WorldWideScience

Sample records for hydraulic brake system

  1. Combined hydraulic and regenerative braking system

    Science.gov (United States)

    Venkataperumal, R.R.; Mericle, G.E.

    1979-08-09

    A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  2. Hydraulic brake-system for a bicycle

    NARCIS (Netherlands)

    Van Frankenhuyzen, J.

    2007-01-01

    The invention relates to a hydraulic brake system for a bicycle which may or may not be provided with an auxiliary motor, comprising a brake disc and brake claws cooperating with the brake disc, as well as fluid-containing channels (4,6) that extend between an operating organ (1) and the brake

  3. Development of brake assist system. Summary of hydraulic brake assist system; Brake assist system no kaihatsu. Ekiatsushiki brake assist system no gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, M; Ota, M; Shimizu, S [Toyota, Motor Corp., Aichi (Japan)

    1997-10-01

    We have already developed vacuum-booster-type Brake Assist System that supplies additional braking power when panic braking is recognized. We are convinced that the expansion of Brake Assist System will become more important issue in the future. Therefore we have developed hydraulic Brake Assist System with increasing its controllability and reducing its discomfort. This system have a brake pressure sensor to detect emergency braking operation and an antilock device to supply additional braking power. 8 refs., 11 figs.

  4. Modified hydraulic braking system limits angular deceleration to safe values

    Science.gov (United States)

    Briggs, R. S.; Council, M.; Green, P. M.

    1966-01-01

    Conventional spring actuated, hydraulically released, fail-safe disk braking system is modified to control the angular deceleration of a massive antenna. The hydraulic system provides an immediate preset pressure to the spring-loaded brake shoes and holds it at this value to decelerate the antenna at the desired rate.

  5. Hydraulic braking system for loads subjected to impacts and vibrations

    International Nuclear Information System (INIS)

    1980-01-01

    This invention concerns a hydraulic braking system for loads subjected to impacts and vibrations. These double acting telescopic type hydraulic braking systems possess significant drawbacks linked to possibly important hydraulic leaks due to (a) the use of many dynamic seals in such appliances and (b) the effects of the environment of the system on these seals, particularly when employed in nuclear power stations where the seals reach significant temperatures and are subjected to radiation. Under this invention a remedy is suggested to such drawbacks by integrating means to offset automatically the leaks and the accumulation of hydraulic fluid expansions, as well as facilities to show if such leaks have occurred [fr

  6. Charging valve of the full hydraulic braking system

    Directory of Open Access Journals (Sweden)

    Jinshi Chen

    2016-03-01

    Full Text Available It is known that the full hydraulic braking system has excellent braking performance. As the key component of the full hydraulic braking system, the parameters of the accumulator charging valve have a significant effect on the braking performance. In this article, the key parameters of the charging valve are analyzed through the static theoretical and an Advanced Modeling Environment for performing Simulation of engineering systems (AMESim simulation model of the dual-circuit accumulator charging valve is established based on the real structure parameters first. Second, according to the results of the dynamic simulation, the dynamic characteristics of the charging pressure, the flow rate, and the frequency of the charging valve are studied. The key parameters affecting the serial production are proposed and some technical advices for improving the performance of the full hydraulic system are provided. Finally, the theoretical analysis is validated by the simulation results. The comparison between the simulation results and the experimental results indicates that the simulated AMESim model of the charging valve is accurate and credible with the error rate inside 0.5% compared with the experimental result. Hence, the performance of the charging valve meets the request of the full hydraulic braking system exactly.

  7. Development of hydraulic brake actuator for active brake control; Active brake seigyoyo yuatsu booster no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Y; Hattori, M. Sugisawa, M.; Nishii, M [Aisin Seiki Co. Ltd., Aichi (Japan)

    1997-10-01

    Recently, application of active brake control systems of the vehicle are increasing. (Vehicle stability control, Panic brake assist ) We have developed a new hydraulic brake actuator for active brake control systems. New hydraulic brake actuator is composed of the three parts. (Hydraulic booster unit, Power supply unit, Control valve unit) This report describes the construction of the new hydraulic booster unit. 2 refs., 10 figs.

  8. Research of braking process of transport vehicle with hydraulic brake system parameters

    OpenAIRE

    Vladimirov, Oleg

    2005-01-01

    Emergency braking of a vehicle is bound with many factors, such as the behaviour of the driver, the drive of the vehicle braking system, the braking mechanisms, the condition of the tyres, and the properties of the pavement. This process involves all parameters of the system “the driver – the vehicle – the road”. In order to investigate the efficiency of braking process upon specific conditions, it is necessary to examine all physical processes that take place in the vehicle on pressing the b...

  9. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Science.gov (United States)

    2010-10-01

    ... the drain cocks in the service and supply reservoir on the truck or truck-tractor. Note the pressure.... Close the drain cocks, and, with the trailer(s) uncoupled, check air pressure buildup at the... brakes fully applied. (b) Air brake system hoses, tubes and connections. Air system tubes, hoses and...

  10. Automotive Brake Systems.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    This correspondence course, orginally developed for the Marine Corps, is designed to provide mechanics with an understanding of the basic operations of automotive brake systems on military vehicles. The course contains four study units covering hydraulic brakes, air brakes, power brakes, and auxiliary brake systems. A troubleshooting guide for…

  11. Piezoelectric-hydraulic pump based band brake actuation system for automotive transmission control

    Science.gov (United States)

    Kim, Gi-Woo; Wang, K. W.

    2007-04-01

    The actuation system of friction elements (such as band brakes) is essential for high quality operations in modern automotive automatic transmissions (in short, ATs). The current band brake actuation system consists of several hydraulic components, including the oil pump, the regulating valve and the control valves. In general, it has been recognized that the current AT band brake actuation system has many limitations. For example, the oil pump and valve body are relatively heavy and complex. Also, the oil pumps induce inherently large drag torque, which affects fuel economy. This research is to overcome these problems of the current system by exploring the utilization of a hybrid type piezo-hydraulic pump device for AT band brake control. This new actuating system integrates a piezo-hydraulic pump to the input of the band brake. Compared with the current systems, this new actuator features much simpler structure, smaller size, and lower weight. This paper describes the development, design and fabrication of the new stand-alone prototype actuator for AT band brake control. An analytical model is developed and validated using experimental data. Performance tests on the hardware and system simulations utilizing the validated model are performed to characterize the new prototype actuator. It is predicted that with increasing of accumulator pressure and driving frequency, the proposed prototype actuating system will satisfy the band brake requirement for AT shift control.

  12. Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines

    Science.gov (United States)

    Jegadeeshwaran, R.; Sugumaran, V.

    2015-02-01

    Hydraulic brakes in automobiles are important components for the safety of passengers; therefore, the brakes are a good subject for condition monitoring. The condition of the brake components can be monitored by using the vibration characteristics. On-line condition monitoring by using machine learning approach is proposed in this paper as a possible solution to such problems. The vibration signals for both good as well as faulty conditions of brakes were acquired from a hydraulic brake test setup with the help of a piezoelectric transducer and a data acquisition system. Descriptive statistical features were extracted from the acquired vibration signals and the feature selection was carried out using the C4.5 decision tree algorithm. There is no specific method to find the right number of features required for classification for a given problem. Hence an extensive study is needed to find the optimum number of features. The effect of the number of features was also studied, by using the decision tree as well as Support Vector Machines (SVM). The selected features were classified using the C-SVM and Nu-SVM with different kernel functions. The results are discussed and the conclusion of the study is presented.

  13. Determination of minimum sample size for fault diagnosis of automobile hydraulic brake system using power analysis

    Directory of Open Access Journals (Sweden)

    V. Indira

    2015-03-01

    Full Text Available Hydraulic brake in automobile engineering is considered to be one of the important components. Condition monitoring and fault diagnosis of such a component is very essential for safety of passengers, vehicles and to minimize the unexpected maintenance time. Vibration based machine learning approach for condition monitoring of hydraulic brake system is gaining momentum. Training and testing the classifier are two important activities in the process of feature classification. This study proposes a systematic statistical method called power analysis to find the minimum number of samples required to train the classifier with statistical stability so as to get good classification accuracy. Descriptive statistical features have been used and the more contributing features have been selected by using C4.5 decision tree algorithm. The results of power analysis have also been verified using a decision tree algorithm namely, C4.5.

  14. Multi-objective optimization of the control strategy of electric vehicle electro-hydraulic composite braking system with genetic algorithm

    Directory of Open Access Journals (Sweden)

    Zhang Fengjiao

    2015-03-01

    Full Text Available Optimization of the control strategy plays an important role in improving the performance of electric vehicles. In order to improve the braking stability and recover the braking energy, a multi-objective genetic algorithm is applied to optimize the key parameters in the control strategy of electric vehicle electro-hydraulic composite braking system. Various limitations are considered in the optimization process, and the optimization results are verified by a software simulation platform of electric vehicle regenerative braking system in typical brake conditions. The results show that optimization objectives achieved a good astringency, and the optimized control strategy can increase the brake energy recovery effectively under the condition of ensuring the braking stability.

  15. Braking system

    Science.gov (United States)

    Norgren, D.U.

    1982-09-23

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling means causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  16. Development of combined brake system on front and rear brakes for scooter; Scooter yo zenkorin rendo brake system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Y; Itabashi, T; Shinohara, S; Honda, Y [Honda R and D Co. Ltd., Tokyo (Japan)

    1997-10-01

    Scooters need appropriate front and rear wheel braking power distribution and each of front and rear brakes have been operated using right and left levers. This time, a low cost brakes with cable type combined brake system for small size scooter and a brakes with hydraulic type combined brake system for middle size scooter have been developed to obtain appropriate front and rear wheel braking power distribution. Both systems use convenient left lever to operate. 3 refs., 9 figs., 1 tab.

  17. Safety valve including a hydraulic brake and hydraulic brake that could be fitted into a valve

    International Nuclear Information System (INIS)

    Chabat-Courrede, Jean.

    1981-01-01

    Making of a safety valve that can be fitted to a containment vessel filled with a non compressible fluid, such as the water system of a nuclear power station. It includes a hydraulic brake located between the valve and the elastic means, close to the valve which completely suppresses the high frequency oscillations of the equipment [fr

  18. Brake Performance Analysis of ABS for Eddy Current and Electrohydraulic Hybrid Brake System

    OpenAIRE

    Ren He; Xuejun Liu; Cunxiang Liu

    2013-01-01

    This paper introduces an eddy current and electro-hydraulic hybrid brake system to solve problems such as wear, thermal failure, and slow response of traditional vehicle brake system. Mathematical model was built to calculate the torque of the eddy current brake system and hydraulic brake system and analyze the braking force distribution between two types of brake systems. A fuzzy controller on personal computer based on LabVIEW and Matlab was designed and a set of hardware in the loop system...

  19. EVALUATION OF RESULTS OF ROAD RESEARCH OF LANOS CAR, EQUIPPED WITH AN ADVANCED HYDRAULIC BRAKE DRIVE

    Directory of Open Access Journals (Sweden)

    I. Nazarov

    2016-12-01

    Full Text Available The results of studies of road emergency braking of the car, the brake system equipped with an improved hydraulic brake actuator according to the patent number 76189 Ukraine are analyzed. This drive provides more efficient emergency braking of cars under operating conditions by of installing in each of the contours of the rear brakes one brake-power, each of which provides distribution of braking forces between the wheels of the corresponding side.

  20. Hydrostatically regenerative brake system for commercial vehicles and mobil hydraulic work engines; Hydrostatisch Regeneratives Bremssystem (HRB) fuer Nutzfahrzeuge und mobile Arbeitsmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Kliffken, Markus Gustav; Ehret, Christine; Stawiarksi, Robert [Bosch Rexroth AG, Elchingen (Germany)

    2008-07-01

    The characteristics of the hydraulic storage system and the hydrostatically renewable brake system of Bosch Rexroth AG (Eichingen, Federal Republic of Germany) as a hydraulic hybrid system permit a fast integration in the vehicle, low costs of maintenance and high security. The system is suitable for vehicles which frequently start and brake. As a function of the operating cycle, savings of up to 25 % are possible. Additionally, the hydrostatically renewable brake system reduces the wear of brakes and provides a larger travelling comfort by eliminating interruptions of traction power. At present, the functionality of the hydrostatically renewable brake system is tested in a field test at Berlin (Federal Republic of Germany). Further prototypes also are developed and tested in the U.S.A. up to the end of the year 2008.

  1. In-depth analysis of bicycle hydraulic disc brakes

    Science.gov (United States)

    Maier, Oliver; Györfi, Benedikt; Wrede, Jürgen; Arnold, Timo; Moia, Alessandro

    2017-10-01

    Hydraulic Disc Brakes (HDBs) represent the most recent and innovative bicycle braking system. Especially Electric Bicycles (EBs), which are becoming more and more popular, are equipped with this powerful, unaffected by environmental influences, and low-wear type of brakes. As a consequence of the high braking performance, typical bicycle braking errors lead to more serious accidents. This is the starting point for the development of a Braking Dynamics Assistance system (BDA) to prevent front wheel lockup and nose-over (falling over the handlebars). One of the essential prerequisites for the system design is a better understanding of bicycle HDBs' characteristics. A physical simulation model and a test bench have been built for this purpose. The results of the virtual and real experiments conducted show a high correlation and allow valuable insights into HDBs on bicycles, which have not been studied scientifically in any depth so far.

  2. Brake Performance Analysis of ABS for Eddy Current and Electrohydraulic Hybrid Brake System

    Directory of Open Access Journals (Sweden)

    Ren He

    2013-01-01

    Full Text Available This paper introduces an eddy current and electro-hydraulic hybrid brake system to solve problems such as wear, thermal failure, and slow response of traditional vehicle brake system. Mathematical model was built to calculate the torque of the eddy current brake system and hydraulic brake system and analyze the braking force distribution between two types of brake systems. A fuzzy controller on personal computer based on LabVIEW and Matlab was designed and a set of hardware in the loop system was constructed to validate and analyze the performance of the hybrid brake system. Through lots of experiments on dry and wet asphalt roads, the hybrid brake system achieves perfect performance on the experimental bench, the hybrid system reduces abrasion and temperature of the brake disk, response speed is enhanced obviously, fuzzy controller keeps high utilization coefficient due to the optimal slip ratio regulation, and the total brake time has a smaller decrease than traditional hydraulic brake system.

  3. 49 CFR 571.105 - Standard No. 105; Hydraulic and electric brake systems.

    Science.gov (United States)

    2010-10-01

    ... brake actuating forces in response to signals from one or more sensed wheels. Initial brake temperature means the average temperature of the service brakes on the hottest axle of the vehicle 0.2 mi before any... procedures and in the sequence set forth in S7. Each school bus with a GVWR greater than 10,000 pounds must...

  4. Modeling and design of cooperative braking in electric and hybrid vehicles using induction machine and hydraulic brake

    Directory of Open Access Journals (Sweden)

    Zaini Dalimus

    2016-07-01

    Full Text Available In mixed-mode braking applications, the electric motor / generator (M/G and hydraulic pressure valve are controlled to meet the driver’s braking demand. Controlling these braking elements is achieved by modulating the current generated by the M/G and adjusting the fluid pressure to the wheel brake cylinders. This paper aims to model and design combined regenerative and hydraulic braking systems which, comprise an induction electric machine, inverter, NiMH battery, controller, a pressure source, pressure control unit, and brake calipers. A 15 kW 1500 rpm induction machine equipped with a reduction gear having a gear ratio of 4 is used. A hydraulic brake capable to produce fluid pressure up to 40 bar is used. Direct torque control and pressure control are chosen as the control criteria in the M/G and the hydraulic solenoid valve. The braking demands for the system are derived from the Federal Testing Procedure (FTP drive cycle. Two simulation models have been developed in Matlab®/Simulink® to analyze the performance of the control strategy in each braking system. The developed model is validated through experiment. It is concluded that the control system does introduce torque ripple and pressure oscillation in the braking system, but these effects do not affect vehicle braking performance due to the high frequency nature of pressure fluctuation and the damping effect of the vehicle inertia. Moreover, experiment results prove the effectiveness of the developed model.

  5. Antiskid braking system

    Science.gov (United States)

    Pazdera, J. S.

    1974-01-01

    Published report describes analytical development and simulation of braking system. System prevents wheels from skidding when brakes are applied, significantly reducing stopping distance. Report also presents computer simulation study on system as applied to aircraft.

  6. Performance requirements for locomotive braking systems

    CSIR Research Space (South Africa)

    Vermaak, P

    2000-02-01

    Full Text Available operated “Neutral Brake”. This brake may become active immediately or after a certain time delay when the controller is placed in the neutral position or moved into the neutral position by the “dead-man’s device”. Because this brake will interfere... in testing emergency brake systems due to the inherent braking action of the service brakes and/or locomotive controllers; • Potential problems limitations to braking effort associated with the prime movers and/or hydraulic systems on hydrostatically...

  7. Development of Regenerative Braking Co-operative Control System for Automatic Transmission-based Hybrid Electric Vehicle using Electronic Wedge Brake

    OpenAIRE

    Ko, Jiweon; Ko, Sungyeon; Bak, Yongsun; Jang, Mijeong; Yoo, Byoungsoo; Cheon, Jaeseung; Kim, Hyunsoo

    2013-01-01

    This research proposes a regenerative braking co-operative control system for the automatic transmission (AT)-based hybrid electric vehicle (HEV). The brake system of the subject HEV consists of the regenerative braking and the electronic wedge brake (EWB) friction braking for the front wheel, and the hydraulic friction braking for the rear wheel. A regenerative braking co-operative control algorithm is suggested for the regenerative braking and friction braking, which distributes the braking...

  8. A Study on Control Strategy of Regenerative Braking in the Hydraulic Hybrid Vehicle Based on ECE Regulations

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2013-01-01

    Full Text Available This paper establishes a mathematic model of composite braking in the hydraulic hybrid vehicle and analyzes the constraint condition of parallel regenerative braking control algorithm. Based on regenerative braking system character and ECE (Economic Commission of Europe regulations, it introduces the control strategy of regenerative braking in parallel hydraulic hybrid vehicle (PHHV. Finally, the paper establishes the backward simulation model of the hydraulic hybrid vehicle in Matlab/simulink and makes a simulation analysis of the control strategy of regenerative braking. The results show that this strategy can equip the hydraulic hybrid vehicle with strong brake energy recovery power in typical urban drive state.

  9. 49 CFR 393.41 - Parking brake system.

    Science.gov (United States)

    2010-10-01

    ... system shall, at all times, be capable of being applied by either the driver's muscular effort or by... 49 Transportation 5 2010-10-01 2010-10-01 false Parking brake system. 393.41 Section 393.41... NECESSARY FOR SAFE OPERATION Brakes § 393.41 Parking brake system. (a) Hydraulic-braked vehicles...

  10. Brakes, brake control and driver assistance systems function, regulation and components

    CERN Document Server

    2014-01-01

    Braking systems have been continuously developed and improved throughout the last years. Major milestones were the introduction of antilock braking system (ABS) and electronic stability program. This reference book provides a detailed description of braking components and how they interact in electronic braking systems. Contents Motor vehicle safety.- Basic principles of vehicle dynamics.- Car braking systems.- Car braking-system components.- Wheel brakes.- Antilock breaking systems.- Traction control system.- Electronic stability program.- Automatic brake functions.- Hydraulic modulator.- Sensors for brake control.- Sensotronic brake control.- Active steering.- Occupant protection systems.- Driver assistance systems.- Adaptive cruise control.- Parking systems.- Instrumentation.- Orientation methods.- Navigation systems.- Workshop technology. The target groups Motor-vehicle technicians in education and vocational training Master-mechanics and technicians in garage-workshops Teachers and lecturers in vocation...

  11. A Study on Control Strategy of Regenerative Braking in the Hydraulic Hybrid Vehicle Based on ECE Regulations

    OpenAIRE

    Liu, Tao; Zheng, Jincheng; Su, Yongmao; Zhao, Jinghui

    2013-01-01

    This paper establishes a mathematic model of composite braking in the hydraulic hybrid vehicle and analyzes the constraint condition of parallel regenerative braking control algorithm. Based on regenerative braking system character and ECE (Economic Commission of Europe) regulations, it introduces the control strategy of regenerative braking in parallel hydraulic hybrid vehicle (PHHV). Finally, the paper establishes the backward simulation model of the hydraulic hybrid vehicle in Matlab/simul...

  12. 14 CFR 25.735 - Brakes and braking systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Brakes and braking systems. 25.735 Section... braking systems. (a) Approval. Each assembly consisting of a wheel(s) and brake(s) must be approved. (b... an automatic braking system is installed, means are provided to: (i) Arm and disarm the system, and...

  13. Transient switching control strategy from regenerative braking to anti-lock braking with a semi-brake-by-wire system

    Science.gov (United States)

    Li, Liang; Li, Xujian; Wang, Xiangyu; Liu, Yahui; Song, Jian; Ran, Xu

    2016-02-01

    Regenerative braking is an important technology in improving fuel economy of an electric vehicle (EV). However, additional motor braking will change the dynamic characteristics of the vehicle, leading to braking instability, especially when the anti-lock braking system (ABS) is triggered. In this paper, a novel semi-brake-by-wire system, without the use of a pedal simulator and fail-safe device, is proposed. In order to compensate for the hysteretic characteristics of the designed brake system while ensure braking reliability and fuel economy when the ABS is triggered, a novel switching compensation control strategy using sliding mode control is brought forward. The proposed strategy converts the complex coupling braking process into independent control of hydraulic braking and regenerative braking, through which a balance between braking performance, braking reliability, braking safety and fuel economy is achieved. Simulation results show that the proposed strategy is effective and adaptable in different road conditions while the large wheel slip rate is triggered during a regenerative braking course. The research provides a new possibility of low-cost equipment and better control performance for the regenerative braking in the EV and the hybrid EV.

  14. Vehicle brake testing system

    Science.gov (United States)

    Stevens, Samuel S [Harriman, TN; Hodgson, Jeffrey W [Lenoir City, TN

    2002-11-19

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  15. An antilock molecular braking system.

    Science.gov (United States)

    Sun, Wei-Ting; Huang, Shou-Ling; Yao, Hsuan-Hsiao; Chen, I-Chia; Lin, Ying-Chih; Yang, Jye-Shane

    2012-08-17

    A light-driven molecular brake displaying an antilock function is constructed by introducing a nonradiative photoinduced electron transfer (PET) decay channel to compete with the trans (brake-off) → cis (brake-on) photoisomerization. A fast release of the brake can be achieved by deactivating the PET process through addition of protons. The cycle of irradiation-protonation-irradiation-deprotonation conducts the brake function and mimics the antilock braking system (ABS) of vehicles.

  16. Electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, S.R.

    1995-09-12

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  17. FEATURES OF RESOURCE TESTING OF THE HYDRAULIC BRAKE DRIVE ELEMENTS OF VEHICLES EQUIPPED WITH ABS

    Directory of Open Access Journals (Sweden)

    A. Revin

    2011-01-01

    Full Text Available The analysis of the resource testing facilities and methods of automobile brake cylinders in terms of ABS working process adequacy is carried out. A testing stand construction and a method of carrying out the resource testing of hydraulic drive elements of the automobile automated braking sys-tem is offered.

  18. Braking System for Wind Turbines

    Science.gov (United States)

    Krysiak, J. E.; Webb, F. E.

    1987-01-01

    Operating turbine stopped smoothly by fail-safe mechanism. Windturbine braking systems improved by system consisting of two large steel-alloy disks mounted on high-speed shaft of gear box, and brakepad assembly mounted on bracket fastened to top of gear box. Lever arms (with brake pads) actuated by spring-powered, pneumatic cylinders connected to these arms. Springs give specific spring-loading constant and exert predetermined load onto brake pads through lever arms. Pneumatic cylinders actuated positively to compress springs and disengage brake pads from disks. During power failure, brakes automatically lock onto disks, producing highly reliable, fail-safe stops. System doubles as stopping brake and "parking" brake.

  19. Electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, Susan R.

    1995-01-01

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  20. Regenerative Braking Control Strategy of Electric-Hydraulic Hybrid (EHH Vehicle

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2017-07-01

    Full Text Available A novel electric-hydraulic hybrid drivetrain incorporating a set of hydraulic systems is proposed for application in a pure electric vehicle. Models of the electric and hydraulic components are constructed. Two control strategies, which are based on two separate rules, are developed; the maximum energy recovery rate strategy adheres to the rule of the maximization of the braking energy recovery rate, while the minimum current impact strategy adheres to the rule of the minimization of the charge current to the battery. The simulation models were established to verify the effects of these two control strategies. An ABS (Anti-lock Braking System fuzzy control strategy is also developed and simulated. The simulation results demonstrate that the developed control strategy can effectively absorb the braking energy, suppress the current impact, and assure braking safety.

  1. Influences of braking system faults on the vehicle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Straky, H.; Kochem, M.; Schmitt, J.; Hild, R.; Isermann, R. [Technische Univ., Darmstadt (Germany). Inst. of Automatic Control

    2001-07-01

    From a safety point of view the braking system is, besides the driver, one of the key subsystems in a car. The driver, as an adaptive control system, might not notice small faults in the hydraulic part of the braking system and sooner or later critical braking situations, e.g. due to a brake-circuit failure, may occur. Most of the drivers are not capable to deal with such critical situations. Therefore this paper investigates the influence of faults in the braking system on the dynamic vehicle behavior and the steering inputs of the driver to keep the vehicle on the desired course. (orig.)

  2. New Structure Design and Simulation of Brake by Wire System Based on Giant-magnetostrictive Material

    Directory of Open Access Journals (Sweden)

    Changbao CHU

    2014-04-01

    Full Text Available Existing electronic mechanical brake by wire system has several disadvantages. For instance, system actuators are complex, response speed slower, larger vibration noise, etc. This paper discusses a new type brake by wire system based on giant-magnetostrictive material. The new type brake by wire system model was set up under Matlab/Simulink software environment. PID control method was used to control the brake by wire system. Simulation results shows that the new type brake by wire system achieves better braking performance compared with hydraulic braking system. This work provides a new idea for researching automobile brake by wire system.

  3. Braking System Modeling and Brake Temperature Response to Repeated Cycle

    Directory of Open Access Journals (Sweden)

    Zaini Dalimus

    2014-12-01

    Full Text Available Braking safety is crucial while driving the passenger or commercial vehicles. Large amount of kinetic energy is absorbed by four brakes fitted in the vehicle. If the braking system fails to work, road accident could happen and may result in death. This research aims to model braking system together with vehicle in Matlab/Simulink software and measure actual brake temperature. First, brake characteristic and vehicle dynamic model were generated to estimate friction force and dissipated heat. Next, Arduino based prototype brake temperature monitoring was developed and tested on the road. From the experiment, it was found that brake temperature tends to increase steadily in long repeated deceleration and acceleration cycle.

  4. Research on Braking Stability of Electro-mechanical Hybrid Braking System in Electric Vehicles

    OpenAIRE

    Ji, Fenzhu; Tian, Mi

    2010-01-01

    For the electro-mechanical hybrid braking system, which is composed of electric brake and general friction brake, the models of electric braking force, total braking force and the utilization adhesion coefficient for front and rear axles were established based on the analysis of braking torque distribution. The variation relationship between electric braking force and friction braking force in different braking intensity was calculated and analyzed with the paralleled-hybridized braking contr...

  5. Mathematical Modeling of the Braking System of Wheeled Mainline Aircraft

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2016-01-01

    Full Text Available The braking system of the landing gear wheels of a mainline aircraft has to meet mandatory requirements laid out in the Aviation Regulations AP-25 (Para 25.735. «Brakes and brake systems". These requirements are essential when creating the landing gear wheel brake control system (WBCS and are used as main initial data in its mathematical modeling. The WBCS is one of the most important systems to ensure the safe completion of the flight. It is a complex of devices, i.e. units (hydraulic, electrical, and mechanical, connected through piping, wiring, mechanical constraints. This complex should allow optimizing the braking process when a large number of parameters change. The most important of them are the following: runway friction coefficient (RFC, lifting force, weight and of the aircraft, etc. The main structural elements involved in braking the aircraft are: aircraft wheels with pneumatics (air tires and brake discs, WBCS, and cooling system of gear wheels when braking.To consider the aircraft deceleration on the landing run is of essence at the stage of design, development, and improvement of brakes and braking systems. Based on analysis of equation of the aircraft motion and energy balance can be determined energy loading and its basic design parameters, braking distances and braking time.As practice and analysis of energy loading show, they (brake + wheel absorb the aircraftpossessed kinetic energy at the start of braking as much as 60-70%, 70-80%, and 80-90%, respectively, under normal increased, and emergency operating conditions. The paper presents a procedure for the rapid calculation of energy loading of the brake wheel.Currently, the mainline aircrafts use mainly electrohydraulic brake systems in which there are the main, backup, and emergency-parking brake systems. All channels are equipped with automatic anti-skid systems. Their presence in the emergency (the third reserve channel significantly improves the reliability and safety of

  6. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, Susan R.

    1994-01-01

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

  7. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, S.R.

    1994-10-25

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  8. Intelligent Braking System using the IR Sensor

    OpenAIRE

    Gajanan Koli

    2017-01-01

    Most of the accidents in four wheeled vehicles occur because of failure of braking systems. Manual method of applying brakes is always dangerous as it leads to accidents. Unconsciousness of driver, failure in the linkages of braking systems, road conditions, uncontrollable speed of the vehicle and manual operation of braking systems are the reasons of accidents. It is necessary to control brakes automatically through electronics devices to minimize the accident problems. In this research pape...

  9. Development of Proportional Pressure Control Valve for Hydraulic Braking Actuator of Automobile ABS

    Directory of Open Access Journals (Sweden)

    Che-Pin Chen

    2018-04-01

    Full Text Available This research developed a novel proportional pressure control valve for an automobile hydraulic braking actuator. It also analyzed and simulated solenoid force of the control valves, and the pressure relief capability test of electromagnetic thrust with the proportional valve body. Considering the high controllability and ease of production, the driver of this proportional valve was designed with a small volume and powerful solenoid force to control braking pressure and flow. Since the proportional valve can have closed-loop control, the proportional valve can replace a conventional solenoid valve in current brake actuators. With the proportional valve controlling braking and pressure relief mode, it can narrow the space of hydraulic braking actuator, and precisely control braking force to achieve safety objectives. Finally, the proposed novel proportional pressure control valve of an automobile hydraulic braking actuator was implemented and verified experimentally.

  10. 49 CFR 393.55 - Antilock brake systems.

    Science.gov (United States)

    2010-10-01

    ... hydraulic braked vehicles. Each hydraulic braked vehicle subject to the requirements of paragraph (a) of...)). (2) Each air braked commercial motor vehicle other than a truck tractor, manufactured on or after... malfunction circuits and signals for air braked vehicles. (1) Each truck tractor manufactured on or after...

  11. Mountain Plains Learning Experience Guide: Automotive Repair. Course: Brake Systems.

    Science.gov (United States)

    Schramm, C.; Osland, Walt

    One of twelve individualized courses included in an automotive repair curriculum, this course covers theory, operation, and repair of drum brakes, disc brakes, and brake system components. The course is comprised of six units: (1) Fundamentals of Brake Systems, (2) Master Cylinder, (3) Drum Brakes, (4) Disc Brakes, (5) Power Brakes, and (6)…

  12. 49 CFR 238.431 - Brake system.

    Science.gov (United States)

    2010-10-01

    .... (e) The following requirements apply to blended braking systems: (1) Loss of power or failure of the... adhesion control system designed to automatically adjust the braking force on each wheel to prevent sliding during braking. In the event of a failure of this system to prevent wheel slide within preset parameters...

  13. Model-based open-loop control design for a hydraulic brake system with switching solenoid valves; Modellbasierter Steuerungsentwurf fuer ein hydraulisches Bremssystem mit magnetischen Schaltventilen

    Energy Technology Data Exchange (ETDEWEB)

    Lolenko, K.; Fehn, A.A.R. [Robert Bosch GmbH, Abstatt (Germany). CC/ESM

    2007-02-15

    This paper presents a novel concept for the model-based open-loop control design of switching solenoid valves. The control is suitable for the wheel brake calliper pressure setting during vehicle dynamics control, as e. g. by ESP or ABS [1;11]. For the control design the reduced model, taking into account all essential nonlinearities of the system as well as environmental effects (e.g. temperature), was derived from the detailed simulation model. The transition times and other characteristic time intervals describing the dynamic behaviour of the solenoid valve are calculated from the equations of the reduced model through symbolic integration or approximative by means of taylor series. The calculated time intervals serve to define the control impulse duration of the valve from the desired calliper pressure. In simulation studies the designed control has been proven to be an efficient approach and allows improved pressure control accuracy for conventional brake systems. (orig.)

  14. 49 CFR 238.231 - Brake system.

    Science.gov (United States)

    2010-10-01

    ...) Equipped with brake indicators as defined in § 238.5, designed so that the pressure sensor is placed in a... alcohol or other chemicals into the air brake system of passenger equipment is prohibited. (f) The...

  15. The dynamics of antilock brake systems

    Science.gov (United States)

    Denny, Mark

    2005-11-01

    The nonlinear dynamics of automobile braking are investigated. Nonlinearity arises because of the manner in which the friction coefficient between vehicle tyres and road surface depends upon vehicle speed and wheel angular speed. We show how antilock brake systems approach optimum braking performance.

  16. A novel integrated self-powered brake system for more electric aircraft

    Directory of Open Access Journals (Sweden)

    Yaoxing SHANG

    2018-05-01

    Full Text Available Traditional hydraulic brake systems require a complex system of pipelines between an aircraft engine driven pump (EDP and brake actuators, which increases the weight of the aircraft and may even cause serious vibration and leakage problems. In order to improve the reliability and safety of more electric aircraft (MEA, this paper proposes a new integrated self-powered brake system (ISBS for MEA. It uses a hydraulic pump geared to the main wheel to recover a small part of the kinetic energy of a landing aircraft. The recovered energy then serves as the hydraulic power supply for brake actuators. It does not require additional hydraulic source, thus removing the pipelines between an EDP and brake actuators. In addition, its self-powered characteristic makes it possible to brake as usual even in an emergency situation when the airborne power is lost. This paper introduces the working principle of the ISBS and presents a prototype. The mathematical models of a taxiing aircraft and the ISBS are established. A feedback linearization control algorithm is designed to fulfill the anti-skid control. Simulations are carried out to verify the feasibility of the ISBS, and experiments are conducted on a ground inertia brake test bench. The ISBS presents a good performance and provides a new potential solution in the field of brake systems for MEA. Keywords: Hydraulic, Feedback linearization control, More electric aircraft, Novel brake system, Self-powered

  17. The design of brake fatigue testing system

    Directory of Open Access Journals (Sweden)

    Huang, Xiaoya

    2015-01-01

    Full Text Available Brake is used to reduce the operating speed of the machinery equipment or to make it stop. It is essential for vehicles, climbing machines and many fixed equipment in their safety work. Brake tester is an experimental apparatus to measure and analyse the braking performance. Based on the PLC technology and for the purpose of testing brake shoe friction material’s life, this paper designed a virtual brake test platform. In it, inverter were used to control the motor, so that it can load automatically and ensure brake drum constant speed output; what is more, closed loop control system were used to control the brake shoe, so that the cylinder pressure keeps stable in the process of dynamic braking.

  18. Development of a Cooperative Braking System for Front-Wheel Drive Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Di Zhao

    2018-02-01

    Full Text Available Most electric vehicles adopt cooperative braking systems that can blend friction braking torque with regenerative braking torque to achieve higher energy efficiency while maintaining a certain braking performance and driving safety. This paper presented a new cooperative regenerative braking system that contained a fully-decoupled hydraulic braking mechanism based on a modified electric stability control system. The pressure control algorithm and brake force distribution strategy were also discussed. Dynamic models of a front wheel drive electric car equipped with this system and a simulation platform with a driver model and driving cycles were established. Tests to evaluate the braking performance and energy regeneration were simulated and analyzed on this platform and the simulation results showed the feasibility and effectiveness of this system.

  19. BASIC STUDY ON TAILORMADE BRAKING SUPPORT SYSTEM

    Directory of Open Access Journals (Sweden)

    Toshiya HIROSE, M.S.

    2004-01-01

    This research reviewed the construction of models of a Tailormade Braking Support System (TBSS for braking to stop vehicles and the evaluation of drivers. As a result, the following conclusions were drawn. (1 Braking factors were found to change in the period from the start of braking to stopping; (2 Changes in braking factors can be logically incorporated into the control elements of braking support system; (3 Readymade Driver Model is effective as a model to be incorporated into the base system of TBSS; (4 Tailormade Driver Model built on Neural Network is effective as a main model to construct TBSS; (5 As for TBSS, both subjective and objective ratings on the timing and magnitude of braking are favorable, and its safety and sense of security are improved.

  20. Simulation and Robust Contol of Antilock Braking System ABS

    Directory of Open Access Journals (Sweden)

    David Jordan DELICHRISTOV

    2009-06-01

    Full Text Available This paper deals with simulation and robust control of Antilock Braking System ABS. The briefly are described the main parts of ABS hydraulic system and control algorithm of ABS. Hydraulic system described here is BOSCH ABS 5.x series. The goal of ABS system is vehicle stability and vehicle steering response when braking. If during the braking occurred slip at one or more wheels from any reason, ABS evaluates this by “brake slip” controller. At this moment ABS is trying to use maximal limits of adhesion between tire and road. It means that is necessary control the differences between braking torque and friction torque , which reacts to the wheel via friction reaction tire-road surface. This is realized through the solenoid valves, which are controls (triggered by on the base of PID controller described further in chapter 4. Presented concept is more or less standard for most of the existing ABS systems. The issue should be applied concept of robust ABS control algorithm, which is specific for every type of ABS.

  1. THE STUDY OF BRAKE EFFECTIVENESS HOPPER SYSTEM WITH SEPARATE BRAKING TRUCKS

    Directory of Open Access Journals (Sweden)

    O. Je. Nishhenko

    2009-06-01

    Full Text Available The results of tests of the hopper brake systems for the pellets having typical system and separate braking per each bogie are presented. It is shown that the brake system with separate braking has several advantages as compared to the typical one.

  2. Regenerative braking system of PM synchronous motor

    Science.gov (United States)

    Gao, Qian; Lv, Chengxing; Zhao, Na; Zang, Hechao; Jiang, Huilue; Zhang, Zhaowen; Zhang, Fengli

    2018-04-01

    Permanent-magnet synchronous motor is widely adopted in many fields with the advantage of a high efficiency and a high torque density. Regenerative Braking Systems (RBS) provide an efficient method to assist PMSM system achieve better fuel economy and lowering exhaust emissions. This paper describes the design and testing of the regenerative braking systems of PMSM. The mode of PWM duty has been adjusted to control regenerative braking of PMSM using energy controller for the port-controlled Hamiltonian model. The simulation analysis indicates that a smooth control could be realized and the highest efficiency and the smallest current ripple could be achieved by Regenerative Braking Systems.

  3. Talking about the Automobile Braking System

    Science.gov (United States)

    Xu, Zhiqiang

    2017-12-01

    With the continuous progress of society, the continuous development of the times, people’s living standards continue to improve, people continue to improve the pursuit. With the rapid development of automobile manufacturing, the car will be all over the tens of thousands of households, the increase in car traffic, a direct result of the incidence of traffic accidents. Brake system is the guarantee of the safety of the car, its technical condition is good or bad, directly affect the operational safety and transportation efficiency, so the brake system is absolutely reliable. The requirements of the car on the braking system is to have a certain braking force to ensure reliable work in all cases, light and flexible operation. Normal braking should be good performance, in addition to a foot sensitive, the emergency brake four rounds can not be too long, not partial, not ring.

  4. Accelerometer-controlled automatic braking system

    Science.gov (United States)

    Dreher, R. C.; Sleeper, R. K.; Nayadley, J. R., Sr.

    1973-01-01

    Braking system, which employs angular accelerometer to control wheel braking and results in low level of tire slip, has been developed and tested. Tests indicate that system is feasible for operations on surfaces of different slipperinesses. System restricts tire slip and is capable of adapting to rapidly-changing surface conditions.

  5. THE DEVELOPMENT OF TROLLEYBUS DRIVE BRAKE SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. Safonau

    2011-01-01

    Full Text Available The requirements for trolleybuses brake systems are analyzed. Some results of the studies examined, contemporary trends of developing in this direction are shows. The range of problems whose solution is aimed at creating high-performance brake systems whose increase efficiency and safety of trolleybuses determined.

  6. Regenerative Braking System for Series Hybrid Electric City Bus

    OpenAIRE

    Zhang, Junzhi; Lu, Xin; Xue, Junliang; Li, Bos

    2008-01-01

    Regenerative Braking Systems (RBS) provide an efficient method to assist hybrid electric buses achieve better fuel economy while lowering exhaust emissions. This paper describes the design and testing of three regenerative braking systems, one of which is a series regenerative braking system and two of which are parallel regenerative braking systems. The existing friction based Adjustable Braking System (ABS) on the bus is integrated with each of the new braking systems in order to ensure bus...

  7. Design of a magnetic braking system

    International Nuclear Information System (INIS)

    Jou, M.; Shiau, J.-K.; Sun, C.-C.

    2006-01-01

    A non-contact method, using magnetic drag force principle, was proposed to design the braking systems to improve the shortcomings of the conventional braking systems. The extensive literature detailing all aspects of the magnetic braking is briefly reviewed, however little of this refers specifically to upright magnetic braking system, which is useful for industries. One of the major issues to design upright magnetic system is to find out the magnetic flux. The changing magnetic flux induces eddy currents in the conductor. These currents dissipate energy in the conductor and generate drag force to slow down the motion. Therefore, a finite element model is developed to analyze the phenomena of magnetic flux density when air gap and materials of track are varied. The verification shows the predicted magnetic flux is within acceptable range with the measured value. The results will facilitate the design of magnetic braking systems

  8. Rail Brake System Using a Linear Induction Motor for Dynamic Braking

    Science.gov (United States)

    Sakamoto, Yasuaki; Kashiwagi, Takayuki; Tanaka, Minoru; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo

    One type of braking system for railway vehicles is the eddy current brake. Because this type of brake has the problem of rail heating, it has not been used for practical applications in Japan. Therefore, we proposed the use of a linear induction motor (LIM) for dynamic braking in eddy current brake systems. The LIM reduces rail heating and uses an inverter for self excitation. In this paper, we estimated the performance of an LIM from experimental results of a fundamental test machine and confirmed that the LIM generates an approximately constant braking force under constant current excitation. At relatively low frequencies, this braking force remains unaffected by frequency changes. The reduction ratio of rail heating is also approximately proportional to the frequency. We also confirmed that dynamic braking resulting in no electrical output can be used for drive control of the LIM. These characteristics are convenient for the realization of the LIM rail brake system.

  9. Combined braking system for hybrid vehicle

    Science.gov (United States)

    Kulekina, A. V.; Bakholdin, P. A.; Shchurov, N. I.

    2017-10-01

    The paper presents an analysis of surface vehicle’s existing braking systems. The technical solution and brake-system design were developed for use of regenerative braking energy. A technical parameters comparison of energy storage devices of various types was made. Based on the comparative analysis, it was decided to use supercapacitor because of its applicability for an electric drive intermittent operation. The calculation methods of retarder key components were proposed. Therefrom, it was made a conclusion that rebuild gasoline-electric vehicles are more efficient than gasoline ones.

  10. Design and Analysis of a Novel Centrifugal Braking Device for a Mechanical Antilock Braking System.

    Science.gov (United States)

    Yang, Cheng-Ping; Yang, Ming-Shien; Liu, Tyng

    2015-06-01

    A new concept for a mechanical antilock braking system (ABS) with a centrifugal braking device (CBD), termed a centrifugal ABS (C-ABS), is presented and developed in this paper. This new CBD functions as a brake in which the output braking torque adjusts itself depending on the speed of the output rotation. First, the structure and mechanical models of the entire braking system are introduced and established. Second, a numerical computer program for simulating the operation of the system is developed. The characteristics of the system can be easily identified and can be designed with better performance by using this program to studying the effects of different design parameters. Finally, the difference in the braking performance between the C-ABS and the braking system with or without a traditional ABS is discussed. The simulation results indicate that the C-ABS can prevent the wheel from locking even if excessive operating force is provided while still maintaining acceptable braking performance.

  11. Suitability of Hydraulic Disk Brakes for Passive Actuation of Upper-Extremity Rehabilitation Exoskeleton

    Directory of Open Access Journals (Sweden)

    Arno H. A. Stienen

    2009-01-01

    Full Text Available Passive, energy-dissipating actuators are promising for force-coordination training in stroke rehabilitation, as they are inherently safe and have a high torque-to-weight ratio. The goal of this study is to determine if hydraulic disk brakes are suitable to actuate an upper-extremity exoskeleton, for application in rehabilitation settings. Passive actuation with friction brakes has direct implications for joint control. Braking is always opposite to the movement direction. During standstill, the measured torque is equal to the torque applied by the human. During rotations, it is equal to the brake torque. Actively assisting movement is not possible, nor are energy-requiring virtual environments. The evaluated disk brake has a 20 Nm bandwidth (flat-spectrum, multi-sine of 10 Hz; sufficient for torques required for conventional therapy and simple, passive virtual environments. The maximum static output torque is 120 Nm, sufficient for isometric training of the upper extremity. The minimal impedance is close zero, with only the inertia of the device felt. In conclusion, hydraulic disk brakes are suitable for rehabilitation devices.

  12. 49 CFR 393.40 - Required brake systems.

    Science.gov (United States)

    2010-10-01

    ... subpart. (2) Air brake systems. Buses, trucks and truck-tractors equipped with air brake systems and..., and 393.52 of this subpart. (4) Electric brake systems. Motor vehicles equipped with electric brake..., trucks and truck tractors manufactured on or after March 1, 1975, and trailers manufactured on or after...

  13. The dynamic performance and economic benefit of a blended braking system in a multi-speed battery electric vehicle

    International Nuclear Information System (INIS)

    Ruan, Jiageng; Walker, Paul D.; Watterson, Peter A.; Zhang, Nong

    2016-01-01

    Highlights: • Maximum braking energy recovery potentials of various cycles are reported. • Braking strategies are proposed for performance, comfort and energy recovery. • Braking force distributions and wheel slip ratios of different strategies are demonstrated. • The performance of ‘Eco’ strategy is experimentally validated in HWFET and NEDC. • The economic benefit of energy recovering is summarized, regarding to the fuel and maintenance cost saving. - Abstract: As motor-supplied braking torque is applied to the wheels in an entirely different way to hydraulic friction braking systems and it is usually only connected to one axle complicated effects such as wheel slip and locking, vehicle body bounce and braking distance variation will inevitability impact on the performance and safety of braking. The potential for braking energy recovery in typical driving cycles is presented to show its benefit in this study. A general predictive model is designed to analysis the economic and dynamic performance of blended braking systems, satisfying the relevant regulations/laws and critical limitations. Braking strategies for different purposes are proposed to achieve a balance between braking performance, driving comfort and energy recovery rate. Special measures are taken to avoid any effects of motor failure. All strategies are analyzed in detail for various braking events. Advanced driver assistance systems (ADAS), such as ABS and EBD, are properly integrated to work with the regenerative braking system (RBS) harmoniously. Different switching plans during braking are discussed. The braking energy recovery rates and brake force distribution details for different driving cycles are simulated. Results for two of the cycles in an ‘Eco’ mode are measured on a drive train test rig and found to agree with the simulated results to within approximately 10%. Reliable conclusions can thus be gained on the economic benefit and dynamic braking performance. The

  14. Wheel slip dump valve for railway braking system

    Science.gov (United States)

    Zhang, Xuan; Zhang, LiHao; Li, QingXuan; Shi, YanTao

    2017-09-01

    As we all know, pneumatic braking system plays an important role in the safety of the whole vehicle. In the anti slip braking system, the pressure of braking cylinder can be adjusted by the quick power response of wheel slip dump valve, so that the lock situation won’t occur during vehicle service. During the braking of railway vehicles, the braking force provided by braking disc reduces vehicle’s speed. But the locking slip will happen due to the oversize of braking force or the reduction of sticking coefficient between wheel and rail. It will cause not only the decline of braking performance but also the increase of braking distance. In the meanwhile, it will scratch the wheel and influence the stable running of vehicles. Now, the speed of passenger vehicle has been increased. In order to shorten the braking distance as far as possible, sticking stickiness must be fully applied. So the occurrence probability of wheel slip is increased.

  15. Brakes Specialist. Teacher Edition. Automotive Service Series.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains teacher's materials for a course on becoming an automotive brakes specialist, based on the National Institute of Automotive Service Excellence task lists. The course consists of three instructional units: service brake hydraulic system and wheel bearings, service drum brakes, and service disc brakes. Depending on the…

  16. Backup Mechanical Brake System of the Wind Turbine

    Science.gov (United States)

    Sirotkin, E. A.; Solomin, E. V.; Gandzha, S. A.; Kirpichnikova, I. M.

    2018-01-01

    Paper clarifies the necessity of the emergency mechanical brake systems usage for wind turbines. We made a deep analysis of the wind turbine braking methods available on the market, identifying their strengths and weaknesses. The electromechanical braking appeared the most technically reasonable and economically attractive. We described the developed combined electromechanical brake system for vertical axis wind turbine driven from electric drive with variable torque enough to brake over the turbine even on the storm wind speed up to 45 m/s. The progress was made due to the development of specific kinematic brake system diagram and intelligent control system managed by special operation algorithm.

  17. Nonlinear Coupling Characteristics Analysis of Integrated System of Electromagnetic Brake and Frictional Brake of Car

    Directory of Open Access Journals (Sweden)

    Ren He

    2015-01-01

    Full Text Available Since theoretical guidance is lacking in the design and control of the integrated system of electromagnetic brake and frictional brake, this paper aims to solve this problem and explores the nonlinear coupling characteristics and dynamic characteristics of the integrated system of electromagnetic brake and frictional brake. This paper uses the power bond graph method to establish nonlinear coupling mathematical model of the integrated system of electromagnetic brake and frictional brake and conducts the contrastive analysis on the dynamic characteristics based on this mathematical model. Meanwhile, the accuracy of the nonlinear coupling mathematical model proposed above is verified on the hardware in the loop simulation platform, and nonlinear coupling characteristics of the integrated system are also analyzed through experiments.

  18. Adaptive controller for regenerative and friction braking system

    Science.gov (United States)

    Davis, Roy I.

    1990-01-01

    A regenerative and friction braking system for a vehicle having one or more roadwheels driven by an electric traction motor includes a driver responsive device for producing a brake demand signal having a magnitude corresponding to the level of braking force selected by the driver and friction and regenerative brakes operatively connected with the roadwheels of the vehicle. A system according to this invention further includes control means for operating the friction and regenerative braking subsystems so that maximum brake torques sustainable by the roadwheels of the vehicle without skidding or slipping will not be exceeded.

  19. Performance of an aircraft tire under cyclic braking and of a currently operational antiskid braking system

    Science.gov (United States)

    Tanner, J. A.

