WorldWideScience

Sample records for hydrated sodium calcium

  1. Influence of sodium borate on the early age hydration of calcium sulfoaluminate cement

    Energy Technology Data Exchange (ETDEWEB)

    Champenois, Jean-Baptiste; Dhoury, Mélanie [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze Cedex (France); Cau Dit Coumes, Céline, E-mail: celine.cau-dit-coumes@cea.fr [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze Cedex (France); Mercier, Cyrille [LMCPA, Université de Valenciennes et du Hainaut Cambrésis, 59600 Maubeuge (France); Revel, Bertrand [Centre Commun de Mesure RMN, Université Lille1 Sciences Technologies, Cité Scientifique, 59655 Villeneuve d' Ascq Cedex (France); Le Bescop, Patrick [CEA, DEN, DPC, SECR, F-91192 Gif-sur-Yvette (France); Damidot, Denis [Ecole des Mines de Douai, LGCgE-GCE, 59508 Douai (France)

    2015-04-15

    Calcium sulfoaluminate (CSA) cements are potential candidates for the conditioning of radioactive wastes with high sodium borate concentrations. This work thus investigates early age hydration of two CSA cements with different gypsum contents (0 to 20%) as a function of the mixing solution composition (borate and NaOH concentrations). Gypsum plays a key role in controlling the reactivity of cement. When the mixing solution is pure water, increasing the gypsum concentration accelerates cement hydration. However, the reverse is observed when the mixing solution contains sodium borate. Until gypsum exhaustion, the pore solution pH remains constant at ~ 10.8, and a poorly crystallized borate compound (ulexite) precipitates. A correlation is established between this transient precipitation and the hydration delay. Decreasing the gypsum content in the binder, or increasing the sodium content in the mixing solution, are two ways of reducing the stability of ulexite, thus decreasing the hydration delay.

  2. Hydrate sodium calcium aluminosilicate does not reduce rumen lipopolysacharide concentrations in cows

    NARCIS (Netherlands)

    Pilachai, R.; Schonewille, J.T.; Thamrongyoswittayakul, C.; Aiumlamai, S.; Wachirapakorn, C.; Everts, H.; Vlaeminck, B.; Doekes, G.; Hendriks, W.H.

    2014-01-01

    The efficacy of hydrate sodium calcium aluminosilicate (HSCAS) to reduce the concentrations of free lipopolysaccharide (LPS) in rumen fluid of cows was investigated. Six, rumen-fistulated crossbred Holstein, non-pregnant, dry cows were randomly assigned to three experimental rations in a study with

  3. Structural and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from alite hydration in the presence of sodium and potassium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Oscar, E-mail: oamendoz@unal.edu.co [Grupo del Cemento y Materiales de Construcción (CEMATCO). Universidad Nacional de Colombia, Facultad de Minas, Medellín (Colombia); Giraldo, Carolina [Cementos Argos S.A., Medellín (Colombia); Camargo, Sergio S. [Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de Janeiro/COPPE, Rio de Janeiro (Brazil); Tobón, Jorge I. [Grupo del Cemento y Materiales de Construcción (CEMATCO). Universidad Nacional de Colombia, Facultad de Minas, Medellín (Colombia)

    2015-08-15

    This research evaluates the effect of sodium and potassium hydroxide on the structure and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from the hydration of pure alite. Monoclinic (MIII) alite was synthesized and hydrated, using water-to-alite ratios of 0.5 and 0.6 and additions of 10% NaOH and KOH by weight of alite. Based on results of X-ray diffraction, isothermal calorimetry, thermogravimetric analysis, Nuclear Magnetic Resonance and nanoindentation, two different effects of the alkaline hydroxides on the hydration reaction of alite, both at early and later ages, can be identified: (i) a differentiated hydration process, attributed to an enhancement in calcium hydroxide (CH) precipitation and a stimulation of the C-S-H nuclei; and (ii) an increase in the elastic modulus of the C-S-H aggregations, attributed to an electrostatic attraction between positive charges from the alkaline cations and negative charges from the C-S-H structure.

  4. Effect of Compounding of Sodium Tripolyphosphate and Super Plasticizers on the Hydration of α-calcium Sulfate Hemihydrate

    Institute of Scientific and Technical Information of China (English)

    PAN Wei; WANG Peiming

    2011-01-01

    The inhibition and its mechanism of sodium tripolyphosphate(STP)composited with super plasticizers(SPs)on hydration of α-calcium sulfate hemihydrate were studied by setting time,strength,hydration heat,X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),electronic probe micro analysis (EPMA),scanning electron microscopy(SEM)and differential scanning calorimeter(DSC)measurements.The experimental results show that compared with STP addition,compositing STP with polycarboxylate(PC)plasticizer,the final setting time is prolonged from 0.5h to 2hs.While formulating STP with naphthalene-based plasticizer(NAP)or sulfonate melamine formaldehyde plasticizer(SMF),the final setting time is reduced to quarter of an hour Similar changes can also be found in the rate of exothermic hydration and hydration degree.Formulating STP with suitable addition of PC can enhance the strength,while compositing STP and NAP or SMF weakens the strength.Besides,adding STP or STP and SMF,obvious movement(more than lev)of binding energy of Ca2p1/2 and Ca2p3/2 is detected.Compared with STP addition,content of the characteristic element(P)of STP is cut down form 1.1% to 0.49% by compositing STP with SMF.Furthermore,as hydration age increases,hydration inhibition in the presence of admixtures weakens and even disappears within 56 h.

  5. Atomistic simulations of cation hydration in sodium and calcium montmorillonite nanopores

    Science.gov (United States)

    Yang, Guomin; Neretnieks, Ivars; Holmboe, Michael

    2017-08-01

    During the last four decades, numerous studies have been directed to the swelling smectite-rich clays in the context of high-level radioactive waste applications and waste-liners for contaminated sites. The swelling properties of clay mineral particles arise due to hydration of the interlayer cations and the diffuse double layers formed near the negatively charged montmorillonite (MMT) surfaces. To accurately study the cation hydration in the interlayer nanopores of MMT, solvent-solute and solvent-clay surface interactions (i.e., the solvation effects and the shape effects) on the atomic level should be taken into account, in contrast to many recent electric double layer based methodologies using continuum models. Therefore, in this research we employed fully atomistic simulations using classical molecular dynamics (MD) simulations, the software package GROMACS along with the CLAYFF forcefield and the SPC/E water model. We present the ion distributions and the deformation of the hydrated coordination structures, i.e., the hydration shells of Na+ and Ca2+ in the interlayer, respectively, for MMT in the first-layer, the second-layer, the third-layer, the fourth-layer, and the fifth-layer (1W, 2W, 3W, 4W, and 5W) hydrate states. Our MD simulations show that Na+ in Na-MMT nanopores have an affinity to the ditrigonal cavities of the clay layers and form transient inner-sphere complexes at about 3.8 Å from clay midplane at water contents less than the 5W hydration state. However, these phenomena are not observed in Ca-MMT regardless of swelling states. For Na-MMT, each Na+ is coordinated to four water molecules and one oxygen atom of the clay basal-plane in the first hydration shell at the 1W hydration state, and with five to six water molecules in the first hydration shell within a radius of 3.1 Å at all higher water contents. In Ca-MMT, however each Ca2+ is coordinated to approximately seven water molecules in the first hydration shell at the 1W hydration state and

  6. Effect of Tartaric Acid on Hydration of a Sodium-Metasilicate-Activated Blend of Calcium Aluminate Cement and Fly Ash F

    Directory of Open Access Journals (Sweden)

    Tatiana Pyatina

    2016-05-01

    Full Text Available An alkali-activated blend of aluminum cement and class F fly ash is an attractive solution for geothermal wells where cement is exposed to significant thermal shocks and aggressive environments. Set-control additives enable the safe cement placement in a well but may compromise its mechanical properties. This work evaluates the effect of a tartaric-acid set retarder on phase composition, microstructure, and strength development of a sodium-metasilicate-activated calcium aluminate/fly ash class F blend after curing at 85 °C, 200 °C or 300 °C. The hardened materials were characterized with X-ray diffraction, thermogravimetric analysis, X-ray computed tomography, and combined scanning electron microscopy/energy-dispersive X-ray spectroscopy and tested for mechanical strength. With increasing temperature, a higher number of phase transitions in non-retarded specimens was found as a result of fast cement hydration. The differences in the phase compositions were also attributed to tartaric acid interactions with metal ions released by the blend in retarded samples. The retarded samples showed higher total porosity but reduced percentage of large pores (above 500 µm and greater compressive strength after 300 °C curing. Mechanical properties of the set cements were not compromised by the retarder.

  7. Behavior of calcium silicate hydrate in aluminate solution

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-bin; ZHAO Zhuo; LIU Gui-hua; ZHOU Qiu-sheng; PENG Zhi-hong

    2005-01-01

    Using calcium hydroxide and sodium silicate as starting materials, two kinds of calcium silicate hydrates, CaO · SiO2 · H2O and 2CaO · SiO2 · 1.17H2O, were hydro-thermally synthesized at 120 ℃. The reaction rule of calcium silicate hydrate in aluminate solution was investigated. The result shows that CaO · SiO2 · H2O is more stable than 2CaO · SiO2 · 1.17H2 O in aluminate solution and its stability increases with the increase of reaction temperature but decreases with the increase of caustic concentration. The reaction between calcium silicate hydrate and aluminate solution is mainly through two routes. In the first case, Al replaces partial Si in calcium silicate hydrate, meanwhile 3CaO · Al2 O3 · xSiO2 · (6-2x) H2 O (hydro-garnet) is formed and some SiO2 enters the solution. In the second case, calcium silicate hydrate can react directly with aluminate solution, forming hydro-garnet and Na2O · Al2O3 · 2SiO2 · nH2O (DSP). The desilication reaction of aluminate solution containing silicate could contribute partially to forming DSP.

  8. Synthesis and reaction behavior of calcium silicate hydrate in basic system

    Institute of Scientific and Technical Information of China (English)

    刘桂华; 贺强; 李小斌; 彭志宏; 周秋生

    2004-01-01

    At the molar ratio of CaO to SiO2 of 1, with calcium hydroxide and sodium silicate, calcium silicate hydrate was synthesized at 50, 100, 170 ℃, respectively. The results show that temperature favors the formation of calcium silicate hydrate with perfect structure. When calcium silicate hydrate reacts with caustic solution, the decomposition rate of calcium silicate hydrate increases with the increasing caustic concentration and decreases with the raising synthesis temperature and the prolongation of reaction time. The decomposition rate is all less than 1.2 % in caustic solution, and XRD pattern of the residue after reaction with caustic solution is found as the same as that of original calcium silicate hydrate, which indicates the stable existence of calcium silicate hydrate in caustic solution.When reacted with soda solution, the decomposition rate increases with the increasing soda concentration and reaction time, while decreases with the synthesis temperature. The decomposition rate is more than 2% because CaO · SiO2 · H2O(CSH( Ⅰ )), except Ca5 (OH)2Si6O16 · 4H2O and Ca6Si6O17 (OH)2, is decomposed. So the synthesis temperature and soda concentration should be controlled in the process of transformation of sodium aluminosilicate hydrate into calcium silicate hydrate.

  9. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina

    2017-05-13

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10 was conducted for tricalcium silicate (C3S) to interpret long-term hydration process and investigate the formation, structure and properties of C-S-H. Based on results from XRD, IR, SEM, NMR and so forth, loose and dense clusters of C-S-H with analogous C/S ratio were obtained along with the corresponding chemical formulae proposed as Ca5Si4O13∙6.2H2O. Crystalline structure inside C-S-H was observed by TEM, which was allocated at the foil-like proportion as well as the edge of wrinkles of the product. The long-term hydration process of C3S in dilute suspension could be sketchily described as migration of calcium hydroxide and in-situ growth of C-S-H with equilibrium silicon in aqueous solution relatively constant and calcium varied.

  10. Molecular Dynamics Modeling of Hydrated Calcium-Silicate-Hydrate (CSH) Cement Molecular Structure

    Science.gov (United States)

    2014-08-30

    properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown...public release; distribution is unlimited. Molecular Dynamics Modeling of Hydrated Calcium-Silicate- Hydrate (CSH) Cement Molecular Structure The views... Cement Molecular Structure Report Title Multi-scale modeling of complex material systems requires starting from fundamental building blocks to

  11. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.

    2010-05-11

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  12. Hydration of Portland cement with additions of calcium sulfoaluminates

    Energy Technology Data Exchange (ETDEWEB)

    Le Saout, Gwenn, E-mail: gwenn.le-saout@mines-ales.fr [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Lothenbach, Barbara [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Hori, Akihiro [DENKA Chemicals GmbH, Wehrhahn-Center, Cantadorstr. 3, D-40211 Duesseldorf (Germany); Higuchi, Takayuki [Denki Kagaku Kogyo Kabushiki Kaisha (DENKA), Omi, Itoigawa, Niigata, 949-0393 (Japan); Winnefeld, Frank [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2013-01-15

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C-S-H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA-OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  13. Gravimetric Determination of Calcium as Calcium Carbonate Hydrate.

    Science.gov (United States)

    Henrickson, Charles H.; Robinson, Paul R.

    1979-01-01

    The gravimetric determination of calcium as calcium carbonate is described. This experiment is suitable for undergraduate quantitative analysis laboratories. It is less expensive than determination of chloride as silver chloride. (BB)

  14. Nanoindentation investigation of creep properties of calcium silicate hydrates

    OpenAIRE

    Vandamme, Matthieu; ULM, Franz Josef

    2013-01-01

    The creep properties of calcium silicate hydrates (C-S-H) are assessed by means of nanoindentation creep experiments on a wide range of substoichiometric cement pastes. We observe that, after a few seconds, the measured creep compliance of C-S-H is very well captured by a logarithmic time function. The rate of the logarithmic creep is found to scale in a unique manner with indentation modulus, indentation hardness, and packing density, independent of processing, mix proportions, indenter geom...

  15. Synthesis of pure zeolite P2 from calcium silicate hydrate; tobermorite

    Directory of Open Access Journals (Sweden)

    Nasser Y. Mostafa

    2015-06-01

    Full Text Available Calcium silicate hydrate phases offer the possibility to become potential zeolites precursors due to its high silica contents. Pure calcium silicate hydrate phase; tobermorite (Ca5Si6O16(OH2·4H2O, was prepared by hydrothermal method at 175°C. Tobermorite was sucssefully converted to Zeolite P2 for the first time via refluxing in 3 M NaOH solution and in the presence of Al source. Sodium hydroxide removed calcium ions from the interlayers of calcium silicate phase and form mesoporous zeolite. The pure zeolite was obtained after extraction of Ca(OH2 with sugar solution. The zeolite products were characterized by using X-ray diffraction spectroscopy (XRD and Scanning Electron Microscopy (SEM with microanalysis (EDX. The Si/Al molar ratio of zeolite P can be controlled by vering the initinal Si/Al molar ratio. The cation-exchange capacity (CEC of the produced zeolite P was higher than those produced from fly ash.

  16. Hydration of calcium aluminate cement determined by thermal analysis

    Science.gov (United States)

    Scheinherrová, Lenka; Trník, Anton

    2017-07-01

    Calcium aluminate cements (CACs) are a very important type of non-Portland or special cements. Since they are considerably more expensive, they are not used as a simple substitute for Portland cement. Their structure allows them to achieve high compressive strength. They resist very well to high temperatures and temperature changes, or also to chemical attacks. The original motivation, why the CACs were developed, was the idea of finding new cement chemistries that would be more resistant to sulfate attack then Portland cements. Nowadays, the main usage of the CACs is in high temperatures applications. In this paper, we study the hydration of a CAC up to one year of age to control what happens in CACs structure during aging. The variety in the main products of hydration is studied using differential scanning calorimetry and thermogravimetry in the temperature range from 25 °C to 1000 °C with a heating rate of 5 °C/min in an argon atmosphere. The basic physical and mechanical properties are also determined.

  17. Hydration studies of calcium sulfoaluminate cements blended with fly ash

    Energy Technology Data Exchange (ETDEWEB)

    García-Maté, M.; De la Torre, A.G. [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain); León-Reina, L. [Servicios Centrales de Apoyo a la Investigación, Universidad de Málaga, 29071 Málaga (Spain); Aranda, M.A.G. [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain); CELLS-Alba synchrotron, Carretera BP 1413, Km. 3.3, E-08290 Cerdanyola, Barcelona (Spain); Santacruz, I., E-mail: isantacruz@uma.es [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain)

    2013-12-15

    The main objective of this work is to study the hydration and properties of calcium sulfoaluminate cement pastes blended with fly ash (FA) and the corresponding mortars at different hydration ages. Laboratory X-ray powder diffraction, rheological studies, thermal analysis, porosimetry and compressive strength measurements were performed. The analysis of the diffraction data by Rietveld method allowed quantifying crystalline phases and overall amorphous contents. The studied parameters were: i) FA content, 0, 15 and 30 wt.%; and ii) water addition, water-to-CSA mass ratio (w/CSA = 0.50 and 0.65), and water-to-binder mass ratio (w/b = 0.50). Finally, compressive strengths after 6 months of 0 and 15 wt.% FA [w/CSA = 0.50] mortars were similar: 73 ± 2 and 72 ± 3 MPa, respectively. This is justified by the filler effect of the FA as no strong evidences of reactivity of FA with CSA were observed. These results support the partial substitution of CSA cements with FA with the economic and environmental benefits.

  18. Interactions in Calcium Oxalate Hydrate/Surfactant Systems.

    Science.gov (United States)

    Sikiric; Filipovic-Vincekovic; Babic-Ivancić Vdović Füredi-Milhofer

    1999-04-15

    Phase transformation of calcium oxalate dihydrate (COD) into the thermodynamically stable monohydrate (COM) in anionic (sodium dodecyl sulfate (SDS)) and cationic (dodecylammonium chloride) surfactant solutions has been studied. Both surfactants inhibit, but do not stop transformation from COD to COM due to their preferential adsorption at different crystal faces. SDS acts as a stronger transformation inhibitor. The general shape of adsorption isotherms of both surfactants at the solid/liquid interface is of two-plateau-type, but differences in the adsorption behavior exist. They originate from different ionic and molecular structures of crystal surfaces and interactions between surfactant headgroups and solid surface. Copyright 1999 Academic Press.

  19. Elasticity of calcium and calcium-sodium amphiboles

    Science.gov (United States)

    Brown, J. Michael; Abramson, Evan H.

    2016-12-01

    Measurements of single-crystal elastic moduli under ambient conditions are reported for nine calcium to calcium-sodium amphiboles that lie in the composition range of common crustal constituents. Velocities of body and surface acoustic waves measured by Impulsive Stimulated Light Scattering (ISLS) were inverted to determine the 13 moduli characterizing these monoclinic samples. Moduli show a consistent pattern: C33 > C22 > C11 and C23 > C12 > C13 and C44 > C55 ∼ C66 and for the uniquely monoclinic moduli, |C35| ≫ C46 ∼ |C25| > |C15| ∼ 0. Most of the compositionally-induced variance of moduli is associated with aluminum and iron content. Seven moduli (C11C12C13C22C44C55C66) increase with increasing aluminum while all diagonal moduli decrease with increasing iron. Three moduli (C11, C13 and C44) increase with increasing sodium and potassium occupancy in A-sites. The uniquely monoclinic moduli (C15C25 and C35) have no significant compositional dependence. Moduli associated with the a∗ direction (C11C12C13C55 and C66) are substantially smaller than values associated with structurally and chemically related clinopyroxenes. Other moduli are more similar for both inosilicates. The isotropically averaged adiabatic bulk modulus does not vary with iron content but increases with aluminum content from 85 GPa for tremolite to 99 GPa for pargasite. Increasing iron reduces while increasing aluminum increases the isotropic shear modulus which ranges from 47 GPa for ferro-actinolite to 64 GPa for pargasite. These results exhibit far greater anisotropy and higher velocities than apparent in earlier work. Quasi-longitudinal velocities are as fast as ∼9 km/s and (intermediate between the a∗- and c-axes) are as slow as ∼6 km/s. Voigt-Reuss-Hill averaging based on prior single crystal moduli resulted in calculated rock velocities lower than laboratory measurements, leading to adoption of the (higher velocity) Voigt bound. Thus, former uses of the upper Voigt bound can

  20. Mechanical behavior of a composite interface: Calcium-silicate-hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Palkovic, Steven D.; Moeini, Sina; Büyüköztürk, Oral, E-mail: obuyuk@mit.edu [Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Yip, Sidney [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-07-21

    The generalized stacking fault (GSF) is a conceptual procedure historically used to assess shear behavior of defect-free crystalline structures through molecular dynamics or density functional theory simulations. We apply the GSF technique to the spatially and chemically complex quasi-layered structure of calcium-silicate-hydrates (C-S-H), the fundamental nanoscale binder within cementitious materials. A failure plane is enforced to calculate the shear traction-displacement response along a composite interface containing highly confined water molecules, hydroxyl groups, and calcium ions. GSF simulations are compared with affine (homogeneous) shear simulations, which allow strain to localize naturally in response to the local atomic environment. Comparison of strength and deformation behavior for the two loading methods shows the composite interface controls bulk shear deformation. Both models indicate the maximum shear strength of C-S-H exhibits a normal-stress dependency typical of cohesive-frictional materials. These findings suggest the applicability of GSF techniques to inhomogeneous structures and bonding environments, including other layered systems such as biological materials containing organic and inorganic interfaces.

  1. 75 FR 39025 - Determination That ACTONEL (Risendronate Sodium) Tablets, 75 Milligrams, and ACTONEL WITH CALCIUM...

    Science.gov (United States)

    2010-07-07

    ... ACTONEL WITH CALCIUM (risendronate sodium and calcium carbonate (copackaged)) Tablets, 35 mg/500 mg, were... and calcium carbonate (copackaged)) Tablets, 35/500 mg, is the subject of NDA 21-823, held by Procter... (risendronate sodium) Tablets, 75 mg, nor ACTONEL WITH CALCIUM (risendronate sodium and calcium......

  2. Pressure induced reactions amongst calcium aluminate hydrate phases

    KAUST Repository

    Moon, Ju-hyuk

    2011-06-01

    The compressibilities of two AFm phases (strätlingite and calcium hemicarboaluminate hydrate) and hydrogarnet were obtained up to 5 GPa by using synchrotron high-pressure X-ray powder diffraction with a diamond anvil cell. The AFm phases show abrupt volume contraction regardless of the molecular size of the pressure-transmitting media. This volume discontinuity could be associated to a structural transition or to the movement of the weakly bound interlayer water molecules in the AFm structure. The experimental results seem to indicate that the pressure-induced dehydration is the dominant mechanism especially with hygroscopic pressure medium. The Birch-Murnaghan equation of state was used to compute the bulk modulus of the minerals. Due to the discontinuity in the pressure-volume diagram, a two stage bulk modulus of each AFm phase was calculated. The abnormal volume compressibility for the AFm phases caused a significant change to their bulk modulus. The reliability of this experiment is verified by comparing the bulk modulus of hydrogarnet with previous studies. © 2011 Elsevier Ltd. All rights reserved.

  3. Calcium aluminate cement hydration in a high alkalinity environment

    Directory of Open Access Journals (Sweden)

    Palomo, Á.

