled-coils interfere with sequence homology determination, we have developed a sequence comparison and clustering strategy based on masking predicted coiled-coil domains. Comparing and grouping all long coiled-coil proteins from 22 genomes, the kingdom-specificity of coiled-coil protein families was determined. At the same time, a number of proteins with unknown function could be grouped with already characterized proteins from other organisms. Conclusion MultiCoil predicts proteins with extended coiled-coil domains (more than 250 amino acids to be largely absent from bacterial genomes, but present in archaea and eukaryotes. The structural maintenance of chromosomes proteins and their relatives are the only long coiled-coil protein family clearly conserved throughout all kingdoms, indicating their ancient nature. Motor proteins, membrane tethering and vesicle transport proteins are the dominant eukaryote-specific long coiled-coil proteins, suggesting that coiled-coil proteins have gained functions in the increasingly complex processes of subcellular infrastructure maintenance and trafficking control of the eukaryotic cell.

  11. Performance of water source heat pump system using high-density polyethylene tube heat exchanger wound with square copper wire

    Directory of Open Access Journals (Sweden)

    Xin Wen Zhang


    Full Text Available Surface water source heat pump system is an energy-efficient heat pump system. Surface water heat exchanger is an important part of heat pump system that can affect the performance of the system. In order to enhance the performance of the system, the overall heat transfer coefficient (U value of the water exchanger using a 32A square copper coiled high-density polyethylene tube was researched. Comparative experiments were conducted between the performance of the coiled high-density polyethylene tube and the 32A smooth high-density polyethylene tube. At the same time, the coefficient of performance of the heat pump was investigated. According to the result, the U value of the coiled tube was 18% higher than that of the smooth tube in natural convection and 19% higher in forced convection. The coefficient of performance of the heat pump with the coiled tube is higher than that with the smooth tube. The economic evaluation of the coiled tube was also investigated.

  12. Mosquito coil emissions and health implications. (United States)

    Liu, Weili; Zhang, Junfeng; Hashim, Jamal H; Jalaludin, Juliana; Hashim, Zailina; Goldstein, Bernard D


    Burning mosquito coils indoors generates smoke that can control mosquitoes effectively. This practice is currently used in numerous households in Asia, Africa, and South America. However, the smoke may contain pollutants of health concern. We conducted the present study to characterize the emissions from four common brands of mosquito coils from China and two common brands from Malaysia. We used mass balance equations to determine emission rates of fine particles (particulate matter pollutant concentrations resulting from burning mosquito coils could substantially exceed health-based air quality standards or guidelines. Under the same combustion conditions, the tested Malaysian mosquito coils generated more measured pollutants than did the tested Chinese mosquito coils. We also identified a large suite of volatile organic compounds, including carcinogens and suspected carcinogens, in the coil smoke. In a set of experiments conducted in a room, we examined the size distribution of particulate matter contained in the coil smoke and found that the particles were ultrafine and fine. The findings from the present study suggest that exposure to the smoke of mosquito coils similar to the tested ones can pose significant acute and chronic health risks. For example, burning one mosquito coil would release the same amount of PM(2.5) mass as burning 75-137 cigarettes. The emission of formaldehyde from burning one coil can be as high as that released from burning 51 cigarettes.

  13. Trend of hydraulic units

    Energy Technology Data Exchange (ETDEWEB)

    Deshimaru, Jun' ichi


    The gear, vane and piston pumps occupy a more then 90% share in the hydraulic pumps. Comparatively large pumps are mainly variable delivery piston pumps. The piston pumps are comparatively high in output density (output per unit weight), indicating the hydraulic pump in performance, and tend to become higher and higher in it. Though they are mainly 210 to 350kgf/cm/sup 2/ in rated pressure, some of them come to surpass 400kgf/cm/sup 3/ in it. While the progress in computation also requires the high speed operation, high accuracy and other severe conditions for the hydraulic units, which accordingly and increasingly intensify the requirement for hydraulic oil in abrasion resistibility, oxidation stability and response characteristics. While cavitation comes to easily occur, which considerably and disadvantageously influences hydraulic oil in life through degradation, noise level and respondingness. From now on, the development of high performance oil and study of mechanical structure are important. 19 references, 9 figures, 2 tables.

  14. photomultiplier tube

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  15. photomultiplier tubes

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  16. Test of the ITER TF Insert and Central Solenoid Model Coil

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, N; Takayasu, M; Minervini, J; Isono, T; Sugimoto, M; Kato, T; Kawano, K; Koisumi, N; Nakajima, H; Nunova, Y; Okuno, K; Tsuji, H; Oshikiri, M; Mitchell, N; Takahashi, Y; Egorov, S; Rodin, I; Zanino, R; Savoldi, L


    The Central Solenoid Model Coil (CSMC) was designed and built by ITER collaboration between the European Union, Japan, Russian Federation and the United States in 1993-2001. Three heavily instrumented insert coils have been also built for testing in the background field of the CSMC to cover a wide operational space. The TF Insert was designed and built by the Russian Federation to simulate the conductor performance under the ITER TF coil conditions. The TF Insert Coil was tested in the CSMC Test Facility at the Japan Atomic Energy Research Institute, Naka, Japan in September-October 2001. Some measurements were performed also on the CSMC to study effects of electromagnetic and cooldown cycles. The TF Insert coil was charged successfully, without training, in the background field of the CSMC to the design current of 46 kA at 13 T peak field. The TF Insert met or exceeded all design objectives, however some interesting results require thorough analyses. This paper presents the overview of main results of the testing--magnet critical parameters, ac losses, joint performance, effect of cycles on performance, quench and thermo-hydraulic characteristics and some results of the post-test analysis.

  17. Cavitation in Hydraulic Machinery

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, M.


    The main purpose of this doctoral thesis on cavitation in hydraulic machinery is to change focus towards the coupling of non-stationary flow phenomena and cavitation. It is argued that, in addition to turbulence, superimposed sound pressure fluctuations can have a major impact on cavitation and lead to particularly severe erosion. For the design of hydraulic devices this finding may indicate how to further limit the cavitation problems. Chapter 1 reviews cavitation in general in the context of hydraulic machinery, emphasizing the initial cavitation event and the role of the water quality. Chapter 2 discusses the existence of pressure fluctuations for situations common in such machinery. Chapter 3 on cavitation dynamics presents an algorithm for calculating the nucleation of a cavity cluster. Chapter 4 describes the equipment used in this work. 53 refs., 55 figs.,10 tabs.

  18. Optimization of Heat-Sink Cooling Structure in EAST with Hydraulic Expansion Technique%Optimization of Heat-Sink Cooling Structure in EAST with Hydraulic Expansion Technique

    Institute of Scientific and Technical Information of China (English)

    许铁军; 黄生洪; 谢韩; 宋云涛; 张平; 戢翔; 高大明


    Considering utilization of the original chromium-bronze material, two processing techniques including hydraulic expansion and high temperature vacuum welding were proposed for the optimization of heat-sink structure in EAST. The heat transfer performance of heat-sink with or without cooling tube was calculated and different types of connection between tube and heat-sink were compared by conducting a special test. It is shown from numerical analysis that the diameter of heat-sink channel can be reduced from 12 mm to 10 mm. Compared with the original sample, the thermal contact resistance between tube and heat-sink for welding sample can reduce the heat transfer performance by 10%, while by 20% for the hydraulic expansion sample. However, the welding technique is more complicated and expensive than hydraulic expansion technique. Both the processing technique and the heat transfer performance of heat-sink prototype should be further considered for the optimization of heat-sink structure in EAST.

  19. The coiled coils of cohesin are conserved in animals, but not in yeast.

    Directory of Open Access Journals (Sweden)

    Glenn E White

    Full Text Available BACKGROUND: The SMC proteins are involved in DNA repair, chromosome condensation, and sister chromatid cohesion throughout Eukaryota. Long, anti-parallel coiled coils are a prominent feature of SMC proteins, and are thought to serve as spacer rods to provide an elongated structure and to separate domains. We reported recently that the coiled coils of mammalian condensin (SMC2/4 showed moderate sequence divergence (approximately 10-15% consistent with their functioning as spacer rods. The coiled coils of mammalian cohesins (SMC1/3, however, were very highly constrained, with amino acid sequence divergence typically <0.5%. These coiled coils are among the most highly conserved mammalian proteins, suggesting that they make extensive contacts over their entire surface. METHODOLOGY/PRINCIPAL FINDINGS: Here, we broaden our initial analysis of condensin and cohesin to include additional vertebrate and invertebrate organisms and multiple species of yeast. We found that the coiled coils of SMC1/3 are highly constrained in Drosophila and other insects, and more generally across all animal species. However, in yeast they are no more constrained than the coils of SMC2/4 and Ndc80/Nuf2p, suggesting that they are serving primarily as spacer rods. CONCLUSIONS/SIGNIFICANCE: SMC1/3 functions for sister chromatid cohesion in all species. Since its coiled coils apparently serve only as spacer rods in yeast, it is likely that this is sufficient for sister chromatid cohesion in all species. This suggests an additional function in animals that constrains the sequence of the coiled coils. Several recent studies have demonstrated that cohesin has a role in gene expression in post-mitotic neurons of Drosophila, and other animal cells. Some variants of human Cornelia de Lange Syndrome involve mutations in human SMC1/3. We suggest that the role of cohesin in gene expression may involve intimate contact of the coiled coils of SMC1/3, and impose the constraint on sequence

  20. Optimum coil insertion speed of various coils in brain aneurysm embolization in vitro. (United States)

    Konishi, Yoshifumi; Takeuchi, Masataka; Fukasaku, Kazuaki


    A coil must comprise material with shape memory to perform optimal coil embolization. To achieve this, the alloy characteristics of the coil (hardness, shape, and thickness) must be understood. In this experiment, a catheter was fixed in the bright position and the movement of the coil was observed under a constant rate of insertion; the optimal insertion rate during clinical use was investigated. The first coil insertion speed was evaluated using simulated aneurysms in an in vivo arterial model. The results showed that the insertion force relates to the deployment shape of the coil, that the feedback through the force indicator using sound is very effective, and that the recorder is useful for analysis of coil embolization. The inserted coils during aneurysm embolization were able to wind uniformly within the aneurysm due to a variety of factors (guiding or micro-catheter position and kick-back phenomenon such as delivery wire). Optimal speed is achieved with proper coil design, which allows the coil to be inserted into the aneurysm. The shape and size of the aneurysm can help determine the necessary size and design of the coil that should be used during the optimal speed range. Aneurysm wall and coil characteristics are considered, along with the friction state of the coil (hardness, shape, and thickness), leading to improvements in safety during the insertion procedure at optimum speed.

  1. Rock specific hydraulic fracturing and matrix acidizing to enhance a geothermal system — Concepts and field results (United States)

    Zimmermann, Günter; Blöcher, Guido; Reinicke, Andreas; Brandt, Wulf


    treatment, a total of 100 ton of high strength proppants was injected with 500 m 3 of cross-linked gel. The subsequent production test in conjunction with flowmeter logging showed an improvement of productivity by a factor of more than 4. Due to assumed residual drilling mud (constituents: calcite, dolomite, and aragonite) in the near-wellbore vicinity, an acid matrix stimulation was performed thereafter using a coil tubing unit. The following nitrogen lift test demonstrated another increase of productivity by 30-50% to an overall increase by a factor of 5.5-6.2.

  2. Unusually Stable Helical Coil Allotrope of Phosphorus. (United States)

    Liu, Dan; Guan, Jie; Jiang, Jingwei; Tománek, David


    We have identified an unusually stable helical coil allotrope of phosphorus. Our ab initio density functional theory calculations indicate that the uncoiled, isolated straight one-dimensional chain is equally stable as a monolayer of black phosphorus dubbed phosphorene. The coiling tendency and the attraction between adjacent coil segments add an extra stabilization energy of ∼12 meV/atom to the coil allotrope, similar in value to the ∼16 meV/atom interlayer attraction in bulk black phosphorus. Thus, the helical coil structure is essentially as stable as black phosphorus, the most stable phosphorus allotrope known to date. With an optimum radius of 2.4 nm, the helical coil of phosphorus may fit well and even form inside wide carbon nanotubes.

  3. The Golgin Family of Coiled-Coil Tethering Proteins

    Directory of Open Access Journals (Sweden)

    Tomasz M Witkos


    Full Text Available The golgins are a family of predominantly coiled-coil proteins that are localized to the Golgi apparatus. Golgins are present in all eukaryotes, suggesting an evolutionary conserved function. Golgins are anchored to the Golgi membrane by their carboxy terminus and are predicted to adopt an extended conformation that projects into the surrounding cytoplasm. This arrangement is ideal for the capture or tethering of nearby membranes or cytoskeletal elements. Golgin-mediated tethering is thought to be important for vesicular traffic at the Golgi apparatus, the maintenance of Golgi architecture, as well as the positioning of the Golgi apparatus within cells. In addition to acting as tethers, some golgins can also sequester various factors at the Golgi membrane, allowing for the spatiotemporal regulation of downstream cellular functions. Although it is now established that golgins are membrane and cytoskeleton tethers, the mechanisms underlying tethering remain poorly defined. Moreover, the importance of golgin-mediated tethering in a physiological context remains to be fully explored. This review will describe our current understanding of golgin function, highlighting recent progress that has been made, and goes on to discuss outstanding questions and potential avenues for future research with regard to this family of conserved Golgi-associated proteins.

  4. Force modulated conductance of artificial coiled-coil protein monolayers. (United States)

    Atanassov, Alexander; Hendler, Ziv; Berkovich, Inbal; Ashkenasy, Gonen; Ashkenasy, Nurit


    Studies of charge transport through proteins bridged between two electrodes have been the subject of intense research in recent years. However, the complex structure of proteins makes it difficult to elucidate transport mechanisms, and the use of simple peptide oligomers may be an over simplified model of the proteins. To bridge this structural gap, we present here studies of charge transport through artificial parallel coiled-coil proteins conducted in dry environment. Protein monolayers uniaxially oriented at an angle of ∼ 30° with respect to the surface normal were prepared. Current voltage measurements, obtained using conductive-probe atomic force microscopy, revealed the mechano-electronic behavior of the protein films. It was found that the low voltage conductance of the protein monolayer increases linearly with applied force, mainly due to increase in the tip contact area. Negligible compression of the films for loads below 26 nN allowed estimating a tunneling attenuation factor, β(0) , of 0.5-0.6 Å(-1) , which is akin to charge transfer by tunneling mechanism, despite the comparably large charge transport distance. These studies show that mechano-electronic behavior of proteins can shed light on their complex charge transport mechanisms, and on how these mechanisms depend on the detailed structure of the proteins. Such studies may provide insightful information on charge transfer in biological systems.

  5. Hydraulics and pneumatics

    CERN Document Server

    Parr, Andrew


    Nearly all industrial processes require objects to be moved, manipulated or subjected to some sort of force. This is frequently accomplished by means of electrical equipment (such as motors or solenoids), or via devices driven by air (pneumatics) or liquids (hydraulics).This book has been written by a process control engineer as a guide to the operation of hydraulic and pneumatic systems for all engineers and technicians who wish to have an insight into the components and operation of such a system.This second edition has been fully updated to include all recent developments su

  6. Popeye Project: Hydraulic umbilical

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, K.G.; Williams, V.T.


    For the Popeye Project, the longest super-duplex hydraulic umbilical in the world was installed in the Gulf of Mexico. This paper reports on its selection and project implementation. Material selection addresses corrosion in seawater, water-based hydraulic fluid, and methanol. Five alternatives were considered: (1) carbon-steel with traditional coating and anodes, (2) carbon-steel coated with thermally sprayed aluminum, (3) carbon-steel sheathed in aluminum, (4) super-duplex, and (5) titanium. The merits and risks associated with each alternative are discussed. The manufacture and installation of the selected umbilical are also reported.

  7. Hydraulic Arm Modeling via Matlab SimHydraulics


    Věchet, Stanislav; Krejsa, Jiří


    System modeling is a vital tool for cost reduction and design process speed up in most engineering fields. The paper is focused on modeling of hydraulic arm as a part of intelligent prosthesis project, in the form of 2DOF open kinematic chain. The arm model combines mechanical, hydraulic and electric subsystems and uses Matlab as modeling tool. SimMechanics Matlab extension is used for mechanical part modeling, SimHydraulics toolbox is used for modeling of hydraulic circuit used for actuating...


    Institute of Scientific and Technical Information of China (English)

    WANG Fu-jun; LI Xiao-qin; MA Jia-mei; YANG Min; ZHU Yu-liang


    The features of unsteady flow such as pressure variation and fluctuation in a large hydraulic turbine usually lead to the instability of operation.This article reports the recent in site investigation concerning the characteristic frequencies in pressure fluctuation,shaft torsional oscillation and structural vibration of a prototype 700 MW Francis turbine unit.The investigation was carried out for a wide load range of 200 MW-700 MW in the condition of water head 57 m-90 m.An extensive analysis of both time-history and frequency data of these unsteady hydraulic behaviours was conducted.It was observed that the pressure fluctuation in a draft tube is stronger than that in upstream flow passage.The low frequency with about one third of rotation frequency is dominative for the pressure fluctuation in part load range.Also the unsteady features of vibration of head cover and torsional oscillation of shaft exhibited the similar features.Numerical analysis showed that the vibration and oscillation are caused by vortex rope in the draft tube.In addition,a strong vibration with special characteristic frequency was observed for the head cover in middle load range.The pressure fluctuation in the draft tube with the same frequency was also recorded.Because this special vibration has appeared in the designed normal running condition,it should be avoided by carefully allocating power load in the future operation.

  9. An Experimental Study on Constraint Cooling Process of Hot-rolled CoilS

    Institute of Scientific and Technical Information of China (English)

    Lijuan WANG; Chunli ZHANG


    In order to master mechanical property, surface quality and microstructure of constraint cooling (CC) coils undervarious water cooling parameters, more than 100 coils cooling experiments were done with real production process,of which is designed a coolin

  10. Transport vesicle tethering at the trans Golgi network: coiled coil proteins in action

    Directory of Open Access Journals (Sweden)

    Pak-yan Patricia Cheung


    Full Text Available The Golgi complex is decorated with so-called Golgin proteins that share a common feature: a large proportion of their amino acid sequences are predicted to form coiled-coil structures. The possible presence of extensive coiled coils implies that these proteins are highly elongated molecules that can extend a significant distance from the Golgi surface. This property would help them to capture or trap inbound transport vesicles and to tether Golgi mini-stacks together. This review will summarize our current understanding of coiled coil tethers that are needed for the receipt of transport vesicles at the trans Golgi network. How do long tethering proteins actually catch vesicles? Golgi-associated, coiled coil tethers contain numerous binding sites for small GTPases, SNARE proteins, and vesicle coat proteins. How are these interactions coordinated and are any or all of them important for the tethering process? Progress towards understanding these questions and remaining, unresolved mysteries will be discussed.

  11. A tube-in-tube thermophotovoltaic generator

    Energy Technology Data Exchange (ETDEWEB)

    Ashcroft, J.; Campbell, B.; Depoy, D.


    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell.


    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydraulic procedures for estimating flood discharges for a flood insurance...


    Institute of Scientific and Technical Information of China (English)

    LI Zhong; LI Chunfeng


    A loose coupling method is used to solve the electromagnetic tube bulging. ANSYS/EM AG is used to model the time varying electromagnetic field with the discharge current used as excitation, in order to obtain the radial and axial magnetic pressure acting on the tube, the magnetic pressure is then used as boundary conditions to model the high velocity deformation of tube with DYNAFORM. The radial magnetic pressure on the tube decreases from the center to the tube end,axial magnetic pressure is greater near the location equal to the coil height and slight in the other region. The radial displacement of deformed workpieces is distributed uniformly near the tube center and decreases from the center to the end; Deformation from the location equal to coil height to the tube end is little. This distribution is consistent with the distribution of radial pressure; Effect of the axial magnetic pressure on deformation can be ignored. The calculated results show well agreements with the experimental results.

  14. Hydraulic hoist-press

    Energy Technology Data Exchange (ETDEWEB)

    Babayev, Z.B.; Abashev, Z.V.


    The efficiency expert of the Angrenskiy production-technological administration of the production association Sredazugol A. V. Bubnov has suggested a hydraulic hoist-press for repairing road equipment which is a device consisting of lifting mechanism, press and test stand for verifying the high pressure hoses and pumps.

  15. Modelling of Hydraulic Robot

    DEFF Research Database (Denmark)

    Madsen, Henrik; Zhou, Jianjun; Hansen, Lars Henrik


    This paper describes a case study of identifying the physical model (or the grey box model) of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application...

  16. Water Treatment Technology - Hydraulics. (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on hydraulics provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: head loss in pipes in series, function loss in…

  17. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn


    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on-going...

  18. Superconducting Coil of Po Dipole

    CERN Multimedia


    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam P0. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench.After this successful test up to its nominal field of 4.2 T, the power was not raised to reach a quench. The magnet was not installed in a beam and had no other further use. Nevertheless its construction provided knowledges and experience which became useful in the design and construction of the LHC magnets. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8211532X.

  19. The numerical simulation based on CFD of hydraulic turbine pump (United States)

    Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.


    As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.

  20. Multicoil2: predicting coiled coils and their oligomerization states from sequence in the twilight zone.

    Directory of Open Access Journals (Sweden)

    Jason Trigg

    Full Text Available The alpha-helical coiled coil can adopt a variety of topologies, among the most common of which are parallel and antiparallel dimers and trimers. We present Multicoil2, an algorithm that predicts both the location and oligomerization state (two versus three helices of coiled coils in protein sequences. Multicoil2 combines the pairwise correlations of the previous Multicoil method with the flexibility of Hidden Markov Models (HMMs in a Markov Random Field (MRF. The resulting algorithm integrates sequence features, including pairwise interactions, through multinomial logistic regression to devise an optimized scoring function for distinguishing dimer, trimer and non-coiled-coil oligomerization states; this scoring function is used to produce Markov Random Field potentials that incorporate pairwise correlations localized in sequence. Multicoil2 significantly improves both coiled-coil detection and dimer versus trimer state prediction over the original Multicoil algorithm retrained on a newly-constructed database of coiled-coil sequences. The new database, comprised of 2,105 sequences containing 124,088 residues, includes reliable structural annotations based on experimental data in the literature. Notably, the enhanced performance of Multicoil2 is evident when tested in stringent leave-family-out cross-validation on the new database, reflecting expected performance on challenging new prediction targets that have minimal sequence similarity to known coiled-coil families. The Multicoil2 program and training database are available for download from

  1. Accommodation of structural rearrangements in the huntingtin-interacting protein 1 coiled-coil domain

    Energy Technology Data Exchange (ETDEWEB)

    Wilbur, Jeremy D., E-mail: [Graduate Program in Biophysics, University of California, San Francisco, California 94143 (United States); Hwang, Peter K. [Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143 (United States); Brodsky, Frances M. [The G. W. Hooper Foundation, Departments of Microbiology and Immunology and of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143 (United States); Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143 (United States); Fletterick, Robert J. [Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143 (United States); Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143 (United States); Graduate Program in Biophysics, University of California, San Francisco, California 94143 (United States)


    Variable packing interaction related to the conformational flexibility within the huntingtin-interacting protein 1 coiled coil domain. Huntingtin-interacting protein 1 (HIP1) is an important link between the actin cytoskeleton and clathrin-mediated endocytosis machinery. HIP1 has also been implicated in the pathogenesis of Huntington’s disease. The binding of HIP1 to actin is regulated through an interaction with clathrin light chain. Clathrin light chain binds to a flexible coiled-coil domain in HIP1 and induces a compact state that is refractory to actin binding. To understand the mechanism of this conformational regulation, a high-resolution crystal structure of a stable fragment from the HIP1 coiled-coil domain was determined. The flexibility of the HIP1 coiled-coil region was evident from its variation from a previously determined structure of a similar region. A hydrogen-bond network and changes in coiled-coil monomer interaction suggest that the HIP1 coiled-coil domain is uniquely suited to allow conformational flexibility.