    1972-01-01

    An experimental investigation was conducted to study the performance of an aircraft tire under cyclic braking conditions and to study the performance of a currently operational aircraft antiskid braking system. Dry, damp, and flooded runway surface conditions were used in the investigation. The results indicated that under cyclic braking conditions the braking and cornering-force friction coefficients may be influenced by fluctuations in the vertical load, flexibility in the wheel support, and the spring coupling between the wheel and the tire-pavement interface. The cornering capability was shown to be negligible at wheel slip ratios well below a locked-wheel skid under all test surface conditions. The maximum available brake-force friction coefficient was shown to be dependent upon the runway surface condition, upon velocity, and, for wet runways, upon tire differences. Moderate reductions in vertical load and brake system pressure did not significantly affect the overall wet-runway performance of the tire.

  20. Use of elastomers in regenerative braking systems

    Science.gov (United States)

    The storage of potential energy as strain energy in elastomers was investigated. The evolution of the preferred stressing scheme is described, and test results on full-size elastomeric energy storage units sized for an automotive regenerative braking system application are presented. The need for elastomeric material improvements is also discussed.

  1. 30 CFR 75.1404-1 - Braking system.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Braking system. 75.1404-1 Section 75.1404-1... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips § 75.1404-1 Braking system. A locomotive equipped with a dual braking system will be deemed to satisfy the requirements of § 75.1404 for a...

  2. Hydraulic regenerative system for a light vehicle

    OpenAIRE

    Orpella Aceret, Jordi; Guinart Trayter, Xavier

    2009-01-01

    The thesis is based in a constructed light vehicle that must be improved by adding a hydraulic energy recovery system. This vehicle named as TrecoLiTH, participated in the Formula Electric and Hybrid competition (Formula EHI) 2009 in Italy -Rome- and won several awards. This system consists in two hydraulic motors hub mounted which are used to store fluid at high pressure in an accumulator when braking. Through a valve the pressure will flow from the high pressure accumulator to the low press...

  3. 49 CFR 570.59 - Service brake system.

    Science.gov (United States)

    2010-10-01

    ... 10,000 Pounds § 570.59 Service brake system. (a) Service brake performance. Compliance with any one of the following performance criteria will satisfy the requirements of this section. Verify that tire...

  4. Dynamics of braking vehicles: from Coulomb friction to anti-lock braking systems

    International Nuclear Information System (INIS)

    Tavares, J M

    2009-01-01

    The dynamics of braking of wheeled vehicles is studied using the Coulomb approximation for the friction between road and wheels. The dependence of the stopping distance on the mass of the vehicle, on the number of its wheels and on the intensity of the braking torque is established. It is shown that there are two regimes of braking, with and without sliding. The advantage of using an anti-lock braking system (ABS) is put in evidence, and a quantitative estimate of its efficiency is proposed and discussed

  5. The influence of various pressures in pneumatic tyre on braking process of car with anti-lock braking system

    Directory of Open Access Journals (Sweden)

    Damian HADRYŚ

    2008-01-01

    Full Text Available In this article has been presented the influence of various pressures inpneumatic tyre of passenger car Fiat Panda 1.3 JTD with anti-lock braking system on chosen parameters of braking process: course of braking deceleration, maximum value of deceleration, braking distances.

  6. The influence of various pressures in pneumatic tyre on braking process of car with anti-lock braking system

    OpenAIRE

    Damian HADRYŚ; Tomasz WĘGRZYN; Michał MIROS

    2008-01-01

    In this article has been presented the influence of various pressures inpneumatic tyre of passenger car Fiat Panda 1.3 JTD with anti-lock braking system on chosen parameters of braking process: course of braking deceleration, maximum value of deceleration, braking distances.

  7. THE INFLUENCE OF BRAKE PADS THERMAL CONDUCTIVITY ON PASSANGER CAR BRAKE SYSTEM EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Predrag D Milenković

    2010-01-01

    Full Text Available In phase of vehicle braking system designing, besides of mechanical characteristics, it is also necessary to take under consideration the system's thermal features. This is because it is not enough just to achieve proper braking power, for the brake system to be effective but equally important thing is the dissipation of heat to the environment. Heat developed in the friction surfaces dissipate into the environment over the disk in one hand and through the brake linings and caliper, in the other. The striving is to make that greatest amount of heat to dissipate not threw the brake pads but threw disc. The experimental researching of heat transfer process taking place at vehicle brakes was made in the R&D Center of "Zastava automobili" car factory in order to increase the efficiency of brake system. The standard laboratory and road test procedures were used, according to factory quality regulations. The modern equipment such as thermo camera, thermo couples, torque transducers, signal amplifiers, optical speed measuring system and laptop computer were used. In this paper will be shown the part of the experimental researching, which refers to the thermal conductivity of brake pad friction linings.

  8. 77 FR 51649 - Federal Motor Vehicle Safety Standards; Motorcycle Brake Systems

    Science.gov (United States)

    2012-08-24

    ... motorcycle braking regulations from around the world, including the U.S. motorcycle brake systems standard.... Partial Failure Test--Split Service Brake System I. Power-Assisted Braking System Failure Test V. Other... motorcycle brake system technologies. In order to address modern braking technologies, the agency sought to...

  9. Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Mørkholt, M.

    a hydraulic soft yaw system, which is able to reduce the loads on the wind turbine significantly. A full scale hydraulic yaw test rig is available for experiments and tests. The test rig is presented as well as the system schematics of the hydraulic yaw system....... the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized to reduce loading in critical components. Results shows that a significant reduction in fatigue and extreme loads to the yaw...... system and rotor shaft when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. Based on the extrapolated loads, the duty cycles show that it is possible to construct...

  10. Brake hydraulics simulation with real-time capability. From hydraulics plan to implementation: the Bosch ESP 5.7 as an example; Echtzeitfaehige Bremshydrauliksimulation. Vom Hydraulikplan zur Implementierung am Beispiel des Bosch ESP 5.7

    Energy Technology Data Exchange (ETDEWEB)

    Marc, E.; Oliver, P.; Thies, W. [Tesis Dynaware (Germany)

    2001-11-01

    For the development and testing of ABS/ESP control units, both the detailed simulation of the vehicle and drive train dynamics as well as the dynamic behaviour of the hydraulic system are important. The signals coming from the control unit that control the valves in the brake hydraulic system cause pressure changes in the brake system and thus affect the braking torque. In turn, the changes in the speed of the wheels are fed back to the control unit via sensors. The objective of an ABS control strategy is to prevent the wheels from locking during braking in order to ensure and maintain the steerability of the vehicle, while the ESP action also attempts to achieve a stabilization of the yawing motion by means of active braking. (orig.) [German] Fuer die Entwicklung und den Test von ABS/ESP-Steuergeraeten ist neben der detaillierten Simulation von Fahr- und Antriebsstrangdynamik auch das dynamische Verhalten des hydraulischen Systems wichtig. Die vom Steuergeraet kommenden Signale zur Ansteuerung der Ventile in der Bremshydraulik bewirken Druckaenderungen im Bremssystem und somit der Bremsmomente. Die Aenderungen der Raddrehzahlen werden wiederum ueber Sensoren dem Steuergeraet zurueckgemeldet. Ziel einer ABS-Regelstrategie ist das Verhindern des Blockierens der Raeder beim Bremsen, um die Lenkbarkeit des Fahrzeugs zu erhalten, waehrend bei einem ESP-Eingriff durch aktives Bremsen zusaetzlich eine Stabilisierung der Gierbewegung erfolgen soll, wie der folgende Beitrag von Tesis Dynaware zeigt. (orig.)

  11. Performance Evaluation of an Anti-Lock Braking System for Electric Vehicles with a Fuzzy Sliding Mode Controller

    Directory of Open Access Journals (Sweden)

    Jingang Guo

    2014-10-01

    Full Text Available Traditional friction braking torque and motor braking torque can be used in braking for electric vehicles (EVs. A sliding mode controller (SMC based on the exponential reaching law for the anti-lock braking system (ABS is developed to maintain the optimal slip value. Parameter optimizing is applied to the reaching law by fuzzy logic control (FLC. A regenerative braking algorithm, in which the motor torque is taken full advantage of, is adopted to distribute the braking force between the motor braking and the hydraulic braking. Simulations were carried out with Matlab/Simulink. By comparing with a conventional Bang-bang ABS controller, braking stability and passenger comfort is improved with the proposed SMC controller, and the chatting phenomenon is reduced effectively with the parameter optimizing by FLC. With the increasing proportion of the motor braking torque, the tracking of the slip ratio is more rapid and accurate. Furthermore, the braking distance is shortened and the conversion energy is enhanced.

  12. Experimental investigation of an accelerometer controlled automatic braking system

    Science.gov (United States)

    Dreher, R. C.; Sleeper, R. K.; Nayadley, J. R., Sr.

    1972-01-01

    An investigation was made to determine the feasibility of an automatic braking system for arresting the motion of an airplane by sensing and controlling braked wheel decelerations. The system was tested on a rotating drum dynamometer by using an automotive tire, wheel, and disk-brake assembly under conditions which included two tire loadings, wet and dry surfaces, and a range of ground speeds up to 70 knots. The controlling parameters were the rates at which brake pressure was applied and released and the Command Deceleration Level which governed the wheel deceleration by controlling the brake operation. Limited tests were also made with the automatic braking system installed on a ground vehicle in an effort to provide a more realistic proof of its feasibility. The results of this investigation indicate that a braking system which utilizes wheel decelerations as the control variable to restrict tire slip is feasible and capable of adapting to rapidly changing surface conditions.

  13. Put the brake on costs and preserve the environment with hydraulic hybrid drive; Kosten bremsen und Umwelt schonen mit hydraulischem Hybridantrieb

    Energy Technology Data Exchange (ETDEWEB)

    Kliffken, Markus G.; Stawiarski, Robert [Bosch Rexroth AG, Elchingen (Germany). Systementwicklung Mobilhydraulik; Beck, Matthias; Ehret, Christine [Bosch Rexroth AG, Elchingen (Germany). HRB

    2009-03-15

    With their Hydrostatic Regenerative Braking System (HRB) Rexroth combines the advantages of hybrid concepts with the high power density of hydraulic accumulators for economical use in commercial vehicles and mobile machines. The result: Fuel savings of up to 25 percent with corresponding reductions in CO{sub 2} emissions. The system is based on off-the-self and modified components and requires only slight modifications to existing drive trains. This makes the HRB ideal for new equipment or retrofitting vehicle fleets. (orig.)

  14. An integrated control strategy for the composite braking system of an electric vehicle with independently driven axles

    Science.gov (United States)

    Sun, Fengchun; Liu, Wei; He, Hongwen; Guo, Hongqiang

    2016-08-01

    For an electric vehicle with independently driven axles, an integrated braking control strategy was proposed to coordinate the regenerative braking and the hydraulic braking. The integrated strategy includes three modes, namely the hybrid composite mode, the parallel composite mode and the pure hydraulic mode. For the hybrid composite mode and the parallel composite mode, the coefficients of distributing the braking force between the hydraulic braking and the two motors' regenerative braking were optimised offline, and the response surfaces related to the driving state parameters were established. Meanwhile, the six-sigma method was applied to deal with the uncertainty problems for reliability. Additionally, the pure hydraulic mode is activated to ensure the braking safety and stability when the predictive failure of the response surfaces occurs. Experimental results under given braking conditions showed that the braking requirements could be well met with high braking stability and energy regeneration rate, and the reliability of the braking strategy was guaranteed on general braking conditions.

  15. Diesel Technology: Brakes. Teacher Edition [and] Student Edition.

    Science.gov (United States)

    Hilley, Robert; Scarberry, Terry; Kellum, Mary

    This document contains teacher and student materials for a course on brakes in the diesel technology curriculum. The course consists of 12 units organized in three sections. The three units of the introductory section cover: (1) brakes; (2) wheel bearings and seals; and (3) antilock brake systems. The second section, Hydraulic Brakes, contains the…

  16. Development of Anti-lock Braking System (ABS) for Vehicles Braking

    OpenAIRE

    Minh Vu Trieu; Oamen Godwin; Vassiljeva Kristina; Teder Leo

    2016-01-01

    This paper develops a real laboratory of anti-lock braking system (ABS) for vehicle and conducts real experiments to verify the ability of this ABS to prevent the vehicle wheel from being locked while braking. Two controllers of PID and fuzzy logic are tested for analysis and comparison. This ABS laboratory is designed for bachelor and master students to simulate and analyze performances of ABS with different control techniques on various roads and load conditions. Thi...

  17. Emergency Braking of a Mine Hoist in the Context of the Braking System Selection

    Science.gov (United States)

    Wolny, Stanisław

    2017-03-01

    The paper addresses the selected aspects of the dynamic behaviour of mine hoists during the emergency braking phase. Basing on the model of the hoist and supported by theoretical backgrounds provided by the author (Wolny, 2016), analytical formulas are derived to determine the parameters of the braking system such that during an emergency braking it should guarantee that: - the maximal loading of the hoisting ropes should not exceed the rope breaking force, - deceleration of the conveyances being stopped should not exceed the admissible levels Results of the dynamic analysis of the mine hoist behaviour during an emergency braking phase summarised in this study can be utilised to support the design of conveyance and rope attachments by the fatigue endurance methods, with an aim to adapt it to the specified operational parameters of the hoisting installation (Eurokod 3).

  18. Electronics and braking systems; Elektronik in Bremssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Gaupp, W. [Rheinisch-Westfaelischer Technischer Ueberwachungs-Verein e.V., Essen (Germany). Inst. fuer Fahrzeugtechnik

    2000-02-01

    In addition to the anti-lock braking system ABS, which is now fitted to almost every new passenger car, an increasing number of other control systems which intervene in the vehicle's driving dynamics, such as ASR, DSC or ESP, are being introduced. This article gives an overview of such systems, from their beginnings up to the present-day, and describes future developments. (orig.) [German] Neben das Antiblockiersystem ABS, mit dem heute fast jeder neue Pkw ausgestattet ist, treten zunehmend weitere Regelsysteme, die in die Fahrdynamik des Fahrzeugs eingreifen, wie zum Beispiel ASR, DSC oder ESP. Dieser Beitrag gibt einen Ueberblick von den Anfaengen dieser Systeme bis hin zu zukuenftigen Entwicklungen. (orig.)

  19. Modeling thermal effects in braking systems of railway vehicles

    Directory of Open Access Journals (Sweden)

    Milošević Miloš S.

    2012-01-01

    Full Text Available The modeling of thermal effects has become increasingly important in product design in different transport means, road vehicles, airplanes, railway vehicles, and so forth. The thermal analysis is a very important stage in the study of braking systems, especially of railway vehicles, where it is necessary to brake huge masses, because the thermal load of a braked railway wheel prevails compared to other types of loads. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of railway wheels. Thus induced thermal loads determine thermomechanical behavior of the structure of railway wheels. In cases of thermal overloads, which mainly occur as a result of long-term braking on down-grade railroads, the generation of stresses and deformations occurs, whose consequences are the appearance of cracks on the rim of a wheel and the final total wheel defect. The importance to precisely determine the temperature distribution caused by the transfer process of the heat generated during braking due to the friction on contact surfaces of the braking system makes it a challenging research task. Therefore, the thermal analysis of a block-braked solid railway wheel of a 444 class locomotive of the national railway operator Serbian Railways is processed in detail in this paper, using analytical and numerical modeling of thermal effects during long-term braking for maintaining a constant speed on a down-grade railroad.

  20. Compressed gas system operates semitrailer brakes during winching operation

    Science.gov (United States)

    Tupper, W. E.

    1964-01-01

    To move van-type semi-trailers into and out of confined spaces, an auxiliary braking system is mounted on a standard dolly converter. Compressed nitrogen is used to actuate the brakes which are used in conjunction with a power winch.

  1. 16 CFR 1512.5 - Requirements for braking system.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Requirements for braking system. 1512.5 Section 1512.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT... dimension between the brake hand lever and the handlebars in the plane containing the centerlines of the...

  2. IR-camera methods for automotive brake system studies

    Science.gov (United States)

    Dinwiddie, Ralph B.; Lee, Kwangjin

    1998-03-01

    Automotive brake systems are energy conversion devices that convert kinetic energy into heat energy. Several mechanisms, mostly related to noise and vibration problems, can occur during brake operation and are often related to non-uniform temperature distribution on the brake disk. These problems are of significant cost to the industry and are a quality concern to automotive companies and brake system vendors. One such problem is thermo-elastic instabilities in brake system. During the occurrence of these instabilities several localized hot spots will form around the circumferential direction of the brake disk. The temperature distribution and the time dependence of these hot spots, a critical factor in analyzing this problem and in developing a fundamental understanding of this phenomenon, were recorded. Other modes of non-uniform temperature distributions which include hot banding and extreme localized heating were also observed. All of these modes of non-uniform temperature distributions were observed on automotive brake systems using a high speed IR camera operating in snap-shot mode. The camera was synchronized with the rotation of the brake disk so that the time evolution of hot regions could be studied. This paper discusses the experimental approach in detail.

  3. The development of the brake system of the BMW 850i including ABS and ASC. Entwicklung des Bremssystems des BMW 850i einschliesslich ABS und ASC

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, H.J.; Leffler, H.

    1990-02-01

    The brake system of the new BMW 850i is described in the following. The brake actuation takes place via an hydraulic brake booster. The disc brakes at front and rear axle are arranged in diagnonal brake split. The 4-channel ABS is fitted as standard equipment. The ABS control unit also incorporates the algorithm for the Automatic Stability Control System ASC or ASC+T. The ASC+T shows improved traction compared with the pure stability system ASC and is standard in the BMW 850i with manual gear box. The automatic gear box equipped BMW 850i are supplied with ASC, the ASC+T is available as an option. Both systems, the ASC and the ASC+T are described with special view on the electronical and hydraulical network in the car. A performance comparison of the ASC-systems completes the description. (orig.).

  4. Braking system for use with an arbor of a microscope

    International Nuclear Information System (INIS)

    Norgren, D.U.

    1984-01-01

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling device causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location

  5. Braking system for use with an arbor of a microscope

    Science.gov (United States)

    Norgren, Duane U.

    1984-01-01

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling device causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  6. Indonesian commercial bus drum brake system temperature model

    International Nuclear Information System (INIS)

    Wibowo, D. B.; Haryanto, I.; Laksono, N. P.

    2016-01-01

    Brake system is the most significant aspect of an automobile safety. It must be able to slow the vehicle, quickly intervening and reliable under varying conditions. Commercial bus in Indonesia, which often stops suddenly and has a high initial velocity, will raise the temperature of braking significantly. From the thermal analysis it is observed that for the bus with the vehicle laden mass of 15 tons and initial velocity of 80 km/h the temperature is increasing with time and reaches the highest temperature of 270.1 °C when stops on a flat road and reaches 311.2 °C on a declination road angle, ø, 20°. These temperatures exceeded evaporation temperature of brake oil DOT 3 and DOT 4. Besides that, the magnitude of the braking temperature also potentially lowers the friction coefficient of more than 30%. The brakes are pressed repeatedly and high-g decelerations also causes brake lining wear out quickly and must be replaced every 1 month as well as the emergence of a large thermal stress which can lead to thermal cracking or thermal fatigue crack. Brake fade phenomenon that could be the cause of many buses accident in Indonesia because of the failure of the braking function. The chances of accidents will be even greater when the brake is worn and not immediately replaced which could cause hot spots as rivets attached to the brake drum and brake oil is not changed for more than 2 years that could potentially lower the evaporation temperature because of the effect hygroscopic.

  7. Indonesian commercial bus drum brake system temperature model

    Science.gov (United States)

    Wibowo, D. B.; Haryanto, I.; Laksono, N. P.

    2016-03-01

    Brake system is the most significant aspect of an automobile safety. It must be able to slow the vehicle, quickly intervening and reliable under varying conditions. Commercial bus in Indonesia, which often stops suddenly and has a high initial velocity, will raise the temperature of braking significantly. From the thermal analysis it is observed that for the bus with the vehicle laden mass of 15 tons and initial velocity of 80 km/h the temperature is increasing with time and reaches the highest temperature of 270.1 °C when stops on a flat road and reaches 311.2 °C on a declination road angle, ø, 20°. These temperatures exceeded evaporation temperature of brake oil DOT 3 and DOT 4. Besides that, the magnitude of the braking temperature also potentially lowers the friction coefficient of more than 30%. The brakes are pressed repeatedly and high-g decelerations also causes brake lining wear out quickly and must be replaced every 1 month as well as the emergence of a large thermal stress which can lead to thermal cracking or thermal fatigue crack. Brake fade phenomenon that could be the cause of many buses accident in Indonesia because of the failure of the braking function. The chances of accidents will be even greater when the brake is worn and not immediately replaced which could cause hot spots as rivets attached to the brake drum and brake oil is not changed for more than 2 years that could potentially lower the evaporation temperature because of the effect hygroscopic.

  8. Indonesian commercial bus drum brake system temperature model

    Energy Technology Data Exchange (ETDEWEB)

    Wibowo, D. B., E-mail: rmt.bowo@gmail.com; Haryanto, I., E-mail: ismoyo2001@yahoo.de; Laksono, N. P., E-mail: priyolaksono89@gmail.com [Mechanical Engineering Dept., Faculty of Engineering, Diponegoro University (Indonesia)

    2016-03-29

    Brake system is the most significant aspect of an automobile safety. It must be able to slow the vehicle, quickly intervening and reliable under varying conditions. Commercial bus in Indonesia, which often stops suddenly and has a high initial velocity, will raise the temperature of braking significantly. From the thermal analysis it is observed that for the bus with the vehicle laden mass of 15 tons and initial velocity of 80 km/h the temperature is increasing with time and reaches the highest temperature of 270.1 °C when stops on a flat road and reaches 311.2 °C on a declination road angle, ø, 20°. These temperatures exceeded evaporation temperature of brake oil DOT 3 and DOT 4. Besides that, the magnitude of the braking temperature also potentially lowers the friction coefficient of more than 30%. The brakes are pressed repeatedly and high-g decelerations also causes brake lining wear out quickly and must be replaced every 1 month as well as the emergence of a large thermal stress which can lead to thermal cracking or thermal fatigue crack. Brake fade phenomenon that could be the cause of many buses accident in Indonesia because of the failure of the braking function. The chances of accidents will be even greater when the brake is worn and not immediately replaced which could cause hot spots as rivets attached to the brake drum and brake oil is not changed for more than 2 years that could potentially lower the evaporation temperature because of the effect hygroscopic.

  9. Development of Anti-lock Braking System (ABS) for Vehicles Braking

    Science.gov (United States)

    Minh, Vu Trieu; Oamen, Godwin; Vassiljeva, Kristina; Teder, Leo

    2016-11-01

    This paper develops a real laboratory of anti-lock braking system (ABS) for vehicle and conducts real experiments to verify the ability of this ABS to prevent the vehicle wheel from being locked while braking. Two controllers of PID and fuzzy logic are tested for analysis and comparison. This ABS laboratory is designed for bachelor and master students to simulate and analyze performances of ABS with different control techniques on various roads and load conditions. This paper provides educational theories and practices on the design of control for system dynamics.

  10. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces: Hydromechanically controlled system

    Science.gov (United States)

    Tanner, J. A.; Stubbs, S. M.; Smith, E. G.

    1981-01-01

    The investigation utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane. The landing-gear strut was replaced by a dynamometer. During maximum braking, average braking behavior indexes based upon brake pressure, brake torque, and drag-force friction coefficient developed by the antiskid system were generally higher on dry surfaces than on wet surfaces. The three braking behavior indexes gave similar results but should not be used interchangeably as a measure of the braking of this antiskid sytem. During the transition from a dry to a flooded surface under heavy braking, the wheel entered into a deep skid but the antiskid system reacted quickly by reducing brake pressure and performed normally during the remainder of the run on the flooded surface. The brake-pressure recovery following transition from a flooded to a dry surface was shown to be a function of the antiskid modulating orifice.

  11. The antilock braking system anomaly: a drinking driver problem?

    Science.gov (United States)

    Harless, David W; Hoffer, George E

    2002-05-01

    Antilock braking systems (ABS) have held promise for reducing the incidence of accidents because they reduce stopping times on slippery surfaces and allow drivers to maintain steering control during emergency braking. Farmer et al. (Accident Anal. Prevent. 29 (1997) 745) provide evidence that antilock brakes are beneficial to nonoccupants: a set of 1992 model General Motors vehicles equipped with antilock brakes were involved in significantly fewer fatal crashes in which occupants of other vehicles, pedestrians, or bicyclists were killed. But, perversely, the risk of death for occupants of vehicles equipped with antilock brakes increased significantly after adoption. Farmer (Accident Anal. Prevent. 33 (2001) 361) updates the analysis for 1996- 1998 and finds a significant attenuation in the ABS anomaly. Researchers have put forward two hypotheses to explain this antilock brake anomaly: risk compensation and improper operation of antilock brake-equipped vehicles. We provide strong evidence for the improper operation hypothesis by showing that the antilock brake anomaly is confined largely to drinking drivers. Further, we show that the attenuation phenomenon occurs consistently after the first three to four years of vehicle service.

  12. Pre-Extreme Automotive Anti-Lock Brake Systems

    Directory of Open Access Journals (Sweden)

    V. G. Ivanov

    2004-01-01

    Full Text Available Designing of systems ensuring active safety of automobiles with intellectual functions requires usage of new control principles for wheel and automobile operation. One of such principles is a preextreme control strategy. Its aim is to ensure wheel work in pre-extreme, stable area of «tire grip coefficient wheel slip coefficient» dependence. The simplest realization of pre-extreme control in automotive anti-lock brake systems consists in the threshold and gradient algorithms. A comparative analysis of these algorithms which has been made on simulation results of bus braking with various anti-lock brake systems has revealed their high efficiency.

  13. Research study on antiskid braking systems for the space shuttle

    Science.gov (United States)

    Auselmi, J. A.; Weinberg, L. W.; Yurczyk, R. F.; Nelson, W. G.

    1973-01-01

    A research project to investigate antiskid braking systems for the space shuttle vehicle was conducted. System from the Concorde, Boeing 747, Boeing 737, and Lockheed L-1011 were investigated. The characteristics of the Boeing 737 system which caused it to be selected are described. Other subjects which were investigated are: (1) trade studies of brake control concepts, (2) redundancy requirements trade study, (3) laboratory evaluation of antiskid systems, and (4) space shuttle hardware criteria.

  14. Scania RBS brake system; Das Bremssystem EBS von Scania

    Energy Technology Data Exchange (ETDEWEB)

    Winterhagen, J.

    1996-09-01

    Scania claims to be the first producer of industrial vehicles to market an electronic braking system (EBS) combined with disc brakes for all axles. The new braking systems for long-distance trailers were presented for the first time at the IAA, Hanover, in September 1996. (orig.) [Deutsch] Scania ist nach eigenen Angaben der erste Lkw-Hersteller, der eine elektronisch geregelte Bremsanlage (EBS) in Kombination mit Scheibenbremsen an allen Achsen auf den Markt bringt. Der Oeffentlichkeit stellt Scania das neue Bremssystem fuer die Fernverkehrs-Zugmaschinen der Baureihe 4 zum ersten Mal auf der IAA in Hannover im September 1996 vor. (orig.)

  15. Brake lock mechanism for the two axis pointing system

    Science.gov (United States)

    Posey, Alan; Clark, Mike; Mignosa, Larry

    1991-01-01

    Six months prior to shipment of the Broadband X-ray Telescope to the Kennedy Space Center for flight aboard the Space Shuttle Columbia, a major system failure occurred. During modal survey testing of the telescope's gimbal pointing system, the roll axis brake unexpectedly released. Low level vibration and static preloads present during the modal survey were within the expected flight environment. Brake release during shuttle liftoff or ascent was an unacceptable risk to mission success; thus, a Brake Lock Mechanism (BLM) was developed.

  16. Study on real-time elevator brake failure predictive system

    Science.gov (United States)

    Guo, Jun; Fan, Jinwei

    2013-10-01

    This paper presented a real-time failure predictive system of the elevator brake. Through inspecting the running state of the coil by a high precision long range laser triangulation non-contact measurement sensor, the displacement curve of the coil is gathered without interfering the original system. By analyzing the displacement data using the diagnostic algorithm, the hidden danger of the brake system can be discovered in time and thus avoid the according accident.

  17. Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle.

    Science.gov (United States)

    Peng, Jiankun; He, Hongwen; Liu, Wei; Guo, Hongqiang

    2015-01-01

    This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking safety in emergency braking condition; the bottom layer is used to maximize the regenerative braking energy recovery efficiency with a reallocated braking torque strategy; the reallocated braking torque strategy can recovery braking energy as much as possible in the premise of meeting battery charging power. The simulation results show that the proposed hierarchical control strategy is reasonable and can adapt to different typical road surfaces and load cases; the vehicle braking stability and safety can be guaranteed; furthermore, the regenerative braking energy recovery efficiency can be improved.

  18. 76 FR 55859 - Federal Motor Vehicle Safety Standards No. 121; Air Brake Systems

    Science.gov (United States)

    2011-09-09

    ... during road tests for the braking system, a vehicle equipped with an interlocking axle system or a front... vehicle braking systems, tire characteristics related to lateral force and longitudinal force generation... stopping distance without activating the ABS system by braking the vehicle so that the brake pressure is...

  19. Cooperative Control of Regenerative Braking and Antilock Braking for a Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Guodong Yin

    2013-01-01

    Full Text Available A new cooperative braking control strategy (CBCS is proposed for a parallel hybrid electric vehicle (HEV with both a regenerative braking system and an antilock braking system (ABS to achieve improved braking performance and energy regeneration. The braking system of the vehicle is based on a new method of HEV braking torque distribution that makes the antilock braking system work together with the regenerative braking system harmoniously. In the cooperative braking control strategy, a sliding mode controller (SMC for ABS is designed to maintain the wheel slip within an optimal range by adjusting the hydraulic braking torque continuously; to reduce the chattering in SMC, a boundary-layer method with moderate tuning of a saturation function is also investigated; based on the wheel slip ratio, battery state of charge (SOC, and the motor speed, a fuzzy logic control strategy (FLC is applied to adjust the regenerative braking torque dynamically. In order to evaluate the performance of the cooperative braking control strategy, the braking system model of a hybrid electric vehicle is built in MATLAB/SIMULINK. It is found from the simulation that the cooperative braking control strategy suggested in this paper provides satisfactory braking performance, passenger comfort, and high regenerative efficiency.

  20. Numerical Modeling of Disc Brake System in Frictional Contact

    Directory of Open Access Journals (Sweden)

    A. Belhocine

    2014-03-01

    Full Text Available Safety aspect in automotive engineering has been considered as a number one priority in development of new vehicle. Each single system has been studied and developed in order to meet safety requirement. Instead of having air bag, good suspension systems, good handling and safe cornering, there is one most critical system in the vehicle which is brake systems. The objective of this work is to investigate and analyse the temperature distribution of rotor disc during braking operation using ANSYS Multiphysics. The work uses the finite element analysis techniques to predict the temperature distribution on the full and ventilated brake disc and to identify the critical temperature of the rotor by holding account certain parameters such as; the material used, the geometric design of the disc and the mode of braking. The analysis also gives us, the heat flux distribution for the two discs.

  1. 75 FR 15620 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2010-03-30

    ... fully develop improved brake systems and also to ensure vehicle control and stability while braking... [Docket No. NHTSA 2009-0175] RIN 2127-AK62 Federal Motor Vehicle Safety Standards; Air Brake Systems... Federal motor vehicle safety standard for air brake systems by requiring substantial improvements in...

  2. 75 FR 51521 - Federal Motor Vehicle Safety Standards; Air Brake Systems; Technical Report on the Effectiveness...

    Science.gov (United States)

    2010-08-20

    ....121) mandates antilock braking systems (ABS) on all new air-braked vehicles with a GVWR of 10,000...-0116] Federal Motor Vehicle Safety Standards; Air Brake Systems; Technical Report on the Effectiveness of Antilock Braking Systems in Heavy Truck Tractors and Trailers AGENCY: National Highway Traffic...

  3. An Instructor's Guide for a Program in Brake Services.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The instructor's guide is designed to present an understanding of the automotive hydraulic brake system and to help individuals develop new skills for employment in this specialized field of automotive service. Applicable for secondary or adult education, this guide describes: the brake system, types of brakes, diagnosis and correction of brake…

  4. Wear determination in braking systems by radioisotopes

    International Nuclear Information System (INIS)

    Spruch, W.

    1979-01-01

    Friction and wear behaviour of friction couples has been tested applying loads and sliding speeds. The determination was carried out by direct measurements of the lining material and by surface activation of the opposite material with protons. The application limits of several braking materials could be determined and compared

  5. Driver Behavioral Changes through Interactions with an Automatic Brake System for Collision Avoidance

    Science.gov (United States)

    Itoh, Makoto; Fujiwara, Yusuke; Inagaki, Toshiyuki

    This paper discusses driver's behavioral changes as a result of driver's use of an automatic brake system for preventing a rear-end collision from occurring. Three types of automatic brake systems are investigated in this study. Type 1 brake system applies a strong automatic brake when a collision is very imminent. Type 2 brake system initiates brake operation softly when a rear-end crash may be anticipated. Types 1 and 2 are for avoidance of a collision. Type 3 brake system, on the other hand, applies a strong automatic brake to reduce the damage when a collision can not be avoided. An experiment was conducted with a driving simulator in order to analyze the driver's possible behavioral changes. The results showed that the time headway (THW) during car following phase was reduced by use of an automatic brake system of any type. The inverse of time to collision (TTC), which is an index of the driver's brake timing, increased by use of Type 1 brake system when the deceleration rate of the lead vehicle was relatively low. However, the brake timing did not change when the drivers used Type 2 or 3 brake system. As a whole, dangerous behavioral changes, such as overreliance on a brake system, were not observed for either type of brake system.

  6. Braking and cornering studies on an air cushion landing system

    Science.gov (United States)

    Daugherty, R. H.

    1983-01-01

    An experimental investigation was conducted to evaluate several concepts for braking and steering a vehicle equipped with an air cushion landing system (ACLS). The investigation made use of a modified airboat equipped with an ACLS. Braking concepts were characterized by the average deceleration of the vehicle. Reduced lobe flow and cavity venting braking concepts were evaluated in this program. The cavity venting braking concept demonstrated the best performance, producing decelerations on the test vehicle on the same order as moderate braking with conventional wheel brakes. Steering concepts were evaluated by recording the path taken while attempting to follow a prescribed maneuver. The steering concepts evaluated included using rudders only, using differential lobe flow, and using rudders combined with a lightly loaded, nonsteering center wheel. The latter concept proved to be the most accurate means of steering the vehicle on the ACLS, producing translational deviations two to three times higher than those from conventional nose-gear steering. However, this concept was still felt to provide reasonably precise steering control for the ACLS-equipped vehicle.

  7. A hydraulic hybrid propulsion method for automobiles with self-adaptive system

    International Nuclear Information System (INIS)

    Wu, Wei; Hu, Jibin; Yuan, Shihua; Di, Chongfeng

    2016-01-01

    A hydraulic hybrid vehicle with the self-adaptive system is proposed. The mode-switching between the driving mode and the hydraulic regenerative braking mode is realised by the pressure cross-feedback control. Extensive simulated and tested results are presented. The control parameters are reduced and the energy efficiency can be increased by the self-adaptive system. The mode-switching response is fast. The response time can be adjusted by changing the controlling spool diameter of the hydraulic operated check valve in the self-adaptive system. The closing of the valve becomes faster with a smaller controlling spool diameter. The hydraulic regenerative braking mode can be achieved by changing the hydraulic transformer controlled angle. Compared with the convention electric-hydraulic system, the self-adaptive system for the hydraulic hybrid vehicle mode-switching has a higher reliability and a lower cost. The efficiency of the hydraulic regenerative braking is also increased. - Highlights: • A new hybrid system with a self-adaptive system for automobiles is presented. • The mode-switching is realised by the pressure cross-feedback control. • The energy efficiency can be increased with the self-adaptive system. • The control parameters are reduced with the self-adaptive system.

  8. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  9. Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle

    OpenAIRE

    Peng, Jiankun; He, Hongwen; Liu, Wei; Guo, Hongqiang

    2015-01-01

    This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking s...

  10. Investigation of a concept for electrohydraulic power supply for future passenger car brake systems considering; Untersuchung zur Konzeption einer elektrohydraulischen Energieversorgung fuer zukuenftige Pkw-Bremssysteme

    Energy Technology Data Exchange (ETDEWEB)

    Mutschler, R.

    1999-07-01

    An electrohydraulic power supply for passenger car brake systems is presented. These systems can be classified as brake by wire. The power supply consists of a hydropneumatic accumulator, a high pressure pump and an electric drive. The components are designed considering automotive requests. A new approach to minimize hydraulic pulsations caused by a high pressure piston pump is shown. [German] Eine elektrohydraulische Energieversorgung fuer PKW-Bremssysteme wird vorgestellt. Diese Systeme koennen mit brake by wire klassifiziert werden. Die Energieversorgung besteht aus einem hydropneumatischen Speicher, einer Hochdruckpumpe und einem elektrischen Antrieb. Die Komponenten werden hinsichtlich Automobilanforderungen ausgelegt. Eine neue Methode der Minimierung hydraulischer Pulsationen, die von einer Hochdruck Kolbenpumpe verursacht werden, wird gezeigt.

  11. NUMERICAL THERMAL ANALYSIS OF A CAR BRAKING SYSTEM

    Directory of Open Access Journals (Sweden)

    Patryk Różyło

    2017-06-01

    Full Text Available The study involved performing a numerical thermal analysis of selected components in a car braking system. The primary goal of the study was to determine the regions which are the most susceptible to variations in temperature, and to determine the degree of thermal impact upon them. The analysis was performed using the Abaqus environment. The examined components of the braking system were made of materials reflecting the mechanical properties of the real subassemblies. The FEM analysis enabled determination of the distribution of temperature in the system with respect to the properties of the investigated materials and applied boundary conditions.

  12. Enhanced Regenerative Braking Strategies for Electric Vehicles: Dynamic Performance and Potential Analysis

    OpenAIRE

    Boyi Xiao; Huazhong Lu; Hailin Wang; Jiageng Ruan; Nong Zhang

    2017-01-01

    A regenerative braking system and hydraulic braking system are used in conjunction in the majority of electric vehicles worldwide. We propose a new regenerative braking distribution strategy that is based on multi-input fuzzy control logic while considering the influences of the battery’s state of charge, the brake strength and the motor speed. To verify the braking performance and recovery economy, this strategy was applied to a battery electric vehicle model and compared with two other impr...

  13. Effect of the crone suspension control system on braking

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, X.; Oustaloup, A. [Bordeaux-1 Univ., Talence (France). Lab. d' Automatique et de Productique; Nouillant, C. [Bordeaux-1 Univ., Talence (France). Lab. d' Automatique et de Productique]|[DRIA-PSA Peugeot Citroen, Velizy - Villacoublay (France)

    2001-07-01

    Semi-active or active suspensions not only increase driving comfort, but also permit the control system to be switched over if required in order to improve the transmission of forces at the points of contact between tire and road surface by minimizing the dynamic wheel loads. It may also be possible to use these systems to control wheel load distribution and, thus, influence braking or steering performance by changing the distribution of normal forces between the front and rear axles. This article examines the effect of the CRONE suspension control system on braking. The central idea is to use continuously variable dampers and fast load levelling devices to distribute the normal forces of tire between the front and rear axles. The basis principle is explained using known dynamic properties of active suspension, vehicles and tires. The effect of active suspension on vehicle response during braking is then evaluated using computer simulations from a two-wheel vehicle model. (orig.)

  14. Controlled braking scheme for a wheeled walking aid

    OpenAIRE

    Coyle, Eugene; O'Dwyer, Aidan; Young, Eileen; Sullivan, Kevin; Toner, A.

    2006-01-01

    A wheeled walking aid with an embedded controlled braking system is described. The frame of the prototype is based on combining features of standard available wheeled walking aids. A braking scheme has been designed using hydraulic disc brakes to facilitate accurate and sensitive controlled stopping of the walker by the user, and if called upon, by automatic action. Braking force is modulated via a linear actuating stepping motor. A microcontroller is used for control of both stepper movement...

  15. Optimal design for slip deceleration control in anti-lock braking system

    Science.gov (United States)

    Mishra, Sheelam; Kumar, Pankaj; Rahman, Mohd. Saifur

    2018-05-01

    ABS (Anti-lock Braking System) is the most advanced braking system implemented in modern cars to avoid the slipping or skidding of the vehicle on the road. Moreover, it reduces the stopping distance of the vehicle because it avoids the locking of the wheel during braking. It enables the driver to steer the vehicle during braking. But every system has its downsides and likewise ABS too, it is not efficient during normal braking or snowy conditions. Our aim is to overcome these downsides and optimize Anti-lock Braking System to make it even better.

  16. Dynamics of Braking Vehicles: From Coulomb Friction to Anti-Lock Braking Systems

    Science.gov (United States)

    Tavares, J. M.

    2009-01-01

    The dynamics of braking of wheeled vehicles is studied using the Coulomb approximation for the friction between road and wheels. The dependence of the stopping distance on the mass of the vehicle, on the number of its wheels and on the intensity of the braking torque is established. It is shown that there are two regimes of braking, with and…

  17. Neural-network hybrid control for antilock braking systems.

    Science.gov (United States)

    Lin, Chih-Min; Hsu, C F

    2003-01-01

    The antilock braking systems are designed to maximize wheel traction by preventing the wheels from locking during braking, while also maintaining adequate vehicle steerability; however, the performance is often degraded under harsh road conditions. In this paper, a hybrid control system with a recurrent neural network (RNN) observer is developed for antilock braking systems. This hybrid control system is comprised of an ideal controller and a compensation controller. The ideal controller, containing an RNN uncertainty observer, is the principal controller; and the compensation controller is a compensator for the difference between the system uncertainty and the estimated uncertainty. Since for dynamic response the RNN has capabilities superior to the feedforward NN, it is utilized for the uncertainty observer. The Taylor linearization technique is employed to increase the learning ability of the RNN. In addition, the on-line parameter adaptation laws are derived based on a Lyapunov function, so the stability of the system can be guaranteed. Simulations are performed to demonstrate the effectiveness of the proposed NN hybrid control system for antilock braking control under various road conditions.

  18. Development of nondestructive system for detecting the cracks in KTX brake disk using Rayleigh wave

    International Nuclear Information System (INIS)

    Kim, Min Soo; Lee, Ho Yong; Yeom, Yun Taek; Park, Jin Hyun; Song, Sung Jing; Kim, Hak Joon; Kwon, Sung Duck

    2017-01-01

    Recently, KTX (Korean Train Express) train stoppage accidents were mainly caused by malfunctioning equipment, aging and cracking of railway vehicles, crack breakages of brake disks, and breakages of brake disks. Breakage of brake disk can cause large-scale casualties such as high-speed collision and concern about derailment by hitting lower axle and wheel. Therefore, in this study, a brake disk with solid and ventilation type, which is the brake disk of a KTX train was modeled, and a dynamometer system was constructed to operate the disk. A Rayleigh wave was used to inspect the surface of the brake disk. An ultrasonic inspection module was developed for the brake disk by using a local immersion method due to the difficulty involved in ultrasonic inspection using an existing immersion method. In addition, the surface defects of the brake disk were evaluated using a dynamometer mock-up system and an ultrasonic inspection module of the brake disk

  19. Development of nondestructive system for detecting the cracks in KTX brake disk using Rayleigh wave

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Soo; Lee, Ho Yong [Korea Railroad Research Institute, Uiwang (Korea, Republic of); Yeom, Yun Taek; Park, Jin Hyun; Song, Sung Jing; Kim, Hak Joon [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Kwon, Sung Duck [Dept. of Physics, Andong National University, Andong (Korea, Republic of)

    2017-02-15

    Recently, KTX (Korean Train Express) train stoppage accidents were mainly caused by malfunctioning equipment, aging and cracking of railway vehicles, crack breakages of brake disks, and breakages of brake disks. Breakage of brake disk can cause large-scale casualties such as high-speed collision and concern about derailment by hitting lower axle and wheel. Therefore, in this study, a brake disk with solid and ventilation type, which is the brake disk of a KTX train was modeled, and a dynamometer system was constructed to operate the disk. A Rayleigh wave was used to inspect the surface of the brake disk. An ultrasonic inspection module was developed for the brake disk by using a local immersion method due to the difficulty involved in ultrasonic inspection using an existing immersion method. In addition, the surface defects of the brake disk were evaluated using a dynamometer mock-up system and an ultrasonic inspection module of the brake disk.

  20. 49 CFR 232.609 - Handling of defective equipment with ECP brake systems.

    Science.gov (United States)

    2010-10-01

    ... (ECP) Braking Systems § 232.609 Handling of defective equipment with ECP brake systems. (a) Ninety-five... systems. 232.609 Section 232.609 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BRAKE SYSTEM SAFETY STANDARDS FOR FREIGHT...

  1. Sliding bifurcations and chaos induced by dry friction in a braking system

    International Nuclear Information System (INIS)

    Yang, F.H.; Zhang, W.; Wang, J.

    2009-01-01

    In this paper, non-smooth bifurcations and chaotic dynamics are investigated for a braking system. A three-degree-of-freedom model is considered to capture the complicated nonlinear characteristics, in particular, non-smooth bifurcations in the braking system. The stick-slip transition is analyzed for the braking system. From the results of numerical simulation, it is observed that there also exist the grazing-sliding bifurcation and stick-slip chaos in the braking system.

  2. Usage of aids monitoring in automatic braking systems of modern cars

    OpenAIRE

    Dembitskyi V.; Mazylyuk P.; Sitovskyi O.

    2016-01-01

    Increased safety can be carried out at the expense the installation on vehicles of automatic braking systems, that monitor the traffic situation and the actions of the driver. In this paper considered the advantages and disadvantages of automatic braking systems, were analyzed modern tracking tools that are used in automatic braking systems. Based on the statistical data on accidents, are set the main dangers, that the automatic braking system will be reduced. In order to ensure the acc...

  3. Engineering Design Handbook: Analysis and Design of Automotive Brake Systems.

    Science.gov (United States)

    1976-12-01

    Highway Safety Research institute, Uni- versity of Michigan, September 15, 1972. IF’vn = (I - #)WT’,Kk I1, J. E. Bernard , et al,, A Computer Based...systems involve the reduction in brake line pres- 4. E. L. Cornwell , "Automatic Load-Sensitive Air sure for a given pedal force, the pedal force/de

  4. Modification of General Research Corporation (GRC) Dynatup 8200 Drop Tower Rebounding Brake System

    Science.gov (United States)

    2016-08-01

    Rebounding Brake System by David Gray, Robert Kaste, and Bradley Lawrence Approved for public release; distribution is...Research Laboratory Modification of General Research Corporation (GRC) Dynatup 8200 Drop Tower Rebounding Brake System by David Gray and...Research Corporation (GRC) Dynatup 8200 Drop Tower Rebounding Brake System 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  5. 49 CFR 214.529 - In-service failure of primary braking system.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false In-service failure of primary braking system. 214... Maintenance Machines and Hi-Rail Vehicles § 214.529 In-service failure of primary braking system. (a) In the event of a total in-service failure of its primary braking system, an on-track roadway maintenance...

  6. 78 FR 9623 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2013-02-11

    ... initial speeds, vehicle manufacturers will need to develop unique or complicated braking systems to comply... [Docket No. NHTSA-2013-0011] RIN 2127-AL11 Federal Motor Vehicle Safety Standards; Air Brake Systems... rule that amended the Federal motor vehicle safety standard for air brake systems by requiring...

  7. 49 CFR 232.503 - Process to introduce new brake system technology.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Process to introduce new brake system technology... Technology § 232.503 Process to introduce new brake system technology. (a) Pursuant to the procedures... brake system technology, prior to implementing the plan. (b) Each railroad shall complete a pre-revenue...

  8. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2014-09-01

    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  9. A unique concept for automatically controlling the braking action of wheeled vehicles during minimum distance stops

    Science.gov (United States)

    Barthlome, D. E.

    1975-01-01

    Test results of a unique automatic brake control system are outlined and a comparison is made of its mode of operation to that of an existing skid control system. The purpose of the test system is to provide automatic control of braking action such that hydraulic brake pressure is maintained at a near constant, optimum value during minimum distance stops.

  10. Anti-lock braking system (ABS) and regenerative braking system (RBS) in hybrid electric vehicle for smart transportation system

    Science.gov (United States)

    Evuri, Geetha Reddy; Rao, G. Srinivasa; Reddy, T. Ramasubba; Reddy, K. Srinivasa

    2018-04-01

    Pulse width modulation (PWM) based (a non-consistent) breaking system is used to keep the wheels from being bolted in the proposed antilock breaking system (ABS). Using this method a better hold of the street by wheels is possible and halting separations likewise diminish essentially particularly on precarious street surfaces like frosty or wet streets. The active vitality of the wheel is by and large lost amid braking as warmth because of grinding among brake cushions. This vitality can be recuperated using regenerative braking systems (RBS). In this strategy, the overabundance vitality is put away incidentally in capacitor banks before it gets changed over to warm vitality and is squandered. This framework delays the battery life by reviving the battery utilizing the put away vitality. Subsequently the mileage of the electric vehicle likewise increments as it can travel more separation in a solitary battery charge. These two techniques together help make electric vehicle vitality productive and more secure and less demanding to utilize subsequently anticipating and diminishing the quantity of mischance's.

  11. Syntegra: complete integration of traction, bogie and brake systems

    Energy Technology Data Exchange (ETDEWEB)

    Loewenstein, L.; Wangelin, F. von [Siemens AG, Transportation Systems, Erlangen (Germany). Group Technology TS GT; Teichmann, M.; Hoffmann, T. [Siemens TS, Graz (Austria); Joeckel, A. [Siemens Automation and Drives, Nuernberg (Germany)

    2007-07-01

    With Syntegra {sup registered} technology, Siemens has developed an approach to the complete integration of traction, bogie and brake systems, and this has initially been put into practice for metro, underground and S-Bahn (urban regional express) trains. Syntegra constitutes a fundamentally new approach, achieving a greater intensity of integration compared with the types of drive system that have been in use up until now. With Syntegra, the bogie, transmission and brake components are all brought together as part of one and the same system. The integration and, more especially, the technological advances within the three named areas bring about numerous synergies. The new generation of powered bogie features a combination of high efficiency, low dead weight and reduced emissions. A Syntegra drive system achieves a performance which is markedly better than that of conventional systems. (orig.)

  12. Robust control of regenerative and hydraulic brakes for enhancing directional stability of an electric vehicle during straight-line braking

    NARCIS (Netherlands)

    Lv, Chen; Zhang, Junzhi; Li, Yutong; Zhao, Bolin; Yuan, Ye

    2016-01-01

    Thanks to the actuation flexibility of their systems, electric vehicles with individual powertrains, including in-wheel and on-board motors, are a very popular research topic amongst various types of electrified powertrain architectures. The introduction of the individual electric powertrain

  13. Parameter Design for the Energy Regeneration System of Series Hydraulic Hybrid Bus

    Directory of Open Access Journals (Sweden)

    Song Yunpu

    2014-02-01

    Full Text Available This paper simplifies the energy recovery process in the series hydraulic hybrid bus’ energy regeneration system into a process in which the main axle’s moment of inertia drives the secondary element variable delivery pump/motor and brings hydraulic oil from the oil tank to the accumulator. This process enables braking of the vehicle and also allows recovery of energy to the accumulator. Based on the flow equation for the secondary element variable delivery pump/motor and the torque equilibrium equation for its axle, the force equilibrium equation for vehicle braking and the pressure variation and flow continuity equations for the accumulator, simulation studies are conducted to analyze the effects of various system parameters, such as accumulator capacity, displacement of the secondary element variable delivery pump/motor, initial operating pressure of the system, etc. on system performance during regenerative braking.