    2009-03-01

    Full Text Available The present paper forms part of a broader research project that aims primarily to devise new cementitious products via the alkali activation of silico-aluminous materials. This work addresses the possibility of using small percentages of calcium aluminate cement (CAC as a source of reactive aluminium. For this reason, a preliminary review was needed of the behaviour of CACs in highly alkaline media (2, 8 and 12M NaOH solutions. Two, 28- and 180-day mechanical strength was determined and the reaction products were characterized with XRD and FTIR. The water-hydrated CAC was used as the control.The results obtained showed that CAC hardening took place much more slowly in highly alkaline media than in water. Nonetheless, the 28-day compressive strength obtained, ≥80MPa. As main reaction products, to ambient temperature and from the two days of cured, cubic aluminate C3AH6, and AH3 polymorphs are formed, instead of the usual hexagonal aluminatos (CAH10 and C2AH8 that are formed in the normal hydrate with water.El presente trabajo forma parte de una amplia investigación cuyo objetivo principal es el de elaborar nuevos materiales con propiedades cementantes mediante la activación alcalina de materiales de naturaleza silito-aluminosa. En estos estudios se contempla la posibilidad de utilizar pequeños porcentajes de cemento de aluminato de calcio (CAC como fuente de aluminio reactivo. Por ello inicialmente se ha estudiado el comportamiento de los CAC en medios fuertemente alcalinos (disoluciones de NaOH 2M, 8M y 12M. Se determinaron las resistencias mecánicas a 2, 28 y 180 días y se realizó una caracterización de los productos de reacción formados por DRX, FTIR. Como sistema de referencia se consideró la hidratación del CAC con agua.Los resultados obtenidos muestran que en medios fuertemente alcalinos se retrasan los procesos de rápido endurecimiento de CAC con agua. No obstante a 28 días se obtienen valores de resistencia a compresión

  4. Energetics of sodium-calcium exchanged zeolite A.

    Science.gov (United States)

    Sun, H; Wu, D; Guo, X; Shen, B; Navrotsky, A

    2015-05-07

    A series of calcium-exchanged zeolite A samples with different degrees of exchange were prepared. They were characterized by powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC). High temperature oxide melt drop solution calorimetry measured the formation enthalpies of hydrated zeolites CaNa-A from constituent oxides. The water content is a linear function of the degree of exchange, ranging from 20.54% for Na-A to 23.77% for 97.9% CaNa-A. The enthalpies of formation (from oxides) at 25 °C are -74.50 ± 1.21 kJ mol(-1) TO2 for hydrated zeolite Na-A and -30.79 ± 1.64 kJ mol(-1) TO2 for hydrated zeolite 97.9% CaNa-A. Dehydration enthalpies obtained from differential scanning calorimetry are 32.0 kJ mol(-1) H2O for hydrated zeolite Na-A and 20.5 kJ mol(-1) H2O for hydrated zeolite 97.9% CaNa-A. Enthalpies of formation of Ca-exchanged zeolites A are less exothermic than for zeolite Na-A. A linear relationship between the formation enthalpy and the extent of calcium substitution was observed. The energetic effect of Ca-exchange on zeolite A is discussed with an emphasis on the complex interactions between the zeolite framework, cations, and water.

  5. Identification of the hydrate gel phases present in phosphate-modified calcium aluminate binders

    Energy Technology Data Exchange (ETDEWEB)

    Chavda, Mehul A.; Bernal, Susan A. [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Apperley, David C. [Solid-State NMR Group, Department of Chemistry, Durham University, Durham DH1 3LE (United Kingdom); Kinoshita, Hajime [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Provis, John L., E-mail: j.provis@sheffield.ac.uk [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2015-04-15

    The conversion of hexagonal calcium aluminate hydrates to cubic phases in hydrated calcium aluminate cements (CAC) can involve undesirable porosity changes and loss of strength. Modification of CAC by phosphate addition avoids conversion, by altering the nature of the reaction products, yielding a stable amorphous gel instead of the usual crystalline hydrate products. Here, details of the environments of aluminium and phosphorus in this gel were elucidated using solid-state NMR and complementary techniques. Aluminium is identified in both octahedral and tetrahedral coordination states, and phosphorus is present in hydrous environments with varying, but mostly low, degrees of crosslinking. A {sup 31}P/{sup 27}Al rotational echo adiabatic passage double resonance (REAPDOR) experiment showed the existence of aluminium–phosphorus interactions, confirming the formation of a hydrated calcium aluminophosphate gel as a key component of the binding phase. This resolves previous disagreements in the literature regarding the nature of the disordered products forming in this system.

  6. Adsorption of sodium ions and hydrated sodium ions on a hydrophobic graphite surface via cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    Shi Guo-Sheng; Wang Zhi-Gang; Zhao Ji-Jun; Hu Jun; Fang Hai-Ping

    2011-01-01

    Using density functional theory computation, we show that sodium ions and hydrated sodium ions can be strongly adsorbed onto a hydrophobic graphite surface via cation-π interactions. The key to this cation-π interaction is the coupling of the delocalized π states of graphite and the empty orbitals of sodium ions. This finding implies that the property of the graphite surface is extremely dependent on the existence of the ions on the surface, suggesting that the hydrophobic property of the graphite surface may be affected by the existence of the sodium ions.

  7. Ultrasonic sound speed analysis of hydrating calcium sulphate hemihydrate

    NARCIS (Netherlands)

    Korte, de A.C.J.; Brouwers, H.J.H.

    2011-01-01

    This article focuses on the hydration, and associated microstructure development, of b-hemihydrate to dihydrate (gypsum). The sound velocity is used to quantify the composition of the fresh slurry as well as the hardening and hardened—porous—material. Furthermore, an overview of available hydration

  8. Hydration characteristics and environmental friendly performance of a cementitious material composed of calcium silicate slag.

    Science.gov (United States)

    Zhang, Na; Li, Hongxu; Zhao, Yazhao; Liu, Xiaoming

    2016-04-05

    Calcium silicate slag is an alkali leaching waste generated during the process of extracting Al2O3 from high-alumina fly ash. In this research, a cementitious material composed of calcium silicate slag was developed, and its mechanical and physical properties, hydration characteristics and environmental friendly performance were investigated. The results show that an optimal design for the cementitious material composed of calcium silicate slag was determined by the specimen CFSC7 containing 30% calcium silicate slag, 5% high-alumina fly ash, 24% blast furnace slag, 35% clinker and 6% FGD gypsum. This blended system yields excellent physical and mechanical properties, confirming the usefulness of CFSC7. The hydration products of CFSC7 are mostly amorphous C-A-S-H gel, rod-like ettringite and hexagonal-sheet Ca(OH)2 with small amount of zeolite-like minerals such as CaAl2Si2O8·4H2O and Na2Al2Si2O8·H2O. As the predominant hydration products, rod-like ettringite and amorphous C-A-S-H gel play a positive role in promoting densification of the paste structure, resulting in strength development of CFSC7 in the early hydration process. The leaching toxicity and radioactivity tests results indicate that the developed cementitious material composed of calcium silicate slag is environmentally acceptable. This study points out a promising direction for the proper utilization of calcium silicate slag in large quantities.

  9. The Mechanical Properties and Hydration Characteristics of Cement Pastes Containing Added-calcium Coal Gangue

    Institute of Scientific and Technical Information of China (English)

    LI Dongxu; SONG Xuyan

    2008-01-01

    The mechanical properties of several kinds of coal gangue calcined with limestone were Researched so as to find the optimum way of calcinations with limestone. Mierostructure and property of hydration process of cement pastes containing added-calcium coal gangue were analyzed by means of scanning electron microscope (SEM) and method of mercury in trusion poremeasurement (MIP), etc. The experiment can approve those results: when proper amounst of gypsum and fluorite were taken as mineralizers in the course of calcinations of added-calcium coal gangue, activity of coal gangue can be effectively improved. The results of mechanical property and structural characteristic such as hydration process, hydration product and microstructure etc. of cement pastes containing added-calcium coal gangue are consistent.

  10. Synthesis of Calcium Silicate Hydrate based on Steel Slag with Various Alkalinities

    Institute of Scientific and Technical Information of China (English)

    WANG Shuping; PENG Xiaoqin; GENG Jianqiang; LI Bin; WANG Kaiyu

    2014-01-01

    This study aimed to improve the hydraulic potential properties of the slag. Therefore, a method of dynamic hydrothermal synthesis was applied to synthesize calcium silicate hydrate. The phases and nanostructures were characterized by XRD, FTIR, TEM, and BET nitrogen adsorption. The influence of alkalinity of steel slag on its structures and properties was discussed. The experimental results show that, the main product is amorphous calcium silicate hydrate gel with flocculent or fibrous pattern with a BET specific surface area up to 77 m2/g and pore volume of 0.34 mL/g. Compared with low alkalinity steel slag, calcium silicate hydrate synthesized from higher alkalinity steel slag is prone to transform to tobermorite structure.

  11. Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone

    DEFF Research Database (Denmark)

    Moesgaard, M; Poulsen, Søren Lundsted; Herfort, D;

    2012-01-01

    M. MOESGAARD, S.L. POULSEN, D. HERFORT, M. STEENBERG, L.F. KIRKEGAARD, J. SKIBSTED, Y. YUE, Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone, Journal of the American Ceramic Society 95, 403 – 409 (2012).......M. MOESGAARD, S.L. POULSEN, D. HERFORT, M. STEENBERG, L.F. KIRKEGAARD, J. SKIBSTED, Y. YUE, Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone, Journal of the American Ceramic Society 95, 403 – 409 (2012)....

  12. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Science.gov (United States)

    2010-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... DENTAL DEVICES Prosthetic Devices § 872.3490 Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose...

  13. Simultaneous Sodium and Calcium Imaging from Dendrites and Axons.

    Science.gov (United States)

    Miyazaki, Kenichi; Ross, William N

    2015-01-01

    Dynamic calcium imaging is a major technique of neuroscientists. It can reveal information about the location of various calcium channels and calcium permeable receptors, the time course, magnitude, and location of intracellular calcium concentration ([Ca(2+)]i) changes, and indirectly, the occurrence of action potentials. Dynamic sodium imaging, a less exploited technique, can reveal analogous information related to sodium signaling. In some cases, like the examination of AMPA and NMDA receptor signaling, measurements of both [Ca(2+)]i and [Na(+)]i changes in the same preparation may provide more information than separate measurements. To this end, we developed a technique to simultaneously measure both signals at high speed and sufficient sensitivity to detect localized physiologic events. This approach has advantages over sequential imaging because the preparation may not respond identically in different trials. We designed custom dichroic and emission filters to allow the separate detection of the fluorescence of sodium and calcium indicators loaded together into a single neuron in a brain slice from the hippocampus of Sprague-Dawley rats. We then used high-intensity light emitting diodes (LEDs) to alternately excite the two indicators at the appropriate wavelengths. These pulses were synchronized with the frames of a CCD camera running at 500 Hz. Software then separated the data streams to provide independent sodium and calcium signals. With this system we could detect [Ca(2+)]i and [Na(+)]i changes from single action potentials in axons and synaptically evoked signals in dendrites, both with submicron resolution and a good signal-to-noise ratio (S/N).

  14. Influence of urinary sodium excretion on the clinical assessment of renal tubular calcium reabsorption in hypercalcaemic man.

    Science.gov (United States)

    Ralston, S H; Gardner, M D; Dryburgh, F J; Cowan, R A; Boyle, I T

    1986-06-01

    The relation between urinary sodium excretion (NaE) and renal tubular calcium reabsorption (TmCa/GFR) was assessed in patients with hypercalcaemia associated with malignancy and primary hyperparathyroidism. On acute saline loading of seven normally hydrated patients with primary hyperparathyroidism and five patients with malignancy, raised values of TmCa/GFR were reduced to normal in most cases, in association with increases in NaE. The reduction in TmCa/GFR, which occurred, may have been due to a reduction in proximal tubular calcium reabsorption associated with sodium: this would have obscured the effect of humorally mediated increases in distal tubular calcium reabsorption, which are stimulated either by parathyroid hormone or by a putative humoral mediator in hypercalcaemia of malignancy. In patients who were normally hydrated NaE and TmCa/GFR were not significantly correlated. When data were included from patients who were dehydrated and from those undergoing acute saline loading, significant inverse correlations between NaE and TmCa/GFR were observed both in primary hyperparathyroidism (r = -0.49; p less than 0.02) and malignancy (r = -0.60; p less than 0.001). In clinical practice changes in TmCa/GFR associated with sodium seem to be of minor importance under normal circumstances, but they become evident at the upper and lower extremes of urinary sodium excretion. In clinical studies of renal calcium handling urinary sodium excretion must also be assessed, as interpreting TmCa/GFR data is difficult in states of excessive sodium loading or depletion.

  15. Effect of 20kHz ultrasound on alumina hydrate precipitation from seeded sodium aluminate solution

    Institute of Scientific and Technical Information of China (English)

    赵继华; 陈启元

    2002-01-01

    The effect of 20kHz ultrasound on alumina hydrate precipitation from seeded sodium aluminate solution was studied. Compared with alumina hydrate precipitation without treatment of ultrasound, the precipitation time is reduced from 30h to 15h when the precipitation ratio is 45% under 20kHz ultrasound. Furthermore, agglomeration is increased and the growth rate of alumina hydrate is increased under 20kHz ultrasound by comparing the crystal size distribution and the SEM photographs. As a result, the average size of alumina hydrate is increased by 3.7μm. The structure of product is not changed according to the results of X-ray powder deflection.

  16. Hydration Characteristics of Tetracalcium Alumino-Ferrite Phase in the presence Calcium Carbonate

    Directory of Open Access Journals (Sweden)

    M. M. Radwan

    2011-12-01

    Full Text Available Tetracalcium alumino-ferrite phase (C4AF prepared from pure starting materials was employed for composing various mixes prepared of C4AF phase, CaSO4·2H2O, Ca(OH2 and CaCO3. The effect of replacing calcium sulphate (gypsum by calcium carbonate as a set retarder on the hydration behaviour of ferrite phase was studied. The mixes were hydrated for various periods and the hydration products were investigated using the appropriate techniques. The kinetics of hydration was studied by measuring the chemically-combined water as well as the combined lime contents. The mineralogical constitution was studied by using XRD, and DTA. The microstructure of some represented hydrated samples was investigated by scanning electron microscopy. Some interesting conclusions have been drawn. It was found that calcium carbonate reacts with tetracalcium alumino-ferrite phase (C4AF in the presence of hydrolime [Ca(OH2] to form carboferrite compounds which may coat the aluminate grains as ettringite does and this may probably regulate the setting time.

  17. Sodium bicarbonate-based hydration prevents contrast-induced nephropathy: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Tamhane Umesh

    2009-05-01

    Full Text Available Abstract Background Contrast-induced nephropathy is the leading cause of in-hospital acute renal failure. This side effect of contrast agents leads to increased morbidity, mortality, and health costs. Ensuring adequate hydration prior to contrast exposure is highly effective at preventing this complication, although the optimal hydration strategy to prevent contrast-induced nephropathy still remains an unresolved issue. Former meta-analyses and several recent studies have shown conflicting results regarding the protective effect of sodium bicarbonate. The objective of this study was to assess the effectiveness of normal saline versus sodium bicarbonate for prevention of contrast-induced nephropathy. Methods The study searched MEDLINE, EMBASE, Cochrane databases, International Pharmaceutical Abstracts database, ISI Web of Science (until 15 December 2008, and conference proceedings for randomized controlled trials that compared normal saline with sodium bicarbonate-based hydration regimen regarding contrast-induced nephropathy. Random-effects models were used to calculate summary odds ratios. Results A total of 17 trials including 2,633 subjects were pooled. Pre-procedural hydration with sodium bicarbonate was associated with a significant decrease in the rate of contrast-induced nephropathy (odds ratios 0.52; 95% confidence interval 0.34–0.80, P = 0.003. Number needed to treat to prevent one case of contrast-induced nephropathy was 16 (95% confidence interval 10–34. No significant differences in the rates of post-procedure hemodialysis (P = 0.20 or death (P = 0.53 was observed. Conclusion Sodium bicarbonate-based hydration was found to be superior to normal saline in prevention of contrast-induced nephropathy in this updated meta-analysis.

  18. CALCIUM ORTHOPHOSPHATES HYDRATES: FORMATION, STABILITY AND INFLUENCE ON STANDARD PROPERTIES OF PORTLAND CEMENT

    Directory of Open Access Journals (Sweden)

    Kaziliunas A.

    2013-12-01

    Full Text Available Preparation of phosphogypsum to produce the binders requires a much higher input than preparation of natural gypsum stone. This makes it uncompetitive material. The investigations presented therein are meant to reduce this input by looking for the ways of rendering impurities harmless. Soluble acid orthophosphates are the main harmful impurity of phosphogypsum. The studies show that dry insoluble calcium orthophosphates hydrates (1.09 % and 2.18 % P2O5 in gypsum have little effect on W/C, setting times and soundness of Portland cement pastes. Insoluble calcium orthophosphates hydrates {CaHPO4∙2H2O, Ca8(HPO42(PO44∙5H2O and Ca9(HPO4(PO45(OH∙4H2O} formed in acidic medium (pH = 4.2 - 5.9 have been destroyed in alkaline medium and reduce standard compressive strength of cement up to 28 %. Calcium orthophosphates hydrates of hydroxyapatite group are stable in alcaline medium, while in dry state they reduce the standard compressive strength of cement until 10 %, but their suspensions prolong setting times of Portland cement as soluble orthophosphates – 2 - 3 times. Alkalis in cement increase pH of paste, but do not change the process of formation of calcium orthophosphates hydrates of hydroxyapatite group: it takes place through an intermediate phase - CaHPO4·2H2O, whose transformation into apatite lasts for 2 - 3 months.

  19. Effect of Calcium Aluminate Cement Variety on the Hydration of Portland Cement in Blended System

    Institute of Scientific and Technical Information of China (English)

    XU Linglin; WANG Peiming; Geert DE SCHUTTER; WU Guangming

    2014-01-01

    Two kinds of CACs with different monocalcium aluminate (CA) contents were used in the PC/CAC (PAC) mixtures. Effects of CA and CACs on the properties of PAC were analyzed by setting times and the compressive strength tests, and also by means of calorimetry, XRD, DTA-TG and ESEM. The experimental results show that the compressive strength of the PAC mortars decreases with increasing content of CAC while it declines sharply with a higher content of CA in CAC. Compared with neat PC paste, the content of calcium hydroxide in hydrates of PAC paste decreases significantly, and the hydration time of PC is prominently prolonged. Additionally, the higher the content of CA in CAC, the more obviously the hydration of PC is delayed, confirming that the CA phase in CAC plays an important role in the delay of PC hydration.

  20. NMR study of hydrated calcium silicates; Etude par RMN de la structure des silicates de calcium hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Klur, I

    1996-02-26

    Radioactive wastes storage methods are developed by the CEA. As cements are important materials as well for hours living radioisotopes than for years living radioisotopes, a better knowledge of this material will allow to anticipate its behaviour and to obtain safer storage methods. The structure of calcium silicates (C-S-H) (main constituent of cements) have then been determined in this thesis by nuclear magnetic resonance. This method has allow to explain in structural terms, the different calcium rates that can be measured in the C-S-H too. (O.M.) 101 refs.

  1. A Novel Synthesis Method of Porous Calcium Silicate Hydrate Based on the Calcium Oxide/Polyethylene Glycol Composites

    Directory of Open Access Journals (Sweden)

    Wei Guan

    2013-01-01

    Full Text Available This paper proposed a novel method to prepare porous calcium silicate hydrate (CSH based on the calcium oxide/polyethylene glycol (CaO/PEG2000 composites as the calcium materials. The porosity formation mechanism was revealed via X-ray diffraction (XRD, field-emission scanning electron microscopy (FESEM, Brunauer-Emmett-Teller (BET, and Fourier transformed infrared spectroscopy (FT-IR. The reactivity of silica materials (SiO2 enhanced by increasing pH value. Ca2+ could not sustain release from CaO/PEG2000 and reacted with caused by silica to form CSH until the hydrothermal temperature reached to 170°C, avoiding the hardly dissolved intermediates formation efficiently. The as-prepared CSH, due to the large specific surface areas, exhibited excellent release capability of Ca2+ and OH−. This porous CSH has potential application in reducing the negative environmental effects of continual natural phosphate resource depletion.

  2. Nanoscale Charge Balancing Mechanism in Alkali Substituted Calcium-Silicate-Hydrate Gels

    CERN Document Server

    Özçelik, V Ongun

    2016-01-01

    Alkali-activated materials and related alternative cementitious systems are sustainable material technologies that have the potential to substantially lower CO$_2$ emissions associated with the construction industry. However, the impact of augmenting the chemical composition of the material on the main binder phase, calcium-silicate-hydrate gel, is far from understood, particularly since this binder phase is disordered at the nanoscale. Here, we reveal the presence of a charge balancing mechanism at the molecular level, which leads to stable structures when alkalis (i.e., Na or K) are incorporated into a calcium-silicate-hydrate gel, as modeled using crystalline 14{\\AA} tobermorite. These alkali containing charge balanced structures possess superior mechanical properties compared to their charge unbalanced counterparts. Our results, which are based on first-principles simulations using density functional theory, include the impact of charge balancing on the optimized geometries of the new model phases, format...

  3. Validity of Serum Sodium and Calcium Screening in Children

    Directory of Open Access Journals (Sweden)

    Nickavar Azar

    2009-10-01

    Full Text Available Febrile convulsion (FC is the most common seizure disorder in young children. Different predisposing factors have been suggested to enhance the susceptibility to febrile seizure and its recurrence. The main objective of this study was to identify the adverse effect of electrolytes disturbance in FC and its recur-rence. The medical records of 175 children with convulsive disorders were reviewed. Patients were divided into 3 groups. Group A (n=71 with simple febrile convulsion (FC and group B (n=54 with recurrent FCs. Fifty children (group C with non-FC served as control. Serum sodium and calcium concentrations were significantly lower in groups A and B compared to the control group. Serum sodium level was not significantly different between group A and B patients (134.4 vs. 134.7 mEq/l but was significantly lower in group A than the control group (P= 0.014. Serum calcium concentration did not differ among the 3 groups. Minor abnormal levels of serum sodium concentration were detected in children with febrile convulsions. Thus, routine serum electrolytes screening are not recommended in febrile seizure.

  4. Santaclaraite, a new calcium-manganese silicate hydrate from California.

    Science.gov (United States)

    Erd, Richard C.; Ohashi, Y.

    1984-01-01

    Santaclaraite, ideally CaMn4(Si5O14(OH))(OH).H2O, occurs as pink and tan veins and masses in Franciscan chert in the Diablo Range, Santa Clara and Stanislaus counties, California. It is associated with four unidentified Mn silicates, Mn-howieite, quartz, braunite, calcite, rhodochrosite, kutnahorite, baryte, harmotome, chalcopyrite and native copper. Santaclaraite is triclinic, space group B1, a 15.633(1), b 7.603(1) , c 12.003(1) A, alpha 109.71(1)o, beta 88.61(1)o, gamma 99.95(1) o, V 1322.0(3) A3; Z = 4. The strongest lines of the X-ray pattern are 7.04(100), 3.003(84), 3.152(80), 7.69(63), 3.847(57) A. Crystals are lamellar to prismatic (flattened on (100)), with good cleavage on (100) and (010); H. 61/2 Dcalc. 3.398 g/cm3, Dmeas. 3.31 (+ or -0.01); optically biaxial negative, alpha 1.681, beta 1.696, gamma 1.708 (all + or - 0.002), 2Valpha 83 (+ or -1)o. Although chemically a hydrated rhodonite, santaclaraite dehydrates to Mn-bustamite at approx 550oC (in air) . Santaclaraite is a five-tetrahedral-repeat single-chain silicate and has structural affinities with rhodonite, nambulite, marsturite, babingtonite and inesite.-J.A.Z.