  2. Bucking Coil Implementation on PMT for Active Cancelling of Magnetic Field

    CERN Document Server

    Gogami, T; Bono, J; Baturin, P; Chen, C; Chiba, A; Chiga, N; Fujii, Y; Hashimoto, O; Kawama, D; Maruta, T; Maxwell, V; Mkrtchyan, A; Nagao, S; Nakamura, S N; Reinhold, J; Shichijo, A; Tang, L; Taniya, N; Wood, S A; Ye, Z


    Aerogel and water Cerenkov detectors were employed to tag kaons for a lambda hypernuclear spectroscopic experiment which used the (e,e'K+) reaction in experimental Hall C at Jefferson Lab (JLab E05-115). Fringe fields from the kaon spectrometer magnet yielded ~5 Gauss at the photomultiplier tubes (PMT) for these detectors which could not be easily shielded. As this field results in a lowered kaon detection efficiency, we implemented a bucking coil on each photomultiplier tubes to actively cancel this magnetic field, thus maximizing kaon detection efficiency.

  3. Flow and heat transfer of petal shaped double tube (United States)

    Shakouchi, Toshihiko; Kawashima, Yuki; Tsujimoto, Koichi; Ando, Toshitake


    In this study, the flow and heat transfer characteristics of petal-shaped double tube with 6 petals are examined experimentally for a compact heat exchanger. As results, the heat transfer rate, Q, of the 6 petal shaped double tube (6-p tube) is much larger than that, Qp, of conventional circular double tube in all Reynolds number Rein,h (where, the reference length is hydraulic diameter) ranges. For example, at Rein,h =(0.5~1.0)× 104 it is about 4 times of Qp. The heat transfer enhancement of 6-p tube is by the increase of heat transfer area, wetting perimeter, and a highly fluctuating flow, and Q of the 6-p tube can be expressed by Q [kW/m] = 0.54Rein,h + 2245.

  4. Flow Injection Analysis of Acid and Base using Thermo-Sensitive Resistance Coils



    A flow injection analysis of acid-base by detecting neutralization heat is proposed. A injected sample (acid or base), combined with a carrier (deionized water), was mixed with a reagent (base or acid) stream. A change in the solution temperature was detected by passing the solution, immediately after mixing, through a stainless steel capillary tube around which a thermo-sensitive resistance was coiled. The temperature of carrier was used as a reference Hydrochloric acid solutions of 0.003 to...

  5. Feeding tube - infants (United States)

    ... this page: // Feeding tube - infants To use the sharing features on this page, please enable JavaScript. A feeding tube is a small, soft, plastic tube placed ...

  6. Heat Transfer Studies in Tube Banks with Integral Wake Splitters

    Directory of Open Access Journals (Sweden)

    Suzairin Md Seri


    Full Text Available This paper reports the findings from heat transfer studies with the presence of extended surfaces from tube banks which are termed as integral wake splitter plates. Employing this type of fins, investigations on heat transfer characteristics on a single circular tube as well as tube banks were carried out in cross flow of air in a rectangular duct. Experiments were carried out in the Reynolds number range 5 x 103 to 105 on a single cylinder of various splitter length-to-tube diameter ratios, L/D = 0.5, 1.0, 1.5 and 2.0. Further, tube banks consisting of 12 rows and 3 tubes per row in equilateral triangle arrangements with transverse pitch to diameter ratio, a = 2, were also investigated, the banks being made up of plain tubes or tubes with splitters. Heat transfer characteristics were studied for tubes with L/D = 0, 0.5 and 1.0 under constant heat flux conditions. Tube banks with L/D = 1.0 yielded the highest heat transfer rates. Findings from this work may be adopted to be utilized in various industrial applications such as economizer of a steam boiler, air-conditioning coils or waste heat recovery systems.

  7. Numerical modeling of consolidation processes in hydraulically deposited soils (United States)

    Brink, Nicholas Robert

    Hydraulically deposited soils are encountered in many common engineering applications including mine tailing and geotextile tube fills, though the consolidation process for such soils is highly nonlinear and requires the use of advanced numerical techniques to provide accurate predictions. Several commercially available finite element codes poses the ability to model soil consolidation, and it was the goal of this research to assess the ability of two of these codes, ABAQUS and PLAXIS, to model the large-strain, two-dimensional consolidation processes which occur in hydraulically deposited soils. A series of one- and two-dimensionally drained rectangular models were first created to assess the limitations of ABAQUS and PLAXIS when modeling consolidation of highly compressible soils. Then, geotextile tube and TSF models were created to represent actual scenarios which might be encountered in engineering practice. Several limitations were discovered, including the existence of a minimum preconsolidation stress below which numerical solutions become unstable.

  8. Tube-shape verifier (United States)

    Anderson, A. N.; Christ, C. R.


    Inexpensive apparatus checks accuracy of bent tubes. Assortment of slotted angles and clamps is bolted down to flat aluminum plate outlining shape of standard tube bent to desired configuration. Newly bent tubes are then checked against this outline. Because parts are bolted down, tubes can be checked very rapidly without disturbing outline. One verifier per tube-bending machine can really speed up production in tube-bending shop.

  9. 49 CFR 236.730 - Coil, receiver. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Coil, receiver. 236.730 Section 236.730 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Coil, receiver. Concentric layers of insulated wire wound around the core of a receiver of an...

  10. Operator coil monitoring Acceptance Test Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Erhart, M.F.


    The readiness of the Data Acquisition and Control System (DACS) to provide monitoring and control of the Programmable Logic Controller (PLC) abort coils from the Master and RSS stations will be systematically tested during performance of this procedure. It should be noted that these are not physical abort coils but software coils controlled by the software`s ladder logic. The readiness of the DACS to properly interface with the ENRAF wire level gauge installed in the SY-101 storage tank will also be tested. During this test, a verification of all abort coil indications will be conducted at the DACS Development Facility in the 306E Building by injecting an input signal for each DACS sensor that has an associated abort coil until the abort coil actuates, and then ensuring that the status of the abort coil indicated at the Master and RSS stations is correct. Each abort coil will also be tested to ensure that the ``ENABLE`` and ``DISABLE`` controls from the Master and RSS stations function correctly, and only with the use of proper passwords.

  11. Evidence-based pathology: umbilical cord coiling. (United States)

    Khong, T Y


    The generation of a pathology test result must be based on criteria that are proven to be acceptably reproducible and clinically relevant to be evidence-based. This review de-constructs the umbilical cord coiling index to illustrate how it can stray from being evidence-based. Publications related to umbilical cord coiling were retrieved and analysed with regard to how the umbilical coiling index was calculated, abnormal coiling was defined and reference ranges were constructed. Errors and other influences that can occur with the measurement of the length of the umbilical cord or of the number of coils can compromise the generation of the coiling index. Definitions of abnormal coiling are not consistent in the literature. Reference ranges defining hypocoiling or hypercoiling have not taken those potential errors or the possible effect of gestational age into account. Even the way numerical test results in anatomical pathology are generated, as illustrated by the umbilical coiling index, warrants a critical analysis into its evidence base to ensure that they are reproducible or free from errors.

  12. Coil Optimization for High Temperature Superconductor Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech


    This paper presents topology optimization of HTS racetrack coils for large HTS synchronous machines. The topology optimization is used to acquire optimal coil designs for the excitation system of 3 T HTS machines. Several tapes are evaluated and the optimization results are discussed. The optimiz...

  13. Functional investigation of the plant-specific long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC and PICC-LIKE (PICL in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Sowmya Venkatakrishnan

    Full Text Available We have identified and characterized two Arabidopsis long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC and PICC-LIKE (PICL. PICC (147 kDa and PICL (87 kDa are paralogs that consist predominantly of a long coiled-coil domain (expanded in PICC, with a predicted transmembrane domain at the immediate C-terminus. Orthologs of PICC and PICL were found exclusively in vascular plants. PICC and PICL GFP fusion proteins are anchored to the cytoplasmic surface of the endoplasmic reticulum (ER membrane by a C-terminal transmembrane domain and a short tail domain, via a tail-anchoring mechanism. T-DNA-insertion mutants of PICC and PICL as well as the double mutant show an increased sensitivity to the plant abiotic stress hormone abscisic acid (ABA in a post-germination growth response. PICC, but not PICL gene expression is induced by the bacterial pathogen-associated molecular pattern (PAMP flg22. T-DNA insertion alleles of PICC, but not PICL, show increased susceptibility to the non-virulent strain P. syringae pv. tomato DC3000 hrcC, but not to the virulent strain P. syringae pv. tomato DC3000. This suggests that PICC mutants are compromised in PAMP-triggered immunity (PTI. The data presented here provide first evidence for the involvement of a plant long coiled-coil protein in a plant defense response.

  14. Magnetic Fields at the Center of Coils (United States)

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse


    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  15. Evaluation of CFD Methods for Simulation of Two-Phase Boiling Flow Phenomena in a Helical Coil Steam Generator

    Energy Technology Data Exchange (ETDEWEB)

    Pointer, William David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shaver, Dillon [Argonne National Lab. (ANL), Argonne, IL (United States); Liu, Yang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vegendla, Prasad [Argonne National Lab. (ANL), Argonne, IL (United States); Tentner, Adrian [Argonne National Lab. (ANL), Argonne, IL (United States)


    The U.S. Department of Energy, Office of Nuclear Energy charges participants in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program with the development of advanced modeling and simulation capabilities that can be used to address design, performance and safety challenges in the development and deployment of advanced reactor technology. The NEAMS has established a high impact problem (HIP) team to demonstrate the applicability of these tools to identification and mitigation of sources of steam generator flow induced vibration (SGFIV). The SGFIV HIP team is working to evaluate vibration sources in an advanced helical coil steam generator using computational fluid dynamics (CFD) simulations of the turbulent primary coolant flow over the outside of the tubes and CFD simulations of the turbulent multiphase boiling secondary coolant flow inside the tubes integrated with high resolution finite element method assessments of the tubes and their associated structural supports. This report summarizes the demonstration of a methodology for the multiphase boiling flow analysis inside the helical coil steam generator tube. A helical coil steam generator configuration has been defined based on the experiments completed by Polytecnico di Milano in the SIET helical coil steam generator tube facility. Simulations of the defined problem have been completed using the Eulerian-Eulerian multi-fluid modeling capabilities of the commercial CFD code STAR-CCM+. Simulations suggest that the two phases will quickly stratify in the slightly inclined pipe of the helical coil steam generator. These results have been successfully benchmarked against both empirical correlations for pressure drop and simulations using an alternate CFD methodology, the dispersed phase mixture modeling capabilities of the open source CFD code Nek5000.

  16. NMR local coil with adjustable spacing

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, G.T.


    A local coil assembly for use in NMR imaging is described which comprises: a base; a first local coil module mounted to the base and extending upward therefrom; sockets disposed in the base, each at a different distance from the first local coil module; a second local coil module having a connector therein which mates with each of the sockets to enable the second local coil module to be connected to the base at any one of the sockets; and a set of reactive components. The values of the respective reactive components are selected such that the second local oil module may be connected to any of the sockets without any substantial change in the resonant frequency of the assembly.

  17. A study on geometry effect of transmission coil for micro size magnetic induction coil (United States)

    Lee, Kyung Hwa; Jun, Byoung Ok; Kim, Seunguk; Lee, Gwang Jun; Ryu, Mingyu; Choi, Ji-Woong; Jang, Jae Eun


    The effects of transmission (Tx) coil structure have been studied for micro-size magnetic induction coil. The size of the receiving (Rx) coil should be shrunk to the micrometer level for the various new applications such as micro-robot and wireless body implanted devices. In case of the macro-scale magnetic induction coil, the power transmission efficiency is generally considered to be higher as the inductance of the transmission coil became larger; however, the large size difference between macro-size Tx coil and micro-size Rx coil can decrease the power transmission efficiency due to the difference of resonance frequency. Here, we study a correlation of the power transmission with the size and distance between the macro-size Tx and micro-size Rx coils using magnetic induction technique. The maximum power efficiency was 0.28/0.23/0.13/0.12% at the distance of 0.3/1/3/5 cm between Rx and Tx coil. In addition, more efficient wireless power transferring method is suggested with a floating coil for the body implantable devices. The voltage output increased up to 5.4 mV than the original one Tx coil system. The results demonstrated the foundational wireless power transferring system with enhanced power efficiency.

  18. Detection of alpha-helical coiled-coil dimer formation by spin-labeled synthetic peptides: a model parallel coiled-coil peptide and the antiparallel coiled coil formed by a replica of the ProP C-terminus. (United States)

    Hillar, Alexander; Tripet, Brian; Zoetewey, David; Wood, Janet M; Hodges, Robert S; Boggs, Joan M


    Electron paramagnetic resonance spectroscopy was used to determine relative peptide orientation within homodimeric, alpha-helical coiled-coil structures. Introduction of cysteine (Cys) residues into peptides/proteins for spin labeling allows detection of their oligomerization from exchange broadening or dipolar interactions between residues within 25 A of each other. Two synthetic peptides containing Cys substitutions were used: a 35-residue model peptide and the 30-residue ProP peptide. The model peptide is known to form a stable, parallel homodimeric coiled coil, which is partially destabilized by Cys substitutions at heptad a and d positions (peptides C30a and C33d). The ProP peptide, a 30-residue synthetic peptide, corresponds to residues 468-497 of osmoregulatory transporter ProP from Escherichia coli. It forms a relatively unstable, homodimeric coiled coil that is predicted to be antiparallel in orientation. Cys was introduced in heptad g positions of the ProP peptide, near the N-terminus (K473C, creating peptide C473g) or closer to the center of the sequence (E480C, creating peptide C480g). In contrast to the destabilizing effect of Cys substitution at the core heptad a or d positions of model peptides C30a and C33d, circular dichroism spectroscopy showed that Cys substitutions at the heptad g positions of the ProP peptide had little or no effect on coiled-coil stability. Thermal denaturation analysis showed that spin labeling increased the stability of the coiled coil for all peptides. Strong exchange broadening was detected for both C30a and C33d, in agreement with a parallel structure. EPR spectra of C480g had a large hyperfine splitting of about 90 G, indicative of strong dipole-dipole interactions and a distance between spin-labeled residues of less than 9 A. Spin-spin interactions were much weaker for C473g. These results supported the hypothesis that the ProP peptide primarily formed an antiparallel coiled coil, since formation of a parallel dimer

  19. Hydraulic manipulator research at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States); Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States)


    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.

  20. Steam generator tube inspection in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Shigetaka [Japan Power Engineering and Inspection Corp., Tokyo (Japan)


    Steam generator tube inspection was first carried out in 1971 at Mihama Unit-1 that is first PWR plant in Japan, when the plant was brought into the first annual inspection. At that time, inspection was made on sampling basis, and only bobbin coil probe was used. After experiencing various kinds of tube degradations, inspection method was changed from sampling to all number of tubes, and various kinds of probes were used to get higher detectability of flaw. At present, it is required that all the tubes shall be inspected in their full length at each annual inspection using standard bobbin coil probe, and some special probes for certain plants that have susceptibility of occurrence of flaw. Sleeve repaired portion is included in this inspection. As a result of analyses of eddy current testing data, all indications that have been evaluated to be 20% wall thickness or deeper shall be repaired by either plugging or sleeving, where flaw morphology is to be a wastage or wear. Other types of flaw such as IGA/SCC are not allowed to be left inservice when those indications are detected. These inspections are performed according to inspection procedures that are approved by regulatory authority. Actual inspections are witnessed by the Japan Power engineering and inspection corporation (JAPEIC)`s inspectors during data acquisition and analysis, and they issue inspection report to authority for review and approval. It is achieved high safety performance of steam generator through this method of inspections, however. some tube leakage problems were experienced in the past. To prevent recurrence of such events, government is conducting development and verification test program for new eddy current testing technology.

  1. Eddy-current inspection of ferromagnetic tubing using pulsed magnetic saturation

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, C V; Deeds, W E


    A pulsed eddy-current system has been designed and developed for nondestructive evaluation of 2.25Cr-1Mo steam generator tubing from the bore side. Since the tubing is ferromagnetic, a large current pulse is sent through a driver coil to produce magnetic saturation all the way through the tube wall. A pickup coil produces an output pulse that is dependent upon the tube properties as well as the driving pulse. The output pulse heights at selected times are used as data that are computer-correlated with calibration data taken from machined standards. Performance data, circuit diagrams, and computer programs are given for the system, which has been demonstrated to detect small flaws located near the outside of a thick ferromagnetic tube.

  2. Remotely Adjustable Hydraulic Pump (United States)

    Kouns, H. H.; Gardner, L. D.


    Outlet pressure adjusted to match varying loads. Electrohydraulic servo has positioned sleeve in leftmost position, adjusting outlet pressure to maximum value. Sleeve in equilibrium position, with control land covering control port. For lowest pressure setting, sleeve shifted toward right by increased pressure on sleeve shoulder from servovalve. Pump used in aircraft and robots, where hydraulic actuators repeatedly turned on and off, changing pump load frequently and over wide range.

  3. Heat transfer augmentation in a circular tube with winglet vortex generators☆

    Institute of Scientific and Technical Information of China (English)

    Suriya Chokphoemphun; Monsak Pimsarn; Chinaruk Thianpong; Pongjet Promvonge


    The article presents the influence of winglet vortex generators (WVGs) placed in the core flow area on ther-mal performance enhancement of a tube heat exchanger. The experiment was carried out in a uniform wall heat-fluxed tube by varying turbulent alrflow for Reynolds number ranging from 5300 to 24000. In the pres-ent work, the WVGs with an attack angle of 30° were inserted into the test tube at four different winglet pitch ratios (RP=P/D) and three winglet-width or blockage ratios (RB=e/D). The experimental results at various RP and RB values were evaluated and compared with those for smooth tube and tubes with twist-ed tape or wire coil. The measurement reveals that the WVGs enhance considerably the heat transfer and friction loss above the plaln tube, wire coil and twisted tape. The Nusselt number and friction factor increase with the increment of RB and Re but with the decreasing RP. The average Nusselt numbers for the WVGs with various RB are in the range of 2.03–2.34 times above the plaln tube. The thermal performance for the WVGs is found to be much higher than that for the wire coil and twisted tape and is in a range of 1.35–1.59. Also, a numerical investigation is conducted to study the flow structure and heat transfer enhancement mecha-nisms in the winglet-inserted tube.

  4. Undular Hydraulic Jump

    Directory of Open Access Journals (Sweden)

    Oscar Castro-Orgaz


    Full Text Available The transition from subcritical to supercritical flow when the inflow Froude number Fo is close to unity appears in the form of steady state waves called undular hydraulic jump. The characterization of the undular hydraulic jump is complex due to the existence of a non-hydrostatic pressure distribution that invalidates the gradually-varied flow theory, and supercritical shock waves. The objective of this work is to present a mathematical model for the undular hydraulic jump obtained from an approximate integration of the Reynolds equations for turbulent flow assuming that the Reynolds number R is high. Simple analytical solutions are presented to reveal the physics of the theory, and a numerical model is used to integrate the complete equations. The limit of application of the theory is discussed using a wave breaking condition for the inception of a surface roller. The validity of the mathematical predictions is critically assessed using physical data, thereby revealing aspects on which more research is needed

  5. Experimental studies on heat transfer and friction factor characteristics of a turbulent flow for internally grooved tubes

    Directory of Open Access Journals (Sweden)

    Ponnusamy Selvaraj


    Full Text Available This paper reports experimental studies on friction factor, Nusselt number, and thermal hydraulic performance of a tube equipped with the classic three modified internally grooved tubes. Heat transfer and friction factor characteristics and pres- sure drop results have been obtained experimentally for a fully developed water flow in a grooved tube is also reported. Tests were performed for Reynolds number ranges from 5000-13500 for different geometric grooved tubes (circular, square, and rapezium. The ratio of length-to-diameter is 38.69 D. Among the grooved tubes, heat transfer enhancement obtained up to 47% for circular grooved tube, 31% for square grooved tube, and 52% for trapezoidal grooved tube in comparison with the smooth tube. It has been observed that the friction factor high in the case of square grooved tube than those of other tubes.

  6. Simultaneous formation of right- and left-handed anti-parallel coiled-coil interfaces by a coil2 fragment of human lamin A. (United States)

    Kapinos, Larisa E; Burkhard, Peter; Herrmann, Harald; Aebi, Ueli; Strelkov, Sergei V


    The elementary building block of all intermediate filaments (IFs) is a dimer featuring a central α-helical rod domain flanked by the N- and C-terminal end domains. In nuclear IF proteins (lamins), the rod domain consists of two coiled-coil segments, coil1 and coil2, that are connected by a short non-helical linker. Coil1 and the C-terminal part of coil2 contain the two highly conserved IF consensus motifs involved in the longitudinal assembly of dimers. The previously solved crystal structure of a lamin A fragment (residues 305-387) corresponding to the second half of coil2 has yielded a parallel left-handed coiled coil. Here, we present the crystal structure and solution properties of another human lamin A fragment (residues 328-398), which is largely overlapping with fragment 305-387 but harbors a short segment of the tail domain. Unexpectedly, no parallel coiled coil forms within the crystal. Instead, the α-helices are arranged such that two anti-parallel coiled-coil interfaces are formed. The most significant interface has a right-handed geometry, which is accounted for by a characteristic 15-residue repeat pattern that overlays with the canonical heptad repeat pattern. The second interface is a left-handed anti-parallel coiled coil based on the predicted heptad repeat pattern. In solution, the fragment reveals only a weak dimerization propensity. We speculate that the C-terminus of coil2 might unzip, thereby allowing for a right-handed coiled-coil interface to form between two laterally aligned dimers. Such an interface might co-exist with a heterotetrameric left-handed coiled-coil assembly, which is expected to be responsible for the longitudinal A(CN) contact.

  7. Experimental Validation of Mathematical Framework for Fast Switching Valves used in Digital Hydraulic Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Roemer, Daniel Beck; Bech, Michael Møller;


    A prototype of a fast switching valve designed for a digital hydraulic transmission has been manufactured and experimentally tested. The valve is an annular seat valve composed of a plunger connected with a direct electromagnetic moving coil actuator as the force producing element. Based...... on an elaborate optimization method the valve is designed to maximize the efficiency of a digital hydraulic motor targeted to a wind turbine transmission system. The optimisation method comprises a mathematical framework which predicts a valve switching time of approximately 1 ms with a peak actuator input power...

  8. N@a and N@d: Oligomer and Partner Specification by Asparagine in Coiled-Coil Interfaces. (United States)

    Fletcher, Jordan M; Bartlett, Gail J; Boyle, Aimee L; Danon, Jonathan J; Rush, Laura E; Lupas, Andrei N; Woolfson, Derek N


    The α-helical coiled coil is one of the best-studied protein-protein interaction motifs. As a result, sequence-to-structure relationships are available for the prediction of natural coiled-coil sequences and the de novo design of new ones. However, coiled coils adopt a wide range of oligomeric states and topologies, and our understanding of the specification of these and the discrimination between them remains incomplete. Gaps in our knowledge assume more importance as coiled coils are used increasingly to construct biomimetic systems of higher complexity; for this, coiled-coil components need to be robust, orthogonal, and transferable between contexts. Here, we explore how the polar side chain asparagine (Asn, N) is tolerated within otherwise hydrophobic helix-helix interfaces of coiled coils. The long-held view is that Asn placed at certain sites of the coiled-coil sequence repeat selects one oligomer state over others, which is rationalized by the ability of the side chain to make hydrogen bonds, or interactions with chelated ions within the coiled-coil interior of the favored state. We test this with experiments on de novo peptide sequences traditionally considered as directing parallel dimers and trimers, and more widely through bioinformatics analysis of natural coiled-coil sequences and structures. We find that when located centrally, rather than near the termini of such coiled-coil sequences, Asn does exert the anticipated oligomer-specifying influence. However, outside of these bounds, Asn is observed less frequently in the natural sequences, and the synthetic peptides are hyperthermostable and lose oligomer-state specificity. These findings highlight that not all regions of coiled-coil repeat sequences are equivalent, and that care is needed when designing coiled-coil interfaces.