  14. 49 CFR 232.103 - General requirements for all train brake systems.

    Science.gov (United States)

    2010-10-01

    ... pneumatic technology, the integrity of the train line shall be monitored by the brake control system. (c) A... travel exceeds: (1) 10 1/2 inches for cars equipped with nominal 12-inch stroke brake cylinders; or (2) The piston travel limits indicated on the stencil, sticker, or badge plate for the brake cylinder with...

  15. Development of antilock braking system based on various intelligent control system

    NARCIS (Netherlands)

    Aparow, V.R.; Ahmad, F.; Hassan, M.Z.; Hudha, K.; Othman, M.

    2012-01-01

    This paper presents about the development of an Antilock Braking System (ABS) using quarter vehicle model and control the ABS using different type of controllers. Antilock braking system (ABS) is an important part in vehicle system to produce additional safety for drivers. In general, Antilock

  16. Study on Two-segment Electric-mechanical Composite Braking Strategy of Tracked Vehicle Hybrid Transmission System

    OpenAIRE

    Ma, Tian; Gai, Jiangtao; Ma, Xiaofeng

    2010-01-01

    In order to lighten abrasion of braking system of hybrid electric tracked vehicle, according to characteristic of hybrid electric transmission, electric-mechanical composite braking method was proposed. By means of analyzing performance of electric braking and mechanical braking and three-segment composite braking strategy, two-segment electric-mechanical composite braking strategy was put forward in this paper. Simulation results of Matlab/Simulink indicated that the two-segment electric-mec...

  17. Performance Evaluation of an Anti-Lock Braking System for Electric Vehicles with a Fuzzy Sliding Mode Controller

    OpenAIRE

    Jingang Guo; Xiaoping Jian; Guangyu Lin

    2014-01-01

    Traditional friction braking torque and motor braking torque can be used in braking for electric vehicles (EVs). A sliding mode controller (SMC) based on the exponential reaching law for the anti-lock braking system (ABS) is developed to maintain the optimal slip value. Parameter optimizing is applied to the reaching law by fuzzy logic control (FLC). A regenerative braking algorithm, in which the motor torque is taken full advantage of, is adopted to distribute the braking force between the m...

  18. M1078 Hybrid Hydraulic Vehicle Fuel Economy Evaluation

    Science.gov (United States)

    2012-09-01

    hydraulic energy stored in the accumulators. Park Mechanism Not Required – Vehicle air brake system used to immobilize vehicle when parked – Same...power to the transmission to accelerate the vehicle forward and maintain a desired speed. For regenerative braking , the switching valve is set to...assist, brake energy recovery, dual mode braking ( regenerative and service brakes ), engine stop/start, silent watch mode, and stationary tool use

  19. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    Science.gov (United States)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of

  20. Fallback level concepts for conventional and by-wire automotive brake systems

    International Nuclear Information System (INIS)

    Retzer, H; Mishra, R; Ball, A; Schmidt, K

    2012-01-01

    Brake-by-wire represents the replacement of traditional brake components such as pumps, hoses, fluids, brake boosters, and master cylinders by electronic sensors and actuators. The different design of these brake concepts poses new challenges for the automotive industry with regard to availability and fallback levels in comparison to standard conventional brake systems. This contribution focuses on the development of appropriate fallback level concepts. Hardware-in-the-loop (HIL) techniques and field trials will be used to investigate the performance and the usability of such systems.

  1. Fallback level concepts for conventional and by-wire automotive brake systems

    Science.gov (United States)

    Retzer, H.; Mishra, R.; Ball, A.; Schmidt, K.

    2012-05-01

    Brake-by-wire represents the replacement of traditional brake components such as pumps, hoses, fluids, brake boosters, and master cylinders by electronic sensors and actuators. The different design of these brake concepts poses new challenges for the automotive industry with regard to availability and fallback levels in comparison to standard conventional brake systems. This contribution focuses on the development of appropriate fallback level concepts. Hardware-in-the-loop (HIL) techniques and field trials will be used to investigate the performance and the usability of such systems.

  2. REGRESSIVE ANALYSIS OF BRAKING EFFICIENCY OF M1 CATEGORY VEHICLES WITH ANTI-BLOCKING BRAKE SYSTEM

    Directory of Open Access Journals (Sweden)

    О. Sarayev

    2015-07-01

    Full Text Available The problematics of assessing the effectiveness of vehicle braking after road accidentoccurrence is considered. For the first time in relation to the modern models of vehicles equipped with anti-lock brakes there were obtained regression models describing the relationship between the coefficient of traction and a random variable of steady deceleration. This does not contradict the essence of the stochastic physical object, which is the process of vehicle braking, unlike the previously adopted method of formalizing this process, using a deterministic function.

  3. Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Jiankun Peng

    2015-01-01

    Full Text Available This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking safety in emergency braking condition; the bottom layer is used to maximize the regenerative braking energy recovery efficiency with a reallocated braking torque strategy; the reallocated braking torque strategy can recovery braking energy as much as possible in the premise of meeting battery charging power. The simulation results show that the proposed hierarchical control strategy is reasonable and can adapt to different typical road surfaces and load cases; the vehicle braking stability and safety can be guaranteed; furthermore, the regenerative braking energy recovery efficiency can be improved.

  4. Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle

    Science.gov (United States)

    Peng, Jiankun; He, Hongwen; Guo, Hongqiang

    2015-01-01

    This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking safety in emergency braking condition; the bottom layer is used to maximize the regenerative braking energy recovery efficiency with a reallocated braking torque strategy; the reallocated braking torque strategy can recovery braking energy as much as possible in the premise of meeting battery charging power. The simulation results show that the proposed hierarchical control strategy is reasonable and can adapt to different typical road surfaces and load cases; the vehicle braking stability and safety can be guaranteed; furthermore, the regenerative braking energy recovery efficiency can be improved. PMID:26236772

  5. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    International Nuclear Information System (INIS)

    Wibowo,; Zakaria,; Lambang, Lullus; Triyono,; Muhayat, Nurul

    2016-01-01

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.

  6. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    Energy Technology Data Exchange (ETDEWEB)

    Wibowo,, E-mail: wibowo-uns@yahoo.com; Zakaria,, E-mail: zakaaria27@gmail.com; Lambang, Lullus, E-mail: lulus-l@yahoo.com; Triyono,, E-mail: tyon-bila@yahoo.co.id; Muhayat, Nurul, E-mail: nurulmuhayat@ymail.com [Mechanical Engineering Department, Sebelas Maret University, Surakarta 57128 (Indonesia)

    2016-03-29

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.

  7. Carbon nanotube torsional springs for regenerative braking systems

    International Nuclear Information System (INIS)

    Liu, Sanwei; Martin, Corbin; Livermore, Carol; Lashmore, David; Schauer, Mark

    2015-01-01

    The modeling and demonstration of large stroke, high energy density and high power density torsional springs based on carbon nanotube (CNT) yarns is reported, as well as their application as energy-storing actuators for regenerative braking systems. An originally untwisted CNT yarn is cyclically loaded and unloaded in torsion, with the maximum rotation angle increasing incrementally until failure. The measured average extractable energy density values are 2.9 kJ kg −1   ±  1.2 kJ kg −1 and 3.4 kJ kg −1   ±  0.4 kJ kg −1 for 1-ply CNT yarns and 2-ply CNT yarns, respectively. Additionally, a regenerative braking system is demonstrated to capture the kinetic energy of a wheel and store it as elastic energy in twisted CNT yarns. When the yarn’s twist is released, the stored energy reaccelerates the wheel. The measured energy and mean power densities of the CNT yarns in the simple regenerative braking setup are on average 3.3 kJ kg −1 and 0.67 kW kg −1 , respectively, with maximum measured values of up to 4.7 kJ kg −1 and 1.2 kW kg −1 , respectively. A slightly lower energy density of up to 1.2 kJ kg −1 and a 0.29 kW kg −1 mean power density are measured for CNT yarns in a more complex setup that mimics a unidirectional rotating regenerative braking mechanism. (paper)

  8. Carbon nanotube torsional springs for regenerative braking systems

    Science.gov (United States)

    Liu, Sanwei; Martin, Corbin; Lashmore, David; Schauer, Mark; Livermore, Carol

    2015-10-01

    The modeling and demonstration of large stroke, high energy density and high power density torsional springs based on carbon nanotube (CNT) yarns is reported, as well as their application as energy-storing actuators for regenerative braking systems. An originally untwisted CNT yarn is cyclically loaded and unloaded in torsion, with the maximum rotation angle increasing incrementally until failure. The measured average extractable energy density values are 2.9 kJ kg-1  ±  1.2 kJ kg-1 and 3.4 kJ kg-1  ±  0.4 kJ kg-1 for 1-ply CNT yarns and 2-ply CNT yarns, respectively. Additionally, a regenerative braking system is demonstrated to capture the kinetic energy of a wheel and store it as elastic energy in twisted CNT yarns. When the yarn’s twist is released, the stored energy reaccelerates the wheel. The measured energy and mean power densities of the CNT yarns in the simple regenerative braking setup are on average 3.3 kJ kg-1 and 0.67 kW kg-1, respectively, with maximum measured values of up to 4.7 kJ kg-1 and 1.2 kW kg-1, respectively. A slightly lower energy density of up to 1.2 kJ kg-1 and a 0.29 kW kg-1 mean power density are measured for CNT yarns in a more complex setup that mimics a unidirectional rotating regenerative braking mechanism.

  9. The design of aircraft brake systems, employing cooling to increase brake life

    Science.gov (United States)

    Scaringe, R. P.; Ho, T. L.; Peterson, M. B.

    1975-01-01

    A research program was initiated to determine the feasibility of using cooling to increase brake life. An air cooling scheme was proposed, constructed and tested with various designs. Straight and curved slotting of the friction material was tested. A water cooling technique, similar to the air cooling procedure, was evaluated on a curved slotted rotor. Also investigated was the possibility of using a phase-change material within the rotor to absorb heat during braking. Various phase-changing materials were tabulated and a 50%, (by weight) LiF - BeF2 mixing was chosen. It was shown that corrosion was not a problem with this mixture. A preliminary design was evaluated on an actual brake. Results showed that significant improvements in lowering the surface temperature of the brake occurred when air or water cooling was used in conjunction with curved slotted rotors.

  10. Generation of brake squeal. Fundamental vibration in brake system; Entstehungsmechanismus des Bremsenquietschens. Grundschwingung im Bremssystem

    Energy Technology Data Exchange (ETDEWEB)

    Shi Xiaoming; Mitschke, M.

    1997-11-01

    Reducing or preventing brake squealing is a prime goal of brake development. To provide constructional means of doing this the mechanism by which it occurs must first be understood. Research at the Technical University of Braunschweig now offers a plausible explanation. (orig.) [Deutsch] Die Verringerung oder Vermeidung des Bremsenquietschens ist ein wichtiges Ziel der Bremsenentwicklung. Um konstruktiv Abhilfe zu schaffen, muss zunaechst der Entstehungsmechanismus fuer dieses unerwuenschte Geraeusch geklaert werden. Forschung an der Technischen Universitaet Braunschweig ermoeglicht jetzt eine plausible Erklaerung. (orig.)

  11. Analysis of a Hybrid Mechanical Regenerative Braking System

    Directory of Open Access Journals (Sweden)

    Toh Xiang Wen Matthew

    2018-01-01

    Full Text Available Regenerative braking systems for conventional vehicles are gaining attention as fossil fuels continue to be depleted. The major forms of regenerative braking systems include electrical and mechanical systems, with the former being more widely adopted at present. However mechanical systems are still feasible, including the possible hybrid systems of two mechanical energy recovery systems. A literature study was made to compare the various mechanical energy recovery systems. These systems were compared based on their advantages and disadvantages with regards to energy storage, usage, and maintenance. Based on the comparison, the most promising concept appeared to be one that combined the flywheel and the pneumatic energy recovery systems. A CAD model of this hybrid system was produced to better visualise the design. This was followed by analytical modelling of the energy recovery systems. The analysis indicated that the angular velocity had an extremely significant impact on the power loss and energy efficiency. The results showed that the hybrid system can provide better efficiency but only when operating within certain parameters. Future work is required to further improve the efficiency of this hybrid system.

  12. Driver braking behavior analysis to improve autonomous emergency braking systems in typical Chinese vehicle-bicycle conflicts.

    Science.gov (United States)

    Duan, Jingliang; Li, Renjie; Hou, Lian; Wang, Wenjun; Li, Guofa; Li, Shengbo Eben; Cheng, Bo; Gao, Hongbo

    2017-11-01

    Bicycling is one of the fundamental modes of transportation especially in developing countries. Because of the lack of effective protection for bicyclists, vehicle-bicycle (V-B) accident has become a primary contributor to traffic fatalities. Although AEB (Autonomous Emergency Braking) systems have been developed to avoid or mitigate collisions, they need to be further adapted in various conflict situations. This paper analyzes the driver's braking behavior in typical V-B conflicts of China to improve the performance of Bicyclist-AEB systems. Naturalistic driving data were collected, from which the top three scenarios of V-B accidents in China were extracted, including SCR (a bicycle crossing the road from right while a car is driving straight), SCL (a bicycle crossing the road from left while a car is driving straight) and SSR (a bicycle swerving in front of the car from right while a car is driving straight). For safety and data reliability, a driving simulator was employed to reconstruct these three scenarios and some 25 licensed drivers were recruited for braking behavior analysis. Results revealed that driver's braking behavior was significantly influenced by V-B conflict types. Pre-decelerating behaviors were found in SCL and SSR conflicts, whereas in SCR the subjects were less vigilant. The brake reaction time and brake severity in lateral V-B conflicts (SCR and SCL) was shorter and higher than that in longitudinal conflicts (SSR). The findings improve their applications in the Bicyclist-AEB and test protocol enactment to enhance the performance of Bicyclist-AEB systems in mixed traffic situations especially for developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Analysis of downshift’s improvement to energy efficiency of an electric vehicle during regenerative braking

    International Nuclear Information System (INIS)

    Li, Liang; Li, Xujian; Wang, Xiangyu; Song, Jian; He, Kai; Li, Chenfeng

    2016-01-01

    Highlights: • Downshift is effective in improving the energy efficiency of electric vehicles. • Energy improvement of downshift varies with vehicle speed and brake strength. • The designed nonlinear sliding mode observer is accurate in estimating bake torque. • The proposed resembling PWM method is practical to regulate hydraulic pressure. • The effect of downshift on braking safety and comfort can be restrained by control. - Abstract: Downshift during regenerative braking helps to improve the energy efficiency of electric vehicles. Two main problems are involved in the downshift process. One is the determination of optimal downshift point, and the other is the cooperative control of regenerative braking and hydraulic braking. In order to achieve a systemic solution to these problems, a hierarchical control strategy is brought forward for an electric vehicle with a two-speed automated mechanical transmission. For the upper controller, an off-line calculation and on-line look-up table method is adopted to obtain the optimal downshift point, and a series regenerative braking distribution strategy is designed. For the medium controller, a nonlinear sliding mode observer is designed to obtain the actual hydraulic brake torque. For the lower controller, cooperative control of regenerative braking and hydraulic braking is given to ensure brake safety during downshift process, and a resembling pulse width modulation method is proposed to regulated the hydraulic brake torque. Simulation results and hardware-in-loop test show that the proposed algorithm is effective in improving the energy efficiency of electric vehicles.

  14. Energetic optimization of regenerative braking for high speed railway systems

    International Nuclear Information System (INIS)

    Frilli, Amedeo; Meli, Enrico; Nocciolini, Daniele; Pugi, Luca; Rindi, Andrea

    2016-01-01

    Highlights: • A model of longitudinal dynamics of the High-speed train ETR1000 is presented. • The model includes on board traction and braking subsystems. • Interactions between overhead line and power line are modelled. • The model is validated on real experimental data. • An energy storage strategy for a high-speed line is proposed. - Abstract: The current development trend in the railway field has led to an ever increasing interest for the energetic optimization of railway systems (especially considering the braking phases), with a strong attention to the mutual interactions between the loads represented by railway vehicles and the electrical infrastructure, including all the sub-systems related to distribution and smart energy management such as energy storage systems. In this research work, the authors developed an innovative coupled modelling approach suitable for the analysis of the energetic optimization of railway systems and based on the use of the new object oriented language Matlab-Simscape™, which presents several advantages with respect to conventional modelling tools. The proposed model has been validated considering an Italian Direct Current High-speed line and the High-speed train ETR 1000. Furthermore, the model has been used to perform an efficiency analysis, considering the use of energy storage devices. The results obtained with the developed model show that the use of energy recovery systems in high-speed railway can provide great opportunities of energy savings.

  15. Diagnostics monitor of the braking efficiency in the on board diagnostics system for the motor vehicles

    Science.gov (United States)

    Gajek, Andrzej

    2016-09-01

    The article presents diagnostics monitor for control of the efficiency of brakes in various road conditions in cars equipped with pressure sensor in brake (ESP) system. Now the brake efficiency of the vehicles is estimated periodically in the stand conditions on the base of brake forces measurement or in the road conditions on the base of the brake deceleration. The presented method allows to complete the stand - periodical tests of the brakes by current on board diagnostics system OBD for brakes. First part of the article presents theoretical dependences between deceleration of the vehicle and brake pressure. The influence of the vehicle mass, initial speed of braking, temperature of brakes, aerodynamic drag, rolling resistance, engine resistance, state of the road surface, angle of the road sloping on the deceleration have been analysed. The manner of the appointed of these parameters has been analysed. The results of the initial investigation have been presented. At the end of the article the strategy of the estimation and signalization of the irregular value of the deceleration are presented.

  16. Research on squeal noise of tread brake system in rail freight vehicle

    Science.gov (United States)

    Zhang, Jun; Li, Yong-hua; Fang, Ji; Zhao, Wen-zhong

    2017-07-01

    Brake squeal is a result of a unstable flutter from brake system, it results to the noise pollution in railway side and excessive wear of wheel tread. A finite element model of brake system for rail freight vehicle is set up, the contact and friction between the brake shoe and wheel tread is considered, the complex modals of brake system are calculated, the possibility of happening chatter and squeal noise are analyzed. The results show that the pressure angle or the brake force direction have a important influence on the unstable chatter and squeal noise, the more greater the pressure angle deviates from the wheel center, the more greater the possibility of happening chatter and squeal noise is, and the possibility of happening chatter and squeal noise is also increased along with the addition of friction factor.

  17. Dynamic Braking System of a Tidal Generator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Wright, Alan; Gevorgian, Vahan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-08-01

    Renewable energy generation has experienced significant cost reductions during the past decades, and it has become more accepted by the global population. In the beginning, wind generation dominated the development and deployment of renewable energy; however, during recent decades, photovoltaic (PV) generation has grown at a very significant pace due to the tremendous decrease in the cost of PV modules. The focus on renewable energy generation has now expanded to include new types with promising future applications, such as river and tidal generation. The input water flow to these types of resources is more predictable than wind or solar generation. The data used in this paper is representative of a typical river or tidal generator. The analysis is based on a generator with a power rating of 40 kW. The tidal generator under consideration is driven by two sets of helical turbines connected to each side of the generator located in between the turbines. The generator is operated in variable speed, and it is controlled to maximize the energy harvested as well as the operation of the turbine generator. The electrical system consists of a three-phase permanent magnet generator connected to a three-phase passive rectifier. The output of the rectifier is connected to a DC-DC converter to match the rectifier output to the DC bus voltage of the DC-AC inverter. The three-phase inverter is connected to the grid, and it is controlled to provide a good interface with the grid. One important aspect of river and tidal generation is the braking mechanism. In a tidal generator, the braking mechanism is important to avoid a runaway condition in case the connection to the grid is lost when there is a fault in the lines. A runaway condition may lead to an overspeed condition and cause extreme stresses on the turbine blade structure and eventual disintegration of the mechanical structure. In this paper, the concept of the dynamic braking system is developed and investigated for normal

  18. Digital Sliding Mode Control of Anti-Lock Braking System

    Directory of Open Access Journals (Sweden)

    MITIC, D. B.

    2013-02-01

    Full Text Available The control of anti-lock braking system is a great challenge, because of the nonlinear and complex characteristics of braking dynamics, unknown parameters of vehicle environment and system parameter variations. Using some of robust control methods, such as sliding mode control, can be a right solution for these problems. In this paper, we introduce a novel approach to design of ABS controllers, which is based on digital sliding mode control with only input/output measurements. The relay term of the proposed digital sliding mode control is filtered through digital integrator, reducing the chattering phenomenon in that way, and the additional signal of estimated modelling error is introduced into control algorithm to enhance the system steady-state accuracy. The given solution was verified in real experimental framework and the obtained results were compared with the results of implementation of two other digital sliding mode control algorithms. It is shown that it gives better system response, higher steady-state accuracy and smaller chattering.

  19. Brake control system modification, augmentor Wing Jet STOL Research Airplane (AWJSRA)

    Science.gov (United States)

    Amberg, R. L.; Arline, J. A.; Jenny, R. W.

    1974-01-01

    The braking system for a short takeoff aircraft is discussed and the deficiencies are described. The installation of a Boeing 727 aircraft brake system was made to correct the deficiencies. Tests of the modified system were conducted using an analog computer/hardware simulator. Actual performance tests were conducted and the characteristics of the system were satisfactory.

  20. 76 FR 44829 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2011-07-27

    ... [Docket No. NHTSA-2009-0175] RIN 2127-AK84 Federal Motor Vehicle Safety Standards; Air Brake Systems... final rule that amended the Federal motor vehicle safety standard for air brake systems by requiring... between Bendix Commercial Vehicle Systems and Dana Corporation; and ArvinMeritor. The agency received four...

  1. Emergency braking : research summary.

    NARCIS (Netherlands)

    Schlösser, L.H.M.

    1976-01-01

    This report deals with an investigation concerning braking capacity of trucks if somewhere a failure occurs in the normal service brake. Purpose of research was to get an insight in various secondary braking systems for trucks. It is shown that with almost all of the secondary braking system it was

  2. Use of MSC/NASTRAN for the thermal analysis of the Space Shuttle Orbiter braking system

    Science.gov (United States)

    Shu, James; Mccann, David

    1987-01-01

    A description is given of the thermal modeling and analysis effort being conducted to investigate the transient temperature and thermal stress characteristics of the Space Shuttle Orbiter brake components and subsystems. Models are constructed of the brake stator as well as of the entire brake assembly to analyze the temperature distribution and thermal stress during the landing and braking process. These investigations are carried out on a UNIVAC computer system with MSC/NASTRAN Version 63. Analytical results and solution methods are presented and comparisons are made with SINDA results.

  3. Evaluation of a sudden brake warning system: effect on the response time of the following driver.

    Science.gov (United States)

    Isler, Robert B; Starkey, Nicola J

    2010-07-01

    This study used a video-based braking simulation dual task to carry out a preliminary evaluation of the effect of a sudden brake warning system (SBWS) in a leading passenger vehicle on the response time of the following driver. The primary task required the participants (N=25, 16 females, full NZ license holders) to respond to sudden braking manoeuvres of a lead vehicle during day and night driving, wet and dry conditions and in rural and urban traffic, while concurrently performing a secondary tracking task using a computer mouse. The SBWS in the lead vehicle consisted of g-force controlled activation of the rear hazard lights (the rear indicators flashed), in addition to the standard brake lights. Overall, the results revealed that responses to the braking manoeuvres of the leading vehicles when the hazard lights were activated by the warning system were 0.34 s (19%) faster compared to the standard brake lights. The SBWS was particularly effective when the simulated braking scenario of the leading vehicle did not require an immediate and abrupt braking response. Given this, the SBWS may also be beneficial for allowing smoother deceleration, thus reducing fuel consumption. These preliminary findings justify a larger, more ecologically valid laboratory evaluation which may lead to a naturalistic study in order to test this new technology in 'real world' braking situations. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Wheel brake with mechatronic parameter value control - investigation of operating behaviour and driver integration problems, with particurticular regard to brake-by-wire systems; Radbremse mit mechatronischer Kennwertregelung - Untersuchung von Betriebsverhalten und Fahreranbindungsproblematik, hinsichtlich Brake-by-Wire-Systemen

    Energy Technology Data Exchange (ETDEWEB)

    Leber, M.

    1998-11-01

    The book presents a new brake system with mechatronically controlled self-energizing and with low energy demand. Potentials and limits of mechatronic parameter value control are pointed out with a view towards future brake-by-wire systems. Measurements on a parameter-controlled duplex drum brake provide information on the response to different disturbances. The possibility of influencing the driver by parameter-controlled wheel brakes were investigated in a novel experimental vehicle with freely programmable brake system parameters, and the main paramters of the driver/brake system interface were identified. The report ends with a few words on adaptive brake systems which can combine optimum driving efficiency with maximum comfort in all possible driving situations. (orig.) [Deutsch] Das vorliegende Buch stellt eine neuartige Fahrzeugbremse mit mechatronisch geregelter Selbstverstaerkung vor, die einen niedrigen Spannenergiebedarf aufweist. Im Hinblick auf zukuenftige Brake-by-Wire-Systeme werden Potentiale, aber auch Grenzen einer mechatronischen Kennwertregelung aufgezeigt. Messungen an einer kennwertgeregelten Duplex-Trommelbremse geben Aufschluss ueber das Betriebsverhalten unter Einfluss verschiedener Stoergroessen. Die Moeglichkeiten einer Fahrerbeeinflussung durch kennwertgeregelte Radbremsen werden mittels eines neuartigen Versuchsfahrzeugs mit frei programmierbaren Bremssystemparametern untersucht. Darueber hinaus wird die Schnittstelle Fahrer/Bremssystem hinsichtlich ihrer bestimmenden Parameter beschrieben. Den Schluss der Arbeit bildet ein Ausblick auf adaptive Bremssysteme mit dem Potential, optimale fahrdynamische Effizienz bei groesstmoeglichem Komfort situationsabhaengig darzustellen. (orig.)

  5. Hydraulically powered dissimilar teleoperated system controller design

    International Nuclear Information System (INIS)

    Jansen, J.F.; Kress, R.L.

    1996-01-01

    This paper will address two issues associated with the implementation of a hydraulically powered dissimilar master-slave teleoperated system. These issues are the overall system control architecture and the design of robust hydraulic servo controllers for the position control problem. Finally, a discussion of overall system performance on an actual teleoperated system will be presented

  6. Analysis of heat conduction in a drum brake system of the wheeled armored personnel carriers

    Science.gov (United States)

    Puncioiu, A. M.; Truta, M.; Vedinas, I.; Marinescu, M.; Vinturis, V.

    2015-11-01

    This paper is an integrated study performed over the Braking System of the Wheeled Armored Personnel Carriers. It mainly aims to analyze the heat transfer process which is present in almost any industrial and natural process. The vehicle drum brake systems can generate extremely high temperatures under high but short duration braking loads or under relatively light but continuous braking. For the proper conduct of the special vehicles mission in rough terrain, we are talking about, on one hand, the importance of the possibility of immobilization and retaining position and, on the other hand, during the braking process, the importance movement stability and reversibility or reversibility, to an encounter with an obstacle. Heat transfer processes influence the performance of the braking system. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of analyzed vehicle wheels. In the present work a finite element model for the temperature distribution in a brake drum is developed, by employing commercial finite element software, ANSYS. These structural and thermal FEA models will simulate entire braking event. The heat generated during braking causes distortion which modifies thermoelastic contact pressure distribution drum-shoe interface. In order to capture the effect of heat, a transient thermal analysis is performed in order to predict the temperature distribution transitional brake components. Drum brakes are checked both mechanical and thermal. These tests aim to establish their sustainability in terms of wear and the variation coefficient of friction between the friction surfaces with increasing temperature. Modeling using simulation programs led eventually to the establishment of actual thermal load of the mechanism of brake components. It was drawn the efficiency characteristic by plotting the coefficient of effectiveness relative to the coefficient of friction shoe-drum. Thus induced

  7. INVESTIGATION OF ANTILOCK BRAKE SYSTEM EFFECT ON PASSENGER CAR BRAFKING EFFICIENCY

    Directory of Open Access Journals (Sweden)

    I. Davidenko

    2011-01-01

    Full Text Available It has been experimentally proved that in case of emergency braking the constant decelera-tion of passenger cars equipped by antilock brake system exceeds the tabulated statistical data by 7,7–17 % that is recommended to apply at technical expertise at traffic accident causes investigation.

  8. 49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.

    Science.gov (United States)

    2010-10-01

    ... service brake system, such as a pump, that automatically supplies energy in the event of a primary brake...). S6.1.2. Wind speed. The wind speed is not greater than 5 m/s (11.2 mph). S6.2. Road test surface. S6...

  9. Design strategy for improving the energy efficiency in series hydraulic/electric synergy system

    International Nuclear Information System (INIS)

    Ramakrishnan, R.; Hiremath, Somashekhar S.; Singaperumal, M.

    2014-01-01

    Battery is a vital subsystem in an electric vehicle with regenerative braking system. The energy efficiency of an electric vehicle is improved by storing the regenerated energy in an electric battery, during braking, and reusing it during subsequent acceleration. Battery possesses a relatively poor power density and slow charging of regenerated energy, when compared to hydro-pneumatic accumulators. A series hydraulic/electric synergy system – an energy efficient mechatronics system is proposed to overcome the drawbacks in the conventional electric vehicle with regenerative braking. Even though, electric battery provides higher energy density than the accumulator system, optimal sizing of the hydro-pneumatic accumulator and other process parameters in the system to provide better energy density and efficiency. However, a trade-off prevails between the system energy delivered and energy consumed. This gives rise to a multiple objective problem. The proposed multi-objective design optimization procedure based on an evolutionary strategy algorithm maximizes the energy efficiency of the system. The system simulation results after optimization show that, the optimal system parameters increase the energy efficiency by 3% and hydraulic regeneration efficiency by 17.3%. The suggested design methodology provides a basis for the design of a series hydraulic/electric synergy system as energy efficient and zero emission system. - Highlights: • Dynamic analysis of SHESS to investigate energy efficiency. • Optimization of system parameters based on multi-objective design strategy. • Evaluation of improvements in system energy efficiency and hydraulic regeneration energy. • Identification of conditions at which hydraulic regenerative efficiency is maximized for minimum energy consumption. • Results confirm advantages of using SHESS

  10. Cooperative Control of Regenerative Braking and Antilock Braking for a Hybrid Electric Vehicle

    OpenAIRE

    Yin, Guodong; Jin, XianJian

    2013-01-01

    A new cooperative braking control strategy (CBCS) is proposed for a parallel hybrid electric vehicle (HEV) with both a regenerative braking system and an antilock braking system (ABS) to achieve improved braking performance and energy regeneration. The braking system of the vehicle is based on a new method of HEV braking torque distribution that makes the antilock braking system work together with the regenerative braking system harmoniously. In the cooperative braking control strategy, a sli...

  11. Dynamics of aircraft antiskid braking systems. [conducted at the Langley aircraft landing loads and traction facility

    Science.gov (United States)

    Tanner, J. A.; Stubbs, S. M.; Dreher, R. C.; Smith, E. G.

    1982-01-01

    A computer study was performed to assess the accuracy of three brake pressure-torque mathematical models. The investigation utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane. The investigation indicates that the performance of aircraft antiskid braking systems is strongly influenced by tire characteristics, dynamic response of the antiskid control valve, and pressure-torque response of the brake. The computer study employed an average torque error criterion to assess the accuracy of the models. The results indicate that a variable nonlinear spring with hysteresis memory function models the pressure-torque response of the brake more accurately than currently used models.

  12. An Experimental Study on Hysteresis Characteristics of a Pneumatic Braking System for a Multi-Axle Heavy Vehicle in Emergency Braking Situations

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2017-08-01

    Full Text Available This study aims to investigate the hysteresis characteristics of a pneumatic braking system for multi-axle heavy vehicles (MHVs. Hysteresis affects emergency braking performance severely. The fact that MHVs have a large size and complex structure leads to more nonlinear coupling property of the pneumatic braking system compared to normal two-axle vehicles. Thus, theoretical analysis and simulation are not enough when studying hysteresis. In this article, the hysteresis of a pneumatic brake system for an eight-axle vehicle in an emergency braking situation is studied based on a novel test bench. A servo drive device is applied to simulate the driver’s braking intensions normally expressed by opening or moving speed of the brake pedal. With a reasonable arrangement of sensors and the NI LabVIEW platform, both the delay time of eight loops and the response time of each subassembly in a single loop are detected in real time. The outcomes of the experiment show that the delay time of each loop gets longer with the increase of pedal opening, and a quadratic relationship exists between them. Based on this, the pressure transient in the system is fitted to a first-order plus time delay model. Besides, the response time of treadle valve and controlling pipeline accounts for more than 80% of the loop’s total delay time, indicating that these two subassemblies are the main contributors to the hysteresis effect.

  13. Gas-Dynamic Designing of the Exhaust System for the Air Brake

    Science.gov (United States)

    Novikova, Yu; Goriachkin, E.; Volkov, A.

    2018-01-01

    Each gas turbine engine is tested some times during the life-cycle. The test equipment includes the air brake that utilizes the power produced by the gas turbine engine. In actual conditions, the outlet pressure of the air brake does not change and is equal to atmospheric pressure. For this reason, for the air brake work it is necessary to design the special exhaust system. Mission of the exhaust system is to provide the required level of backpressure at the outlet of the air brake. The backpressure is required for the required power utilization by the air brake (the air brake operation in the required points on the performance curves). The paper is described the development of the gas dynamic canal, designing outlet guide vane and the creation of a unified exhaust system for the air brake. Using a unified exhaust system involves moving the operating point to the performance curve further away from the calculated point. However, the applying of one exhaust system instead of two will significantly reduce the cash and time costs.

  14. Brake Fundamentals. Automotive Articulation Project.

    Science.gov (United States)

    Cunningham, Larry; And Others

    Designed for secondary and postsecondary auto mechanics programs, this curriculum guide contains learning exercises in seven areas: (1) brake fundamentals; (2) brake lines, fluid, and hoses; (3) drum brakes; (4) disc brake system and service; (5) master cylinder, power boost, and control valves; (6) parking brakes; and (7) trouble shooting. Each…

  15. Usage of aids monitoring in automatic braking systems of modern cars

    Directory of Open Access Journals (Sweden)

    Dembitskyi V.

    2016-08-01

    Full Text Available Increased safety can be carried out at the expense the installation on vehicles of automatic braking systems, that monitor the traffic situation and the actions of the driver. In this paper considered the advantages and disadvantages of automatic braking systems, were analyzed modern tracking tools that are used in automatic braking systems. Based on the statistical data on accidents, are set the main dangers, that the automatic braking system will be reduced. In order to ensure the accuracy of information conducted research for determination of optimal combination of different sensors that provide an adequate perception of road conditions. The tracking system should be equipped with a combination of sensors, which in the case of detection of an obstacle or dangers of signal is transmitted to the information processing system and decision making. Information from the monitoring system should include data for the identification of the object, its condition, the speed.

  16. Advanced Emergency Braking Controller Design for Pedestrian Protection Oriented Automotive Collision Avoidance System

    OpenAIRE

    Lie, Guo; Zejian, Ren; Pingshu, Ge; Jing, Chang

    2014-01-01

    Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the cu...

  17. Hydraulic loop: practices using open control systems

    International Nuclear Information System (INIS)

    Carrasco, J.A.; Alonso, L.; Sanchez, F.

    1998-01-01

    The Tecnatom Hydraulic Loop is a dynamic training platform. It has been designed with the purpose of improving the work in teams. With this system, the student can obtain a full scope vision of a system. The hydraulic Loop is a part of the Tecnatom Maintenance Centre. The first objective of the hydraulic Loop is the instruction in components, process and process control using open control system. All the personal of an electric power plant can be trained in the Hydraulic Loop with specific courses. The development of a dynamic tool for tests previous to plant installations has been an additional objective of the Hydraulic Loop. The use of this platform is complementary to the use of full-scope simulators in order to debug and to analyse advanced control strategies. (Author)

  18. Methods of monitoring the technical condition of the braking system of an autonomous vehicle during operation

    Science.gov (United States)

    Revin, A.; Dygalo, V.; Boyko, G.; Lyaschenko, M.; Dygalo, L.

    2018-02-01

    Possibilities of diagnosing of a technical condition of braking system of the autonomous vehicles with automated modules while in service are considered. The concept of sharing of onboard means and stands for diagnosing is presented.

  19. Thermal-hydraulic unreliability of passive systems

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Saltos, N.T.

    1995-01-01

    Advanced light water reactor designs like AP600 and the simplified boiling water reactor (SBWR) use passive safety systems for accident prevention and mitigation. Because these systems rely on natural forces for their operation, their unavailability due to hardware failures and human error is significantly smaller than that of active systems. However, the coolant flows predicted to be delivered by these systems can be subject to significant uncertainties, which in turn can lead to a significant uncertainty in the predicted thermal-hydraulic performance of the plant under accident conditions. Because of these uncertainties, there is a probability that an accident sequence for which a best estimate thermal-hydraulic analysis predicts no core damage (success sequence) may actually lead to core damage. For brevity, this probability will be called thermal-hydraulic unreliability. The assessment of this unreliability for all the success sequences requires very expensive computations. Moreover, the computational cost increases drastically as the required thermal-hydraulic reliability increases. The required computational effort can be greatly reduced if a bounding approach can be used that either eliminates the need to compute thermal-hydraulic unreliabilities, or it leads to the analysis of a few bounding sequences for which the required thermal-hydraulic reliability is relatively small. The objective of this paper is to present such an approach and determine the order of magnitude of the thermal-hydraulic unreliabilities that may have to be computed

  20. Brake fault diagnosis using Clonal Selection Classification Algorithm (CSCA – A statistical learning approach

    Directory of Open Access Journals (Sweden)

    R. Jegadeeshwaran

    2015-03-01

    Full Text Available In automobile, brake system is an essential part responsible for control of the vehicle. Any failure in the brake system impacts the vehicle's motion. It will generate frequent catastrophic effects on the vehicle cum passenger's safety. Thus the brake system plays a vital role in an automobile and hence condition monitoring of the brake system is essential. Vibration based condition monitoring using machine learning techniques are gaining momentum. This study is one such attempt to perform the condition monitoring of a hydraulic brake system through vibration analysis. In this research, the performance of a Clonal Selection Classification Algorithm (CSCA for brake fault diagnosis has been reported. A hydraulic brake system test rig was fabricated. Under good and faulty conditions of a brake system, the vibration signals were acquired using a piezoelectric transducer. The statistical parameters were extracted from the vibration signal. The best feature set was identified for classification using attribute evaluator. The selected features were then classified using CSCA. The classification accuracy of such artificial intelligence technique has been compared with other machine learning approaches and discussed. The Clonal Selection Classification Algorithm performs better and gives the maximum classification accuracy (96% for the fault diagnosis of a hydraulic brake system.

  1. Suggested Research Method for Testing Selected Tribological Properties of Friction Components in Vehicle Braking Systems

    Directory of Open Access Journals (Sweden)

    Borawski Andrzej

    2016-09-01

    Full Text Available The braking system is one of the most important systems in any vehicle. Its proper functioning may determine the health and life the people inside the vehicle as well as other road users. Therefore, it is important that the parameters which characterise the functioning of brakes changed as little as possible throughout their lifespan. Multiple instances of heating and cooling of the working components of the brake system as well as the environment they work in may impact their tribological properties. This article describes a method of evaluating the coefficient of friction and the wear speed of abrasive wear of friction working components of brakes. The methodology was developed on the basis of Taguchi’s method of process optimization.

  2. Hydraulic concrete composition and properties control system

    OpenAIRE

    PSHINKO O.M.; KRASNYUK A.V.; HROMOVA O.V.

    2015-01-01

    Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings) based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic–viscous–plastic bodies. The system of canon...

  3. Smart brake light system would provide more information to drivers

    OpenAIRE

    Trulove, Susan

    2008-01-01

    You are driving in heavy traffic. The brake lights on the car in front of you come on. Is the car slowing or is it going to stop? It slows to 25 mph and the lights go off. You drop back. The car in front of you stops suddenly! You stop just in time. The car behind you collects your rear bumper.

  4. Optimal design of an automotive magnetorheological brake considering geometric dimensions and zero-field friction heat

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B

    2010-01-01

    This paper presents an optimal design of a magnetorheological (MR) brake for a middle-sized passenger car which can replace a conventional hydraulic disc-type brake. In the optimization, the required braking torque, the temperature due to zero-field friction of MR fluid, the mass of the brake system and all significant geometric dimensions are considered. After describing the configuration, the braking torque of the proposed MR brake is derived on the basis of the field-dependent Bingham and Herschel–Bulkley rheological model of the MR fluid. The optimal design of the MR brake is then analyzed taking into account available space, mass, braking torque and steady heat generated by zero-field friction torque of the MR brake. The optimization procedure based on the finite element analysis integrated with an optimization tool is proposed to obtain optimal geometric dimensions of the MR brake. Based on the proposed procedure, optimal solutions of single and multiple disc-type MR brakes featuring different types of MR fluid are achieved. From the results, the most effective MR brake for the middle-sized passenger car is identified and some discussions on the performance improvement of the optimized MR brake are described

  5. Fault diagnosis in hydraulic motor car brakes using model-based methods; Fehlerdiagnose von hydraulischen Kfz-Bremssystemen mit modellbasierten Methoden

    Energy Technology Data Exchange (ETDEWEB)

    Straky, H.; Boerner, M.; Isermann, R. [Technische Univ. Darmstadt (Germany). Inst. fuer Automatisierungstechnik

    2002-07-01

    The design and development of a model-supported monitoring and diagnosis sstem for motor car brakes is described. After a theoretical analysis of braking system dynamics, a model for calculating the brake liquid loss volume is established, and a model-supported monitoring system is developed on this basis. Early detection of small defects like leakages and air bubbles will make car brakes and motor car operation safer. [German] Am Beispiel der funktionellen Integration von analytischem Prozesswissen wurde in diesem Beitrag der Entwurf und die Entwicklung eines modellgestuetzten Ueberwachungs- und Diagnosesystems fuer Kfz-Bremssysteme beschrieben. Ueber die Analogie zwischen hydraulischen und elektrotechnischen Systemen mit konzentrierten Parametern, wurde eine theoretische Analyse der Bremssystemdynamik durchgefuehrt und ein Zustandsraummodell zur Bremsanlage erstellt, welches die Berechnung des im Fehlerfall entstehenden Bremsfluessigkeitsverlustvolumens ermoeglicht. Darauf aufbauend wurde ein modellgestuetztes Ueberwachungssystem entwickelt, welches durch eine fruehzeitige Erkennung kleiner Fehler wie Leckagen oder Luftblasen in Kfz-Bremssystemen einen wichtigen Beitrag zur Steigerung der Fahrsicherheit von Kraftfahrzeugen leisten kann. (orig.)

  6. Brake reactions of distracted drivers to pedestrian Forward Collision Warning systems.

    Science.gov (United States)

    Lubbe, Nils

    2017-06-01

    Forward Collision Warning (FCW) can be effective in directing driver attention towards a conflict and thereby aid in preventing or mitigating collisions. FCW systems aiming at pedestrian protection have been introduced onto the market, yet an assessment of their safety benefits depends on the accurate modeling of driver reactions when the system is activated. This study contributes by quantifying brake reaction time and brake behavior (deceleration levels and jerk) to compare the effectiveness of an audio-visual warning only, an added haptic brake pulse warning, and an added Head-Up Display in reducing the frequency of collisions with pedestrians. Further, this study provides a detailed data set suited for the design of assessment methods for car-to-pedestrian FCW systems. Brake response characteristics were measured for heavily distracted drivers who were subjected to a single FCW event in a high-fidelity driving simulator. The drivers maintained a self-regulated speed of 30km/h in an urban area, with gaze direction diverted from the forward roadway by a secondary task. Collision rates and brake reaction times differed significantly across FCW settings. Brake pulse warnings resulted in the lowest number of collisions and the shortest brake reaction times (mean 0.8s, SD 0.29s). Brake jerk and deceleration were independent of warning type. Ninety percent of drivers exceeded a maximum deceleration of 3.6m/s 2 and a jerk of 5.3m/s 3 . Brake pulse warning was the most effective FCW interface for preventing collisions. In addition, this study presents the data required for driver modeling for car-to-pedestrian FCW similar to Euro NCAP's 2015 car-to-car FCW assessment. Practical applications: Vehicle manufacturers should consider the introduction of brake pulse warnings to their FCW systems. Euro NCAP could introduce an assessment that quantifies the safety benefits of pedestrian FCW systems and thereby aid the proliferation of effective systems. Copyright © 2017

  7. A low order adaptive control scheme for hydraulic servo systems

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Pedersen, Henrik Clemmensen; Bech, Michael Møller

    2015-01-01

    This paper deals with high-performance position control of hydraulics servo systems in general. The hydraulic servo system used is a two link robotic manipulator actuated by two hydraulic servo cylinders. A non-linear model of the hydraulic system and a Newton-Euler based model of the mechanical...

  8. Regenerative braking systems with torsional springs made of carbon nanotube yarn

    International Nuclear Information System (INIS)

    Liu, S; Martin, C; Livermore, C; Lashmore, D; Schauer, M

    2014-01-01

    The demonstration of large stroke, high energy density and high power density torsional springs based on carbon nanotube (CNT) yarns is reported, as well as their application as an energy-storing actuator for regenerative braking systems. Originally untwisted CNT yarn is cyclically loaded and unloaded in torsion, with the maximum rotation angle increasing until failure. The maximum extractable energy density is measured to be as high as 6.13 kJ/kg. The tests also reveal structural reorganization and hysteresis in the torsional loading curves. A regenerative braking system is built to capture the kinetic energy of a wheel and store it as elastic energy in twisted CNT yarns. When the yam's twist is released, the stored energy reaccelerates the wheel. The measured energy and mean power densities of the CNT yarns in the simple regenerative braking system are up to 4.69 kJ/kg and 1.21 kW/kg, respectively. A slightly lower energy density of up to 1.23 kJ/kg and a 0.29 kW/kg mean power density are measured for the CNT yarns in a more complex system that mimics a unidirectional rotating regenerative braking mechanism. The lower energy densities for CNT yarns in the regenerative braking systems as compared with the yarns themselves reflect the frictional losses of the regenerative systems

  9. Regenerative braking systems with torsional springs made of carbon nanotube yarn

    Science.gov (United States)

    Liu, S.; Martin, C.; Lashmore, D.; Schauer, M.; Livermore, C.

    2014-11-01

    The demonstration of large stroke, high energy density and high power density torsional springs based on carbon nanotube (CNT) yarns is reported, as well as their application as an energy-storing actuator for regenerative braking systems. Originally untwisted CNT yarn is cyclically loaded and unloaded in torsion, with the maximum rotation angle increasing until failure. The maximum extractable energy density is measured to be as high as 6.13 kJ/kg. The tests also reveal structural reorganization and hysteresis in the torsional loading curves. A regenerative braking system is built to capture the kinetic energy of a wheel and store it as elastic energy in twisted CNT yarns. When the yam's twist is released, the stored energy reaccelerates the wheel. The measured energy and mean power densities of the CNT yarns in the simple regenerative braking system are up to 4.69 kJ/kg and 1.21 kW/kg, respectively. A slightly lower energy density of up to 1.23 kJ/kg and a 0.29 kW/kg mean power density are measured for the CNT yarns in a more complex system that mimics a unidirectional rotating regenerative braking mechanism. The lower energy densities for CNT yarns in the regenerative braking systems as compared with the yarns themselves reflect the frictional losses of the regenerative systems.

  10. Design of a hydraulic ash transport system

    Energy Technology Data Exchange (ETDEWEB)

    Mirgorodskii, V.G.; Mova, M.E.; Korenev, V.E.; Grechikhin, Yu.A. (Donetskii Politekhnicheskii Institut (USSR))

    1990-04-01

    Discusses general design of a hydraulic ash removal system to be employed at the reconstructed six 225 MW blocks of the Mironov State Regional Power Plant in the USSR. The blocks burn low-grade solid fuel with an ash content of up to 40.5%. Large quantities of ash have to be moved from the plant (total ash production 60 t/h, using 570 t/h of water for cooling and moistening). An optimum hydraulic ash transportation system would include a two-section airlift pumping system, shown in a diagram. Technological advantages of using this airlift system are enumerated, including short pipes, reduction in required water quantity and the possibility of siting hydraulic pumps at zero level.

  11. The hydraulic capacity of deteriorating sewer systems.

    Science.gov (United States)

    Pollert, J; Ugarelli, R; Saegrov, S; Schilling, W; Di Federico, V

    2005-01-01

    Sewer and wastewater systems suffer from insufficient capacity, construction flaws and pipe deterioration. Consequences are structural failures, local floods, surface erosion and pollution of receiving waters bodies. European cities spend in the order of five billion Euro per year for wastewater network rehabilitation. This amount is estimated to increase due to network ageing. The project CARE-S (Computer Aided RE-habilitation of Sewer Networks) deals with sewer and storm water networks. The final project goal is to develop integrated software, which provides the most cost-efficient system of maintenance, repair and rehabilitation of sewer networks. Decisions on investments in rehabilitation often have to be made with uncertain information about the structural condition and the hydraulic performance of a sewer system. Because of this, decision-making involves considerable risks. This paper presents the results of research focused on the study of hydraulic effects caused by failures due to temporal decline of sewer systems. Hydraulic simulations are usually carried out by running commercial models that apply, as input, default values of parameters that strongly influence results. Using CCTV inspections information as dataset to catalogue principal types of failures affecting pipes, a 3D model was used to evaluate their hydraulic consequences. The translation of failures effects in parameters values producing the same hydraulic conditions caused by failures was carried out through the comparison of laboratory experiences and 3D simulations results. Those parameters could be the input of 1D commercial models instead of the default values commonly inserted.

  12. Effectiveness of an automatic manual wheelchair braking system in the prevention of falls.

    Science.gov (United States)

    Martorello, Laura; Swanson, Edward

    2006-01-01

    The purpose of this study was to evaluate the effectiveness of an automatic manual wheelchair braking system in the reduction of falls for patients at high risk of falls while transferring to and from a manual wheelchair. The study design was a normative survey carried out through the use of a written questionnaire sent to 60 skilled nursing facilities to collect data from the medical charts, which identified patients at high risk for falls who used an automatic wheelchair braking system. The facilities participating in the study identified a frequency of falls of high-risk patients while transferring to and from the wheelchair ranging from 2 to 10 per year, with a median fall rate per facility of 4 falls. One year after the installation of the automatic wheelchair braking system, participating facilities demonstrated a reduction of zero to three falls during transfers by high-risk patients, with a median fall rate of zero falls. This represents a statistically significant reduction of 78% in the fall rate of high-risk patients while transferring to and from the wheelchair, t (18) = 6.39, p braking system for manual wheelchairs was installed. The application of the automatic braking system allows clients, families/caregivers, and facility personnel an increased safety factor for the reduction of falls from the wheelchair.