  5. 次氯酸钙对水合物中甲烷储气量的影响%Methane Storage via Hydrate Formation Using Calcium Hypochlorite as Additive

    Institute of Scientific and Technical Information of China (English)

    郭彦坤; 樊栓狮; 郭开华; 石磊; 陈勇

    2002-01-01

    @@ 1 INTRODUCTION At present,natural gas accounts for 3% of the total energy consumption in China.It will go up to 5% in 2005 and 8% in 2010. Natural gas storage is a subject of great interest to many industries and particularly to transportation.Compressed natural gas,liquefied natural gas and adsorbed natural gas are techniques widely used.The possibility of developing a convenient storage system based on hydrate has been explored for about ten years around the world[1-5].Gudmundsson[1] has focused on the storage and transportation of gas as hydrate at atmospheric pressure since 1990.Khokhar[2] used 1,3-dimethylcyclohexane and polyvinyl-pyrrolidone as additives to lower hydrate formation pressure. Saito[3] surveyed the effects of tetrahydrofuran and acetone.Rogers[3] used sodium dodecyl sulfate as accelerator to natural gas hydrate formation. In this work,the effects of calcium hypochlorite on hydrate formation are investigated.The data show that it can lower the degree of supercooling and enhance the relative cage occupancy.

  6. 14N NMR Spectroscopy Study of Binding Interaction between Sodium Azide and Hydrated Fullerene

    Directory of Open Access Journals (Sweden)

    Tamar Chachibaia

    2017-04-01

    Full Text Available Our study is the first attempt to study the interaction between NaN3 and hydrated fullerenes C60 by means of a non-chemical reaction-based approach. The aim is to study deviations of signals obtained by 14N NMR spectroscopy to detect the binding interaction between sodium azide and hydrated fullerene. We considered 14N NMR spectroscopy as one of the most suitable methods for the characterization of azides to show resonance signals corresponding to the three non-equivalent nitrogen atoms. The results demonstrate that there are changes in the chemical shift positions and line-broadening, which are related to the different molar ratios of NaN3:C60 in the samples.

  7. Experimental study and modelling of sulfate sorption on calcium silicate hydrates; Etude experimentale et modelisation de l'adsorption de sulfates sur des silicates de calcium hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Barbarulo, R.; Peycelon, H. [CEA Saclay, Dept. de Physico-Chimie DPC/SCCME/LECBA, 91 - Gif sur Yvette (France); Prene, St. [Electricite de France, Dept. MMC, 77 - Moret sur Loing (France)

    2003-07-01

    A detailed study of the interactions between Calcium Silicate Hydrates (C-S-H) and sulfate is reported in this paper. C-S-H of Ca/Si ratio w 0.7-1.6 were synthesized from CaO and SiO{sub 2} in suspension, and Na{sub 2}SO{sub 4} was added to the system, kept at 20 or 85 deg C. The results of sulfate sorption show that the capacity of C-S-H to bind sulfate increases with the Ca/Si ratio of the C-S-H, and that temperature seems to have little influence for a given Ca/Si ratio. From these results, a modeling of sulfate binding on C-S-H is proposed. (authors)

  8. Codissolution of calcium hydrogenphosphate and sodium hydrogencitrate in water. Spontaneous supersaturation of calcium citrate increasing calcium bioavailability

    DEFF Research Database (Denmark)

    Hedegaard, Martina Vavrusova; Danielsen, Bente Pia; Garcia, André Castilho

    2017-01-01

    The sparingly soluble calcium hydrogenphosphate dihydrate, co-dissolving in water during dissolution of freely soluble sodium hydrogencitrate sesquihydrate as caused by proton transfer from hydrogencitrate to hydrogenphosphate, was found to form homogenous solutions supersaturated by a factor up......, as identified from FT-IR spectra, from these spontaneously formed supersaturated solutions was several hours, and the time to reach solubility equilibrium was several days. Initial calcium ion activity was found to be almost independent of the degree of supersaturation as determined electrochemically....... The supersaturated solutions had a pH around 4.7, and calcium binding to hydrogencitrate as the dominant citrate species during precipitation was found to be exothermic with a determined association constant of 357 L mol-1 at 25 °C for unit ionic strength, and δH° = -22 ± 2 kJ mol-1, δS° = -26 ± 8 J K-1 mol-1...

  9. Hydration Status and Sodium Balance of Endurance Runners Consuming Postexercise Supplements of Varying Nutrient Content.

    Science.gov (United States)

    Pryor, J Luke; Johnson, Evan C; Del Favero, Jeffery; Monteleone, Andrew; Armstrong, Lawrence E; Rodriguez, Nancy R

    2015-10-01

    Postexercise protein and sodium supplementation may aid recovery and rehydration. Preserved beef provides protein and contains high quantities of sodium that may alter performance related variables in runners. The purpose of this study was to determine the effects of consuming a commercial beef product postexercise on sodium and water balance. A secondary objective was to characterize effects of the supplementation protocols on hydration, blood pressure, body mass, and running economy. Eight trained males (age = 22 ± 3 y, VO2max = 66.4 ± 4.2 ml·kg-1·min-1) completed three identical weeks of run training (6 run·wk-1, 45 ± 6 min·run-1, 74 ± 5% HRR). After exercise, subjects consumed either, a beef nutritional supplement (beef jerky; [B]), a standard recovery drink (SRD), or SRD+B in a randomized counterbalanced design. Hydration status was assessed via urinary biomarkers and body mass. No main effects of treatment were observed for 24 hr urine volume (SRD, 1.7 ± 0.5; B, 1.8 ± 0.6; SRD+B, 1.4 ± 0.4 L·d-1), urine specific gravity (1.016 ± 0.005, 1.018 ± 0.006, 1.017 ± 0.006) or body mass (68.4 ± 8.2, 68.3 ± 7.7, 68.2 ± 8.1 kg). No main effect of treatment existed for sodium intake-loss (-713 ± 1486; -973 ± 1123; -980 ± 1220 mg·d-1). Mean arterial pressure (81.0 ± 4.6, 81.1 ± 7.3, 83.8 ± 5.4 mm Hg) and average exercise running economy (VO2: SRD, 47.9 ± 3.2; B, 47.2 ± 2.6; SRD+B, 46.2 ± 3.4 ml·kg-1·min-1) was not affected. Urinary sodium excretion accounted for the daily sodium intake due to the beef nutritional supplement. Findings suggest the commercial beef snack is a viable recovery supplement following endurance exercise without concern for hydration status, performance decrements, or cardiovascular consequences.

  10. Evaluation of electroosmotic drag coefficient of water in hydrated sodium perfluorosulfonate electrolyte polymer.

    Science.gov (United States)

    Yan, Liuming; Shao, Changle; Ji, Xiaobo

    2009-07-15

    The electroosmotic drag coefficient of water molecules in hydrated sodium perfluorosulfonate electrolyte polymer is evaluated on the basis of the velocity distribution functions of the sodium cations and water molecules with an electric field applied using molecular dynamics simulations. The simulation results indicate that both velocity distribution functions of water molecules and of sodium cations agree well with the classic Maxwellian velocity distribution functions when there is no electric field applied. If an electric field is applied, the distribution functions of velocity component in directions perpendicular to the applied electric field still agree with the Maxwellian velocity distribution functions but with different temperature parameters. In the direction of the applied electric field, the electric drag causes the velocity distribution function to deviate from the Maxwellian velocity distribution function; however, to obey the peak shifted Maxwellian distribution function. The peak shifting velocities coincide with the average transport velocities induced by the electric field, and could be applied to the evaluation of the electroosmotic drag coefficient of water. By evaluation of the transport velocities of water molecules in the first coordination shells of sodium cations, sulfonate anion groups, and in the bulk, it is clearly shown that the water molecules in the first coordination shell of sodium cations are the major contribution to the electroosmotic drag and momentum transfer from water molecules within the first coordination shell to the other water molecules also contributes to the electroosmotic drag.

  11. Obsidian hydration profiles measured by sputter-induced optical emission.

    Science.gov (United States)

    Tsong, I S; Houser, C A; Yusef, N A; Messier, R F; White, W B; Michels, J W

    1978-07-28

    The variation of concentrations of hydrogen, sodium, potassium, lithium, calcium, magnesium, silicon, and aluminum as a function of depth in the hydration layer of obsidian artifacts has been determined by sputter-induced optical emission. The surface hydration is accompanied by dealkalization, and there is a buildup of alkaline earths, calcium and magnesium in the outermost layers. These results have clarified the phenomena underlying the obsidian hydration dating technique.

  12. Structural basis for the transformation pathways of the sodium naproxen anhydrate-hydrate system

    DEFF Research Database (Denmark)

    Bond, Andrew; Cornett, Claus; Larsen, Flemming Hofmann

    2014-01-01

    Crystal structures are presented for two dihydrate polymorphs (DH-I and DH-II) of the non-steroidal anti-inflammatory drug sodium (S)-naproxen. The structure of DH-I is determined from twinned single crystals obtained by solution crystallization. DH-II is obtained by solid-state routes, and its...... structure is derived using powder X-ray diffraction, solid-state (13)C and (23)Na MAS NMR, and molecular modelling. The validity of both structures is supported by dispersion-corrected density functional theory (DFT-D) calculations. The structures of DH-I and DH-II, and in particular their relationships...... to the monohydrate (MH) and anhydrate (AH) structures, provide a basis to rationalize the observed transformation pathways in the sodium (S)-naproxen anhydrate-hydrate system. All structures contain Na(+)/carboxylate/H2O sections, alternating with sections containing the naproxen molecules. The structure of DH...

  13. Combined effect of sodium sulphate and superplasticizer on the hydration of fly ash blended Portland® cement

    OpenAIRE

    Mukesh Kumar; Narendra Pratap Singh; Sanjay Kumar Singh; Nakshatra Bahadur Singh

    2010-01-01

    Combined effect of polycarboxylate type superplasticizer and sodium sulphate on the hydration of fly ash blended Portland® cement has been studied by using different techniques. Water consistency, setting times, non-evaporable water contents, water percolation, air contents, compressive strengths and expansion in corrosive atmosphere were determined. Hydration products were examined with the help of DTA and X-ray diffraction techniques. It is found that the superplasticizer reduces the pore s...

  14. Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tingting [Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024 (China); Department of Materials, Centre for Advanced Structural Ceramics, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Vandeperre, Luc J. [Department of Materials, Centre for Advanced Structural Ceramics, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Cheeseman, Christopher R., E-mail: c.cheeseman@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2014-11-15

    Magnesium silicate hydrate (M-S-H) gel is formed by the reaction of brucite with amorphous silica during sulphate attack in concrete and M-S-H is therefore regarded as having limited cementing properties. The aim of this work was to form M-S-H pastes, characterise the hydration reactions and assess the resulting properties. It is shown that M-S-H pastes can be prepared by reacting magnesium oxide (MgO) and silica fume (SF) at low water to solid ratio using sodium hexametaphosphate (NaHMP) as a dispersant. Characterisation of the hydration reactions by x-ray diffraction and thermogravimetric analysis shows that brucite and M-S-H gel are formed and that for samples containing 60 wt.% SF and 40 wt.% MgO all of the brucites react with SF to form M-S-H gel. These M-S-H cement pastes were found to have compressive strengths in excess of 70 MPa.

  15. Relevance of Rheological Properties of Sodium Alginate in Solution to Calcium Alginate Gel Properties

    OpenAIRE

    Fu, Shao; Thacker, Ankur; Sperger, Diana M.; Boni, Riccardo L.; Buckner, Ira S.; Velankar, Sachin; Munson, Eric J.; Block, Lawrence H.

    2011-01-01

    The purpose of this study is to determine whether sodium alginate solutions’ rheological parameters are meaningful relative to sodium alginate’s use in the formulation of calcium alginate gels. Calcium alginate gels were prepared from six different grades of sodium alginate (FMC Biopolymer), one of which was available in ten batches. Cylindrical gel samples were prepared from each of the gels and subjected to compression to fracture on an Instron Universal Testing Machine, equipped with a 1-k...

  16. Effects of temperature and sodium carboxylate additives on mineralization of calcium oxalate in silica gel systems

    Institute of Scientific and Technical Information of China (English)

    OUYANG; Jianming; DENG; Suiping; LI; Xiangping; TAN; Yanh

    2004-01-01

    calcium oxalate crystals in the presence of membrane vesicles, J. Cryst. Growth, 1993, 134: 211-218.[13]Girija, E. K., Latha, S. C., Kalkura, S. N. et al., Crystallization and microhardness of calcium oxalate monohydrate, Mater. Chem.Phys., 1998, 52: 253-257.[14]Ouyang, J. M., Tan, Y. H., Shen, Y. H., Effect of structurally-specific carboxylate on crystallization of calcium oxalate in gel systems, Acta Physico-Chimca Sinica, 2003, 19(4): 368-371.[15]Ouyang, J. M., Tan, Y. H., Kuang, L. et al., In vitro simulation on the inhibition of calcium oxalate calculus by changing the counterions of citric acid and EDTA, Chin. J. Inorg. Chem. (in Chinese),2003, 19(3): 312-316.[16]Grases, F., Millan, A., Gracia-Raso, A., Polyhydroxycarboxylic acids as inhibitors of calcium oxalate crystal growth; relation between inhibitory capacity and chemical structure, J. Crystal Growth, 1988, 89: 496-500.[17]King, M., McClure, W. F., Andrews, L. C. et al., Powder Diffraction File Alphabetic Index, Inorganic Phases/Organic Phases, International Centre For Diffraction Data, 1601 Park Lane, Pennsylvania, 19081-2389, U.S.A., 1992.[18]Donnet, M., Jongen, N., Lemaitre, J. et al., New morphology of calcium oxalate trihydrate precipitated in a segmented flow tubular reactor, J. Mater. Sci. Lett., 2000, 19: 749-750.[19]Dean, J. A., McGraw-Hill, Lange's Handbook of Chemistry, 13th ed., 1985.[20]Yuzawa, M., Tozuka, K., Tokue, A., Effect of citrate and pyrophosphate on the stability of calcium oxalate dihydrate, Urol. Res.,1998, 26: 83-88.[21]Chernov, A. A., Modern Crystallography Ⅲ, Crystal Growth, Berlin: Springer, 1984, 230.[22]Tomazic, B., Nancollas, G. H., The kinetics of dissolution of calcium oxalate hydrates. Ⅱ. The dihydrate, Invest. Urol., 1980,18(2): 97-101.[23]Tunik, L., Garti, N., Morphological and phase changes in calcium oxalate crystals growth in the presence of sodium diisooctal sulfosuccinate, J. Crystal Growth, 1996, 167: 748-755.[24

  17. Scientific Opinion on the safety assessment of the active substances, sodium erythorbate, sodium carbonate, sodium bicarbonate, iron sulphate, activated carbon, cellulose, calcium hydroxide, calcium chloride and water, for use as active system in food contact materials

    OpenAIRE

    2014-01-01

    This scientific opinion of EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety assessment of the active substances sodium erythorbate, sodium carbonate, sodium bicarbonate, iron sulfate, activated carbon, cellulose, calcium hydroxide, calcium chloride and water, used in mixture which is packed into sachets for absorbing oxygen/carbon dioxide emitting from/into the headspace surrounding packed food. All substances of this formulation have been e...

  18. Performance and plasma metabolites of dairy calves fed starter containing sodium butyrate, calcium propionate or sodium monensin.

    Science.gov (United States)

    Ferreira, L S; Bittar, C M M

    2011-02-01

    This study was conducted to examine the influence of supplementation of sodium butyrate, sodium monensin or calcium propionate in a starter diet on the performance and selected plasma metabolites (plasma glucose, non-esterified fatty acids and β-hydroxybutyrate) of Holstein calves during pre- and post-weaning periods. Twenty-four newborn Holstein calves were housed in individual hutches until 10 weeks of life, receiving water free choice, and fed four liters of milk daily. Calves were blocked according to weight and date of birth, and allocated to one of the following treatments, according to the additive in the starter: (i) sodium butyrate (150 g/kg); (ii) sodium monensin (30 mg/kg); and (iii) calcium propionate (150 g/kg). During 10 weeks, calves received starter ad libitum, while coast cross hay (Cynodon dactylon (L.) pers.) was offered after weaning, which occurred at the 8th week of age. Weekly, calves were weighted and evaluated for body measurements. Blood samples were taken weekly after the fourth week of age, 2 hours after the morning feeding, for determination of plasma metabolites. No differences were observed among treatments for starter or hay intake, BW and daily gain of the animals. Mean concentrations of selected plasma metabolites were similar in calves fed a starter supplemented with sodium butyrate, sodium monensin and calcium propionate. There was significant reduction in the concentrations of plasma glucose as calves aged. The inclusion of sodium butyrate, calcium propionate or sodium monensin as additives in starter feeds resulted in equal animal performance, before and after weaning, suggesting that sodium monensin may be replaced by organic acid salts.

  19. Solubility Behaviour of Cellulose in a Sodium Hydrate/Urea/Thiourea Aqueous Solvent

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuai; CHENG Feng-wei; LI Fa-xue; YU Jian-yong; GU Li-xia

    2008-01-01

    Cellulose pulps were directly dissolved in a green solvent of sodium hydrate/urea/thiourea/water with different composition for the purpose to prepare new regenerated cellulose fibers or films. The results showed that the highest solubility of cellulose in the solvent with the composition of 8/8/6.5/77.5. The results revealed that the pulp feeding sequence, stirring rate, pre-treatment of pulp and pulp size affected the cellulose concentration in the green solvent. Accordingly, the more effective dissolution method was proposed in order to get higher concentration of cellulose. Furthermore, the properties of solution prepared by different kinds of pulps in the solvent were investigated by ARES rheometer. Rheological analyses indicated that all cellulose aqueous solutions in their high concentration were pseudoplastic fluids and sensitive to temperature and tended to transform to gel when temperature increased.

  20. Anticaries effect of dentifrices with calcium citrate and sodium trimetaphosphate

    Science.gov (United States)

    DELBEM, Alberto Carlos Botazzo; BERGAMASCHI, Maurício; RODRIGUES, Eliana; SASSAKI, Kikue Takebayashi; VIEIRA, Ana Elisa de Mello; MISSEL, Emilene Macario Coimbra

    2012-01-01

    Because of the growing concerns regarding fluoride ingestion by young children and dental fluorosis, it is necessary to develop new dentifrices. Objective The aim of this study was to evaluate the effect of dentifrices with calcium citrate (Cacit) and sodium trimetaphosphate (TMP) on enamel demineralization. Material and Methods Enamel blocks (n=70), previously selected through surface hardness analysis, were submitted to daily treatment with dentifrices diluted in artificial saliva and to a pH-cycling model. The fluoride concentration in dentifrices was 0, 250, 450, 550, 1,000 and 1,100 µg F/g. CrestTM was used as a positive control (1,100 mg F/g). Cacit (0.25%) and TMP (0.25%) were added to dentifrices with 450 and 1,000 µg F/g. Surface hardness was measured again and integrated loss of subsurface hardness and fluoride concentration in enamel were calculated. Parametric and correlation tests were used to determine difference (pdentifrices; the dentifrice with Cacit and TMP and a low fluoride concentration presented similar results when compared to a dentifrice with 1,100 mg F/g (p>0.05). Conclusions Dentifrices with 450 and 1,000 µg F/g, Cacit and TMP were as effective as a gold standard one. PMID:22437685

  1. Anticaries effect of dentifrices with calcium citrate and sodium trimetaphosphate

    Directory of Open Access Journals (Sweden)

    Alberto Carlos Botazzo Delbem

    2012-02-01

    Full Text Available Because of the growing concerns regarding fluoride ingestion by young children and dental fluorosis, it is necessary to develop new dentifrices. OBJECTIVE: The aim of this study was to evaluate the effect of dentifrices with calcium citrate (Cacit and sodium trimetaphosphate (TMP on enamel demineralization. MATERIAL AND METHODS: Enamel blocks (n=70, previously selected through surface hardness analysis, were submitted to daily treatment with dentifrices diluted in artificial saliva and to a pH-cycling model. The fluoride concentration in dentifrices was 0, 250, 450, 550, 1,000 and 1,100 µg F/g. CrestTM was used as a positive control (1,100 mg F/g. Cacit (0.25% and TMP (0.25% were added to dentifrices with 450 and 1,000 µg F/g. Surface hardness was measured again and integrated loss of subsurface hardness and fluoride concentration in enamel were calculated. Parametric and correlation tests were used to determine difference (p0.05. CONCLUSIONS: Dentifrices with 450 and 1,000 µg F/g, Cacit and TMP were as effective as a gold standard one.

  2. Synthesis and Characterization of Different Crystalline Calcium Silicate Hydrate: Application for the Removal of Aflatoxin B1 from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Lu Zeng

    2014-01-01

    Full Text Available Different crystalline calcium silicate hydrates (CSH were synthesized under specific hydrothermal conditions and several methods were used to analyze samples. Amorphous calcium silicate hydrates (ACSH mainly consists of disordered calcium silicate hydrate gel (C-S-H gel and crystalline calcium silicate hydrates (CCSH consists of crystallized tobermorite. The adsorption of carcinogenic aflatoxin B1 (AFB1 onto ACSH and CCSH was investigated. The adsorption kinetics was studied using pseudo-first-order and pseudo-second-order kinetic models and intraparticle diffusion model. The pseudo-second-order model provided the best correlation and the intraparticle diffusion controlled the adsorption process of AFB1 onto CCSH. Adsorption isotherm parameters were obtained from Langmuir and Freundlich and the adsorption data fitted to Freundlich much better. Based on the results of N2 adsorption/desorption, adsorption kinetics, and adsorption isotherms, the adsorption mechanism of AFB1 onto CCSH was developed. All results indicate that CCSH has a great potential to be a safe, easy-made, and cost-effective material for the control of AFB1 contamination.

  3. Hydration state of calcium sulfates in Gale crater, Mars: Identification of bassanite veins

    Science.gov (United States)

    Rapin, W.; Meslin, P.-Y.; Maurice, S.; Vaniman, D.; Nachon, M.; Mangold, N.; Schröder, S.; Gasnault, O.; Forni, O.; Wiens, R. C.; Martínez, G. M.; Cousin, A.; Sautter, V.; Lasue, J.; Rampe, E. B.; Archer, D.

    2016-10-01

    In-situ analyses reveal the presence of hydrogen within calcium sulfate veins crosscutting the sediments found in Gale crater. Laboratory experiments were performed to calibrate the hydrogen signal measured by laser induced breakdown spectroscopy (LIBS) in a range applicable to martian data. The analyses indicate that all veins targeted so far at Gale consist predominantly of bassanite which most likely formed by dehydration of gypsum. This scenario suggests that the percolating water produced gypsum, possibly by hydration of anhydrite in aqueous solution, and remained at temperatures below ∼60 °C at that time. Desiccating conditions followed, consistent with a hyperarid climate and favored by burial or impacts. Additionally, anhydrite with lesser bassanite has been found by XRD in samples of sediments hosting the veins. Our result suggests bassanite is likely found in the veins and anhydrite may be more common as a fine-grained component within the sediments.

  4. Influence of Hydrothermal Temperature on Phosphorus Recovery Efficiency of Porous Calcium Silicate Hydrate

    Directory of Open Access Journals (Sweden)

    Wei Guan

    2013-01-01

    Full Text Available Porous calcium silicate hydrate (PCSH was synthesized by carbide residue and white carbon black. The influence of hydrothermal temperature on phosphorus recovery efficiency was investigated by Field Emission Scanning Electron Microscopy (FESEM, Brunauer-Emmett-Teller (BET, and X-Ray Diffraction (XRD. Hydrothermal temperature exerted significant influence on phosphorus recovery performance of PCSH. Hydrothermal temperature 170°C for PCSH was more proper to recover phosphorus. PCSH could recover phosphorus with content of 18.51%. The law of Ca2+ and OH− release was the key of phosphorus recovery efficiency, and this law depended upon the microstructure of PCSH. When the temperature of synthesis reached to 170°C, the reactions between CaO and amorphous SiO2 were more efficient. Solubility of SiO2 was a limiting factor.