  9. Spaced-based search coil magnetometers (United States)

    Hospodarsky, George B.


    Search coil magnetometers are one of the primary tools used to study the magnetic component of low-frequency electromagnetic waves in space. Their relatively small size, mass, and power consumption, coupled with a good frequency range and sensitivity, make them ideal for spaceflight applications. The basic design of a search coil magnetometer consists of many thousands of turns of wire wound on a high permeability core. When a time-varying magnetic field passes through the coil, a time-varying voltage is induced due to Faraday's law of magnetic induction. The output of the coil is usually attached to a preamplifier, which amplifies the induced voltage and conditions the signal for transmission to the main electronics (usually a low-frequency radio receiver). Search coil magnetometers are usually used in conjunction with electric field antenna to measure electromagnetic plasma waves in the frequency range of a few hertz to a few tens of kilohertzs. Search coil magnetometers are used to determine the properties of waves, such as comparing the relative electric and magnetic field amplitudes of the waves, or to investigate wave propagation parameters, such as Poynting flux and wave normal vectors. On a spinning spacecraft, they are also sometimes used to determine the background magnetic field. This paper presents some of the basic design criteria of search coil magnetometers and discusses design characteristics of sensors flown on a number of spacecraft.

  10. Switching transients in a superconducting coil

    Energy Technology Data Exchange (ETDEWEB)

    Owen, E.W.; Shimer, D.W.


    A study is made of the transients caused by the fast dump of large superconducting coils. Theoretical analysis, computer simulation, and actual measurements are used. Theoretical analysis can only be applied to the simplest of models. In the computer simulations two models are used, one in which the coil is divided into ten segments and another in which a single coil is employed. The circuit breaker that interrupts the current to the power supply, causing a fast dump, is represented by a time and current dependent conductance. Actual measurements are limited to measurements made incidental to performance tests on the MFTF Yin-yang coils. It is found that the breaker opening time is the critical factor in determining the size and shape of the transient. Instantaneous opening of the breaker causes a lightly damped transient with large amplitude voltages to ground. Increasing the opening time causes the transient to become a monopulse of decreasing amplitude. The voltages at the external terminals are determined by the parameters of the external circuit. For fast opening times the frequency depends on the dump resistor inductance, the circuit capacitance, and the amplitude on the coil current. For slower openings the dump resistor inductance and the current determine the amplitude of the voltage to ground at the terminals. Voltages to ground are less in the interior of the coil, where transients related to the parameters of the coil itself are observed.

  11. Performance of an adjustable, threaded inertance tube (United States)

    Zhou, W. J.; Pfotenhauer, J. M.; Nellis, G. F.; Liu, S. Y.


    The performance of the Stirling type pulse tube cryocooler depends strongly on the design of the inertance tube. The phase angle produced by the inertance tube is very sensitive to its diameter and length. Recent developments are reported here regarding an adjustable inertance device that can be adjusted in real time. The inertance passage is formed by the root of a concentric cylindrical threaded device. The depth of the threads installed on the outer screw varies. In this device, the outer screw can be rotated four and half turns. At the zero turn position the length of the passage is 1.74 m and the hydraulic diameter is 7 mm. By rotating the outer screw, the inner threaded rod engages with additional, larger depth threads. Therefore, at its upper limit of rotation, the inertance passage includes both the original 1.74 m length with 7mm hydraulic diameter plus an additional 1.86 m length with a 10 mm hydraulic diameter. A phase shift change of 24° has been experimentally measured by changing the position of outer screw while operating the device at a frequency of 60 Hz. This phase angle shift is less than the theoretically predicted value due to the presence of a relatively large leak through the thread clearance. Therefore, the distributed component model of the inertance tube was modified to account for the leak path causing the data to agree with the model. Further, the application of vacuum grease to the threads causes the performance of the device to improve substantially.

  12. Crystal structure of a coiled-coil domain from human ROCK I.

    Directory of Open Access Journals (Sweden)

    Daqi Tu

    Full Text Available The small GTPase Rho and one of its targets, Rho-associated kinase (ROCK, participate in a variety of actin-based cellular processes including smooth muscle contraction, cell migration, and stress fiber formation. The ROCK protein consists of an N-terminal kinase domain, a central coiled-coil domain containing a Rho binding site, and a C-terminal pleckstrin homology domain. Here we present the crystal structure of a large section of the central coiled-coil domain of human ROCK I (amino acids 535-700. The structure forms a parallel α-helical coiled-coil dimer that is structurally similar to tropomyosin, an actin filament binding protein. There is an unusual discontinuity in the coiled-coil; three charged residues (E613, R617 and D620 are positioned at what is normally the hydrophobic core of coiled-coil packing. We speculate that this conserved irregularity could function as a hinge that allows ROCK to adopt its autoinhibited conformation.

  13. Crystal Structure of the Central Coiled-Coil Domain from Human Liprin-[beta]2

    Energy Technology Data Exchange (ETDEWEB)

    Stafford, Ryan L.; Tang, Ming-Yun; Sawaya, Michael R.; Phillips, Martin L.; Bowie, James U. (UCLA)


    Liprins are a conserved family of scaffolding proteins important for the proper regulation and development of neuronal synapses. Humans have four liprin-{alpha}s and two liprin-{beta}s which all contain long coiled-coil domains followed by three tandem SAM domains. Complex interactions between the coiled-coil and SAM domains are thought to create liprin scaffolds, but the structural and biochemical properties of these domains remain largely uncharacterized. In this study we find that the human liprin-{beta}2 coiled-coil forms an extended dimer. Several protease-resistant subdomains within the liprin-{beta}1 and liprin-{beta}2 coiled-coils were also identified. A 2.0 {angstrom} crystal structure of the central, protease-resistant core of the liprin-{beta}2 coiled-coil reveals a parallel helix orientation. These studies represent an initial step toward determining the overall architecture of liprin scaffolds and understanding the molecular basis for their synaptic functions.

  14. Coil migration after endovascular coil occlusion of internal carotid artery pseudoaneurysms within the sphenoid sinus. (United States)

    Struffert, T; Buhk, J H; Buchfelder, M; Rohde, V; Doerfler, A; Knauth, M


    We report two cases of coil migration after endovascular treatment of pseudoaneurysm of the internal carotid artery within the sphenoid sinus with coils and noncovered stents. Two patients underwent sphenoid sinus exposure for pituitary adenoma and chronic infection, respectively. As a complication pseudoaneurysms of the internal carotid artery within the sphenoid sinus developed. One patient was treated with stent and coils, the second with coils alone. Both patients experienced coil migration after 9 and 26 months, respectively, with the necessity for further treatment. Imaging was performed using flat detector computed tomography (FD-CT). Literature review revealed two additional cases of coil migration and four patients with the same treatment in stable condition. Pseudoaneurysms of the internal carotid artery are a special entity and the environment of the aneurysm within the sphenoid sinus may change over a long time. Coil embolization may lead to the late onset complication of coil migration with the possible risk of acute epistaxis. As a consequence, these patients need a careful and prolonged follow up. FD-CT is an appropriate technique to visualize the implanted coils and if present the migration of coil material.

  15. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves


    HUANG, Ye; Liu, Changsheng; Shiongur Bamed


    Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under...

  16. Influence of tube spinning on formability of friction stir welded aluminum alloy tubes for hydroforming application

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.S. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hu, Z.L., E-mail: [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hubei Key Laboratory of Advanced Technology of Automobile Parts, Wuhan University of Technology, Wuhan 430070 (China); State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology (China); Yuan, S.J. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hua, L. [Hubei Key Laboratory of Advanced Technology of Automobile Parts, Wuhan University of Technology, Wuhan 430070 (China)


    Due to economic and ecological reasons, the application of tailor-welded blanks of aluminum alloy has gained more and more attention in manufacturing lightweight structures for automotives and aircrafts. In the study, the research was aimed to highlight the influence of spinning on the formability of FSW tubes. The microstructural characteristics of the FSW tubes during spinning were studied by electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM). The formability of the FSW tubes with different spinning reduction was assessed by hydraulic bulge test. It is found that the spinning process shows a grain refinement of the tube. The grains of the FSW tube decrease with increasing thickness reduction, and the effect of grain refinement is more obvious for the BM compared to that of the weld. The difference of grain size and precipitates between the weld and BM leads to an asymmetric W-type microhardness distribution after spinning. The higher thickness reduction of the tube, the more uniform distribution of grains and precipitates it shows, and consequently results in more significant increase of strength. As compared with the result of tensile test, the tube after spinning shows better formability when the stress state changes from uniaxial to biaxial stress state.

  17. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG


    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  18. Superconducting coil development and motor demonstration: Overview (United States)

    Gubser, D. U.


    Superconducting bismuth-cuprate wires, coils, and magnets are being produced by industry as part of a program to test the viability of using such magnets in Naval systems. Tests of prototype magnets, coils, and wires reveal progress in commercially produced products. The larger magnets will be installed in an existing superconducting homopolar motor and operated initially at 4.2K to test the performance. It is anticipated that approximately 400 Hp will be achieved by the motor. This article reports on the initial tests of the magnets, coils, and wires as well as the development program to improve their performance.

  19. Magnetic field mapper based on rotating coils

    CERN Document Server

    AUTHOR|(CDS)2087244; Arpaia, Pasquale

    This thesis presents a magnetic field mapper based on rotating coils. The requirements, the architecture, the conceptual design, and the prototype for straight magnets were shown. The proposed system is made up of a rotating coil transducer and a train-like system for longitudinal motion and positioning inside magnet bore. The mapper allows a localized measurement of magnetic fields and the variation of the harmonic multipole content in the magnet ends. The proof-of-principle demonstration and the experimental characterization of the rotating-coil transducer specifically conceived for mapping validated the main objective of satisfying the magnetic measurement needs of the next generation of compact accelerators.

  20. Experiments with micro-fin tube in single phase

    Energy Technology Data Exchange (ETDEWEB)

    Copetti, J.B.; Macagnan, M.H.; De Souza, D.; Oliveski, R.D.C. [Universidade do Vale do Rio dos Sinos, Sao Leopoldo (Brazil). Department of Mechanical Engineering


    This work shows heat transfer and friction characteristics for water single-phase flow in micro-fin tubes. The analysis of thermal and hydraulic behavior from a laminar to a turbulent flow was carried out in an experimental setup with a 9.52 mm diameter micro-fin tube. The tube was wrapped up with an electrical resistance tape to supply a constant heat flux to its surface. Different operational conditions were considered in the heating tests. The inlet and outlet temperatures, differential wall temperatures along the tube, pressure drop and flow rate were measured. The relationships of heat flux and flow rate with heat transfer coefficient and pressure drop were analyzed. Under the same conditions, comparative experiments with an internally smooth tube were conducted. The micro-fin tube provides higher heat transfer performance than the smooth tube (in turbulent flow h{sub micro-fin}/h{sub smooth}=2.9). In spite of the increase in pressure drop ({delta}p{sub micro-fin}/{delta}p{sub smooth}=1.7) the heat transfer results were significantly higher (about 80%). This shows the advantages of this enhanced configuration in thermal performance related to conventional tubes. The smooth tube results were validated by the comparison with the Dittus-Boelter and Gnielinski correlations. For the micro-fin tube an empirical correlation to the heat transfer coefficient adjusted from the set of measured data is proposed. The values obtained are in conformity with experimental results. (author)

  1. Coil geometry effects on scanning single-coil magnetic induction tomography (United States)

    Feldkamp, Joe R.; Quirk, Stephen


    Alternative coil designs for single coil magnetic induction tomography are considered in this work, with the intention of improving upon the standard design used previously. In particular, we note that the blind spot associated with this coil type, a portion of space along its axis where eddy current generation can be very weak, has an important effect on performance. The seven designs tested here vary considerably in the size of their blind spot. To provide the most discerning test possible, we use laboratory phantoms containing feature dimensions similar to blind spot size. Furthermore, conductivity contrasts are set higher than what would occur naturally in biological systems, which has the effect of weakening eddy current generation at coil locations that straddle the border between high and low conductivity features. Image reconstruction results for the various coils show that coils with smaller blind spots give markedly better performance, though improvements in signal-to-noise ratio could alter that conclusion.

  2. Magnetic propulsion of a magnetic device using three square-Helmholtz coils and a square-Maxwell coil. (United States)

    Ha, Yong H; Han, Byung H; Lee, Soo Y


    We introduce a square coil system for remote magnetic navigation of a magnetic device without any physical movements of the coils. We used three square-Helmholtz coils and a square-Maxwell coil for magnetic propulsion of a small magnet along the desired path. All the square coils are mountable on a cubic frame that has an opening to accommodate a living subject. The square-Helmholtz coils control the magnetic propulsion direction by generating uniform magnetic field along the desired direction while the square-Maxwell coil controls the propulsion force by generating magnetic gradient field. We performed magnetic propulsion experiments with a down-scaled coil set and a three-channel coil driver. Experimental results demonstrate that we can use the square coil set for magnetic navigation of a magnetic device without any physical movements of the coils.

  3. Modelling of Hydraulic Robot

    DEFF Research Database (Denmark)

    Madsen, Henrik; Zhou, Jianjun; Hansen, Lars Henrik


    This paper describes a case study of identifying the physical model (or the grey box model) of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application...... of the laws of physics on the system. The unknown (or uncertain) parameters are estimated with Maximum Likelihood (ML) parameter estimation. The identified model has been evaluated by comparing the measurements with simulation of the model. The identified model was much more capable of describing the dynamics...... of the system than the deterministic model....

  4. Hydraulic mining method (United States)

    Huffman, Lester H.; Knoke, Gerald S.


    A method of hydraulically mining an underground pitched mineral vein comprising drilling a vertical borehole through the earth's lithosphere into the vein and drilling a slant borehole along the footwall of the vein to intersect the vertical borehole. Material is removed from the mineral vein by directing a high pressure water jet thereagainst. The resulting slurry of mineral fragments and water flows along the slant borehole into the lower end of the vertical borehole from where it is pumped upwardly through the vertical borehole to the surface.

  5. Spinning hydraulic jump (United States)

    Abderrahmane, Hamid; Kasimov, Aslan


    We report an experimental observation of a new symmetry breaking of circular hydraulic jump into a self-organized structure that consists of a spinning polygonal jump and logarithmic-spiral waves of fluid elevation downstream. The waves are strikingly similar to spiral density waves in galaxies. The fluid flow exhibits counterparts of salient morphological features of galactic flows, in particular the outflow from the center, jets, circum-nuclear rings, gas inflows toward the galactic center, and vortices. The hydrodynamic instability revealed here may have a counterpart that plays a role in the formation and sustainability of spiral arms in galaxies.

  6. Finite element based optimization study on hydroformed stepped tube (United States)

    Harisankar, K. R.; Omar, A.; Narasimhan, K.


    Tube hydroforming process is an advanced manufacturing process in which tube is placed in between the dies and deformed with the help of hydraulic pressure. A sound tube hydroformed part depends upon die conditions, material properties and process conditions. In this work, a finite element study, along with response surface methodology (RSM) for designing the simulation, has been used to construct models with loading path, friction, anisotropic index, strain hardening exponent and tube thickness. The responses studied are the die corner radius filling and strain non-uniformity index (SNI) chosen in each step of the tube with maximum 30% thinning as stopping criteria. The factors effect and their interactions on each response were determined and analysed.

  7. Numerical simulation of draft tube flow of a bulb turbine

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, J.G. [Federal University of Triangulo Mineiro, Institute of Technological and Exact Sciences, Avenida Doutor Randolfo Borges Junior, 1250 – Uberaba – MG (Brazil); Brasil, A.C.P. Jr. [University of Brasilia, Department of Mechanical Engineering, Campus Darcy Ribeiro, Brasilia – DF (Brazil)


    In this work a numerical study of draft tube of a bulb hydraulic turbine is presented, where a new geometry is proposed. This new proposal of draft tube has the unaffected ratio area, a great reduction in his length and approximately the same efficiency of the draft tube conventionally used. The numerical simulations were obtained in commercial software of calculation of flow (CFX-14), using the turbulence model SST, that allows a description of the field fluid dynamic near to the wall. The simulation strategy has an intention of identifying the stall of the boundary layer precisely limits near to the wall and recirculations in the central part, once those are the great causes of the decrease of efficiency of a draft tube. Finally, it is obtained qualitative and quantitative results about the flow in draft tubes.

  8. Functional Analysis of the Bacteriophage T4 Rad50 Homolog (gp46) Coiled-coil Domain. (United States)

    Barfoot, Tasida; Herdendorf, Timothy J; Behning, Bryanna R; Stohr, Bradley A; Gao, Yang; Kreuzer, Kenneth N; Nelson, Scott W


    Rad50 and Mre11 form a complex involved in the detection and processing of DNA double strand breaks. Rad50 contains an anti-parallel coiled-coil with two absolutely conserved cysteine residues at its apex. These cysteine residues serve as a dimerization domain and bind a Zn(2+) cation in a tetrathiolate coordination complex known as the zinc-hook. Mutation of the zinc-hook in bacteriophage T4 is lethal, indicating the ability to bind Zn(2+) is critical for the functioning of the MR complex. In vitro, we found that complex formation between Rad50 and a peptide corresponding to the C-terminal domain of Mre11 enhances the ATPase activity of Rad50, supporting the hypothesis that the coiled-coil is a major conduit for communication between Mre11 and Rad50. We constructed mutations to perturb this domain in the bacteriophage T4 Rad50 homolog. Deletion of the Rad50 coiled-coil and zinc-hook eliminates Mre11 binding and ATPase activation but does not affect its basal activity. Mutation of the zinc-hook or disruption of the coiled-coil does not affect Mre11 or DNA binding, but their activation of Rad50 ATPase activity is abolished. Although these mutants excise a single nucleotide at a normal rate, they lack processivity and have reduced repetitive exonuclease rates. Restricting the mobility of the coiled-coil eliminates ATPase activation and repetitive exonuclease activity, but the ability to support single nucleotide excision is retained. These results suggest that the coiled-coiled domain adopts at least two conformations throughout the ATPase/nuclease cycle, with one conformation supporting enhanced ATPase activity and processivity and the other supporting nucleotide excision.

  9. A Calibrating Device for Rogowski Coil Development

    Institute of Scientific and Technical Information of China (English)

    LV Liang; LI Junhao; HUANG Jianjun; JI Shengchang; LI Yanming


    A calibrating device for the Rogowski coil is developed,which can be used to calibrate the Rogowski coil having a partial response time within tens of nanoseconds.Its key component is a step current generator,which can generate the output with a rise time of less than 2 ns and a duration of larger than 300 ns.The step current generator is composed by a pulse forming line(PFL)and a pulse transmission line(PTL).A TEM(transverse electromagnetic mode)coaxial measurement unit is used as PTL,and the coil to be calibrated and the referenced standard Rogowski coil can be fixed in the unit.The effect of the dimensions of the TEM unit is discussed theoretically as well as experimentally.

  10. Screen-printed flexible MRI receive coils. (United States)

    Corea, Joseph R; Flynn, Anita M; Lechêne, Balthazar; Scott, Greig; Reed, Galen D; Shin, Peter J; Lustig, Michael; Arias, Ana C


    Magnetic resonance imaging is an inherently signal-to-noise-starved technique that limits the spatial resolution, diagnostic image quality and results in typically long acquisition times that are prone to motion artefacts. This limitation is exacerbated when receive coils have poor fit due to lack of flexibility or need for padding for patient comfort. Here, we report a new approach that uses printing for fabricating receive coils. Our approach enables highly flexible, extremely lightweight conforming devices. We show that these devices exhibit similar to higher signal-to-noise ratio than conventional ones, in clinical scenarios when coils could be displaced more than 18 mm away from the body. In addition, we provide detailed material properties and components performance analysis. Prototype arrays are incorporated within infant blankets for in vivo studies. This work presents the first fully functional, printed coils for 1.5- and 3-T clinical scanners.

  11. Coiling Temperature Control in Hot Strip Mill (United States)

    Imanari, Hiroyuki; Fujiyama, Hiroaki

    Coiling temperature is one of the most significant factors in products of hot strip mill to determine material properties such as strength, toughness of steel, so it is very important to achieve accurate coiling temperature control (CTC). Usually there are a few pyrometers on the run out table in hot strip mill, therefore temperature model and its adapting system have large influences on the accuracy of CTC. Also unscheduled change of rolling speed has a bad effect to keep coiling temperature as its target. Newly developed CTC system is able to get very accurate coiling temperature against uncertain factors and disturbances by adopting easily identified temperature model, learning method and dynamic set up function. The features of the CTC system are discussed with actual data, and the effectiveness of the system is shown by actual control results.

  12. MR angiography after coiling of intracranial aneurysms

    NARCIS (Netherlands)

    Schaafsma, J.D.


    Introduction Endovascular occlusion with detachable coils has become an alternative treatment to neurosurgical clipping of intracranial aneurysms over the last two decades. Its minimal invasiveness is the most important advantage of this treatment compared to clipping. The disadvantage of occlusion

  13. Mechanical resonances of helically coiled carbon nanowires

    National Research Council Canada - National Science Library

    Saini, D; Behlow, H; Podila, R; Dickel, D; Pillai, B; Skove, M J; Serkiz, S M; Rao, A M


    ...) mainly due to their geometrical complexity. The advent of helically coiled micro/nanoscale structures in nano-robotics, nano-inductors, and impact protection coatings has necessitated the development of new methodologies for determining...

  14. The Magnetic Field of Helmholtz Coils (United States)

    Berridge, H. J. J.


    Describes the magnetic field of Helmholtz coils qualitatively and then provides the basis for a quantitative expression. Since the mathematical calculations are very involved, a computer program for solving the mathematical expression is presented and explained. (GS)

  15. 46 CFR 28.880 - Hydraulic equipment. (United States)


    ... hydraulic equipment and the adjacent work area. Protection shall be afforded to the operator of hydraulic... 46 Shipping 1 2010-10-01 2010-10-01 false Hydraulic equipment. 28.880 Section 28.880 Shipping... INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.880 Hydraulic equipment. (a) Each hydraulic system must...

  16. Gas Test Loop Booster Fuel Hydraulic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Gas Test Loop Hydraulic Testing Staff


    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  17. Simple evaluations of fluid-induced vibrations for steam generator tube arrays in advanced marine reactors (MRX, DRX)

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Kazuo [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan); Ishida, Toshihisa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment


    Advanced Marine Reactor (MRX) and Deep Sea Research Reactor (DRX) are the integral-type PWR, and the steam generators are installed in the reactor vessels. Steam generators are of the once-through, helical-coil tube types. Heat transfer tubes surround inner shroud in annular space of the reactor vessel. Flow-induced vibrations are calculated by simple methods, and the arrangement of tube support structures are evaluated. (author)

  18. Constraint Cooling of Hot Rolled Coil

    Institute of Scientific and Technical Information of China (English)

    WANG Li-juan; ZHANG Chun-li


    The layer thermal conductivity during constraint cooling of hot rolled coil was described by using equivalent thermal conductivity model and finite element method. Two radial stress concentration zones in constraint cooled coil were shown by numerical analysis, and the tension stress was assumed to be the main factor to induce stress corrosion. The experimental results show that the longer the water cooling time is, the smaller the grain size and the more uniform the grains are.