  13. Development of remote data acquisition system based on OPC for brake test bench

    Science.gov (United States)

    Wang, Yiwei; Wu, Mengling; Tian, Chun; Ma, Tianhe

    2017-08-01

    The 1:1 train brake system test bench can be used to carry out brake-related adhesion-slid control, stability test, noise test and dynamic test. To collect data of the test bench, a data acquisition method is needed. In this paper, the remote data acquisition system of test bench is built by LabVIEW based on OPC technology. Unlike the traditional hardwire way connecting PLC acquisition module with sensors, the novel method is used to collect data and share them through the internal LAN built by Ethernet switches, which avoids the complex wiring interference in an easy, efficient and flexible way. The system has been successfully applied to the data acquisition activities of the comprehensive brake system test bench of CRRC Nanjing Puzhen Haitai Brake Equipment Co., Ltd., and the relationship test between the adhesion coefficient and the slip-ratio is realized. The speed signal, torque signal and brake disc temperature can be collected and displayed. The results show that the system is reliable, convenient, and efficient, and can meet the requirements of data acquisition.

  14. Research tool for the investigation of the driver/brake pedal interface; Forschungswerkzeug zur Untersuchung der Schnittstelle Fahrer/Bremspedal

    Energy Technology Data Exchange (ETDEWEB)

    Bill, K.H.; Breuer, B. [Technische Hochschule Darmstadt (Germany). Fachgebiet Fahrzeugtechnik; Leber, M. [DaimlerChrysler AG, Stuttgart (Germany); Becker, H. [Ford-Werke AG, Koeln (Germany)

    1999-02-01

    The driver/brake pedal interface gains increasing importance when one considers the increasing demands for driver safety and comfort in the vehicle, as well as Brake-by-Wire and braking assistance systems. The decoupling of the brake pedal from the rest of the brake system in the Brake-by-Wire power control braking system makes it necessary to give the brake pedal a specific characteristic. While this can only be slightly influenced in conventional brake systems due to the energetic coupling with the brake hydraulics, in future concepts this interface must be completely re-designed. At the Department of Automotive Engineering at the Technical University of Darmstadt (fzd), supported by the automobile producer Ford, Inc., new methods for the investigation of brake pedal feel under actual conditions with a specially designed test vehicle have been the subject of research. (orig.) [Deutsch] Mit der absehbaren Einfuehrung von Brake-by-Wire und Bremsassistenzsystemen gewinnt die Schnittstelle Fahrer / Bremspedal zunehmend an Bedeutung. Die Entkopplung des Bremspedals vom restlichen Bremssystem macht bei Brake-by-Wire-Anlagen eine gezielte Auslegung der Bremspedalcharakteristik notwendig. Waehrend diese bei konventionellen Bremssystemen infolge der energetischen Kopplung mit der Bremsenhydraulik nur in engen Grenzen beeinflusst werden kann, muss bei zukuenftigen Konzepten diese Schnittstelle vollstaendig neu ueberdacht werden. Am Fachgebiet Fahrzeugtechnik der Technischen Universitaet Darmstadt (fzd) wird, unterstuetzt durch die Ford-Werke AG, an neuen Ansaetzen zur Untersuchung des Bremspedalgefuehls unter realen Bedingungen mit einem speziell hierfuer aufgebauten Versuchstraeger geforscht. (orig.)

  15. Regenerative braking strategies, vehicle safety and stability control systems: critical use-case proposals

    Science.gov (United States)

    Oleksowicz, Selim A.; Burnham, Keith J.; Southgate, Adam; McCoy, Chris; Waite, Gary; Hardwick, Graham; Harrington, Cian; McMurran, Ross

    2013-05-01

    The sustainable development of vehicle propulsion systems that have mainly focused on reduction of fuel consumption (i.e. CO2 emission) has led, not only to the development of systems connected with combustion processes but also to legislation and testing procedures. In recent years, the low carbon policy has made hybrid vehicles and fully electric vehicles (H/EVs) popular. The main virtue of these propulsion systems is their ability to restore some of the expended energy from kinetic movement, e.g. the braking process. Consequently new research and testing methods for H/EVs are currently being developed. This especially concerns the critical 'use-cases' for functionality tests within dynamic events for both virtual simulations, as well as real-time road tests. The use-case for conventional vehicles for numerical simulations and road tests are well established. However, the wide variety of tests and their great number (close to a thousand) creates a need for selection, in the first place, and the creation of critical use-cases suitable for testing H/EVs in both virtual and real-world environments. It is known that a marginal improvement in the regenerative braking ratio can significantly improve the vehicle range and, therefore, the economic cost of its operation. In modern vehicles, vehicle dynamics control systems play the principal role in safety, comfort and economic operation. Unfortunately, however, the existing standard road test scenarios are insufficient for H/EVs. Sector knowledge suggests that there are currently no agreed tests scenarios to fully investigate the effects of brake blending between conventional and regenerative braking as well as the regenerative braking interaction with active driving safety systems (ADSS). The paper presents seven manoeuvres, which are considered to be suitable and highly informative for the development and examination of H/EVs with regenerative braking capability. The critical manoeuvres presented are considered to be

  16. An analysis of the annual probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Greenfield, M.A.; Sargent, T.J.

    1995-11-01

    The Environmental Evaluation Group (EEG) previously analyzed the probability of a catastrophic accident in the waste hoist of the Waste Isolation Pilot Plant (WIPP) and published the results in Greenfield (1990; EEG-44) and Greenfield and Sargent (1993; EEG-53). The most significant safety element in the waste hoist is the hydraulic brake system, whose possible failure was identified in these studies as the most important contributor in accident scenarios. Westinghouse Electric Corporation, Waste Isolation Division has calculated the probability of an accident involving the brake system based on studies utilizing extensive fault tree analyses. This analysis conducted for the U.S. Department of Energy (DOE) used point estimates to describe the probability of failure and includes failure rates for the various components comprising the brake system. An additional controlling factor in the DOE calculations is the mode of operation of the brake system. This factor enters for the following reason. The basic failure rate per annum of any individual element is called the Event Probability (EP), and is expressed as the probability of failure per annum. The EP in turn is the product of two factors. One is the open-quotes reportedclose quotes failure rate, usually expressed as the probability of failure per hour and the other is the expected number of hours that the element is in use, called the open-quotes mission timeclose quotes. In many instances the open-quotes mission timeclose quotes will be the number of operating hours of the brake system per annum. However since the operation of the waste hoist system includes regular open-quotes reoperational checkclose quotes tests, the open-quotes mission timeclose quotes for standby components is reduced in accordance with the specifics of the operational time table

  17. An analysis of the annual probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP)

    Energy Technology Data Exchange (ETDEWEB)

    Greenfield, M.A. [Univ. of California, Los Angeles, CA (United States); Sargent, T.J.

    1995-11-01

    The Environmental Evaluation Group (EEG) previously analyzed the probability of a catastrophic accident in the waste hoist of the Waste Isolation Pilot Plant (WIPP) and published the results in Greenfield (1990; EEG-44) and Greenfield and Sargent (1993; EEG-53). The most significant safety element in the waste hoist is the hydraulic brake system, whose possible failure was identified in these studies as the most important contributor in accident scenarios. Westinghouse Electric Corporation, Waste Isolation Division has calculated the probability of an accident involving the brake system based on studies utilizing extensive fault tree analyses. This analysis conducted for the U.S. Department of Energy (DOE) used point estimates to describe the probability of failure and includes failure rates for the various components comprising the brake system. An additional controlling factor in the DOE calculations is the mode of operation of the brake system. This factor enters for the following reason. The basic failure rate per annum of any individual element is called the Event Probability (EP), and is expressed as the probability of failure per annum. The EP in turn is the product of two factors. One is the {open_quotes}reported{close_quotes} failure rate, usually expressed as the probability of failure per hour and the other is the expected number of hours that the element is in use, called the {open_quotes}mission time{close_quotes}. In many instances the {open_quotes}mission time{close_quotes} will be the number of operating hours of the brake system per annum. However since the operation of the waste hoist system includes regular {open_quotes}reoperational check{close_quotes} tests, the {open_quotes}mission time{close_quotes} for standby components is reduced in accordance with the specifics of the operational time table.

  18. Advanced Emergency Braking Controller Design for Pedestrian Protection Oriented Automotive Collision Avoidance System

    Directory of Open Access Journals (Sweden)

    Guo Lie

    2014-01-01

    Full Text Available Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the current distance between the host vehicle and the obstacle with the critical braking distance. To reflect the nonlinear time-varying characteristics and control effect of the longitudinal dynamics, the vehicle longitudinal dynamics model is established in CarSim. Then the braking controller with the structure of upper and lower layers is designed based on sliding mode control and the single neuron PID control when confronting deceleration or emergency braking conditions. Cosimulations utilizing CarSim and Simulink are finally carried out on a CarSim intelligent vehicle model to explore the effectiveness of the proposed controller. Results display that the designed controller has a good response in preventing colliding with the front vehicle or pedestrian.

  19. Advanced emergency braking controller design for pedestrian protection oriented automotive collision avoidance system.

    Science.gov (United States)

    Lie, Guo; Zejian, Ren; Pingshu, Ge; Jing, Chang

    2014-01-01

    Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the current distance between the host vehicle and the obstacle with the critical braking distance. To reflect the nonlinear time-varying characteristics and control effect of the longitudinal dynamics, the vehicle longitudinal dynamics model is established in CarSim. Then the braking controller with the structure of upper and lower layers is designed based on sliding mode control and the single neuron PID control when confronting deceleration or emergency braking conditions. Cosimulations utilizing CarSim and Simulink are finally carried out on a CarSim intelligent vehicle model to explore the effectiveness of the proposed controller. Results display that the designed controller has a good response in preventing colliding with the front vehicle or pedestrian.

  20. Aircraft Hydraulic System Leakage Detection and Servicing Recommendations Method

    Science.gov (United States)

    2014-10-02

    ITA), Brazil. He is with Empresa Brasileira de Aeronáutica S.A (EMBRAER), São José dos Campos, SP, Brazil, since 2007. He works as a Development...degree in Control Engineering from Universidade Estadual de Campinas (Unicamp, 2004), Brazil, and a Master Degree in Aeronautical Engineering from...accumulators, filters, and consumers, that include all the actuators connected to the hydraulic power such as flight controls , brake and landing

  1. Capacitor regenerative braking system of electric wheelchair for senior citizen based on variable frequency chopper control.

    Science.gov (United States)

    Takahashi, Yoshiaki; Seki, Hirokazu

    2009-01-01

    This paper proposes a novel regenerative braking control system of electric wheelchairs for senior citizen. "Electric powered wheelchair", which generates the driving force by electric motors according to the human operation, is expected to be widely used as a mobility support system for elderly people. This study focuses on the braking control to realize the safety and smooth stopping motion using the regenerative braking control technique based on fuzzy algorithm. The ride quality improvement and energy recycling can be expected by the proposed control system with stopping distance estimation and variable frequency control on the step-up/down chopper type of capacitor regenerative circuit. Some driving experiments confirm the effectiveness of the proposed control system.

  2. Hydraulic Modular Dosaging Systems for Machine Drives

    Directory of Open Access Journals (Sweden)

    A. J. Kotlobai

    2005-01-01

    Full Text Available The justified principle of making modular dosaging systems for positive-displacement multimotor hydraulic drives used in running gear and technological equipment of mobile construction, road and agricultural machines makes it possible to synchronize motion of running parts. The examples of the realization of modular dosaging systems and an algorithm of their operation are given in the paper.

  3. Transient fault tolerant control for vehicle brake-by-wire systems

    International Nuclear Information System (INIS)

    Huang, Shuang; Zhou, Chunjie; Yang, Lili; Qin, Yuanqing; Huang, Xiongfeng; Hu, Bowen

    2016-01-01

    Brake-by-wire (BBW) systems that have no mechanical linkage between the brake pedal and the brake mechanism are expected to improve vehicle safety through better braking capability. However, transient faults in BBW systems can cause dangerous driving situations. Most existing research in this area focuses on the brake control mechanism, but very few studies try to solve the problem associated with transient fault propagation and evolution in the brake control system hierarchy. In this paper, a hierarchical transient fault tolerant scheme with embedded intelligence and resilient coordination for BBW system is proposed based on the analysis of transient fault propagation characteristics. In this scheme, most transient faults are tackled rapidly by a signature-based detection method at the node level, and the remaining transient faults, which cannot be detected directly at the node level and could degrade the system performance through fault propagation and evolution, are detected and recovered through function and structure models at the system level. To jointly accommodate these BBW transient faults at the system level, a sliding mode control algorithm and a task reallocation strategy are designed. A simulation platform based on Architecture Analysis and Design Language (AADL) is established to evaluate the task reallocation strategy, and a hardware-in-the-loop simulation is carried out to validate the proposed scheme systematically. Experimental results show the effectiveness of this new approach to BBW systems. - Highlights: • We propose a hierarchical transient fault tolerant scheme for BBW systems. • A sliding mode algorithm and a task strategy are designed to tackle transient fault. • The effectiveness of the scheme is verified in both simulation and HIL environments.

  4. Two-stage actuation system using DC motors and piezoelectric actuators for controllable industrial and automotive brakes and clutches

    Science.gov (United States)

    Neelakantan, Vijay A.; Washington, Gregory N.; Bucknor, Norman K.

    2005-05-01

    High bandwidth actuation systems that are capable of simultaneously producing relatively large forces and displacements are required for use in automobiles and other industrial applications. Conventional hydraulic actuation mechanisms used in automotive brakes and clutches are complex, inefficient and have poor control robustness. These lead to reduced fuel economy, controllability issues and other disadvantages. This paper involves the design, development, testing and control of a two-stage hybrid actuation mechanism by combining classical actuators like DC motors and advanced smart material actuators like piezoelectric actuators. The paper also discusses the development of a robust control methodology using the Internal Model Control (IMC) principle and emphasizes the robustness property of this control methodology by comparing and studying simulation and experimental results.

  5. Brake force estimation for electromechanical vehicle brakes; Bremskraft-Rekonstruktion fuer elektromechanische Fahrzeugbremsen

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, R. [Continental Teves (Germany)

    1999-06-01

    Due to the increasing safety and comfort demands of the customer, the functionality of modern brake systems has grown continuously in the last years. However, implementation of the extended functionality in conventional brake hydraulics makes active electronic intervention necessary and therefore requires a lot of technical effort. In recent years the automotive supplier industry has started to develop brake systems which have electromechanical brake actuators generating the brake forces at the individual wheels. Electromechanically actuated wheel brakes need to be operated in a closed control loop. This paper introduces a new method to reconstruct the needed feedback value brake force from easy to measure signals. (orig.) [Deutsch] Aufgrund des gestiegenen Sicherheits- und Komfortbewusstseins der Fahrzeugkaeufer ist die Funktionsvielfalt moderner Bremssysteme in den letzten Jahren staendig gewachsen. Die Umsetzung der erweiterten Funktionalitaet mittels konventioneller Bremsenhydraulik ist jedoch durch den elektronischen, aktiven Eingriff sehr aufwendig. In den letzten Jahren hat daher die Automobilzulieferindustrie begonnen, Bremssysteme zu entwickeln, bei denen die Bremskraft an den einzelnen Raedern von elektromechanischen Bremsaktuatoren aufgebracht wird. Elektromechanisch betaetigte Radbremsen muessen im geschlossenen Regelkreis betrieben werden. Der vorliegende Beitrag, der im Rahmen einer Forschungskooperation zwischen Continental Teves und dem Institut fuer Automatisierungstechnik der TU Darmstadt entstand stellt ein Verfahren vor, mit dem die dafuer benoetigte Rueckfuehrungsgroesse `Bremskraft` aus einfach messbaren Signalen rekonstruiert werden kann. (orig.)

  6. Highly reliable electro-hydraulic control system

    International Nuclear Information System (INIS)

    Mande, Morima; Hiyama, Hiroshi; Takahashi, Makoto

    1984-01-01

    The unscheduled shutdown of nuclear power stations disturbs power system, and exerts large influence on power generation cost due to the lowering of capacity ratio; therefore, high reliability is required for the control system of nuclear power stations. Toshiba Corp. has exerted effort to improve the reliability of the control system of power stations, and in this report, the electro-hydraulic control system for the turbines of nuclear power stations is described. The main functions of the electro-hydraulic control system are the control of main steam pressure with steam regulation valves and turbine bypass valves, the control of turbine speed and load, the prevention of turbine overspeed, the protection of turbines and so on. The system is composed of pressure sensors and a speed sensor, the control board containing the electronic circuits for control computation and protective sequence, the oil cylinders, servo valves and opening detectors of the valves for control, a high pressure oil hydraulic machine and piping, the operating panel and so on. The main features are the adoption of tripling intermediate value selection method, the multiplying of protection sensors and the adoption of 2 out of 3 trip logic, the multiplying of power sources, the improvement of the reliability of electronic circuit hardware and oil hydraulic system. (Kako, I.)

  7. The Effect of a Variable Disc Pad Friction Coefficient for the Mechanical Brake System of a Railway Vehicle.

    Science.gov (United States)

    Lee, Nam-Jin; Kang, Chul-Goo

    2015-01-01

    A brake hardware-in-the-loop simulation (HILS) system for a railway vehicle is widely applied to estimate and validate braking performance in research studies and field tests. When we develop a simulation model for a full vehicle system, the characteristics of all components are generally properly simplified based on the understanding of each component's purpose and interaction with other components. The friction coefficient between the brake disc and the pad used in simulations has been conventionally considered constant, and the effect of a variable friction coefficient is ignored with the assumption that the variability affects the performance of the vehicle braking very little. However, the friction coefficient of a disc pad changes significantly within a range due to environmental conditions, and thus, the friction coefficient can affect the performance of the brakes considerably, especially on the wheel slide. In this paper, we apply a variable friction coefficient and analyzed the effects of the variable friction coefficient on a mechanical brake system of a railway vehicle. We introduce a mathematical formula for the variable friction coefficient in which the variable friction is represented by two variables and five parameters. The proposed formula is applied to real-time simulations using a brake HILS system, and the effectiveness of the formula is verified experimentally by testing the mechanical braking performance of the brake HILS system.

  8. The Effect of a Variable Disc Pad Friction Coefficient for the Mechanical Brake System of a Railway Vehicle

    Science.gov (United States)

    Lee, Nam-Jin; Kang, Chul-Goo

    2015-01-01

    A brake hardware-in-the-loop simulation (HILS) system for a railway vehicle is widely applied to estimate and validate braking performance in research studies and field tests. When we develop a simulation model for a full vehicle system, the characteristics of all components are generally properly simplified based on the understanding of each component’s purpose and interaction with other components. The friction coefficient between the brake disc and the pad used in simulations has been conventionally considered constant, and the effect of a variable friction coefficient is ignored with the assumption that the variability affects the performance of the vehicle braking very little. However, the friction coefficient of a disc pad changes significantly within a range due to environmental conditions, and thus, the friction coefficient can affect the performance of the brakes considerably, especially on the wheel slide. In this paper, we apply a variable friction coefficient and analyzed the effects of the variable friction coefficient on a mechanical brake system of a railway vehicle. We introduce a mathematical formula for the variable friction coefficient in which the variable friction is represented by two variables and five parameters. The proposed formula is applied to real-time simulations using a brake HILS system, and the effectiveness of the formula is verified experimentally by testing the mechanical braking performance of the brake HILS system. PMID:26267883

  9. Fuzzy System of Distribution of Braking Forces on the Engines of a Mobile Robot

    Directory of Open Access Journals (Sweden)

    Bobyr Maxim

    2016-01-01

    Full Text Available The article presents a fuzzy system of distribution of braking forces on the engines of a mobile robot during its lifting and going down.The block diagram of the system of distribution of braking forces and location of sensors on a mobile robot is given in the paper. Also, fuzzy mathematical model of redistribution of braking forces depending on the conditions of the movement a mobile robot is shown in the article. The result of the simulation of control parameters are presented in the article. The control system of a mobile robot is demonstrated on the example of an autonomous mini-robot on platform Pirate under the control of microprocessor Arduino Mega 2560.

  10. A Predictive Distribution Model for Cooperative Braking System of an Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Hongqiang Guo

    2014-01-01

    Full Text Available A predictive distribution model for a series cooperative braking system of an electric vehicle is proposed, which can solve the real-time problem of the optimum braking force distribution. To get the predictive distribution model, firstly three disciplines of the maximum regenerative energy recovery capability, the maximum generating efficiency and the optimum braking stability are considered, then an off-line process optimization stream is designed, particularly the optimal Latin hypercube design (Opt LHD method and radial basis function neural network (RBFNN are utilized. In order to decouple the variables between different disciplines, a concurrent subspace design (CSD algorithm is suggested. The established predictive distribution model is verified in a dynamic simulation. The off-line optimization results show that the proposed process optimization stream can improve the regenerative energy recovery efficiency, and optimize the braking stability simultaneously. Further simulation tests demonstrate that the predictive distribution model can achieve high prediction accuracy and is very beneficial for the cooperative braking system.

  11. Operation of a hydraulic elevator system

    Energy Technology Data Exchange (ETDEWEB)

    Lazarev, G.A.; Li, Yu.V.; Bezuglov, N.N.

    1983-03-01

    The paper describes the hydraulic elevator system in the im. 50-letiya Oktyabr'skoi Revolutsii mine in the Karaganda basin. The system removes water and coal from the sump of a skip mine shaft. Water influx rate per day to the sump does not exceed 120 m/sup 3/, weight of coal falling from the skip is about 5,000 kg per day. The sump, 85 m deep, is closed by a screen. The elevator system consists of two pumps (one is used as a reserve pump) with a capacity of 300 m/sup 3/h. When water level exceeds the maximum permissive limit the pump is activated by an automatic control system. The coal and water mixture pumped from the sump bottom is directed to a screen which separates coal from water. Coal is fed to a coal hopper and water is pumped to a water tank. The hydraulic elevator has a capacity of 80 m/sup 3/ of mixture per hour. The slurry is tranported by a pipe of 175 mm diameter. Specifications of the pumps and pipelines are given. A scheme of the hydraulic elevator system is also shown. Economic aspects of hydraulic elevator use for removal of water and coal from deep sumps of skip shafts in the Karaganda basin also are discussed.

  12. Influence of the braking power control of the traction asynchronous machine in the voltage vector control system under DC

    Directory of Open Access Journals (Sweden)

    Юлія Олександрівна Слободенюк

    2016-11-01

    Full Text Available At braking the traction motors are transferred to generator mode and produce electrical energy which passes to the contact mains or storage device in the DC mains for further use. Such braking is called regenerative. The resulting electrical energy can be spent by trains in traction mode. Regenerative braking reduces the consumption of electric power for traction. In electric railways of our country more than 3% of the consumed electrical energy is given back to contact mains annually. As this takes place there arises the task to control the braking of the traction motors with minimal impact on electric power quality and maintaining proper braking performance. Based on the analysis of the characteristics of the brake traction of an electric locomotive with asynchronous electric machines the main braking modes have been chosen: at a constant sliding speed and the stator constant voltage; at constant braking power and the stator constant voltage; at a power value more than the nominal braking power; at a constant load torque; at a constant frequency of the stator. The vector control system with the formation of the reactive component of the stator current and the EMF regulator was chosen, basing on the working conditions characteristics in the electric braking mode (recuperation; namely, that the characteristics are defined by the laws regulating the frequency and voltage across the stator windings. This control system can fully reproduce any predetermined trajectory of traction and braking performance and adjust braking power. The offered system with recuperation can be used as a means of compensation in emergency situations with a power failure

  13. Machine & electrical double control air dryer for vehicle air braking system

    Science.gov (United States)

    Zhang, Xuan; Yang, Liu; Wang, Xian Yan; Tan, Xiao Yan; Wang, Wei

    2017-09-01

    As is known to all, a vehicle air brake system, in which usually contains moisture. To solve the problem, it is common to use air dryer to dry compressed air effectively and completely remove the moisture and oil of braking system. However, the existing air dryer is not suitable for all commercial vehicles. According to the operational status of the new energy vehicles in the initial operating period, the structure design principle of the machine & electric control air dryer is expounded from the aspects of the structure and operating principle, research & development process.

  14. Model-based Sliding Mode Controller of Anti-lock Braking System

    Science.gov (United States)

    Zheng, Lin; Luo, Yue-Gang; Kang, Jing; Shi, Zhan-Qun

    2016-05-01

    The anti-lock braking system (ABS) used in automobiles is used to prevent wheel from lockup and to maintain the steering ability and stability. The sliding mode controller is able to control nonlinear system steadily. In this research, a one-wheel dynamic model with ABS control is built up using model-based method. Using the sliding model controller, the simulation results by using Matlab/Simulink show qualified data compared with optimal slip rate. By using this method, the ABS brake efficiency is improved efficiently.

  15. Observed tidal braking in the earth/moon/sun system

    Science.gov (United States)

    Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.

    1987-01-01

    The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 x 10 to the minus 22 rad/second squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change of the earth's rotation rate of -4.69 + or - 0.36 x 10 to the minus 22 rad/second squared.

  16. Towards Autonomous Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of new developed control algorithms to increase autonomy and intelligence of hydraulic control systems. A refinement of relaytuning method is used to determine the control parameters of a lag/lead controller and a poleplacement controller. Further, a fail-safe function is developed...

  17. Model-based fuzzy control solutions for a laboratory Antilock Braking System

    DEFF Research Database (Denmark)

    Precup, Radu-Emil; Spataru, Sergiu; Rǎdac, Mircea-Bogdan

    2010-01-01

    This paper gives two original model-based fuzzy control solutions dedicated to the longitudinal slip control of Antilock Braking System laboratory equipment. The parallel distributed compensation leads to linear matrix inequalities which guarantee the global stability of the fuzzy control systems...

  18. Design and research on the electronic parking brake system of the medium and heavy duty vehicles

    Directory of Open Access Journals (Sweden)

    Hongliang WANG

    2015-04-01

    Full Text Available Focusing on auto control of parking brake system of the medium and heavy duty vehicles, the key problems are studied including the system design and control strategies. The structure and working principle of the parking brake system of the medium and heavy duty vehicles are analyzed. The functions of EPB are proposed. The important information of the vehicle are analyzed which could influence the EPB system. The overall plan of the pneumatic EPB system is designed, which adopts the two-position three-way electromagnetic valve with double coil as actuator. The system could keep the vehicle parking brake status or parking release status for a long time without power supply. The function modules of the system are planned, and the control strategies of automatic parking brake and parking release are made. The experiment is performed on a medium-sized commercial vehicle which is experimentally modified. The overall plan of the pneumatic EPB system and the automatic parking function are proved through real vehicle tests.

  19. Hydraulic oil control system for transformer stations

    International Nuclear Information System (INIS)

    Truong, P.

    2002-01-01

    'Full text:' Electrical oil control systems are commonly used to contain large volumes of spilled oil in transformer stations. Specially calibrated floats, some of which are designed to float only in oil and others only in water, are used in combination with a pump to contain oil at the catch basin below a transformer station.This electrical control system requires frequent maintenance and inspections to ensure the electrical system is not affected by any electrical surges. Also the floats need to be inspected and cleaned frequently to prevent oil or grit build up that may affect the systems' ability to contain oil.Recognizing the limitations of electrical oil control systems, Hydro One is investigating alternative control systems. A hydraulic oil control system is being investigated as an alternative which can backup oil in a containment area while allowing any water entering the containment area to pass through. Figure 1 shows a schematic of a bench-top model tested at Ryerson University. Oil and water separation occurs within the double-piped column. Oil and water are allowed to enter the external pipe column but only water is allowed to exit the internal pipe column. The internal pipe column is designed to generate enough hydrostatic pressure to ensure the oil is contained in the external pipe column.The hydraulic oil control system provides a reliable control mechanism and requires less maintenance compared to that of the electrical control system. Since the hydraulic oil control system has no moving parts, nor would any parts that require electricity, it is not affected by electrical surges such as lightening.The maintenance requirements of the hydraulic oil control system are: the removal of any oil and grit from the catch basin, and the occasional visual inspection for any crack or clogs in the system. (author)

  20. Analysis of the minimum swerving distance for the development of a motorcycle autonomous braking system.

    Science.gov (United States)

    Giovannini, Federico; Savino, Giovanni; Pierini, Marco; Baldanzini, Niccolò

    2013-10-01

    In the recent years the autonomous emergency brake (AEB) was introduced in the automotive field to mitigate the injury severity in case of unavoidable collisions. A crucial element for the activation of the AEB is to establish when the obstacle is no longer avoidable by lateral evasive maneuvers (swerving). In the present paper a model to compute the minimum swerving distance needed by a powered two-wheeler (PTW) to avoid the collision against a fixed obstacle, named last-second swerving model (Lsw), is proposed. The effectiveness of the model was investigated by an experimental campaign involving 12 volunteers riding a scooter equipped with a prototype autonomous emergency braking, named motorcycle autonomous emergency braking system (MAEB). The tests showed the performance of the model in evasive trajectory computation for different riding styles and fixed obstacles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Research on motor rotational speed measurement in regenerative braking system of electric vehicle

    Science.gov (United States)

    Pan, Chaofeng; Chen, Liao; Chen, Long; Jiang, Haobin; Li, Zhongxing; Wang, Shaohua

    2016-01-01

    Rotational speed signals acquisition and processing techniques are widely used in rotational machinery. In order to realized precise and real-time control of motor drive and regenerative braking process, rotational speed measurement techniques are needed in electric vehicles. Obtaining accurate motor rotational speed signal will contribute to the regenerative braking force control steadily and realized higher energy recovery rate. This paper aims to develop a method that provides instantaneous speed information in the form of motor rotation. It addresses principles of motor rotational speed measurement in the regenerative braking systems of electric vehicle firstly. The paper then presents ideal and actual Hall position sensor signals characteristics, the relation between the motor rotational speed and the Hall position sensor signals is revealed. Finally, Hall position sensor signals conditioning and processing circuit and program for motor rotational speed measurement have been carried out based on measurement error analysis.

  2. Effectiveness of antilock braking systems in reducing motorcycle fatal crash rates.

    Science.gov (United States)

    Teoh, Eric R

    2011-04-01

    Overbraking and underbraking have been shown to be common factors in motorcycle crashes. Antilock braking systems (ABS) prevent wheels from locking during braking and may make riders less reluctant to apply full braking force. The objective of this study was to evaluate the effect of ABS in fatal motorcycle crashes. Motorcycle drivers involved in fatal crashes per 10,000 registered vehicle years were compared for 13 motorcycle models with optional ABS and those same models without the option during 2003-2008. Motorcycles with optional ABS were included only if the presence of the option could be identified from the vehicle identification number. The rate of fatal motorcycle crashes per 10,000 registered vehicle years was 37 percent lower for ABS models than for their non-ABS versions. ABS appears to be highly effective in preventing fatal motorcycle crashes based on some early adopters of motorcycle ABS technology.

  3. Concept Evaluation for Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    The yaw system is the subsystem on a wind turbine which ensures that the rotor plane of the turbine always is facing the wind direction. Studies from [1] show that a soft yaw system may be utilized to dampen the loads in the wind turbine structure. The soft yaw system operates much like...... investigation. Loads and yaw demands are based on the IEC 61400-1 standard for wind turbine design, and the loads for this examination are extrapolated from the HAWC2 aeroelastic design code. The concepts are based on a 5 MW off-shore turbine....... a suspension system on a car, leading the loads away from the turbine structure. However, to realize a soft hydraulic yaw system a new design concept must be found. As a part of the development of the new concept a preliminary concept evaluation has been conducted, evaluating seven different hydraulic yaw...

  4. Enhanced Regenerative Braking Strategies for Electric Vehicles: Dynamic Performance and Potential Analysis

    Directory of Open Access Journals (Sweden)

    Boyi Xiao

    2017-11-01

    Full Text Available A regenerative braking system and hydraulic braking system are used in conjunction in the majority of electric vehicles worldwide. We propose a new regenerative braking distribution strategy that is based on multi-input fuzzy control logic while considering the influences of the battery’s state of charge, the brake strength and the motor speed. To verify the braking performance and recovery economy, this strategy was applied to a battery electric vehicle model and compared with two other improved regenerative braking strategies. The performance simulation was performed using standard driving cycles (NEDC, LA92, and JP1015 and a real-world-based urban cycle in China. The tested braking strategies satisfied the general safety requirements of Europe (as specified in ECE-13H, and the emergency braking scenario and economic potential were tested. The simulation results demonstrated the differences in the braking force distribution performance of these three regenerative braking strategies, the feasibility of the braking methods for the proposed driving cycles and the energy economic potential of the three strategies.

  5. Chapter 12. Pure Tap Water Hydraulic Systems and Applications

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications.......Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications....

  6. Some effects of adverse weather conditions on performance of airplane antiskid braking systems

    Science.gov (United States)

    Horne, W. B.; Mccarty, J. L.; Tanner, J. A.

    1976-01-01

    The performance of current antiskid braking systems operating under adverse weather conditions was analyzed in an effort to both identify the causes of locked-wheel skids which sometimes occur when the runway is slippery and to find possible solutions to this operational problem. This analysis was made possible by the quantitative test data provided by recently completed landing research programs using fully instrumented flight test airplanes and was further supported by tests performed at the Langley aircraft landing loads and traction facility. The antiskid system logic for brake control and for both touchdown and locked-wheel protection is described and its response behavior in adverse weather is discussed in detail with the aid of available data. The analysis indicates that the operational performance of the antiskid logic circuits is highly dependent upon wheel spin-up acceleration and can be adversely affected by certain pilot braking inputs when accelerations are low. Normal antiskid performance is assured if the tire-to-runway traction is sufficient to provide high wheel spin-up accelerations or if the system is provided a continuous, accurate ground speed reference. The design of antiskid systems is complicated by the necessity for tradeoffs between tire braking and cornering capabilities, both of which are necessary to provide safe operations in the presence of cross winds, particularly under slippery runway conditions.

  7. Emergency escape system uses self-braking mechanism on fixed cable

    Science.gov (United States)

    Billings, C. R.; Mc Daris, R. A.; Mc Gough, J. T.; Neal, P. F.

    1966-01-01

    Slide-wire system with a twist level slide device incorporates automatic descent and braking for the safe and rapid evacuation of personnel from tall structures. This device is used on any tall structure that might require emergency evacuation. It is also used to transfer materials and equipment.

  8. 49 CFR 571.121 - Standard No. 121; Air brake systems.

    Science.gov (United States)

    2010-10-01

    ... off-road harvesting sites and to a processing plant or storage location, as evidenced by skeletal... and transfer of goods by, or between various modes of transport, such as highway, rail, sea and air... supply line coupling. S5.6.6Accumulation of actuation energy. Each parking brake system shall meet the...

  9. V-TECS Guide for Auto Mechanics: Suspension Systems, Brakes and Steering.

    Science.gov (United States)

    Moore, Charles G.; And Others

    The materials in this document are an extension of a catalog of occupational duties, tasks, and performance objectives relevant to maintaining automotive suspension systems, brakes, and steering mechanisms. This document provides the following for each occupational task within each duty: (1) a standard of performance; (2) the conditions under…

  10. Autonomous emergency braking systems adapted to snowy road conditions improve drivers' perceived safety and trust.

    Science.gov (United States)

    Koglbauer, Ioana; Holzinger, Jürgen; Eichberger, Arno; Lex, Cornelia

    2018-04-03

    This study investigated drivers' evaluation of a conventional autonomous emergency braking (AEB) system on high and reduced tire-road friction and compared these results to those of an AEB system adaptive to the reduced tire-road friction by earlier braking. Current automated systems such as the AEB do not adapt the vehicle control strategy to the road friction; for example, on snowy roads. Because winter precipitation is associated with a 19% increase in traffic crashes and a 13% increase in injuries compared to dry conditions, the potential of conventional AEB to prevent collisions could be significantly improved by including friction in the control algorithm. Whereas adaption is not legally required for a conventional AEB system, higher automated functions will have to adapt to the current tire-road friction because human drivers will not be required to monitor the driving environment at all times. For automated driving functions to be used, high levels of perceived safety and trust of occupants have to be reached with new systems. The application case of an AEB is used to investigate drivers' evaluation depending on the road condition in order to gain knowledge for the design of future driving functions. In a driving simulator, the conventional, nonadaptive AEB was evaluated on dry roads with high friction (μ = 1) and on snowy roads with reduced friction (μ = 0.3). In addition, an AEB system adapted to road friction was designed for this study and compared with the conventional AEB on snowy roads with reduced friction. Ninety-six drivers (48 males, 48 females) assigned to 5 age groups (20-29, 30-39, 40-49, 50-59, and 60-75 years) drove with AEB in the simulator. The drivers observed and evaluated the AEB's braking actions in response to an imminent rear-end collision at an intersection. The results show that drivers' safety and trust in the conventional AEB were significantly lower on snowy roads, and the nonadaptive autonomous braking strategy was

  11. STUDY ON ENERGY EXCHANGE PROCESSES IN NORMAL OPERATION OF METRO ROLLING STOCK WITH REGENERATIVE BRAKING SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. O. Sulym

    2017-10-01

    Full Text Available Purpose. The analysis of the existing studies showed that the increasing of energy efficiency of metro rolling stock becomes especially important and requires timely solutions. It is known that the implementation of regenerative braking systems on rolling stock will allow significantly solving this problem. It was proved that one of the key issues regarding the introduction of the above-mentioned systems is research on efficient use of electric energy of regenerative braking. The purpose of the work is to evaluate the amount of excessive electric power of regenerative braking under normal operation conditions of the rolling stock with regenerative braking systems for the analysis of the energy saving reserves. Methodology. Quantifiable values of electrical energy consumed for traction, returned to the contact line and dissipated in braking resistors (excessive energy are determined using results of experimental studies of energy exchange processes under normal operating conditions of metro rolling stock with regenerative systems. Statistical methods of data processing were applied as well. Findings. Results of the studies analysis of metro rolling stock operation under specified conditions in Sviatoshinsko-Brovarskaia line of KP «Kyiv Metro system» stipulate the following: 1 introduction of regenerative braking systems into the rolling stock allows to return about 17.9-23.2% of electrical energy consumed for traction to the contact line; 2 there are reserves for improving of energy efficiency of rolling stock with regenerative systems at the level of 20.2–29.9 % of electrical energy consumed for traction. Originality. For the first time, it is proved that the most significant factor that influences the quantifiable values of the electrical energy regeneration is a track profile. It is suggested to use coefficients which indicate the amount and reserves of unused (excessive electrical energy for quantitative evaluation. Studies on

  12. 49 CFR 393.52 - Brake performance.

    Science.gov (United States)

    2010-10-01

    ...: Type of motor vehicle Service brake systems Braking force as a percentage of gross vehicle or... specifications for performance-based brake testers for commercial motor vehicles, where braking force is the sum of the braking force at each wheel of the vehicle or vehicle combination as a percentage of gross...

  13. Fire Resistant Aircraft Hydraulic System.

    Science.gov (United States)

    1982-07-01

    Chemical Division "Fluorinert" FC-48 - Fluorinated Hydrocarbon "Fluorinert" FC-70 - Fluorinated Hydrocarbon Montedison S. p. A. "Fomblin" Z-04...forming substances such as varnish which could seize a spool valve or other small-clearance sliding surfaces. The test setup is pictorially described in...breakdown products such as solid particles, gels, and sludge’can plug system filters and even small fluid passages, nozzles, and orifices. Varnish -like

  14. Asymmetric Barrier Lyapunov Function-Based Wheel Slip Control for Antilock Braking System

    Directory of Open Access Journals (Sweden)

    Xiaolei Chen

    2015-01-01

    Full Text Available As an important device of the aircraft landing system, the antilock braking system (ABS has a function to avoid aircraft wheels self-locking. To deal with the strong nonlinear characteristics, complex nonlinear control schemes are applied in ABS. However, none of existing control schemes focus on the braking operating status, which directly reflects wheels self-locking degree. In this paper, the braking operating status region is divided into three regions: the healthy region, the light slip region, and the deep slip region. An ABLF-based wheel slip controller is proposed for ABS to constrain the braking system operating status in the healthy region and the light slip region. Therefore the ABS will be prevented from operating in the deep slip region. Under the proposed control scheme, self-locking is avoided completely and zero steady state error tracking of the wheel optimal slip ratio is implemented. The Hardware-In-Loop (HIL experiments have validated the effectiveness of the proposed controller.

  15. Designing neuro-fuzzy controller for electromagnetic anti-lock braking system (ABS) on electric vehicle

    Science.gov (United States)

    Pramudijanto, Josaphat; Ashfahani, Andri; Lukito, Rian

    2018-03-01

    Anti-lock braking system (ABS) is used on vehicles to keep the wheels unlocked in sudden break (inside braking) and minimalize the stop distance of the vehicle. The problem of it when sudden break is the wheels locked so the vehicle steering couldn’t be controlled. The designed ABS system will be applied on ABS simulator using the electromagnetic braking. In normal condition or in condition without braking, longitudinal velocity of the vehicle will be equal with the velocity of wheel rotation, so the slip ratio will be 0 (0%) and if the velocity of wheel rotation is 0 (in locked condition) then the wheels will be slip 1 (100%). ABS system will keep the value of slip ratio so it will be 0.2 (20%). In this final assignment, the method that is used is Neuro-Fuzzy method to control the slip value on the wheels. The input is the expectable slip and the output is slip from plant. The learning algorithm which is used is Backpropagation that will work by feedforward to get actual output and work by feedback to get error value with target output. The network that was made based on fuzzy mechanism which are fuzzification, inference and defuzzification, Neuro-fuzzy controller can reduce overshoot plant respond to 43.2% compared to plant respond without controller by open loop.

  16. 14 CFR 33.72 - Hydraulic actuating systems.

    Science.gov (United States)

    2010-01-01

    ... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic actuating systems. Each hydraulic actuating system must function properly under all conditions in which the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic actuating systems. 33.72 Section...

  17. TG 220 MW hydraulic control system diagnostics

    International Nuclear Information System (INIS)

    Svabcik, A.

    1996-01-01

    The TG power output control system comprises a hydraulic and an electronic part. TG speed, power output or the main steam header pressure (HPK) depend on the steam flow at the turbine inlet. The steam admission into the turbine is controlled by four control valves and one by-pass valve in case of the HP part and by four capture flap valves in case of the LP part. The task of the SKODA K-220 MW turbine protection and control systems is to provide both the turbine speed and power output control to the setpoint value. Diagnostic measurements were aimed at getting an overview of both technical and functional states of all power output control elements. Principally, it can be stated that some deficiencies of a design nature originating from the manufacturer's factory were revealed and some other deficiencies related to hydraulic control elements functionality were identified more closely by the new method. 5 figs

  18. TG 220 MW hydraulic control system diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Svabcik, A [Atomova Elektraren Bohunice, Jaslovske Bohunice (Slovakia)

    1997-12-31

    The TG power output control system comprises a hydraulic and an electronic part. TG speed, power output or the main steam header pressure (HPK) depend on the steam flow at the turbine inlet. The steam admission into the turbine is controlled by four control valves and one by-pass valve in case of the HP part and by four capture flap valves in case of the LP part. The task of the SKODA K-220 MW turbine protection and control systems is to provide both the turbine speed and power output control to the setpoint value. Diagnostic measurements were aimed at getting an overview of both technical and functional states of all power output control elements. Principally, it can be stated that some deficiencies of a design nature originating from the manufacturer`s factory were revealed and some other deficiencies related to hydraulic control elements functionality were identified more closely by the new method. 5 figs.

  19. Mechanical braking system for the pulsed power supply system of ASDEX Upgrade

    International Nuclear Information System (INIS)

    Käsemann, C.-P.; Huart, M.; Stobbe, F.; Goldstein, I.; Sigalov, A.; Sachs, E.; Perk, E.

    2013-01-01

    Highlights: ► Compact and innovative solution for dumping of large kinetic energy. ► Small mass of energy converter at the shaft due to circulating storage medium. ► Design of the active parts ensures flat torque/power characteristics. ► Also suitable for spending a great part of operating life in “Freewheeling” mode. -- Abstract: A few years ago, IPP reviewed the safety of the ASDEX Upgrade pulsed power supply system. Two critical sub-systems had been identified: The (electrical) braking system for the flywheel generators and the oil lubrication system for the shaft bearings. A simultaneous failure of these two systems may lead to severe damages and could have consequences for the safety of operating personnel. Therefore a second, independent braking possibility for every generator was stipulated. Especially the challenges adapting a dynamometer, originally designed for motor test benches, towards a plant safety system for generator EZ4 will be described in the paper. Further on, the paper will present the problems, implementing such a system into an existing installation, including the calculation of the required supporting structure, balancing of the extended shaft line and required water cooling and control. Finally it will report on the performance achieved during operation

  20. Mechanical braking system for the pulsed power supply system of ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Käsemann, C.-P., E-mail: c.p.kaesemann@ipp.mpg.de [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Huart, M. [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Michel Huart Personal Coaching and Consulting, Georgenschwaigstraße 23 RG, 80807 München (Germany); Stobbe, F.; Goldstein, I.; Sigalov, A. [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Sachs, E. [Siemens AG, Industrial Automation Systems, Gleiwitzer Straße 555, 90475 Nürnberg (Germany); Perk, E. [Piper Test and Measurement Ltd., The Barn, Bilsington, Ashford, Kent TN25 7JT, England (United Kingdom)

    2013-10-15

    Highlights: ► Compact and innovative solution for dumping of large kinetic energy. ► Small mass of energy converter at the shaft due to circulating storage medium. ► Design of the active parts ensures flat torque/power characteristics. ► Also suitable for spending a great part of operating life in “Freewheeling” mode. -- Abstract: A few years ago, IPP reviewed the safety of the ASDEX Upgrade pulsed power supply system. Two critical sub-systems had been identified: The (electrical) braking system for the flywheel generators and the oil lubrication system for the shaft bearings. A simultaneous failure of these two systems may lead to severe damages and could have consequences for the safety of operating personnel. Therefore a second, independent braking possibility for every generator was stipulated. Especially the challenges adapting a dynamometer, originally designed for motor test benches, towards a plant safety system for generator EZ4 will be described in the paper. Further on, the paper will present the problems, implementing such a system into an existing installation, including the calculation of the required supporting structure, balancing of the extended shaft line and required water cooling and control. Finally it will report on the performance achieved during operation.

  1. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    International Nuclear Information System (INIS)

    Kim, Hyo-gon; Han, Changsoo; Lee, Jong-won; Park, Sangdeok

    2015-01-01

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program

  2. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-gon; Han, Changsoo [Hanyang University, Seoul (Korea, Republic of); Lee, Jong-won [Korea University of Science and Technology, Seoul (Korea, Republic of); Park, Sangdeok [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2015-02-15

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program.

  3. Fluid Temperature of Aero Hydraulic Systems

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2016-01-01

    Full Text Available In modern supersonic aircrafts due to aerodynamic skin heating a temperature of hydraulics environment significantly exceeds that of permissible for fluids used. The same problem exists for subsonic passenger aircrafts, especially for Airbuses, which have hydraulics of high power where convective heat transfer with the environment is insufficient and there is no required temperature control of fluid. The most significant in terms of heat flow is the flow caused by the loss of power to the pump and when designing the hydraulic system (HS it is necessary to pay very serious attention to it. To use a constant capacity pump is absolutely unacceptable, since HS efficiency in this case is extremely low, and the most appropriate are variable-capacity pumps, cut-off pumps, dual-mode pumps. The HS fluid cooling system should provide high reliability, lightweight, simple design, and a specified heat transfer in all flight modes.A system cooling the fluid by the fuel of feeding lines of the aircraft engines is the most effective, and it is widely used in supersonic aircrafts, where power of cooling system is essential. Subsonic aircrafts widely use convective heat exchangers. In thermal design of the aircraft hydraulics, the focus is generally given to the maximum and minimum temperatures of the HS fluid, the choice of the type of heat exchanger (convective or flow-through, the place of its installation. In calculating the operating temperature of a hydraulic system and its cooling systems it is necessary to determine an increase of the working fluid temperature when throttling it. There are three possible formulas to calculate the fluid temperature in throttling, with the error of a calculated temperature drop from 30% to 4%.The article considers the HS stationary and noon-stationary operating conditions and their calculation, defines temperatures of fluid and methods to control its specified temperature. It also discusses various heat exchanger schemes

  4. Implementation and Performance Evaluation of a Regenerative Braking System Coupled to Ultracapacitors for a Brushless DC Hub Motor Driven Electric Tricycle

    OpenAIRE

    Kuruppu, Sandun

    2010-01-01

    Research related to electrical vehicles is gaining importance due to the, energy crisis. An electric vehicle itself is far ahead of an internal combustion, engine based vehicle due to its efficiency. Using regenerative braking when, braking, improves the efficiency of an electric vehicle as it recovers energy that, could go to waste if mechanical brakes were used. A novel regenerative braking, system for neighborhood electric vehicles was designed, prototyped and tested., The proposed system ...

  5. Autonomous collision avoidance system by combined control of steering and braking using geometrically optimised vehicular trajectory

    Science.gov (United States)

    Hayashi, Ryuzo; Isogai, Juzo; Raksincharoensak, Pongsathorn; Nagai, Masao

    2012-01-01

    This study proposes an autonomous obstacle avoidance system not only by braking but also by steering, as one of the active safety technologies to prevent traffic accidents. The proposed system prevents the vehicle from colliding with a moving obstacle like a pedestrian jumping out from the roadside. In the proposed system, to avoid the predicted colliding position based on constant-velocity obstacle motion assumption, the avoidance trajectory is derived as connected two identical arcs. The system then controls the vehicle autonomously by the combined control of the braking and steering systems. In this paper, the proposed system is examined by real car experiments and its effectiveness is shown from the results of the experiments.

  6. Design and Experimental Research of New Type Brake by Wire System Based on Giant-magnetostrictive Material

    Directory of Open Access Journals (Sweden)

    Changbao CHU

    2014-04-01

    Full Text Available In this paper, H type brake by wire system based on giant-magnetostrictive material is designed from two aspects of hardware and software. System principle prototype is manufactured. Hardware circuit mainly includes the Sepic circuit, current detection circuit, over current protection circuit, PWM driver protection circuit. Circuit parameters can be obtained through by theoretical calculation. Pedal sensor signal is taken as main control variable, look-up table method is used for brake by wire system. The experimental results show that the system can meet the braking requirements. It proves the feasibility of the scheme.

  7. Design And Implementation of Dsp-Based Intelligent Controller For Automobile Braking System

    OpenAIRE

    S.N. Sidek and M.J.E. Salami

    2012-01-01

    An intelligent braking system has great potential applications especially, in developed countries where research on smart vehicle and intelligent highways are receiving ample attention. The system when integrated with other subsystems like automatic traction control, intelligent throttle, and auto cruise systems, etc will result in smart vehicle maneuver. The driver at the end of the day will become the passenger, safety accorded the highest priority and the journey optimized in term of time ...

  8. ANALYSIS OF PERTURBED MOTION STABILITY OF WHEELER VEHICLES BRAKES CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Verbytskiyi

    2011-01-01

    Full Text Available The analysis of the perturbed motion stability of the brake automatic control system on the basis of Lyapunov’s second method is carried out. Using transformations of Lurie there has been ob-tained the canonical form of the system of equations of automatic control. It allowed determining the necessary and sufficient conditions of the asymptotic stability of the system irrespective of its initial condition and a definite choice of the admissible characteristic of the regulator.