  5. Fractionation and solubility of cadmium in paddy soils amended with porous hydrated calcium silicate

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiu-lan; Saigusa Masaihiko

    2007-01-01

    Previous studies have shown that porous hydrated calcium silicate(PS)is very effective in decreasing cadmium(Cd)content in brown rice.However,it is unclear whether me PS influences cadmium transformation in soil.The present study examined the effect of PS on pH,cadmium transformation and cadmium solubility in Andosol and Alluvial soil,and also compared its effects with CaCO3,acidic porous hydrated calcium silicate(APS)and silica gel.Soil cadmium was operationally fractionationed into exchangeable(Exch),bound to carbonates(Carb).bound to iron and manganese oxides(FeMnOx),bound to organic matters(OM)and residual(Res)fraction.ApplicatiOn of PS and CaCO3 at hig rates enhanced soil pH,while APS and silica gel did not obviously change soil pH.PS and CaCO3 also increased the FeMnOx-Cd in Andosol and Carb-Cd in Alluvial soil,thus reducing the Exch-Cd in me tested soils.However,PS was less effecfive than CaCO3 at the same application rate.Cadmium fractions in the two soils were not changed by the treatments of APS and silica gel.There were no obvious differences in the solubility of cadmium in soils treated with PS,APS,silica gel and CaCO3 except Andosol treated 2.0%CaCO3 at the same pH of soil-CaCl2 suspensions.These findings suggested that the decrease of cadmium availability in soil was mainly attributed to the increase of soil pH caused by PS.

  6. Spontaneous and CRH-Induced Excitability and Calcium Signaling in Mice Corticotrophs Involves Sodium, Calcium, and Cation-Conducting Channels.

    Science.gov (United States)

    Zemkova, Hana; Tomić, Melanija; Kucka, Marek; Aguilera, Greti; Stojilkovic, Stanko S

    2016-04-01

    Transgenic mice expressing the tdimer2(12) form of Discosoma red fluorescent protein under control of the proopiomelanocortin gene's regulatory elements are a useful model for studying corticotrophs. Using these mice, we studied the ion channels and mechanisms controlling corticotroph excitability. Corticotrophs were either quiescent or electrically active, with a 22-mV difference in the resting membrane potential (RMP) between the 2 groups. In quiescent cells, CRH depolarized the membrane, leading to initial single spiking and sustained bursting; in active cells, CRH further facilitated or inhibited electrical activity and calcium spiking, depending on the initial activity pattern and CRH concentration. The stimulatory but not inhibitory action of CRH on electrical activity was mimicked by cAMP independently of the presence or absence of arachidonic acid. Removal of bath sodium silenced spiking and hyperpolarized the majority of cells; in contrast, the removal of bath calcium did not affect RMP but reduced CRH-induced depolarization, which abolished bursting electrical activity and decreased the spiking frequency but not the amplitude of single spikes. Corticotrophs with inhibited voltage-gated sodium channels fired calcium-dependent action potentials, whereas cells with inhibited L-type calcium channels fired sodium-dependent spikes; blockade of both channels abolished spiking without affecting the RMP. These results indicate that the background voltage-insensitive sodium conductance influences RMP, the CRH-depolarization current is driven by a cationic conductance, and the interplay between voltage-gated sodium and calcium channels plays a critical role in determining the status and pattern of electrical activity and calcium signaling.

  7. Preparation, characterization and cytocompatibility of bioactive coatings on porous calcium-silicate-hydrate scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Alexandra A.P. [Department of Metallurgical and Materials Engineering of Federal University of Minas Gerais, Rua Espirito Santo, 35/316, Centro, CEP: 30.160-030, Belo Horizonte (Madagascar) (Brazil); Mansur, Herman S., E-mail: hmansur@demet.ufmg.br [Department of Metallurgical and Materials Engineering of Federal University of Minas Gerais, Rua Espirito Santo, 35/316, Centro, CEP: 30.160-030, Belo Horizonte (Madagascar) (Brazil)

    2010-01-30

    The major goal of this research was to investigate and characterize the deposition of a biomimetic apatite-like coating onto the surface of 3D porous calcium-silicate-hydrate scaffolds with suitable bioactivity for potential application in bone tissue engineering. Basically, Portland cement, water, sand and lime were mixed for preparing the slurry which was poured into molds, and fine aluminum powder was added as foaming agent resulting on the formation of porous 3D structures. After aging for 28 days, these porous inorganic scaffolds were immersed in calcium chloride supersaturated solution in PBS for 7 days at 37 deg. C for the biomimetic layer deposition. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier Transformed Infrared Spectroscopy (FTIR) techniques were used in order to characterize the porous scaffolds and the apatite-like biomimetic coating. The results have showed that 3D constructs were successfully produced with interconnected porosity, compressive strength and cytocompatibility appropriate for potential use as an alternative in trabecular bone repair.

  8. Nanostructural Deformation Analysis of Calcium Silicate Hydrate in Portland Cement Paste by Atomic Pair Distribution Function

    Directory of Open Access Journals (Sweden)

    Hiroshi Suzuki

    2016-01-01

    Full Text Available The deformation of nanostructure of calcium silicate hydrate (C-S-H in Portland cement (PC paste under compression was characterized by the atomic pair distribution function (PDF, measured using synchrotron X-ray diffraction. The PDF of the PC paste exhibited a unique deformation behavior for a short-range order below 2.0 nm, close to the size of the C-S-H globule, while the deformation for a long-range order was similar to that of a calcium hydroxide phase measured by Bragg peak shift. The compressive deformation of the C-S-H nanostructure was comprised of three stages with different interactions between globules. This behavior would originate from the granular nature of C-S-H, which deforms with increasing packing density by slipping the interfaces between globules, rearranging the overall C-S-H nanostructure. This new approach will lead to increasing applications of the PDF technique to understand the deformation mechanism of C-S-H in PC-based materials.

  9. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates.

    Science.gov (United States)

    Krishnan, N M Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan; Pilon, Laurent; Bauchy, Mathieu; Sant, Gaurav

    2016-12-28

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C-S-H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C-S-H shows a sudden increase when the CaO/SiO2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C-S-H's nanostructure. We identify that confinement is dictated by the topology of the C-S-H's atomic network. Taken together, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.

  10. Scientific Opinion on the safety assessment of the active substances, sodium erythorbate, sodium carbonate, sodium bicarbonate, iron sulphate, activated carbon, cellulose, calcium hydroxide, calcium chloride and water, for use as active system in food contact materials

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF

    2014-02-01

    Full Text Available This scientific opinion of EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety assessment of the active substances sodium erythorbate, sodium carbonate, sodium bicarbonate, iron sulfate, activated carbon, cellulose, calcium hydroxide, calcium chloride and water, used in mixture which is packed into sachets for absorbing oxygen/carbon dioxide emitting from/into the headspace surrounding packed food. All substances of this formulation have been evaluated and approved for use as additives in plastic food contact materials or as food additives. No migration of calcium, iron and sodium ions was detected. No volatile organic compounds other than carbon dioxide were detected at the limit of detection of 0.5 μg/l. The CEF Panel concluded that the use of the substances sodium erythorbate, sodium carbonate, sodium bicarbonate, iron sulfate, activated carbon, cellulose, calcium hydroxide, calcium chloride and water does not raise a safety concern when used in oxygen absorber/carbon dioxide emitter systems, in sachets that prevent the physical release of their contents into the food. The sachets are to be placed in the headspace of the packaging and as such may come into occasional contact with the food, e.g. during handling. The sachet should not come into direct contact with liquid foods or foods that have and external aqueous liquid phase on the surface (liquid or exudates.

  11. Crystal growth of calcium carbonate in silk fibroin/sodium alginate hydrogel

    Science.gov (United States)

    Ming, Jinfa; Zuo, Baoqi

    2014-01-01

    As known, silk fibroin-like protein plays a pivotal role during the formation of calcium carbonate (CaCO3) crystals in the nacre sheets. Here, we have prepared silk fibroin/sodium alginate nanofiber hydrogels to serve as templates for calcium carbonate mineralization. In this experiment, we report an interesting finding of calcium carbonate crystal growth in the silk fibroin/sodium alginate nanofiber hydrogels by the vapor diffusion method. The experimental results indicate calcium carbonate crystals obtained from nanofiber hydrogels with different proportions of silk fibroin/sodium alginate are mixture of calcite and vaterite with unusual morphologies. Time-dependent growth study was carried out to investigate the crystallization process. It is believed that nanofiber hydrogels play an important role in the process of crystallization. This study would help in understanding the function of organic polymers in natural mineralization, and provide a novel pathway in the design and synthesis of new materials related unique morphology and structure.

  12. ON APPLICATION OF MATERIALS BASED ON DISPERSE HYDRATED CALCIUM SILICATE FOR PROTECTIVE LAYER OF LOCAL AUTOMOBILE ROADS

    Directory of Open Access Journals (Sweden)

    V. N. Yaglov

    2016-01-01

    Full Text Available Road construction is one of the most material-intensive industrial production. In this context, the urgent task for this branch is the maximum reduction in consumption of materials through usage of effective local materials, decrease energy intensity of processes by using new materials. The developed network of local roads require constant care and maintenance, thus it is advisable to consider the use of protective coatings for such roads on the basis of contactcondensation hardening, which can be obtained on the basis of local raw materials. One of the representatives of such material is disperse hydrated calcium silicate, which found wide practical application as the main components in the production of building materials, glass, glass ceramics and ceramic products. For example, relatively cheap highly dispersed crystalline material is intermediate product of hydrochemical synthesis of wollastonite xonotlite Ca6(Si6O17(OH2. A variety of calcium and silicon-containing raw materials, suitable to obtain various types hydrated calcium silicate, as well as increasing requirements for physical and chemical properties, caused by actuality of problems of search and study the best ways of synthesis hydrated calcium silicate from man-made and natural materials. The theoretical basis of the proposed technology for material production for road pavement lower categories is the ability of silicate dispersed materials transferred in an unstable state, forming a rock-like waterproof body at the time of application of mechanical load. Disperse hydrated calcium silicate are the most typical representatives of contactcondensation hardening binders. It should be noted that the technology of obtaining these binders is not related to high-temperature processes and the synthesis of HCS realized when wet treatment of available cheap raw materials on the standard equipment, what determines their practical significance.

  13. Effect of Some Admixtures on the Hydration of Silica Fume and Hydrated Lime

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effects of sodium salt of naphthalene formaldehyde sulfonic acid and stearic acid on the hydration of silica fume and Ca(0H)2 have been investigated. The hydration was carried out at 60℃ and W/S ratio of 4 for various time intervals namely, 1, 3, 7 and 28 days and in the presence of 0.2% and 5% superplasticizer and stearic acid. The results of the hydration kinetics show that both admixtures accelerate the hydration reaction of silica fume and calcium hydroxide during the first 7 days. Whereas, after 28 days hydration there is no significant effect. Generally, most of free calcium hydroxide seems to be consumed after 28 days. In addition, the phase composition as well as the microstructure of the formed hydrates was examined by using X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) respectively.

  14. Structural basis for the transformation pathways of the sodium naproxen anhydrate–hydrate system

    Directory of Open Access Journals (Sweden)

    Andrew D. Bond

    2014-09-01

    Full Text Available Crystal structures are presented for two dihydrate polymorphs (DH-I and DH-II of the non-steroidal anti-inflammatory drug sodium (S-naproxen. The structure of DH-I is determined from twinned single crystals obtained by solution crystallization. DH-II is obtained by solid-state routes, and its structure is derived using powder X-ray diffraction, solid-state 13C and 23Na MAS NMR, and molecular modelling. The validity of both structures is supported by dispersion-corrected density functional theory (DFT-D calculations. The structures of DH-I and DH-II, and in particular their relationships to the monohydrate (MH and anhydrate (AH structures, provide a basis to rationalize the observed transformation pathways in the sodium (S-naproxen anhydrate–hydrate system. All structures contain Na+/carboxylate/H2O sections, alternating with sections containing the naproxen molecules. The structure of DH-I is essentially identical to MH in the naproxen region, containing face-to-face arrangements of the naphthalene rings, whereas the structure of DH-II is comparable to AH in the naproxen region, containing edge-to-face arrangements of the naphthalene rings. This structural similarity permits topotactic transformation between AH and DH-II, and between MH and DH-I, but requires re-organization of the naproxen molecules for transformation between any other pair of structures. The topotactic pathways dominate at room temperature or below, while the non-topotactic pathways become active at higher temperatures. Thermochemical data for the dehydration processes are rationalized in the light of this new structural information.

  15. Pharmaceutical studies of levothyroxine sodium hydrate suppository provided as a hospital preparation.

    Science.gov (United States)

    Hamada, Yuhei; Masuda, Kazushi; Okubo, Masato; Nakasa, Hiromitsu; Sekine, Yuko; Ishii, Itsuko

    2015-01-01

    The levothyroxine sodium hydrate suppository (L-T4-suppository) is provided as a hospital preparation for the treatment of hypothyroid patients with dysphagia in Japan because only oral preparations of levothyroxine sodium (L-T4) are approved for the treatment of hypothyroidism. However, it has been found that serum thyroxine and triiodothyronine levels do not increase as expected with the hospital preparation, requiring a higher dosage of L-T4 in the L-T4-suppository than in the oral preparations. In this study, to determine an effective thyroid gland hormone-replacement therapy for patients with dysphagia, the pharmaceutical properties of the L-T4-suppository were investigated. Suppositories containing 300 µg L-T4 in a base of Witepsol H-15 and Witepsol E-75 (ratio of 1 : 1) were prepared according to Chiba University Hospital's protocol. Content uniformity, stability, and suppository release were tested. The L-T4-suppository had uniform weight and content. The content and release property were stable over 90 d when the L-T4-suppository was stored at 4 °C and protected from light. The release rate of L-T4 increased as pH increased. However, no L-T4 was released below pH 7.2. The release rate of L-T4 decreased as temperature decreased. These findings suggest that the low level of release of L-T4 in the rectum under physiological conditions may be the cause of the low serum thyroxine and triiodothyronine levels following L-T4-suppository administration.

  16. Interaction of calcium silicate hydrates (C-S-H), the main components of cement, with alkaline chlorides, analogy with clays; Interaction des silicates de calcium hydrates, principaux constituants du ciment, avec les chlorures d'alcalins. Analogie avec les argiles

    Energy Technology Data Exchange (ETDEWEB)

    Viallis-Terrisse, H

    2000-10-06

    This work, belonging to a more general study on the structure and reactivity of cement, deals with the experimental and theoretical analysis of the interaction of alkaline chlorides with calcium silicate hydrates (C-S-H), the main components of cement paste. The interaction of alkaline cations with C-S-H is interfacial, involving both electrostatic and surface complexation mechanisms. The C-S-H surface is constituted of silanol sites, partially dissociated due to the high pH of the interstitial solution. The calcium ions, present in large amounts in the equilibrium solution of C-S-H, constitute potential determining ions for the C-S-H surface. The alkaline ions seem to compete with calcium for the same surface sites. The adsorption isotherms show that caesium presents a better affinity than sodium and lithium for the C-S-H surface. Moreover, solid-state NMR suggests that caesium forms with the surface sites inner-sphere complexes, whereas sodium seems to keep its hydration sphere. These results are in agreement with zeta potential measurements, which let suppose a specific adsorption of caesium ions, and an indifferent behaviour of both other alkaline ions. A model for the C-S-H surface was proposed, from the electric double layer model, and mass action laws expressing the complexation of the different ionic species with the silanol sites. The whole study relies on a structural analogy with smectites, some clays presenting well-known cationic adsorption properties. The structural similarity between both minerals is enhanced by some similarities of reactivity, though significant behaviour differences could also be noted. (author)

  17. Synthesis of calcium silicates by Pechini method and exchanging ions of sodium alginate-calcium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Garay, K.A.; Martinez-Luevanos, A.; Cruz-Ortiz, B.R.; Garcia-Cerda, L.A.; Lopez-Badillo, C.M.

    2016-07-01

    Calcium silicates samples were synthesized using tetraethyl orthosilicate (TEOS) and by Pechini methodology assisted with ion-exchange of sodium alginate, followed by a heat treatment of 800°C by two hours. A, B and C samples were obtained using 1.7×10−3M, 3.4×10−3M and 5.1×10−3M of TEOS, respectively, and without heat treatment; these samples were characterized by thermogravimetric analysis (TGA) and infrared spectroscopy with attenuated total reflectance (FTIR-ATR). Furthermore, samples A800, B800 and C800 obtained using a heat treatment of 800° by two hours were characterized by FTIR-ATR, absorption technique (BET), X-ray diffraction (XRD) and by scanning electron microscopy. The XRD patterns indicate that sample A800 contains olivine (Ca2SiO4) in orthorhombic phase and wollastonite-2M (CaSiO3); sample B800 showed the earlier phases and quartz (SiO2), whereas sample C800 contains wollastonite phases and larnite-2M (Ca2SiO4). (Author)

  18. STUDY OF SODIUM, POTASSIUM, AND CALCIUM SALTS INFLUENCE ON PROTEIN STABILITY BY DIFFERENTIAL SCANNING CALORIMETRY

    Directory of Open Access Journals (Sweden)

    E. K. Tunieva

    2016-01-01

    Full Text Available Abstract Study of protein stability depending on the various technological factors allows to directionally adjust the physicochemical properties of raw meat and the quality of finished meat products. The paper investigates the possibility of using the DSC to study the influence of monovalent and divalent salts on protein thermal stability. In order to determine the effect of sodium chloride and its substitutes, potassium and calcium salts, on the thermal stability of proteins, the studies were carried out with grinded pork longissimus muscle samples salted with sodium chloride at level of 2.0% and with salt compositions containing reduced by 50% level of sodium chloride (a mixture of sodium and potassium chlorides; a mixture of sodium, potassium, and calcium chlorides using the differential scanning calorimeter DSC Q 2000 in the temperature range of 5 °C to 100 °C and the temperature change rate of 1 K/min. It was found that the addition of potassium chloride instead of 50% of sodium chloride had no significant effect on actin and myosin resistance to thermal denaturation. Meat salting using the mixture of sodium, potassium, and calcium chlorides resulted in decrease of myofibrillar proteins stability indicating the destabilizing effect of calcium on actin and myosin. A negative correlation between the magnitude of the ionic strength and the temperature of myosin and actin denaturation has been found. The correlation coefficients were minus 0.99 and minus 0.95 for myosin and actin respectively. Reduction of denaturation temperature for myofibrillar proteins in the presence of calcium chloride opens perspectives to study the possibility of heat treatment at lower temperatures for meat products with reduced sodium content.

  19. Nanostructured calcium silicate hydrate seeds accelerate concrete hardening: a combined assessment of benefits and risks.

    Science.gov (United States)

    Bräu, Michael; Ma-Hock, Lan; Hesse, Christoph; Nicoleau, Luc; Strauss, Volker; Treumann, Silke; Wiench, Karin; Landsiedel, Robert; Wohlleben, Wendel

    2012-07-01

    Nanotechnology creates new possibilities to control and improve material properties for civil infrastructure. Special focus in this area is put on Portland cement and gypsum. Together their annual production is by far larger than for any other material worldwide. Nanomodification of these materials can be done during the few hours between dissolution and hardening, especially by nucleation of the re-crystallization with suitable colloids. Here we report first results in homogeneous seeding of the precipitation of calcium silicate hydrates within a real Portland cement composition. The occupational safety during the production phase and during mixing of concrete paste is addressed in detail by in vivo testing. We perform 5-day inhalation with 21-day recovery in rats and analyze organ-specific toxicity and 71 endpoints from bronchoalveolar lavage (BALF) and blood. In BALF parameters, no test-related changes were observed, indicating the generally low toxicity of the test material. Some mild lesions were observed in larynx level. In the lungs, all animals of the 50 mg/m³ concentration group revealed a minimal to mild increase in alveolar macrophages, which recovered back to control level.

  20. Sorption mechanisms of zinc to calcium silicate hydrate: X-ray absorption fine structure (XAFS) investigation.

    Science.gov (United States)

    Ziegler, F; Scheidegger, A M; Johnson, C A; Dähn, R; Wieland, E

    2001-04-01

    In this study, X-ray absorption fine structure (XAFS) spectroscopy has been used to further elucidate the binding mechanisms of Zn(II) to calcium silicate hydrate (C-S-H), the quantitatively most important cement mineral. Such knowledge is essential for the assessment of the longterm behavior of cement-stabilized waste materials. XAFS spectra of the Zn(II) equilibrated with C-S-H(I) for up to 28 days are best modeled by tetrahedral coordination of Zn(II) by four O atoms in the first atomic shell. Beyond the first coordination shell, data analysis of more highly concentrated samples suggests the presence of two distinct Zn distances and possibly the presence of an Si shell. On the basis of the comparison with a set of reference compounds, this coordination environment can be reasonably related to the structure of hemimorphite, a naturally occurring zinc silicate, and/or the presence of gamma-Zn(OH)2. At the lowest Zn uptake, the above fitting approach failed and data could be described best with a Zn-Si and a Zn-Ca shell. Previous work has been able to show that Zn(II) diffuses into the C-S-H(I) particles and does not form discrete precipitates, so the findings appear to confirm the incorporation of Zn(II) in the interlayer of C-S-H(I).

  1. Effects of glass fiber modified with calcium silicate hydrate (C-S-H(I)) reinforced cement

    Science.gov (United States)

    Xin, M.; Zhang, L.; Ge, S.; Cheng, X.

    2017-03-01

    In this paper, calcium silicate hydrate (C-S-H(I)) and glass fiber modified with C-S-H(I) (SiF) at ambient temperature were synthesized. SiF and untreated fiber (OF) were incorporated into cement paste. Phase composition of C-S-H(I), SiF and OF was characterized by XRD. The surface morphologies were characterized by SEM. Flexural performance of fiber reinforced cement (FRC) at different curing ages was investigated. Results indicated that both SiF and OF could reinforce cement paste. SiF had a more positive effect on improving the flexural performance of FRC than OF. The strength of SiF reinforced cement was 11.48MPa after 28 days curing when fiber volume was 1.0%, 12.55% higher than that of OF reinforced cement. The flexural strength increased with the addition of fiber volume. However, the large dosage of fiber might cause a decrease in flexural strength of FRC.

  2. Effects of extracellular calcium and sodium on depolarization-induced automaticity in guinea pig papillary muscle.

    Science.gov (United States)

    Katzung, B G

    1975-07-01

    Regenerative discharge of action potentials is induced in mammalian papillary muscles by passage of small depolarizing currents. In this paper, the effects of various extracellular calcium and sodium concentrations and of tetrodotoxin on this phenomenon were studied in guinea pig papillary muscles in a sucrose gap chamber. Phase 4 diastolic depolarization was found to be associated with an increase in membrane resistance. The slope of phase 4 depolarization was decreased by reductions in extracellular calcium or sodium concentration. The range of maximum diastolic potentials and the thresholds from which regenerative potentials arose were reduced, especially at the positive limit of potentials, by a reduction in either ion. It was concluded that both calcium and sodium influence diastolic depolarization and participate in the regenerative action potentials of depolarization-induced ventricular automaticity.

  3. Direct determination of calcium, sodium and potassium in fermented milk products

    Directory of Open Access Journals (Sweden)

    Kravić Snežana Ž.