  19. AC loss measurements in HTS coil assemblies with hybrid coil structures (United States)

    Jiang, Zhenan; Long, Nicholas J.; Staines, Mike; Badcock, Rodney A.; Bumby, Chris W.; Buckley, Robert G.; Amemiya, Naoyuki


    Both AC loss and wire cost in coil windings are critical factors for high temperature superconductor (HTS) AC machinery applications. We present AC loss measurement results in three HTS coil assemblies at 77 K and 65 K which have a hybrid coil structure comprising one central winding (CW) and two end windings (EWs) wound with ReBCO and BSCCO wires with different self-field I c values at 77 K. All AC loss results in the coil assemblies are hysteretic and the normalized AC losses in the coil assemblies at different temperatures can be scaled with the I c value of the coil assemblies. The normalised results show that AC loss in a coil assembly with BSCCO CW can be reduced by using EWs wound with high I c ReBCO wires, whilst further AC loss reduction can be achieved by replacing the BSCCO CW with ReBCO CW. The results imply that a flexible hybrid coil structure is possible which considers both AC loss and wire cost in coil assemblies.

  20. Thermal Hydraulic Tests for Reactor Core Safety

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S. K.; Baek, W. P.; Chun, S. Y. (and others)


    The main objectives of the present project are to resolve the current issues of reactor core thermal hydraulics, to develop an advanced measurement and analytical techniques, and to perform reactor core safety verification tests. 6x6 reflood experiments, various heat transfer experiments using Freon, and experiments on the spacer grids effects on the post-dryout are carried out using spacer grids developed in Korea in order to resolve the current issues of the reactor core thermal hydraulics. In order to develop a reflood heat transfer model, the detailed reflood phenomena are visualized and measured using round tube and 2x2 rod bundle. A detailed turbulent mixing phenomenon for subchannels is measured using advanced measurement techniques such as LDV and PIV. MARS and MATRA codes developed in Korea are assessed, verified and improved using the obtained experimental data. Finally, a systematic quality assurance program and experimental data generation system has been constructed in order to increase the reliability of the experimental data.

  1. First full-size ATLAS barrel toroid coil successfully tested up to 22 kA at 4 T

    CERN Document Server

    Dudarev, A; Benoit, P; Berriaud, C P; Broggi, F; Deront, L; Foussat, A; Junker, S; ten Kate, H H J; Kopeykin, N; Olesen, G; Olyunin, A; Pengo, R; Rabbers, J J; Ravat, S; Rey, J M; Sbrissa, E; Shugaev, I; Stepanov, V; Védrine, P; Volpini, Giovanni


    The Superconducting Barrel Toroid is providing (together with the two End-Cap Toroids not presented here) the magnetic field for the muon detectors in the ATLAS Experiment at the LHC at CERN. The toroid with outer dimensions of 25 m length and 20 m diameter, is built up from 8 identical racetrack coils. The coils with 120 turns each are wound with an aluminum stabilized NbTi conductor and operate at 20.5 kA at 3.9 T local field in the windings and is conduction cooled at 4.8 K by circulating forced flow helium in cooling tubes attached to the cold mass. The 8 coils of 25 m * 5 m are presently under construction and the first coils have already been fully integrated and tested. Meanwhile the assembly of the toroid 100 m underground in the ATLAS cavern at CERN has started. The 8 coils are individually tested on surface before installation. In this paper the test of the first coil, unique in size and manufacturing technology, is described in detail and the results are compared to the previous experience with the...

  2. Physiologically-relevant measurements of flow through coils and stents: towards improved modeling of endovascular treatment of intracranial aneurysms (United States)

    Barbour, Michael; Levitt, Michael; Geindreau, Christian; Rolland Du Roscoat, Sabine; Johnson, Luke; Chivukula, Keshav; Aliseda, Alberto


    The hemodynamic environment in cerebral aneurysms undergoing flow-diverting stent (FDS) or coil embolization treatment plays a critical role in long-term outcomes. Standard modeling approaches to endovascular coils and FDS simplify the complex geometry into a homogenous porous volume or surface through the addition of a Darcy-Brinkman pressure loss term in the momentum equation. The inertial and viscous loss coefficients are typically derived from published in vitro studies of pressure loss across FDS and coils placed in a straight tube, where the only fluid path is across the treatment - an unrealistic representation of treatment apposition in vivo. The pressure drop across FDS and coils in side branch aneurysms located on curved parent vessels is measured. Using PIV, the velocity at the aneurysm neck plane is reconstructed and used to determine loss coefficients for better models of endovascular coils or FDS that account for physiological placement and vessel curvature. These improved models are incorporated into CFD simulations and validated against in vitro model PIV velocity, as well as compared to microCT-based coil/stent-resolving CFD simulations of patient-specific treated aneurysm flow.

  3. A classic zinc finger from friend of GATA mediates an interaction with the coiled-coil of transforming acidic coiled-coil 3. (United States)

    Simpson, Raina J Y; Yi Lee, Stella Hoi; Bartle, Natalie; Sum, Eleanor Y; Visvader, Jane E; Matthews, Jacqueline M; Mackay, Joel P; Crossley, Merlin


    Classic zinc finger domains (cZFs) consist of a beta-hairpin followed by an alpha-helix. They are among the most abundant of all protein domains and are often found in tandem arrays in DNA-binding proteins, with each finger contributing an alpha-helix to effect sequence-specific DNA recognition. Lone cZFs, not found in tandem arrays, have been postulated to function in protein interactions. We have studied the transcriptional co-regulator Friend of GATA (FOG), which contains nine zinc fingers. We have discovered that the third cZF of FOG contacts a coiled-coil domain in the centrosomal protein transforming acidic coiled-coil 3 (TACC3). Although FOG-ZF3 exhibited low solubility, we have used a combination of mutational mapping and protein engineering to generate a derivative that was suitable for in vitro and structural analysis. We report that the alpha-helix of FOG-ZF3 recognizes a C-terminal portion of the TACC3 coiled-coil. Remarkably, the alpha-helical surface utilized by FOG-ZF3 is the same surface responsible for the well established sequence-specific DNA-binding properties of many other cZFs. Our data demonstrate the versatility of cZFs and have implications for the analysis of many as yet uncharacterized cZF proteins.

  4. Embroidered Coils for Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Michael I. Newton


    Full Text Available Magnetic resonance imaging is a widely used technique for medical and materials imaging. Even though the objects being imaged are often irregularly shaped, suitable coils permitting the measurement of the radio-frequency signal in these systems are usually made of solid copper. One problem often encountered is how to ensure the coils are both in close proximity and conformal to the object being imaged. Whilst embroidered conductive threads have previously been used as antennae in mobile telecommunications applications, they have not previously been reported for use within magnetic resonance. In this paper we show that an embroidered single loop coil can be used in a commercial unilateral nuclear magnetic resonance system as an alternative to a solid copper. Data is presented showing the determination of both longitudinal (T1 and effective transverse (T2eff relaxation times for a flat fabric coil and the same coil conformed to an 8 cm diameter cylinder. We thereby demonstrate the principles required for the wider use of fabric based conformal coils within nuclear magnetic resonance and magnetic resonance imaging.

  5. Applied hydraulic transients

    CERN Document Server

    Chaudhry, M Hanif


    This book covers hydraulic transients in a comprehensive and systematic manner from introduction to advanced level and presents various methods of analysis for computer solution. The field of application of the book is very broad and diverse and covers areas such as hydroelectric projects, pumped storage schemes, water-supply systems, cooling-water systems, oil pipelines and industrial piping systems. Strong emphasis is given to practical applications, including several case studies, problems of applied nature, and design criteria. This will help design engineers and introduce students to real-life projects. This book also: ·         Presents modern methods of analysis suitable for computer analysis, such as the method of characteristics, explicit and implicit finite-difference methods and matrix methods ·         Includes case studies of actual projects ·         Provides extensive and complete treatment of governed hydraulic turbines ·         Presents design charts, desi...

  6. A comparative experimental and numerical study to investigate the relative merits of convectors and ``C'' inserts in cooling cold-rolled coils (United States)

    Bhattacharya, Tathagata; Chakraborty, Debadi; Singh, Vikas


    The coil cooling and storage unit (CCSU) is used to cool cold-rolled coils to the temper rolling temperature after the annealing cycle is over at the batch annealing furnace (BAF) in a cold rolling mill (CRM). In the CCSU, the coils are kept on the cooling bases for any fixed time irrespective of the grade and tonnage. Therefore, the need for a mathematical model to accurately predict the cooling time of the coils was felt. The current study involves experimental and numerical analysis of a stack of coils with respect to heat transfer and fluid flow. A comparative study was carried out to ascertain the relative merits of convectors and “C” inserts (CIs) in the cooling the coils. The air flow distribution for the case of different convectors and CIs was measured by means of a full scale physical model. Two different mathematical models were applied to model the fluid flow and flow distribution through the stack of coils. The first flow model uses the hydraulic resistance concept for estimating the air flow rate distribution, whereas the second flow model uses commercial computational fluid dynamics (CFD) software and predicts the velocity distribution in the flow path between two coils in a stack. The predictions from these two models compare well with the experimental data. The flow models were used to calculate the average heat-transfer coefficient in different flow passages in a stack. The heat-transfer coefficients thus obtained were used to tune and validate a two-dimensional transient heat-transfer model of coils. The heat-transfer model predicts the cooling time of coils accurately and also suggests a possible reduction of cooling time if CIs are used in place of convectors.

  7. Solid catalytic growth mechanism of micro-coiled carbon fibers

    Institute of Scientific and Technical Information of China (English)


    Micro-coiled carbon fibers were prepared by catalytic pyrolysisof acetylene with nano-sized nickel powder catalyst using the substrate method. The morphology of micro-coiled carbon fibers was observed through field emission scanning electron microscopy. It was found that the fiber and coil diameter of the obtained micro-coiled carbon fibers is about 500—600 nm and 4—5 μm, respectively. Most of the micro-coiled carbon fibers obtained were regular double carbon coils, but a few irregular ones were also observed. On the basis of the experimental observation, a solid catalytic growth mechanism of micro-coiled carbon fibers was proposed.

  8. Minimum Inductance Optimal Design for the Gradient Coil

    Institute of Scientific and Technical Information of China (English)


    In MRI (Magnetic Resonance Imaging), a crucial role of gradient coils is to image organism, meanwhile the inductance of the coils determines the speed of imaging. So it is of great importance to optimize designs of the gradient coils. The target field approach is an effective method to design the gradient coils. Having applied this method and performing many numerical tests, we achieved the designs of the x-、y-、z- gradient coils , with the linearity of the fields generated by the coils in a sphere of radius 0.30 m less than 5%, in which the inductance and resistance of the coils also meet the requirements.

  9. Automated polymerase chain reaction in capillary tubes with hot air. (United States)

    Wittwer, C T; Fillmore, G C; Hillyard, D R


    We describe a simple, compact, inexpensive thermal cycler that can be used for the polymerase chain reaction. Based on heat transfer with air to samples in sealed capillary tubes, the apparatus resembles a recirculating hair dryer. The temperature is regulated via thermocouple input to a programmable set-point process controller that provides proportional output to a solid state relay controlling a heating coil. For efficient cooling after the denaturation step, the controller activates a solenoid that opens a door to vent hot air and allows cool air to enter. Temperature-time profiles and amplification results approximate those obtained using water baths and microfuge tubes.

  10. Surgical management of an ACM aneurysm eight years after coiling. (United States)

    Pogády, P; Fellner, F; Trenkler, J; Wurm, G


    The authors present a case report on rebleeding of a medial cerebral aneurysm (MCA) eight years after complete endovascular coiling. The primarily successfully coiled MCA aneurysm showed a local regrowth which, however, was not the source of the rebleeding. The angiogram demonstrated no evidence of contrast filling of the coiled segment, but according to intraoperative findings (haematoma location, displacement of coils, evident place of rupture) there is no doubt that the coiled segment of the aneurysm was responsible for the haemorrhage.

  11. Thermal/stress analyses of the EBT-SA split-mirror coil

    Energy Technology Data Exchange (ETDEWEB)

    Mayhall, J.A.; Byington, G.A.; Forseman, J.W.; Hammonds, C.J.; Haste, G.R.; Johnson, R.L.; Livingston, J.L.


    A proposal was made in December 1978 to replace some of the standard mirror coils on ELMO Bumpy Torus-Scale (EBT-S) with coils which had the center windings removed, called split-mirror coils. The advantages of such a replacement were: diagnostic measurements could be made in regions in real space and in velocity space which would not otherwise be accessible, and experiments could be carried out in the high magnetic field region. A detailed thermal/stress analysis of the epoxied copper cooling tube was performed, and it was found that with the conditions of case cooling, tensile stresses almost twice ultimate would be induced in the epoxy that bonds the cooling copper tube to the aluminum case. As a result, the epoxy would fail. A new cooling scheme was designed, and temperatures and stresses were calculated. The temperatures and gradients were drastically reduced, and the maximum stress was found to be about one-half the yield stress. It was found (using fracture mechanics analysis) that the new nonepoxied cooling scheme would ensure no failures.

  12. Hydraulic rams; a comparative investigation

    NARCIS (Netherlands)

    Tacke, J.H.P.M.


    A mathematical model describing the essential features of hydraulic ram operation is developed in order to clarify the possibilities and limitations of the ram relative to its site and its adjustments. The model distinguishes three different periods in the pumping cycle of the hydraulic ram: acceler

  13. Hydraulics. FOS: Fundamentals of Service. (United States)

    John Deere Co., Moline, IL.

    This manual on hydraulics is one of a series of power mechanics texts and visual aids for training in the servicing of agricultural and industrial machinery. Focus is on oil hydraulics. Materials provide basic information and illustrations for use by vocational students and teachers as well as shop servicemen and laymen. The twelve chapters focus…

  14. Development of a 3D Electromagnetic Model for Eddy Current Tubing Inspection: Application to Steam Generator Tubing (United States)

    Pichenot, G.; Prémel, D.; Sollier, T.; Maillot, V.


    In nuclear plants, the inspection of heat exchanger tubes is usually carried out by using eddy current nondestructive testing. A numerical model, based on a volume integral approach using the Green's dyadic formalism, has been developed, with support from the French Institute for Radiological Protection and Nuclear Safety, to predict the response of an eddy current bobbin coil to 3D flaws located in the tube's wall. With an aim of integrating this model into the NDE multi techniques platform CIVA, it has been validated with experimental data for 2D and 3D flaws.

  15. Hydraulic Stability of Accropode Armour

    DEFF Research Database (Denmark)

    Jensen, T.; Burcharth, H. F.; Frigaard, Peter

    , and to assess the influence of core permeability on the hydraulic stability of Accropodes. Two structures were examined, one with a relatively permeable core and one with a relatively impermeable core. In November/December 1995, Ph.D.-student Marten Christensen carried out the model tests on the structure...... with permeable core (crushed granite with a gradation of 5-8 mm). The outcome of this study is described in "Hydraulic Stability of Single-Layer Dolos and Accropode Armour Layers" by Christensen & Burcharth (1995). In January/February 1996, Research Assistant Thomas Jensen carried out a similar study......The present report describes the hydraulic model tests of Accropode armour layers carried out at the Hydraulics Laboratory at Aalborg University from November 1995 through March 1996. The objective of the model tests was to investigate the hydraulic stability of Accropode armour layers...

  16. Hydraulic Stability of Accropode Armour

    DEFF Research Database (Denmark)

    Jensen, T.; Burcharth, H. F.; Frigaard, Peter

    , and to assess the influence of core permeability on the hydraulic stability of Accropodes. Two structures were examined, one with a relatively permeable core and one with a relatively impermeable core. In November/December 1995, Ph.D.-student Marten Christensen carried out the model tests on the structure...... with permeable core (crushed granite with a gradation of 5-8 mm). The outcome of this study is described in "Hydraulic Stability of Single-Layer Dolos and Accropode Armour Layers" by Christensen & Burcharth (1995). In January/February 1996, Research Assistant Thomas Jensen carried out a similar study......The present report describes the hydraulic model tests of Accropode armour layers carried out at the Hydraulics Laboratory at Aalborg University from November 1995 through March 1996. The objective of the model tests was to investigate the hydraulic stability of Accropode armour layers...

  17. Delayed extrusion of embolic coils into the airway after embolization of an external carotid artery pseudoaneurysm. (United States)

    Wilseck, Zachary; Savastano, Luis; Chaudhary, Neeraj; Pandey, Aditya S; Griauzde, Julius; Sankaran, Sumanna; Wilkinson, D Andrew; Gemmete, Joseph J


    Carotid blowout syndrome (CBS) is a known devastating complication of head and neck surgery. The risk of developing CBS increases in the setting of radiation therapy, wound breakdown, or tumor recurrence. Traditionally, the treatment of choice for CBS is surgical ligation of the bleeding artery; however, recently, endovascular occlusion has become a more common option. If a pseudoaneurysm is present, treatment consists of trapping with endovascular coils or occlusion with a liquid embolic agent. Delayed migration of embolization coils into the airway causing acute respiratory distress is a rare occurrence. This report presents a case of a 57-year-old woman who presented to her otolaryngologist after experiencing an episode of acute respiratory distress which resolved when she expectorated embolization coil material from her tracheostomy tube. Three months prior to the episode she underwent coil embolization of an external carotid artery pseudoaneurysm for life-threatening hemorrhage. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Quench Protection of DI-BSCCO Coil (United States)

    Yamaguchi, T.; Ueno, E.; Kato, T.; Hayashi, K.

    Quench protection is one of the most important requirements for the practical application of high-temperature-superconducting (HTS) coils. Quench protection requires that early detection of a developing quench event is followed by rapid reduction of the operating current. However, such quench detection is very difficult because HTS wire produces heat only locally due to the very slow propagation velocity of a normal zone. Excellent high voltage insulation performance is required if the current is to be reduced rapidly in a large-scale superconducting application with very large inductance. Thus it is important to investigate the behavior of coils with various decay time constants, and to detect voltages on very short time scales. This goal remains to be achieved. In the present study we built test coil and a full-scale pole coil for a 20 MW motor for use in experiments on quench protection, and parameterized the relation between the decay time constant and the detecting voltage, using a conventional balance circuit to detect the quench, which was generated by gradually raising the temperature of the coils. The results verify that a balance circuit can be used for quench detection. For example, when the current decay time constant is 4 seconds, the test coil can be protected even with a detecting voltage of 0.15 volts, despite a significant heat production rate of 126 W. We also confirmed that the full-scale pole coil, with a decay time constant of 20 seconds, can be protected with a detecting voltage of 0.06 V.

  19. Feeding tube insertion - gastrostomy (United States)

    ... this page: // Feeding tube insertion - gastrostomy To use the sharing features on this page, please enable JavaScript. A gastrostomy feeding tube insertion is the placement of a feeding ...

  20. Neural Tube Defects (United States)

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In ...

  1. Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Mørkholt, M.

    As wind turbines increase in size, combined with increased lifetime demands, new methods for load reduction needs to be examined. One method is to make the yaw system of the turbine soft/flexible and hereby dampen the loads to the system, which is the focus of the current paper. By utilizing...... the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized to reduce loading in critical components. Results shows that a significant reduction in fatigue and extreme loads to the yaw...... system and rotor shaft when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. Based on the extrapolated loads, the duty cycles show that it is possible to construct...

  2. Electro Hydraulic Hitch Control

    DEFF Research Database (Denmark)

    Hansen, M. R.; Andersen, T. O.; Nielsen, B.


    system for agricultural applications and driving for transportation. During tranport phases, the lack of suspension causes the vehicle to bounce and pitch, and makes it difficalt to control. Many systems have been proposed to cope with the oscillatory behavior, and different solutions exist. Common......This paper present and discusses R&D results on electro hydraulic hitch control for off-road vehicle, in particular active damping of oscillation occuring on tractors. The research deals with analysis and control of the oscillations occuring on tractors which are design without any susspection...... for most of the systems are that they operate on the hydrailc actuators generally providing the motive forces for moving the implement and/or attachment, typically a plough. The basic idea and physical working principle are to use the implement, moveable relative to the vehicle, as a damper mass. The paper...

  3. In vitro and in vivo delivery of functionalized nanoparticles via coiled-coil interactions

    NARCIS (Netherlands)

    Yang, J.


    This thesis presents another approach for direct cytosolic delivery via membrane fusion. This approach is based on a complementary pair of coiled-coil forming peptides, K (KIAALKE)4 and E (EIAALEK)4 and is mimicking the action of the SNARE-complex. The SNARE-complex is responsible for fusion between

  4. Growth Factor Tethering to Protein Nanoparticles via Coiled-Coil Formation for Targeted Drug Delivery. (United States)

    Assal, Yasmine; Mizuguchi, Yoshinori; Mie, Masayasu; Kobatake, Eiry


    Protein-based nanoparticles are attractive carriers for drug delivery because they are biodegradable and can be genetically designed. Moreover, modification of protein-based nanoparticles with cell-specific ligands allows for active targeting abilities. Previously, we developed protein nanoparticles comprising genetically engineered elastin-like polypeptides (ELPs) with fused polyaspartic acid tails (ELP-D). Epidermal growth factor (EGF) was displayed on the surface of the ELP-D nanoparticles via genetic design to allow for active cell-targeting abilities. Herein, we focused on the coiled-coil structural motif as a means for noncovalent tethering of growth factor to ELP-D. Specifically, two peptides known to form a heterodimer via a coiled-coil structural motif were fused to ELP-D and single-chain vascular endothelial growth factor (scVEGF121), to facilitate noncovalent tethering upon formation of the heterodimer coiled-coil structure. Drug-loaded growth factor-tethered ELP-Ds were found to be effective against cancer cells by provoking cell apoptosis. These results demonstrate that tethering growth factor to protein nanoparticles through coiled-coil formation yields a promising biomaterial candidate for targeted drug delivery.

  5. An iterative method for coil sensitivity estimation in multi-coil MRI systems. (United States)

    Ling, Qiang; Li, Zhaohui; Song, Kaikai; Li, Feng


    This paper presents an iterative coil sensitivity estimation method for multi-coil MRI systems. The proposed method works with coil images in the magnitude image domain. It determines a region of support (RoS), a region being composed of the same type of tissues, by a region growing algorithm, which makes use of both intensities and intensity gradients of pixels. By repeating this procedure, it can determine multiple regions of support, which together cover most of the concerned image area. The union of these regions of support provides a rough estimate of the sensitivity of each coil through dividing the intensities of pixels by the average intensity inside every region of support. The obtained rough coil sensitivity estimate is further approached with the product of multiple low-order polynomials, rather than a single one. The product of these polynomials provides a smooth estimate of the sensitivity of each coil. With the obtained sensitivities of coils, it can produce a better reconstructed image, which determines more correct regions of support and yields preciser estimates of the sensitivities of coils. In other words, the method can be iteratively implemented to improve the estimation performance. The proposed method was verified through both simulated data and clinical data from different body parts. The experimental results confirm the superiority of our method to some conventional methods.

  6. A coiled-coil domain acts as a molecular ruler in LPS chain length regulation (United States)

    Tuukkanen, Anne; Danciu, Iulia; Svergun, Dmitri I.; Hussain, Rohanah; Liu, Huanting; Whitfield, Chris; Naismith, James H.