  9. Sustainable urban rail systems: Strategies and technologies for optimal management of regenerative braking energy

    International Nuclear Information System (INIS)

    González-Gil, Arturo; Palacin, Roberto; Batty, Paul

    2013-01-01

    Highlights: • Review of principal regenerative braking strategies and technologies for urban rail. • Different energy storage technologies are assessed for use in urban rail. • Optimising timetables is a preferential measure to improve energy efficiency. • Energy storage systems improve efficiency and reliability of urban rail systems. • Reversible substations allow for a complete recovery of braking energy. - Abstract: In a society characterised by increasing rates of urbanisation and growing concerns about environmental issues like climate change, urban rail transport plays a key role in contributing to sustainable development. However, in order to retain its inherent advantages in terms of energy consumption per transport capacity and to address the rising costs of energy, important energy efficiency measures have to be implemented. Given that numerous and frequent stops are a significant characteristic of urban rail, recuperation of braking energy offers a great potential to reduce energy consumption in urban rail systems. This paper presents a comprehensive overview of the currently available strategies and technologies for recovery and management of braking energy in urban rail, covering timetable optimisation, on-board and wayside Energy Storage Systems (ESSs) and reversible substations. For each measure, an assessment of their main advantages and disadvantages is provided alongside a list of the most relevant scientific studies and demonstration projects. This study concludes that optimising timetables is a preferential measure to increase the benefits of regenerative braking in any urban rail system. Likewise, it has been observed that ESSs are a viable solution to reuse regenerative energy with voltage stabilisation and energy saving purposes. Electrochemical Double Layer Capacitors has been identified as the most suitable technology for ESSs in general, although high specific power batteries such as Li-ion may become a practical option for on

  10. Power Management in Mobile Hydraulic Applications - An Approach for Designing Hydraulic Power Supply Systems

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    2004-01-01

    Throughout the last three decades energy consumption has become one of the primary design aspects in hydraulic systems, especially for mobile hydraulic systems, as power and cooling capacity here is at limited disposal. Considering the energy usage, this is dependent on component efficiency, but ...... the hydraulic power supply in the most energy efficient way, when considering a number of load situations. Finally an example of the approach is shown to prove its validity.}......Throughout the last three decades energy consumption has become one of the primary design aspects in hydraulic systems, especially for mobile hydraulic systems, as power and cooling capacity here is at limited disposal. Considering the energy usage, this is dependent on component efficiency...

  11. Safety brake for tape reels

    Science.gov (United States)

    Carle, C. E.

    1977-01-01

    All-mechanical device senses end of tape and stops reel, even in event of electronic system failure. Assembly includes stop to prevent brake from overriding tape. Recentering mechanism returns brake to neutral position after torque is removed from reels.

  12. Novel control algorithm of braking energy regeneration system for an electric vehicle during safety–critical driving maneuvers

    International Nuclear Information System (INIS)

    Lv, Chen; Zhang, Junzhi; Li, Yutong; Yuan, Ye

    2015-01-01

    Highlights: • Models of an electric vehicle with regenerative braking system (RBS) are built. • Control algorithm of RBS under safety–critical driving maneuvers is proposed. • Simulations and HIL tests of the proposed strategy are conducted. • Performance improvement of vehicle’s mean deceleration is up to 13.89%. • Test results verify the feasibility and effectiveness of the proposed method. - Abstract: This paper mainly focuses on control algorithm of the braking energy regeneration system of an electric bus under safety–critical driving situations. With the aims of guaranteeing vehicle stability in various types of tyre–road adhesion conditions, based on the characteristics of electrified powertrain, a novel control algorithm of regenerative braking system is proposed for electric vehicles during anti-lock braking procedures. First, the models of vehicle dynamics and main components including braking energy regenerative system of the case-study electric bus are built in MATLAB/Simulink. Then, based on the phase-plane method, the optimal brake torque is calculated for ABS control of vehicle. Next, a novel allocation strategy, wherein the target optimal brake torque is divided into two parts that are handled separately by the regenerative and friction brakes, is developed. Simulations of the proposed control strategy are conducted based on system models built using MATLAB/Simulink. The simulation results demonstrate that the developed strategy enables improved control in terms of vehicle stability and braking performance under different emergency driving conditions. To further verify the synthesized control algorithm, hardware-in-the-loop tests are also performed. The experimental results validate the simulation data and verify the feasibility and effectiveness of the developed control algorithm.

  13. Wheel slide protection control using a command map and Smith predictor for the pneumatic brake system of a railway vehicle

    Science.gov (United States)

    Lee, Nam-Jin; Kang, Chul-Goo

    2016-10-01

    In railway vehicles, excessive sliding or wheel locking can occur while braking because of a temporarily degraded adhesion between the wheel and the rail caused by the contaminated or wet surface of the rail. It can damage the wheel tread and affect the performance of the brake system and the safety of the railway vehicle. To safeguard the wheelset from these phenomena, almost all railway vehicles are equipped with wheel slide protection (WSP) systems. In this study, a new WSP algorithm is proposed. The features of the proposed algorithm are the use of the target sliding speed, the determination of a command for WSP valves using command maps, and compensation for the time delay in pneumatic brake systems using the Smith predictor. The proposed WSP algorithm was verified using experiments with a hardware-in-the-loop simulation system including the hardware of the pneumatic brake system.

  14. Hydraulic Yaw System for Wind Turbines with New Compact Hydraulic Motor Principle

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Mørk; Hansen, Michael Rygaard; Mouritsen, Ole Ø.

    2011-01-01

    This paper presents a new hydraulic yaw system for wind turbines. The basic component is a new type of hydraulic motor characterized by an extraordinary high specific displacement yielding high output torque in a compact form. The focus in the paper is the volumetric efficiency of the motor, which...

  15. Researches regarding primary control in hydraulic systems

    OpenAIRE

    Tița Irina; Mardare Irina

    2017-01-01

    The technology in wind turbines has developed very rapidly but there are still a lot that can be improved also regarding new technologies. One example is wind turbine with hydraulic transmission. At the beginning low power wind turbines are in view. First of all the wind energy is meant to be used by isolated users for household and garden equipment or pumping water. Later, if results will be as expected, and wind potential satisfactory, such systems could be connected to electric grid. In ou...

  16. Development of Quasi-3DOF upper limb rehabilitation system using ER brake: PLEMO-P1

    International Nuclear Information System (INIS)

    Kikuchi, T; Fukushima, K; Furusho, J; Ozawa, T

    2009-01-01

    In recent years, many researchers have studied the potential of using robotics technology to assist and quantify the motor functions for neuron-rehabilitation. Some kinds of haptic devices have been developed and evaluated its efficiency with clinical tests, for example, upper limb training for patients with spasticity after stroke. However, almost all the devices are active-type (motor-driven) haptic devices and they basically require high-cost safety system compared to passive-type (brake-based) devices. In this study, we developed a new practical haptic device 'PLEMO-P1'; this system adopted ER brakes as its force generators. In this paper, the mechanism of PLEMO-P1 and its software for a reaching rehabilitation are described.

  17. Development of Quasi-3DOF upper limb rehabilitation system using ER brake: PLEMO-P1

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, T; Fukushima, K; Furusho, J; Ozawa, T [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: kikuchi@mech.eng.osaka-u.ac.jp

    2009-02-01

    In recent years, many researchers have studied the potential of using robotics technology to assist and quantify the motor functions for neuron-rehabilitation. Some kinds of haptic devices have been developed and evaluated its efficiency with clinical tests, for example, upper limb training for patients with spasticity after stroke. However, almost all the devices are active-type (motor-driven) haptic devices and they basically require high-cost safety system compared to passive-type (brake-based) devices. In this study, we developed a new practical haptic device 'PLEMO-P1'; this system adopted ER brakes as its force generators. In this paper, the mechanism of PLEMO-P1 and its software for a reaching rehabilitation are described.

  18. Fuzzy Life-Extending Control of Anti-Lock Braking System

    Directory of Open Access Journals (Sweden)

    Ahmed M. El-Garhy

    2013-12-01

    Full Text Available The repeated operation of the Anti-Lock Braking System (ABS causes accumulation of structural damages in its different subsystems leading to reduction in their functional life time. This paper proposes a Fuzzy Logic based Life-Extending Control (FLEC system for increasing the service life of the ABS. FLEC achieves significant improvement in service life by the trade-off between satisfactory dynamic performance and safe operation. The proposed FLEC incorporates structural damage model of the ABS. The model utilizes the dynamic behavior of the ABS and predicts the wear rates of the brake pads/disc. Based on the predicted wear rates, the proposed fuzzy logic controller modifies its control strategy on-line to keep safe operation leading to increase in service time of the ABS. FLEC is fine tuned via genetic algorithm and its effectiveness is verified through simulations of emergency stops of a passenger vehicle model.

  19. Error-tolerant pedal for a brake-by-wire system; Fehlertolerante Pedaleinheit fuer ein elektromechanisches Bremssystem (Brake-by-Wire)

    Energy Technology Data Exchange (ETDEWEB)

    Stoelzl, S.

    2000-07-01

    The author describes the development of an error-tolerant brake-by-wire system with pedal consolidation, including the development of a monitoring and safety concept. [German] Die zunehmende Entwicklung aktiver Fahrerassistenzsysteme im Automobilbereich (z.B. ABS, ESP) zur Erhoehung der Fahrsicherheit erfordert ein staendig wachsendes Funktionspotential. Die Bremsanlagen werden dadurch immer komplexer. Parallel steigen die Anforderungen an den Bremspedalkomfort. Einen Ausweg aus dieser Problematik verspricht die Elektromechanische Bremsanlage (EMB) mit rueckwirkungsfreier Entkopplung des Fahrers von den Radbremsen (Brake-by-Wire). Das Bremskommando des Fahrers wird bei Betaetigung des Bremspedals rein sensorisch erfasst. Da es keine mechanische Rueckfallebene mehr gibt, muessen Fehler der Pedaleinheit erkannt und toleriert werden. Neu an dieser Arbeit ist die Entwicklung der fehlertoleranten elektromechanischen Pedaleinheit der EMB mit Pedalsensorkonsolidierung und Erstellung des dazu notwendigen Sicherheits- und Ueberwachungskonzepts. (orig.)

  20. Aspects regarding manufacturing technologies of composite materials for brake pad application

    Science.gov (United States)

    Craciun, A. L.; Hepuţ, T.; Pinca-Bretotean, C.

    2018-01-01

    Current needs in road safety, requires the development of new technical solutions for automotive braking system. Their safe operation is subject to following factors: concept design, materials used and electronic control. Among the factors previously listed, choice of materials and manufacturing processes are difficult stage but very important for achieving technical performance and getting a relatively small cost of constituting parts of brake system. The choice is based on the promotion of organic composite material, popular in areas where the weight of materials plays an important role. The brake system is composed of many different parts including brake pads, a master cylinder, wheel cylinders and a hydraulic control system. The brake pads are an important component in the braking system of automotive. These are of different types, suitable for different types of automotive and engines. Brake pads are designed for friction stability, durability, minimization of noise and vibration. The typology of the brake pads depends on the material which they are made. The aim of this paper is to presents the manufacturing technologies for ten recipes of composite material used in brake pads applications. In this work will be done: choosing the constituents of the recipes, investigation of their basic characteristics, setting the proportions of components, obtaining the composite materials in laboratory, establishing the parameters of manufacturing technology and technological analysis.

  1. Model predictive control-based efficient energy recovery control strategy for regenerative braking system of hybrid electric bus

    International Nuclear Information System (INIS)

    Li, Liang; Zhang, Yuanbo; Yang, Chao; Yan, Bingjie; Marina Martinez, C.

    2016-01-01

    Highlights: • A 7-degree-of-freedom model of hybrid electric vehicle with regenerative braking system is built. • A modified nonlinear model predictive control strategy is developed. • The particle swarm optimization algorithm is employed to solve the optimization problem. • The proposed control strategy is verified by simulation and hardware-in-loop tests. • Test results verify the effectiveness of the proposed control strategy. - Abstract: As one of the main working modes, the energy recovered with regenerative braking system provides an effective approach so as to greatly improve fuel economy of hybrid electric bus. However, it is still a challenging issue to ensure braking stability while maximizing braking energy recovery. To solve this problem, an efficient energy recovery control strategy is proposed based on the modified nonlinear model predictive control method. Firstly, combined with the characteristics of the compound braking process of single-shaft parallel hybrid electric bus, a 7 degrees of freedom model of the vehicle longitudinal dynamics is built. Secondly, considering nonlinear characteristic of the vehicle model and the efficiency of regenerative braking system, the particle swarm optimization algorithm within the modified nonlinear model predictive control is adopted to optimize the torque distribution between regenerative braking system and pneumatic braking system at the wheels. So as to reduce the computational time of modified nonlinear model predictive control, a nearest point method is employed during the braking process. Finally, the simulation and hardware-in-loop test are carried out on road conditions with different tire–road adhesion coefficients, and the proposed control strategy is verified by comparing it with the conventional control method employed in the baseline vehicle controller. The simulation and hardware-in-loop test results show that the proposed strategy can ensure vehicle safety during emergency braking

  2. Development of mechanical brake assist; Mechanical brake assist no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, M; Shingyoji, S; Nakamura, I; Tagawa, T; Saito, Y; Ishihara, T; Kobayashi, S; Yoshida, M [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    We have recognized that there are drivers who cannot apply strong brake pedal force , in spite of the necessity of hard braking in emergencies. We have developed a `mechanical brake assist system` which assists drivers appropriately, according to the drivers` characteristics based on studying the characteristic`s of conditions of drivers applying the brake pedal force in emergency conditions. 2 refs., 7 figs., 1 tab.

  3. A study of novel regenerative braking system based on supercapacitor for electric vehicle driven by in-wheel motors

    Directory of Open Access Journals (Sweden)

    Li-qiang Jin

    2015-03-01

    Full Text Available Taking supercapacitor and battery pack as the energy storage unit, a novel type of regenerative braking system for electric vehicle driven by in-wheel motors is presented, and a braking energy regeneration control strategy is set up. Then, a co-simulation test based on CRUISE and Simulink is conducted. The results of simulation show that the novel type of system can ensure the safety of battery pack and significantly improve the rate of energy regeneration.

  4. Control issues for a hydraulically powered dissimilar teleoperated system

    International Nuclear Information System (INIS)

    Jansen, J.F.; Kress, R.L.

    1995-01-01

    This paper will address two issues associated with the implementation of a hydraulically powered dissimilar master-slave teleoperated system. These issues are the overall system control architecture and the design of robust hydraulic servo controllers for the position control problem. Finally, a discussion of overall system performance on an actual teleoperated system will be presented. (Schilling's Titan II hydraulic manipulators are the slave manipulators and the master manipulators are from the Oak Ridge National Laboratory-developed Advanced Servo Manipulator.)

  5. HYDRAULIC CONCRETE COMPOSITION AND PROPERTIES CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2015-08-01

    Full Text Available Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic–viscous–plastic bodies. The system of canonical equations consists of the equations for concrete strength, absolute volume, concrete mix consistency as well as the equation for optimal concrete saturation with aggregates while minimizing cement content. The joint solution of these four equations related to composition allows determining for the materials the concrete composition of required strength, concrete workability with minimum cement content. The procedure for calculation of hydraulic concrete composition according to the physico-analytical method consists of two parts: 1 physical, which is laboratory testing of concrete mix components in different concrete compositions; 2 analytical, which represents the calculation algorithm for concrete compositions equivalent in concrete strength and workability that comply with the specific conditions of concrete placing. Findings. To solve the problem of designing the concrete composition with the desired properties for railway structures and buildings it was proposed to use the information technology in the form of a developed computer program whose algorithm includes the physico-analytical method for hydraulic concrete composition determination. Originality. The developed concrete composition design method takes into account the basic properties of raw materials, concrete mix and concrete, which are pre-determined. The distinctive feature of physico-analytical method is obtaining of a set of equivalent compositions with a certain concrete mix

  6. The effect of a low-speed automatic brake system estimated from real life data.

    Science.gov (United States)

    Isaksson-Hellman, Irene; Lindman, Magdalena

    2012-01-01

    A substantial part of all traffic accidents involving passenger cars are rear-end collisions and most of them occur at low speed. Auto Brake is a feature that has been launched in several passenger car models during the last few years. City Safety is a technology designed to help the driver mitigate, and in certain situations avoid, rear-end collisions at low speed by automatically braking the vehicle.Studies have been presented that predict promising benefits from these kinds of systems, but few attempts have been made to show the actual effect of Auto Brake. In this study, the effect of City Safety, a standard feature on the Volvo XC60 model, is calculated based on insurance claims data from cars in real traffic crashes in Sweden. The estimated claim frequency of rear-end frontal collisions measured in claims per 1,000 insured vehicle years was 23% lower for the City Safety equipped XC60 model than for other Volvo models without the system.

  7. Hardware simulation of automatic braking system based on fuzzy logic control

    Directory of Open Access Journals (Sweden)

    Noor Cholis Basjaruddin

    2016-07-01

    Full Text Available In certain situations, a moving or stationary object can be a barrier for a vehicle. People and vehicles crossing could potentially get hit by a vehicle. Objects around roads as sidewalks, road separator, power poles, and railroad gates are also a potential source of danger when the driver is inattentive in driving the vehicle. A device that can help the driver to brake automatically is known as Automatic Braking System (ABS. ABS is a part of the Advanced Driver Assistance Systems (ADAS, which is a device designed to assist the driver in driving the process. This device was developed to reduce human error that is a major cause of traffic accidents. This paper presents the design of ABS based on fuzzy logic which is simulated in hardware by using a remote control car. The inputs of fuzzy logic are the speed and distance of the object in front of the vehicle, while the output of fuzzy logic is the intensity of braking. The test results on the three variations of speed: slow-speed, medium-speed, and high-speed shows that the design of ABS can work according to design.

  8. Energy Efficiency in Heavy Vehicle Tires, Drivetrains, and Braking Systems; FINAL

    International Nuclear Information System (INIS)

    Peter J. Blau

    2000-01-01

    This document was prepared to support the primary goals of the Department of Energy, Office of Heavy Vehicle Technologies. These were recently stated as follows: ''Develop by 2004 the enabling technologies for a class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) which will meet prevailing emission standards. For Class 3-6 trucks operating on an urban driving cycle, develop by 2004 commercially viable vehicles that achieve at least double the fuel economy of comparable current vehicles (1999), and as a research goal, reduce criteria pollutants to 30% below EPA standards. Develop by 2004 the diesel engine enabling technologies to support large-scale industry dieselization of Class 1 and 2 trucks, achieving a 35% fuel efficiency improvement over comparable gasoline-fueled trucks, while meeting applicable emissions standards.'' The enabling technologies for improving the fuel efficiency of trucks, include not only engine technologies but also technologies involved with lowering the rolling resistance of tires, reducing vehicle aerodynamic drag, improving thermal management, and reducing parasitic frictional losses in drive train components. Opportunities also exist for making better use of the energy that might ordinarily be dissipated during vehicle braking. Braking systems must be included in this evaluation since safety in truck operations is vital, and braking requirements are greater for vehicles having lowered resistance to rolling. The Office of Heavy Vehicle Technologies has initiated a program to improve the aerodynamics of heavy vehicles through wind tunnel testing, computational modeling, and on-road evaluations. That activity is described in a separate multi-year plan; therefore, emphasis in this document will be on tires, drive trains, and braking systems. Recent, dramatic fluctuations in diesel fuel prices have emphasized the importance of effecting savings in truck fuel economy by implementing new component designs and materials

  9. Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions

    Science.gov (United States)

    Kim, Gi-Woo; Wang, K. W.

    2009-08-01

    In this study, a nonlinear sliding-mode controller is designed for force tracking of a piezoelectric-hydraulic pump (PHP)-based actuation system, which is developed to replace the current electro-hydraulic actuation systems for automatic transmission (AT) friction elements, such as band brakes or clutches. By utilizing the PHP, one can eliminate the various hydraulic components (oil pump, regulating valve and control valve) in current ATs and achieve a simpler configuration with more efficient operation. With the derived governing equation of motion of the PHP-based actuation system integrated with the friction element (band brake), a switching control law is synthesized based on the sliding-mode theory. To evaluate the effectiveness of the proposed control law, its force tracking performance for the engagement of a friction element during an AT 1\\to 2 up-shift is examined experimentally. It is shown that one can successfully track the desired force trajectory for AT shift control with small tracking error. This study demonstrates the potential of the PHP as a new controllable actuation system for AT friction elements.

  10. Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions

    International Nuclear Information System (INIS)

    Kim, Gi-Woo; Wang, K W

    2009-01-01

    In this study, a nonlinear sliding-mode controller is designed for force tracking of a piezoelectric-hydraulic pump (PHP)-based actuation system, which is developed to replace the current electro-hydraulic actuation systems for automatic transmission (AT) friction elements, such as band brakes or clutches. By utilizing the PHP, one can eliminate the various hydraulic components (oil pump, regulating valve and control valve) in current ATs and achieve a simpler configuration with more efficient operation. With the derived governing equation of motion of the PHP-based actuation system integrated with the friction element (band brake), a switching control law is synthesized based on the sliding-mode theory. To evaluate the effectiveness of the proposed control law, its force tracking performance for the engagement of a friction element during an AT 1→2 up-shift is examined experimentally. It is shown that one can successfully track the desired force trajectory for AT shift control with small tracking error. This study demonstrates the potential of the PHP as a new controllable actuation system for AT friction elements

  11. Underwater hydraulic shock shovel control system

    Science.gov (United States)

    Liu, He-Ping; Luo, A.-Ni; Xiao, Hai-Yan

    2008-06-01

    The control system determines the effectiveness of an underwater hydraulic shock shovel. This paper begins by analyzing the working principles of these shovels and explains the importance of their control systems. A new type of control system’s mathematical model was built and analyzed according to those principles. Since the initial control system’s response time could not fulfill the design requirements, a PID controller was added to the control system. System response time was still slower than required, so a neural network was added to nonlinearly regulate the proportional element, integral element and derivative element coefficients of the PID controller. After these improvements to the control system, system parameters fulfilled the design requirements. The working performance of electrically-controlled parts such as the rapidly moving high speed switch valve is largely determined by the control system. Normal control methods generally can’t satisfy a shovel’s requirements, so advanced and normal control methods were combined to improve the control system, bringing good results.

  12. Gravity brake

    Science.gov (United States)

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  13. KGS Based Control for Parking Brake Cable Manufacturing System

    OpenAIRE

    Geeta Khare; R.S. Prasad

    2011-01-01

    In today’s competitive production environment, process industries, demand a totally integrated control and optimization solution that can increase productivity, reliability and quality while minimizing cost. Automation is a step beyond mechanization. For automation of production plant either centralized or distributed control system are used. There are standardized approaches and standard hardware & software available worldwide as per the requirement. Investment in process control system is a...

  14. Hydraulic pitch control system for wind turbines: Advanced modeling and verification of an hydraulic accumulator

    DEFF Research Database (Denmark)

    Irizar, Victor; Andreasen, Casper Schousboe

    2017-01-01

    Hydraulic pitch systems provide robust and reliable control of power and speed of modern wind turbines. During emergency stops, where the pitch of the blades has to be taken to a full stop position to avoid over speed situations, hydraulic accumulators play a crucial role. Their efficiency...... and capability of providing enough energy to rotate the blades is affected by thermal processes due to the compression and decompression of the gas chamber. This paper presents an in depth study of the thermodynamical processes involved in an hydraulic accumulator during operation, and how they affect the energy...

  15. Better Brakes

    Science.gov (United States)

    1976-01-01

    Through continuing studies on high-temperature space materials useful for better brake linings, Bendix Corporation worked with Ames Research Center to develop a novel composite. This team worked to fabricate several combinations of composite materials and evaluated results. The one selected increases wear rates and lowers costs. It exhibits constant coefficient of friction at temperatures as high as 650 degrees Fahrenheit, a region where conventional brake linings fade markedly. Other suitable markets include brakes for trucks and industrial equipment such as overhead cranes and hoists. Afterwards brake linings could find successful application in passenger cars.

  16. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces. A slip-velocity-controlled, pressure-bias-modulated system

    Science.gov (United States)

    Stubbs, S. M.; Tanner, J. A.; Smith, E. G.

    1979-01-01

    The braking and cornering response of a slip velocity controlled, pressure bias modulated aircraft antiskid braking system is investigated. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC 9 series 10 airplane. The landing gear strut was replaced by a dynamometer. The parameters, which were varied, included the carriage speed, tire loading, yaw angle, tire tread condition, brake system operating pressure, and runway wetness conditions. The effects of each of these parameters on the behavior of the skid control system is presented. Comparisons between data obtained with the skid control system and data obtained from single cycle braking tests without antiskid protection are examined.

  17. Probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Greenfield, M.A.; Sargent, T.J.; Stanford Univ., CA

    1998-01-01

    In its most recent report on the annual probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP), the annual failure rate is calculated to be 1.3E(-7)(1/yr), rounded off from 1.32E(-7). A calculation by the Environmental Evaluation Group (EEG) produces a result that is about 4% higher, namely 1.37E(-7)(1/yr). The difference is due to a minor error in the US Department of Energy (DOE) calculations in the Westinghouse 1996 report. WIPP's hoist safety relies on a braking system consisting of a number of components including two crucial valves. The failure rate of the system needs to be recalculated periodically to accommodate new information on component failure, changes in maintenance and inspection schedules, occasional incidents such as a hoist traveling out-of-control, either up or down, and changes in the design of the brake system. This report examines DOE's last two reports on the redesigned waste hoist system. In its calculations, the DOE has accepted one EEG recommendation and is using more current information about the component failures rates, the Nonelectronic Parts Reliability Data (NPRD). However, the DOE calculations fail to include the data uncertainties which are described in detail in the NPRD reports. The US Nuclear Regulatory Commission recommended that a system evaluation include mean estimates of component failure rates and take into account the potential uncertainties that exist so that an estimate can be made on the confidence level to be ascribed to the quantitative results. EEG has made this suggestion previously and the DOE has indicated why it does not accept the NRC recommendation. Hence, this EEG report illustrates the importance of including data uncertainty using a simple statistical example

  18. Automated Hydraulic System Design and Power Management in Mobile Applications

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    force, torque and power density. One of these areas is the mobile hydraulic area, which generally comprise all type of off-highway machinery, such as construction equipment, agricultural equipment etc. But where hydraulic systems earlier was designed with primary focus on cost, dynamic performance...... and accuracy, energy consumption is becoming an ever more important design parameter. At the same time as the first oil crisis the first hydraulic load sensing (LS) systems also emerged on the market, which, compared to the other systems of the time, offered significant energy saving potentials and which today...... are found on most medium and high-end mobile hydraulic machinery. Despite the energy saving potentials that these systems posses, compared to the other open-circuit hydraulic system topologies, LS-system may still be subject to very low system efficiencies if not designed correctly. This is typically...

  19. Design of Pumps for Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Klit, Peder; Olsen, Stefan; Bech, Thomas Nørgaard

    1999-01-01

    This paper considers the development of two pumps for water hydraulic applications. The pumps are based on two different working principles: The Vane-type pump and the Gear-type pump. Emphasis is put on the considerations that should be made to account for water as the hydraulic fluid.......KEYWORDS: water, pump, design, vane, gear....

  20. Hydraulic power take-off for wave energy systems

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    2001-01-01

    Investigation and laboratory experiments with a hydraulic power conversion system for converting forces from a 2.5m diamter float to extract energy from seawaves. The test rig consists of a hydraulic wave simulator and a hydraulic point absorber. The absorber converts the incomming forces to a co...... to a continous rotation of an electric generator. The experiments document efficiencies and losses for the conversion process. The experiments are used for verification and update of a computer model.......Investigation and laboratory experiments with a hydraulic power conversion system for converting forces from a 2.5m diamter float to extract energy from seawaves. The test rig consists of a hydraulic wave simulator and a hydraulic point absorber. The absorber converts the incomming forces...

  1. The brake system of the future for commercial vehicles; Das Nutzfahrzeug Bremssystem der Zukunft

    Energy Technology Data Exchange (ETDEWEB)

    Gerum, E. [Knorr Bremse SfN GmbH (Germany)

    2004-07-01

    Over decades into the development of the CV brake system were indicated by an exponential growth in functionality and complexity. Another increase in functionality has to be expected in the future. The complexity must, however, be reduced by mechatronical integration to a measure so that it can be mastered by all ones involved. Bringing today's components together modularly becomes absolutely necessary. The long-term goal of a ''drive by Wire'' concept in connection with active safety systems requires a new infrastructure regarding information processing and electrical energy supply. Concepts are presented. (orig.)

  2. Estimators for initial conditions for optimisation in learning hydraulic systems

    NARCIS (Netherlands)

    Post, W.J.A.E.M.; Burrows, C.R.; Edge, K.A.

    1998-01-01

    In Learning Hydraulic Systems (LHS1. developed at the Eindhoven University of Technology, a specialised optimisation routine is employed In order to reduce energy losses in hydraulic systems. Typical load situations which can be managed by LHS are variable cyclic loads, as can be observed In many

  3. Full-automatic Special Drill Hydraulic System and PLC Control

    Directory of Open Access Journals (Sweden)

    Tian Xue Jun

    2016-01-01

    Full Text Available A hydraulic-driven and PLC full-automatic special drill is introduced, working principle of the hydraulic system and PLC control system are analyzed and designed, this equipment has the advantages of high efficiency, superior quality and low cost etc.

  4. Single acting translational/rotational brake

    Science.gov (United States)

    Allred, Johnny W. (Inventor); Fleck, Jr., Vincent J. (Inventor)

    1996-01-01

    A brake system is provided that applies braking forces on surfaces in both the translational and rotational directions using a single acting self-contained actuator that travels with the translational mechanism. The brake engages a mechanical lock and creates a frictional force on the translational structure preventing translation while simultaneously creating a frictional torque that prevents rotation of the vertical support. The system may include serrations on the braking surfaces to provide increased braking forces.

  5. Reconstruction of braking force in vehicles with electromechanically actuated wheel brakes; Rekonstruktion der Bremskraft bei Fahrzeugen mit elektromechanisch betaetigten Radbremsen

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, R.

    1999-07-01

    Modern braking systems have a variety of functions, but implementation of the enhanced functionality with conventional hydraulic systems is difficult because of electronic actuation. The car industry therefore is working on new braking systems in which the braking force is generated individually on the wheels by means of electromechanical actuators. Owing to their nonlinear characteristics and variable braking efficiency, electromechanically actuated wheel brakes must be operated in a closed control loop. The author presents a low-cost method for reconstruction of the braking force which is required for efficient control. [German] Aufgrund des gestiegenen Sicherheits- und Komfortbewusstseins der Fahrzeugkaeufer ist die Funktionsvielfalt moderner Bremssysteme in den letzten Jahren staendig gewachsen. Die Umsetzung der erweiterten Funktionalitaet mittels konventioneller Bremsenhydraulik ist jedoch durch den elektronischen Eingriff sehr aufwendig. - Von der Automobilzulieferindustrie werden daher neuartige Bremssysteme entwickelt, bei denen die Bremskraft an den einzelnen Raedern von elektromechanischen Bremsaktuatoren aufgebracht wird. - Elektromechanisch betaetigte Radbremsen muessen aufgrund ihres nichtlinearen Verhaltens und des veraenderlichen Wirkungsgrades im geschlossenen Regelkreis betrieben werden. In dieser Arbeit wird erstmals ein Verfahren vorgestellt, mit dem die fuer die Regelung benoetigte Rueckfuehrungsgroesse Bremskraft kostenguenstig rekonstruiert werden kann. (orig.)

  6. Energy and wear optimisation of train longitudinal dynamics and of traction and braking systems

    Science.gov (United States)

    Conti, R.; Galardi, E.; Meli, E.; Nocciolini, D.; Pugi, L.; Rindi, A.

    2015-05-01

    Traction and braking systems deeply affect longitudinal train dynamics, especially when an extensive blending phase among different pneumatic, electric and magnetic devices is required. The energy and wear optimisation of longitudinal vehicle dynamics has a crucial economic impact and involves several engineering problems such as wear of braking friction components, energy efficiency, thermal load on components, level of safety under degraded or adhesion conditions (often constrained by the current regulation in force on signalling or other safety-related subsystem). In fact, the application of energy storage systems can lead to an efficiency improvement of at least 10% while, as regards the wear reduction, the improvement due to distributed traction systems and to optimised traction devices can be quantified in about 50%. In this work, an innovative integrated procedure is proposed by the authors to optimise longitudinal train dynamics and traction and braking manoeuvres in terms of both energy and wear. The new approach has been applied to existing test cases and validated with experimental data provided by Breda and, for some components and their homologation process, the results of experimental activities derive from cooperation performed with relevant industrial partners such as Trenitalia and Italcertifer. In particular, simulation results are referred to the simulation tests performed on a high-speed train (Ansaldo Breda Emu V250) and on a tram (Ansaldo Breda Sirio Tram). The proposed approach is based on a modular simulation platform in which the sub-models corresponding to different subsystems can be easily customised, depending on the considered application, on the availability of technical data and on the homologation process of different components.

  7. Sprag solenoid brake

    Science.gov (United States)

    Dane, P. H.

    1972-01-01

    Operation of solenoid braking mechanism is discussed. Illustrations of construction of the brake are provided. Device is used for braking low or medium speed shaft rotations and produces approximately ten times braking torque of similar solenoid brakes.

  8. Acceptance Test Report for 241-SY Pump Cradle Hydraulic System

    International Nuclear Information System (INIS)

    Koons, B.M.

    1995-01-01

    The purpose of this ATP is to verify that hydraulic system/cylinder procured to replace the cable/winch system on the 101-SY Mitigation Pump cradle assembly fulfills its functional requirements for raising and lowering the cradle assembly between 70 and 90 degrees, both with and without pump. A system design review was performed on the 101-SY Cradle Hydraulic System by the vendor before shipping (See WHC-SD-WM-DRR-045, 241-SY-101 Cradle Hydraulic System Design Review). The scope of this plan focuses on verification of the systems ability to rotate the cradle assembly and any load through the required range of motion

  9. Building 65 Hydraulic Systems Handbook: Components, Systems, and Applications

    Science.gov (United States)

    2016-04-01

    Dump Buttons OVERVIEW Pump Dump Buttons...hydraulic system? There are different types of dump buttons that control a hierarchy of flow paths. Some dump buttons are used to shut down a pump ...that branch. The use of this dump button is preferred over the Pump Dump Button when possible. Test Site Dump

  10. CoBra - a global tool for braking system development; CoBra - ein Tool fuer den globalen Einsatz in der Bremssystementwicklung

    Energy Technology Data Exchange (ETDEWEB)

    Sailer, U. [Robert Bosch GmbH, Stuttgart (Germany)

    1999-07-01

    When Robert Bosch GmbH took over the braking system activities of Allied Signal in 1996, they became able to develop complete braking systems for passenger cars. Braking systes for the different markets are now produced in three sites in Germany, France and the USA. Braking system development with its interfaces to component development and to car producers is a new development challenge, and the department K1 (ABS and braking systems) is cooperating with internal and external partners in developing a globally standardized program for design, simulation and analysis of passenger car braking systems. This contribution presents parts of the development project CoBra (Computation of Braking Systems). [German] Mit dem Kauf der Bremsenaktivitaeten der Firma Allied Signal im Jahre 1996 ist die Robert Bosch GmbH in der Lage, komplette Pkw-Bremssysteme zu entwickeln. Nunmehr werden an drei Entwicklungsstandorten in Deutschland, Frankreich und den USA Bremssysteme fuer die verschiedenen Maerkte entwickelt. Die Bremssystementwicklung, insbesondere die damit verbundenen Schnittstellen zu der Komponentenentwicklung und zum Automobilhersteller, stellt technisch und vom Entwicklungsprozess aus gesehen eine neue Herausforderung dar. Um ihr zu begegnen, wird im Geschaeftsbereich K1 (ABS and Braking Systems) derzeit in Zusammenarbeit mit internen und externen Partnern ein global einheitliches Programm zur Auslegung, Simulation und Analyse von Pkw-Bremssystemen entwickelt. Dieser Beitrag stellt Teile des Entwicklungsprojekts CoBra (Computation of Braking Systems) vor. (orig.)

  11. Magnetostrictive Brake

    Science.gov (United States)

    Diftler, Myron A.; Hulse, Aaron

    2010-01-01

    A magnetostrictive brake has been designed as a more energy-efficient alternative to a magnetic fail-safe brake in a robot. (In the specific application, failsafe signifies that the brake is normally engaged; that is, power must be supplied to allow free rotation.) The magnetic failsafe brake must be supplied with about 8 W of electric power to initiate and maintain disengagement. In contrast, the magnetostrictive brake, which would have about the same dimensions and the same torque rating as those of the magnetic fail-safe brake, would demand only about 2 W of power for disengagement. The brake (see figure) would include a stationary base plate and a hub mounted on the base plate. Two solenoid assemblies would be mounted in diametrically opposed recesses in the hub. The cores of the solenoids would be made of the magnetostrictive alloy Terfenol-D or equivalent. The rotating part of the brake would be a ring-and spring- disk subassembly. By means of leaf springs not shown in the figure, this subassembly would be coupled with the shaft that the brake is meant to restrain. With no power supplied to the solenoids, a permanent magnet would pull axially on a stepped disk and on a shelf in the hub, causing the ring to be squeezed axially between the stepped disk and the hub. The friction associated with this axial squeeze would effect the braking action. Supplying electric power to the solenoids would cause the magnetostrictive cylinders to push radially inward against a set of wedges that would be in axial contact with the stepped disk. The wedges would convert the radial magnetostrictive strain to a multiplied axial displacement of the stepped disk. This axial displacement would be just large enough to lift the stepped disk, against the permanent magnetic force, out of contact with the ring. The ring would then be free to turn because it would no longer be squeezed axially between the stepped disk and the hub.

  12. Ways to Determine the Technical Status of the Vehicles’ Braking System by Means of General Diagnosis

    Directory of Open Access Journals (Sweden)

    Todea Paul

    2017-06-01

    Full Text Available Vehicles’ breaking system is one of the basic elements that lead to the maintenance of technical and road safety during transport activities on public roads or other special conditions. Therefore, particular attention is paid to all maintenance work planned or occasionally carried out on such system, as a high coefficient of vehicles availability results in an increased percentage of their productivity. Of course, there is diagnosis equipment for each element, and the brake booths within MOT centres accurately indicate the values of the measured parameters, following repair, adjustment and control operations for troubleshooting. Still, there are certain cases requesting the check of breaking system either analytically or by field experiments, i.e. when vehicles are driven on rough and rugged ground, during military specific missions and activities, where their performance no longer allows specialized equipment or when such equipment does not exist. This works presents alternatives to determine the technical condition of the braking system by means of typical solutions for the general diagnosis type.

  13. Designing of deployment sequence for braking and drift systems in atmosphere of Mars and Venus

    Science.gov (United States)

    Vorontsov, Victor

    2006-07-01

    Analysis of project development and space research using contact method, namely, by means of automatic descent modules and balloons shows that designing formation of entry, descent and landing (EDL) sequence and operation in the atmosphere are of great importance. This process starts at the very beginning of designing, has undergone a lot of iterations and influences processing of normal operation results. Along with designing of descent module systems, including systems of braking in the atmosphere, designing of flight operation sequence and trajectories of motion in the atmosphere is performed. As the entire operation sequence and transfer from one phase to another was correctly chosen, the probability of experiment success on the whole and efficiency of application of various systems vary. By now the most extensive experience of Russian specialists in research of terrestrial planets has been gained with the help of automatic interplanetary stations “Mars”, “Venera”, “Vega” which had descent modules and drifting in the atmosphere balloons. Particular interest and complicity of formation of EDL and drift sequence in the atmosphere of these planets arise from radically different operation conditions, in particular, strongly rarefied atmosphere of the one planet and extremely dense atmosphere of another. Consequently, this determines the choice of braking systems and their parameters and method of EDL consequence formation. At the same time there are general fundamental methods and designed research techniques that allowed taking general technical approach to designing of EDL and drift sequence in the atmosphere.

  14. Control strategy of hydraulic/electric synergy system in heavy hybrid vehicles

    International Nuclear Information System (INIS)

    Sun Hui; Yang Lifu; Jing Junqing; Luo Yanling

    2011-01-01

    Energy consumption and exhaust emissions of hybrid vehicles strongly depend on the energy storage source and the applied control strategy. Heavy vehicles have the characteristics of frequent starts/stops and significant amounts of braking energy, which needs to find a more efficient way to store and use the high power flow. A novel parallel hybrid vehicles configuration consisting of hydraulic/electric synergy system is proposed to overcome the existing drawbacks of single energy storage source in heavy hybrid vehicles. A control strategy combining a logic threshold approach and key parameters optimization algorithm is developed to achieve acceptable vehicle performance while simultaneously maximizing engine fuel economy and maintaining the battery state of charge in its rational operation range at all times. The experimental and simulation results illustrate the potential of the proposed control strategy in terms of fuel economy and in keeping the deviations of SOC at high efficiency range.

  15. Control strategy of hydraulic/electric synergy system in heavy hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sun Hui; Yang Lifu; Junqing Jing; Yanling Luo [Jiangsu Xuzhou Construction Machinery Research Institute, Jiangsu (China)

    2011-01-15

    Energy consumption and exhaust emissions of hybrid vehicles strongly depend on the energy storage source and the applied control strategy. Heavy vehicles have the characteristics of frequent starts/stops and significant amounts of braking energy, which needs to find a more efficient way to store and use the high power flow. A novel parallel hybrid vehicles configuration consisting of hydraulic/electric synergy system is proposed to overcome the existing drawbacks of single energy storage source in heavy hybrid vehicles. A control strategy combining a logic threshold approach and key parameters optimization algorithm is developed to achieve acceptable vehicle performance while simultaneously maximizing engine fuel economy and maintaining the battery state of charge in its rational operation range at all times. The experimental and simulation results illustrate the potential of the proposed control strategy in terms of fuel economy and in keeping the deviations of SOC at high efficiency range. (author)

  16. The combined benefits of motorcycle antilock braking systems (ABS) in preventing crashes and reducing crash severity.

    Science.gov (United States)

    Rizzi, Matteo; Kullgren, Anders; Tingvall, Claes

    2016-01-01

    Several studies have reported the benefits of motorcycle antilock braking systems (ABS) in reducing injury crashes, due to improved stability and braking performance. Both aspects may prevent crashes but may also reduce the crash severity when a collision occurs. However, it is still unknown to what extent the reductions in injury crashes with ABS may be due to a combination of these mechanisms. Swedish hospital and police reports (2003-2012) were used. The risk for permanent medical impairment (RPMI) was calculated, showing the risk of at least 1 or 10% permanent medical impairment. In total, 165 crashes involving ABS-equipped motorcycles were compared with 500 crashes with similar motorcycles without ABS. The analysis was performed in 3 steps. First, the reduction in emergency care visits with ABS was calculated using an induced exposure approach. Secondly, the injury mitigating effects of ABS were investigated. The mean RPMI 1+ and RPMI 10+ were analyzed for different crash types. The distributions of impairing injuries (PMI 1+) and severely impairing injuries (PMI 10+) were also analyzed. In the third step, the total reduction of PMI 1+ and PMI 10+ injured motorcyclists was calculated by combining the reductions found in the previous steps. An additional analysis of combined braking systems (CBS) together with ABS was also performed. The results showed that emergency care visits were reduced by 47% with ABS. In the second step, it was found that the mean RPMI 1+ and RPMI 10+ with ABS were 15 and 37% lower, respectively. Finally, the third step showed that the total reductions in terms of crash avoidance and mitigation of PMI 1+ and PMI 10+ injured motorcyclists with ABS were 67 and 55%, respectively. However, PMI 1+ and PMI 10+ leg injuries were not reduced by ABS to the same extent. Indications were found suggesting that the benefits of ABS together with CBS may be greater than ABS alone. This article indicated that motorcycle ABS reduced impairing injuries

  17. Creation of operation algorithms for combined operation of anti-lock braking system (ABS) and electric machine included in the combined power plant

    Science.gov (United States)

    Bakhmutov, S. V.; Ivanov, V. G.; Karpukhin, K. E.; Umnitsyn, A. A.

    2018-02-01

    The paper considers the Anti-lock Braking System (ABS) operation algorithm, which enables the implementation of hybrid braking, i.e. the braking process combining friction brake mechanisms and e-machine (electric machine), which operates in the energy recovery mode. The provided materials focus only on the rectilinear motion of the vehicle. That the ABS task consists in the maintenance of the target wheel slip ratio, which depends on the tyre-road adhesion coefficient. The tyre-road adhesion coefficient was defined based on the vehicle deceleration. In the course of calculated studies, the following operation algorithm of hybrid braking was determined. At adhesion coefficient ≤0.1, driving axle braking occurs only due to the e-machine operating in the energy recovery mode. In other cases, depending on adhesion coefficient, the e-machine provides the brake torque, which changes from 35 to 100% of the maximum available brake torque. Virtual tests showed that values of the wheel slip ratio are close to the required ones. Thus, this algorithm makes it possible to implement hybrid braking by means of the two sources creating the brake torque.

  18. Pad-mode-induced instantaneous mode instability for simple models of brake systems

    Science.gov (United States)

    Oberst, S.; Lai, J. C. S.

    2015-10-01

    Automotive disc brake squeal is fugitive, transient and remains difficult to predict. In particular, instantaneous mode squeal observed experimentally does not seem to be associated with mode coupling and its mechanism is not clear. The effects of contact pressures, friction coefficients as well as material properties (pressure and temperature dependency and anisotropy) for brake squeal propensity have not been systematically explored. By analysing a finite element model of an isotropic pad sliding on a plate similar to that of a previously reported experimental study, pad modes have been identified and found to be stable using conventional complex eigenvalue analysis. However, by subjecting the model to contact pressure harmonic excitation for a range of pressures and friction coefficients, a forced response analysis reveals that the dissipated energy for pad modes is negative and becomes more negative with increasing contact pressures and friction coefficients, indicating the potential for instabilities. The frequency of the pad mode in the sliding direction is within the range of squeal frequencies observed experimentally. Nonlinear time series analysis of the vibration velocity also confirms the evolution of instabilities induced by pad modes as the friction coefficient increases. By extending this analysis to a more realistic but simple brake model in the form of a pad-on-disc system, in-plane pad-modes, which a complex eigenvalue analysis predicts to be stable, have also been identified by negative dissipated energy for both isotropic and anisotropic pad material properties. The influence of contact pressures on potential instabilities has been found to be more dominant than changes in material properties owing to changes in pressure or temperature. Results here suggest that instantaneous mode squeal is likely caused by in-plane pad-mode instabilities.

  19. New model of inverting substation for DC traction with regenerative braking system

    Science.gov (United States)

    Omar, Abdul Malek Saidina; Samat, Ahmad Asri Abd; Isa, Siti Sarah Mat; Shamsuddin, Sarah Addyani; Jamaludin, Nur Fadhilah; Khyasudeen, Muhammad Farris

    2017-08-01

    This paper presents a power electronic devices application focus on modeling, analysis, and control of switching power converter in the inverting DC substation with regenerative braking system which is used to recycle the surplus regenerative power by feed it back to the main AC grid. The main objective of this research is to improve the switching power electronic converter of the railway inverting substation and optimize the maximum kinetic energy recovery together with minimum power losses from the railway braking system. Assess performance including efficiency and robustness will be evaluated in order to get the best solution for the design configuration. Research methodology included mathematical calculation, simulation, and detail analysis on modeling of switching power converter on inverting substation. The design stage separates to four main areas include rectification mode, regenerative mode, control inverter mode and filtering mode. The simulation result has shown that the regenerative inverter has a capability to accept a maximum recovery power on the regeneration mode. Total energy recovery has increase and power losses have decreases because inverter abilities to transfer the surplus energy back to the main AC supply. An Inverter controller with PWM Generator and PI Voltage Regulator has been designed to control voltage magnitude and frequency of the DC traction system.

  20. Hydraulic elements in reduction of vibrations in mechanical systems

    Science.gov (United States)

    Białas, K.; Buchacz, A.

    2017-08-01

    This work presents non-classical method of design of mechanic systems with subsystem reducing vibrations. The purpose of this paper is also introduces synthesis of mechanic system with reducing vibrations understand as design of this type of systems. The synthesis may be applied to modify the already existing systems in order to achieve a desired result. Elements which reduce vibrations can be constructed with passive, semi-active or active components. These considerations systems have selected active items. A hallmark of active elements it is possible to change the parameters on time of these elements and their power from an external source. The implementation of active elements is very broad. These elements can be implemented through the use of components of electrical, pneumatic, hydraulic, etc. The system was consisted from mechanical and hydraulic elements. Hydraulic elements were used as subsystem reducing unwanted vibration of mechanical system. Hydraulic elements can be realized in the form of hydraulic cylinder. In the case of an active vibration reduction in the form of hydraulic cylinder it is very important to find the corresponding values of hydraulic components. The values of these elements affect the frequency of vibrations of this sub-system which is related to the effective vibration reduction [7,11].

  1. Researches regarding primary control in hydraulic systems

    Directory of Open Access Journals (Sweden)

    Tița Irina

    2017-01-01

    Full Text Available The technology in wind turbines has developed very rapidly but there are still a lot that can be improved also regarding new technologies. One example is wind turbine with hydraulic transmission. At the beginning low power wind turbines are in view. First of all the wind energy is meant to be used by isolated users for household and garden equipment or pumping water. Later, if results will be as expected, and wind potential satisfactory, such systems could be connected to electric grid. In our research laboratory we must build an experimental setup. The simulation for wind turbine and fixed displacement pump coupled to it will be realized using a variable displacement piston pump. As the variable wind speed has as a result variations of the pump flow, the variable displacement pump from the test rig may reproduce a similar variation law. In this paper some aspects regarding the variable displacement pump are detailed. This study is necessary for the future development of the research.

  2. System Topology Optimization - An Approach to System Design of Electro-Hydraulic-Mechanical Systems

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn

    2003-01-01

    The current paper presents an approach to system design of combined electro-hydraulic-mechanical systems. The approach is based on the concurrent handling of the topology as well as the design parameters of the mechanical, hydraulic and controller sub- systems, respectively. Based on an initial...... design the procedure attempts to find the optimal topology and the related parameters. The topology considerations comprise the type of hydraulic pump, the employment of knee linkages or not as well as the type of hydraulic actuators. The design variables also include the signals to the proportional...... valve in a number of predefined load cases as well as the hydraulic and mechanical parameters....

  3. An Analytical Design Method for a Regenerative Braking Control System for DC-electrified Railway Systems under Light Load Conditions

    Science.gov (United States)

    Saito, Tatsuhito; Kondo, Keiichiro; Koseki, Takafumi

    A DC-electrified railway system that is fed by diode rectifiers at a substation is unable to return the electric power to an AC grid. Accordingly, the braking cars have to restrict regenerative braking power when the power consumption of the powering cars is not sufficient. However, the characteristics of a DC-electrified railway system, including the powering cars, is not known, and a mathematical model for designing a controller has not been established yet. Hence, the object of this study is to obtain the mathematical model for an analytical design method of the regenerative braking control system. In the first part of this paper, the static characteristics of this system are presented to show the position of the equilibrium point. The linearization of this system at the equilibrium point is then performed to describe the dynamic characteristics of the system. An analytical design method is then proposed on the basis of these characteristics. The proposed design method is verified by experimental tests with a 1kW class miniature model, and numerical simulations.