    2012-01-01

    Full Text Available The aim of this study was the investigation of the possibilities of direct determination of calcium, sodium and potassium in the commercial and kombucha-based fermented milk products by flame photometry. Two procedures were used for sample preparation: simple dilution with water (direct method and extraction with mineral acid. Calcium, sodium and potassium levels determined after mentioned sample preparation methods were compared. The results showed that the differences between the values obtained for the different sample treatment were within the experimental error at the 95% confidence level. Compared to the method based on extraction with mineral acid, the direct method is efficient, faster, simpler, cheaper, and operates according to the principles of Green Chemistry. Consequently, the proposed method for the direct determination of calcium, sodium and potassium could be applied for the rapid routine analysis of the mineral content in the fermented dairy products. [Projekat Ministarstva nauke Republike Srbije, br. III 46009

  4. Repassivation Potential of Alloy 22 in Sodium and Calcium Chloride Brines

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B; Ilevbare, G O; Carranza, R M

    2007-08-11

    A comprehensive matrix of 60 tests was designed to explore the effect of calcium chloride vs. sodium chloride and the ratio R of nitrate concentration over chloride concentration on the repassivation potential of Alloy 22. Tests were conducted using the cyclic potentiodynamic polarization (CPP) technique at 75 C and at 90 C. Results show that at a ratio R of 0.18 and higher nitrate was able to inhibit the crevice corrosion in Alloy 22 induced by chloride. Current results fail to show in a consistent way a different effect on the repassivation potential of Alloy 22 for calcium chloride solutions than for sodium chloride solutions.

  5. A short introduction to the new principle of binding ration calcium with sodium zeolite

    DEFF Research Database (Denmark)

    Jørgensen, R J; Bjerrum, M J; Classen, H

    2003-01-01

    . Synthetic sodium zeolite was selected as a first choice among the many calcium binders available commercially, such as polyphosphates, citrate, EDTA and it derivatives. Testing was done on non-pregnant rumen fistulated cows in the first place, followed by cows in late lactation. Encouraged by the tendencies...... seen in these animals, the final proof of concept was done on pregnant dry cows fed a supplement of synthetic sodium zeolite A from 4 weeks before expected calving until calving. By analysis of blood calcium levels, this supplementation was shown to have a stabilizing effect during the critical period...

  6. Imaging of drug loading distributions in individual microspheres of calcium silicate hydrate - an X-ray spectromicroscopy study

    Science.gov (United States)

    Guo, Xiaoxuan; Wang, Zhiqiang; Wu, Jin; Wang, Jian; Zhu, Ying-Jie; Sham, Tsun-Kong

    2015-04-01

    Imaging is one of the most direct and ideal ways to track drug loading distributions in drug carriers on the molecular level, which will facilitate the optimization of drug carriers and drug loading capacities. Herein, we report the mapping of an individual mesoporous calcium silicate hydrate (CSH) microsphere before and after the loading of ibuprofen (IBU) and the interactions between drug carriers and drug molecules simultaneously by scanning transmission X-ray microscopy (STXM). Nanoscaled X-ray absorption near edge structure (XANES) spectroscopy clearly indicates that IBU is bonded to calcium and silicate sites via carboxylic acid groups. More importantly, STXM has been successfully used to determine the absolute thickness of IBU, revealing its distribution in the CSH microsphere.Imaging is one of the most direct and ideal ways to track drug loading distributions in drug carriers on the molecular level, which will facilitate the optimization of drug carriers and drug loading capacities. Herein, we report the mapping of an individual mesoporous calcium silicate hydrate (CSH) microsphere before and after the loading of ibuprofen (IBU) and the interactions between drug carriers and drug molecules simultaneously by scanning transmission X-ray microscopy (STXM). Nanoscaled X-ray absorption near edge structure (XANES) spectroscopy clearly indicates that IBU is bonded to calcium and silicate sites via carboxylic acid groups. More importantly, STXM has been successfully used to determine the absolute thickness of IBU, revealing its distribution in the CSH microsphere. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07471h

  7. Microanalyses of the hydroxyl—poly—calcium sodium phosphate coatings produced by ion beam assisted deposition

    Institute of Scientific and Technical Information of China (English)

    LIUZhong-Yang; WANGChang-Xing; 等

    2002-01-01

    Thin calcium phosphate catings on titanium alloy substrates were prepared by Ar+ ion beam assisted deposition(IBAD) from hydroxyl-poly-calcium sodium phosphate(HPPA) target.The coatings were analyzed by XRD,FTIR,XPS,These analyses revealed that the as-deposited films were amorphous or no apparent crystallinity.No distinct absorption band of the hydroxyl group was observed in FTIR spectra of the coatings but new absorption bands were presented for CO3-2,The calcium to phosphorous ratio of these catings in different IBAD conditions varied from 0.46 to 3.36.

  8. Magnetic interactions in calcium and sodium ladder vanadates

    NARCIS (Netherlands)

    de Graaf, C; Hozoi, L.; Broer-Braam, Henderika

    2004-01-01

    Magnetic interactions in ladder vanadates are determined with quantum chemical computational schemes using the embedded cluster model approach to represent the material. The available experimental data for calcium vanadate is accurately reproduced and the nature of the interladder interaction is est

  9. Effect of Protein-Lipid-Salt Interactions on Sodium Availability in the Mouth and Consequent Perception of Saltiness: As Affected by Hydration in Powders.

    Science.gov (United States)

    Yucel, Umut; Peterson, Devin G

    2015-09-01

    There is a broad need to reformulate lower sodium food products without affecting their original taste. The present study focuses on characterizing the role of protein-salt interactions on the salt release in low-moisture systems and saltiness perception during hydration. Sodium release from freeze-dried protein powders and emulsion powders formulated at different protein/lipid ratios (5:0 to 1:4) were characterized using a chromatography column modified with a porcine tongue. Emulsion systems with protein structured at the interface were found to have faster initial sodium release rates and faster hydration and were perceived to have a higher initial salt intensity with a lower salty aftertaste. In summary, exposure of the hydrophilic segments of the interface-structured proteins in emulsions was suggested to facilitate hydration and release of sodium during dissolution of low-moisture powder samples.

  10. Ternary phase behaviour and vesicle formation of a sodium N-lauroylsarcosinate hydrate/1-decanol/water system

    Science.gov (United States)

    Akter, Nasima; Radiman, Shahidan; Mohamed, Faizal; Rahman, Irman Abdul; Reza, Mohammad Imam Hasan

    2011-08-01

    The phase behaviour of a system composed of amino acid-based surfactant (sodium N-lauroylsarcosinate hydrate), 1-decanol and deionised water was investigated for vesicle formation. Changing the molar ratio of the amphiphiles, two important aggregate structures were observed in the aqueous corner of the phase diagram. Two different sizes of microemulsions were found at two amphiphile-water boundaries. A stable single vesicle lobe was found for 1∶2 molar ratios in 92 wt% water with vesicles approximately 100 nm in size and with high zeta potential value. Structural variation arises due to the reduction of electrostatic repulsions among the ionic headgroups of the surfactants and the hydration forces due to adsorbed water onto monolayer's. The balance of these two forces determines the aggregate structures. Analysis was followed by the molecular geometrical structure. These findings may have implications for the development of drug delivery systems for cancer treatments, as well as cosmetic and food formulations.

  11. Drastic difference in porous structure of calcium alginate microspheres prepared with fresh or hydrolyzed sodium alginate.

    Science.gov (United States)

    Akamatsu, Kazuki; Maruyama, Kaho; Chen, Wei; Nakao, Aiko; Nakao, Shin-ichi

    2011-11-15

    Fresh or hydrolyzed sodium alginate was used as a material for preparing calcium alginate microspheres, and a drastic difference in porous structure was observed between them, even though the other materials and the preparation method except for the sodium alginate were exactly the same. When fresh sodium alginate was used, nonporous microspheres were obtained. In contrast, when 82-day-hydrolyzed sodium alginate, whose molecular weight became 7% of the molecular weight of the fresh sodium alginate, was used, porous microspheres with 6.5 times larger BET surface area were obtained. XPS studies indicated that the atomic ratio of Ca, the crosslinker of the alginic acid polymer, was almost the same in both cases. Therefore, the difference in porous structure was not attributed to the amount of crosslinking points, but to the low-molecular-weight compounds formed by hydrolysis, and they would work as pore-generating agents. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. 21 CFR 573.280 - Feed-grade calcium stearate and sodium stearate.

    Science.gov (United States)

    2010-04-01

    ... calcium or sodium salts of a fatty acid mixture that is predominately stearic acid. Associated fatty acids, including palmitic acid and minor amounts of lauric, myristic, pentadecanoic, margaric, arachidic, and other fatty acids may be contained in the mixture, but such associated fatty acids in aggregate do not...

  13. Magnesium, Calcium, Potassium, and Sodium Intakes and Risk of Stroke in Male Smokers

    NARCIS (Netherlands)

    Larsson, S.C.; Virtanen, M.J.; Mars, M.; Mannisto, S.; Pietinen, P.; Albanes, D.; Virtamo, J.

    2008-01-01

    Background A high intake of magnesium, calcium, and potassium and a low intake of sodium have been hypothesized to reduce the risk of stroke. However, prospective data relating intake of these minerals to risk of stroke are inconsistent. Methods We examined the relationship of dietary magnesium, cal

  14. Relevance of rheological properties of sodium alginate in solution to calcium alginate gel properties.

    Science.gov (United States)

    Fu, Shao; Thacker, Ankur; Sperger, Diana M; Boni, Riccardo L; Buckner, Ira S; Velankar, Sachin; Munson, Eric J; Block, Lawrence H

    2011-06-01

    The purpose of this study is to determine whether sodium alginate solutions' rheological parameters are meaningful relative to sodium alginate's use in the formulation of calcium alginate gels. Calcium alginate gels were prepared from six different grades of sodium alginate (FMC Biopolymer), one of which was available in ten batches. Cylindrical gel samples were prepared from each of the gels and subjected to compression to fracture on an Instron Universal Testing Machine, equipped with a 1-kN load cell, at a cross-head speed of 120 mm/min. Among the grades with similar % G, (grades 1, 3, and 4), there is a significant correlation between deformation work (L(E)) and apparent viscosity (η(app)). However, the results for the partial correlation analysis for all six grades of sodium alginate show that L(E) is significantly correlated with % G, but not with the rheological properties of the sodium alginate solutions. Studies of the ten batches of one grade of sodium alginate show that η(app) of their solutions did not correlate with L(E) while tan δ was significantly, but minimally, correlated to L(E). These results suggest that other factors--polydispersity and the randomness of guluronic acid sequencing--are likely to influence the mechanical properties of the resultant gels. In summary, the rheological properties of solutions for different grades of sodium alginate are not indicative of the resultant gel properties. Inter-batch differences in the rheological behavior for one specific grade of sodium alginate were insufficient to predict the corresponding calcium alginate gel's mechanical properties.

  15. Contracture Coupling of Slow Striated Muscle in Non-Ionic Solutions and Replacement of Calcium, Sodium, and Potassium

    Science.gov (United States)

    Irwin, Richard L.; Hein, Manfred M.

    1964-01-01

    The development of contracture related to changes of ionic environment (ionic contracture coupling) has been studied in the slowly responding fibers of frog skeletal muscle. When deprived of external ions for 30 minutes by use of solutions of sucrose, mannitol, or glucose, the slow skeletal muscle fibers, but not the fast, develop pronounced and easily reversible contractures. Partial replacement of the non-ionic substance with calcium or sodium reduces the development of the contractures but replacement by potassium does not. The concentration of calcium necessary to prevent contracture induced by a non-ionic solution is greater than that needed to maintain relaxation in ionic solutions. To suppress the non-ionic-induced contractures to the same extent as does calcium requires several fold higher concentrations of sodium. Two types of ionic contracture coupling occur in slow type striated muscle fibers: (a) a calcium deprivation type which develops maximally at full physiological concentration of external sodium, shows a flow rate dependency for the calcium-depriving fluid, and is lessened when the sodium concentration is decreased by replacement with sucrose; (b) a sodium deprivation type which occurs maximally without external sodium, is lessened by increasing the sodium concentration, and has no flow rate dependency for ion deprivation. Both types of contracture are largely prevented by the presence of sufficient calcium. There thus seem to be calcium- and sodium-linked processes at work in the ionic contracture coupling of slow striated muscle. PMID:14127603

  16. Effect of hydrophilic walls on the hydration of sodium cations in planar nanopores

    Science.gov (United States)

    Shevkunov, S. V.

    2016-09-01

    A computer simulation of the structure of Na+ ion hydration shells with sizes in the range of 1 to 100 molecules in a planar model nanopore 0.7 nm wide with structureless hydrophilic walls is performed using the Monte Carlo method at a temperature of 298 K. A detailed model of many-body intermolecular interactions, calibrated with reference to experimental data on the free energy and enthalpy of reactions after gaseous water molecules are added to a hydration shell, is used. It is found that perturbations produced by hydrophilic walls cause the hydration shell to decay into two components that differ in their spatial arrangement and molecular orientational order.

  17. Characterization of the Bonds Developed between Calcium Silicate Hydrate and Polycarboxylate-Based Superplasticizers with Silyl Functionalities

    KAUST Repository

    Orozco, Carlos A.

    2017-03-24

    Major developments in concrete technology have been achieved with the use of polycarboxylate-based superplasticizers (PCEs) to improve the concrete rheology without increasing the mix water content. Currently, it is possible to control the fluidity of the fresh concrete and obtain stronger and more durable structures. Therefore, there is a strong incentive to understand the interactions between PCEs and cement hydrates at the atomic scale to design new customized functional PCEs according to the ever-increasing requirements of the concrete industry. Here, the bonding types generated between a PCE with silyl functionalities (PCE-Sil) and a synthetic calcium silicate hydrate (C-S-H) are analyzed using XRD, 29Si NMR spectroscopy, and synchrotron-based techniques, such as NEXAFS and EXAFS. The results indicated that the carboxylic groups present in PCE-Sil interact by a ligand-type bond with calcium, which modified not only the symmetry and coordination number of the calcium located at the surface of C-S-H but also the neighboring silicon atoms of the C-S-H. In addition, the silyl functionalities of the PCE-Sil generated covalent bonds through siloxane bridges between the silanol groups of PCE-Sil and the nonbonding oxygen located at the dimeric sites in C-S-H, forming new bridging silicon sites and subsequently increasing the silicate polymerization.

  18. Why and how to implement sodium, potassium, calcium, and magnesium changes in food items and diets?

    Science.gov (United States)

    Karppanen, H; Karppanen, P; Mervaala, E

    2005-12-01

    The present average sodium intakes, approximately 3000-4500 mg/day in various industrialised populations, are very high, that is, 2-3-fold in comparison with the current Dietary Reference Intake (DRI) of 1500 mg. The sodium intakes markedly exceed even the level of 2500 mg, which has been recently given as the maximum level of daily intake that is likely to pose no risk of adverse effects on blood pressure or otherwise. By contrast, the present average potassium, calcium, and magnesium intakes are remarkably lower than the recommended intake levels (DRI). In USA, for example, the average intake of these mineral nutrients is only 35-50% of the recommended intakes. There is convincing evidence, which indicates that this imbalance, that is, the high intake of sodium on one hand and the low intakes of potassium, calcium, and magnesium on the other hand, produce and maintain elevated blood pressure in a big proportion of the population. Decreased intakes of sodium alone, and increased intakes of potassium, calcium, and magnesium each alone decrease elevated blood pressure. A combination of all these factors, that is, decrease of sodium, and increase of potassium, calcium, and magnesium intakes, which are characteristic of the so-called Dietary Approaches to Stop Hypertension diets, has an excellent blood pressure lowering effect. For the prevention and basic treatment of elevated blood pressure, various methods to decrease the intake of sodium and to increase the intakes of potassium, calcium, and magnesium should be comprehensively applied in the communities. The so-called 'functional food/nutraceutical/food-ceutical' approach, which corrects the mineral nutrient composition of extensively used processed foods, is likely to be particularly effective in producing immediate beneficial effects. The European Union and various governments should promote the availability and use of such healthier food compositions by tax reductions and other policies, which make the

  19. The contribution of the sodium-calcium exchanger (NCX) and plasma membrane Ca(2+) ATPase (PMCA) to cerebellar synapse function.

    Science.gov (United States)

    Roome, Chris J; Empson, Ruth M

    2013-01-01

    The cerebellum, a part of the brain critically involved in motor learning and sensory adaptation, expresses high levels of the sodium-calcium exchanger (NCX) and the plasma membrane calcium ATPase (PMCA). Both these transporters control calcium dynamics at a variety of synapses, and here, we draw upon the available literature to discuss how NCX and PMCA work together to shape pre-synaptic calcium dynamics at cerebellar synapses.

  20. Influence of Calcium Sulfate State and Fineness of Cement on Hydration of Portland Cements Using Electrical Measurement

    Institute of Scientific and Technical Information of China (English)

    WEI Xiaosheng; LI Zongjin; XIAO Lianzhen; THONG Wangfai

    2006-01-01

    The influence of calcium sulfate state and fineness of cement on hydration of Portland cement was studied using electrical resistivity measurement. The bulk resistivity curve of the paste from the abnormal cement mainly with hemihydrate had a characteristic abnormal peak and rapid increase in early period. The resistivity measurement technique can be used to discriminate abnormal setting. For normal cement with gypsum, the increase in fineness of the Portland cement decreases the minimum resistivity due to a higher ionic concentration and increases the 24 hour resistivity due to a reduction in macroscopic pore size. Thesetting time, compressive strength, pore structure of pastes made from different cements were carried out to compare the influence of water to cement ratio, calcium sulfate state and fineness. It is found that the electrical and mechanical properties are strongly affected by the initial porosity, the presence of hemihydrate or gypsum, and the fineness of cement.

  1. Imaging of drug loading distributions in individual microspheres of calcium silicate hydrate--an X-ray spectromicroscopy study.

    Science.gov (United States)

    Guo, Xiaoxuan; Wang, Zhiqiang; Wu, Jin; Wang, Jian; Zhu, Ying-Jie; Sham, Tsun-Kong

    2015-04-21

    Imaging is one of the most direct and ideal ways to track drug loading distributions in drug carriers on the molecular level, which will facilitate the optimization of drug carriers and drug loading capacities. Herein, we report the mapping of an individual mesoporous calcium silicate hydrate (CSH) microsphere before and after the loading of ibuprofen (IBU) and the interactions between drug carriers and drug molecules simultaneously by scanning transmission X-ray microscopy (STXM). Nanoscaled X-ray absorption near edge structure (XANES) spectroscopy clearly indicates that IBU is bonded to calcium and silicate sites via carboxylic acid groups. More importantly, STXM has been successfully used to determine the absolute thickness of IBU, revealing its distribution in the CSH microsphere.

  2. NALCN ion channels have alternative selectivity filters resembling calcium channels or sodium channels.

    Directory of Open Access Journals (Sweden)

    Adriano Senatore

    Full Text Available NALCN is a member of the family of ion channels with four homologous, repeat domains that include voltage-gated calcium and sodium channels. NALCN is a highly conserved gene from simple, extant multicellular organisms without nervous systems such as sponges and placozoans and mostly remains a single gene compared to the calcium and sodium channels which diversified into twenty genes in humans. The single NALCN gene has alternatively-spliced exons at exons 15 or exon 31 that splices in novel selectivity filter residues that resemble calcium channels (EEEE or sodium channels (EKEE or EEKE. NALCN channels with alternative calcium, (EEEE and sodium, (EKEE or EEKE -selective pores are conserved in simple bilaterally symmetrical animals like flatworms to non-chordate deuterostomes. The single NALCN gene is limited as a sodium channel with a lysine (K-containing pore in vertebrates, but originally NALCN was a calcium-like channel, and evolved to operate as both a calcium channel and sodium channel for different roles in many invertebrates. Expression patterns of NALCN-EKEE in pond snail, Lymnaea stagnalis suggest roles for NALCN in secretion, with an abundant expression in brain, and an up-regulation in secretory organs of sexually-mature adults such as albumen gland and prostate. NALCN-EEEE is equally abundant as NALCN-EKEE in snails, but is greater expressed in heart and other muscle tissue, and 50% less expressed in the brain than NALCN-EKEE. Transfected snail NALCN-EEEE and NALCN-EKEE channel isoforms express in HEK-293T cells. We were not able to distinguish potential NALCN currents from background, non-selective leak conductances in HEK293T cells. Native leak currents without expressing NALCN genes in HEK-293T cells are NMDG(+ impermeant and blockable with 10 µM Gd(3+ ions and are indistinguishable from the hallmark currents ascribed to mammalian NALCN currents expressed in vitro by Lu et al. in Cell. 2007 Apr 20;129(2:371-83.

  3. Sodium-calcium exchanger and multiple sodium channel isoforms in intra-epidermal nerve terminals

    Directory of Open Access Journals (Sweden)

    Gasser Andreas

    2010-11-01

    Full Text Available Abstract Background Nociception requires transduction and impulse electrogenesis in nerve fibers which innervate the body surface, including the skin. However, the molecular substrates for transduction and action potential initiation in nociceptors are incompletely understood. In this study, we examined the expression and distribution of Na+/Ca2+ exchanger (NCX and voltage-gated sodium channel isoforms in intra-epidermal free nerve terminals. Results Small diameter DRG neurons exhibited robust NCX2, but not NCX1 or NCX3 immunolabeling, and virtually all PGP 9.5-positive intra-epidermal free nerve terminals displayed NCX2 immunoreactivity. Sodium channel NaV1.1 was not detectable in free nerve endings. In contrast, the majority of nerve terminals displayed detectable levels of expression of NaV1.6, NaV1.7, NaV1.8 and NaV1.9. Sodium channel immunoreactivity in the free nerve endings extended from the dermal boundary to the terminal tip. A similar pattern of NCX and sodium channel immunolabeling was observed in DRG neurons in vitro. Conclusions NCX2, as well as NaV1.6, NaV1.7, NaV1.8 and NaV1.9, are present in most intra-epidermal free nerve endings. The presence of NCX2, together with multiple sodium channel isoforms, in free nerve endings may have important functional implications.

  4. Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone

    DEFF Research Database (Denmark)

    Moesgaard, Mette; Poulsen, S.L.; Herfort, D.

    2012-01-01

    in an accelerated hydration for alite (Ca3SiO5), the main constituent of Portland cement. A higher degree of limestone reaction has been observed in the blend containing both limestone and NCAS glass as compared to the limestone – Portland mixture. This reflects that limestone reacts with a part of the alumina......This work investigates the hydration of blended Portland cement containing 30 wt.% Na2O-CaO-Al2O3-SiO2 (NCAS) glass particles either as the only supplementary cementitious material (SCM) or in combination with limestone, using 29Si MAS NMR, powder XRD, and thermal analyses. The NCAS glass...... represents a potential alternative to traditional SCMs, used for reduction of the CO2 emission associated with cement production. It is found that the NCAS glass takes part in the hydration reactions after about two weeks of hydration and a degree of reaction of approx. 50 % is observed after 90 days...

  5. Effect of calcium/sodium ion exchange on the osmotic properties and structure of polyelectrolyte gels.

    Science.gov (United States)

    Horkay, Ferenc; Basser, Peter J; Hecht, Anne-Marie; Geissler, Erik

    2015-12-01

    We discuss the main findings of a long-term research program exploring the consequences of sodium/calcium ion exchange on the macroscopic osmotic and elastic properties, and the microscopic structure of representative synthetic polyelectrolyte (sodium polyacrylate, (polyacrylic acid)) and biopolymer gels (DNA). A common feature of these gels is that above a threshold calcium ion concentration, they exhibit a reversible volume phase transition. At the macroscopic level, the concentration dependence of the osmotic pressure shows that calcium ions influence primarily the third-order interaction term in the Flory-Huggins model of polymer solutions. Mechanical tests reveal that the elastic modulus is practically unaffected by the presence of calcium ions, indicating that ion bridging does not create permanent cross-links. At the microscopic level, small-angle neutron scattering shows that polyacrylic acid and DNA gels exhibit qualitatively similar structural features in spite of important differences (e.g. chain flexibility and chemical composition) between the two polymers. The main effect of calcium ions is that the neutron scattering intensity increases due to the decrease in the osmotic modulus. At the level of the counterion cloud around dissolved macroions, anomalous small-angle X-ray scattering measurements made on DNA indicate that divalent ions form a cylindrical sheath enveloping the chain, but they are not localized. Small-angle neutron scattering and small-angle X-ray scattering provide complementary information on the structure and interactions in polymer solutions and gels.