    Long-chain bacterial polysaccharides play important roles in pathogenicity. In Escherichia coli O9a, a model for ABC transporter dependent polysaccharide assembly, a large extracellular carbohydrate with a narrow distribution of size is polymerized from monosaccharides by a complex of two proteins, WbdA (polymerase) and WbdD (terminating protein). Such careful control of polymerization is recurring theme in biology. Combining crystallography and small angle X-ray scattering, we show that the C-terminal domain of WbdD contains an extended coiled-coil that physically separates WbdA from the catalytic domain of WbdD. The effects of insertions and deletions within the coiled-coil region were analyzed in vivo, revealing that polymer size is controlled by varying the length of the coiled-coil domain. Thus, the coiled-coil domain of WbdD functions as a molecular ruler that, along with WbdA:WbdD stoichiometry, controls the chain length of a model bacterial polysaccharide. PMID:25504321

  7. Minimax current density gradient coils: analysis of coil performance and heating. (United States)

    Poole, Michael S; While, Peter T; Lopez, Hector Sanchez; Crozier, Stuart


    Standard gradient coils are designed by minimizing the inductance or resistance for an acceptable level of gradient field nonlinearity. Recently, a new method was proposed to minimize the maximum value of the current density in a coil additionally. The stated aim of that method was to increase the minimum wire spacing and to reduce the peak temperature in a coil for fixed efficiency. These claims are tested in this study with experimental measurements of magnetic field and temperature as well as simulations of the performance of many coils. Experimental results show a 90% increase in minimum wire spacing and 40% reduction in peak temperature for equal coil efficiency and field linearity. Simulations of many more coils indicate increase in minimum wire spacing of between 50 and 340% for the coils studied here. This method is shown to be able to increase coil efficiency when constrained by minimum wire spacing rather than switching times or total power dissipation. This increase in efficiency could be used to increase gradient strength, duty cycle, or buildability.

  8. Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins

    NARCIS (Netherlands)

    Sinka, Rita; Gillingham, Alison K.; Kondylis, Vangelis; Munro, Sean


    Vesicles and other carriers destined for the Golgi apparatus must be guided to the correct cisternae. Golgins, long coiled-coil proteins that localize to particular Golgi subdomains via their C termini, are candidate regulators of vesicle sorting. In this study, we report that the GRIP domain

  9. Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins

    NARCIS (Netherlands)

    Sinka, Rita; Gillingham, Alison K.; Kondylis, Vangelis; Munro, Sean


    Vesicles and other carriers destined for the Golgi apparatus must be guided to the correct cisternae. Golgins, long coiled-coil proteins that localize to particular Golgi subdomains via their C termini, are candidate regulators of vesicle sorting. In this study, we report that the GRIP domain golgin

  10. Advanced approaches for the characterization of a de novo designed antiparallel coiled coil peptide

    NARCIS (Netherlands)

    Pagel, K; Seeger, K; Seiwert, B; Villa, Alessandra; Mark, AE; Berger, S; Koksch, B


    We report here an advanced approach for the characterization of the folding pattern of a de novo designed antiparallel coiled coil peptide by high-resolution methods. Incorporation of two fluorescence labels at the C- and N-terminus of the peptide chain as well as modi. cation of two hydrophobic cor

  11. A high-resolution structure that provides insight into coiled-coil thiodepsipeptide dynamic chemistry. (United States)

    Dadon, Zehavit; Samiappan, Manickasundaram; Shahar, Anat; Zarivach, Raz; Ashkenasy, Gonen


    Stable and reactive: A crystal structure at 1.35 Å of a thioester coiled-coil protein reveals high similarity to all-peptide-bond proteins. In these assemblies, the thioester bonds are kept reactive towards thiol molecules in the mixture. This enables efficient domain exchange between proteins in response to changes in folding conditions or introduction of external templates.

  12. Allosteric effects in coiled-coil proteins folding and lanthanide-ion binding. (United States)

    Samiappan, Manickasundaram; Alasibi, Samaa; Cohen-Luria, Rivka; Shanzer, Abraham; Ashkenasy, Gonen


    Peptide sequences modified with lanthanide-chelating groups at their N-termini, or at their lysine side chains, were synthesized, and new Ln(III) complexes were characterized. We show that partial folding of the conjugates to form trimer coiled coil structures induces coordination of lanthanides to the ligand, which in turn further stabilizes the 3D structure.

  13. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiufang [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Nie, Xinyi [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Liang, Yilang [School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Lu, Falong [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Yan, Zhongming, E-mail: [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Wang, Yu [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)


    Highlights: • We investigated a kind of system architecture with three coils which the repeater is copper coil or HTS coil. • We simulated the different repeater system and obtained the magnetic field distribution at different distance. • We used helical coil instead of pancake coil which does not use capacitors. • HTS intermediate coil has significant effect on improving the transmission efficiency and lengthening transmission distance than copper intermediate coil. - Abstract: Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  14. Baculovirus FP25K Localization: Role of the Coiled-Coil Domain. (United States)

    Garretson, Tyler A; McCoy, Jason C; Cheng, Xiao-Wen


    Two types of viruses are produced during the baculovirus life cycle: budded virus (BV) and occlusion-derived virus (ODV). A particular baculovirus protein, FP25K, is involved in the switch from BV to ODV production. Previously, FP25K from the model alphabaculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) was shown to traffic ODV envelope proteins. However, FP25K localization and the domains involved are inconclusive. Here we used a quantitative approach to study FP25K subcellular localization during infection using an AcMNPV bacmid virus that produces a functional AcMNPV FP25K-green fluorescent protein (GFP) fusion protein. During cell infection, FP25K-GFP localized primarily to the cytoplasm, particularly amorphous structures, with a small fraction being localized in the nucleus. To investigate the sequences involved in FP25K localization, an alignment of baculovirus FP25K sequences revealed that the N-terminal putative coiled-coil domain is present in all alphabaculoviruses but absent in betabaculoviruses. Structural prediction indicated a strong relatedness of AcMNPV FP25K to long interspersed element 1 (LINE-1) open reading frame 1 protein (ORF1p), which contains an N-terminal coiled-coil domain responsible for cytoplasmic retention. Point mutations and deletions of this domain lead to a change in AcMNPV FP25K localization from cytoplasmic to nuclear. The coiled-coil and C-terminal deletion viruses increased BV production. Furthermore, a betabaculovirus FP25K protein lacking this N-terminal coiled-coil domain localized predominantly to the nucleus and exhibited increased BV production. These data suggest that the acquisition of this N-terminal coiled-coil domain in FP25K is important for the evolution of alphabaculoviruses. Moreover, with the divergence of preocclusion nuclear membrane breakdown in betabaculoviruses and membrane integrity in alphabaculoviruses, this domain represents an alphabaculovirus adaptation for nuclear trafficking

  15. Method and tool for expanding tubular members by electro-hydraulic forming (United States)

    Golovashchenko, Sergey Fedorovich; Bonnen, John Joseph Francis


    An electro-hydraulic forming tool having one or more electrodes for forming parts with sharp corners. The electrodes may be moved and sequentially discharged several times to form various areas of the tube. Alternatively, a plurality of electrodes may be provided that are provided within an insulating tube that defines a charge area opening. The insulating tube is moved to locate the charge area opening adjacent one of the electrodes to form spaced locations on a preform. In other embodiments, a filament wire is provided in a cartridge or supported by an insulative support.

  16. Critical current studies of a HTS rectangular coil

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z. [Department of Engineering, University of Cambridge (United Kingdom); Chudy, M., E-mail: [Graduate School of Technology Management, University of Pretoria (South Africa); Institute of Power and Applied Electrical Engineering, Slovak University of Technology in Bratislava (Slovakia); Ruiz, H.S. [Department of Engineering, University of Leicester, Leicester LE1 7RH (United Kingdom); Zhang, X.; Coombs, T. [Department of Engineering, University of Cambridge (United Kingdom)


    Highlights: • Unique square pancake coil was manufactured. • Measurements in relatively high magnetic field were performed. • Different sections of the coil were characterized. • Parts of the coil which are limiting critical current were identified. - Abstract: Nowadays, superconducting high field magnets are used in numerous applications due to their superior properties. High temperature superconductors (HTS) are usually used for production of circular pancake or racetrack coils. However different geometries of HTS coils might be required for some specific applications. In this study, the HTS coil wound on a rectangular frame was fully characterized in homogeneous DC background field. The study contains measurements of critical current angular dependencies. The critical current of the entire coil and two selected strands under different magnitudes and orientations of external magnetic fields are measured. The critical regions of the coil in different angular regimes are determined. This study brings better understanding of the in- field performance of HTS coils wound on frames with right-angles.

  17. Fabrication of the planar coils for WENDELSTEIN 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Viebke, H. [Max-Planck-Institut fuer Plasmaphysik, Greifswald Branch, Euratom Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)]. E-mail:; Rummel, Th. [Max-Planck-Institut fuer Plasmaphysik, Greifswald Branch, Euratom Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Risse, K. [Max-Planck-Institut fuer Plasmaphysik, Greifswald Branch, Euratom Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Schroeder, R. [Max-Planck-Institut fuer Plasmaphysik, Greifswald Branch, Euratom Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Winter, R. [Tesla Engineering Ltd., Water Lane, Storrington, Sussex RH20 3EA (United Kingdom)


    WENDELSTEIN 7-X (W7-X) is a superconducting stellarator, which uses 50 non-planar coils for the main field and 20 planar coils to modify the magnetic configuration. The planar coils are cut into two differently shaped types and designed for 3 T on the plasma axis. A planar coil has an outer diameter of around 4 m. The main elements of planar coils are the winding package, the coil case, the interlayer joints to connect the double layers, and the case cooling with instrumentation. The connection to the coil support structure is performed through forged blocks welded to the casing and bolts. The manufacturing is being performed with a high accuracy to maintain the required symmetry of the magnetic configuration of W7-X. Prior to dispatch the coils pass a works acceptance test at Tesla. After production, all coils are subjected to a functional test at cryogenic temperatures at the Low Temperature Laboratory of CEA at Saclay.

  18. Wireless power transmission applied the mutual coupling between coils (United States)

    Furuta, Kenta; Baba, Ryouichi; Shun, Endo; Nunokawa, Kazuki; Takahashi, Wataru; Maruyama, Tamami


    Recently, the studies of wireless power transfer (WPT) to electric vehicles in motion on the snow-piled road have been reported. In WPT by magnetic field resonance method, transmission coefficient S21, which is one of the scattering parameters, from transmission coil to received coil are degraded because of misalignment of transmitting and receiving coil, the distance between these coils, and the effects of the ice and snow. This paper adopts parasitic coil as a solution to improve the reception power in which the parasitic coil is inserted between transmitting and receiving coils. Analysis and experimental results show that parasitic coil could improve the value of S21 by 15 dB using mutual coupling. LED could be light by this solution when the distance between transmitting and receiving coils are 150 mm.

  19. Performance of coils wound from long lengths of surface-coated, reacted, BSCCO-2212 conductor

    Energy Technology Data Exchange (ETDEWEB)

    Walker, M.S.; Hazelton, D.W.; Gardner, M.T. [Intermagnetics General Corp., Latham, NY (United States)] [and others


    React-before-wind surface-coated BSCCO-2212 is being established as a relatively low cost HTS conductor for practical applications. Quality tape is presently being manufactured in 450-500m lengths at a cost estimated to be 1/3-1/5 of the industry costs of BSCCO-2223 powder-in-tube tape. Robust, mechanically sound coils for applications ranging from NMR insert magnets to transformer windings are being made from this BSCCO-2212 tape. The coils have performed consistently through test and thermal cycling without degradation and as projected from short sample measurements. A hybrid approach, which uses mainly BSCCO- 2212 augmented by BSCCO-2223 conductor in the high radial field end regions, is expected to halve magnet system costs.

  20. NMR difference spectroscopy with a dual saddle-coil difference probe. (United States)

    Macnaughtan, Megan A; Smith, Aaron P; Goldsbrough, Peter B; Santini, Robert E; Raftery, Daniel


    A new difference probe for nuclear magnetic resonance (NMR) spectroscopy is presented. The difference probe uses two saddle-shaped coils to excite and detect two samples simultaneously. The samples are held in a specially modified 3-mm NMR tube with an Ultem plastic disk to separate the samples. The probe's resonant circuit contains two crossed diodes that passively switch the relative phase of each coil during the NMR experiment. The result is a difference spectrum from the two samples. The degree of cancellation of common signals was determined to be approximately 90%, and the application of the probe to relaxation-edited difference spectroscopy for identifying protein-ligand interactions was demonstrated using glutathione and glutathione S-transferase binding protein.

  1. Hydraulic conductivity of compacted zeolites. (United States)

    Oren, A Hakan; Ozdamar, Tuğçe


    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  2. Review of Singular Cooling Inlet and Linear Pressure Drop for ITER Coils Cable in Conduit Conductor (United States)

    Nicollet, S.; Bessette, D.; Cloez, H.; Decool, P.; Lacroix, B.; Lebailly, C. A.; Serries, J. P.


    New tests and measurements performed (Othello Facility, EFDA Task) on TF mock up cooling inlet and different central spirals (characteristics: hydraulic outer diameter and perforation ratio) are presented, as well as the new model of singular and linear friction factor. The ITER Coils CICC hydraulic length pressure drop is determined in operating conditions (m=8 g/s, P=0.6 MPa and T=5 K): the important result is an increase in linear pressure drop for the TF (290 Pa/m) and CS (430 Pa/m), in comparison with prototype model coils TFMC (100 Pa/m) and CSMC (180 Pa/m). The main reason is the reduction of the central spiral diameter and associated increase of friction factor and bundle to total mass flow ratio α (from 1/3 up to 2/3 typically). The ratio of singular cooling inlet to CICC linear pressure drop is estimated: TF mock up ratio (3 m) is lower than previous CS mock up tested (12 m), due to design changes. The cryogenic power necessary to compensate the CICC pressure drop is calculated for the 4 primary loop circuits: typically 2.3 kW at 5 K for TF winding system represents 40% of the whole average TF winding magnet heat loads during operation.

  3. Predictive study of the poloidal field coil insert behaviour under pulsed current tests (United States)

    Lacroix, B.; Ciazynski, D.; Duchateau, J. L.; Nicollet, S.; Pauty, N.


    Within the ITER Poloidal Field conductor design validation, the Poloidal Field Conductor Insert (PFCI) has been manufactured and will be tested in the Central Solenoid Model Coil (CSMC) facility at JAEA Naka (Japan). In this test facility, the PFCI can be tested under ITER-relevant operating conditions, the field produced by the CSMC being varied to simulate the real situation of the PF coils in ITER. Predictive analyses have been performed in order to study the electromagnetic and thermal-hydraulic behaviour of the PFCI, under two scenarios proposed for pulsed current tests. During these scenarios, simulations have been performed with the THEA code, in which classical formulas for the AC losses in a cable have been introduced. The study focuses on the lower part of the winding, which is a 44 m long conductor including a joint. It covers the sample thermal-hydraulic behaviour with particular emphasis on the losses. Due to the overcompaction in the joint area, the total energy dissipated during a scenario can be equivalent in the joint and in the conductor, in spite of the reduced length of the joint (0.45 m). This particular point is discussed and has led to the analysis of the temperature margin in the joint.

  4. Hydraulic Actuators with Autonomous Hydraulic Supply for the Mainline Aircrafts

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov


    Full Text Available Applied in the aircraft control systems, hydraulic servo actuators with autonomous hydraulic supply, so-called, hydraulic actuators of integrated configuration, i.e. combination of a source of hydraulic power and its load in the single unit, are aimed at increasing control system reliability both owing to elimination of the pipelines connecting the actuator to the hydraulic supply source, and owing to avoidance of influence of other loads failure on the actuator operability. Their purpose is also to raise control system survivability by eliminating the long pipeline communications and their replacing for the electro-conductive power supply system, thus reducing the vulnerability of systems. The main reason for a delayed application of the hydraulic actuators in the cutting-edge aircrafts was that such aircrafts require hydraulic actuators of considerably higher power with considerable heat releases, which caused an unacceptable overheat of the hydraulic actuators. Positive and negative sides of the hydraulic actuators, their alternative options of increased reliability and survivability, local hydraulic systems as an advanced alternative to independent hydraulic actuators are considered.Now to use hydraulic actuators in mainline aircrafts is inexpedient since there are the unfairly large number of the problems reducing, first and last, safety of flights, with no essential weight and operational advantages. Still works to create competitive hydraulic actuators ought to be continued.Application of local hydraulic systems (LHS will allow us to reduce length of pressure head and drain pipelines and mass of pipelines, as well as to raise their general fail-safety and survivability. Application of the LHS principle will allow us to use a majority of steering drive advantages. It is necessary to allocate especially the following:- ease of meeting requirements for the non-local spread of the engine weight;- essentially reducing length and weight of

  5. International Space Station power module thermal control system hydraulic performance

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, V. [Boeing North American, Inc., Canoga Park, CA (United States). Rocketdyne Div.


    The International Space Station (ISS) uses four photovoltaic power modules (PVMs) to provide electric power for the US On-Orbit Segment. The PVMs consist of photovoltaic arrays (PVAs), orbit replaceable units (ORUs), photovoltaic radiators (PVRs), and a thermal control system (TCS). The PVM TCS function is to maintain selected PVM components within their specified operating ranges. The TCS consists of the pump flow control subassembly (PFCS), piping system, including serpentine tubing for individual component heat exchangers, headers/manifolds, fluid disconnect couplings (FQDCs), and radiator (PVR). This paper describes the major design requirements for the TCS and the results of the system hydraulic performance predictions in regard to these requirements and system component sizing. The system performance assessments were conducted using the PVM TCS fluid network hydraulic model developed for predicting system/component pressure losses and flow distribution. Hardy-Cross method of iteration was used to model the fluid network configuration. Assessments of the system hydraulic performance were conducted based on an evaluation of uncertainties associated with the manufacturing and design tolerances. Based on results of the analysis, it was concluded that all design requirements regarding system performance could be met. The hydraulic performance range, enveloping possible system operating parameter variations was determined.

  6. Hydraulic conductivity of organomodified soil

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, R.B.; Grant, J.M.; Voice, T.C.; Rakhshandehroo, G.; Xu, S.; Boyd, S.A. [Michigan State Univ., East Lansing, MI (United States)


    The effects of organomodification on soil hydraulic conductivity were investigated. Hydraulic conductivity and porosity of treated and untreated samples of a sandy loam were measured as a function of effective stress. Batch treatment with hexadecyltrimethyl ammonium (HDTMA) and dry packing produced organomodified samples that were 79% less conducive than untreated samples prior to loading. Treated samples lost less hydraulic conductivity as a result of loading than untreated samples so that treated samples had higher conductivity at high loads. Observed differences in conductivity are explained in terms of the role of the treated and untreated clay in controlling initial effective pore size and its change during consolidation.

  7. Surface Coil for Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Beatriz Taimy Ricardo Ferro


    Full Text Available Currently Magnetic Resonance Imaging (MRI, has become a vital tool for the clinical diagnosis of various diseases, especially in the Nervisos Central System and the Musculos keletal System. Coils(RF are an essential component in the generation of these images, are responsible for exciting thespins of nuclei in a sample and/or detect the resultant signal coming from them. The use of surface RF coils has increased considerably, because they have a high signal to noise ratio, a parameter that defines the quality of the image. In the present work, there was realized the theoretical design and practical implementation of a circular surface RF coil. The experimental prototype was optimized to be used in the tomograph Giroimag03  built in Medical Biophysics Center

  8. Determination of Coil Inductances Cylindrical Iron Nucleus

    Directory of Open Access Journals (Sweden)

    Azeddine Mazouz


    Full Text Available The paper describes the investigation and development of a structure and performance characteristics of a coil iron nucleus cylindrical (C.I.N.C. The coil iron nucleus cylindrical is a nonlinear electro radio in which the moving of the nucleus in a sense or in other causes change in inductance and can reach extreme values at the superposition of nucleus and coil centers. The variation of the inductance and the degree of freedom of movement of the nucleus can lead to a device with electromechanical conversion The aim of this paper is the determination and visualization of self inductance and mutual of the (C.I.N.C based on geometric dimensions and the displacement of the nucleus.  

  9. CS model coil experimental log book

    Energy Technology Data Exchange (ETDEWEB)

    Nishijima, Gen; Sugimoto, Makoto; Nunoya, Yoshihiko; Wakabayashi, Hiroshi; Tsuji, Hiroshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment


    Charging test of the ITER CS Model Coil which is the world's largest superconducting pulse coil and the CS Insert Coil had started at April 11, 2000 and had completed at August 18, 2000. In the campaign, total shot numbers were 356 and the size of the data file in the DAS (Data Acquisition System) was over 20 GB. This report is a database that consists of the log list and the log sheets of every shot. One can access the database, make a search, and browse results via Internet ( The database will be useful to quick search to choose necessary shots. (author)

  10. Acoustic rainbow trapping by coiling up space

    KAUST Repository

    Ni, Xu


    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea.

  11. Measuring the orthogonality error of coil systems (United States)

    Heilig, B.; Csontos, A.; Pajunpää, K.; White, Tim; St. Louis, B.; Calp, D.


    Recently, a simple method was proposed for the determination of pitch angle between two coil axes by means of a total field magnetometer. The method is applicable when the homogeneous volume in the centre of the coil system is large enough to accommodate the total field sensor. Orthogonality of calibration coil systems used for calibrating vector magnetometers can be attained by this procedure. In addition, the method can be easily automated and applied to the calibration of delta inclination–delta declination (dIdD) magnetometers. The method was tested by several independent research groups, having a variety of test equipment, and located at differing geomagnetic observatories, including: Nurmijärvi, Finland; Hermanus, South Africa; Ottawa, Canada; Tihany, Hungary. This paper summarizes the test results, and discusses the advantages and limitations of the method.

  12. MFTF test coil construction and performance

    Energy Technology Data Exchange (ETDEWEB)

    Cornish, D.N.; Zbasnik, J.P.; Leber, R.L.; Hirzel, D.G.; Johnston, J.E.; Rosdahl, A.R.


    A solenoid coil, 105 cm inside the 167 cm outside diameter, has been constructed and tested to study the performance of the stabilized Nb--Ti conductor to be used in the Mirror Fusion Test Facility (MFTF) being built at Lawrence Livermore Laboratory. The insulation system of the test coil is identical to that envisioned for MFTF. Cold-weld joints were made in the conductor at the start and finish of each layer; heaters were fitted to some of these joints and also to the conductor at various locations in the winding. This paper gives details of the construction of the coil and the results of the tests carried out to determine its propagation and recovery characteristics.

  13. A pulsed eddy current probe for inspection of support plates from within Alloy-800 steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Krause, T. W.; Babbar, V. K.; Underhill, P. R. [Department of Physics, Royal Military College of Canada, Kingston, ON (Canada)


    Support plate degradation and fouling in nuclear steam generators (SGs) can lead to SG tube corrosion and loss of efficiency. Inspection and monitoring of these conditions can be integrated with preventive maintenance programs, thereby advancing station-life management processes. A prototype pulsed eddy current (PEC) probe, targeting inspection issues associated with SG tubes in SS410 tube support plate structures, has been developed using commercial finite element (FE) software. FE modeling was used to identify appropriate driver and pickup coil configurations for optimum sensitivity to changes in gap and offset for Alloy-800 SG tubes passing through 25 mm thick SS410 support plates. Experimental measurements using a probe that was manufactured based on the modeled configuration, were used to confirm the sensitivity of differential PEC signals to changes in relative position of the tube within the tube support plate holes. Models investigated the effect of shift and tilt of tube with respect to hole centers. Near hole centers and for small shifts, modeled signal amplitudes from the differentially connected coil pairs were observed to change linearly with tube shift. This was in agreement with experimentally measured TEC coil response. The work paves the way for development of a system targeting the inspection and evaluation of support plate structures in steam generators.

  14. A pulsed eddy current probe for inspection of support plates from within Alloy-800 steam generator tubes (United States)

    Krause, T. W.; Babbar, V. K.; Underhill, P. R.