  4. THE STUDY OF BRAKE SYSTEMS OF PASSENGER CARS MODEL 61-779 AND THEIR MODIFICATIONS PRODUCED BY OPEN JOINT STOCK COMPANY KRJUKIV CAR BUILDING PLANT

    Directory of Open Access Journals (Sweden)

    Yu. Ya. Vodiannikov

    2007-11-01

    Full Text Available The results of research of brake system for the model 61-779 of a passenger car manufactured by JSC «KVBZ» for the period from 2001 to 2006 are presented. It is shown that at the existing gear ratio of a brake lever transmission the passenger car brake efficiency does not correspond to running speed of 140 km/h. The causes of the wheel pairs damage occurrence in exploitation of a passenger train «Kiev – Moscow» as well as the recommendations on their elimination and brake system perfection are considered.

  5. INFORMATION-MEASURING TEST SYSTEM OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSIONS

    Directory of Open Access Journals (Sweden)

    I. V. Zhukovytskyy

    2015-08-01

    Full Text Available Purpose. The article describes the process of developing the information-measuring test system of diesel locomotives hydraulic transmission, which gives the possibility to obtain baseline data to conduct further studies for the determination of the technical condition of diesel locomotives hydraulic transmission. The improvement of factory technology of post-repair tests of hydraulic transmissions by automating the existing hydraulic transmission test stands according to the specifications of the diesel locomotive repair enterprises was analyzed. It is achieved based on a detailed review of existing foreign information-measuring test systems for hydraulic transmission of diesel locomotives, BelAZ earthmover, aircraft tug, slag car, truck, BelAZ wheel dozer, some brands of tractors, etc. The problem for creation the information-measuring test systems for diesel locomotive hydraulic transmission is being solved, starting in the first place from the possibility of automation of the existing test stand of diesel locomotives hydraulic transmission at Dnipropetrovsk Diesel Locomotive Repair Plant "Promteplovoz". Methodology. In the work the researchers proposed the method to create a microprocessor automated system of diesel locomotives hydraulic transmission stand testing in the locomotive plant conditions. It acts by justifying the selection of the necessary sensors, as well as the application of the necessary hardware and software for information-measuring systems. Findings. Based on the conducted analysis there was grounded the necessity of improvement the plant hydraulic transmission stand testing by creating a microprocessor testing system, supported by the experience of developing such systems abroad. Further research should be aimed to improve the accuracy and frequency of data collection by adopting the more modern and reliable sensors in tandem with the use of filtering software for electromagnetic and other interference. Originality. The

  6. Fundamentals of automotive and engine technology standard drives, hybrid drives, brakes, safety systems

    CERN Document Server

    2014-01-01

    Hybrid drives and the operation of hybrid vehicles are characteristic of contemporary automotive technology. Together with the electronic driver assistant systems, hybrid technology is of the greatest importance and both cannot be ignored by today’s car drivers. This technical reference book provides the reader with a firsthand comprehensive description of significant components of automotive technology. All texts are complemented by numerous detailed illustrations. Contents History of the automobile.- History of the Diesel engine.- Areas of use for Diesel engines.- Basic principles of the Diesel engine.- Basic principles of Diesel fuel-injection.- Basic principles of the gasoline engine.- Inductive ignition system.- Transmissions for motor vehicles.- Motor vehicle safety.- Basic principles of vehicle dynamics.- Car braking systems.- Vehicle electrical systems.- Overview of electrical and electronic systems in the vehicle.- Control of gasoline engines.- Control of Diesel engines.- Lighting technology.- Elec...

  7. System Design and Performance Test of Hydraulic Intensifier

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Eui; Lee, Gi Chun [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Kim, Jae Hoon [Chungnam National University, Daejeon (Korea, Republic of)

    2010-07-15

    Components such as pressure vessel, hydraulic hose assembly, accumulator, hydraulic cylinder, hydraulic valve, pipe, etc., are tested under the impulse-pressure conditions prescribed in ISO and SAE standards. The impulse pressure test machine needs to have a high pressure, a precise control system and a long life. It should satisfy the requirements for fabrication of the impulse tester to generate ultra high pressure in the hydraulic system. In the impulse tester, a servo-valve control system is adopted; although the control application is convenient, it is expensive owing to the cost of developing the system. The type of the control system determines the pressure wave, which affects the components that are tested. In this study, the manufacturing process and the intensifier system design related to the flow, pressure, and the increasing rate of pressure are investigated. The results indicate the ultra high pressure waves in the system.

  8. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXVI, I--CATERPILLAR LUBRICATION SYSTEMS AND COMPONENTS, II--LEARNING ABOUT BRAKES (PART I).

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTIONS OF DIESEL ENGINE LUBRICATION SYSTEMS AND COMPONENTS AND THE PRINCIPLES OF OPERATION OF BRAKE SYSTEMS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) THE NEED FOR OIL, (2) SERVICE CLASSIFICATION OF OILS, (3) CATERPILLAR LUBRICATION SYSTEM COMPONENTS (4)…

  9. Development of A Hydraulic Drive for a novel Diesel-Hydraulic system for Large commercial Vehicles

    DEFF Research Database (Denmark)

    Stecki, J. S.; Conrad, Finn; Matheson, P.

    2002-01-01

    The objectives and results of the research project Hybrid Diesel-Hydraulic System for Large commercial vehicles, e.g. urban freight delivery, buses or garbage trucks. The paper presents and discusses the research and development of the system, modelling approach and results from preliminary...... performance tests on a 10 ton vehicle....

  10. Determining the Conditions for the Hydraulic Impacts Emergence at Hydraulic Systems

    Directory of Open Access Journals (Sweden)

    Mazurenko A.S.

    2017-08-01

    Full Text Available This research aim is to develop a method for modeling the conditions for the critical hydrau-lic impacts emergence on thermal and nuclear power plants’ pipeline systems pressure pumps depart-ing from the general provisions of the heat and hydrodynamic instability theory. On the developed method basis, the conditions giving rise to the reliability-critical hydraulic impacts emergence on pumps for the thermal and nuclear power plants’ typical pipeline system have been determined. With the flow characteristic minimum allowable (critical sensitivity, the flow velocity fluctuations ampli-tude reaches critical values at which the pumps working elements’ failure occurs. The critical hydrau-lic impacts emergence corresponds to the transition of the vibrational heat-hydrodynamic instability into an aperiodic one. As research revealed, a highly promising approach as to the preventing the criti-cal hydraulic impacts related to the foreground use of pumps having the most sensitive consumption (at supply network performance (while other technical characteristics corresponding to that parame-ter. The research novelty refers to the suggested method elaborated by the authors’ team, which, in contrast to traditional approaches, is efficient in determining the pump hydraulic impact occurrence conditions when the vibrational heat-hydrodynamic instability transition to the aperiodic instability.

  11. Hydraulic Soft Yaw System for Multi MW Wind Turbines

    DEFF Research Database (Denmark)

    Stubkier, Søren

    energy and an increase in the loading of the wind turbine structure and components. This dissertation examines the hypothesis that there are advantages of basing a yaw system on hydraulic components instead of normal electrical components. This is done through a state of the art analysis followed...... in the wind turbine yaw system along with minor reductions in the blades and main shaft. Optimization of the damping and stiffness of the hydraulic soft yaw system have been conducted and an optimum found for load reduction. Linear control algorithms for control of damping pressure peaks have been developed...... the full turbine code in FAST, and the mathematical model of the hydraulic yaw system in Matlab/Simulink and Amesim is developed in order to analyze a full scale model of the hydraulic yaw system in combination with the implemented friction model for the yaw system. These results are also promising...

  12. Load proportional safety brake

    Science.gov (United States)

    Cacciola, M. J.

    1979-01-01

    This brake is a self-energizing mechanical friction brake and is intended for use in a rotary drive system. It incorporates a torque sensor which cuts power to the power unit on any overload condition. The brake is capable of driving against an opposing load or driving, paying-out, an aiding load in either direction of rotation. The brake also acts as a no-back device when torque is applied to the output shaft. The advantages of using this type of device are: (1) low frictional drag when driving; (2) smooth paying-out of an aiding load with no runaway danger; (3) energy absorption proportional to load; (4) no-back activates within a few degrees of output shaft rotation and resets automatically; and (5) built-in overload protection.

  13. Stationary super-capacitor energy storage system to save regenerative braking energy in a metro line

    International Nuclear Information System (INIS)

    Teymourfar, Reza; Asaei, Behzad; Iman-Eini, Hossein; Nejati fard, Razieh

    2012-01-01

    Highlights: ► Super-capacitors are used to store regenerative braking energy in a metro network. ► A novel approach is proposed to model easily and accurately the metro network. ► An efficient approach is proposed to calculate the required super-capacitors. ► Maximum energy saving is around 44% at off-peak period and 42% at peak period. ► Benefit/cost analyses are performed for the suggested ESS. - Abstract: In this paper, the stationary super-capacitors are used to store a metro network regenerative braking energy. In order to estimate the required energy storage systems (ESSs), line 3 of Tehran metro network is modeled through a novel approach, in peak and off-peak conditions based on the real data obtained from Tehran metro office. A useful method is proposed to predict the maximum instantaneous regenerative energy which is delivered to each station before applying ESS and based on that the ESS configuration for each station is determined. Finally, the effectiveness of the proposed ESS is confirmed by economic evaluations and benefit/cost analyses on line 3 of Tehran metro network.

  14. 49 CFR 393.45 - Brake tubing and hoses; hose assemblies and end fittings.

    Science.gov (United States)

    2010-10-01

    ... damage; and (3) Be installed in a manner that prevents it from contacting the vehicle's exhaust system or... connections. All connections for air, vacuum, or hydraulic braking systems shall be installed so as to ensure... may be used for connections between towed and towing motor vehicles or between the frame of a towed...

  15. Design of The Test Stand for Hydraulic Active Heave Compensation System

    Directory of Open Access Journals (Sweden)

    Jakubowski Arkadiusz

    2017-01-01

    Full Text Available The article presented here described the design of a test stand for hydraulic active heave compensation system. The simulation of sea waves is realized by the use of hydraulic cylinder. A hydraulic motor is used for sea waves compensation. The hydraulic cylinder and the hydraulic motor are controlled by electrohydraulic servo valves. For the measurements Authors used displacement sensor and incremental encoder. Control algorithm is implemented on the PLC. The performed tests included hydraulic actuator and hydraulic motor step responses.

  16. Design of a Hydraulic Motor System Driven by Compressed Air

    Directory of Open Access Journals (Sweden)

    Jyun-Jhe Yu

    2013-06-01

    Full Text Available This paper presents the design of a highly efficient pneumatic motor system. The air engine is currently the most generally used device to convert potential energy of compressed air into mechanical energy. However, the efficiency of the air engines is too low to provide sufficient operating range for the vehicle. In this study, the energy contained in compressed air/pressurized hydraulic oil is transformed by a hydraulic motor to mechanical energy to enhance the efficiency of using air power. To evaluate the theoretical efficiency, the principle of balance of energy is applied. The theoretical efficiency of converting air into hydraulic energy is found to be a function of pressure; thus, the maximum converting efficiency can be determined. To confirm the theoretical evaluation, a prototype of the pneumatic hydraulic system is built. The experiment verifies that the theoretical evaluation of the system efficiency is reasonable, and that the layout of the system is determined by the results of theoretical evaluation.

  17. Evaluation of an autonomous braking system in real-world PTW crashes.

    Science.gov (United States)

    Savino, Giovanni; Pierini, Marco; Rizzi, Matteo; Frampton, Richard

    2013-01-01

    Powered 2-wheelers (PTWs) are becoming increasingly popular in Europe. They have the ability to get around traffic queues, thus lowering fuel consumption and increasing mobility. The risk of rider injury in a traffic crash is however much higher than that associated with car users. The European project, Powered Two Wheeler Integrated Safety (PISa), identified an autonomous braking system (AB) as a priority to reduce the injury consequences of a PTW crash. The aim of this study was to assess the potential effectiveness of the AB system developed in PISa, taking into account the specific system characteristics that emerged during the design, development and testing phases. Fifty-eight PTW cases representing European crash configurations were examined, in which 43 percent of riders sustained a Maximum Abbreviated Injury Scale (MAIS) 2+ injury. Two of the most common crash types were a PTW impacting a stationary object (car following scenario) 16% and an object pulling across the PTW path (crossing scenario) 54%. An expert team analysed the in-depth material of the sample crashes and determined a posteriori to what extent the AB would have affected the crash. For those cases where the AB was evaluated as applicable, a further quantitative evaluation of the benefits was conducted by considering a set of different possible rider reactions in addition to that exhibited in the actual crash. In 67 percent of cases, the application of AB could have mitigated the crash outcome. Analysis of those real crash cases showed the potential for an expert rider to avoid the collision. An early reaction of the rider, associated with a correct application of the brakes would have avoided 18 of the 37 car following/crossing scenarios. Conversely, according to the analysis, an expert rider would not have been able to avoid 19 of the 37 cases. In 14 of those 19 cases, the AB would have contributed to mitigating the crash outcome. This study demonstrated significant potential for

  18. Adaptive Non-linear Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF).......Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF)....

  19. A dynamic method to forecast the wheel slip for antilock braking system and its experimental evaluation.

    Science.gov (United States)

    Oniz, Yesim; Kayacan, Erdal; Kaynak, Okyay

    2009-04-01

    The control of an antilock braking system (ABS) is a difficult problem due to its strongly nonlinear and uncertain characteristics. To overcome this difficulty, the integration of gray-system theory and sliding-mode control is proposed in this paper. This way, the prediction capabilities of the former and the robustness of the latter are combined to regulate optimal wheel slip depending on the vehicle forward velocity. The design approach described is novel, considering that a point, rather than a line, is used as the sliding control surface. The control algorithm is derived and subsequently tested on a quarter vehicle model. Encouraged by the simulation results indicating the ability to overcome the stated difficulties with fast convergence, experimental results are carried out on a laboratory setup. The results presented indicate the potential of the approach in handling difficult real-time control problems.

  20. Hydraulic system for driving control rods

    International Nuclear Information System (INIS)

    Okuzumi, Naoaki.

    1982-01-01

    Purpose: To enable safety reactor shut down upon occurrence of an abnormal excess pressure in a hydraulic control unit. Constitution: The actuation pressure for a pressure switch that generates a scram signal is set lower than the release pressure set to a pressure release valve. Thus, if the pressure of nitrogen gas in a nitrogen container increases such as upon exposure of the hydraulic control unit to a high temperature, the pressure switch is actuated at first to generate the scram signal and a scram valve is opened to supply water at high pressure to control rod drives under the driving force of the nitrogen gas at high pressure to rapidly insert the control element into the reactor and shut down it. If the pressure of the nitrogen gas still increases after the scram, the pressure release valve is opened to release the nitrogen gas at high temperature to the atmosphere. Since the scram is attained before the actuation of the pressure release valve, safety reactor shut down can be attained and the hydraulic control unit can be protected. (Sekiya, K.)

  1. Development of NTD Hydraulic Rotation System for Kijang Research Reactor

    International Nuclear Information System (INIS)

    Kang, Hanok; Park, Kijung; Park, Yongsoo; Kim, Seong Hoon; Park, Cheol

    2014-01-01

    The KJRR will be mainly utilized for isotope production, NTD (Neutron Transmutation Doping) production, and related research activities. During irradiation for the NTD process, the irradiation rigs containing the silicon ingot rotate at a constant speed to ensure precisely defined homogeneity of the irradiation. The NTDHRS requires only hydraulic piping conveniently routed to the rotating devices inside the reactor pool. The resulting layout leaves the pool area clear of obstructions which might obscure vision and hinder target handling for operators. Pump banks and control valves are located remotely in a dedicated plant room allowing easy access and online maintenance. The necessities and major characteristic of NTD hydraulic rotation system are described in this study. A new NTD hydraulic rotation system are being developed to rotate the irradiation rigs at a constant speed and supply cooling flow for the irradiation rigs and reflector assembly. The configuration of the NTD hydraulic rotation device is discussed and practical methods to improve the rotational performance are suggested

  2. Development of NTD Hydraulic Rotation System for Kijang Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hanok; Park, Kijung; Park, Yongsoo; Kim, Seong Hoon; Park, Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The KJRR will be mainly utilized for isotope production, NTD (Neutron Transmutation Doping) production, and related research activities. During irradiation for the NTD process, the irradiation rigs containing the silicon ingot rotate at a constant speed to ensure precisely defined homogeneity of the irradiation. The NTDHRS requires only hydraulic piping conveniently routed to the rotating devices inside the reactor pool. The resulting layout leaves the pool area clear of obstructions which might obscure vision and hinder target handling for operators. Pump banks and control valves are located remotely in a dedicated plant room allowing easy access and online maintenance. The necessities and major characteristic of NTD hydraulic rotation system are described in this study. A new NTD hydraulic rotation system are being developed to rotate the irradiation rigs at a constant speed and supply cooling flow for the irradiation rigs and reflector assembly. The configuration of the NTD hydraulic rotation device is discussed and practical methods to improve the rotational performance are suggested.

  3. SENSORS FAULT DIAGNOSIS ALGORITHM DESIGN OF A HYDRAULIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Matej ORAVEC

    2017-06-01

    Full Text Available This article presents the sensors fault diagnosis system design for the hydraulic system, which is based on the group of the three fault estimation filters. These filters are used for estimation of the system states and sensors fault magnitude. Also, this article briefly stated the hydraulic system state control design with integrator, which is important assumption for the fault diagnosis system design. The sensors fault diagnosis system is implemented into the Matlab/Simulink environment and it is verified using the controlled hydraulic system simulation model. Verification of the designed fault diagnosis system is realized by series of experiments, which simulates sensors faults. The results of the experiments are briefly presented in the last part of this article.

  4. FOREWORD: 26th IAHR Symposium on Hydraulic Machinery and Systems

    Science.gov (United States)

    Wu, Yulin; Wang, Zhengwei; Liu, Shuhong; Yuan, Shouqi; Luo, Xingqi; Wang, Fujun

    2012-11-01

    The 26th IAHR Symposium on Hydraulic Machinery and Systems, will be held in Beijing, China, 19-23 August 2012. It is jointly organized by Tsinghua University, State Key Laboratory of Hydro Science and Hydraulic Engineering, China, Jiangsu University, Xi'an University of Technology, China Agricultural University, National Engineering Research Center of Hydropower Equipment and Dongfang Electric Machinery Co., Ltd. It is the second time that China hosts such a symposium. By the end of 2011, the China electrical power system had a total of 1 050 GW installed power, out of which 220 GW was in hydropower plants. The energy produced in hydropower facilities was 662.6 TWh from a total of 4,720 TWh electrical energy production in 2011. Moreover, in 2020, new hydropower capacities are going to be developed, with a total of 180 GW installed power and an estimated 708 TWh/year energy production. And in 2011, the installed power of pumped storage stations was about 25GW. In 2020, the data will be 70GW. At the same time, the number of pumps used in China is increasing rapidly. China produces about 29,000,000 pumps with more than 220 series per year. By the end of 2011, the Chinese pumping system has a total of 950 GW installed power. The energy consumed in pumping facilities was 530 TWh in 2011. The pump energy consumption accounted for about 12% of the national electrical energy production. Therefore, there is a large market in the field of hydraulic machinery including water turbines, pump turbines and a variety of pumps in China. There are also many research projects in this field. For example, we have conducted National Key Research Projects on 1000 MW hydraulic turbine, and on the pump turbines with high head, as well as on the large capacity pumps for water supply. Tsinghua University of Beijing is proud to host the 26th IAHR Symposium on Hydraulic Machinery and Systems. Tsinghua University was established in 1911, after the founding of the People's Republic of China. It

  5. Antilock braking system effectiveness in prevention of road traffic crashes in Iran.

    Science.gov (United States)

    Khorasani-Zavareh, Davoud; Shoar, Saeed; Saadat, Soheil

    2013-05-04

    Anti-lock Brake System (ABS) helps the equipped vehicles to stop under heavy braking, in a shorter distance and with a better control of direction. It was expected that this technology will reduce the rate of fatal road traffic crashes (RTC); however, the outcome is controversial in the real world. The aim of this study is to compare the claimed annual incidence rate and financial losses due to RTCs in ABS vs. non-ABS personal vehicles in Iran. A telephone survey among drivers of two similar models of personal vehicles was arranged. The studied vehicles were of the same brand and type; but only one of them was equipped with ABS. The number of RTCs, subsequent financial loss, and drivers' knowledge and perception about ABS were sought. The sample consisted of drivers of 1232 ABS and 3123 non-ABS vehicles. The annual incidence rate of RTC involving another vehicle was 145.1 (134.8-155.9) per 1000 vehicle-years and there was not a statistically significant difference between study groups.The incidence of RTC with another vehicle due to brake failure was 50.3 (42.9-58.5) for 1000 non ABS vehicle-years and 30.0 (21.2-41.2) for 1000 ABS equipped vehicle-years. The difference was statistically significant after adjustment for the driver and vehicle's age and the daily driving time. The attributable risk of RTC for non-ABS vehicles was 20/1000 vehicles and the excess fraction was 39.8%. The mean financial loss due to reported RTCs was $987.9 ± $1547.3 US Dollars and there was not a statistically significant difference between study groups. While 61.1% of ABS vehicle drivers reported situations in which they believed the ABS had prevented a crash, 44.1% of them however, they did not know how to use ABS efficiently. Law enforcement to maintain safe distance and adhere to speed limit while driving, is needed to raise the effectiveness of ABS. This is as necessary as considering mandatory outfitting of ABS. Safety authorities should first consider the global experience

  6. Design of a Hydraulic Motor System Driven by Compressed Air

    OpenAIRE

    Shaw, Dein; Yu, Jyun-Jhe; Chieh, Cheng

    2013-01-01

    This paper presents the design of a highly efficient pneumatic motor system. The air engine is currently the most generally used device to convert potential energy of compressed air into mechanical energy. However, the efficiency of the air engines is too low to provide sufficient operating range for the vehicle. In this study, the energy contained in compressed air/pressurized hydraulic oil is transformed by a hydraulic motor to mechanical energy to enhance the efficiency of using air power....

  7. Electrostatic and tribological phenomena and their effect on the braking torque in the shaft-oil-lip seal system

    International Nuclear Information System (INIS)

    Gajewski, Juliusz B; Glogowski, Marek J

    2008-01-01

    The former research was carried out on the influence of tribocharging in a system: metal rotating shaft-oil-lip seal on its work, especially on changes in the shaft braking torque with the increasing angular shaft velocity and oil temperature. The results obtained suggested that there be a possibility of reducing the braking torque by an external electric field. The compensation for the electric field generated in the system by natural tribocharging was proposed. The reduction in the braking torque seemed possible while applying an external DC electric field to the system. In general, the torque tended to increase with the increasing DC electric field for a variety of the oils and lip seals used and for different shaft angular velocities (rotational speeds) and oil temperatures. The braking torque reduction was achieved only for one lip seal and some different oils, which was and is a promising, expected result. The research results were yet presented elsewhere [1-3] and here some novel attempt has been made to interpret the results obtained in their physical-tribological and especially electrostatic-aspects since there has been a lack of such an interpretation in the literature of the subject.

  8. Electrostatic and tribological phenomena and their effect on the braking torque in the shaft-oil-lip seal system

    Science.gov (United States)

    Gajewski, Juliusz B.; Glogowski, Marek J.

    2008-12-01

    The former research [1] was carried out on the influence of tribocharging in a system: metal rotating shaft-oil-lip seal on its work, especially on changes in the shaft braking torque with the increasing angular shaft velocity and oil temperature. The results obtained suggested that there be a possibility of reducing the braking torque by an external electric field. The compensation for the electric field generated in the system by natural tribocharging was proposed. The reduction in the braking torque seemed possible while applying an external DC electric field to the system. In general, the torque tended to increase with the increasing DC electric field for a variety of the oils and lip seals used and for different shaft angular velocities (rotational speeds) and oil temperatures. The braking torque reduction was achieved only for one lip seal and some different oils, which was and is a promising, expected result. The research results were yet presented elsewhere [1-3] and here some novel attempt has been made to interpret the results obtained in their physical—tribological and especially electrostatic—aspects since there has been a lack of such an interpretation in the literature of the subject.

  9. Hydraulic Soft Yaw System Load Reduction and Prototype Results

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Markussen, Kristian

    2013-01-01

    Introducing a hydraulic soft yaw concept for wind turbines leads to significant load reductions in the wind turbine structure. The soft yaw system operates as a shock absorption system on a car, hence absorbing the loading from turbulent wind conditions instead of leading them into the stiff wind...... turbine structure. Results presented shows fatigue reductions of up to 40% and ultimate load reduction of up to 19%. The ultimate load reduction increases even more when the over load protection system in the hydraulic soft yaw system is introduced and results show how the exact extreme load cut off...... operates. Further it is analyzed how the soft yaw system influence the power production of the turbine. It is shown that the influence is minimal, but at larger yaw errors the effect is possitive. Due to the implemeted functions in the hydraulic soft yaw system such as even load distribution on the pinions...

  10. Effect of physical property of supporting media and variable hydraulic loading on hydraulic characteristics of advanced onsite wastewater treatment system.

    Science.gov (United States)

    Sharma, Meena Kumari; Kazmi, Absar Ahmad

    2015-01-01

    A laboratory-scale study was carried out to investigate the effects of physical properties of the supporting media and variable hydraulic shock loads on the hydraulic characteristics of an advanced onsite wastewater treatment system. The system consisted of two upflow anaerobic reactors (a septic tank and an anaerobic filter) accommodated within a single unit. The study was divided into three phases on the basis of three different supporting media (Aqwise carriers, corrugated ring and baked clay) used in the anaerobic filter. Hydraulic loadings were based on peak flow factor (PFF), varying from one to six, to simulate the actual conditions during onsite wastewater treatment. Hydraulic characteristics of the system were identified on the basis of residence time distribution analyses. The system showed a very good hydraulic efficiency, between 0.86 and 0.93, with the media of highest porosity at the hydraulic loading of PFF≤4. At the higher hydraulic loading of PFF 6 also, an appreciable hydraulic efficiency of 0.74 was observed. The system also showed good chemical oxygen demand and total suspended solids removal efficiency of 80.5% and 82.3%, respectively at the higher hydraulic loading of PFF 6. Plug-flow dispersion model was found to be the most appropriate one to describe the mixing pattern of the system, with different supporting media at variable loading, during the tracer study.

  11. How does a collision warning system shape driver's brake response time? The influence of expectancy and automation complacency on real-life emergency braking.

    Science.gov (United States)

    Ruscio, Daniele; Ciceri, Maria Rita; Biassoni, Federica

    2015-04-01

    Brake Reaction Time (BRT) is an important parameter for road safety. Previous research has shown that drivers' expectations can impact RT when facing hazardous situations, but driving with advanced driver assistance systems, can change the way BRT are considered. The interaction with a collision warning system can help faster more efficient responses, but at the same time can require a monitoring task and evaluation process that may lead to automation complacency. The aims of the present study are to test in a real-life setting whether automation compliancy can be generated by a collision warning system and what component of expectancy can impact the different tasks involved in an assisted BRT process. More specifically four component of expectancy were investigated: presence/absence of anticipatory information, previous direct experience, reliability of the device, and predictability of the hazard determined by repeated use of the warning system. Results supply indication on perception time and mental elaboration of the collision warning system alerts. In particular reliable warning quickened the decision making process, misleading warnings generated automation complacency slowing visual search for hazard detection, lack of directed experienced slowed the overall response while unexpected failure of the device lead to inattentional blindness and potential pseudo-accidents with surprise obstacle intrusion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Pressure control of hydraulic servo system using proportional control valve

    International Nuclear Information System (INIS)

    Yang, Kyong Uk; Oh, In Ho; Lee, Ill Yeong

    1999-01-01

    The purpose of this study is to develop a control scheme for the hydraulic servo system which can rapidly control the pressure in a hydraulic cylinder with very short stroke. Compared with the negligible stroke of the cylinder in the system, the flow gain of the proportional pressure control valve constituting the hydraulic servo system is relatively large and the time delay on the response of the valve is quite long. Therefore, the pressure control system, in this study tends to get unstable during operations. Considering the above mentioned characteristics of the system, a two-degree-of-freedom control scheme, composed of the I-PDD 2 ... feedback compensator and the feedforward controller, is proposed. The reference model scheme is used in deciding the parameters of the controllers. The validity of the proposed control scheme is confirmed through the experiments

  13. Nonlinear control for a class of hydraulic servo system.

    Science.gov (United States)

    Yu, Hong; Feng, Zheng-jin; Wang, Xu-yong

    2004-11-01

    The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening, friction, etc. Aside from the nonlinear nature of hydraulic dynamics, hydraulic servo systems also have large extent of model uncertainties. To address these challenging issues, a robust state-feedback controller is designed by employing backstepping design technique such that the system output tracks a given signal arbitrarily well, and all signals in the closed-loop system remain bounded. Moreover, a relevant disturbance attenuation inequality is satisfied by the closed-loop signals. Compared with previously proposed robust controllers, this paper's robust controller based on backstepping recursive design method is easier to design, and is more suitable for implementation.

  14. Development of a novel active muzzle brake for an artillery weapon system / Dirk Johannes Downing

    OpenAIRE

    Downing, Dirk Johannes

    2002-01-01

    A conventional muzzle brake is a baffle device located at some distance in front of the muzzle exit of a gun. The purpose of a muzzle brake is to alleviate the force on the weapon platform by diverting a portion of the muzzle gas resulting in a forward impulse being exerted on the recoiling parts of the weapon. A very efficient muzzle brake unfortunately gives rise to an excessive overpressure in the crew environment due to the deflection of the emerging shock waves. The novel ...

  15. Kanban system implementation in cardboard supply process (Case study: PT. Akebono Brake Astra Indonesia - Jakarta)

    Science.gov (United States)

    Laksono, Pringgo Widyo; Kusumawardani, Christina Ayu

    2017-11-01

    Continuous improvement is needed by every manufacturing company to optimize their production. One way to reach that goal is eliminating waste that occurs in company. In PT. Akebono Brake Astra Indonesia - Jakarta (AAIJ), there are seven "muda" (waste) that always strived to remove, such as muda transportation that occurs in the cardboard supply system made by the non-value movement of PIC in packing area to take cardboard from warehouse. This research use Kaizen theory to get rid of muda transportation by changing the cardboard supply system that were previously done manually by PIC of packing area become taken over by a towing operator and apply Kanban system to improving the cardboard supply system information by creating set up of Kanban system that produce Material and Information Chart (MIFC), Standardized Work Chart (SWC), calculation of Kanban population, and Work Instruction (WI). This research lead to improvement of cardboard supply process, clearer and more cyclic information flow in cardboard supply system, and reduction of cost due to saving of manpower.

  16. A test-based method for the assessment of pre-crash warning and braking systems.

    Science.gov (United States)

    Bálint, András; Fagerlind, Helen; Kullgren, Anders

    2013-10-01

    In this paper, a test-based assessment method for pre-crash warning and braking systems is presented where the effectiveness of a system is measured by its ability to reduce the number of injuries of a given type or severity in car-to-car rear-end collisions. Injuries with whiplash symptoms lasting longer than 1 month and MAIS2+ injuries in both vehicles involved in the crash are considered in the assessment. The injury reduction resulting from the impact speed reduction due to a pre-crash system is estimated using a method which has its roots in the dose-response model. Human-machine interaction is also taken into account in the assessment. The results reflect the self-protection as well as the partner-protection performance of a pre-crash system in the striking vehicle in rear-end collisions and enable a comparison between two or more systems. It is also shown how the method may be used to assess the importance of warning as part of a pre-crash system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Tap Water Hydraulic Control Systems - Design and Industrial Applications. Chapter 7 in Advances in Hydraulic Control Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    Deals with development and design of modern tap water hydraulic components and systems, in particalar the Danfoss Nessie-family of components and systems working with pure tap water without any kind of additives. Typical industrial applications are presented and the perspectives of new industrial...... applications and the environmental benefits are in focus, in particular in the food processing industry and in fire-fighting systems.......Deals with development and design of modern tap water hydraulic components and systems, in particalar the Danfoss Nessie-family of components and systems working with pure tap water without any kind of additives. Typical industrial applications are presented and the perspectives of new industrial...

  18. Computerized hydraulic scanning system for quantitative non destructive examination

    International Nuclear Information System (INIS)

    Gundtoft, H.E.

    1982-01-01

    A hydraulic scanning system with five degrees of freedom is described. It is primarily designed as a universal system for fast and accurate ultrasonic inspection of materials for their internal variation in properties. The whole system is controlled by a minicomputer which also is used for evaluating and presenting of the results of the inspection. (author)

  19. BRAKE DEVICE

    Science.gov (United States)

    O'Donnell, T.J.

    1959-03-10

    A brake device is described for utilization in connection with a control rod. The device comprises a pair of parallelogram link mechanisms, a control rod moveable rectilinearly therebetween in opposite directions, and shoes resiliently supported by the mechanism for frictional engagement with the control rod.

  20. Emergency Brake for Tracked Vehicles

    Science.gov (United States)

    Green, G. L.; Hooper, S. L.

    1986-01-01

    Caliper brake automatically stops tracked vehicle as vehicle nears end of travel. Bar on vehicle, traveling to right, dislodges block between brake pads. Pads then press against bar, slowing vehicle by friction. Emergencybraking system suitable for elevators, amusement rides and machine tools.

  1. Distributed and self-adaptive vehicle speed estimation in the composite braking case for four-wheel drive hybrid electric car

    Science.gov (United States)

    Zhao, Z.-G.; Zhou, L.-J.; Zhang, J.-T.; Zhu, Q.; Hedrick, J.-K.

    2017-05-01

    Considering the controllability and observability of the braking torques of the hub motor, Integrated Starter Generator (ISG), and hydraulic brake for four-wheel drive (4WD) hybrid electric cars, a distributed and self-adaptive vehicle speed estimation algorithm for different braking situations has been proposed by fully utilising the Electronic Stability Program (ESP) sensor signals and multiple powersource signals. Firstly, the simulation platform of a 4WD hybrid electric car was established, which integrates an electronic-hydraulic composited braking system model and its control strategy, a nonlinear seven degrees-of-freedom vehicle dynamics model, and the Burckhardt tyre model. Secondly, combining the braking torque signals with the ESP signals, self-adaptive unscented Kalman sub-filter and main-filter adaptable to the observation noise were, respectively, designed. Thirdly, the fusion rules for the sub-filters and master filter were proposed herein, and the estimation results were compared with the simulated value of a real vehicle speed. Finally, based on the hardware in-the-loop platform and by picking up the regenerative motor torque signals and wheel cylinder pressure signals, the proposed speed estimation algorithm was tested under the case of moderate braking on the highly adhesive road, and the case of Antilock Braking System (ABS) action on the slippery road, as well as the case of ABS action on the icy road. Test results show that the presented vehicle speed estimation algorithm has not only a high precision but also a strong adaptability in the composite braking case.

  2. Design And Implementation of Dsp-Based Intelligent Controller For Automobile Braking System

    Directory of Open Access Journals (Sweden)

    S.N. Sidek and M.J.E. Salami

    2012-08-01

    Full Text Available An intelligent braking system has great potential applications especially, in developed countries where research on smart vehicle and intelligent highways are receiving ample attention. The system when integrated with other subsystems like automatic traction control, intelligent throttle, and auto cruise systems, etc will result in smart vehicle maneuver. The driver at the end of the day will become the passenger, safety accorded the highest priority and the journey optimized in term of time duration, cost, efficiency and comfortability. The impact of such design and development will cater for the need of contemporary society that aspires to a quality drive as well as to accommodate the advancement of technology especially in the area of smart sensors and actuators.  The emergence of digital signal processor enhances the capacity and features of universal microcontroller.  This paper introduces the use of TI DSP, TMS320LF2407 as an engine of the system. The overall system is designed so that the value of inter-vehicle distance from infrared laser sensor and speed of follower car from speedometer are fed into the DSP for processing, resulting in the DSP issuing commands to the actuator to function appropriately.Key words:  Smart Vehicle, Digital Signal Processor, Fuzzy Controller, and Infra Red Laser Sensor

  3. Electronic brakes. From ABS to brake-by-wire. 2. ed.; Elektronische Bremssysteme. Vom ABS zum Brake-by-Wire

    Energy Technology Data Exchange (ETDEWEB)

    Reichel, H.R.

    2003-07-01

    The book reports trends in vehicle brakes from 1968 to 1998. This was the age of the electronic revolution. The book presents conventional brakes, antiblocking systems (ABS), antislip systems (ASS), brake assistants (BAS), dynamic control systems, and brake-by-wire systems. [German] Das Buch berichtet ueber Entwicklungen an Fahrzeugbremsanlagen in der Zeitspanne von 1968 bis etwa 1998. Diese Zeit war gepraegt vom Vordringen der Elektronik in die Bremsen, was fuer Hersteller und Kunden eine Revolution bedeutete. Behandelt sind: (a) Konventionelle Bremsanlagen, (b) Antiblockiersysteme (ABS), (c) Anti-Schlupf-regelungen (ASR), (d) Bremsassistenten (BAS), (e) Fahrdynamikregelungen (FDR, ESP), (f) Brake-by-Wire (orig.)

  4. Design of Transputer Controllers for Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    1996-01-01

    The paper deals with how transputers can be applied for fast controllers for hydraulic actuator systems. A general transputer-based control systems including a data acquisition transputer subsystem is presented. An application case: development of a mechatronic test facility with a fast hydraulic...... test robot controlled by a transputer-basec controller is presented. Some experimental path-tracking results with adaptive control algorithms are presented and discussed. The results confirm that transputers have significant advantages for intelligent control of actuator systems and robots for high...

  5. New evidence concerning fatal crashes of passenger vehicles before and after adding antilock braking systems.

    Science.gov (United States)

    Farmer, C M

    2001-05-01

    Fatal crash rates for passenger cars and vans were compared for the last model year before four-wheel antilock brakes were introduced and the first model year for which antilock brakes were standard equipment. A prior study, based on fatal crash experience through 1995, reported that vehicle models with antilock brakes were more likely than identical but 1-year-earlier models to be involved in crashes fatal to their own occupants, but were less likely to be involved in crashes fatal to occupants of other vehicles. Overall, there was no significant effect of antilocks on the likelihood of fatal crashes. Similar analyses, based on fatal crash experience during 1996-98, yielded very different results. During 1996-98, vehicles with antilock brakes were again less likely than earlier models to be involved in crashes fatal to occupants of other vehicles, but they were no longer overinvolved in crashes fatal to their own occupants.

  6. Optimizing preventive maintenance policy: A data-driven application for a light rail braking system.

    Science.gov (United States)

    Corman, Francesco; Kraijema, Sander; Godjevac, Milinko; Lodewijks, Gabriel

    2017-10-01

    This article presents a case study determining the optimal preventive maintenance policy for a light rail rolling stock system in terms of reliability, availability, and maintenance costs. The maintenance policy defines one of the three predefined preventive maintenance actions at fixed time-based intervals for each of the subsystems of the braking system. Based on work, maintenance, and failure data, we model the reliability degradation of the system and its subsystems under the current maintenance policy by a Weibull distribution. We then analytically determine the relation between reliability, availability, and maintenance costs. We validate the model against recorded reliability and availability and get further insights by a dedicated sensitivity analysis. The model is then used in a sequential optimization framework determining preventive maintenance intervals to improve on the key performance indicators. We show the potential of data-driven modelling to determine optimal maintenance policy: same system availability and reliability can be achieved with 30% maintenance cost reduction, by prolonging the intervals and re-grouping maintenance actions.

  7. Reactor Shutdown Mechanism by Top-mounted Hydraulic System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Haun; Cho, Yeong Garp; Choi, Myoung Hwan; Lee, Jin Haeng; Huh, Hyung; Kim, Jong In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    There are two types of reactor shutdown mechanisms in HANARO. One is the mechanism driven by a hydraulic system, and the other is driven by a stepping motor. In HANARO, there are four Control Rod Drive Mechanisms (CRDMs) with an individual step motor and four Shutoff (SO) Units with an individual hydraulic system located at the top of reactor pool. The absorber rods in SO units are poised at the top of the core by the hydraulic force during normal operation. The rods of SO units drop by gravity as the first reactor showdown mechanism when a trip is commended by the reactor protection system (RPS). The rods in CRDMs also drop by gravity together as a redundant shutdown mechanism. When a trip is commended by the reactor regulating system (RRS), the absorber rods of CRDM only drop; while the absorber rods of SO units stay at the top of the core by the hydraulic system. The reactivity control mechanisms of in JRTR, one of the new research reactor with plate type fuels, consist of four CRDMs driven by an individual step motor and two second shutdown drive mechanisms (SSDMs) driven by an individual hydraulic system as shown in Fig. 1. The CRDMs act as the first reactor shutdown mechanism and reactor regulating as well. The top-mounted SSDM driven by the hydraulic system for the JRTR is under design in KAERI. The SSDM provides an alternate and independent means of reactor shutdown. The second shutdown rods (SSRs) of the SSDM are poised at the top of the core by the hydraulic system during the normal operation and drop by gravity for the reactor trip. Based on the proven technology of the design, operation and maintenance for HANARO, the SSDM for the JRTR has been optimized by the design improvement from the experience and test. This paper aims for the introduction of the SSDM in the process of the basic design. The major differences of the shutdown mechanisms by the hydraulic system are compared between HANARO and JRTR, and the design features, system, structure and

  8. Brakes. Auto Mechanics Curriculum Guide. Module 6. Instructor's Guide.

    Science.gov (United States)

    Allain, Robert

    This module is the sixth of nine modules in the competency-based Missouri Auto Mechanics Curriculum Guide. Eight units cover: introduction to automotive brake systems; disc and drum brake system components and how they operate; properties of brake fluid and procedures for bleeding the brake system; diagnosing and determining needed repairs on…

  9. New technical solutions of using rolling stock electrodynamical braking

    Directory of Open Access Journals (Sweden)

    Leonas Povilas LINGAITIS

    2009-01-01

    Full Text Available The paper considers some theoretical and practical problems associated with the use of traction motor are operating in the generator mode (in braking. Mathematical and graphical relationships of electrodynamic braking, taking into account the requirements raised to braking systems in rail transport are presented. The latter include discontinuity of braking process, braking force regulation, depending on the locomotive speed, mass, type of railway and other parameters. Schematic diagrams of the locomotive braking and ways of controlling the braking force by varying electric circuit parameters are presented. The authors suggested contact-free regulation method of braking resistor for controlling braking force in rheostatic braking, and resistor parameters regulate with pulse regulation mode by semiconductor devices, such as new electrical components for rolling stock – IGBT transistors operating in the key mode. Presenting energy savings power systems, which are using regenerative braking-returning energy and diesel engine or any form of hybrid traction vehicles systems, circuit diagrams, electrical parameters curves.

  10. 49 CFR 236.712 - Brake pipe.

    Science.gov (United States)

    2010-10-01

    ... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air under... 49 Transportation 4 2010-10-01 2010-10-01 false Brake pipe. 236.712 Section 236.712 Transportation...

  11. 49 CFR 229.46 - Brakes: General.

    Science.gov (United States)

    2010-10-01

    ... regulating all pressures, including but not limited to the automatic and independent brake valves, operate as intended and that the water and oil have been drained from the air brake system. ... 49 Transportation 4 2010-10-01 2010-10-01 false Brakes: General. 229.46 Section 229.46...

  12. Developing of a software for determining advanced brake failures in brakes test bench

    Directory of Open Access Journals (Sweden)

    Hakan Köylü

    2016-08-01

    Full Text Available At present time, the brake test bench conducts the braking and suspension tests of front or rear axles and the test results are evaluated through one axle. The purpose of the brake testing system is to determine braking force and damping coefficient dissymmetry of one axle. Thus, this test system evaluates the performance of service brake, hand brake and suspension systems by considering separately front and rear axle dissymmetry. For this reason, the effects of different braking and damping forces applied by right and left wheels of both axles on braking performance of all vehicle are not determined due to available algorithm of the test bench. Also, the other brake failures are not occurred due to the algorithm of brake test system. In this study, the interface has been developed to determine the other effects of dissymmetry and the other brake failures by using the one axle results of brake test bench. The interface has algorithm computing the parameters according to the interaction between front and rear axles by only using measured test results. Also, it gives the warnings by comparing changes in the parameters with braking performance rules. Braking and suspension tests of three different vehicles have been conducted by using brake test bench to determine the performance of the algorithm. Parameters based on the axle interaction have been calculated by transferring brake test results to the interface and the test results have been evaluated. As a result, the effects of brake and suspension failures on braking performance of both axle and vehicle have been determined thanks to the developed interface.

  13. Effectiveness of motorcycle antilock braking systems (ABS) in reducing crashes, the first cross-national study.

    Science.gov (United States)

    Rizzi, Matteo; Strandroth, Johan; Kullgren, Anders; Tingvall, Claes; Fildes, Brian

    2015-01-01

    This study set out to evaluate the effectiveness of motorcycle antilock braking systems (ABS) in reducing real-life crashes. Since the European Parliament has voted on legislation making ABS mandatory on all new motorcycles over 125 cc from 2016, the fitment rate in Europe is likely to increase in the coming years. Though previous research has focused on mostly large displacement motorcycles, this study used police reports from Spain (2006-2009), Italy (2009), and Sweden (2003-2012) in order to analyze a wide range of motorcycles, including scooters, and compare countries with different motorcycling habits. The statistical analysis used odds ratio calculations with an induced exposure approach. Previous research found that head-on crashes were the least ABS-affected crash type and was therefore used as the nonsensitive crash type for ABS in these calculations. The same motorcycle models, with and without ABS, were compared and the calculations were carried out for each country separately. Crashes involving only scooters were further analyzed. The effectiveness of motorcycle ABS in reducing injury crashes ranged from 24% (95% confidence interval [CI], 12-36) in Italy to 29% (95% CI, 20-38) in Spain, and 34% (95% CI, 16-52) in Sweden. The reductions in severe and fatal crashes were even greater, at 34% (95% CI, 24-44) in Spain and 42% (95% CI, 23-61) in Sweden. The overall reductions of crashes involving ABS-equipped scooters (at least 250 cc) were 27% (95% CI, 12-42) in Italy and 22% (95% CI, 2-42) in Spain. ABS on scooters with at least a 250 cc engine reduced severe and fatal crashes by 31% (95% CI, 12-50), based on Spanish data alone. At this stage, there is more than sufficient scientific-based evidence to support the implementation of ABS on all motorcycles, even light ones. Further research should aim at understanding the injury mitigating effects of motorcycle ABS, possibly in combination with combined braking systems.

  14. Cryo-braking using penetrators for enhanced capabilities for the potential landing of payloads on icy solar system objects

    Science.gov (United States)

    Winglee, R. M.; Robinson, T.; Danner, M.; Koch, J.

    2018-03-01

    The icy moons of Jupiter and Saturn are important astrobiology targets. Access to the surface of these worlds is made difficult by the high ΔV requirements which is typically in the hypervelocity range. Passive braking systems cannot be used due to the lack of an atmosphere, and active braking by rockets significantly adds to the missions costs. This paper demonstrates that a two-stage landing system can overcome these problems and provide significant improvements in the payload fraction that can be landed The first stage involves a hypervelocity impactor which is designed to penetrate to a depth of a few tens of meters. This interaction is the cryo-breaking component and is examined through laboratory experiments, empirical relations and modeling. The resultant ice-particle cloud creates a transient artificial atmosphere that can be used to enable passive braking of the second stage payload dd, with a substantially higher mass payload fraction than possible with a rocket landing system. It is shown that a hollow cylinder design for the impactor can more efficiently eject the material upwards in a solid cone of ice particles relative to solid impactors such as spheres or spikes. The ejected mass is shown to be of the order of 103 to 104 times the mass of the impactor. The modeling indicates that a 10 kg payload with a braking system of 3 m2 (i.e. an areal density of 0.3 kg/m2) is sufficient to allow the landing of the payload with the deceleration limited to less than 2000 g's. Modern electronics can withstand this deceleration and as such the system provides an important alternative to landing payloads on icy solar system objects.

  15. Development and Verification of the Tire/Road Friction Estimation Algorithm for Antilock Braking System

    Directory of Open Access Journals (Sweden)

    Jian Zhao

    2014-01-01

    Full Text Available Road friction information is very important for vehicle active braking control systems such as ABS, ASR, or ESP. It is not easy to estimate the tire/road friction forces and coefficient accurately because of the nonlinear system, parameters uncertainties, and signal noises. In this paper, a robust and effective tire/road friction estimation algorithm for ABS is proposed, and its performance is further discussed by simulation and experiment. The tire forces were observed by the discrete Kalman filter, and the road friction coefficient was estimated by the recursive least square method consequently. Then, the proposed algorithm was analysed and verified by simulation and road test. A sliding mode based ABS with smooth wheel slip ratio control and a threshold based ABS by pulse pressure control with significant fluctuations were used for the simulation. Finally, road tests were carried out in both winter and summer by the car equipped with the same threshold based ABS, and the algorithm was evaluated on different road surfaces. The results show that the proposed algorithm can identify the variation of road conditions with considerable accuracy and response speed.

  16. Design of Mechanically Actuated Aerodynamic Braking System on a Formula Student Race Car

    Science.gov (United States)

    Muralidharan, Vivek; Balakrishnan, Abhijith; Vardhan, Vinit Ketan; Meena, Nikita; Kumar, Y. Suresh

    2018-04-01

    Every second in a racing competition counts the performance of a team against the other. Many innovative and sophisticated techniques are being employed to overcome loses in time and add to the performance of the vehicle. Especially in a car racing challenge there is more freedom to install these innovative systems to empower the car to maximum efficiency due to availability of more space. At the global spectrum there are few events which encourage such innovations. Formula Student Racing competitions are one of the global events organized by the Society of Automotive Engineers of different countries which gives opportunity to university students to build and race formula style cars. Like any other racing competitions in this high octane event having an inch over their opponents is always an advantage. Not just better acceleration and high velocities but also good deceleration is required to excel in the competition. Aerodynamic braking system is utilizing the aerodynamic drag force to create high deceleration. This mechanism can be installed on any car with spoilers with minimum modification. Being a student event great amount of care needs to be given to the safety concerns of the driver.

  17. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces - A velocity-rate-controlled, pressure-bias-modulated system

    Science.gov (United States)

    Stubbs, S. M.; Tanner, J. A.

    1976-01-01

    During maximum braking the average ratio of drag-force friction coefficient developed by the antiskid system to maximum drag-force friction coefficient available at the tire/runway interface was higher on dry surfaces than on wet surfaces. The gross stopping power generated by the brake system on the dry surface was more than twice that obtained on the wet surfaces. With maximum braking applied, the average ratio of side-force friction coefficient developed by the tire under antiskid control to maximum side-force friction available at the tire/runway interface of a free-rolling yawed tire was shown to decrease with increasing yaw angle. Braking reduced the side-force friction coefficient on a dry surface by 75 percent as the wheel slip ratio was increased to 0.3; on a flooded surface the coefficient dropped to near zero for the same slip ratio. Locked wheel skids were observed when the tire encountered a runway surface transition from dry to flooded, due in part to the response time required for the system to sense abrupt changes in the runway friction; however, the antiskid system quickly responded by reducing brake pressure and cycling normally during the remainder of the run on the flooded surface.

  18. 49 CFR 393.43 - Breakaway and emergency braking.