  6. Asymmetric hydration structure around calcium ion restricted in micropores fabricated in activated carbons

    Science.gov (United States)

    Ohkubo, Takahiro; Kusudo, Tomoko; Kuroda, Yasushige

    2016-11-01

    The adsorbed phase and hydration structure of an aqueous solution of Ca(NO3)2 restricted in micropores fabricated in activated carbons (ACs) having different average pore widths (0.63 and 1.1 nm) were investigated with the analysis of adsorption isotherms and x-ray absorption fine structure (XAFS) spectra on Ca K-edge. The adsorbed density of Ca2+ per unit micropore volume in the narrower pore was higher than in the wider pore, while the adsorbed amount per unit mass of carbon with the narrower pore was half of the amount of ACs with the larger pore. On the other hand, variations in the bands assigned to double-electron (KM I) and 1s  →  3d excitations in XAFS spectra demonstrate the formation of a distorted hydration cluster around Ca2+ in the micropore, although the structural parameters of hydrated Ca2+ in the micropores were almost consistent with the bulk aqueous solution, as revealed by the analysis of extended XAFS (EXAFS) spectra. In contrast to the hydration structure of monovalent ions such as Rb+, which generally presents a dehydrated structure in smaller than 1 nm micropores in ACs, the present study clearly explains that the non-spherically-symmetric structure of hydrated Ca2+ restricted in carbon micropores whose sizes are around 1 nm is experimentally revealed where any dehydration phenomena from the first hydration shell around Ca2+ could not be observed.

  7. Effect of Additives on the Morphology of the Hydrated Product and Physical Properties of a Calcium Phosphate Cement

    Institute of Scientific and Technical Information of China (English)

    Xiupeng WANG; Jiandong YE; Yingjun WANG

    2008-01-01

    The morphology of a hydrated calcium phosphate cement (CPC) doped with several normally used additives was investigated by scanning electron microscopy (SEM) and the compressive strength of the cement was determined in this study. The hydrated products of CPC without additives was rod-like hydroxyapatite (HA) grains with around 2-5 μm in length and 100 nm in width. The addition of Sr obviously decreased the crystal size of the rod-like grains. CPCs containing carbonate, collagen and gelatin showed flake-like crystal morphology. Crylic acid-containing CPC presented flocculus-like structure. And malic acid-containing CPC exhibited oriented flake-like structure. The X-ray diffraction (XRD) analysis showed that the additives used in this study did not alter the hydration products of the cement. The compressive strength tests indicated that the compressive strength of the cement with rod-like morphology HA crystals was much higher than that of the cement with flake-like morphology HA crystals, and the cement with oriented flake-like morphology HA crystals .exhibited the poorest compressive strength.

  8. Preparation of MnO2and calcium silicate hydrate from electrolytic manganese residue and evaluation of adsorption properties

    Institute of Scientific and Technical Information of China (English)

    李昌新; 钟宏; 王帅; 薛建荣; 武芳芳; 张振宇

    2015-01-01

    Electrolytic manganese residue (EMR), a high volume byproduct resulting from the electrolytic manganese industry, was used as a cheap and abundant chemical source for preparing MnO2 and EMR-made calcium silicate hydrate (EMR-CSH). The MnO2 is successfully synthesized from the metal cations extracted from EMR, which can effectively recycle the manganese in the EMR. By the combination of XRD, SEM and EDX analysis, the as-prepared MnO2 is found to exhibit a single-phase with the purity of 90.3%. Furthermore, EMR-CSH is synthesized from EMR via hydrothermal method. Based on the detailed analyses using XRD, FT-IR, FE-SEM, EDX and BET surface area measurement, the product synthesized under the optimum conditions (pH 12.0 and 100 °C) is identified to be a calcium silicate hydrate with a specific surface area of 205 m2/g incorporating the slag-derived metals (Al and Mg) in its structure. The as-synthesized material shows good adsorption properties for removal of Mn2+ and phosphate ions diluted in water, making it a promising candidate for efficient bulk wastewater treatment. This conversion process, which enables us to fabricate two different kinds of valuable materials from EMR at low cost and through convenient preparation steps, is surely beneficial from the viewpoint of the chemical and economical use of EMR.

  9. Hydrate film growth at the interface between gaseous CO2 and sodium chloride solution

    Institute of Scientific and Technical Information of China (English)

    PENG BaoZi; SUN ChangYu; CHEN GuangJin; YANG LanYing; ZHOU Wei; PANG WeiXin

    2009-01-01

    Greenhouse gas CO2 has become a serious problem for human beings. The hydrate technology has been considered as a possible approach to sequester CO2. In this work, the lateral growth rates of a CO2 hydrate film in aqueous NaCl solutions of different concentrations were measured by means of suspending a single gas bubble in liquid. The results show that the film growth rates depended on not only the driving force, but also the NaCl concentration, and the film growth rates decreased with the increasing NaCl concentration. The simple relationship vf∝△T6/2 could be used to correlate the hydrate film growth rate of a CO2 + NaCl + water system by introducing a NaCl concentration-dependent coef-ficient. The film thickness was investigated experimentally and evaluated theoretically; the results show that it became thicker at a higher NaCl concentration when the temperature and pressure were specified. In addition, a series of interesting phenomena, such as the occurrence of double hydrate films, were displayed and discussed.

  10. Hydrate film growth at the interface between gaseous CO2 and sodium chloride solution

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Greenhouse gas CO2 has become a serious problem for human beings. The hydrate technology has been considered as a possible approach to sequester CO2. In this work, the lateral growth rates of a CO2 hydrate film in aqueous NaCl solutions of different concentrations were measured by means of suspending a single gas bubble in liquid. The results show that the film growth rates depended on not only the driving force, but also the NaCl concentration, and the film growth rates decreased with the increasing NaCl concentration. The simple relationship vf ∝ΔT5/2 could be used to correlate the hydrate film growth rate of a CO2 + NaCl + water system by introducing a NaCl concentration-dependent coefficient. The film thickness was investigated experimentally and evaluated theoretically; the results show that it became thicker at a higher NaCl concentration when the temperature and pressure were specified. In addition, a series of interesting phenomena, such as the occurrence of double hydrate films, were displayed and discussed.

  11. Development of voltage-dependent calcium, sodium, and potassium currents in Xenopus spinal neurons.

    Science.gov (United States)

    O'Dowd, D K; Ribera, A B; Spitzer, N C

    1988-03-01

    Action potentials of embryonic nerve and muscle cells often have a different ionic dependence and longer duration than those of mature cells. The action potential of spinal cord neurons from Xenopus laevis exhibits a prominent calcium component at early stages of development that diminishes with age as the impulse becomes principally sodium dependent. Whole-cell voltage-clamp analysis has been undertaken to characterize the changes in membrane currents during development of these neurons in culture. Four voltage-dependent currents of cells were identified and examined during the first day in vitro, when most of the change in the action potential occurs. There are no changes in the peak density of the calcium current (ICa), its voltage dependence, or time to half-maximal activation; a small increase in inactivation is apparent. The major change in sodium current (INa) is a 2-fold increase in its density. In addition, more subtle changes in the kinetics of the macroscopic sodium current were noted. The peak density of voltage-dependent potassium current (IKv) increases 3-fold, and this current becomes activated almost twice as fast. No changes were noted in the extent of its inactivation. The calcium-dependent potassium current (IKc) consists of an inactivating and a sustained component. The former increases 2-fold in peak current density, and the latter increases similarly at less depolarized voltages. The changes in these currents contribute to the decrease in duration and the change in ionic dependence of the impulse.

  12. Atomic mobility in calcium and sodium aluminosilicate melts at 1200 °C

    Science.gov (United States)

    Claireaux, Corinne; Chopinet, Marie-Hélène; Burov, Ekaterina; Gouillart, Emmanuelle; Roskosz, Mathieu; Toplis, Michael J.

    2016-11-01

    Multicomponent chemical diffusion in liquids of the quaternary system CaO-Na2O-Al2O3-SiO2 has been studied. Diffusion-couple experiments were performed at 1200 °C and for different durations around a central composition of 64.5 wt%SiO2, 13.3 wt%Na2O, 10.8 wt%CaO, 11.4 wt%Al2O3, leading to an overconstrained system of equations that was used to determine the diffusion matrix of the system. The dominant eigenvector of the diffusion matrix was found to correspond to the exchange between sodium and calcium, consistent with the results of the ternary soda-lime silica system. On the other hand, neither of the other two eigenvectors of the diffusion matrix of the quaternary system involve sodium. Given a factor of 50 between the dominant and second eigenvalue, diffusion couples involving the exchange of sodium oxide and a network-forming oxide result in strong uphill diffusion of calcium. The second eigenvector, corresponding to the exchange of calcium with silicon and aluminum, is close to the dominant eigenvector found in previous studies of ternary alkaline-earth aluminosilicate systems. Our results therefore suggest that simple systems may be used to understand diffusive mechanisms in more complex systems.

  13. Alendronate sodium hydrate (oral jelly for the treatment of osteoporosis: review of a novel, easy to swallow formulation

    Directory of Open Access Journals (Sweden)

    Imai K

    2013-06-01

    Full Text Available Kazuhiro Imai Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan Abstract: Osteoporosis is a skeletal disorder characterized by loss of bone mass, decreased bone strength, and an increased risk of bone fracture. The disease progresses with age, especially in postmenopausal women. Japan is one of the most rapidly aging societies worldwide. Japanese individuals over 65 years of age constituted 23.0% of the population in 2010 and 25.1% to 25.2% as of 2013. The estimated number of people with osteoporosis in Japan is currently 13 million. Bisphosphonates increase bone mineral density by inhibiting osteoclast-mediated bone resorption, thereby reducing the risk of fractures. Alendronate sodium hydrate (alendronate is a bisphosphonate that potently inhibits bone resorption and is used to treat osteoporosis. Sufficient water is required to take an alendronate oral tablet; insufficient water could result in digestive system diseases, such as esophageal ulceration. Elderly patients with swallowing difficulty may choke on the tablet. Taking a tablet with oral jelly is a method to prevent digestive system disease and reduce the choking hazard. Once-weekly alendronate oral jelly was approved in 2012 by the Ministry of Health, Labour, and Welfare of Japan as the world's first drug for osteoporosis in a jelly formulation. It consists of a jelly portion and an air portion. The jelly formulation is smoothly discharged by pushing the air portion. Therefore, elderly patients with physical disabilities are able to easily take all of the jelly formulation from the package. In this review, this new formulation of alendronate sodium hydrate (oral jelly is introduced and discussed in terms of osteoporosis treatment. This new formulation provides an alternative so that patients may select a method of dosing tailored to their preferences. Management of osteoporosis involves assessing fracture risk and preventing

  14. An Empirical Model for Build-Up of Sodium and Calcium Ions in Small Scale Reverse Osmosis

    Directory of Open Access Journals (Sweden)

    Subriyer Nasir

    2011-05-01

    Full Text Available A simple models for predicting build-up of solute on membrane surface were formulated in this paper. The experiments were conducted with secondary effluent, groundwater and simulated feed water in small-scale of RO with capacity of 2000 L/d. Feed water used in the experiments contained varying concentrations of sodium, calcium, combined sodium and calcium. In order to study the effect of sodium and calcium ions on membrane performance, experiments with ground water and secondary effluent wastewater were also performed. Build-up of salts on the membrane surface was calculated by measuring concentrations of sodium and calcium ions in feed water permeate and reject streams using Atomic Absorption Spectrophotometer (AAS. Multiple linear regression of natural logarithmic transformation was used to develop the model based on four main parameters that affect the build-up of solute in a small scale of RO namely applied pressure, permeate flux, membrane resistance, and feed concentration. Experimental data obtained in a small scale RO unit were used to develop the empirical model. The predicted values of theoretical build-up of sodium and calcium on membrane surface were found in agreement with experimental data. The deviation in the prediction of build-up of sodium and calcium were found to be 1.4 to 10.47 % and 1.12 to 4.46%, respectively.

  15. Microstructure, Porosity and Mechanical Property Relationships of Calcium-Silicate-Hydrate

    Science.gov (United States)

    1991-02-15

    34Hydrothermal Synthesis of Clinoptilolite and Comments on the Assemblage of Phillipsite- clinoptilolite -mordenite," Pergamon Press, Oxford and New York, pp...35 Discussion................................................. 48 Part 1IH. Zeolite Synthesis ...52 Previous Glass Hydration Work ... 53 Zeolite Synthesis from Synthetic Glasses 10 and I1 I .. 55 Results............................56 S Zeolite

  16. Evaluation of the efficacy of hydrated sodium aluminosilicate in the prevention of aflatoxin-induced hepatic cancer in rainbow trout

    Directory of Open Access Journals (Sweden)

    Sarah Arana

    2011-09-01

    Full Text Available The use of aluminum silicates for decontaminating animal feed containing aflatoxins has yielded encouraging results in chicken and turkey poults. In contrast, very few studies have tested these substances in aquaculture. In this work, we investigated the efficacy of a trout diet containing 0.5% hydrated sodium aluminosilicate (HSAS in protecting against contamination with aflatoxin B1. Trout were reared on these diets for one year and the experimental groups were examined monthly for hepatic presumptive preneoplastic and neoplastic lesions. Regardless of the presence of HSAS, all of the fish that received aflatoxin in their diet have shown hepatic lesions indicative of a carcinogenic process, presenting also the development of cancer in some fish. The concentration of HSAS used in this study was ineffective in preventing the onset of hepatic lesions induced by aflatoxin B1 in rainbow trout.

  17. Mechanistic study and modeling of radionuclides retention by the hydrated calcium silicates (HCS) of cements; Etude mecanistique et modelisation de la retention de radionucleides par les silicates de calcium hydrates (CSH) des ciments

    Energy Technology Data Exchange (ETDEWEB)

    Pointeau, I

    2000-09-01

    This work attempts to investigate the modelling of radioisotopes (Cs{sup +}, Pb{sup 2+}, Eu{sup 3+}) immobilization in cement matrix, in the frame of the design of engineered barrier of a deep radwaste repository. The model development concept consists of three major steps: - surface chemistry modelling of the calcium silicate hydrate CSH, used to simulate hydrated cement behaviour; - solid analysis of the batch sorption experiments: identification of the uptake mechanism; - both previous steps are used, with isotherm data, in the modelling of the radioisotopes immobilization in the CSH matrix. Final results: (all modelling are available for all the range of studied Ca/Si ratios and have been validated with predictive calculations). - A thermodynamic modelling of the CSH surface chemistry has been developed. The labile calcium and proton sorption constants on silanol sites (>SiOH) have been extracted. - Cs{sup +} is sorbed on two sites. The silanol site (weak site) has a high site density (10 sites.nm{sup -2}), which accounts for the CSH unsaturation in high [CS{sup +}]. A strong site is also identified. - Pb{sup 2+} immobilization in CSH matrix is modelled with surface equilibria and solubility equilibrium. - Eu{sup 3+} fixation has been investigated with solid analysis: Site-Selective anti Time-Resolved Luminescence Spectroscopy, XPS and SEM-EDS. Eu{sup 3+} thus does not precipitate in CSH water but is sorbed on the CSH surface (high hydroxylated environment). Europium is also (minority site) inserted in the CSH framework. (author)

  18. Effects of temperature and sodium carboxylate additives on mineralization of calcium oxalate in silica gel systems

    Institute of Scientific and Technical Information of China (English)

    OUYANG Jianming; DENG Suiping; LI Xiangping; TAN Yanhua; Bernd Tieke

    2004-01-01

    The effects of temperature and multifunctional sodium carboxylate additives on the phase composition and morphology of calcium oxalate (CaOxa) crystals grown in silica gel system were systematically investigated using scanning electron microscopy (SEM), powder X-ray diffraction (XRD), and Fourier-transform infrared spectra (FT-IR). The sodium carboxylates investigated include: monocarboxylate sodium acetate (NaAc), disodium tartrate (Na2tart), trisodium citrate (Na3cit), and the disodium salt of ethylenediaminetetraacetic acid (Na2edta). The temperature range was from 7℃ to 67℃. The crystallization temperature affects the phase compositions, the growth rate, and the morphology of CaOxa. First, the logarithm of the percentage of calcium oxalate dihydrate (COD) formed at a certain temperature (T) is proportional to the reciprocal of temperature (1/T). Second, the weight of CaOxa crystals decreases as decreasing the temperature. At a given temperature, the ability of the sodium carboxylates to induce COD follows the order: Na2edta > Na3cit > Na2tart >> NaAc. Third, the multicarboxylates can decrease the surface area of calcium oxalate monohydrate (COM).It makes the edges and tips of COM crystals blunt and oval. All the three changes, an increase of the content of COD, a decrease of the weight of CaOxa crystals, and a decrease of the surfacearea of COM crystals,can inhibit the formation of CaOxa stones. These results support the clinical use of citrates and may be helpful in elucidating the mechanisms of the formation of CaOxa calculus.

  19. Porous bioceramic bead prepared by calcium phosphate with sodium alginate gel and PE powder

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Y.C. [Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Ho, M.L.; Wu, S.C. [Department of Physiology, Kaohsiung Medical University, 100, Shih-Chuan 1st Rd, Kaohsiung 807, Taiwan (China); Hsieh, H.S. [Faculty of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100, Shih-Chuan 1st Rd, Kaohsiung 807, Taiwan (China); Wang, C.K. [Faculty of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100, Shih-Chuan 1st Rd, Kaohsiung 807, Taiwan (China)], E-mail: ckwang@kmu.edu.tw

    2008-08-01

    The porous calcium phosphate beads were made by an alginate-interacting Ca ions mechanism on addition of a pore-forming polyethylene (PE) powder at 1250 deg. C sintering. The nature of the powders and porous beads were analyzed through X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR) and heavy metal analysis by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The porous beads size and the pore microstructure characteristics were determined using scanning electron microscopy (SEM). Beside, the porosity analysis was evaluated out using an Archimedes' principle and mercury porosimetry. Then, the sodium ampicillin was penetrated/adsorbed onto calcium-deficient hydroxyapatite porous beads, and was subsequently released in PBS. No matter whether the raw material was HAp, TCP or biphase, the Ca{sub 9}(HPO{sub 4})(PO{sub 4}){sub 5}OH phase (CDHA) was formed only after sintering. Porous beads of various calcium phosphates with different sizes (0.9-1.1 mm) and pore size groups (60-120 {mu}m and lower than 10 {mu}m) were appeared. The release kinetics of sodium ampicillin from these porous beads have indicated the possibility of using these materials as possible carriers for drug delivery.

  20. Removal of methyl orange from aqueous solutions through adsorption by calcium aluminate hydrates.

    Science.gov (United States)

    Zhang, Ping; Wang, Tianqi; Qian, Guangren; Wu, Daishe; Frost, Ray L

    2014-07-15

    Methyl orange (MO) is a kind of anionic dye and widely used in industry. In this study, tricalcium aluminate hydrates (Ca-Al-LDHs) are used as an adsorbent to remove methyl orange (MO) from aqueous solutions. The resulting products were studied by X-ray diffraction (XRD), infrared spectroscopy (MIR), thermal analysis (TG-DTA) and scanning electron microscope (SEM). The XRD results indicated that the MO molecules were successfully intercalated into the tricalcium aluminate hydrates, with the basal spacing of Ca-Al-LDH expanding to 2.48 nm. The MIR spectrum for CaAl-MO-LDH shows obvious bands assigned to the N=N, N=H stretching vibrations and S=O, SO3(-) group respectively, which are considered as marks to assess MO(-) ion intercalation into the interlayers of LDH. The overall morphology of CaAl-MO-LDH displayed a "honey-comb" like structure, with the adjacent layers expanded.

  1. Highly improved hydration level sensing properties of copper oxide films with sodium and potassium doping

    Science.gov (United States)

    Sahin, Bünyamin; Kaya, Tolga

    2016-01-01

    In this study, un-doped, Na-doped, and K-doped nanostructured CuO films were successfully synthesized by the successive ionic layer adsorption and reaction (SILAR) technique and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and current-voltage (I-V) measurements. Structural properties of the CuO films were affected from doping. The XRD pattern indicates the formation of polycrystalline CuO films with no secondary phases. Furthermore, doping affected the crystal structure of the samples. The optimum conductivity values for both Na and K were obtained at 4 M% doping concentrations. The comparative hydration level sensing properties of the un-doped, Na-doped, and K-doped CuO nanoparticles were also investigated. A significant enhancement in hydration level sensing properties was observed for both 4 M% Na and K-doped CuO films for all concentration levels. Detailed discussions were reported in the study regarding atomic radii, crystalline structure, and conductivity.

  2. Cation Hydration Constants by Proton NMR: A Physical Chemistry Experiment.

    Science.gov (United States)

    Smith, Robert L.; And Others

    1988-01-01

    Studies the polarization effect on water by cations and anions. Describes an experiment to illustrate the polarization effect of sodium, lithium, calcium, and strontium ions on the water molecule in the hydration spheres of the ions. Analysis is performed by proton NMR. (MVL)

  3. Scientific Opinion on the safety assessment of the active substances iron powder, activated carbon, calcined kaolin, sodium chloride, polyacrylic acid, sodium salt, crosslinked and calcium chloride, for use as active system in food contact materials

    National Research Council Canada - National Science Library

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF)

    2014-01-01

    ..., calcined kaolin, sodium chloride, polyacrylic acid, sodium salt, crosslinked and calcium chloride, used in mixture which is packed into labels, for absorbing oxygen from the headspace surrounding packed food...

  4. Neuroprotective activity of stiripentol with a possible involvement of voltage-dependent calcium and sodium channels.

    Science.gov (United States)

    Verleye, Marc; Buttigieg, Dorothée; Steinschneider, Rémy

    2016-02-01

    A growing body of data has shown that recurrent epileptic seizures may be caused by an excessive release of the excitatory neurotransmitter glutamate in the brain. Glutamatergic overstimulation results in massive neuronal influxes of calcium and sodium through N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainic acid glutamate subtype receptors and also through voltage-gated calcium and sodium channels. These persistent and abnormal sodium and calcium entry points have deleterious consequences (neurotoxicity) for neuronal function. The therapeutic value of an antiepileptic drug would include not only control of seizure activity but also protection of neuronal tissue. The present study examines the in vitro neuroprotective effects of stiripentol, an antiepileptic compound with γ-aminobutyric acidergic properties, on neuronal-astroglial cultures from rat cerebral cortex exposed to oxygen-glucose deprivation (OGD) or to glutamate (40 µM for 20 min), two in vitro models of brain injury. In addition, the affinity of stiripentol for the different glutamate receptor subtypes and the interaction with the cell influx of Na(+) and of Ca(2+) enhanced by veratridine and NMDA, respectively, are assessed. Stiripentol (10-100 µM) included in the culture medium during OGD or with glutamate significantly increased the number of surviving neurons relative to controls. Stiripentol displayed no binding affinity for different subtypes of glutamate receptors (IC50  >100 µM) but significantly blocked the entry of Na(+) and Ca(2+) activated by veratridine and NMDA, respectively. These results suggest that Na(+) and Ca(2+) channels could contribute to the neuroprotective properties of sitiripentol.