    Support plate degradation and fouling in nuclear steam generators (SGs) can lead to SG tube corrosion and loss of efficiency. Inspection and monitoring of these conditions can be integrated with preventive maintenance programs, thereby advancing station-life management processes. A prototype pulsed eddy current (PEC) probe, targeting inspection issues associated with SG tubes in SS410 tube support plate structures, has been developed using commercial finite element (FE) software. FE modeling was used to identify appropriate driver and pickup coil configurations for optimum sensitivity to changes in gap and offset for Alloy-800 SG tubes passing through 25 mm thick SS410 support plates. Experimental measurements using a probe that was manufactured based on the modeled configuration, were used to confirm the sensitivity of differential PEC signals to changes in relative position of the tube within the tube support plate holes. Models investigated the effect of shift and tilt of tube with respect to hole centers. Near hole centers and for small shifts, modeled signal amplitudes from the differentially connected coil pairs were observed to change linearly with tube shift. This was in agreement with experimentally measured TEC coil response. The work paves the way for development of a system targeting the inspection and evaluation of support plate structures in steam generators.

  15. Resistive demountable toroidal-field coils for tokamak reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jassby, D.L.; Jacobsen, R.A.; Kalnavarns, J.; Masson, L.S.; Sekot, J.P.


    Readily demountable TF (toroidal-field) coils allow complete access to the internal components of a tokamak reactor for maintenance of replacement. The requirement of readily demountable joints dictates the use of water-cooled resistive coils, which have a host of decisive advantages over superconducting coils. Previous papers have shown that resistive TF coils for tokamak reactors can operate in the steady state with acceptable power dissipation (typically, 175 to 300 MW). This paper summarizes results of parametric studies of size optimization of rectangular TF coils and of a finite-element stress analysis, and examines several candidate methods of implementing demountable joints for rectangular coils constructed of plate segments.

  16. Final design and construction of the Wendelstein7-X coils

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, L. E-mail:; Feist, J.-H.; Sapper, J.; Kerl, F.; Werner, F


    The Stellarator of the Wendelstein 7-X (W7-X) experiment contains a system of 50 non-planar and 20 planar superconducting coils. The coils were designed by the IPP. The coil manufacturing and inspection is shared between several European enterprises and consortiums. The coils consist of the winding pack embedded in a stainless steel casing and of the related instrumentation. Design details, tolerances and guarantee values and differences between the coils types are described in the contribution. The features of the superconductor are described separately. Finally, the contribution indicates measures adopted by the W7-X project to ensure the quality of the coil design and manufacturing.

  17. A study of swirl flow in draft tubes

    Energy Technology Data Exchange (ETDEWEB)

    Dahlhaug, Ole Gunnar


    This thesis presents measurements performed inside conical diffuser and bend, draft tubes of model hydro turbines, and draft tube of a prototype hydro turbine. Experimental results for swirling flow in conical diffuser and bend are presented in three different geometries. The axial velocity decreases at the centre of the tube at high swirl numbers because of an axial pressure gradient set up by the downstream frictional damping of the tangential velocities and the pressure increase downstream of the diffuser. Analytical models of the tangential velocity profiles are found and the radial pressure distribution calculated. Good correlation to the measured pressure distribution was achieved. Diffuser efficiency was calculated based on the equations for velocity and pressure profiles, which gave a qualified estimate of the diffuser hydraulic performance. The calculation shows that the bend reduces the efficiency by more than 30%. For a straight tube followed by a diffuser, numerical calculations were done, using K{epsilon}, RNG and RSM turbulence models for all measured swirl numbers. The K{epsilon} model gave best results for the forced vortex profile at low swirl numbers, while the RSM model gave best results at high swirl number. The turbulent kinetic energy at high swirl numbers gave the largest difference between the calculated and the measured values. Measurements on draft tubes in model turbines show the importance of good draft tube design. Prototype measurements on a Francis turbine show how the outlet draft tube flow should be measured for prototype draft tube evaluation. 54 refs., 118 figs., 2 tabs.

  18. Coiled coil interactions for the targeting of liposomes for nucleic acid delivery (United States)

    Oude Blenke, Erik E.; van den Dikkenberg, Joep; van Kolck, Bartjan; Kros, Alexander; Mastrobattista, Enrico


    Coiled coil interactions are strong protein-protein interactions that are involved in many biological processes, including intracellular trafficking and membrane fusion. A synthetic heterodimeric coiled-coil forming peptide pair, known as E3 (EIAALEK)3 and K3 (KIAALKE)3 was used to functionalize liposomes encapsulating a splice correcting oligonucleotide or siRNA. These peptide-functionalized vesicles are highly stable in solution but start to cluster when vesicles modified with complementary peptides are mixed together, demonstrating that the peptides quickly coil and crosslink the vesicles. When one of the peptides was anchored to the cell membrane using a hydrophobic cholesterol anchor, vesicles functionalized with the complementary peptide could be docked to these cells, whereas non-functionalized cells did not show any vesicle tethering. Although the anchored peptides do not have a downstream signaling pathway, microscopy pictures revealed that after four hours, the majority of the docked vesicles were internalized by endocytosis. Finally, for the first time, it was shown that the coiled coil assembly at the interface between the vesicles and the cell membrane induces active uptake and leads to cytosolic delivery of the nucleic acid cargo. Both the siRNA and the splice correcting oligonucleotide were functionally delivered, resulting respectively in the silencing or recovery of luciferase expression in the appropriate cell lines. These results demonstrate that the docking to the cell by coiled coil interaction can induce active uptake and achieve the successful intracellular delivery of otherwise membrane impermeable nucleic acids in a highly specific manner.Coiled coil interactions are strong protein-protein interactions that are involved in many biological processes, including intracellular trafficking and membrane fusion. A synthetic heterodimeric coiled-coil forming peptide pair, known as E3 (EIAALEK)3 and K3 (KIAALKE)3 was used to functionalize liposomes

  19. Multiple coil closure of isolated aortopulmonary collateral

    Directory of Open Access Journals (Sweden)

    Padhi Sumanta


    Full Text Available A 7-month-old girl was diagnosed to have large aortopulmonary collateral during evaluation for congestive heart failure. There was no other evidence of cardiopulmonary disease. The collateral was successfully closed with multiple coils delivered sequentially. We describe the issues associated during closure of the aortopulmonary collateral in this case. To the best of our knowledge, this is the first reported case of large aortopulmonary collateral presenting with heart failure in an otherwise structurally normal heart that was closed successfully with multiple coils delivered sequentially.

  20. A HTS dipole insert coil constructed

    CERN Document Server

    Ballarino, A; Rey, J M; Stenvall, A; Sorbi, M; Tixador, P


    This report is the deliverable report 7.4.1 “A HTS dipole insert coil constructed“. The report has three parts: “Design report for the HTS dipole insert”, “One insert pancake prototype coil constructed with the setup for a high field test”, and “All insert components ordered”. The three report parts show that, although the insert construction will be only completed by end 2013, all elements are present for a successful completion and that, given the important investments done by the participants, there is a full commitment of all of them to finish the project

  1. Estimation and measurement of flat or solenoidal coil inductance for radiofrequency NMR coil design. (United States)

    Rainey, Jan K; DeVries, Jeffrey S; Sykes, Brian D


    The inductance of a radiofrequency coil determines its compatibility with a given NMR probe circuit. However, calculation (or estimation) of inductance for radiofrequency coils of dimensions suitable for use in an NMR probe is not trivial, particularly for flat-coils. A comparison of a number of formulae for calculation of inductance is presented through the use of a straightforward inductance measurement circuit. This technique relies upon instrumentation available in many NMR laboratories rather than upon more expensive and specialized instrumentation often utilized in the literature. Inductance estimation methods are suggested and validated for both flat-coils and solenoids. These have proven very useful for fabrication of a number of new coils in our laboratory for use in static solid-state NMR probes operating at (1)H frequencies of 300 and 600MHz. Solenoidal coils with very similar measured and estimated inductances having inner diameters from 1 to 5mm are directly compared as an example of the practical application of inductance estimation for interchange of coils within an existing solid-state NMR probe.

  2. Research and development of MRI surface coil for TMJ MR imaging; Modulated Helmholtz surface coil

    Energy Technology Data Exchange (ETDEWEB)

    Kukimoto, Yoshiaki; Kukimoto, Kyoko (Kameda General Hospital, Kamogawa, Chiba (Japan)); Shirakawa, Toyomi


    Internal derangements of the temporomandibular joint (TMJ) are a major cause of jaw pain and dysfunction as well as other related clinical symptoms. TMJ diagnosis is the abnormal position and appearance of the disk. Most X-ray-based methods are useful for evaluating bony abnormalities, but their reduced soft-tissue contrast often makes the diagnostic evaluation of TMJ disorders difficult. Magnetic resonance (MR) imaging is a very recent addition to the medical diagnostic of TMJ diseases. MR imaging can produce high-quality tomographic images of greater soft-tissue contrast without ionizing radiation or known biological hazards. MR system was circular type Simens Magnetom 1.5 tesla. Display matrix was 256x256. A Modulated Helmholtz type coil of 17 cm in diameter was developed in Kameda General Hospital in order to increase signal to noise ratio in the area of bilateral TMJs. The distance between two coils was 16-20 cm. The head was placed in supine position in the center of two surface coils. A Modulated Helmholtz type coil: 1. Modulated Helmholtz type coil was used as an emitter and a receiver. 2. Modulated Helmholtz type coil had a pair of 17 cm coils, which were movable according to head width of each patient. 3. MR imaging of bilateral TMJs was taken at once because of no necessity to reset a surfacecoil. 4. It was easy to set positioning of the head. (author).

  3. Intercostal drainage tube or intracardiac drainage tube?

    Directory of Open Access Journals (Sweden)

    N Anitha


    Full Text Available Although insertion of chest drain tubes is a common medical practice, there are risks associated with this procedure, especially when inexperienced physicians perform it. Wrong insertion of the tube has been known to cause morbidity and occasional mortality. We report a case where the left ventricle was accidentally punctured leading to near-exsanguination. This report is to highlight the need for experienced physicians to supervise the procedure and train the younger physician in the safe performance of the procedure.

  4. Steam generator tubing NDE performance

    Energy Technology Data Exchange (ETDEWEB)

    Henry, G. [Electric Power Research Institute, Charlotte, NC (United States); Welty, C.S. Jr. [Electric Power Research Institute, Palo Alto, CA (United States)


    Steam generator (SG) non-destructive examination (NDE) is a fundamental element in the broader SG in-service inspection (ISI) process, a cornerstone in the management of PWR steam generators. Based on objective performance measures (tube leak forced outages and SG-related capacity factor loss), ISI performance has shown a continually improving trend over the years. Performance of the NDE element is a function of the fundamental capability of the technique, and the ability of the analysis portion of the process in field implementation of the technique. The technology continues to improve in several areas, e.g. system sensitivity, data collection rates, probe/coil design, and data analysis software. With these improvements comes the attendant requirement for qualification of the technique on the damage form(s) to which it will be applied, and for training and qualification of the data analysis element of the ISI process on the field implementation of the technique. The introduction of data transfer via fiber optic line allows for remote data acquisition and analysis, thus improving the efficiency of analysis for a limited pool of data analysts. This paper provides an overview of the current status of SG NDE, and identifies several important issues to be addressed.


    Shinomiya, Kazufusa; Ito, Yoichiro


    Countercurrent chromatographic performance of the locular multilayer coil separation column newly designed in our laboratory was evaluated in terms of theoretical plate number, peak resolution and retention of the stationary phase in protein separation with an aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The locular column was made from 1.0 mm I.D., 2.0 mm O.D. or 1.5 mm I.D., 2.5 mm O.D. PTFE tubing compressed with a pair of hemostat at 2 or 4 cm intervals. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin and lysozyme with the 12.5% (w/w) polyethylene glycol 1000 and 12.5% (w/w) dibasic potassium phosphate system under 1000 rpm of column revolution. The 1.5 mm I.D., 2.5 mm O.D. locular tubing compressed at 2 cm intervals yielded better partition efficiencies than the non-clamped tubing using both lower and upper mobile phases with satisfactory retention of the stationary phase. The overall results suggest that the newly designed locular multilayer coil is useful to the preparative separation of proteins with aqueous-aqueous polymer phase system using our small-scale X-axis CPC.

  6. Numerical Simulation of the Roll Forming Process of Aluminum Folded Micro-channel Tube (United States)

    Zou, Tianxia; Zhou, Ning; Peng, Yinghong; Tang, Ding; Li, Dayong


    Micro-channel tube is the most important component of flat tube heat exchangers. The folded microchannel tube is made of clad aluminum sheet through roll forming process, and has great advantage in the aspect of corrosion resistance over extruded tube. The folded tube's sub-millimeter channel size as well as tight dimensional precision requirement brings great challenge to roll forming process design. In this paper, the finite element model of the whole roll forming process of a ten-channel tube is established by using ABAQUS/Explicit. The deformation at different forming stands are investigated and compared with experiment. The hydraulic pressure test is carried out on the developed tube and its pressure bearing capacity is evaluated.


    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — This Hydraulic data was reviewed and approved by FEMA during the initial MT-2 processing. Recent developments in digital terrain and geospatial database management...


    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data in this submittal include spatial datasets and model outputs necessary for computation of the 1-percent flooding extent. The minimum requirement for...

  11. Hydraulic wind energy conversion system

    Energy Technology Data Exchange (ETDEWEB)


    The purpose of this research was to design, build and test a hydraulic wind energy system. This design used a three bladed turbine, which drove a hydraulic pump. The energy is transmitted from the pump through a long hose and into a hydraulic motor, where the energy is used. This wind system was built and tested during the winter of 1980-1981. The power train included a five meter, three bladed wind turbine, a 9.8:1 ratio gearbox, a 1.44 cubic inch displacement pump with a small supercharge gear pump attached. The hydraulic fluid was pumped through a 70', 3/4'' I-D-high pressure flexhose, then through a volume control valve and into a 1.44 cubic inch displacement motor. The fluid was returned through a 70', 1'' I-D-flexhose.

  12. 14 CFR 29.1435 - Hydraulic systems. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 29.1435 Section 29.1435... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1435 Hydraulic systems. (a) Design. Each hydraulic system must be designed as follows: (1) Each element of the hydraulic system...

  13. 14 CFR 23.1435 - Hydraulic systems. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 23.1435 Section 23.1435... § 23.1435 Hydraulic systems. (a) Design. Each hydraulic system must be designed as follows: (1) Each hydraulic system and its elements must withstand, without yielding, the structural loads expected...

  14. 46 CFR 28.405 - Hydraulic equipment. (United States)


    ... 46 Shipping 1 2010-10-01 2010-10-01 false Hydraulic equipment. 28.405 Section 28.405 Shipping... Operate With More Than 16 Individuals on Board § 28.405 Hydraulic equipment. (a) Each hydraulic system... than four times the system maximum operating pressure. (c) Each hydraulic system must be equipped...

  15. Advanced Performance Hydraulic Wind Energy (United States)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.


    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  16. Pulse Tube Refrigerator (United States)

    Matsubara, Yoichi

    The pulse tube refrigerator is one of the regenerative cycle refrigerators such as Stirling cycle or Gifford-McMahon cycle which gives the cooling temperature below 150 K down to liquid helium temperature. In 1963, W. E. Gifford invented a simple refrigeration cycle which is composed of compressor, regenerator and simple tube named as pulse tube which gives a similar function of the expander in Stirling or Gifford-McMahon cycle. The thermodynamically performance of this pulse tube refrigerator is inferior to that of other regenerative cycles. In 1984, however, Mikulin and coworkers made a significant advance in pulse tube configuration called as orifice pulse tube. After this, several modifications of the pulse tube hot end configuration have been developed. With those modifications, the thermodynamic performance of the pulse tube refrigerator became the same order to that of Stirling and Gifford-McMahon refrigerator. This article reviews the brief history of the pulse tube refrigerator development in the view point of its thermodynamically efficiency. Simplified theories of the energy flow in the pulse tube have also been described.

  17. Tx/Rx Head Coil Induces Less RF Transmit-Related Heating than Body Coil in Conductive Metallic Objects Outside the Active Area of the Head Coil. (United States)

    Nagy, Zoltan; Oliver-Taylor, Aaron; Kuehne, Andre; Goluch, Sigrun; Weiskopf, Nikolaus


    The transmit-receive (Tx/Rx) birdcage head coil is often used for excitation instead of the body coil because of the presumably lower risk of heating in and around conductive implants. However, this common practice has not been systematically tested. To investigate whether the Tx/Rx birdcage head coil produces less heating than the body coil when scanning individuals with implants, we used a 3T clinical scanner and made temperature measurements around a straight 15 cm conductor using either the Tx/Rx body or the head coil for excitation. Additionally, the transmitted fields of a Tx/Rx head coil were measured both in air and in gel using a resonant and a non-resonant B field probes as well as a non-resonant E field probe. Simulations using a finite-difference time domain solver were compared with the experimental findings. When the body coil was used for excitation, we observed heating around the 15 cm wire at various anatomical locations (both within and outside of the active volume of the head coil). Outside its active area, no such heating was observed while using the Tx/Rx head coil for excitation. The E and B fields of the Tx/Rx birdcage head coil extended well-beyond the physical dimensions of the coil. In air, the fields were monotonically decreasing, while in gel they were more complex with local maxima at the end of the ASTM phantom. These experimental findings were line with the simulations. While caution must always be exercised when scanning individuals with metallic implants, these findings support the use of the Tx/Rx birdcage head coil in place of the body coil at 3T in order to reduce the risk of heating in and around conductive implants that are remote from the head coil.

  18. Tx/Rx Head Coil Induces Less RF Transmit-Related Heating than Body Coil in Conductive Metallic Objects Outside the Active Area of the Head Coil (United States)

    Nagy, Zoltan; Oliver-Taylor, Aaron; Kuehne, Andre; Goluch, Sigrun; Weiskopf, Nikolaus


    The transmit–receive (Tx/Rx) birdcage head coil is often used for excitation instead of the body coil because of the presumably lower risk of heating in and around conductive implants. However, this common practice has not been systematically tested. To investigate whether the Tx/Rx birdcage head coil produces less heating than the body coil when scanning individuals with implants, we used a 3T clinical scanner and made temperature measurements around a straight 15 cm conductor using either the Tx/Rx body or the head coil for excitation. Additionally, the transmitted fields of a Tx/Rx head coil were measured both in air and in gel using a resonant and a non-resonant B field probes as well as a non-resonant E field probe. Simulations using a finite-difference time domain solver were compared with the experimental findings. When the body coil was used for excitation, we observed heating around the 15 cm wire at various anatomical locations (both within and outside of the active volume of the head coil). Outside its active area, no such heating was observed while using the Tx/Rx head coil for excitation. The E and B fields of the Tx/Rx birdcage head coil extended well-beyond the physical dimensions of the coil. In air, the fields were monotonically decreasing, while in gel they were more complex with local maxima at the end of the ASTM phantom. These experimental findings were line with the simulations. While caution must always be exercised when scanning individuals with metallic implants, these findings support the use of the Tx/Rx birdcage head coil in place of the body coil at 3T in order to reduce the risk of heating in and around conductive implants that are remote from the head coil.

  19. Computational fluid dynamics analysis on heat transfer and friction factor characteristics of a turbulent flow for internally grooved tubes

    Directory of Open Access Journals (Sweden)

    Selvaraj P.


    Full Text Available The article presents computational fluid dynamics studies on heat transfer, pressure drop, friction factor, Nusselt number and thermal hydraulic performance of a plain tube and tube equipped with the three types of internal grooves (circular, square and trapezoidal.Water was used as the working fluid. Tests were performed for Reynolds number ranges from 5000 to 13500 for plain tube and different geometry inside grooved tubes. The maximum increase of pressure drop was obtained from numerical modeling 74% for circular, 38% for square and 78% for trapezoidal grooved tubes were compared with plain tube. Based on computational fluid dynamics analysis the average Nusselt number was increased up to 37%, 26% and 42% for circular, square and trapezoidal grooved tubes respectively while compared with the plain tube. The thermal hydraulic performance was obtained from computational fluid dynamics analysis up to 38% for circular grooved tube, 27% for square grooved tube and 40% for trapezoidal grooved tube while compared with the plain tube.

  20. Subcooled choked flow through steam generator tube cracks (United States)

    Wolf, Brian J.

    The work presented here describes an experimental investigation into the choked flow of initially subcooled water through simulated steam generator tube cracks at pressures up to 6.9 MPa. The study of such flow is relevant to the prediction of leak flow rates from a nuclear reactor primary side to secondary side through cracks in steam generator tubes. An experimental approach to measuring such flow is de- scribed. Experimental results from data found in literature as well as the data collected in this work are compared with predictions from presented models as well as predictions from the thermal-hydraulic system code RELAP5. It is found that the homogeneous equilibrium model underpredicts choked flow rates of subcooled water through slits and artificial steam generator tube cracks. Additional modeling of thermal non-equilibrium improves the predictibility of choking mass flux for homogeneous models, however they fail to account for the characteristics of the two-phase pressure drop. An integral modeling approach is enhanced using a correlation developed from the data herein. Also, an assessment of the thermal-hydraulics code RELAP5 is performed and it’s applicability to predict choking flow rates through steam generator tube cracks is addressed. This assessment determined that the Henry & Fauske model, as coded in RELAP5, is best suited for modeling choked flow through steam generator tube cracks. Finally, an approach to applying choked flow data that is not at the same thermo-dynamic conditions as a prototype is developed.

  1. Comparative study for thermal-hydraulic performance

    Directory of Open Access Journals (Sweden)

    Alok Kumar


    Full Text Available Several researchers have worked on the passive approach of heat transfer enhancement in tube heat exchangers. Some of them tried to modify the surface by creating dimple or using wire coil of different cross-section, while some worked on core fluid disturbance by using some insert geometries such as twisted tapes. But the ultimate aim of all was to create some disturbance in the flow in order to obtain enhanced heat transfer. This paper focuses on comparison of some of the most commonly used insert geometries. Insert geometry selected for this comparison is collection of core fluid disturbance, surface modification and combination of both. Different geometries taken in this study include twisted tape, twisted tape with ring, circular band, multiple twisted tape, twisted tape with conical rings, and so on and used air under turbulent flow regime as working fluid. On the basis of comparison made, it is observed that, in case of “single twisted tape insert” the thermal performance factor was maximum and in the event of “twisted tape with circular ring” the overall heat transfer rate is maximum. Future aspect is also proposed, which includes perforation in circular ring, and causes decrease in friction factor value because of less flow blockage.

  2. Optimization of a conduction-cooled LTS pulse coil

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, A. [Kagoshima University, Kohrimoto 1-21-40, Kagoshima-shi, Kagoshima 890-0065 (Japan)]. E-mail:; Yamamuro, H. [Kagoshima University, Kohrimoto 1-21-40, Kagoshima-shi, Kagoshima 890-0065 (Japan); Sumiyoshi, F. [Kagoshima University, Kohrimoto 1-21-40, Kagoshima-shi, Kagoshima 890-0065 (Japan); Mito, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Chikaraishi, H. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Hemmi, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Baba, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Yokota, M. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Morita, Y. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Ogawa, H. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Abe, R. [Shibuya Kogyo Co., Ltd., Kanazawa, Ishikawa 920-0054 (Japan); Okumura, K. [Technova Inc., Chiyoda-ku, Tokyo 100-0011 (Japan); Iwakuma, M. [Kyushu University, Higashi-ku, Fukuoka 812-8581 (Japan)


    The output limit of the available power of a prototype conduction-cooled low temperature superconducting (LTS) pulse coil is clarified for the optimization of the coil. The winding conductor of this coil is a NbTi/Cu Rutherford cable, which is extruded with aluminum. Dyneema[reg] fiber reinforced plastics (DFRP) and Litz wires are used as the spacers of this coil. A prototype coil with a stored energy of 100 kJ was successfully fabricated and tested, and the coil performed excellently. In this paper, the stability margin of this coil is clarified by thermal analysis, using a two-dimensional finite element method, taking into account the effects of both types of spacers, DFRP and Litz wires. Additionally, the maximum output power of the coil is estimated at about three times the rated output.