    Science.gov (United States)

    2010-10-01

    ... ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.43 Breakaway and emergency braking. (a) Towing vehicle protection system. Every motor vehicle, if used to tow a trailer equipped with brakes, shall be equipped with... brake systems installed on towed vehicles shall be so designed, by the use of “no-bleed-back” relay...

  19. Safety Guarantee of Automobile Braking System%汽车制动系统的安全性保障

    Institute of Scientific and Technical Information of China (English)

    张远芳

    2011-01-01

    Taking the braking system maintenance and examination done by Guangxi Chaoda Company as an example,the article discusses some common problems and diagnosis,and effective repairing method.It also performs safety test to ensure the braking performance and the system safety.%文章以广西超大公司的制动系统维护及检测管理经验为依据,提出制动系统常见故障及判断,以有效的维修排除的方法,并通过制动性能安全检验确保制动效果达到最佳,使车辆制动系统的安全性得到保障。

  20. Evaluation of the crash mitigation effect of low-speed automated emergency braking systems based on insurance claims data.

    Science.gov (United States)

    Isaksson-Hellman, Irene; Lindman, Magdalena

    2016-09-01

    The aim of the present study was to evaluate the crash mitigation performance of low-speed automated emergency braking collision avoidance technologies by examining crash rates, car damage, and personal injuries. Insurance claims data were used to identify rear-end frontal collisions, the specific situations where the low-speed automated emergency braking system intervenes. We compared cars of the same model (Volvo V70) with and without the low-speed automated emergency braking system (AEB and no AEB, respectively). Distributions of spare parts required for car repair were analyzed to identify car damage, and crash severity was estimated by comparing the results with laboratory crash tests. Repair costs and occupant injuries were investigated for both the striking and the struck vehicle. Rear-end frontal collisions were reduced by 27% for cars with low-speed AEB compared to cars without the system. Those of low severity were reduced by 37%, though more severe crashes were not reduced. Accordingly, the number of injured occupants in vehicles struck by low-speed AEB cars was reduced in low-severity crashes. In offset crash configurations, the system was found to be less effective. This study adds important information about the safety performance of collision avoidance technologies, beyond the number of crashes avoided. By combining insurance claims data and information from spare parts used, the study demonstrates a mitigating effect of low-speed AEB in real-world traffic.

  1. Reduction of Noise from Disc Brake Systems Using Composite Friction Materials Containing Thermoplastic Elastomers (TPEs)

    Science.gov (United States)

    Masoomi, Mohsen; Katbab, Ali Asghar; Nazockdast, Hossein

    2006-09-01

    Attempts have been made for the first time to prepare a friction material with the characteristic of thermal sensitive modulus, by the inclusion of thermoplastic elastomers (TPE) as viscoelastic polymeric materials into the formulation in order to the increase the damping behavior of the cured friction material. Styrene butadiene styrene (SBS), styrene ethylene butylene styrene (SEBS) and nitrile rubber/polyvinyl chloride (NBR/PVC) blend system were used as TPE materials. In order to evaluate the viscoelastic parameters such as loss factor (tan δ) and storage modulus (E‧) for the friction material, dynamic mechanical analyzer (DMA) were used. Natural frequencies and mode shapes of friction material and brake disc were determined by modal analysis. However, NBR/PVC and SEBS were found to be much more effective in damping behavior. The results from this comparative study suggest that the damping characteristics of commercial friction materials can be strongly affected by the TPE ingredients. This investigation also confirmed that the specimens with high TPE content had low noise propensity.

  2. Brake blending strategy for a hybrid vehicle

    Science.gov (United States)

    Boberg, Evan S.

    2000-12-05

    A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

  3. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-05-01

    This factsheet describes a research project whose goal is to develop degradation-resistant nano-coatings of AlMgB14 and AlMgB14– (titanium diboride) TiB2 that result in improved surface hardness and reduced friction for industrial hydraulic and tooling systems.

  4. Fatal crashes of passenger vehicles before and after adding antilock braking systems.

    Science.gov (United States)

    Farmer, C M; Lund, A K; Trempel, R E; Braver, E R

    1997-11-01

    Fatal crash rates of passenger cars and vans were compared for the last model year before four-wheel antilock brakes were introduced and the first model year for which antilock brakes were standard equipment. Vehicles selected for analysis had no other significant design changes between the model years being compared, and the model years with and without antilocks were no more than two years apart. The overall fatal crash rates were similar for the two model years. However, the vehicles with antilocks were significantly more likely to be involved in crashes fatal to their own occupants, particularly single-vehicle crashes. Conversely, antilock vehicles were less likely to be involved in crashes fatal to occupants of other vehicles or nonoccupants (pedestrians, bicyclists). Overall, antilock brakes appear to have had little effect on fatal crash involvement. Further study is needed to better understand why fatality risk has increased for occupants of antilock vehicles.

  5. Research on MEMS sensor in hydraulic system flow detection

    Science.gov (United States)

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2011-05-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  6. Thermal analysis and temperature characteristics of a braking resistor for high-speed trains for changes in the braking current

    Science.gov (United States)

    Lee, Dae-Dong; Kang, Hyun-Il; Shim, Jae-Myung

    2015-09-01

    Electric brake systems are used in high-speed trains to brake trains by converting the kinetic energy of a railway vehicle to electric energy. The electric brake system consists of a regenerative braking system and a dynamic braking system. When the electric energy generated during the dynamic braking process is changed to heat through the braking resistor, the braking resistor can overheat; thus, failures can occur to the motor block. In this paper, a braking resistor for a high-speed train was used to perform thermal analyses and tests, and the results were analyzed. The analyzed data were used to estimate the dependence of the brake currents and the temperature rises on speed changes up to 300 km/h, at which a test could not be performed.

  7. Observer-Based Robust Control for Hydraulic Velocity Control System

    Directory of Open Access Journals (Sweden)

    Wei Shen

    2013-01-01

    Full Text Available This paper investigates the problems of robust stabilization and robust control for the secondary component speed control system with parameters uncertainty and load disturbance. The aim is to enhance the control performance of hydraulic system based on Common Pressure Rail (CPR. Firstly, a mathematical model is presented to describe the hydraulic control system. Then a novel observer is proposed, and an observed-based control strategy is designed such that the closed-loop system is asymptotically stable and satisfies the disturbance attenuation level. The condition for the existence of the developed controller can by efficiently solved by using the MATLAB software. Finally, simulation results are provided to demonstrate the effectiveness of the proposed method.

  8. Discussion on stochastic braking for a single-rail rope-driven lifter

    Energy Technology Data Exchange (ETDEWEB)

    1987-02-01

    This paper discusses the braking and control of a A-2/73 clip type friction brake system made in FRG - a clamp type brake system made in USSR and an eccentric wheel type brake system made in Poland. Then it analyses a ZGZ auto increasing force type braking system of a single-rail rope driven lifter. The braking principle of the ZGZ system is that the braking blocks insert along the brake base and contact with the ribs of the single-rail. Then the braking would be realized as a function of increasing frictional force.

  9. 18. international {mu} symposium - expert meeting on brake systems; 18. Internationales {mu}-Symposium - Bremsen-Fachtagung

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, B. [ed.

    1999-12-01

    The braking systems of passenger cars have become increasingly important for safe driving and driving dynamics (traction control, differential lock, brake assistance, electronic stabilising systems adaptive automatic speed control). At the same time operating-, noise- and vibration performance are expected to improve. Brake-by-wire, the technology of the future, will increase its potential as one component of the more and more strongly ``electrified`` cars. Design of operating characteristics will become important as the designer will have a lot of liberty in designing the effect of foot impact and slowing down of the vehicle and shall have to design the actuating pedal with great care. The is potential for further improvements in the following areas: dynamic cooperation of brakes, tyres and road, components (e.g. tyre sensors), advanced driver assistance systems. The XVIII. symposium held in Bad Neuenahr on October 23. and 24. 1998 dealt with several of the issues. The symposium, organised by BBA Friction GmbH brought together 240 brake experts from many countries. The contents of the conference are contained in this book (orig.) [Deutsch] In den letzten Jahren hat die Bedeutung der Bremsanlagen von Kraftfahrzeugen fuer Fahrdynamik und Fahrsicherheit ausserordentlich stark zugenommen (Traktionskontrolle, Differentialsperre, Bremsassistent, elektronische Fahrdynamikstabilisierung, adaptive automatische Fahrgeschwindigkeitsregelung). Gleichzeitig wachsen die Anforderungen an ihr Betriebs-, Geraeusch- und Schwingungsverhalten. Mit der zukuenftigen elektrischen Betaetigung der Bremse wird ihr Potential als wichtige Komponente im immer staerker `elektroinfizierten` Gesamtsystem Fahrzeug bedeutend erweitert. Hierbei wird auch die zukuenftige Auslegung der Betaetigungscharakteristik sehr wichtig, da der Konstrukteur im Wirkungszusammenhang Fusskraft/Fahrzeugverzoegerung grosse Freiheiten gewinnt und das Stellteil Bremspedal im Hinblick auf Kundenzufriedenheit und

  10. A Hydraulic Stress Measurement System for Deep Borehole Investigations

    Science.gov (United States)

    Ask, Maria; Ask, Daniel; Cornet, Francois; Nilsson, Tommy

    2017-04-01

    Luleå University of Technology (LTU) is developing and building a wire-line system for hydraulic rock stress measurements, with funding from the Swedish Research Council and Luleå University of Technology. In this project, LTU is collaborating with University of Strasbourg and Geosigma AB. The stress state influences drilling and drillability, as well as rock mass stability and permeability. Therefore, knowledge about the state of in-situ stress (stress magnitudes, and orientations) and its spatial variation with depth is essential for many underground rock engineering projects, for example for underground storage of hazardous material (e.g. nuclear waste, carbon dioxide), deep geothermal exploration, and underground infrastructure (e.g. tunneling, hydropower dams). The system is designed to conduct hydraulic stress testing in slim boreholes. There are three types of test methods: (1) hydraulic fracturing, (2) sleeve fracturing and (3) hydraulic testing of pre-existing fractures. These are robust methods for determining in situ stresses from boreholes. Integration of the three methods allows determination of the three-dimensional stress tensor and its spatial variation with depth in a scientific unambiguously way. The stress system is composed of a downhole and a surface unit. The downhole unit consists of hydraulic fracturing equipment (straddle packers and downhole imaging tool) and their associated data acquisition systems. The testing system is state of the art in several aspects including: (1) Large depth range (3 km), (2) Ability to test three borehole dimensions (N=76 mm, H=96 mm, and P=122 mm), (3) Resistivity imager maps the orientation of tested fracture; (4) Highly stiff and resistive to corrosion downhole testing equipment; and (5) Very detailed control on the injection flow rate and cumulative volume is obtained by a hydraulic injection pump with variable piston rate, and a highly sensitive flow-meter. At EGU General Assembly 2017, we would like to

  11. Calculation of dynamic hydraulic forces in nuclear plant piping systems

    International Nuclear Information System (INIS)

    Choi, D.K.

    1982-01-01

    A computer code was developed as one of the tools needed for analysis of piping dynamic loading on nuclear power plant high energy piping systems, including reactor safety and relief value upstream and discharge piping systems. The code calculates the transient hydraulic data and dynamic forces within the one-dimensional system, caused by a pipe rupture or sudden value motion, using a fixed space and varying time grid-method of characteristics. Subcooled, superheated, homogeneous two-phase and transition flow regimes are considered. A non-equilibrium effect is also considered in computing the fluid specific volume and fluid local sonic velocity in the two-phase mixture. Various hydraulic components such as a spring loaded or power operated value, enlarger, orifice, pressurized tank, multiple pipe junction (tee), etc. are considered as boundary conditions. Comparisons of calculated results with available experimental data shows a good agreement. (Author)

  12. Fixed-Time Stability of the Hydraulic Turbine Governing System

    Directory of Open Access Journals (Sweden)

    Caoyuan Ma

    2018-01-01

    Full Text Available This paper studies the problem of fixed-time stability of hydraulic turbine governing system with the elastic water hammer nonlinear model. To control and improve the quality of hydraulic turbine governing system, a new fixed-time control strategy is proposed, which can stabilize the water turbine governing system within a fixed time. Compared with the finite-time control strategy where the convergence rate depends on the initial state, the settling time of the fixed-time control scheme can be adjusted to the required value regardless of the initial conditions. Finally, we numerically show that the fixed-time control is more effective than and superior to the finite-time control.

  13. Analysis and selection of a system for hydraulic transport of slags in the Mironovskii power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mirgorodskii, V.G.; Mova, M.E.; Korenev, V.E.; Grechikhin, Yu.A. (Donetskii Politekhnicheskii Institut (USSR))

    1991-01-01

    Discusses systems for hydraulic transport of ashes and slags from combustion of black coal (with an ash content of 40.5%) in the Mironovskii power plant. Three systems are comparatively evaluated: hydraulic transport under influence of gravity, hydraulic transport with a system of dredging pumps, or an airlift pump system. Design of each system, its operation and types of pumps or airlift systems are discussed. The evaluation concentrates on the hydraulic transport system with 1 to 3 airlift pumps each with a capacity ranging from 110 to 890 m{sup 3}/h. Optimum design of the airlift hydraulic system for slag and ash transport is described.

  14. Architectural design and reliability analysis of a fail-operational brake-by-wire system from ISO 26262 perspectives

    International Nuclear Information System (INIS)

    Sinha, Purnendu

    2011-01-01

    Next generation drive-by-wire automotive systems enabling autonomous driving will build on the fail-operational capabilities of electronics, control and software (ECS) architectural solutions. Developing such architectural designs that would meet dependability requirements and satisfy other system constraints is a challenging task and will possibly lead to a paradigm shift in automotive ECS architecture design and development activities. This aspect is becoming quite relevant while designing battery-driven electric vehicles with integrated in-wheel drive-train and chassis subsystems. In such highly integrated dependable systems, many of the primary features and functions are attributed to the highest safety critical ratings. Brake-by-wire is one such system that interfaces with active safety features built into an automobile, and which in turn is expected to provide fail-operational capabilities. In this paper, building up on the basic concepts of fail-silent and fail-operational systems design we propose a system-architecture for a brake-by-wire system with fail-operational capabilities. The design choices are supported with proper rationale and design trade-offs. Safety and reliability analysis of the proposed system architecture is performed as per the ISO 26262 standard for functional safety of electrical/electronic systems in road vehicles.

  15. Automatic braking system modification for the Advanced Transport Operating Systems (ATOPS) Transportation Systems Research Vehicle (TSRV)

    Science.gov (United States)

    Coogan, J. J.

    1986-01-01

    Modifications were designed for the B-737-100 Research Aircraft autobrake system hardware of the Advanced Transport Operating Systems (ATOPS) Program at Langley Research Center. These modifications will allow the on-board flight control computer to control the aircraft deceleration after landing to a continuously variable level for the purpose of executing automatic high speed turn-offs from the runway. A bread board version of the proposed modifications was built and tested in simulated stopping conditions. Test results, for various aircraft weights, turnoff speed, winds, and runway conditions show that the turnoff speeds are achieved generally with errors less than 1 ft/sec.

  16. Thermal-hydraulic tests for reactor safety system

    International Nuclear Information System (INIS)

    Chun, Se Young; Chung, Moon Ki; Baek, Won Pil

    2002-05-01

    Tests for the safety depressurization system, Sparger adopted for the Korean next generation reactor, APR1400 are carried out for several geometries with the B and C (Blowdown and Condensation) facility in the condition of high temperature and pressure and with a small test facility in the condition of atmospheric temperature and pressure. Tests for the critical heat flux are performed with the RCS(Reactor Coolant System) facility as well as with the Freon CHF Loop in the condition of high temperature and pressure. The atmospheric temperature and pressure facility is utilized for development of the high standard thermal hydraulic measurement technology. The optical method is developed to measure the local thermal-hydraulic behavior for the single and two-phase boiling phenomena

  17. Efficient numerical method for district heating system hydraulics

    International Nuclear Information System (INIS)

    Stevanovic, Vladimir D.; Prica, Sanja; Maslovaric, Blazenka; Zivkovic, Branislav; Nikodijevic, Srdjan

    2007-01-01

    An efficient method for numerical simulation and analyses of the steady state hydraulics of complex pipeline networks is presented. It is based on the loop model of the network and the method of square roots for solving the system of linear equations. The procedure is presented in the comprehensive mathematical form that could be straightforwardly programmed into a computer code. An application of the method to energy efficiency analyses of a real complex district heating system is demonstrated. The obtained results show a potential for electricity savings in pumps operation. It is shown that the method is considerably more effective than the standard Hardy Cross method still widely used in engineering practice. Because of the ease of implementation and high efficiency, the method presented in this paper is recommended for hydraulic steady state calculations of complex networks

  18. Research on intelligent algorithm of electro - hydraulic servo control system

    Science.gov (United States)

    Wang, Yannian; Zhao, Yuhui; Liu, Chengtao

    2017-09-01

    In order to adapt the nonlinear characteristics of the electro-hydraulic servo control system and the influence of complex interference in the industrial field, using a fuzzy PID switching learning algorithm is proposed and a fuzzy PID switching learning controller is designed and applied in the electro-hydraulic servo controller. The designed controller not only combines the advantages of the fuzzy control and PID control, but also introduces the learning algorithm into the switching function, which makes the learning of the three parameters in the switching function can avoid the instability of the system during the switching between the fuzzy control and PID control algorithms. It also makes the switch between these two control algorithm more smoother than that of the conventional fuzzy PID.

  19. TMI-2 in-vessel hydraulic systems utilize high water and high boron content fluids

    International Nuclear Information System (INIS)

    Baston, V.F.; Hofstetter, K.J.; Hofman, L.A.; Gallagher, R.E.

    1987-01-01

    Choice of a hydraulic fluid for use in the Three Mile Island Unit 2 (TMI-2) reactor vessel defueling equipment required consideration of the following constraints for the hydraulic fluid given an accidental spill into the reactor coolant system (RCS). The TMI-2 RCS hydraulic fluid utilized in the hydraulic operations utilized a solution composition of 95 wt% water and 5 wt% of the above base fluid. The TMI-2 hydraulic system utilizes pressures up to 3500 psi. The selected hydraulic fluid has been in use since December 1986 with minimal operational difficulties

  20. Utilization of a hardware-in-the-loop-system for controlling the speed of an eddy current brake

    International Nuclear Information System (INIS)

    Kramer, V; Brauneis, P; Schmidt, K; Mishra, R

    2012-01-01

    Rapid prototyping with a hardware-in-the-loop (HiL) system significantly reduces the development time for controller-type testing and is widely used in various fields of engineering. In this discussion, a controller is developed for a speed control application utilizing a magnetic brake. A mathematical model is presented first that has been implemented in Matlab/ Simulink. The controller development steps are described that will form the basis of a control system for a wind turbine. A test is carried out that simulates the wind turbine inertial load.

  1. A study on maintenance reliability allocation of urban transit brake system using hybrid neuro-genetic technique

    International Nuclear Information System (INIS)

    Bae, Chul Ho; Kim, Hyun Jun; Lee, Jung Hwan; Suh, Myung Won; Chu, Yul

    2007-01-01

    For reasonable establishing of maintenance strategies, safety security and cost limitation must be considered at the same time. In this paper, the concept of system reliability introduces and optimizes as the key of reasonable maintenance strategies. This study aims at optimizing component's reliability that satisfies the target reliability of brake system in the urban transit. First of all, constructed reliability evaluation system is used to predict and analyze reliability. This data is used for the optimization. To identify component reliability in a system, a method is presented in this paper which uses hybrid neuro-genetic technique. Feed-forward multi-layer neural networks trained by back propagation are used to find out the relationship between component reliability (input) and system reliability (output) of a structural system. The inverse problem can be formulated by using neural network. Genetic algorithm is used to find the minimum square error. Finally, this paper presents reasonable maintenance cycle of urban transit brake system by using optimal system reliability

  2. Thermal hydraulic tests for reactor safety system -Research on the improvement of nuclear safety-

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Park, Chun Kyeong; Yang, Seon Kyu; Chung, Chang Hwan; Chun, Shee Yeong; Song, Cheol Hwa; Chun, Hyeong Gil; Chang, Seok Kyu; Chung, Heung Joon; Won, Soon Yeon; Cho, Yeong Ro; Kim, Bok Deuk; Min, Kyeong Ho

    1994-07-01

    The present research aims at the development of the thermal hydraulic verification test technology for the reactor safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. (Author)

  3. An analysis of braking measures

    OpenAIRE

    De Groot, S.; De Winter, J.C.F.; Wieringa, P.A.; Mulder, M.

    2010-01-01

    Braking to a full stop at a prescribed target position is a driving manoeuvre regularly used in experiments to investigate driving behaviour or to test vehicle acceleration feedback systems in simulators. Many different performance measures have been reported in the literature for analysing braking. These may or may not be useful to analyse the stopping manoeuvre, because a number of potential problems exist: 1) the scores on a measure may be insufficiently reliable, 2) the measure may be inv...

  4. Development of control system of coating of rod hydraulic cylinders

    Science.gov (United States)

    Aizhambaeva, S. Zh; Maximova, A. V.

    2018-01-01

    In this article, requirements to materials of hydraulic cylinders and methods of eliminating the main factors affecting the quality of the applied coatings rod hydraulic cylinders. The chromium plating process - one of ways of increase of anti-friction properties of coatings rods, stability to the wear and corrosion. The article gives description of differences of the stand-speed chromium plating process from other types of chromium plating that determines a conclusion about cutting time of chromium plating process. Conducting the analysis of technological equipment suggested addressing the modernization of high-speed chromium plating processes by automation and mechanization. Control system developed by design of schematic block diagram of a modernized and stand-speed chromium plating process.

  5. Design and analysis of hydraulic ram water pumping system

    Science.gov (United States)

    Hussin, N. S. M.; Gamil, S. A.; Amin, N. A. M.; Safar, M. J. A.; Majid, M. S. A.; Kazim, M. N. F. M.; Nasir, N. F. M.

    2017-10-01

    The current pumping system (DC water pump) for agriculture is powered by household electricity, therefore, the cost of electricity will be increased due to the higher electricity consumption. In addition, the water needs to be supplied at different height of trees and different places that are far from the water source. The existing DC water pump can pump the water to 1.5 m height but it cost money for electrical source. The hydraulic ram is a mechanical water pump that suitable used for agriculture purpose. It can be a good substitute for DC water pump in agriculture use. The hydraulic ram water pumping system has ability to pump water using gravitational energy or the kinetic energy through flowing source of water. This project aims to analyze and develop the water ram pump in order to meet the desired delivery head up to 3 meter height with less operation cost. The hydraulic ram is designed using CATIA software. Simulation work has been done using ANSYS CFX software to validate the working concept. There are three design were tested in the experiment study. The best design reached target head of 3 m with 15% efficiency and flow rate of 11.82l/min. The results from this study show that the less diameter of pressure chamber and higher supply head will create higher pressure.

  6. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    International Nuclear Information System (INIS)

    Song, C. H.; Baek, W. P.; Chung, M. K.

    2007-06-01

    The objectives of the project are to study thermal hydraulic characteristics of advanced nuclear reactor system for evaluating key thermal-hydraulic phenomena relevant to new safety concepts. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. The Followings are main research topics: - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation-induced Thermal Mixing in a Pool - Development of Thermal-Hydraulic Models for Two-Phase Flow - Construction of T-H Data Base

  7. Deployable Engine Air Brake

    Science.gov (United States)

    2014-01-01

    On approach, next-generation aircraft are likely to have airframe noise levels that are comparable to or in excess of engine noise. ATA Engineering, Inc. (ATA) is developing a novel quiet engine air brake (EAB), a device that generates "equivalent drag" within the engine through stream thrust reduction by creating a swirling outflow in the turbofan exhaust nozzle. Two Phase II projects were conducted to mature this technology: (1) a concept development program (CDP) and (2) a system development program (SDP).

  8. HRB, Hydrostatically Regenerative Brake system for dust-carts and buses; HRB, ein hydraulischer Hybrid fuer Muellfahrzeuge und Busse

    Energy Technology Data Exchange (ETDEWEB)

    Ehret, Christine; Kliffken, Markus G.; Bracht, Detlef van [Bosch Rexroth AG (Germany)

    2009-07-01

    The HRB, Hydrostatically Regenerative Brake System by Rexroth, saves up to 25 percent diesel in heavy-duty industrial vehicles and also reduces exhaust emissions. Practical tests and field tests with a dust-cart of Haller Umweltsysteme GmbH and Co. KG in the city of Berlin proved this. The dust-cart has been in operation since July 2008. Measurements in practical operation have proved the savings calculated in simulations. Detailed economic efficiency calculations are possible in advance with a software also developed by Rexroth.

  9. 49 CFR 232.217 - Train brake tests conducted using yard air.

    Science.gov (United States)

    2010-10-01

    ... reduction of brake pipe air pressure at the same, or slower, rate as an engineer's brake valve. (b) The yard... 49 Transportation 4 2010-10-01 2010-10-01 false Train brake tests conducted using yard air. 232... Train brake tests conducted using yard air. (a) When a train air brake system is tested from a yard air...

  10. Assessment of Integrated Pedestrian Protection Systems with Autonomous Emergency Braking (AEB) and Passive Safety Components.

    Science.gov (United States)

    Edwards, Mervyn; Nathanson, Andrew; Carroll, Jolyon; Wisch, Marcus; Zander, Oliver; Lubbe, Nils

    2015-01-01

    Autonomous emergency braking (AEB) systems fitted to cars for pedestrians have been predicted to offer substantial benefit. On this basis, consumer rating programs-for example, the European New Car Assessment Programme (Euro NCAP)-are developing rating schemes to encourage fitment of these systems. One of the questions that needs to be answered to do this fully is how the assessment of the speed reduction offered by the AEB is integrated with the current assessment of the passive safety for mitigation of pedestrian injury. Ideally, this should be done on a benefit-related basis. The objective of this research was to develop a benefit-based methodology for assessment of integrated pedestrian protection systems with AEB and passive safety components. The method should include weighting procedures to ensure that it represents injury patterns from accident data and replicates an independently estimated benefit of AEB. A methodology has been developed to calculate the expected societal cost of pedestrian injuries, assuming that all pedestrians in the target population (i.e., pedestrians impacted by the front of a passenger car) are impacted by the car being assessed, taking into account the impact speed reduction offered by the car's AEB (if fitted) and the passive safety protection offered by the car's frontal structure. For rating purposes, the cost for the assessed car is normalized by comparing it to the cost calculated for a reference car. The speed reductions measured in AEB tests are used to determine the speed at which each pedestrian in the target population will be impacted. Injury probabilities for each impact are then calculated using the results from Euro NCAP pedestrian impactor tests and injury risk curves. These injury probabilities are converted into cost using "harm"-type costs for the body regions tested. These costs are weighted and summed. Weighting factors were determined using accident data from Germany and Great Britain and an independently

  11. Role of system characteristics in evolution of pump hydraulic design

    International Nuclear Information System (INIS)

    Walia, Mohinder; Misri, Vijay; Sharma, A.K.; Bapat, C.N.

    1994-01-01

    Primary heat transport (PHT) main circuit provides the means for transferring the heat produced in the fuel by circulating heavy water in the main circuit loop by primary coolant pumps (PCPs). The procurement specification of PCPs for 500 MWe pressurised heavy water reactor (PHWR) was prepared based upon the first order hydraulic analysis of the primary heat transport system and accordingly duty point was fixed. With this specification the manufacturer carried out model testing to arrive at optimum size of the impeller followed by determination of pump characteristics curves using full scale impeller during type testing. The duty point thus obtained was higher than specified necessitating the trimming of impeller. However, in order to make use of available higher duty point from system considerations, the duty point was redefined for production of subsequent pumps within specified tolerances governed by manufacturing limitations. PHT main system sizing (piping and feeders) was carried out based upon pump (delivering maximum flow) characteristics curve. Pressure profiles of PHT system at various operating modes were drawn and corresponding power drawn by motor was calculated. The interfacing of reactor coolant main system with hydraulic characteristics of PCP plays a significant role in establishing the requisite capability and capacity of PHT system in performing its intended functions. Therefore the paper traces the evolution of design parameters for PCP and subsequent generation of pressure profiles commensurate with the changes made in power profile including their impact on feeder sizing. The paper also highlights the scope of interaction between process designer and pump manufacturer in formulating a mutually acceptable and efficient hydraulic performance for PCP. (author). 3 refs., 8 figs., 3 tabs

  12. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton B. Higdon III

    2011-01-07

    Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for

  13. Seismic analysis of hydraulic control rod driving system

    International Nuclear Information System (INIS)

    Zheng, Yanhua; Bo, Hanliang; Dong, Duo

    2002-01-01

    A simplified mathematical model was developed for the Hydraulic Control Rod Driving System (HCRDS) of a 200 MW nuclear heating reactor, which incorporated the design of its chamfer-hole step cylinder, to analyze its seismic response characteristics. The control rod motion was analyzed for different sine-wave vibration loadings on platform vibrator. The vibration frequency domain and the minimum acceleration amplitude of the control rod needed to cause the control rod to step to its next setting were compared with the design acceleration amplitude spectrum. The system design was found to be safety within the calculated limits. The safety margin increased with increasing frequency. (author)

  14. Estimate of potential benefit for Europe of fitting Autonomous Emergency Braking (AEB) systems for pedestrian protection to passenger cars.

    Science.gov (United States)

    Edwards, Mervyn; Nathanson, Andrew; Wisch, Marcus

    2014-01-01

    The objective of the current study was to estimate the benefit for Europe of fitting precrash braking systems to cars that detect pedestrians and autonomously brake the car to prevent or lower the speed of the impact with the pedestrian. The analysis was divided into 2 main parts: (1) Develop and apply methodology to estimate benefit for Great Britain and Germany; (2) scale Great Britain and German results to give an indicative estimate for Europe (EU27). The calculation methodology developed to estimate the benefit was based on 2 main steps: 1. Calculate the change in the impact speed distribution curve for pedestrian casualties hit by the fronts of cars assuming pedestrian autonomous emergency braking (AEB) system fitment. 2. From this, calculate the change in the number of fatally, seriously, and slightly injured casualties by using the relationship between risk of injury and the casualty impact speed distribution to sum the resulting risks for each individual casualty. The methodology was applied to Great Britain and German data for 3 types of pedestrian AEB systems representative of (1) currently available systems; (2) future systems with improved performance, which are expected to be available in the next 2-3 years; and (3) reference limit system, which has the best performance currently thought to be technically feasible. Nominal benefits estimated for Great Britain ranged from £119 million to £385 million annually and for Germany from €63 million to €216 million annually depending on the type of AEB system assumed fitted. Sensitivity calculations showed that the benefit estimated could vary from about half to twice the nominal estimate, depending on factors such as whether or not the system would function at night and the road friction assumed. Based on scaling of estimates made for Great Britain and Germany, the nominal benefit of implementing pedestrian AEB systems on all cars in Europe was estimated to range from about €1 billion per year for

  15. A THERMAL-HYDRAULIC SYSTEM FOR THE CONVERSION AND THE STORAGE OF ENERGY

    Directory of Open Access Journals (Sweden)

    MITRAN Tudor

    2016-05-01

    Full Text Available The paper proposes the concept design of a thermal-hydraulic system that converts the thermal energy (from the geothermal water, from the cooling water of power equipment, from exhaust gasses, and so. in hydrostatic energy, that is stored in a hydraulic accumulator. The hydraulic energy can be converted into electrical energy when needed.

  16. Modelling and LPV control of an electro-hydraulic servo system

    NARCIS (Netherlands)

    Naus, G.J.L.; Wijnheijmer, F.P.; Post, W.J.A.E.M.; Steinbuch, M.; Teerhuis, A.P.

    2006-01-01

    This paper aims to show the modelling and control of an hydraulic servo system, targeting at frequency domain based controller design and the implementation of a LPV controller. The actual set-up consists of a mass, moved by a hydraulic cylinder and an electro-hydraulic servo valve. A nonlinear

  17. Automated System of Diagnostic Monitoring at Bureya HPP Hydraulic Engineering Installations: a New Level of Safety

    International Nuclear Information System (INIS)

    Musyurka, A. V.

    2016-01-01

    This article presents the design, hardware, and software solutions developed and placed in service for the automated system of diagnostic monitoring (ASDM) for hydraulic engineering installations at the Bureya HPP, and assuring a reliable process for monitoring hydraulic engineering installations. Project implementation represents a timely solution of problems addressed by the hydraulic engineering installation diagnostics section.

  18. Automated System of Diagnostic Monitoring at Bureya HPP Hydraulic Engineering Installations: a New Level of Safety

    Energy Technology Data Exchange (ETDEWEB)

    Musyurka, A. V., E-mail: musyurkaav@burges.rushydro.ru [Bureya HPP (a JSC RusGidro affiliate) (Russian Federation)

    2016-09-15

    This article presents the design, hardware, and software solutions developed and placed in service for the automated system of diagnostic monitoring (ASDM) for hydraulic engineering installations at the Bureya HPP, and assuring a reliable process for monitoring hydraulic engineering installations. Project implementation represents a timely solution of problems addressed by the hydraulic engineering installation diagnostics section.

  19. Modeling hydraulic regenerative hybrid vehicles using AMESim and Matlab/Simulink

    Science.gov (United States)

    Lynn, Alfred; Smid, Edzko; Eshraghi, Moji; Caldwell, Niall; Woody, Dan

    2005-05-01

    This paper presents the overview of the simulation modeling of a hydraulic system with regenerative braking used to improve vehicle emissions and fuel economy. Two simulation software packages were used together to enhance the simulation capability for fuel economy results and development of vehicle and hybrid control strategy. AMESim, a hydraulic simulation software package modeled the complex hydraulic circuit and component hardware and was interlinked with a Matlab/Simulink model of the vehicle, engine and the control strategy required to operate the vehicle and the hydraulic hybrid system through various North American and European drive cycles.

  20. Design and analysis of an MR rotary brake for self-regulating braking torques.

    Science.gov (United States)

    Yun, Dongwon; Koo, Jeong-Hoi

    2017-05-01

    This paper presents a novel Magneto-rheological (MR) brake system that can self-regulate the output braking torques. The proposed MR brake can generate a braking torque at a critical rotation speed without an external power source, sensors, or controllers, making it a simple and cost-effective device. The brake system consists of a rotary disk, permanent magnets, springs, and MR fluid. The permanent magnets are attached to the rotary disk via the springs, and they move outward through grooves with two different gap distances along the radial direction of the stator due to the centrifugal force. Thus, the position of the magnets is dependent on the spin speed, and it can determine the magnetic fields applied to MR fluids. Proper design of the stator geometry gives the system unique torque characteristics. To show the performance of an MR brake system, the electromagnetic characteristics of the system are analyzed, and the torques generated by the brake are calculated using the result of the electromagnetic analysis. Using a baseline model, a parametric study is conducted to investigate how the design parameters (geometric shapes and material selection) affect the performance of the brake system. After the simulation study, a prototype brake system is constructed and its performance is experimentally evaluated. The experimental results show that the prototype produced the maximum torque of 1.2 N m at the rotational speed of 100 rpm. The results demonstrate the feasibility of the proposed MR brake as a speed regulator in rotating systems.

  1. Thermal hydraulic analysis of BWR containment venting system

    International Nuclear Information System (INIS)

    Baburajan, P.K.; Sharma, Prashant; Paul, U.K.; Gaikwad, Avinash

    2015-01-01

    Installation of additional containment filtered venting system (CFVS) is necessary to depressurize the containment to maintain its mechanical integrity due to over pressurization during severe accident condition. A typical venting system for BWR is modelled using RELAP5 and analysed to investigate the effect of various thermal hydraulic parameters on the operational parameters of the venting system. The venting system consists of piping from the containment to the scrubber tank and exit line from the scrubber tank. The scrubber tank is partially filled with water to enable the scrubbing action to remove the particulate radionuclides from the incoming containment air. The pipe line from the containment is connected to the venturi inlet and the throat of the venturi is open to the scrubber tank water inventory at designed submergence level. The exit of the venturi is open to scrubber tank water. Filters are used in the upper air space of the scrubber tank as mist separator before venting out the air into the atmosphere through the exit vent line. The effect of thermal hydraulic parameters such as inlet fluid temperature, inlet steam content and venturi submergence in the scrubber tank on the venting flow rate, exit steam content, scrubber tank inventory, overflow line and siphon breaker flow rate is analysed. Results show that inlet steam content and the venturi nozzle submergence influence the venting system parameters. (author)

  2. Test Rig Design and Presentation for a Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    The design and development of a hydraulic yaw system for multi MWturbines is presented and the concept explained. As part of the development of the new concept a full scale test rig for a 5 MW wind turbine has been designed and constructed. The test rig is presented along with its unique design...... features. The design process is outlined to give insight in the design criteria driving the design. Loads and yaw demands are based on the IEC 61400-1 standard for wind turbine design, and the loads for this examination are extrapolated from the FAST aero elastic design software. The concepts are based...... on a 5 MW offshore turbine. After the system presentation, measurement results are presented to verify the behavior of the system. The loads to the system are applied by torque controlled electrical servo drives, which can add a load of up to 3 MNm to the system. This gives an exact picture of the system...

  3. Hydraulic characterisation of karst systems with man-made tracers

    International Nuclear Information System (INIS)

    Werner, A.

    1998-01-01

    Tracer experiments using man-made tracers are common in hydrogeological exploration of groundwater aquifers in karst systems. In the present investigation, a convection-dispersion model (multidispersion model with consideration of several flow paths) and a single-cleft model (consideration of the diffusion between the cleft and the surrounding rock matrix) were used for evaluating tracer experiments in the main hydrological system of the saturated zone of karst systems. In addition to these extended analytical solutions, a numerical transport model was developed for investigating the influence of the transient flow rate on the flow and transport parameters. Comparative evaluations of the model approaches for the evaluation of tracer experiments were made in four different karst systems: Danube-Aach, Paderborn, Slowenia and Lurbach, of which the Danube-Aach system was considered as the most important. The investigation also comprised three supplementary experiments in order to enable a complete hydraulic characterisation of the system. (orig./SR) [de

  4. Computer Simulation of Hydraulic Systems with Typical Nonlinear Characteristics

    Directory of Open Access Journals (Sweden)

    D. N. Popov

    2017-01-01

    Full Text Available The task was to synthesise an adjustable hydraulic system structure, the mathematical model of which takes into account its inherent nonlinearity. Its solution suggests using a successive computer simulations starting with a structure of the linearized stable hydraulic system, which is then complicated by including the essentially non-linear elements. The hydraulic system thus obtained may be unable to meet the Lyapunov stability criterion and be unstable. This can be eliminated through correcting elements. Control of correction results is provided according to the form of transition processes due to stepwise variation of the control signal.Computer simulation of a throttle-controlled electrohydraulic servo drive with the rotary output element illustrates the proposed method application. A constant pressure power source provides fluid feed for the drive under pressure.For drive simulation the following models were involved: the linear model, the model taking into consideration a non-linearity of the flow-dynamic characteristics of a spool-type valve, and the non-linear models that take into account the dry friction in the spool-type valve, the backlash in the steering angle sensor of the motor shaft.The paper shows possibility of damping oscillation caused by variable hydrodynamic forces through introducing a correction device.The list of references attached contains 16 sources, which were used to justify and explain certain factors of the automatic control theory and the fluid mechanics of unsteady flows.The article presents 6 block-diagrams of the electrohydraulic servo drive and their appropriate transition processes, which have been studied.

  5. Recent studies of tire braking performance. [for aircraft

    Science.gov (United States)

    Mccarty, J. L.; Leland, T. J. W.

    1973-01-01

    The results from recent studies of some factors affecting tire braking and cornering performance are presented together with a discussion of the possible application of these results to the design of aircraft braking systems. The first part of the paper is concerned with steady-state braking, that is, results from tests conducted at a constant slip ratio or steering angle or both. The second part deals with cyclic braking tests, both single cycle, where brakes are applied at a constant rate until wheel lockup is achieved, and rapid cycling of the brakes under control of a currently operational antiskid system.

  6. Linear hydraulic drive system for a Stirling engine

    Science.gov (United States)

    Walsh, Michael M.

    1984-02-21

    A hydraulic drive system operating from the periodic pressure wave produced by a Stirling engine along a first axis thereof and effecting transfer of power from the Stirling engine to a load apparatus therefor and wherein the movable, or working member of the load apparatus is reciprocatingly driven along an axis substantially at right angles to the first axis to achieve an arrangement of a Stirling engine and load apparatus assembly which is much shorter and the components of the load apparatus more readily accessible.

  7. Thermal and hydraulic analyses of the System 81 cold traps

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.

    1977-06-15

    Thermal and hydraulic analyses of the System 81 Type I and II cold traps were completed except for thermal transients analysis. Results are evaluated, discussed, and reported. Analytical models were developed to determine the physical dimensions of the cold traps and to predict the performance. The FFTF cold trap crystallizer performances were simulated using the thermal model. This simulation shows that the analytical model developed predicts reasonably conservative temperatures. Pressure drop and sodium residence time calculations indicate that the present design will meet the requirements specified in the E-Specification. Steady state temperature data for the critical regions were generated to assess the magnitude of the thermal stress.

  8. Research of braking peculiarities of used cars

    Directory of Open Access Journals (Sweden)

    V. Mitunevičius

    2002-06-01

    Full Text Available This paper briefly describes some analysis of a car braking process - the peculiarities of car wheel-to-road adhesion, the influence of distribution of braking forces on car stability between front and rear axles. The requirements of EU Directive 71/320/EEC to braking force coefficients of car front and rear axles are exposed. Structural designs of braking systems are analyzed with respect to their meeting the EU standards. Experimental measurements of braking force coefficients for some models of cars which are used in Lithuania, are presented with the analysis how these coefficients meet the EU standards. The analysis of test results, suggestions for the ratio of braking forces of car front and rear axles are presented.

  9. Researching on YH100 Numerical Control Servo Press Hydraulic Control System and Control Algorithm

    Directory of Open Access Journals (Sweden)

    Kai LI

    2014-09-01

    Full Text Available In order to study the numerical control (NC servo press hydraulic control system and its control algorithm. The numerical control servo press performance and control principle of hydraulic control system are analyzed. According to the flow equation of the hydraulic control valve, hydraulic cylinder flow continuity equation and the force balance equation of the hydraulic cylinder with load press, the mathematical model of hydraulic control system is established. And the servo press hydraulic system transfer function is deduced. Introducing the suitable immune particle swarm control algorithm for servo press hydraulic system, and the control system block diagram is established. Immune algorithm is used to optimize new control parameters of the system and adopt the new optimization results to optimize the system simulation. The simulation result shows that the hydraulic system’s transition time controlled by the immune particle swarm algorithm is shorter than traditional ones, and the control performance is obviously improved. Finally it can be concluded that immune particle swarm PID control have these characteristics such as quickness, stability and accuracy. Applying this principle into application, the obtained YH100 numerical control servo press hydraulic control system meets the requirement.

  10. Regression Test on the Rotational Speed between Two Loads as the Preparation for Braking System

    International Nuclear Information System (INIS)

    Purwanti, B S R; Yusivar, F; Garniwa M K, I

    2013-01-01

    This paper is preparing the mathematic model of braking control, continuously of determination the error (e), delta error (de) of speed reduction [9]. Load-1 and Load-2 are driven by an electric motor located on the same shaft. Both loads are driven clock wise (CW), counter clock wise (CCW) by an asynchronous three-phase motor (M3). The mass of each load is also differentiated to simulate slip phenomena. Rotational speed of M3 is equal to Load-1, detected by Sensor-1, while speed rotation of Load-2 is detected by Sensor-2. The rotation for Load-1 and Load-2 can be adjusted on several position H j (j = 1, 2, 3). Once Load-1 and Load-2 reach a constant speed, current source will be disconnected. Speed reduction from (ω±1475 rpm) to stagnant (ω=0 rpm) on Load-1 and Load-2 is considered time function. Data collected from both load (ω (t)) known as e, de; on each position of H j . It uses covariance analysis to make sure that both loads are concurrent with each other against time difference. The objective of this research is to determine slip phenomena of speed reduction of each load. The expectations are to generate smoother braking and minimize the time needed when implemented with ANFIS.

  11. Scaling of Thermal-Hydraulic Phenomena and System Code Assessment

    International Nuclear Information System (INIS)

    Wolfert, K.

    2008-01-01

    In the last five decades large efforts have been undertaken to provide reliable thermal-hydraulic system codes for the analyses of transients and accidents in nuclear power plants. Many separate effects tests and integral system tests were carried out to establish a data base for code development and code validation. In this context the question has to be answered, to what extent the results of down-scaled test facilities represent the thermal-hydraulic behaviour expected in a full-scale nuclear reactor under accidental conditions. Scaling principles, developed by many scientists and engineers, present a scientific technical basis and give a valuable orientation for the design of test facilities. However, it is impossible for a down-scaled facility to reproduce all physical phenomena in the correct temporal sequence and in the kind and strength of their occurrence. The designer needs to optimize a down-scaled facility for the processes of primary interest. This leads compulsorily to scaling distortions of other processes with less importance. Taking into account these weak points, a goal oriented code validation strategy is required, based on the analyses of separate effects tests and integral system tests as well as transients occurred in full-scale nuclear reactors. The CSNI validation matrices are an excellent basis for the fulfilling of this task. Separate effects tests in full scale play here an important role.

  12. Electro-Pneumatic Control System with Hydraulically Positioning Actuator Motor

    Directory of Open Access Journals (Sweden)

    V. N. Pilgunov

    2016-01-01

    Full Text Available A compressibility of the actuating fluid of a pneumatic drive (compressed air leads to significant landing of the pneumatic cylinder piston at the time of stop and hold of the load, a constant component of which can fluctuate significantly for the holding period.There are a lot of factors, which have a significant impact on the landing value of piston. Those are: an initial position of the piston at its stop, which determines the volume of the an active area of the piston, a value of the constant load component at the time of stop and its variation for the holding period, a transfer coefficient of the position component of the load, an active area of the pneumatic cylinder piston, as well as reduction in atmospheric pressure, which can significantly affect the operation of the control systems of small aircrafts flying at high altitudes.To reduce the landing value of piston due to changing value of the constant load component for its holding period, it is proposed to use a hydraulic positioner, which comprises a hydraulic cylinder the rod of which is rigidly connected to the rod of the pneumatic cylinder through the traverse, a cross-feed valve of the hydro-cylinder cavities with discrete electro-magnetic control, and adjustable chokes.A programmable logic controller provides the hydraulic positioner control. At the moment the piston stops and the load is held the cross-feed valve overlaps the hydro-cylinder cavities thereby locking the pneumatic cylinder piston and preventing its landing. With available pneumatic cylinder-controlled signal the cross-feed valve connects the piston and rod cavities of the positioner hydro-cylinder, the pneumatic cylinder piston is released and becomes capable of moving.A numerical estimate of landing of the pneumatic cylinder piston and its positioning quality is of essential interest. For this purpose, a technique to calculate the landing of piston has been developed taking into consideration that different

  13. A methodology for the parametric modelling of the flow coefficients and flow rate in hydraulic valves

    International Nuclear Information System (INIS)

    Valdés, José R.; Rodríguez, José M.; Saumell, Javier; Pütz, Thomas

    2014-01-01

    Highlights: • We develop a methodology for the parametric modelling of flow in hydraulic valves. • We characterize the flow coefficients with a generic function with two parameters. • The parameters are derived from CFD simulations of the generic geometry. • We apply the methodology to two cases from the automotive brake industry. • We validate by comparing with CFD results varying the original dimensions. - Abstract: The main objective of this work is to develop a methodology for the parametric modelling of the flow rate in hydraulic valve systems. This methodology is based on the derivation, from CFD simulations, of the flow coefficient of the critical restrictions as a function of the Reynolds number, using a generalized square root function with two parameters. The methodology is then demonstrated by applying it to two completely different hydraulic systems: a brake master cylinder and an ABS valve. This type of parametric valve models facilitates their implementation in dynamic simulation models of complex hydraulic systems

  14. submitter Thermal, Hydraulic, and Electromagnetic Modeling of Superconducting Magnet Systems

    CERN Document Server

    Bottura, L

    2016-01-01

    Modeling techniques and tailored computational tools are becoming increasingly relevant to the design and analysis of large-scale superconducting magnet systems. Efficient and reliable tools are useful to provide an optimal forecast of the envelope of operating conditions and margins, which are difficult to test even when a prototype is available. This knowledge can be used to considerably reduce the design margins of the system, and thus the overall cost, or increase reliability during operation. An integrated analysis of a superconducting magnet system is, however, a complex matter, governed by very diverse physics. This paper reviews the wide spectrum of phenomena and provides an estimate of the time scales of thermal, hydraulic, and electromagnetic mechanisms affecting the performance of superconducting magnet systems. The analysis is useful to provide guidelines on how to divide the complex problem into building blocks that can be integrated in a design and analysis framework for a consistent multiphysic...

  15. Virtual Design of a Controller for a Hydraulic Cam Phasing System

    Science.gov (United States)

    Schneider, Markus; Ulbrich, Heinz

    2010-09-01

    Hydraulic vane cam phasing systems are nowadays widely used for improving the performance of combustion engines. At stationary operation, these systems should achieve a constant phasing angle, which however is badly disturbed by the alternating torque generated by the valve actuation. As the hydraulic system shows a non-linear characteristic over the full operation range and the inductivity of the hydraulic pipes generates a significant time delay, a full model based control emerges very complex. Therefore a simple feed-forward controller is designed, bridging the time delay of the hydraulic system and improving the system behaviour significantly.

  16. Deployable Brake for Spacecraft

    Science.gov (United States)

    Rausch, J. R.; Maloney, J. W.

    1987-01-01

    Aerodynamic shield that could be opened and closed proposed. Report presents concepts for deployable aerodynamic brake. Brake used by spacecraft returning from high orbit to low orbit around Earth. Spacecraft makes grazing passes through atmosphere to slow down by drag of brake. Brake flexible shield made of woven metal or ceramic withstanding high temperatures created by air friction. Stored until needed, then deployed by set of struts.

  17. Effects of equilibrium point displacement in limit cycle oscillation amplitude, critical frequency and prediction of critical input angular velocity in minimal brake system

    Science.gov (United States)

    Ganji, Hamed Faghanpour; Ganji, Davood Domiri

    2017-04-01

    In the present paper, brake squeal phenomenon as a noise resource in automobiles was studied. In most cases, the modeling work is carried out assuming that deformations were small; thus, equilibrium point is set zero and linearization is performed at this point. However, the equilibrium point under certain circumstances is not zero; therefore, huge errors in prediction of brake squeal may occur. In this work, large motion domains with respect to linearization importance were subjected to investigation. Nonlinear equations of motion were considered and behavior of system for COF's model was analyzed by studying amplitude and frequency of limited cycle oscillation.

  18. Investigation and Development of the Thermal Preparation System of the Trailbuilder Machinery Hydraulic Actuator

    Science.gov (United States)

    Konev, V.; Polovnikov, E.; Krut, O.; Merdanov, Sh; Zakirzakov, G.