  5. The Effect of Calcium Sodium Phosphosilicate on Dentin Hypersensitivity: A Systematic Review and Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Mengjiao Zhu

    Full Text Available To investigate the effect of calcium sodium phosphosilicate (CSPS in treating dentin hypersensitivity (DH and to compare this effect to that of a negative (placebo control.Several databases, including Medline, EMBASE, Web of Science, The Cochrane Library, and the Chinese Biomedical Literature Database, were searched to identify relevant articles published through January 2015; grey literature (i.e., academic literature that is not formally published was also searched. Two authors performed data extraction independently and jointly using data collection forms. The primary outcome was the DH pain response to routine activities or to thermal, tactile, evaporative, or electrical stimuli, and the secondary outcome was the side effects of CSPS use. Each study was evaluated using the Cochrane Collaboration tool for assessing risk bias. Meta-analysis of studies with the same participant demographics, interventions, controls, assessment methods and follow-up periods was performed. The Grading of Recommendations Assessment Development and Evaluation System was used to assess the quality of the evidence and the risk of bias across studies.Meta-analysis demonstrated that toothpaste containing 5% CSPS was more effective than the negative control at relieving dentin sensitivity, with the level of evidence classified as "moderate". In addition, prophylaxis paste containing 15% calcium sodium phosphosilicate was favored over the negative control at reducing post-periodontal therapy hypersensitivity, with the level of evidence categorized as "low". Only two studies reported side effects of CSPS use.The majority of studies found that calcium sodium phosphosilicate was more effective than the negative control at alleviating DH. Because strong evidence is scarce, high-quality, well-designed clinical trials are required in the future before definitive recommendations can be made.

  6. A theoretical and experimental study of calcium, iron, zinc, cadmium, and sodium ions absorption by aspartame.

    Science.gov (United States)

    Mahnam, Karim; Raisi, Fatame

    2017-03-01

    Aspartame (L-Aspartyl-L-phenylalanine methyl ester) is a sweet dipeptide used in some foods and beverages. Experimental studies show that aspartame causes osteoporosis and some illnesses, which are similar to those of copper and calcium deficiency. This raises the issue that aspartame in food may interact with cations and excrete them from the body. This study aimed to study aspartame interaction with calcium, zinc, iron, sodium, and cadmium ions via molecular dynamics simulation (MD) and spectroscopy. Following a 480-ns molecular dynamics simulation, it became clear that the aspartame is able to sequester Fe(2+), Ca(2+), Cd(2+), and Zn(2+) ions for a long time. Complexation led to increasing UV-Vis absorption spectra and emission spectra of the complexes. This study suggests a potential risk of cationic absorption of aspartame. This study suggests that purification of cadmium-polluted water by aspartame needs a more general risk assessment.

  7. Endurance Exercise Training Reduces Cardiac Sodium/Calcium Exchanger Expression in Animals Susceptible to Ventricular Fibrillation

    Directory of Open Access Journals (Sweden)

    Monica eKukielka

    2011-02-01

    Full Text Available Aim: Increased sodium/calcium exchanger activity (NCX1, an important regulator of cardiomyocyte cystolic calcium may provoke arrhythmias. Exercise training can decrease NCX1 expression in animals with heart failure improving cytosolic calcium regulation, and could thereby reduce the risk for ventricular fibrillation (VF. Methods: To test this hypothesis, a 2-min coronary occlusion was made during the last min. of exercise in dogs with healed myocardial infarctions; 23 had VF (S, susceptible and 13 did not (R, resistant. The animals were randomly assigned to either 10-wk exercise training (progressively increasing treadmill running (S n = 9; R n = 8 or 10-wk sedentary (S n = 14; R n = 5 groups. At the end of the 10-wk period, the exercise + ischemia test provoked VF in sedentary but not trained susceptible dogs. On a subsequent day, cardiac tissue was harvested and NCX1 protein expression was determined by Western blot. Results: In the sedentary group, NCX1 expression was significantly (ANOVA, P<0.05 higher in susceptible compared to resistant dogs. In contrast, NCX1 levels were similar in the exercise trained resistant and susceptible animals. Conclusion: These data suggest that exercise training can restore a more normal NCX1 level in dogs susceptible to ventricular fibrillation, improving cystolic calcium regulation and could thereby reduce the risk for sudden death following myocardial infarction.

  8. Comparative equilibrium studies of sorption of Pb(II) ions by sodium and calcium alginate

    Institute of Scientific and Technical Information of China (English)

    KHOTIMCHENKO Maxim; KOVALEV Valeri; KHOTIMCHENKO Yuri

    2008-01-01

    The absorption of Pb(II) ions from aqueous solution by different alginate compounds was studied in a batch sorption system. Water soluble sodium alginate and insoluble calcium alginate beads were investigated. The lead-binding capacity of both alginate compounds was highest within the pH range 6-8. The binding capacities and rates of Pb(II) ions by alginate compounds were evaluated. The Langmuir, Freundlich and Bruneaur, Emmet and Teller (BET) sorption models were applied to describe the isotherms and isotherm constants. Sorption isothermal data could be well interpreted by the Langmuir model. The results obtained through the study suggest that alginate compounds are favorable sorbents. The largest amount of Pb(II) ions were bound by sodium alginate although the difference between two compounds was slight. Therefore, alginate substances may be considered as alternative for sorption and removal of Pb(II) ions from wastewaters.

  9. Modifications on the properties of a calcium phosphate cement by additions of sodium alginate

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, W.T.; Fernandes, J.M.; Vieira, R.S.; Thurmer, M.B.; Santos, L.A., E-mail: trajano@ufrgs.br, E-mail: julianafernandes2@yahoo.com.br, E-mail: rsvieira.eng@gmail.com, E-mail: monicathurmer@yahoo.com.br, E-mail: luis.santos@ufrgs.br [Universidade Federal do Rio Grande do Sul (PPG/LABIOMAT/UFRGS), RS (Brazil)

    2012-07-01

    The Calcium Phosphate Cement (CPC) are bone substitutes with great potential for use in orthopedics, traumatology and dentistry due to its biocompatibility, bioactivity and osteoconductivity, and form a paste that can be easily shaped and placed into the surgical site. However, CPCs have low mechanical strength, which equals the maximum mechanical strength of trabecular bone. In order to assess the strength and time to handle a CPC composed primarily of alpha phase, were added sodium alginate (1%, 2% and 3% wt) and an accelerator in an aqueous solution. The cement powder was mixed with liquid of setting, shaped into specimens and evaluated for apparent density and porosity by Archimedes method, X-ray diffraction and compressive strength. A significant increase in compressive strength by adding sodium alginate was verified. (author)

  10. Human water, sodium, and calcium regulation during space flight and exercise

    Science.gov (United States)

    Doty, S. E.; Seagrave, R. C.

    2000-05-01

    When one is exposed to microgravity, fluid which is normally pooled in the lower extremities is redistributed headward and weight bearing bones begin to demineralize due to reduced mechanical stresses. The kidney, which is the primary regulator of body fluid volume and composition, responds to the fluid shift and bone demineralization by increasing the urinary output of water, sodium, and calcium. This research involves developing a mathematical description of how water and electrolytes are internally redistributed and exchanged with the environment during space flight. This model consequently involves kidney function and the associated endocrine system. The model agrees well with actual data, including that a low sodium diet can prevent bone demineralization. Therefore, assumptions made to develop the model are most likely valid. Additionally, various levels of activity are also considered in the model since exercise may help to eliminate some of the undesired effects of space flight such as muscle atrophy and bone demineralization.

  11. Variable Temperature Infrared Spectroscopy Investigations of Benzoic Acid Desorption from Sodium and Calcium Montmorillonite Clays.

    Science.gov (United States)

    Nickels, Tara M; Ingram, Audrey L; Maraoulaite, Dalia K; White, Robert L

    2015-12-01

    Processes involved in thermal desorption of benzoic acid from sodium and calcium montmorillonite clays are investigated by using variable temperature diffuse reflection Fourier transform infrared spectroscopy (DRIFTS). By monitoring the temperature dependence of infrared absorbance bands while heating samples, subtle changes in molecular vibrations are detected and employed to characterize specific benzoic acid adsorption sites. Abrupt changes in benzoic acid adsorption site properties occur for both clay samples at about 125 °C. Difference spectra absorbance band frequency variations indicate that adsorbed benzoic acid interacts with interlayer cations through water bridges and that these interactions can be disrupted by the presence of organic anions, in particular, benzoate.

  12. The effects of citric acid on the hydration of calcium phosphate cement

    Institute of Scientific and Technical Information of China (English)

    DAI Hong-lian; YAN Yu-hua; WANG You-fa; LI Shi-pu

    2001-01-01

    @@ INTRODUCTION Calcium phosphate cements (CPC) overcome the practical disadvantages of blocks or granulesl can be handled as a paste and sit in situ. Their structure and composition close to that of HAP make them biocompatible materials. 2 The conventional calcium phosphate cement had some problems such as long setting time (30~60 min) and low compressive strength, etc. In our system, an α-TCP/TTCP powder mixture was mixed with water containing citric acid to control the setting time and compressive strength. In this paper, the effects of various concentration citric acid solutions on the properties of the cement are reported.

  13. Molecular Simulation Models of Carbon Dioxide Intercalation in Hydrated Sodium Montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Myshakin, Evgeniy [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Saidi, Wissam [Univ. of Pittsburgh, PA (United States); Romanov, Vyacheslav [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Cygan, Randall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jordan, Kenneth [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Univ. of Pittsburgh, PA (United States); Guthrie, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-22

    In this study, classical molecular dynamics simulations and density functional theory (DFT)-based molecular dynamics are used to elucidate the process of CO2 intercalation into hydrated Na-montmorillonite at P-T conditions relevant to geological formations suitable for CO2 storage. Of particular interest are the structural and transport properties of interlayer species after CO2 intercalation. The conducted simulations allowed the research team to quantify expansion/contraction of smectite as a function of CO2 and H2O compositions. The resulting swelling curves can be used to gauge the amount of stored CO2, compare it to the experiment, and estimate changes in geomechanical properties of the storage formation. The obtained results showed that the infrared signal of the asymmetric stretch vibration of CO2 molecule is extremely sensitive to the solvent environment. The extent of the frequency shift relative to the gas-phase value can be used to probe hydration level in the interlayer with intercalated CO2. Interaction of supercritical CO2 with brine in deep geological formations promotes an increase of hydrophobicity of clay surfaces. As a result of wettability alteration, estimated diffusion constants of CO2 and H2O increase with the increased CO2 load; this can contribute to faster migration of CO2 throughout the formation.

  14. Opposing regulation of histamine-induced calcium signaling by sodium selenite and ebselen via alterations of thiol redox status.

    Science.gov (United States)

    Zhang, Huihui; Zhong, Liangwei

    2010-01-25

    Elevated blood histamine plays a role in the pathogenesis of atherosclerosis. Calcium signaling mediates histamine action in endothelial cells. Selenium (Se) is a dietary essential trace element for humans. Se compounds in different oxidation states were found to exhibit an opposing effect on the histamine-induced calcium signaling in the ECV304 cell line. When Se in the form of sodium selenite was added in the cell culture, the reactivity of the histamine H(1)-receptor was increased as reported in our previous paper. We here show that as a culture supplement, sodium selenite enhanced the activity of selenoprotein thioredoxin reductase (TrxR) and the calcium response to histamine stimulation, which were reversed by treating the cells with gold thioglucose, a nucleophilic drug that selectively modifies thiolate/selenolate groups. Sodium selenite most likely caused a reductive shift in the thiol/disulfide redox balance through increasing TrxR activity. In contrast, when the cells were treated with Se in the form of ebselen, a thiol oxidant with peroxidase-like activity, histamine-induced calcium release and calcium entry were significantly suppressed. This effect appeared related to the thiol-directed modification rather than the peroxidase-like activity of ebselen, because this inhibitory effect was not replicated by increasing cellular peroxidase activity. Thus, the opposing effects of sodium selenite and ebselen on histamine-induced calcium signaling are achieved, at least in part, through their opposite actions in modulating the thiol/disulfide redox state.

  15. Scientific Opinion on the safety and efficacy of vitamin C (ascorbic acid, sodium ascorbate, calcium ascorbate, ascorbyl palmitate, sodium calcium ascorbyl phosphate and sodium ascorbyl phosphate) as a feed additive for all animal species based on a dossier submitted by DSM Nutritional Products Ltd

    OpenAIRE

    2013-01-01

    Vitamin C is essential for primates, guinea pigs and fish. Vitamin C, in the form of ascorbic acid and its calcium and sodium salts, ascorbyl palmitate, sodium calcium ascorbyl phosphate and sodium ascorbyl phosphate, is safe for all animal species. Setting a maximum content in feed and water for drinking is not considered necessary. Data on the vitamin C consumption of consumers are based on the levels of vitamin C in foodstuffs, including food of animal origin, produced in accordance with c...

  16. Optical planar waveguide in sodium-doped calcium barium niobate crystals by carbon ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jin-Hua, E-mail: zhaojinhuazjh@gmail.com [School of Science, Shandong Jianzhu University, Jinan 250101 (China); Qin, Xi-Feng; Wang, Feng-Xiang; Fu, Gang; Wang, Hui-Lin [School of Science, Shandong Jianzhu University, Jinan 250101 (China); Wang, Xue-Lin [School of Physics, Key Laboratory of Particle Physics and Particle Irradiation, Ministry of Education, and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)

    2013-07-15

    There is great interest in niobate crystals which belong to the tetragonal tungsten bronze (TTB) families owing to their intriguing properties. As one representative of such crystals, CBN (calcium barium niobate) has attracted rapidly growing attention. Because it has a higher Curie temperature than SBN (strontium barium niobate), possesses outstanding ferroelectric and it possesses optical properties. In addition, doped with sodium, CBN will show a higher Curie temperature than pure CBN. We report on the fabrication and characterization of optical planar waveguide in x-cut sodium-doped calcium barium niobate crystal by using C ion implantation. The guided-mode properties at the wavelength of 633 and 1539 nm are investigated through prism-coupling measurements, respectively. By applying direct end-face coupling arrangement, the near-field optical intensity distribution of waveguide modes is measured at 633 nm. For comparison, the modal profile of the same guided mode is also numerically calculated by the finite difference beam-propagation method via computer software BeamPROP. The transmission spectra of the waveguide before and after ion implantation treatments were investigated also. Our experiment results reveal that the waveguide could propagate light with transverse magnetic polarized direction only and it is assumed that the polarization selectivity of CBN crystal may responsible for this phenomenon.

  17. Calcium sulfoaluminate (Ye'elimite) hydration in the presence of gypsum, calcite, and vaterite

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Craig W. [Department of Civil and Environmental Engineering, University of California, Berkeley, CA (United States); Telesca, Antonio [School of Engineering, University of Basilicata, Potenza (Italy); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA (United States)

    2014-11-15

    Six calcium sulfoaluminate-based cementitious systems composed of calcium sulfoaluminate, calcite, vaterite, and gypsum were cured as pastes and mortars for 1, 7, 28 and 84 days. Pastes were analyzed with X-ray diffraction, thermogravimetric and differential thermal analyses. Mortars were tested for compressive strength, dimensional stability and setting time. Furthermore, pastes with a water/cementitious material mass ratio of 0.80 were tested for heat evolution during the first 48 h by means of isothermal conduction calorimetry. It has been found that: (1) both calcite and vaterite reacted with monosulfoaluminate to give monocarboaluminate and ettringite, with vaterite being more reactive; (2) gypsum lowered the reactivity of both carbonates; (3) expansion was reduced by calcite and vaterite, irrespective of the presence of gypsum; and (4) both carbonates increased compressive strength in the absence of gypsum and decreased compressive strength less in the presence of gypsum, with vaterite's action more effective than that of calcite.

  18. Production and hydration of calcium sulfoaluminate-belite cements derived from aluminium anodising sludge

    OpenAIRE

    da Costa, E.B.; Rodríguez, E.D.; Bernal, S.; Provis, J. L.; Gobbo, L.A.; Kirchheim, A.P.

    2016-01-01

    Calcium sulfoaluminate-belite cement (CSAB) offers lower CO2 emissions in its production, compared with Portland cement. However, for the production of CSAB a high amount of alumina is required, and the scarcity and high cost of high-purity bauxite make these cements costly at present. In this study, the use of uncalcined aluminium anodising sludge (AAS) as the main source of alumina to produce CSAB clinkers, replacing bauxite, was assessed. The CSAB clinkers produced were mainly composed of ...

  19. Similarities and peculiarities between the crystal structures of the hydrates of sodium sulfate and selenate.

    Science.gov (United States)

    Kamburov, Stoyan; Schmidt, Horst; Voigt, Wolfgang; Balarew, Christo

    2014-08-01

    The crystal structures of the two hydrates Na2SeO4·10H2O and Na2SeO4·7.5H2O are studied for the first time. The structures of Na2SO4·10H2O and Na2SO4·7H2O are reinvestigated as a function of temperature with respect to the degree of disorder of the O atoms of SO4(2-) in the decahydrate and the O atom of water in the heptahydrate. For Na2SO4·10H2O, the unit site occupancy factor (SOF) of O atoms of SO4(2-) was determined at 120 K. After the temperature dependence of the lattice parameters was studied from 120 to 260 K, it was shown that SOF decreased from 1.0 at 120 K to 0.247 at room temperature. The interesting fact that two salts with different chemical compositions and different crystal structures (Na2SO4·7H2O, tetragonal, space group P4(1)2(1)2 and Na2SeO4·7.5H2O, monoclinic, space group C2/c) can act mutually as a crystal nucleus is accounted for by similarities in certain fragments of their crystal structures. This phenomenon is attributed to similarities between particular elements of their structures.

  20. X-ray diffraction: a powerful tool to probe and understand the structure of nanocrystalline calcium silicate hydrates.

    Science.gov (United States)

    Grangeon, Sylvain; Claret, Francis; Linard, Yannick; Chiaberge, Christophe

    2013-10-01

    X-ray diffraction (XRD) patterns were calculated and compared to literature data with the aim of investigating the crystal structure of nanocrystalline calcium silicate hydrates (C-S-H), the main binding phase in hydrated Portland cement pastes. Published XRD patterns from C-S-H of Ca/Si ratios ranging from ~ 0.6 to ~ 1.7 are fully compatible with nanocrystalline and turbostratic tobermorite. Even at a ratio close or slightly higher than that of jennite (Ca/Si = 1.5) this latter mineral, which is required in some models to describe the structure of C-S-H, is not detected in the experimental XRD patterns. The 001 basal reflection from C-S-H, positioned at ~ 13.5 Å when the C-S-H structural Ca/Si ratio is low (< 0.9), shifts towards smaller d values and sharpens with increasing Ca/Si ratio, to reach ~ 11.2 Å when the Ca/Si ratio is higher than 1.5. Calculations indicate that the sharpening of the 001 reflection may be related to a crystallite size along c* (i.e. a mean number of stacked layers) increasing with the C-S-H Ca/Si ratio. Such an increase would contribute to the observed shift of the 001 reflection, but fails to quantitatively explain it. It is proposed that the observed shift could result from interstratification of at least two tobermorite-like layers, one having a high and the other a low Ca/Si ratio with a basal spacing of 11.3 and 14 Å, respectively.

  1. Impact of sodium polyacrylate on the amorphous calcium carbonate formation from supersaturated solution.

    Science.gov (United States)

    Liu, J; Pancera, S; Boyko, V; Gummel, J; Nayuk, R; Huber, K

    2012-02-21

    A detailed in situ scattering study has been carried out on the formation of amorphous calcium carbonate (ACC) particles modulated by the presence of small amounts of sodium polyacrylate chains. The work is aiming at an insight into the modulation of ACC formation by means of two polyacrylate samples differing in their molecular weight by a factor of 50. The ACC formation process was initiated by an in situ generation of CO(3)(2-) ions via hydrolysis of 10 mM dimethylcarbonate in the presence of 10 mM CaCl(2). Analysis of the formation process by means of time-resolved small-angle X-ray and light scattering in the absence of any additives provided evidence for a monomer addition mechanism for the growth of ACC particles. ACC formation under these conditions sets in after a lag-period of some 350 s. In the presence of sodium polyacrylate chains, calcium polyacrylate aggregates are formed during the lag-period, succeeded by a modulated ACC growth in a second step. The presence of anionic polyacrylate chains changed the shape of the growing particles toward loose and less homogeneous entities. In the case of low amounts (1.5-7.5 mg/L) of the long chain additive with 97 kDa, the size of the aggregates is comparable to the size of the successively formed hybrid particles. No variation of the lag-period has been observed in this case. Use of the short chain additive with 2 kDa enabled increase of the additive concentration up to 100 mg/L and resulted in a significant increase of the lag-period. This fact, together with the finding that the resulting hybrid particles remained stable in the latter case, identified short chain sodium polyacrylates as more efficient modulators than long chain polyacrylates.

  2. Inhibition of collagen synthesis by select calcium and sodium channel blockers can be mitigated by ascorbic acid and ascorbyl palmitate

    OpenAIRE

    Ivanov, Vadim; Ivanova, Svetlana; KALINOVSKY, TATIANA; NIEDZWIECKI, ALEKSANDRA; Rath, Matthias

    2016-01-01

    Calcium, sodium and potassium channel blockers are widely prescribed medications for a variety of health problems, most frequently for cardiac arrhythmias, hypertension, angina pectoris and other disorders. However, chronic application of channel blockers is associated with numerous side effects, including worsening cardiac pathology. For example, nifedipine, a calcium-channel blocker was found to be associated with increased mortality and increased risk for myocardial infarction. In addition...

  3. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family

    CERN Document Server

    Kaufman, I; Tindjong, R; McClintock, P V E; Eisenberg, R S

    2013-01-01

    We use Brownian dynamics simulations to study the permeation properties of a generic electrostatic model of a biological ion channel as a function of the fixed charge Q_f at its selectivity filter. We reconcile the recently-discovered discrete calcium conduction bands M0 (Q_f=1e), M1 (3e), M2 (5e) with the set of sodium conduction bands L0 (0.5-0.7e), L1 (1.5-2e) thereby obtaining a completed pattern of conduction and selectivity bands v Q_f for the sodium-calcium channels family. An increase of Q_f leads to an increase of calcium selectivity: L0 (sodium selective, non-blocking channel) -> M0 (non-selective channel) -> L1 (sodium selective channel with divalent block) -> M1 (calcium selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L1 band is identified with the eukaryotic (DEKA) sodium channel, and L0 (speculatively) with the bacterial NaChBac channel. The scheme created is able to account for the experimentally observed mutation-induced ...

  4. Effect Of Ether Derivative Cellulose Polymers On Hydration, Erosion And Release Kinetics Of Diclofenac Sodium Matrix Tablets

    Directory of Open Access Journals (Sweden)

    Muhammad Akhlaq*1,2, Gul Majid Khan1 , Abdul Wahab1, Waqas Rabbani1, Abid Hussain1, Asif Nawaz1, & Alam Zeb1

    2011-09-01

    Full Text Available Objectives: The work aims to investigate the effect ofhydrophilic and hydrophobic polymers swelling and erosionon the release behaviour of DCL-Na from controlled matrixtablets prepared by direct compression and wet-granulationtechniques.Materials and Methods: Powder preformulation studies wereconducted. Tablets were prepared by direct compressiontechnique and their physicochemical properties wereevaluated. Drug-polymer interaction was analyzed by FTIRspectroscopy. The in-vitro drug release study was conductedusing phosphte buffer pH 7.4 as dissolution medium anddifferent kinetic parameters were applied.Results and Discussion: F-1 and F-5 containing ethycelluloseprepared by direct compression and wet granulationtechniques released 94 % and 84 % drug after 24hrs, while F-2and F-6 containing hydroxypropylmethylcellulose polymerprepared by direct compression and wet granulation released98.46 % and 91.25 % drug after within 24 hrs respectively.Ethylcellulose and hydroxypropylmethylcellulose based matrixtablets showed the best anomalous drug release behaviour,with the release exponents “ n ” ranging from 0.685 to 0.809.Conclusion: It has been concluded that ethylcellulose etherderivative polymer is used to prepare oral controlled releasematrix tablet of diclofenac sodium. Fickian drug diffusion,polymer hydration and erosion mechanisms occurredsimultaneously and were considered as the main drug releasecontrolling factors.