  3. Modular Coils and Plasma Configurations for Quasi-axisymmetric Stellarators

    Energy Technology Data Exchange (ETDEWEB)

    L.P. Ku and A.H. Boozer


    Characteristics of modular coils for quasi-axisymmetric stellarators that are related to the plasma aspect ratio, number of field periods and rotational transform have been examined systematically. It is observed that, for a given plasma aspect ratio, the coil complexity tends to increase with the increased number of field periods. For a given number of field periods, the toroidal excursion of coil winding is reduced as the plasma aspect ratio is increased. It is also clear that the larger the coil-plasma separation is, the more complex the coils become. It is further demonstrated that it is possible to use other types of coils to complement modular coils to improve both the physics and the modular coil characteristics.

  4. Technologies and Innovations for Hydraulic Pumps


    Ivantysynova, Monika


    Positive displacement machines working as hydraulic pumps or hydraulic motors have always been, are and will be an essential part of any hydraulic system. Current trends and future demands on energy efficient systems will not only drastically increase the number of positive displacement machines needed for modern efficient hydraulic circuits but will significantly change the performance requirements of pumps and motors. Throttleless system configurations will change the landscape of hydraulic...

  5. Constrained length minimum inductance gradient coil design. (United States)

    Chronik, B A; Rutt, B K


    A gradient coil design algorithm capable of controlling the position of the homogeneous region of interest (ROI) with respect to the current-carrying wires is required for many advanced imaging and spectroscopy applications. A modified minimum inductance target field method that allows the placement of a set of constraints on the final current density is presented. This constrained current minimum inductance method is derived in the context of previous target field methods. Complete details are shown and all equations required for implementation of the algorithm are given. The method has been implemented on computer and applied to the design of both a 1:1 aspect ratio (length:diameter) central ROI and a 2:1 aspect ratio edge ROI gradient coil. The 1:1 design demonstrates that a general analytic method can be used to easily obtain very short gradient coil designs for use with specialized magnet systems. The edge gradient design demonstrates that designs that allow imaging of the neck region with a head sized gradient coil can be obtained, as well as other applications requiring edge-of-cylinder regions of uniformity.

  6. Thermophoresis of polymers: nondraining vs draining coil. (United States)

    Morozov, Konstantin I; Köhler, Werner


    Present theories for the thermophoretic mobility of polymers in dilute solution without long-ranged electrostatic interaction are based on a draining coil model with short-ranged segment-solvent interaction. We show that the characteristic thermophoretic interaction decays as r(-2) with the distance from the chain segment, which is of much longer range than the underlying rapidly decaying binary van der Waals interaction (∝ r(-6)). As a consequence, thermophoresis on the monomer level is governed by volume forces, resulting in hydrodynamic coupling between the chain segments. The inner parts of the nondraining coil do not actively participate in thermophoresis. The flow lines penetrate only into a thin surface layer of the coil and cause tangential stresses along the surface of the entire coil, not the individual segments. This model is motivated by recent experimental findings for thermoresponsive polymers and core-shell particles, and it explains the well-known molar mass independent thermophoretic mobility of polymers in dilute solution.

  7. Coil in bottom part of splitter magnet

    CERN Multimedia


    Radiation-resistant coil being bedded into the bottom part of a splitter magnet. This very particular magnet split the beam into 3 branches, for 3 target stations in the West-Area. See Annual Report 1975, p.176, Figs.14 and 15.

  8. Stellarator Coil Design and Plasma Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Long-Poe Ku and Allen H. Boozer


    The rich information contained in the plasma response to external magnetic perturbations can be used to help design stellarator coils more effectively. We demonstrate the feasibility by first devel- oping a simple, direct method to study perturbations in stellarators that do not break stellarator symmetry and periodicity. The method applies a small perturbation to the plasma boundary and evaluates the resulting perturbed free-boundary equilibrium to build up a sensitivity matrix for the important physics attributes of the underlying configuration. Using this sensitivity information, design methods for better stellarator coils are then developed. The procedure and a proof-of-principle application are given that (1) determine the spatial distributions of external normal magnetic field at the location of the unperturbed plasma boundary to which the plasma properties are most sen- sitive, (2) determine the distributions of external normal magnetic field that can be produced most efficiently by distant coils, (3) choose the ratios of the magnitudes of the the efficiently produced magnetic distributions so the sensitive plasma properties can be controlled. Using these methods, sets of modular coils are found for the National Compact Stellarator Experiment (NCSX) that are either smoother or can be located much farther from the plasma boundary than those of the present design.

  9. Penile hair coil strangulation of the child

    African Journals Online (AJOL)


    We report the case of a child with a delayed presentation of penile strangulation with a coil of hair that resulted in a complete ... erection in some of them and with autoerotic intentions in others. ... in children with underlying urological problems.

  10. High-resolution MR imaging of triangular fibrocartilage complex (TFCC): comparison of microscopy coils and a conventional small surface coil

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Hiroshi [Department of Radiology, University of Tsukuba, Tsukuba (Japan); Department of Radiology, Brigham and Women' s Hospital, 75 Francis Street, 02115, Boston, MA (United States); Ueno, Teruko; Itai, Yuji [Department of Radiology, University of Tsukuba, Tsukuba (Japan); Tanaka, Toshikazu [Department of Orthopedic Surgery, Tsukuba Kinen Hospital, Tsukuba (Japan); Shindo, Masashi [Tsukuba University Hospital, Tsukuba (Japan)


    To compare MR images of the triangular fibrocartilage complex (TFCC) using microscopy coils with those using a conventional surface coil qualitatively and quantitatively. Proton density-weighted images and T2*-weighted images of the TFCC from ten normal volunteers were obtained with a conventional surface coil (C4 coil; 80 mm in diameter), a 47-mm microscopy surface coil and a 23-mm microscopy surface coil at 1.5 T. Qualitative image analysis of MR images with three coils was performed by two radiologists who assigned one of five numerical scores (0, nonvisualization; 1, poor; 2, average; 3, good; 4, excellent) for five TFCC components, which were disc proper, triangular ligament, meniscus homologue, ulnotriquetral and ulnolunate ligament. Quantitative analysis included the signal-to-noise ratio (S/N) of the disc proper of TFCC, the lunate cartilage, the lunate bone and the contrast-noise-ratio (C/N) between articular cartilage and disc proper or bone marrow were measured. All structures show higher scores qualitatively on MR with microscopy coils than those with a C4 coil, and the difference was significant with the exception of the ulnolunate ligament. MR with microscopy coils showed significantly higher S/N values than those with a conventional surface coil (P<0.05 to P<0.001). T2*-weighted images using microscopy coils showed significantly higher cartilage-disc proper C/N and cartilage-bone marrow C/N (P<0.01 to P<0.001). On proton density-weighted images, the C/N between cartilage and disc proper with two microscopy coils was significantly higher (P<0.01) than that with a conventional coil. High-resolution MR images of the normal wrist using microscopy coils were superior to those using a conventional surface coil qualitatively and quantitatively. High-resolution MR imaging with a microscopy coil would be a promising method to diagnose TFCC lesions. (orig.)

  11. Comparison of an Electromagnetic Energy Harvester Performance using Wound Coil Wire and PCB Coil (United States)

    Resali, MSM; Salleh, H.


    This paper presents the performance of two types of electromagnetic energy harvester, one using manually wound coil wire (EH-EC) and the other one using printed circuit board (PCB) coil (EH-EP). The objective of the study is to measure the corresponding output voltage and power by varying the number of coils and the position of the magnet. The experiment was conducted at a fix 50 Hz of frequency and at 0.25g of acceleration. The EH-EP was found to be more effective than the 350 turns of the wound coil wire, with maximum power of 26 μW. Overall, the performance of the EH-EC showed better result with maximum power of 125 μW for 1050 turns when compared to the EH-EP.

  12. Coiled-Coil Irregularities and Instabilities in Group A Streptococcus M1 Are Required for Virulence

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, Case; Zinkernagel, Annelies S.; Macheboeuf, Pauline; Cunningham, Madeleine W.; Nizet, Victor; Ghosh, Partho (UO-HSC); (UCSD)


    Antigenically variable M proteins are major virulence factors and immunogens of the human pathogen group A Streptococcus (GAS). Here, we report the -3 angstrom resolution structure of a GAS M1 fragment containing the regions responsible for eliciting type-specific, protective immunity and for binding fibrinogen, which promotes M1 proinflammatory and antiphagocytic functions. The structure revealed substantial irregularities and instabilities throughout the coiled coil of the M1 fragment. Similar structural irregularities occur in myosin and tropomyosin, explaining the patterns of cross-reactivity seen in autoimmune sequelae of GAS infection. Sequence idealization of a large segment of the M1 coiled coil enhanced stability but diminished fibrinogen binding, proinflammatory effects, and antibody cross-reactivity, whereas it left protective immunogenicity undiminished. Idealized M proteins appear to have promise as vaccine immunogens.

  13. Multiple-Coil, Pulse-Induction Metal Detector (United States)

    Lesky, Edward S.; Reid, Alan M.; Bushong, Wilton E.; Dickey, Duane P.


    Multiple-head, pulse-induction metal detector scans area of 72 feet squared with combination of eight detector heads, each 3 ft. square. Head includes large primary coil inducing current in smaller secondary coils. Array of eight heads enables searcher to cover large area quickly. Pulses applied to primary coil, induced in secondary coils measured to determine whether metal present within range of detector head. Detector designed for recovery of Space Shuttle debris.

  14. Design and Testing of Coils for Pulsed Electromagnetic Forming


    Golovashchenko, S.; Bessonov, N.; Davies, R


    Coil design influences the distribution of electromagnetic forces applied to both the blank and the coil. The required energy of the process is usually defined by deformation of the blank. However, the discharge also results in a significant amount of heat being generated and accumulating in the coil. Therefore, EMF process design involves working with three different problems: 1) propagation of an electromagnetic field through the coil-blank system and generation of pulsed electromagnetic pr...

  15. GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pratibha; Savithri, H.S., E-mail:


    Plant viruses exploit the host machinery for targeting the viral genome–movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein 1a (PDLP 1a) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER–GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER–GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130–138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm

  16. Compressing DNA sequence databases with coil

    Directory of Open Access Journals (Sweden)

    Hendy Michael D


    Full Text Available Abstract Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.

  17. Improved coiled-coil design enhances interaction with Bcr-Abl and induces apoptosis. (United States)

    Dixon, Andrew S; Miller, Geoffrey D; Bruno, Benjamin J; Constance, Jonathan E; Woessner, David W; Fidler, Trevor P; Robertson, James C; Cheatham, Thomas E; Lim, Carol S


    The oncoprotein Bcr-Abl drives aberrant downstream activity through trans-autophosphorylation of homo-oligomers in chronic myelogenous leukemia (CML).(1, 2) The formation of Bcr-Abl oligomers is achieved through the coiled-coil domain at the N-terminus of Bcr.(3, 4) We have previously reported a modified version of this coiled-coil domain, CCmut2, which exhibits disruption of Bcr-Abl oligomeric complexes and results in decreased proliferation of CML cells and induction of apoptosis.(5) A major contributing factor to these enhanced capabilities is the destabilization of the CCmut2 homodimers, increasing the availability to interact with and inhibit Bcr-Abl. Here, we included an additional mutation (K39E) that could in turn further destabilize the mutant homodimer. Incorporation of this modification into CCmut2 (C38A, S41R, L45D, E48R, Q60E) generated what we termed CCmut3, and resulted in further improvements in the binding properties with the wild-type coiled-coil domain representative of Bcr-Abl [corrected]. A separate construct containing one revert mutation, CCmut4, did not demonstrate improved oligomeric properties and indicated the importance of the L45D mutation. CCmut3 demonstrated improved oligomerization via a two-hybrid assay as well as through colocalization studies, in addition to showing similar biologic activity as CCmut2. The improved binding between CCmut3 and the Bcr-Abl coiled-coil may be used to redirect Bcr-Abl to alternative subcellular locations with interesting therapeutic implications.

  18. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif.

    Directory of Open Access Journals (Sweden)

    Nora Céspedes

    Full Text Available Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.

  19. Coiled-coil forming peptides for the induction of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Božič Abram, Sabina [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Graduate School of Biomedicine, University of Ljubljana, Ljubljana 1000 (Slovenia); Aupič, Jana [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Doctoral Programme in Chemical Sciences, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000 (Slovenia); Dražić, Goran [Laboratory for Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Gradišar, Helena [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST, Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000 (Slovenia); Jerala, Roman, E-mail: [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST, Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000 (Slovenia)


    Biopolymers with defined sequence patterns offer an attractive alternative for the formation of silver nanoparticle (AgNP). A set of coiled-coil dimer forming peptides was tested for their AgNP formation ability. Seventeen of those peptides mediated the formation of AgNPs in aqueous solution at neutral pH, while the formation of a coiled-coil dimer inhibited the nanoparticle generation. A QSAR regression model on the relationship between sequence and function suggests that in this peptide type the patterns KXQQ and KXEE are favorable, whereas Ala residues appear to have an inhibitory effect. UV–VIS spectra of the obtained nanoparticles gave a peak at around 420 nm, typical for AgNPs in the size range around 40 nm, which was confirmed by dynamic light scattering and transmission electron microscopy. Peptide-induced AgNPs exhibited good antibacterial activity, even after a 15 min contact time, while they had low toxicity to human cells at the same concentrations. These results show that our designed peptides generate AgNPs with antibacterial activity at mild conditions and might be used for antibacterial coatings. - Highlights: • 17 of the 30 tested coiled-coil forming peptides induce AgNP formation. • Coiled-coil dimer formation suppresses AgNP generation of individual peptides. • Size of the peptide-induced silver nanoparticles is around 40 nm. • QSAR analysis points to the importance of KXQQ and KXEE motifs for AgNP generation. • Peptide-induced silver nanoparticles exhibit antibacterial activity.

  20. Data-driven prediction and design of bZIP coiled-coil interactions. (United States)

    Potapov, Vladimir; Kaplan, Jenifer B; Keating, Amy E


    Selective dimerization of the basic-region leucine-zipper (bZIP) transcription factors presents a vivid example of how a high degree of interaction specificity can be achieved within a family of structurally similar proteins. The coiled-coil motif that mediates homo- or hetero-dimerization of the bZIP proteins has been intensively studied, and a variety of methods have been proposed to predict these interactions from sequence data. In this work, we used a large quantitative set of 4,549 bZIP coiled-coil interactions to develop a predictive model that exploits knowledge of structurally conserved residue-residue interactions in the coiled-coil motif. Our model, which expresses interaction energies as a sum of interpretable residue-pair and triplet terms, achieves a correlation with experimental binding free energies of R = 0.68 and significantly out-performs other scoring functions. To use our model in protein design applications, we devised a strategy in which synthetic peptides are built by assembling 7-residue native-protein heptad modules into new combinations. An integer linear program was used to find the optimal combination of heptads to bind selectively to a target human bZIP coiled coil, but not to target paralogs. Using this approach, we designed peptides to interact with the bZIP domains from human JUN, XBP1, ATF4 and ATF5. Testing more than 132 candidate protein complexes using a fluorescence resonance energy transfer assay confirmed the formation of tight and selective heterodimers between the designed peptides and their targets. This approach can be used to make inhibitors of native proteins, or to develop novel peptides for applications in synthetic biology or nanotechnology.

  1. Heat Transfer of Tube-fin Heat Exchanger Having Parallel Louver Continuous Fins (United States)

    Take-Uchi, Masaaki; Yamada, Jun; Tanaka, Jun-Ichirou

    Heat transfer from tubes has been numerically simulated in a fan coil unit for an airconditioning equipment. The array of tubes has parallel louver continuous fins, perpendicular to staggered round tubes. Quite a few of slits divide plates into many strips, which are offsetted, so that the heat transfer will be augmented from the plate to the air flow. On the other hand, the conduction of heat in the platemight be prevented with these slits. The conduction retardation due to slit is estimated, and the simulation shows that the retardation is not serious for present fins.

  2. French steam generator tubes: an overview of degradations

    Energy Technology Data Exchange (ETDEWEB)

    Buisine, D.; Bouvier, O. de; Rupa, N.; Thebault, Y.; Barbe, V. [EDF-CEIDRE Nuclear Engineering Division (France); Pitner, P. [EDF-UNIE Generation Nuclear Operation Division (France)


    preventive plugging has to be performed to remove from service tubes affected by longitudinal SCC at the roll transition region, in order to prevent leakage during the hydraulic tests. (authors)

  3. Heated Tube Facility (United States)

    Federal Laboratory Consortium — The Heated Tube Facility at NASA GRC investigates cooling issues by simulating conditions characteristic of rocket engine thrust chambers and high speed airbreathing...

  4. Fuel nozzle tube retention

    Energy Technology Data Exchange (ETDEWEB)

    Cihlar, David William; Melton, Patrick Benedict


    A system for retaining a fuel nozzle premix tube includes a retention plate and a premix tube which extends downstream from an outlet of a premix passage defined along an aft side of a fuel plenum body. The premix tube includes an inlet end and a spring support feature which is disposed proximate to the inlet end. The premix tube extends through the retention plate. The spring retention feature is disposed between an aft side of the fuel plenum and the retention plate. The system further includes a spring which extends between the spring retention feature and the retention plate.

  5. 49 CFR 236.555 - Repaired or rewound receiver coil. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Repaired or rewound receiver coil. 236.555 Section 236.555 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... or rewound receiver coil. Receiver coil which has been repaired or rewound shall have the...

  6. The Roach muscle bundle and umbilical cord coiling

    NARCIS (Netherlands)

    de Laat, Monique W. M.; Nikkels, Peter G. J.; Franx, Arie; Visser, Gerard H. A.


    Objective: To determine if presence of the Roach muscle, a small muscle bundle tying just beside the umbilical artery, contributes to umbilical cord coiling. Methods: 251 umbilical cords were examined. The umbilical coiling index (UCI) was calculated as the number of coils divided by the cord length

  7. Transport of one SC coil through the village of Meyrin

    CERN Multimedia


    The energizing coils of the Synchro-cyclotron magnet were manufactured in Belgium before travelling to Basel in Switzerland by boat and continuing by road to Geneva. The first coil reached Geneva in December 1955, with the second following in early 1956. The coils were stored in a hangar at the Geneva airport before they were brought to CERN in May 1956.

  8. The training in epoxy-impregnated superconducting coils

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, H.; Bobrov, E.S.; Iwasa, Y.; Takaghi, T.; Tsukamoto, O.


    The authors have investigated the training of epoxy-impregnated superconducting coils. It has been observed that the boundary conditions at the coil ends have a crucial effect on shear-stress-induced epoxy cracks in the winding and consequently on the coil training. The results were quantified using acoustic emission data.

  9. Unconventional gradient coil designs in magnetic resonance imaging. (United States)

    Zhu, Minhua; Xia, Ling; Liu, Feng


    In magnetic resonance imaging (MRI), the gradient coils are used to encode the spatial positions of protons by varying the magnetic field linearly across the imaging subject. With the latest development of MRI technique and new clinical and research applications, the gradient coil system requires increasingly innovative designs. In this paper, four unconventional gradient coil designs are reviewed: (1) local gradient coils; (2) new coil configurations with reduced peripheral nerve stimulation (PNS); (3) dedicated structures designed for hybrid systems (combining MRI with other medical devices); and (4) the full 3D coil designs. For the first type, the development of local gradient coils (mainly head coils) is discussed chronologically and divided into three stages: the "golden" stage in the 1990s, the "wane" stage in the 2000s, and the "revival" stage in the 2010s. For the second type, various designs for the reduction of PNS problems have been described, including local and whole-body gradient coil systems. For the third design, a dedicated gradient coil design for multi-modality combination is illustrated with an MRI-LINAC system. Finally, gradient systems with non-layered coil structure are described in the fourth design type. We hope that this review on unconventional gradient coil designs will be useful for the new development of MRI technology and emerging medical applications.

  10. Needleless Electrospinning of Uniform Nanofibers Using Spiral Coil Spinnerets

    Directory of Open Access Journals (Sweden)

    Xin Wang


    Full Text Available Polyvinyl alcohol nanofibers were prepared by a needleless electrospinning technique using a rotating spiral wire coil as spinneret. The influences of coil dimension (e.g., coil length, coil diameter, spiral distance, and wire diameter and operating parameters (e.g., applied voltage and spinning distance on electrospinning process, nanofiber diameter, and fiber productivity were examined. It was found that the coil dimension had a considerable influence on the nanofiber production rate, but minor effect on the fiber diameter. The fiber production rate increased with the increased coil length or coil diameter, or the reduced spiral distance or wire diameter. Higher applied voltage or shorter collecting distance also improved the fiber production rate but had little influence on the fiber diameter. Compared with the conventional needle electrospinning, the coil electrospinning produced finer fibers with a narrower diameter distribution. A finite element method was used to analyze the electric field on the coil surface and in electrospinning zone. It was revealed that the high electric field intensity was concentrated on the coil surface, and the intensity was highly dependent on the coil dimension, which can be used to explain the electrospinning performances of coils. In addition, PAN nanofibers were prepared using the same needleless electrospinning technique to verify the improvement in productivity.

  11. Modeling Endovascular MRI Coil Coupling with Transmit RF Excitation (United States)

    Venkateswaran, Madhav; Unal, Orhan; Hurley, Samuel; Samsonov, Alexey; Wang, Peng; Fain, Sean; Kurpad, Krishna


    Objective To model inductive coupling of endovascular coils with transmit RF excitation for selecting coils for MRI-guided interventions. Methods Independent and computationally efficient FEM models are developed for the endovascular coil, cable, transmit excitation and imaging domain. Electromagnetic and circuit solvers are coupled to simulate net B1+ fields and induced currents and voltages. Our models are validated using the Bloch Siegert B1+ mapping sequence for a series-tuned multimode coil, capable of tracking, wireless visualization and high resolution endovascular imaging. Results Validation shows good agreement at 24, 28 and 34 μT background RF excitation within experimental limitations. Quantitative coil performance metrics agree with simulation. A parametric study demonstrates trade off in coil performance metrics when varying number of coil turns. Tracking, imaging and wireless marker multimode coil features and their integration is demonstrated in a pig study. Conclusion Developed models for the multimode coil were successfully validated. Modeling for geometric optimization and coil selection serves as a precursor to time-consuming and expensive experiments. Specific applications demonstrated include parametric optimization, coil selection for a cardiac intervention and an animal imaging experiment. Significance Our modular, adaptable and computationally efficient modeling approach enables rapid comparison, selection and optimization of inductively-coupled coils for MRI-guided interventions. PMID:26960218

  12. A coiled-coil domain acts as a molecular ruler to regulate O-antigen chain length in lipopolysaccharide. (United States)

    Hagelueken, Gregor; Clarke, Bradley R; Huang, Hexian; Tuukkanen, Anne; Danciu, Iulia; Svergun, Dmitri I; Hussain, Rohanah; Liu, Huanting; Whitfield, Chris; Naismith, James H


    Long-chain bacterial polysaccharides have important roles in pathogenicity. In Escherichia coli O9a, a model for ABC transporter-dependent polysaccharide assembly, a large extracellular carbohydrate with a narrow size distribution is polymerized from monosaccharides by a complex of two proteins, WbdA (polymerase) and WbdD (terminating protein). Combining crystallography and small-angle X-ray scattering, we found that the C-terminal domain of WbdD contains an extended coiled-coil that physically separates WbdA from the catalytic domain of WbdD. The effects of insertions and deletions in the coiled-coil region were analyzed in vivo, revealing that polymer size is controlled by varying the length of the coiled-coil domain. Thus, the coiled-coil domain of WbdD functions as a molecular ruler that, along with WbdA:WbdD stoichiometry, controls the chain length of a model bacterial polysaccharide.