    2017-07-01

    It’s determined that the main part of trailbuilders operated in the North is the technology equipped by the hydraulic actuator. Further development of the northern territories will demand using of various means and ways machinery thermal preparation, and also the machinery of the northern fulfillment. On this basis problems in equipment operation are defined. One of the main is efficiency supplying of a hydraulic actuator. On the basis of the operating conditions’ analysis of trailbuilder hydraulic actuator operation it is determined, that under low negative temperatures the means of thermal preparation are necessary. The existing systems warm up only a hydraulic tank or warming up of the hydro equipment before the machinery operation is carried out under loading with intensive wears. Thus, with the purpose to raise the efficiency of thermal hydraulic actuator, operated far from stationary bases autonomous, energy saving, not expensive in creation and operation systems are necessary. In accordance with the analysis of means and ways of the thermal preparation of the hydraulic actuator and the thermal balance calculations of the (internal) combustion engine the system of the hydraulic actuator heating is offered and is being investigated. It contains a local hydraulic actuator warming up and the system of internal combustion engine heat utilization. Within research operation conditions of the local hydraulic actuator heating are viewed and determined, taking into account constructive changes to the local hydraulic actuator heating. Mathematical modelling of the heat technical process in the modernized hydraulic actuator is considered. As a result temperature changes of the heat-transfer and the hydraulic cylinder in time are determined. To check the theoretical researches and to define dependences on hydraulic actuator warming up, the experimental installation is made. It contains the measuring equipment, a small tank with the heat exchanger of the burnt gases

  19. A Fault Diagnosis Approach for the Hydraulic System by Artificial Neural Networks

    OpenAIRE

    Xiangyu He; Shanghong He

    2014-01-01

    Based on artificial neural networks, a fault diagnosis approach for the hydraulic system was proposed in this paper. Normal state samples were used as the training data to develop a dynamic general regression neural network (DGRNN) model. The trained DGRNN model then served as the fault determinant to diagnose test faults and the work condition of the hydraulic system was identified. Several typical faults of the hydraulic system were used to verify the fault diagnosis approach. Experiment re...

  20. Roller Locking Brake

    Science.gov (United States)

    Vranish, John M.

    1993-01-01

    Roller locking brake is normally braking rotary mechanism allowing free rotation when electromagnet in mechanism energized. Well suited to robots and other machinery which automatic braking upon removal of electrical power required. More compact and reliable. Requires little electrical power to maintain free rotation and exhibits minimal buildup of heat.

  1. Active control of multi-input hydraulic journal bearing system

    Science.gov (United States)

    Chuang, Jen-Chen; Chen, Chi-Yin; Tu, Jia-Ying

    2016-09-01

    Because of the advantages of high accuracy, high capacity, and low friction, the development of hydrostatic bearing for machine tool receives significant attention in the last decades. The mechanics and mechanical design of hydrostatic journal bearing with capillary restrictors has been discussed in literature. However, pragmatically, the undesired loading effects of cutting force tend to result in resonance and instability of the rotor and damage the shaft during operation. Therefore, multi-input, active flow control using state feedback design is proposed in this paper. To this purpose, the proportional pressure valves are added to the hydraulic system as active control devices, and the linearised models of the bearing and valve are discussed and identified. Simulation and experimental work is conducted to verify the proposed active control and parameter identification techniques. The results show that the unbalance responses of the rotor are reduced by the proposed state feedback controller, which is able to regulate the flow pressure effectively, thus enhancing the stability and accuracy of the hydraulic journal bearing.

  2. Thermal Hydraulic Analysis on Containment Filtered Venting System

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Suk; Park, Tong Kyu; Lee, Doo Yong; Lee, Byung Chul [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Lee, Sang Won; Kim, Hyeong Taek [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this study, the thermal hydraulic conditions (e. g. pressure and flow rate) at each component have been examined and the sensitivity analysis on CFVS design parameters (e. g. water inventory, volumetric flow rate). The purpose is to know the possible range of flow conditions at each component to determine the optimum size of filtration system. GOTHIC code has been used to simulate the thermal-hydraulic behavior inside of CFVS. The behavior of flows in the CFVS has been investigated. The vessel water level and the flow rates during the CFVS operation are examined. It was observed that the vessel water level would be changed significantly due to steam condensation/thermal expansion and steam evaporation. Therefore, the vessel size and the initial water inventory should be carefully determined to keep the minimum water level required for filtration components and not to flood the components in the upper side of the vessel. It has been also observed that the volumetric flow rate is maintained during the CFVS operation, which is beneficial for pool scrubbing units. However, regarding the significant variations at the orifice downstream, careful design would be necessary.

  3. Contaminant monitoring of hydraulic systems. The need for reliable data

    Energy Technology Data Exchange (ETDEWEB)

    Day, M.J. Rinkinen, J. [Pall Europe Ltd., Portsmouth (United Kingdom); Tampere University of Technology, Tampere (Finland)

    1998-12-31

    The need for both reliable operation of hydraulic and lubrication systems and long component lives has focused users to the benefits of controlling the contamination in the hydraulic fluid. Maximum operating (target) levels are being implemented as part of a condition based maintenance regime. If these are exceeded, maintenance effort is directed to correcting the rise in consummation level, and so make optimum use of resources as maintenance effort is only affected when it is necessary to do so. Fundamental to ibis aspect of condition based monitoring is the provision of accurate and reliable data in the shortest possible time. This way, corrective actions can be implemented immediately so minimising the damage to components. On-line monitoring devices are a way of achieving this and are seeing increased use, but some are affected by the condition of the fluid. Hence, there is a potential for giving incorrect data which will waste time and effort by initiating unnecessary corrective actions. A more disturbing aspect is the effect on the user of continual errors. The most likely effect would be a loss of confidence in the technique or even complete rejection of it and hence the potential benefits will be lost. This presentation explains how contaminant monitoring techniques are applied to ensure that the potential benefits of operating with clean fluids is realised. It examines the sources of error and shows how the user can interrogate the data and satisfy himself of its authenticity. (orig.) 14 refs.

  4. Contaminant monitoring of hydraulic systems. The need for reliable data

    Energy Technology Data Exchange (ETDEWEB)

    Day, M.J. [Pall Europe Ltd., Portsmouth (United Kingdom)] Rinkinen, J. [Tampere University of Technology, Tampere (Finland)

    1997-12-31

    The need for both reliable operation of hydraulic and lubrication systems and long component lives has focused users to the benefits of controlling the contamination in the hydraulic fluid. Maximum operating (target) levels are being implemented as part of a condition based maintenance regime. If these are exceeded, maintenance effort is directed to correcting the rise in consummation level, and so make optimum use of resources as maintenance effort is only affected when it is necessary to do so. Fundamental to ibis aspect of condition based monitoring is the provision of accurate and reliable data in the shortest possible time. This way, corrective actions can be implemented immediately so minimising the damage to components. On-line monitoring devices are a way of achieving this and are seeing increased use, but some are affected by the condition of the fluid. Hence, there is a potential for giving incorrect data which will waste time and effort by initiating unnecessary corrective actions. A more disturbing aspect is the effect on the user of continual errors. The most likely effect would be a loss of confidence in the technique or even complete rejection of it and hence the potential benefits will be lost. This presentation explains how contaminant monitoring techniques are applied to ensure that the potential benefits of operating with clean fluids is realised. It examines the sources of error and shows how the user can interrogate the data and satisfy himself of its authenticity. (orig.) 14 refs.

  5. Hydraulically-actuated operating system for an electric circuit breaker

    Science.gov (United States)

    Barkan, Philip; Imam, Imdad

    1978-01-01

    This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A vent is located hydraulically between the actuating space and the valve for affording communication between said actuating space and a low pressure region. Flow control means is provided for restricting leakage through said vent to a rate that prevents said leakage from substantially detracting from the development of pressure within said actuatng space during the period from initial opening of the valve to the time when said piston has moved through most of its opening stroke. Following such period and while the valve is still open, said flow control means allows effective leakage through said vent. The accumulator has a limited capacity that results in the pressure within said actuating space decaying promptly to a low value as a result of effective leakage through said vent after the piston has moved through a circuit-breaker opening stroke and while the valve is in its open state. Means is provided for resetting the valve to its closed state in response to said pressure decay in the actuating space.

  6. Research on Modeling and Control of Regenerative Braking for Brushless DC Machines Driven Electric Vehicles

    OpenAIRE

    Jian-ping Wen; Chuan-wei Zhang

    2015-01-01

    In order to improve energy utilization rate of battery-powered electric vehicle (EV) using brushless DC machine (BLDCM), the model of braking current generated by regenerative braking and control method are discussed. On the basis of the equivalent circuit of BLDCM during the generative braking period, the mathematic model of braking current is established. By using an extended state observer (ESO) to observe actual braking current and the unknown disturbances of regenerative braking system, ...

  7. Integration of Flex Nozzle System and Electro Hydraulic Actuators to Solid Rocket Motors

    Science.gov (United States)

    Nayani, Kishore Nath; Bajaj, Dinesh Kumar

    2017-10-01

    A rocket motor assembly comprised of solid rocket motor and flex nozzle system. Integration of flex nozzle system and hydraulic actuators to the solid rocket motors are done after transportation to the required place where integration occurred. The flex nozzle system is integrated to the rocket motor in horizontal condition and the electro hydraulic actuators are assembled to the flex nozzle systems. The electro hydraulic actuators are connected to the hydraulic power pack to operate the actuators. The nozzle-motor critical interface are insulation diametrical compression, inhibition resin-28, insulation facial compression, shaft seal `O' ring compression and face seal `O' ring compression.

  8. Cross-cutting european thermal-hydraulics research for innovative nuclear systems

    International Nuclear Information System (INIS)

    Roelofs, F.; Class, A.; Cheng, X.; Meloni, P.; Van Tichelen, K.; Boudier, P.; Prasser, M.

    2010-01-01

    Thermal-hydraulics is recognized as a key scientific subject in the development of different innovative nuclear reactor systems. From the thermal-hydraulic point of view, different innovative reactors are mainly characterized by their coolants (gas, water, liquid metals and molten salt). This results in different micro- and macroscopic behavior of flow and heat transfer and requires specific models and advanced analysis tools. However, many common thermal-hydraulic issues are identified among various innovative nuclear systems. In Europe, such cross-cutting thermal-hydraulic issues are the subject of the 7. framework programme THINS (Thermal-Hydraulics of Innovative Nuclear Systems) project which runs from 2010 until 2014. This paper will describe the activities in this project which address the main identified thermal hydraulics issues for innovative nuclear systems. (authors)

  9. Scaling in nuclear reactor system thermal-hydraulics

    International Nuclear Information System (INIS)

    D'Auria, F.; Galassi, G.M.

    2010-01-01

    Scaling is a reference 'key-word' in engineering and in physics. The relevance of scaling in the water cooled nuclear reactor technology constitutes the motivation for the present paper. The origin of the scaling-issue, i.e. the impossibility to get access to measured data in case of accident in nuclear reactors, is discussed at first. The so-called 'scaling-controversy' constitutes an outcome. Then, a critical survey (or 'scaling state-of-art';) is given of the attempts and of the approaches to provide a solution to the scaling-issue in the area of Nuclear Reactor System Thermal-Hydraulics (NRSTH): dimensionless design factors for Integral Test Facilities (ITF) are distinguished from scaling factors. The last part of the paper has a two-fold nature: (a) classifying the information about achievements in the area of thermal-hydraulics which are relevant to scaling: the concepts of 'scaling-pyramid' and the related 'scaling bridges' are introduced; (b) establishing a logical path across the scaling achievements (represented as a 'scaling puzzle'). In this context, the 'roadmap for scaling' is proposed: the objective is addressing the scaling issue when demonstrating the applicability of system codes in the licensing process of nuclear power plants. The code itself is referred hereafter as the 'key-to-scaling'. The database from the operation of properly scaled ITF and the availability of qualified system codes are identified as main achievements in NRSTH connected with scaling. The 'roadmap to scaling' constitutes a unified approach to scaling which aims at solving the 'scaling puzzle' created by researches performed during a half-a-century period.

  10. Scaling in nuclear reactor system thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    D' Auria, F., E-mail: dauria@ing.unipi.i [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, University of Pisa, Via Diotisalvi 2, 56126 Pisa (Italy); Galassi, G.M. [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, University of Pisa, Via Diotisalvi 2, 56126 Pisa (Italy)

    2010-10-15

    Scaling is a reference 'key-word' in engineering and in physics. The relevance of scaling in the water cooled nuclear reactor technology constitutes the motivation for the present paper. The origin of the scaling-issue, i.e. the impossibility to get access to measured data in case of accident in nuclear reactors, is discussed at first. The so-called 'scaling-controversy' constitutes an outcome. Then, a critical survey (or 'scaling state-of-art';) is given of the attempts and of the approaches to provide a solution to the scaling-issue in the area of Nuclear Reactor System Thermal-Hydraulics (NRSTH): dimensionless design factors for Integral Test Facilities (ITF) are distinguished from scaling factors. The last part of the paper has a two-fold nature: (a) classifying the information about achievements in the area of thermal-hydraulics which are relevant to scaling: the concepts of 'scaling-pyramid' and the related 'scaling bridges' are introduced; (b) establishing a logical path across the scaling achievements (represented as a 'scaling puzzle'). In this context, the 'roadmap for scaling' is proposed: the objective is addressing the scaling issue when demonstrating the applicability of system codes in the licensing process of nuclear power plants. The code itself is referred hereafter as the 'key-to-scaling'. The database from the operation of properly scaled ITF and the availability of qualified system codes are identified as main achievements in NRSTH connected with scaling. The 'roadmap to scaling' constitutes a unified approach to scaling which aims at solving the 'scaling puzzle' created by researches performed during a half-a-century period.

  11. FONESYS: The FOrum and NEtwork of SYStem Thermal-Hydraulic Codes in Nuclear Reactor Thermal-Hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S.H., E-mail: k175ash@kins.re.kr [Korea Institute of Nuclear Safety (KINS) (Korea, Republic of); Aksan, N., E-mail: nusr.aksan@gmail.com [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Austregesilo, H., E-mail: henrique.austregesilo@grs.de [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) (Germany); Bestion, D., E-mail: dominique.bestion@cea.fr [Commissariat à l’énergie atomique et aux énergies alternatives (CEA) (France); Chung, B.D., E-mail: bdchung@kaeri.re.kr [Korea Atomic Energy Research Institute (KAERI) (Korea, Republic of); D’Auria, F., E-mail: f.dauria@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Emonot, P., E-mail: philippe.emonot@cea.fr [Commissariat à l’énergie atomique et aux énergies alternatives (CEA) (France); Gandrille, J.L., E-mail: jeanluc.gandrille@areva.com [AREVA NP (France); Hanninen, M., E-mail: markku.hanninen@vtt.fi [VTT Technical Research Centre of Finland (VTT) (Finland); Horvatović, I., E-mail: i.horvatovic@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Kim, K.D., E-mail: kdkim@kaeri.re.kr [Korea Atomic Energy Research Institute (KAERI) (Korea, Republic of); Kovtonyuk, A., E-mail: a.kovtonyuk@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Petruzzi, A., E-mail: a.petruzzi@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy)

    2015-01-15

    Highlights: • We briefly presented the project called Forum and Network of System Thermal-Hydraulics Codes in Nuclear Reactor Thermal-Hydraulics (FONESYS). • We presented FONESYS participants and their codes. • We explained FONESYS projects motivation, its main targets and working modalities. • We presented FONESYS position about projects topics and subtopics. - Abstract: The purpose of this article is to present briefly the project called Forum and Network of System Thermal-Hydraulics Codes in Nuclear Reactor Thermal-Hydraulics (FONESYS), its participants, the motivation for the project, its main targets and working modalities. System Thermal-Hydraulics (SYS-TH) codes, also as part of the Best Estimate Plus Uncertainty (BEPU) approaches, are expected to achieve a more-and-more relevant role in nuclear reactor technology, safety and design. Namely, the number of code-users can easily be predicted to increase in the countries where nuclear technology is exploited. Thus, the idea of establishing a forum and a network among the code developers and with possible extension to code users has started to have major importance and value. In this framework the FONESYS initiative has been created. The main targets of FONESYS are: • To promote the use of SYS-TH Codes and the application of the BEPU approaches. • To establish acceptable and recognized procedures and thresholds for Verification and Validation (V and V). • To create a common ground for discussing envisaged improvements in various areas, including user-interface, and the connection with other numerical tools, including Computational Fluid Dynamics (CFD) Codes.

  12. Optimisation of Working Areas in Discrete Hydraulic Power Take off-system for Wave Energy Converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Hansen, Rico Hjerm; Pedersen, Henrik C.

    2012-01-01

    Fluid power is the leading technology in Power Take Off(PTO) systems in Wave Energy Converters(WEC’s), due to the capability of generating high force at low velocity. However, as hydraulic force controlling system may suffer from large energy losses the efficiency of the hydraulic PTO systems may...

  13. Validity of a device designed to measure braking power in bicycle disc brakes.

    Science.gov (United States)

    Miller, Matthew C; Fink, Philip W; Macdermid, Paul William; Perry, Blake G; Stannard, Stephen R

    2017-07-21

    Real-world cycling performance depends not only on exercise capacities, but also on efficiently traversing the bicycle through the terrain. The aim of this study was to determine if it was possible to quantify the braking done by a cyclist in the field. One cyclist performed 408 braking trials (348 on a flat road; 60 on a flat dirt path) over 5 days on a bicycle fitted with brake torque and angular velocity sensors to measure brake power. Based on Newtonian physics, the sum of brake work, aerodynamic drag and rolling resistance was compared with the change in kinetic energy in each braking event. Strong linear relationships between the total energy removed from the bicycle-rider system through braking and the change in kinetic energy were observed on the tar-sealed road (r 2  = 0.989; p brake torque and angular velocity sensors are valid for calculating brake power on the disc brakes of a bicycle in field conditions. Such a device may be useful for investigating cyclists' ability to traverse through various terrains.

  14. Influence of convective cooling on a disc brake temperature distribution during repetitive braking

    International Nuclear Information System (INIS)

    Adamowicz, Adam; Grzes, Piotr

    2011-01-01

    The purpose of this study is to evaluate an impact of convective mode of heat transfer on the thermal behaviour of a disc brake system during repetitive braking process with the constant velocity using fully three-dimensional finite element model. The transient thermal analysis to determine the temperature distributions on the contact surface of a disc brake is performed. The issue of non-uniform frictional heating effects of mutual slipping of a disc over fixed pads is tested using FE models with the several possible to occur in automotive application heat transfer coefficients. To have a possibility of comparison of the temperature distributions of a disc during cyclic brake application, the energy transformed during time of every analyzed case of braking process and the subsequent release periods was equal. The time-stepping procedure is employed to develop moving heat source as the boundary heat flux acting interchangeably with the convective cooling terms. The difficulties accounted for the accurate simulation of heating during spin of the rotor is omitted by the use of the code, which enable shaping curves responsible for the thermal flux entering the disc at subsequent moments of time. The resulting evolution of temperature on the friction surface reveals a wide range of variations, distinguishing periods of heating and cooling states. It has been established, that during single braking the convective cooling has insignificant influence on the temperature distributions of a disc brake, consequently is not able to prevent overheat problem. However the brake release period after the braking operation, when the velocity of the vehicle remains on the same level, results in considerable decrease of temperature. - Highlights: → Convection does not allow to lower temperature of disc during single braking process. → Maximal temperature of disc decreases with number of brake applications. → Temperature at the end of braking increases with number of brake

  15. Sensotronic brake control. Braking with maximum efficiency; Die Sensotronic Brake Control. Bremsen auf hoechstem Niveau

    Energy Technology Data Exchange (ETDEWEB)

    Fischle, G.; Stoll, U.; Hinrichs, W.

    2002-05-01

    Sensotronic Brake Control (SBC) celebrated its world premiere when it was introduced into standard production along with the new SL in October 2001. This innovative brake system is also fitted as standard in the new E-Class. The design of the system components is identical to those used in the SL-Class. The software control parameters have been adapted to the conditions in the new saloon. (orig.) [German] Die Sensotronic Brake Control (SBC) wurde als Weltneuheit mit dem neuen SL im Oktober 2001 in Serie gebracht. Dieses innovative Bremssystem gehoert ebenfalls zur Serienausstattung der neuen E-Klasse. Die Systemkomponenten sind baugleich mit denen der SL-Klasse. Die Regelparameter der Software sind an die Verhaeltnisse der Limousine angepasst. (orig.)

  16. Station Stopping of Freight Trains with Pneumatic Braking

    OpenAIRE

    Yun Bai; Baohua Mao; Tinkin Ho; Yu Feng; Shaokuan Chen

    2014-01-01

    In Chinese mainline railway, freight trains need to stop within passenger stations at times because of the delayed passenger trains. Without any decision-support system, it is very difficult for drivers to stop trains within stations with consistency in one braking action. The reasons are that braking performance of train changes with the conditions of braking equipment and the drivers’ subjective evaluations of track profiles and braking distance are vague and imprecise. This paper presents ...

  17. Combined emergency braking and turning of articulated heavy vehicles

    OpenAIRE

    Morrison, G; Cebon, David

    2017-01-01

    ‘Slip control’ braking has been shown to reduce the emergency stopping distance of an experimental heavy goods vehicle by up to 19%, compared to conventional electronic/anti-lock braking systems (EBS). However, little regard has been given to the impact of slip control braking on the vehicle’s directional dynamics. This paper uses validated computer models to show that slip control could severely degrade directional performance during emergency braking. A modified slip control strategy, ‘atte...

  18. Unified Brake Service by a Hierarchical Controller for Active Deceleration Control in an Electric and Automated Vehicle

    Directory of Open Access Journals (Sweden)

    Yuliang Nie

    2017-12-01

    Full Text Available Unified brake service is a universal service for generating certain brake force to meet the demand deceleration and is essential for an automated driving system. However, it is rather difficult to control the pressure in the wheel cylinders to reach the target deceleration of the automated vehicle, which is the key issue of the active deceleration control system (ADC. This paper proposes a hierarchical control method to actively control vehicle deceleration with active-brake actuators. In the upper hierarchical, the target pressure of wheel cylinders is obtained by dynamic equations of a pure electric vehicle. In the lower hierarchical, the solenoid valve instructions and the pump speed of hydraulic control unit (HCU are determined to satisfy the desired pressure with the feedback of measured wheel cylinder pressure by pressure sensors. Results of road experiments of a pure electric and automated vehicle indicate that the proposed method realizes the target deceleration accurately and efficiently.

  19. 49 CFR 393.49 - Control valves for brakes.

    Science.gov (United States)

    2010-10-01

    ... in paragraphs (b) and (c) of this section, every motor vehicle manufactured after June 30, 1953, which is equipped with power brakes, must have the braking system so arranged that one application valve must when activated cause all of the service brakes on the motor vehicle or combination motor vehicle...

  20. 49 CFR 238.315 - Class IA brake test.

    Science.gov (United States)

    2010-10-01

    ... that utilize an electric signal to communicate a service brake application and only a pneumatic signal... and release of the brakes on the last car in the train; and (6) The communicating signal system is... be used to verify the set and release on cars so equipped. However, the observation of the brake...

  1. Hydraulic shock absorbers

    International Nuclear Information System (INIS)

    Thatcher, G.; Davidson, D. F.

    1984-01-01

    A hydraulic shock absorber of the dash pot kind for use with electrically conducting liquid such as sodium, has magnet means for electro magnetically braking a stream of liquid discharged from the cylinder. The shock absorber finds use in a liquid metal cooled nuclear reactor for arresting control rods

  2. Tap Water Hydraulic Systems for Medium Power Applications

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of new range of developed tap water hydraulic componets and applications for medium power up to 4 kW and 50 bar.......Presentation of new range of developed tap water hydraulic componets and applications for medium power up to 4 kW and 50 bar....

  3. Hydraulic Systems with Tap Water versus Bio-oils

    DEFF Research Database (Denmark)

    Conrad, Finn

    1997-01-01

    Deals with the advantages of using pure tap water hydraulics versus bio-oils for suiteable applications. Focus is in particular on food processing industry.......Deals with the advantages of using pure tap water hydraulics versus bio-oils for suiteable applications. Focus is in particular on food processing industry....

  4. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT X, AUTOMATIC TRANSMISSIONS--HYDRAULIC SYSTEMS (PART II).

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF MAINTENANCE PROCEDURES FOR AUTOMATIC TRANSMISSIONS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) CHECKING THE HYDRAULIC SYSTEM, (2) SERVICING THE HYDRAULIC SYSTEM, (3) EXAMINING THE RANGE CONTROL VALVE, (4) EXAMINING THE LOCK-UP AND FLOW VALVE, (5) EXAMINING THE MAIN REGULATOR…

  5. Research on hydraulic system of KZC-5 type rear dump truck in underground mine

    International Nuclear Information System (INIS)

    Lei Zeyong

    2005-01-01

    KZC-5 type rear dump truck in underground mine is introduced in this paper. The determining principles and ways of two main hydraulic systems are discussed. It has been proved that the hydraulic systems are reasonable in the industrial scale test. (author)

  6. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  7. Proceedings of transient thermal-hydraulics and coupled vessel and piping system responses 1991

    International Nuclear Information System (INIS)

    Wang, G.Y.; Shin, Y.W.; Moody, F.J.

    1991-01-01

    This book reports on transient thermal-hydraulics and coupled vessel and piping system responses. Topics covered include: nuclear power plant containment designs; analysis of control rods; gate closure of hydraulic turbines; and shock wave solutions for steam water mixtures in piping systems

  8. Thermal Hydraulic Analysis of RPV Support Cooling System for HTGR

    International Nuclear Information System (INIS)

    Min Qi; Wu Xinxin; Li Xiaowei; Zhang Li; He Shuyan

    2014-01-01

    Passive safety is now of great interest for future generation reactors because of its reduction of human interaction and avoidance of failures of active components. reactor pressure vessel (RPV) support cooling system (SCS) for high temperature gas-cooled reactor (HTGR) is a passive safety system and is used to cool the concrete seats for the four RPV supports at its bottom. The SCS should have enough cooling capacity to ensure the temperature of the concrete seats for the supports not exceeding the limit temperature. The SCS system is composed of a natural circulation water loop and an air cooling tower. In the water loop, there is a heat exchanger embedded in the concrete seat, heat is transferred by thermal conduction and convection to the cooling water. Then the water is cooled by the air cooler mounted in the air cooling tower. The driving forces for water and air are offered by the density differences caused by the temperature differences. In this paper, the thermal hydraulic analysis for this system was presented. Methods for decoupling the natural circulation and heat transfer between the water loop and air flow were introduced. The operating parameters for different working conditions and environment temperatures were calculated. (author)

  9. Research on motor braking-based DYC strategy for distributed electric vehicle

    Science.gov (United States)

    Zhang, Jingming; Liao, Weijie; Chen, Lei; Cui, Shumei

    2017-08-01

    In order to bring into full play the advantages of motor braking and enhance the handling stability of distributed electric vehicle, a motor braking-based direct yaw moment control (DYC) strategy was proposed. This strategy could identify whether a vehicle has under-steered or overs-steered, to calculate the direct yaw moment required for vehicle steering correction by taking the corrected yaw velocity deviation and slip-angle deviation as control variables, and exert motor braking moment on the target wheels to perform correction in the manner of differential braking. For validation of the results, a combined simulation platform was set up finally to simulate the motor braking control strategy proposed. As shown by the results, the motor braking-based DYC strategy timely adjusted the motor braking moment and hydraulic braking moment on the target wheels, and corrected the steering deviation and sideslip of the vehicle in unstable state, improving the handling stability.

  10. Development of realistic thermal hydraulic system analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, B. D; Kim, K. D. [and others

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others.

  11. Development of realistic thermal hydraulic system analysis code

    International Nuclear Information System (INIS)

    Lee, Won Jae; Chung, B. D; Kim, K. D.

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others

  12. Development of realistic thermal-hydraulic system analysis codes ; development of thermal hydraulic test requirements for multidimensional flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Yull; Yoon, Sang Hyuk; Noh, Sang Woo; Lee, Il Suk [Seoul National University, Seoul (Korea)

    2002-03-01

    This study is concerned with developing a multidimensional flow model required for the system analysis code MARS to more mechanistically simulate a variety of thermal hydraulic phenomena in the nuclear stem supply system. The capability of the MARS code as a thermal hydraulic analysis tool for optimized system design can be expanded by improving the current calculational methods and adding new models. In this study the relevant literature was surveyed on the multidimensional flow models that may potentially be applied to the multidimensional analysis code. Research items were critically reviewed and suggested to better predict the multidimensional thermal hydraulic behavior and to identify test requirements. A small-scale preliminary test was performed in the downcomer formed by two vertical plates to analyze multidimensional flow pattern in a simple geometry. The experimental result may be applied to the code for analysis of the fluid impingement to the reactor downcomer wall. Also, data were collected to find out the controlling parameters for the one-dimensional and multidimensional flow behavior. 22 refs., 40 figs., 7 tabs. (Author)

  13. Study on the application of energy storage system in offshore wind turbine with hydraulic transmission

    International Nuclear Information System (INIS)

    Fan, Yajun; Mu, Anle; Ma, Tao

    2016-01-01

    Highlights: • Hydraulic offshore wind turbine is capable of outputting near constant power. • Open loop hydraulic transmission uses seawater as the working fluid. • Linear control strategy distributes total flow according to demand and supply. • Constant pressure hydraulic accumulator stores/releases the surplus energy. • Simulations show the dynamic performance of the hybrid system. - Abstract: A novel offshore wind turbine comprising fluid power transmission and energy storage system is proposed. In this wind turbine, the conventional mechanical transmission is replaced by an open-loop hydraulic system, in which seawater is sucked through a variable displacement pump in nacelle connected directly with the rotor and utilized to drive a Pelton turbine installed on the floating platform. Aiming to smooth and stabilize the output power, an energy storage system with the capability of flexible charging and discharging is applied. The related mathematical model is developed, which contains some sub-models that are categorized as the wind turbine rotor, hydraulic pump, transmission pipeline, proportional valve, accumulator and hydraulic turbine. A linear control strategy is adopted to distribute the flow out of the proportional valve through comparing the demand power with captured wind energy by hydraulic pump. Ultimately, two time domain simulations demonstrate the operation of the hybrid system when the hydraulic accumulator is utilized and show how this system can be used for load leveling and stabilizing the output power.

  14. Effectiveness of forward collision warning and autonomous emergency braking systems in reducing front-to-rear crash rates.

    Science.gov (United States)

    Cicchino, Jessica B

    2017-02-01

    The objective of this study was to evaluate the effectiveness of forward collision warning (FCW) alone, a low-speed autonomous emergency braking (AEB) system operational at speeds up to 19mph that does not warn the driver prior to braking, and FCW with AEB that operates at higher speeds in reducing front-to-rear crashes and injuries. Poisson regression was used to compare rates of police-reported crash involvements per insured vehicle year in 22 U.S. states during 2010-2014 between passenger vehicle models with FCW alone or with AEB and the same models where the optional systems were not purchased, controlling for other factors affecting crash risk. Similar analyses compared rates between Volvo 2011-2012 model S60 and 2010-2012 model XC60 vehicles with a standard low-speed AEB system to those of other luxury midsize cars and SUVs, respectively, without the system. FCW alone, low-speed AEB, and FCW with AEB reduced rear-end striking crash involvement rates by 27%, 43%, and 50%, respectively. Rates of rear-end striking crash involvements with injuries were reduced by 20%, 45%, and 56%, respectively, by FCW alone, low-speed AEB, and FCW with AEB, and rates of rear-end striking crash involvements with third-party injuries were reduced by 18%, 44%, and 59%, respectively. Reductions in rear-end striking crashes with third-party injuries were marginally significant for FCW alone, and all other reductions were statistically significant. FCW alone and low-speed AEB reduced rates of being rear struck in rear-end crashes by 13% and 12%, respectively, but FCW with AEB increased rates of rear-end struck crash involvements by 20%. Almost 1 million U.S. police-reported rear-end crashes in 2014 and more than 400,000 injuries in such crashes could have been prevented if all vehicles were equipped with FCW and AEB that perform similarly as systems did for study vehicles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  16. Robust Hinfinity position control synthesis of an electro-hydraulic servo system.

    Science.gov (United States)

    Milić, Vladimir; Situm, Zeljko; Essert, Mario

    2010-10-01

    This paper focuses on the use of the techniques based on linear matrix inequalities for robust H(infinity) position control synthesis of an electro-hydraulic servo system. A nonlinear dynamic model of the hydraulic cylindrical actuator with a proportional valve has been developed. For the purpose of the feedback control an uncertain linearized mathematical model of the system has been derived. The structured (parametric) perturbations in the electro-hydraulic coefficients are taken into account. H(infinity) controller extended with an integral action is proposed. To estimate internal states of the electro-hydraulic servo system an observer is designed. Developed control algorithms have been tested experimentally in the laboratory model of an electro-hydraulic servo system. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Reel safety brake

    Science.gov (United States)

    Carle, C. E. (Inventor)

    1976-01-01

    A braking apparatus is described for a tape transport device having two stacked coaxial reels and feelers mounted in proximity to the reels for sensing the tape being wound on each reel. A device is mounted in proximity to adjacent central hubs of the reels to a simultaneously, frictionally engage both hubs and brake both reels. A mechanical actuator is coupled to both feelers and to the brake device. The brake means comprises a pair of rubber shoulders that extend in opposite directions relative to a common axis, and turns about the axis in response to either of the feelers.

  18. UIO-based Fault Diagnosis for Hydraulic Automatic Gauge Control System of Magnesium Sheet Mill

    Directory of Open Access Journals (Sweden)

    Li-Ping FAN

    2014-02-01

    Full Text Available Hydraulic automatic gauge control system of magnesium sheet mill is a complex integrated control system, which including mechanical, hydraulic and electrical comprehensive information. The failure rate of AGC system always is high, and its fault reasons are always complex. Based on analyzing the fault of main components of the automatic gauge control system, unknown input observer is used to realize fault diagnosis and isolation. Simulation results show that the fault diagnosis method based on the unknown input observer for the hydraulic automatic gauge control system of magnesium sheet mill is effective.

  19. Adaptive Control System of Hydraulic Pressure Based on The Mathematical Modeling

    Science.gov (United States)

    Pilipenko, A. V.; Pilipenko, A. P.; Kanatnikov, N. V.

    2016-04-01

    In this paper, the authors highlight the problem of replacing an old heavy industrial equipment, and offer the replacement of obsolete control systems on the modern adaptive control system, which takes into account changes in the hydraulic system of the press and compensates them with a corrective action. The proposed system can reduce a water hammer and thereby increase the durability of the hydraulic system and tools.

  20. Evaluation of Linear and Non-Linear Control Schemes Applied to a Hydraulic Servo System

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik Clemmensen

    2005-01-01

    Due to the innovation of low-cost electronics such as sensors, microcontrollers etc., the focus on highperformance motion control is increasing. This work focuses on position control of single-input single-output hydraulic servo-systems in general. A hydraulically actuated robotic manipulator...

  1. Engineered Barrier System Thermal-Hydraulic-Chemical Column Test Report

    International Nuclear Information System (INIS)

    W.E. Lowry

    2001-01-01

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M and O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01

  2. Thermal hydraulics of accelerator driven system windowless targets

    Directory of Open Access Journals (Sweden)

    Bruno ePanella

    2015-07-01

    Full Text Available The study of the fluid dynamics of the windowless spallation target of an Accelerator Driven System (ADS is presented. Several target mockup configurations have been investigated: the first one was a symmetrical target, that was made by two concentric cylinders, the other configurations are not symmetrical. In the experiments water has been used as hydraulic equivalent to lead-bismuth eutectic fluid. The experiments have been carried out at room temperature and flow rate up to 24 kg/s. The fluid velocity components have been measured by an ultrasound technique. The velocity field of the liquid within the target region either for the approximately axial-symmetrical configuration or for the not symmetrical ones as a function of the flow rate and the initial liquid level is presented. A comparison of experimental data with the prediction of the finite volume FLUENT code is also presented. Moreover the results of a 2D-3D numerical analysis that investigates the effect on the steady state thermal and flow fields due to the insertion of guide vanes in the windowless target unit of the EFIT project ADS nuclear reactor are presented, by analysing both the cold flow case (absence of power generation and the hot flow case (nominal power generation inside the target unit.

  3. Dynamic analysis of three autoventilated disc brakes

    Directory of Open Access Journals (Sweden)

    Ricardo A. García-León

    2017-09-01

    Full Text Available The braking system of a car must meet several requirements, among which safety is the most important. It is also composed of a set of mechanical parts such as springs, different types of materials (Metallic and Non Metallic, gases and liquids. The brakes must work safely and predictably in all circumstances, which means having a stable level of friction, in any condition of temperature, humidity and salinity of the environment. For a correct design and operation of brake discs, it is necessary to consider different aspects, such as geometry, type of material, mechanical strength, maximum temperature, thermal deformation, cracking resistance, among others. Therefore, the main objective of this work is to analyze the dynamics and kinetics of the brake system from the pedal as the beginning of mathematical calculations to simulate the behavior and Analysis of Finite Elements (FEA, with the help of SolidWorks Simulation Software. The results show that the third brake disc works best in relation to the other two discs in their different working conditions such as speed and displacement in braking, concluding that depending on the geometry of the brake and the cooling channels these systems can be optimized that are of great importance for the automotive industry.

  4. Comparative analysis of two hybrid energy storage systems used in a two front wheel driven electric vehicle during extreme start-up and regenerative braking operations

    International Nuclear Information System (INIS)

    Itani, Khaled; De Bernardinis, Alexandre; Khatir, Zoubir; Jammal, Ahmad

    2017-01-01

    Highlights: • Comparison of HESS Ultracapacitor and Flywheel for maximizing EV energy recovery. • Energy recovery performed for extreme two front-wheel driven EV brake conditions. • Regenerative EV braking control strategies and constraints for HESS. • Comparative cost effectiveness for two HESS solutions Ultracapacitors and Flywheel. - Abstract: This paper presents the comparative study of two hybrid energy storage systems (HESS) of a two front wheel driven electric vehicle. The primary energy source of the HESS is a Li-Ion battery, whereas the secondary energy source is either an ultracapacitor (UC) or a flywheel energy system (FES). The main role of the secondary source is to deliver/recover energy during high peak power demand, but also to increase battery lifetime, considered among the most expensive items in the electric vehicle. As a first step, a techno-economic comparative study, supported by strong literature research, is performed between the UC and the FES. The design and sizing of each element will be presented. The comparison criteria and specifications are also described. The adopted approach in this paper is based on an academic non-oriented point of view. In a second step, each of the HESS will be integrated in a more global Simulink model which includes the vehicle model, the traction control system (TCS), the regenerative braking system and the vehicle actuators. Simulation tests are performed for an extreme braking and vehicle starting-up operations. Tests are realized on two different surface road types and conditions (high and low friction roads) and for different initial system states. In order to show the most appropriate storage system regarding compactness, weight and battery constraints minimization, deep comparative analysis is provided.

  5. Time-to-collision analysis of pedestrian and pedal-cycle accidents for the development of autonomous emergency braking systems.

    Science.gov (United States)

    Lenard, James; Welsh, Ruth; Danton, Russell

    2018-06-01

    The aim of this study was to describe the position of pedestrians and pedal cyclists relative to the striking vehicle in the 3 s before impact. This information is essential for the development of effective autonomous emergency braking systems and relevant test conditions for consumer ratings. The UK RAIDS-OTS study provided 175 pedestrian and 127 pedal-cycle cases based on in-depth, at-scene investigations of a representative sample of accidents in 2000-2010. Pedal cyclists were scattered laterally more widely than pedestrians (90% of cyclists within around ±80° compared to ±20° for pedestrians), however their distance from the striking vehicle in the seconds before impact was no greater (90% of cyclists within 42 m at 3 s compared to 50 m for pedestrians). This data is consistent with a greater involvement of slow moving vehicles in cycle accidents. The implication of the results is that AEB systems for cyclists require almost complete 180° side-to-side vision but do not need a longer distance range than for pedestrians. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. High bulk modulus of ionic liquid and effects on performance of hydraulic system.

    Science.gov (United States)

    Kambic, Milan; Kalb, Roland; Tasner, Tadej; Lovrec, Darko

    2014-01-01

    Over recent years ionic liquids have gained in importance, causing a growing number of scientists and engineers to investigate possible applications for these liquids because of their unique physical and chemical properties. Their outstanding advantages such as nonflammable liquid within a broad liquid range, high thermal, mechanical, and chemical stabilities, low solubility for gases, attractive tribological properties (lubrication), and very low compressibility, and so forth, make them more interesting for applications in mechanical engineering, offering great potential for new innovative processes, and also as a novel hydraulic fluid. This paper focuses on the outstanding compressibility properties of ionic liquid EMIM-EtSO4, a very important physical chemically property when IL is used as a hydraulic fluid. This very low compressibility (respectively, very high Bulk modulus), compared to the classical hydraulic mineral oils or the non-flammable HFDU type of hydraulic fluids, opens up new possibilities regarding its usage within hydraulic systems with increased dynamics, respectively, systems' dynamic responses.

  7. Torque Coordination Control during Braking Mode Switch for a Plug-in Hybrid Electric Vehicle

    OpenAIRE

    Yang Yang; Chao Wang; Quanrang Zhang; Xiaolong He

    2017-01-01

    Hybrid vehicles usually have several braking systems, and braking mode switches are significant events during braking. It is difficult to coordinate torque fluctuations caused by mode switches because the dynamic characteristics of braking systems are different. In this study, a new type of plug-in hybrid vehicle is taken as the research object, and braking mode switches are divided into two types. The control strategy of type one is achieved by controlling the change rates of clutch hold-dow...

  8. Discussion on Stochastic Analysis of Hydraulic Vibration in Pressurized Water Diversion and Hydropower Systems

    Directory of Open Access Journals (Sweden)

    Jianxu Zhou

    2018-03-01

    Full Text Available Hydraulic vibration exists in various water conveyance projects and has resulted in different operating problems, but its obvious effects on system’s pressure head and stable operation have not been definitively addressed in the issued codes for engineering design, especially considering the uncertainties of hydraulic vibration. After detailed analysis of the randomness in hydraulic vibration and the commonly used stochastic approaches, in the basic equations for hydraulic vibration analysis, the random parameters and the formed stochastic equations were discussed for further probabilistic characteristic analysis of the random variables. Furthermore, preliminary investigation of the stochastic analysis of hydraulic vibration in pressurized pipelines and possible self-excited vibration in pumped-storage systems was presented for further consideration. The detailed discussion indicates that it is necessary to conduct further and systematic stochastic analysis of hydraulic vibration. Further, with the obtained frequencies and amplitudes in the form of a probability statement, the stochastic characteristics of various hydraulic vibrations can be investigated in detail and these solutions will be more reasonable for practical applications. Eventually, the stochastic analysis of hydraulic vibration will provide a basic premise to introduce its effect into the engineering design of water diversion and hydropower systems.

  9. Brake for rollable platform

    Science.gov (United States)

    Morris, A. L.

    1974-01-01

    Frame-mounted brake is independent of wheels and consists of simple lever-actuated foot. Brake makes good contact with surface even though foot pad is at higher or lower level than wheels, this is particularly important when a rollable platform is used on irregular surface.

  10. Parametric model of servo-hydraulic actuator coupled with a nonlinear system: Experimental validation

    Science.gov (United States)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-05-01

    Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.

  11. Development and industrial tests of the first LNG hydraulic turbine system in China

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2016-10-01

    Full Text Available The cryogenic hydraulic turbine can be used to replace the conventional J–T valve for LNG or mixed refrigerant throttling and depressurization in a natural gas liquefaction plant. This advanced technology is not only to enhance the efficiency of the liquefaction plant, but to usher a new trend in the development of global liquefaction technologies. China has over 136 liquefaction plants, but the cryogenic hydraulic turbines have not been deployed in industrial utilization. In addition, these turbines cannot be manufactured domestically. In this circumstance, through working on the key technologies for LNG hydraulic turbine process & control system development, hydraulic model optimization design, structure design and manufacturing, the first domestic cryogenic hydraulic turbine with a flow rate of 40 m3/h was developed to recover the pressure energy from the LNG of cold box. The turbine was installed in the CNOOC Zhuhai Natural Gas Liquefaction Plant for industrial tests under multiple working conditions, including start-stop, variable flow rates and variable rotation speeds. Test results show that the domestic LNG cryogenic hydraulic turbine has satisfactory mechanical and operational performances at low temperatures as specified in design. In addition, the process & control system and frequency-conversion power-generation system of the turbine system are designed properly to automatically and smoothly replace the existing LNG J–T valve. As a result, the domestic LNG cryogenic hydraulic turbine system can improve LNG production by an average of 2% and generate power of 8.3 kW.

  12. Magnetorheological suspension electromagnetic brake

    International Nuclear Information System (INIS)

    Bica, Ioan

    2004-01-01

    The magnetorheological suspension (MRS) brake is of the monoblock type. The main part of the electromagnetic brake is an electromagnet, between whose poles two MRS disks are placed. For distances between disks of 0.65x10 -3 m±10%, revolutions of the electric motor, coupled to the electromagnetic brake, ranging between 200 and 1600 rev/min and braking powers of up to 85 W, there are no differences in revolutions between the disks of the electromagnetic brake. For fixed revolutions of the electric motor, the revolution of the parallel disk can be modified continuously by means of the intensity of the magnetic field. In all cases, the quantity of MRS is of 0.35x10 -3 kg

  13. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Moon Kee; Park, Choon Kyung; Yang, Sun Kyoo; Chun, Se Yung; Song, Chul Hwa; Jun, Hyung Kil; Jung, Heung Joon; Won, Soon Yun; Cho, Yung Roh; Min, Kyung Hoh; Jung, Jang Hwan; Jang, Suk Kyoo; Kim, Bok Deuk; Kim, Wooi Kyung; Huh, Jin; Kim, Sook Kwan; Moon, Sang Kee; Lee, Sang Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-06-01

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author).

  14. WIND BRAKING OF MAGNETARS

    International Nuclear Information System (INIS)

    Tong, H.; Xu, R. X.; Qiao, G. J.; Song, L. M.

    2013-01-01

    We explore the wind braking of magnetars considering recent observations challenging the traditional magnetar model. There is evidence for strong multipole magnetic fields in active magnetars, but the dipole field inferred from spin-down measurements may be strongly biased by particle wind. Recent observations challenging the traditional model of magnetars may be explained naturally by the wind braking scenario: (1) the supernova energies of magnetars are of normal value; (2) the non-detection in Fermi observations of magnetars; (3) the problem posed by low magnetic field soft gamma-ray repeaters; (4) the relation between magnetars and high magnetic field pulsars; and (5) a decreasing period derivative during magnetar outbursts. Transient magnetars with L x rot may still be magnetic dipole braking. This may explain why low luminosity magnetars are more likely to have radio emissions. A strong reduction of the dipole magnetic field is possible only when the particle wind is very collimated at the star surface. A small reduction of the dipole magnetic field may result from detailed considerations of magnetar wind luminosity. In the wind braking scenario, magnetars are neutron stars with a strong multipole field. For some sources, a strong dipole field may no longer be needed. A magnetism-powered pulsar wind nebula will be one of the consequences of wind braking. For a magnetism-powered pulsar wind nebula, we should see a correlation between the nebula luminosity and the magnetar luminosity. Under the wind braking scenario, a braking index smaller than three is expected. Future braking index measurement of a magnetar may tell us whether magnetars are wind braking or magnetic dipole braking.

  15. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    International Nuclear Information System (INIS)

    Song, C. H.; Chung, M. K.; Park, C. K. and others

    2005-04-01

    The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved

  16. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Song, C. H.; Chung, M. K.; Park, C. K. and others

    2005-04-15

    The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved.

  17. Research on Modeling and Control of Regenerative Braking for Brushless DC Machines Driven Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jian-ping Wen

    2015-01-01

    Full Text Available In order to improve energy utilization rate of battery-powered electric vehicle (EV using brushless DC machine (BLDCM, the model of braking current generated by regenerative braking and control method are discussed. On the basis of the equivalent circuit of BLDCM during the generative braking period, the mathematic model of braking current is established. By using an extended state observer (ESO to observe actual braking current and the unknown disturbances of regenerative braking system, the autodisturbances rejection controller (ADRC for controlling the braking current is developed. Experimental results show that the proposed method gives better recovery efficiency and is robust to disturbances.

  18. Design of the Driving and Clamp Rotation Hydraulic Control System for the Heavy Load Forging Manipulator

    Directory of Open Access Journals (Sweden)

    Li Geqiang

    2015-01-01

    Full Text Available The manipulator was equipped with full hydraulic drive. We designed the hydraulic systems for the driving and clamping rotation. We used a fuzzy PID control strategy to design the electro-hydraulic proportional control system. We built a united simulation model based on the co-simulation of MATLAB/Simulink and AMEsim. A mathematical model of the system was also established. We did separate simulations of the system’s dynamic characteristics for fast forging and normal forging working conditions. The parameters were optimized. The field test shows that the steady-state error of the hydraulic system is small and the system response is fast. The system’s rapid response speed, high precision, and stability under heavy load were realized.

  19. XX international {mu}-symposium - Brake conference. Papers; XX Internationales {mu}-Symposium - Bremsen-Fachtagung. Betraege

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, B. [ed.] [Verein Deutscher Ingenieure (VDI), Darmstadt (Germany); Bauer, E. (comp.) [TMD Friction GmbH, Leverkusen (Germany)

    2000-07-01

    This year, more brake experts from the international automotive community than ever will take part in the XXth {mu}-Symposium upon the invitation of TMD Friction and learn about the latest developments in their professional fields, discuss with each other, and listen in the opening speech to the viewpoints of a behavioural scientist on braking as the main focus of {mu}-Symposium and {mu}-Club. The contents of this {mu}-Symposium will be the following: Braking from the behavioural scientist's viewpoint/research on tribological characteristics between Al-MMC brake disc and friction material/SBC - the electro-hydraulic brake system from Mercedes-Benz/total chassis management - heading for the intelligent chassis/TMD Friction - a company profile. (orig./AKF) [German] Bremsenexperten der internationalen Automobilwelt trafen sich im Herbst 2000 zum zwanzigsten Mal auf Einladung von TMD Friction in Bad Neuenahr. Dieser Bericht fasst - jeweils in deutsch und englisch - die Vortraege ueber neueste Entwicklungen aus Industrie und Hochschule zusammen. Im Einfuehrungsvortrag berichtet ein Verhaltenswissenschaftler ueber seine Gedanken zum Bremsen als dem Hauptgegenstand von {mu}-Symposium und {mu}-Club. Ferner gehoeren die Praesentation des elektrohydraulischen Bremssystems ebenso zum Programm des Symposiums wie die Vorstellung von Forschungsergebnissen neuer Reibpaarungen und der Blick auf die Zukunft des Fahrwerks im Verbund mit Fahrzeugregelsystemen. (orig./AKF)

  20. Solar tracker motor having a fixed caliper and a translating caliper each with an electromagnetic brake system

    Science.gov (United States)

    Rau, Scott James

    2013-01-29

    Concepts and technologies described herein provide for an accurate and cost-effective method for rotating a solar array disk for tracking the movement of the sun. According to various aspects, a motor includes a fixed caliper and a translating caliper positioned adjacent to one another. Electromagnetically controlled brakes on the translating caliper grip the solar array disk while adjacent, but spaced apart, electromagnets on the fixed caliper and the translating caliper are energized to create an attractive force that pulls the translating caliper with the solar array disk toward the fixed caliper. After reaching the fixed caliper, brakes on the fixed caliper are engaged with the disk, brakes on the translating caliper are released from the disk, and the translating caliper is pushed back to the starting location where the process repeats until the desired rotation is completed.