  13. Tailored Presentation of Carbohydrates on a Coiled Coil-Based Scaffold for Asialoglycoprotein Receptor Targeting. (United States)

    Zacco, Elsa; Hütter, Julia; Heier, Jason L; Mortier, Jérémie; Seeberger, Peter H; Lepenies, Bernd; Koksch, Beate


    The coiled-coil folding motif represents an ideal scaffold for the defined presentation of ligands due to the possibility of positioning them at specific distances along the axis. We created a coiled-coil glycopeptide library to characterize the distances between the carbohydrate-binding sites of the asialoglycoprotein receptors (ASGPR) on hepatocytes. The components of the glycopeptide library vary for the number of displayed ligands (galactose), their position on the peptide sequence, and the space between peptide backbone and carbohydrate. We determined the binding of the glycopeptides to the hepatocytes, and we established the optimal distance and orientation of the galactose moieties for interaction with the ASGPR using flow cytometry. We confirmed that the binding occurs through endocytosis mediated by ASGPR via inhibition studies with cytochalasin D; fluorescence microscopy studies display the uptake of the carrier peptides inside the cell. Thus, this study demonstrates that the coiled-coil motif can be used as reliable scaffold for the rational presentation of ligands.

  14. CENP-K and CENP-H may form coiled-coils in the kinetochores

    Institute of Scientific and Technical Information of China (English)

    QIU ShuLan; WANG JiaNing; YU Chuang; HE DaCheng


    Kinetochores are large proteinaceous structure on the surface of chromosomes' primary constriction during mitosis. They link chromosomes to spindle microtubules and also regulate the spindle assem-bly checkpoint, which is crucial for correct chromosome segregation in all eukaryotes. The better known core networks of kinetochores include the KMN network (K, KNL1; M, Mis12 complex; N, Ndc80 complex)and CCAN (constitutive centromere-associated network). However, the detailed molecular mechanism of the kinetochore protein network remains unclear. This study demonstrates that CENP-H and CENP-K form quite stable subcomplex by TAP (tandem affinity purification) with HEK 293 cells which express TAP-CENP-K, with the ratio of purified CENP-H and CENP-K being close to 1 : 1 even with high salt. Bioinformatic analysis suggests that CENP-H and CENP-K are enriched with coiled-coil regions. This implies that CENP-H and CENP-K form heterodimeric coiled-coils. Furthermore, the func-tional regions which form the complex are respectively located on their N- and C-terminals, but the association between the C-terminals is more complex. It is possible that this is the first identified het-erodimeric coiled-coils within the inner kinetochore, which is directly involved in the attachment be-tween kinetochores and the spindle microtubules.

  15. Coiled-Coil Proteins Facilitated the Functional Expansion of the Centrosome (United States)

    Kuhn, Michael; Hyman, Anthony A.; Beyer, Andreas


    Repurposing existing proteins for new cellular functions is recognized as a main mechanism of evolutionary innovation, but its role in organelle evolution is unclear. Here, we explore the mechanisms that led to the evolution of the centrosome, an ancestral eukaryotic organelle that expanded its functional repertoire through the course of evolution. We developed a refined sequence alignment technique that is more sensitive to coiled coil proteins, which are abundant in the centrosome. For proteins with high coiled-coil content, our algorithm identified 17% more reciprocal best hits than BLAST. Analyzing 108 eukaryotic genomes, we traced the evolutionary history of centrosome proteins. In order to assess how these proteins formed the centrosome and adopted new functions, we computationally emulated evolution by iteratively removing the most recently evolved proteins from the centrosomal protein interaction network. Coiled-coil proteins that first appeared in the animal–fungi ancestor act as scaffolds and recruit ancestral eukaryotic proteins such as kinases and phosphatases to the centrosome. This process created a signaling hub that is crucial for multicellular development. Our results demonstrate how ancient proteins can be co-opted to different cellular localizations, thereby becoming involved in novel functions. PMID:24901223

  16. CENP-K and CENP-H may form coiled-coils in the kinetochores

    Institute of Scientific and Technical Information of China (English)


    Kinetochores are large proteinaceous structure on the surface of chromosomes’ primary constriction during mitosis. They link chromosomes to spindle microtubules and also regulate the spindle assem- bly checkpoint, which is crucial for correct chromosome segregation in all eukaryotes. The better known core networks of kinetochores include the KMN network (K, KNL1; M, Mis12 complex; N, Ndc80 complex)and CCAN (constitutive centromere-associated network). However, the detailed molecular mechanism of the kinetochore protein network remains unclear. This study demonstrates that CENP-H and CENP-K form quite stable subcomplex by TAP (tandem affinity purification) with HEK 293 cells which express TAP-CENP-K, with the ratio of purified CENP-H and CENP-K being close to 1︰1 even with high salt. Bioinformatic analysis suggests that CENP-H and CENP-K are enriched with coiled-coil regions. This implies that CENP-H and CENP-K form heterodimeric coiled-coils. Furthermore, the func- tional regions which form the complex are respectively located on their N- and C-terminals, but the association between the C-terminals is more complex. It is possible that this is the first identified het- erodimeric coiled-coils within the inner kinetochore, which is directly involved in the attachment be- tween kinetochores and the spindle microtubules.

  17. Solutions for Safe Hot Coil Evacuation and Coil Handling in Case of Thick and High Strength Steel


    Sieberer Stefan; Pichler Lukas; Hackl Manfred


    Currently hot rolling plants are entering the market segment for thick gauges and high strength steel grades where the elastic bending property of the strip leads to internal forces in the coil during coiling operation. The strip tends to open. Primetals is investigating several possibilities to facilitate safe coil evacuation and coil handling under spring-back conditions. The contribution includes finite element models of such mechanical solutions. Results of parameter variation and stabili...

  18. Investigation of casing inspection through tubing with pulsed eddy current (United States)

    Fu, Yuewen; Yu, Runqiao; Peng, Xuewen; Ren, Shangkun


    Corrosion and cracks of casing string in oil wells is a serious problem on which little research has been done when inspecting casing through tubing. In this study, inspecting casing through tubing with pulsed eddy current is investigated. Longitudinal and transverse probes are centred inside the tubing to detect wall thinnings and cracks in casing. A time slice of induced voltage in the receiving coil of the probe is used as the feature to recognise defects. The experimental results show that large area wall thinnings and long cracks in casing are detected successfully through the tubing with appropriate inspection parameters. The probe's orientation to the crack is important and a particular discovery is that the transverse probe should be parallel to the transverse crack and not be perpendicular to it when inspecting. A method based on linear regression is proposed to estimate flaws in casing while wall thinning in the tubing occurs at the same location. The method is effective for large area thinning in casing when tubing thinning is wide.

  19. Optimization of the Single Staggered Wire and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Arsana I Made


    Full Text Available Wire and tube heat exchanger consists of a coiled tube, and wire is welded on the two sides of it in normal direction of the tube. Generally,wire and tube heat exchanger uses inline wire arrangement between the two sides, whereas in this study, it used staggered wire arrangement that reduces the restriction of convection heat transfer. This study performed the optimization of single staggered wire and tube heat exchanger to increase the capacity and reduce the mass of the heat exchanger. Optimization was conducted with the Hooke-Jeeves method, which aims to optimize the geometry of the heat exchanger, especially on the diameter (dw and the distance between wires (pw. The model developed to present heat transfer correlations on single staggered wire and tube heat exchanger was valid. The maximum optimization factor obtained when the diameter wire was 0.9 mm and the distance between wires (pw was 11 mm with the fref value = 1.5837. It means that the optimized design only using mass of 59,10 % and could transfer heat about 98,5 % from the basis design.

  20. Computational study for the effects of coil configuration on blood flow characteristics in coil-embolized cerebral aneurysm. (United States)

    Otani, Tomohiro; Ii, Satoshi; Shigematsu, Tomoyoshi; Fujinaka, Toshiyuki; Hirata, Masayuki; Ozaki, Tomohiko; Wada, Shigeo


    Coil embolization of cerebral aneurysms with inhomogeneous coil distribution leads to an incomplete occlusion of the aneurysm. However, the effects of this factor on the blood flow characteristics are still not fully understood. This study investigates the effects of coil configuration on the blood flow characteristics in a coil-embolized aneurysm using computational fluid dynamics (CFD) simulation. The blood flow analysis in the aneurysm with coil embolization was performed using a coil deployment (CD) model, in which the coil configuration was constructed using a physics-based simulation of the CD. In the CFD results, total flow momentum and kinetic energy in the aneurysm gradually decayed with increasing coil packing density (PD), regardless of the coil configuration attributed to deployment conditions. However, the total shear rate in the aneurysm was relatively high and the strength of the local shear flow varied based on the differences in coil configuration, even at adequate PDs used in clinical practice (20-25 %). Because the sufficient shear rate reduction is a well-known factor in the blood clot formation occluding the aneurysm inside, the present study gives useful insight into the effects of coil configuration on the treatment efficiency of coil embolization.

  1. Study on the performance improvement of the high temperature superconducting coil with several separated coils at the edges (United States)

    Ishiguri, S.; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.


    In designing high temperature superconducting (HTS) coils, it is important to secure large magnetic fields and stored energy using shorter tape length. Thus, it is necessary to improve the transport current performance of the coils. The critical current and n-value of an HTS tape depend on magnetic fields and flux angles under constant temperature. Considering these dependencies, we established a model to analyze coil critical current. This model clarifies that relatively large electric fields are generated at the coil edges. This adversely affects the transport current performance. In this study, the coil edge is separated into several coils, keeping the total tape length constant. This increases the coil critical current, stored energy, central magnetic field, and also the coil volume, which contains vacancies created by the separation. To estimate coil performance, we calculated the stored energy density, whose denominator is the increased coil volume. This stored energy density reaches its maximum value when the number of the separated coils is eight. At this optimum separation, the central magnetic field increases by 13%, and the stored energy improves by 43%, compared to a rectangular coil wound with the same tape length.

  2. Structural attributes for the recognition of weak and anomalous regions in coiled-coils of myosins and other motor proteins

    Directory of Open Access Journals (Sweden)

    Sunitha Margaret S


    Full Text Available Abstract Background Coiled-coils are found in different proteins like transcription factors, myosin tail domain, tropomyosin, leucine zippers and kinesins. Analysis of various structures containing coiled-coils has revealed the importance of electrostatic and hydrophobic interactions. In such domains, regions of different strength of interactions need to be identified since they could be biologically relevant. Findings We have updated our coiled-coil validation webserver, now called COILCHECK+, where new features were added to efficiently identify the strength of interaction at the interface region and measure the density of charged residues and hydrophobic residues. We have examined charged residues and hydrophobic ladders, using a new algorithm called CHAHO, which is incorporated within COILCHECK + server. CHAHO permits the identification of spatial charged residue patches and the continuity of hydrophobic ladder which stabilizes and destabilizes the coiled-coil structure. Conclusions The availability of such computational tools should be useful to understand the importance of spatial clustering of charged residues and the continuity of hydrophobic residues at the interface region of coiled-coil dimers. COILCHECK + is a structure based tool to validate coiled-coil stability; it can be accessed at

  3. Subunit b-dimer of the Escherichia coli ATP synthase can form left-handed coiled-coils. (United States)

    Wise, John G; Vogel, Pia D


    One remaining challenge to our understanding of the ATP synthase concerns the dimeric coiled-coil stator subunit b of bacterial synthases. The subunit b-dimer has been implicated in important protein interactions that appear necessary for energy conservation and that may be instrumental in energy conservation during rotary catalysis by the synthase. Understanding the stator structure and its interactions with the rest of the enzyme is crucial to the understanding of the overall catalytic mechanism. Controversy exists on whether subunit b adopts a classic left-handed or a presumed right-handed dimeric coiled-coil and whether or not staggered pairing between nonhomologous residues in the homodimer is required for intersubunit packing. In this study we generated molecular models of the Escherichia coli subunit b-dimer that were based on the well-established heptad-repeat packing exhibited by left-handed, dimeric coiled-coils by employing simulated annealing protocols with structural restraints collected from known structures. In addition, we attempted to create hypothetical right-handed coiled-coil models and left- and right-handed models with staggered packing in the coiled-coil domains. Our analyses suggest that the available structural and biochemical evidence for subunit b can be accommodated by classic left-handed, dimeric coiled-coil quaternary structures.

  4. Comparative study of Thermal Hydraulic Analysis Codes for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yang Hoon; Jang, Mi Suk; Han, Kee Soo [Nuclear Engineering Service and Solution Co. Ltd., Daejeon (Korea, Republic of)


    Various codes are used for the thermal hydraulic analysis of nuclear reactors. The use of some codes among these is limited by user and some codes are not even open to general person. Thus, the use of alternative code is considered for some analysis. In this study, simple thermal hydraulic behaviors are analyzed using three codes to show that alternative codes are possible for the analysis of nuclear reactors. We established three models of the simple u-tube manometer using three different codes. RELAP5 (Reactor Excursion and Leak Analysis Program), SPACE (Safety and Performance Analysis CodE for nuclear power Plants), GOTHIC (Generation of Thermal Hydraulic Information for Containments) are selected for this analysis. RELAP5 is widely used codes for the analysis of system behavior of PWRs. SPACE has been developed based on RELAP5 for the analysis of system behavior of PWRs and licensing of the code is in progress. And GOTHIC code also has been widely used for the analysis of thermal hydraulic behavior in the containment system. The internal behavior of u-tube manometer was analyzed by RELAP5, SPACE and GOTHIC codes. The general transient behavior was similar among 3 codes. However, the stabilized status of the transient period analyzed by REPAP5 was different from the other codes. It would be resulted from the different physical models used in the other codes, which is specialized for the multi-phase thermal hydraulic behavior analysis.

  5. Blast shock wave mitigation using the hydraulic energy redirection and release technology. (United States)

    Chen, Yun; Huang, Wei; Constantini, Shlomi


    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel.

  6. Thermo-hydraulic analysis of the cool-down of the EDIPO test facility (United States)

    Lewandowska, Monika; Bagnasco, Maurizio


    The first cool-down of the EDIPO (European DIPOle) test facility is foreseen to take place in 2011 by means of the existing 1.2 kW cryoplant at EPFL-CRPP Villigen. In this work, the thermo-hydraulic analysis of the EDIPO cool-down is performed in order both to assess the its duration and to optimize the procedure. The cool-down is driven by the helium flowing in both the outer cooling channel and in the windings connected hydraulically in parallel. We take into account limitations due to the pressure drop in the cooling circuit and the refrigerator capacity as well as heat conduction in the iron yoke. Two schemes of the hydraulic cooling circuit in the EDIPO windings are studied (coils connected in series and coils connected in parallel). The analysis is performed by means of an analytical model complemented by and numerical model. The results indicate that the cool-down to 5 K can be achieved in about 12 days.

  7. Planar quadrature coil design using shielded-loop resonators

    DEFF Research Database (Denmark)

    Stensgaard, A


    The shielded-loop resonator is known to have a low capacitive sample loss due to a perfect balancing. In this paper, it is demonstrated that shielded-loop technology also can be used to improve design of planar quadrature coils. Both a dual-loop circuit and especially a dual-mode circuit may...... benefit from use of shielded-loop resonators. Observations in measurements agree with theory for both a dual-loop coil and a dual-mode coil. The coils were designed for use as transmit/receive coil for 1H imaging and spectroscopy at 4.7 T in rat brain....

  8. Application of Microstructure Engineering in Steel Coil Cooling Process

    Institute of Scientific and Technical Information of China (English)

    LIU Zheng-dong; D Q Jin; I V Samarasekera; J K Brimacombe


    The coil cooling and its role in a hot strip mill were reviewed.A mathematical model was developed to describe and analyze the thermal history and its impact on precipitation phenomena during coil cooling for plain car bon,HSLA-V and HSLA-Nb steels.The predicted result of the thermal model was compared with that measured from industrial coil.The effect of cooling condition and coil dimension on the thermal history and final mechanical properties of the steel strip was examined.The coiling temperature and cooling rate have crucial influence on the precipitation strengthening.

  9. Superconducting coil system and methods of assembling the same (United States)

    Rajput-Ghoshal, Renuka; Rochford, James H.; Ghoshal, Probir K.


    A superconducting magnet apparatus is provided. The superconducting magnet apparatus includes a power source configured to generate a current; a first switch coupled in parallel to the power source; a second switch coupled in series to the power source; a coil coupled in parallel to the first switch and the second switch; and a passive quench protection device coupled to the coil and configured to by-pass the current around the coil and to decouple the coil from the power source when the coil experiences a quench.

  10. Mechanical characteristics of the ATLAS B0 model coil

    CERN Document Server

    Foussat, A; Dudarev, A; Mayri, C; Miele, P; Sun, Z; ten Kate, H H J; Volpini, G


    The ATLAS B0 model coil has been tested at CERN to verify the design parameters of the Barrel Toroid coils (BT). The mechanical behavior of the B0 superconducting coil and its support structure is reported and compared with coil design calculations. The mechanical stresses and structural force levels during cooling down and excitation phases were monitored using strain gauges, position sensors and capacitive force transducers instrumentation. In the ATLAS magnet test facility, a magnetic mirror is used to reproduce the electromagnetic forces present in the BT coils, once these are assembled in toroid in the underground cavern in 2004. (8 refs).

  11. SSC (Superconducting Super Collider) dipole coil production tooling

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J.A.; Barczak, E.J.; Bossert, R.C.; Brandt, J.S.; Smith, G.A.


    Superconducting Super Collider dipole coils must be produced to high precision to ensure uniform prestress and even conductor distribution within the collared coil assembly. Tooling is being prepared at Fermilab for the production of high precision 1M and 16.6M SSC dipole coils suitable for mass production. The design and construction methods builds on the Tevatron tooling and production experience. Details of the design and construction methods and measured coil uniformity of 1M coils will be presented. 4 refs., 10 figs.

  12. Random coil chemical shift for intrinsically disordered proteins

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Brander, Søren; Poulsen, Flemming Martin


    . Temperature has a non-negligible effect on the (13)C random coil chemical shifts, so temperature coefficients are reported for the random coil chemical shifts to allow extrapolation to other temperatures. The pH dependence of the histidine random coil chemical shifts is investigated in a titration series......, which allows the accurate random coil chemical shifts to be obtained at any pH. By correcting the random coil chemical shifts for the effects of temperature and pH, systematic biases of the secondary chemical shifts are minimized, which will improve the reliability of detection of transient secondary...

  13. Hologram recording tubes (United States)

    Rajchman, J. H.


    Optical memories allow extremely large numbers of bits to be stored and recalled in a matter of microseconds. Two recording tubes, similar to conventional image-converting tubes, but having a soft-glass surface on which hologram is recorded, do not degrade under repeated hologram read/write cycles.

  14. Complex Fluids and Hydraulic Fracturing. (United States)

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H


    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.

  15. Hydraulic properties of ladle slags

    Directory of Open Access Journals (Sweden)

    J. Vlček


    Full Text Available The article presents results of examining of hydraulic properties of ladle slags formed during production of steel. The studied ladle slags were subjected to different cooling mode from the molten state. Based on the ability of the slag react with the water was assessed their hydraulic activity. The hydraulic properties are caused by the presence of minerals dicalcium silicate, tricalcium aluminate, mayenite, brownmillerite and dicalcium ferite. The emergence of required hydrating phases in the ladle slags is conditioned by a sufficient CaO content and their cooling rate. The contact the slag with water during processing and their ageing has a negative effect. The experiment has shown that the phase transformation of the mineral dicalcium silicate which occurs during cooling of the ladle slags cause their volume instability.


    Directory of Open Access Journals (Sweden)

    K. Kalyani Radha


    Full Text Available In a country such as India, food grains, fruit, vegetables, meat, poultry and fish, are very susceptible to microbial contamination and spoilage and require stringent preservation methods. One such method is by the use of a chest freezer for the storage of frozen food. This investigation considers different loads and design parameters for the development of a chest freezer using R134a as the working fluid. Experimental designs of an evaporator coil, condenser coil and capillary tube are investigated through the development of storage periods in terms of steady state and cyclic performance, by optimising the quantity of refrigerant charge, with strict adherence to the standards and requirement for maintaining an internal temperature of -23 °C at 43 °C ambient. Cyclic load performance tests optimise the performance of individual components selected for the design of a chest freezer. The system selection has a highly balanced performance with R134a and showed 118 kJ/kg cooling capacity with 8.42 coefficient of performance (COP. By the replacement of R134a, temperatures of -23 °C are maintained inside the freezer cabinet with low power consumption and an increase in the net refrigerating effect, which in turn increases the COP. The system design has optimum efficiency with moderate costs by optimising the length and diameter of the evaporator coil, i.e., 34.15 m and 7.94 mm, respectively.

  17. Molybdenum Tube Characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Beaux II, Miles Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Chemical vapor deposition (CVD) techniques have been utilized to produce free-standing molybdenum tubes with the end goal of nuclear fuel clad applications. In order to produce tubes with properties desirable for this application, deposition rates were lowered requiring long deposition durations on the order of 50 hours. Standard CVD methods as well as fluidized-bed CVD (FBCVD) methods were applied towards these objectives. Characterization of the tubes produced in this manner revealed material suitable for fuel clad applications, but lacking necessary uniformity across the length of the tubes. The production of freestanding Mo tubes that possess the desired properties across their entire length represents an engineering challenge that can be overcome in a next iteration of the deposition system.

  18. Categorising YouTube

    DEFF Research Database (Denmark)

    Simonsen, Thomas Mosebo


    This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC) of YouTube. The article investigates the construction of navigation processes on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube’s...... technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a user-driven bottom-up folksonomy and a hierarchical browsing system that emphasises a culture of competition...... and which favours the already popular content of YouTube. With this taxonomic approach, the UGC videos are registered and analysed in terms of empirically based observations. The article identifies various UGC categories and their principal characteristics. Furthermore, general tendencies of the UGC within...

  19. Wavy tube heat pumping

    Energy Technology Data Exchange (ETDEWEB)

    Haldeman, C. W.


    A PVC conduit about 4'' in diameter and a little more than 40 feet long is adapted for being seated in a hole in the earth and surrounds a coaxial copper tube along its length that carries Freon between a heat pump and a distributor at the bottom. A number of wavy conducting tubes located between the central conducting tube and the wall of the conduit interconnect the distributor with a Freon distributor at the top arranged for connection to the heat pump. The wavy conducting tubing is made by passing straight soft copper tubing between a pair of like opposed meshing gears each having four convex points in space quadrature separated by four convex recesses with the radius of curvature of each point slightly less than that of each concave recess.

  20. Experimental research of dynamic instabilities in the presence of coiled wire inserts on two-phase flow. (United States)

    Omeroglu, Gokhan; Comakli, Omer; Karagoz, Sendogan; Sahin, Bayram


    The aim of this study is to experimentally investigate the effect of the coiled wire insertions on dynamic instabilities and to compare the results with the smooth tube for forced convection boiling. The experiments were conducted in a circular tube, and water was used as the working fluid. Two different pitch ratios (H/D = 2.77 and 5.55) of coiled wire with circular cross-sections were utilised. The constant heat flux boundary condition was applied to the outer side of the test tube, and the constant exit restriction was used at the tube outlet. The mass flow rate changed from 110 to 20 g/s in order to obtain a detailed idea about the density wave and pressure drop oscillations, and the range of the inlet temperature was 15-35°C. The changes in pressure drop, inlet temperature, amplitude, and the period with mass flow rate are presented. For each configuration, it is seen that density wave and pressure drop oscillations occur at all inlet temperatures. Analyses show that the decrease in the mass flow rate and inlet temperature causes the amplitude and the period of the density wave and the pressure drop oscillations to decrease separately.