  5. Early age hydration of calcium sulfoaluminate (synthetic ye'elimite, ) in the presence of gypsum and varying amounts of calcium hydroxide

    KAUST Repository

    Hargis, Craig W.

    2013-06-01

    Suspensions of synthetic ye\\'elimite (C4A3S̄) in a saturated gypsum (CS̄H2) and calcium hydroxide (CH) solution were examined in-situ in a wet cell by soft X-ray transmission microscopy and ex-situ by scanning electron microscopy. The most voluminous hydration product observed was ettringite. Ettringite commonly displayed acicular, filiform, reticulated, and stellate crystal habits. Additionally, pastes with C 4A3S̄, 15% CS̄H2, and varying amounts of CH were prepared and examined with X-ray diffraction (XRD) and isothermal calorimetry. The XRD experiments showed that increasing CH content caused more solid solution (SO4 2 -/OH-) AFm phases to form at early ages (< 1 d) and more monosulfate to form at later ages (> 1 d). Calorimetry indicated that the increased production of solid solution AFm was accompanied with an increase in the initial (< 30 min) rate of heat evolution, and increasing CH generally reduced the time till the second maximum rate of heat evolution due to the formation of ettringite and monosulfate. © 2013 Elsevier Ltd.

  6. Final report on the safety assessment of aluminum silicate, calcium silicate, magnesium aluminum silicate, magnesium silicate, magnesium trisilicate, sodium magnesium silicate, zirconium silicate, attapulgite, bentonite, Fuller's earth, hectorite, kaolin, lithium magnesium silicate, lithium magnesium sodium silicate, montmorillonite, pyrophyllite, and zeolite.

    Science.gov (United States)

    Elmore, Amy R

    2003-01-01

    This report reviews the safety of Aluminum, Calcium, Lithium Magnesium, Lithium Magnesium Sodium, Magnesium Aluminum, Magnesium, Sodium Magnesium, and Zirconium Silicates, Magnesium Trisilicate, Attapulgite, Bentonite, Fuller's Earth, Hectorite, Kaolin, Montmorillonite, Pyrophyllite, and Zeolite as used in cosmetic formulations. The common aspect of all these claylike ingredients is that they contain silicon, oxygen, and one or more metals. Many silicates occur naturally and are mined; yet others are produced synthetically. Typical cosmetic uses of silicates include abrasive, opacifying agent, viscosity-increasing agent, anticaking agent, emulsion stabilizer, binder, and suspending agent. Clay silicates (silicates containing water in their structure) primarily function as adsorbents, opacifiers, and viscosity-increasing agents. Pyrophyllite is also used as a colorant. The International Agency for Research on Cancer has ruled Attapulgite fibers >5 microm as possibly carcinogenic to humans, but fibers mining and processing of Aluminum Silicate, Calcium Silicate, Zirconium Silicate, Fuller's Earth, Kaolin, Montmorillonite, Pyrophyllite, and Zeolite. The Cosmetic Ingredient Review (CIR. The Cosmetic Ingredient Review (CIR) Expert Panel concluded that the extensive pulmonary damage in humans was the result of direct occupational inhalation of the dusts and noted that lesions seen in animals were affected by particle size, fiber length, and concentration. The Panel considers that most of the formulations are not respirable and of the preparations that are respirable, the concentration of the ingredient is very low. Even so, the Panel considered that any spray containing these solids should be formulated to minimize their inhalation. With this admonition to the cosmetics industry, the CIR Expert Panel concluded that these ingredients are safe as currently used in cosmetic formulations. The Panel did note that the cosmetic ingredient, Talc, is a hydrated magnesium silicate

  7. Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate

    Science.gov (United States)

    Geng, Guoqing; Myers, Rupert J.; Li, Jiaqi; Maboudian, Roya; Carraro, Carlo; Shapiro, David A.; Monteiro, Paulo J. M.

    2017-03-01

    The incorporation of Al and increased curing temperature promotes the crystallization and cross-linking of calcium (alumino)silicate hydrate (C-(A-)S-H), which is the primary binding phase in most contemporary concrete materials. However, the influence of Al-induced structural changes on the mechanical properties at atomistic scale is not well understood. Herein, synchrotron radiation-based high-pressure X-ray diffraction is used to quantify the influence of dreierketten chain cross-linking on the anisotropic mechanical behavior of C-(A-)S-H. We show that the ab-planar stiffness is independent of dreierketten chain defects, e.g. vacancies in bridging tetrahedra sites and Al for Si substitution. The c-axis of non-cross-linked C-(A-)S-H is more deformable due to the softer interlayer opening but stiffens with decreased spacing and/or increased zeolitic water and Ca2+ of the interlayer. Dreierketten chain cross-links act as ‘columns’ to resist compression, thus increasing the bulk modulus of C-(A-)S-H. We provide the first experimental evidence on the influence of the Al-induced atomistic configurational change on the mechanical properties of C-(A-)S-H. Our work advances the fundamental knowledge of C-(A-)S-H on the lowest level of its hierarchical structure, and thus can impact the way that innovative C-(A-)S-H-based cementitious materials are developed using a ‘bottom-up’ approach.

  8. Synthesis and Enhanced Phosphate Recovery Property of Porous Calcium Silicate Hydrate Using Polyethyleneglycol as Pore-Generation Agent

    Directory of Open Access Journals (Sweden)

    Ling Pei

    2013-07-01

    Full Text Available The primary objective of this paper was to synthesize a porous calcium silicate hydrate (CSH with enhanced phosphate recovery property using polyethyleneglycol (PEG as pore-generation agent. The formation mechanism of porous CSH was proposed. PEG molecules were inserted into the void region of oxygen–silicon tetrahedron chains and the layers of CSH. A steric hindrance layer was generated to prevent the aggregation of solid particles. A porous structure was formed due to the residual space caused by the removal of PEG through incineration. This porous CSH exhibited highly enhanced solubility of Ca2+ and OH− due to the decreased particle size, declined crystalline, and increased specific surface area (SBET and pore volume. Supersaturation was increased in the wastewater with the enhanced solubility, which was beneficial to the formation of hydroxyapatite (HAP crystallization. Thus, phosphate can be recovered from wastewater by producing HAP using porous CSH as crystal seed. In addition, the regenerated phosphate-containing products (HAP can be reused to achieve sustainable utilization of phosphate. The present research could provide an effective approach for the synthesis of porous CSH and the enhancement of phosphate recovery properties for environmental applications.

  9. HYDRATION MECHANISMS OF CALCIUM SULPHOALUMINATE C4A3S̄ , C4AS̄ PHASE AND ACTIVE BELITE β-C2S

    Directory of Open Access Journals (Sweden)

    H. EL-DIDAMONY

    2012-12-01

    Full Text Available Highly reactive belite and calcium sulphoaluminate as well as monosulphate mix were prepared from nano-materials at lower temperatures ~1250°C. The crystal size of these materials was 25, 16 and 27 nm as determined from the X-ray analysis. The sulphoaluminate belite cement is a recent type of cement prepared at lower temperature with good properties. The aim of the present work is to synthesize C4A3S̄, monosulphate mix C4AS̄ and active belite β-C2S. The hydration mechanism was studied by XRD and DSC techniques as well as by the determination of chemically combined water contents of cement pastes with curing time. The results reveal that ettringite is first formed hydrates in the monosulphate mix, which then converted into monosulphate hydrates. The results of DSC and XRD are in good agreement with those of combined water contents. On the other side, the rate of hydration of active belite increases linearly from 3 up to 90 days, whereas, the traditional belite hydrates increase with lower rate up to 90 days, due to the thermodynamic stability structure of traditional belite.

  10. Inhibitors of arachidonate-regulated calcium channel signaling suppress triggered activity induced by the late sodium current.

    Science.gov (United States)

    Wolkowicz, Paul; Umeda, Patrick K; Sharifov, Oleg F; White, C Roger; Huang, Jian; Mahtani, Harry; Urthaler, Ferdinand

    2014-02-05

    Disturbances in myocyte calcium homeostasis are hypothesized to be one cause for cardiac arrhythmia. The full development of this hypothesis requires (i) the identification of all sources of arrhythmogenic calcium and (ii) an understanding of the mechanism(s) through which calcium initiates arrhythmia. To these ends we superfused rat left atria with the late sodium current activator type II Anemonia sulcata toxin (ATXII). This toxin prolonged atrial action potentials, induced early afterdepolarization, and provoked triggered activity. The calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93 (N-[2-[[[3-(4-chlorophenyl)-2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulphon-amide) suppressed ATXII triggered activity but its inactive congener KN-92 (2-[N-(4-methoxy benzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine) did not. Neither drug affected normal atrial contractility. Calcium entry via L-type channels or calcium leakage from sarcoplasmic reticulum stores are not critical for this type of ectopy as neither verapamil ((RS)-2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl]-(methyl)amino}-2-prop-2-ylpentanenitrile) nor ryanodine affected ATXII triggered activity. By contrast, inhibitors of the voltage independent arachidonate-regulated calcium (ARC) channel and the store-operated calcium channel specifically suppressed ATXII triggered activity without normalizing action potentials or affecting atrial contractility. Inhibitors of cytosolic calcium-dependent phospholipase A2 also suppressed triggered activity suggesting that this lipase, which generates free arachidonate, plays a key role in ATXII ectopy. Thus, increased left atrial late sodium current appears to activate atrial Orai-linked ARC and store operated calcium channels, and these voltage-independent channels may be unexpected sources for the arrhythmogenic calcium that underlies triggered activity.

  11. 3D printing of mineral–polymer bone substitutes based on sodium alginate and calcium phosphate

    Science.gov (United States)

    Egorov, Aleksey A; Fedotov, Alexander Yu; Mironov, Anton V; Popov, Vladimir K; Zobkov, Yury V

    2016-01-01

    Summary We demonstrate a relatively simple route for three-dimensional (3D) printing of complex-shaped biocompatible structures based on sodium alginate and calcium phosphate (CP) for bone tissue engineering. The fabrication of 3D composite structures was performed through the synthesis of inorganic particles within a biopolymer macromolecular network during 3D printing process. The formation of a new CP phase was studied through X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. Both the phase composition and the diameter of the CP particles depend on the concentration of a liquid component (i.e., the “ink”). The 3D printed structures were fabricated and found to have large interconnected porous systems (mean diameter ≈800 μm) and were found to possess compressive strengths from 0.45 to 1.0 MPa. This new approach can be effectively applied for fabrication of biocompatible scaffolds for bone tissue engineering constructions. PMID:28144529

  12. [Concentrations of calcium, magnesium, sodium and potassium in human milk and infant formulas].

    Science.gov (United States)

    Rodríguez Rodríguez, E M; Sanz Alaejos, M; Díaz Romero, C

    2002-12-01

    Concentrations of calcium, magnesium, sodium and potassium were determined in 55 samples of mature human milk from Canary women and 5 samples of powdered infant formula. According to the literature our data fell within the normal intervals described for each kind of milk. The mean concentration of Ca, Mg, Na y K of powdered infant formula was higher than those concentrations found in the human milks. Significant differences among the concentrations of Ca, Mg and Na for the milks of the considered mothers were observed. Only the Ca intakes for infants fed with human milk were lower than those requirements recommended by the Food and Nutrition Board (1989). However, the infants fed with powdered infant formula had an adequate intake of all the studied metals. A progressive decrease of the Na, K and Ca concentrations with the lactation stage was observed. Maternal age, parity and sex of the newborns did not affect the metal concentrations significantly.

  13. The Influence of Sodium- and Calcium-Regulatory Hormone Interventions on Adipocytokines in Obesity and Diabetes

    Science.gov (United States)

    Vaidya, Anand; Underwood, Patricia C.; Annes, Justin P.; Sun, Bei; Williams, Gordon H.; Forman, John P.; Williams, Jonathan S.

    2012-01-01

    Objective The renin-angiotensin-aldosterone system (RAAS), vitamin D, and parathyroid hormone have all been implicated as regulators of adipocytokines and inflammation. We evaluated human interventional study protocols to investigate whether controlled modulations of these calcium- and sodium-regulatory hormones could influence adipocytokines and inflammation in obesity and diabetes. Methods Post-hoc analyses of two separate human protocols (Protocol 1, n=14; Protocol 2, n=24) conducted in a clinical research setting after rigorous control of diet, posture, medications, and diurnal rhythm, were performed. Protocol 1 evaluated obese hypertensives with vitamin D deficiency who received an infusion of angiotensin II (AngII) before and after 1 month of vitamin D3 therapy. Protocol 2 evaluated obese subjects with type 2 diabetes who also received AngII. Adipocytokines and inflammatory markers were measured before and after vitamin D3 therapy, and also before and after infusions of AngII. Results Vitamin D3 therapy significantly raised 25(OH)D and 1,25(OH)2D concentrations, and lowered parathyroid hormone, but had no effect on concentrations of adiponectin, resistin, leptin, IL-6, PAI-1, urinary TGFβ1, or HOMA-IR. AngII infusions, despite significant elevations in blood pressure and serum aldosterone, did not influence adipocytokine concentrations in either protocol. Conclusion In contrast to prior studies conducted in healthy populations, or those that could not control major regulators of the RAAS or adipocytokines, we observed that robust modulations in calcium- and sodium-regulatory hormones did not influence adipocytokines or inflammation in obesity or diabetes. Adipose-tissue physiology in these conditions may alter the hormonal regulation of inflammatory parameters. PMID:23142162

  14. Calmodulin and calcium differentially regulate the neuronal Nav1.1 voltage-dependent sodium channel

    Energy Technology Data Exchange (ETDEWEB)

    Gaudioso, Christelle; Carlier, Edmond; Youssouf, Fahamoe [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Clare, Jeffrey J. [Eaton Pharma Consulting, Eaton Socon, Cambridgeshire PE19 8EF (United Kingdom); Debanne, Dominique [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Alcaraz, Gisele, E-mail: gisele.alcaraz@univmed.fr [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France)

    2011-07-29

    Highlights: {yields} Both Ca{sup ++}-Calmodulin (CaM) and Ca{sup ++}-free CaM bind to the C-terminal region of Nav1.1. {yields} Ca{sup ++} and CaM have both opposite and convergent effects on I{sub Nav1.1}. {yields} Ca{sup ++}-CaM modulates I{sub Nav1.1} amplitude. {yields} CaM hyperpolarizes the voltage-dependence of activation, and increases the inactivation rate. {yields} Ca{sup ++} alone antagonizes CaM for both effects, and depolarizes the voltage-dependence of inactivation. -- Abstract: Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channel expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca{sup ++} depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca{sup ++} could bind the Nav1.1 C-terminal region with micromolar affinity.

  15. Use of calcium caseinate in association with lecithin for masking the bitterness of acetaminophen--comparative study with sodium caseinate.

    Science.gov (United States)

    Hoang Thi, Thanh Huong; Lemdani, Mohamed; Flament, Marie-Pierre

    2013-11-18

    Owing to a variety of structural and functional properties, milk proteins are steadily studied for food and pharmaceutical applications. In the present study, calcium caseinate in association with lecithin was firstly investigated in order to encapsulate the acetaminophen through spray-drying for taste-masking purpose for pediatric medicines. A 2(4)-full factorial design revealed that the spray flow, the calcium caseinate amount and the lecithin amount had significant effects on the release of drug during the first 2 min. Indeed, increasing the spray flow and/or the calcium caseinate amount led to increase the released amount, whereas increasing the lecithin amount decreased the released amount. The "interaction" between the calcium caseinate amount and the lecithin amount was also shown to be statistically significant. The second objective was to compare the efficiency of two caseinate-based formulations, i.e. sodium caseinate and calcium caseinate, on the taste-masking effect. The characteristics of spray-dried powders determined by SEM and DSC were shown to depend on the caseinate/lecithin proportion rather than the type of caseinate. Interestingly, calcium caseinate-based formulations were found to lower the released amount of drug during the early time to a higher extent than sodium caseinate-based formulations, which indicates better taste-masking efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Compressibility of hydrated and anhydrous sodium silicate-based liquids and glasses, as analogues for natural silicate melts, by Brillouin scattering spectroscopy

    Science.gov (United States)

    Tkachev, Sergey Nikolayevich

    A mathematical formalism was tested on compressibility studies of water, before applying it to the high pressure-temperature compressibility studies of hydrated and anhydrous sodium silicate-based liquids and glasses. The hypersonic sound velocity, refractive index and attenuation coefficient obtained using Brillouin light scattering spectroscopy technique were in agreement with literature data. From the measured sound velocities, the pressure dependence of the bulk moduli and density of liquid water were calculated, using Vinet equation of state. The formalism was extended to the Brillouin scattering studies of the elastic properties of alkaline-calcium silica hydrogels and float glass, which exhibits a dramatic increase in the pressure dependence of longitudinal velocity and a discontinuity in the compressibility at about 6 GPa. It is demonstrated that an apparent second-order transition to a new amorphous phase can form via the abrupt onset of a new compressional mechanism, which may be triggered by a shift in polymerization of the glass or an onset of a change in coordination of silicon. Brillouin scattering measurements were carried out on an aqueous solution of Na2O-2SiO2 and anhydrous Na2O-2SiO 2 glass and liquid at high P-T conditions. The "modified" platelet scattering geometry has allowed a determination of the longitudinal velocity independently from refractive index, and hence the adiabatic compressibility and density of liquids as a function of pressure and temperature. The observed increase in density of the melt and glass phases formed at high P-T conditions is likely associated with structural effects. The large values of KS' of the liquid phase illustrate that the means of compaction of the liquid differs substantially from that of the glass, and that the liquid is able to access a wider range of compaction mechanisms. The measured bulk modulus of Na2O-2SiO2 aqueous solution is closer to values of silicate melts than to that of end-member water at

  17. Bones and Crohn's: No benefit of adding sodium fluoride oribandronate to calcium and vitamin D

    Institute of Scientific and Technical Information of China (English)

    Jochen Klaus; Max Reinshagen; Katharina Herdt; Christoph Schr(o)ter; Guido Adler; Georg BT von Boyen; Christian von Tirpitz

    2011-01-01

    AIM: To compare the effect of calcium and cholecalciferol alone and along with additional sodium fluoride or ibandronate on bone mineral density (BMD) and fractures in patients with Crohn's disease (CD).METHODS: Patients (n =148) with reduced BMD (T-score< -1) were randomized to receive cholecalciferol (1000 IU) and calcium citrate (800 mg) daily alone(group A, n =32) or along with additional sodium fluoride (25 mg bid ) (group B, n = 62) or additional ibandronate (1 mg iv/3-monthly) (group C, n = 54). Dual energy X-ray absorptiometry of the lumbar spine (L1-L4) and proximal right femurand X-rays of the spine were performed at baseline and after 1.0, 2.25 and 3.5 years. Fracture-assessment included visual reading of X-rays and quantitative morphometry of vertebral bodies (T4-L4).RESULTS: One hundred and twenty three (83.1%) patients completed the first year for intention-to-treat (ITT) analysis. Ninety two (62.2%) patients completed thesecond year and 71 (47.8%) the third year available for per-protocol (PP) analysis. With a significant increase in T-score of the lumbar spine by +0.28 ± 0.35 [95%confidence interval (CI): 0.162-0.460, P < 0.01], +0.33 ± 0.49 (95% CI: 0.109-0.558, P < 0.01), +0.43 ± 0.47 (95% CI: 0.147-0.708, P < 0.01) in group A, +0.22 ±0.33 (95% CI: 0.125-0.321, P < 0.01); +0.47 ± 0.60 (95% CI: 0.262-0.676, P < 0.01), +0.51 ± 0.44 (95%CI: 0.338-0.682, P < 0.01) in group B and +0.22 ±0.38 (95% CI: 0.111-0.329, P < 0.01), +0.36 ± 0.53(95% CI: 0.147-0.578, P < 0.01), +0.41 ± 0.48 (95%CI: 0.238-0.576, P < 0.01) in group C, respectively, duringthe 1.0, 2.25 and 3.5 year periods (PP analysis), no treatment regimen was superior in any in- or betweengroup analyses. In the ITT analysis, similar results in allin- and between-group analyses with a significant ingroup but non-significant between-group increase in T-score of the lumbar spine by 0.38 ± 0.46 (group A,P < 0.01), 0.37 ± 0.50 (group B, P < 0.01) and 0.35 ±0.49 (group C, P < 0.01) was

  18. Investigating and Modeling the Thermo-dynamic Impact of Electrolyte Solutions of Sodium Chloride and Sodium Sulfate on Prevention of the Formation of Methane Hydrate

    Directory of Open Access Journals (Sweden)

    M. Manteghian

    2013-07-01

    Full Text Available Devising methods to prevent hydrate formation is of the important issues in natural gas industry. Since a great deal of money is annually spent on using hydrate inhibitors, identification of new inhibitors with higher degrees of efficacy is economically justifiable. Bearing in mind the significant role of hydrate inhibitors in prevention of natural gas pipelines’ getting blocked, the present study attempts to investigate two compounds of NaCl and Na2SO4 as inhibitors of hydrate methane’s formation so as to respond to “what is the inhibitive thermo-dynamic impact of electrolyte compounds of NaCl and Na2SO4 on the formation of methane hydrate?” To do so, this study not only measures the equilibrium temperature and pressure of methane hydrate formation in the presence of electrolyte solutions of NaCl and Na2SO4 and compares the results obtained with the state lacking such inhibitors, but it also assesses the regression and mathematical modeling are utilized within a basic virtual environment in order to propose a model for prediction of thermo-dynamic equilibrium temperature and pressure of methane hydrate formation.

  19. Balancing strength and toughness of calcium-silicate-hydrate via random nanovoids and particle inclusions: Atomistic modeling and statistical analysis

    Science.gov (United States)

    Zhang, Ning; Shahsavari, Rouzbeh

    2016-11-01

    As the most widely used manufactured material on Earth, concrete poses serious societal and environmental concerns which call for innovative strategies to develop greener concrete with improved strength and toughness, properties that are exclusive in man-made materials. Herein, we focus on calcium silicate hydrate (C-S-H), the major binding phase of all Portland cement concretes, and study how engineering its nanovoids and portlandite particle inclusions can impart a balance of strength, toughness and stiffness. By performing an extensive +600 molecular dynamics simulations coupled with statistical analysis tools, our results provide new evidence of ductile fracture mechanisms in C-S-H - reminiscent of crystalline alloys and ductile metals - decoding the interplay between the crack growth, nanovoid/particle inclusions, and stoichiometry, which dictates the crystalline versus amorphous nature of the underlying matrix. We found that introduction of voids and portlandite particles can significantly increase toughness and ductility, specially in C-S-H with more amorphous matrices, mainly owing to competing mechanisms of crack deflection, voids coalescence, internal necking, accommodation, and geometry alteration of individual voids/particles, which together regulate toughness versus strength. Furthermore, utilizing a comprehensive global sensitivity analysis on random configuration-property relations, we show that the mean diameter of voids/particles is the most critical statistical parameter influencing the mechanical properties of C-S-H, irrespective of stoichiometry or crystalline or amorphous nature of the matrix. This study provides new fundamental insights, design guidelines, and de novo strategies to turn the brittle C-S-H into a ductile material, impacting modern engineering of strong and tough concrete infrastructures and potentially other complex brittle materials.

  20. Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate

    Science.gov (United States)

    Geng, Guoqing; Myers, Rupert J.; Li, Jiaqi; Maboudian, Roya; Carraro, Carlo; Shapiro, David A.; Monteiro, Paulo J. M.

    2017-01-01

    The incorporation of Al and increased curing temperature promotes the crystallization and cross-linking of calcium (alumino)silicate hydrate (C-(A-)S-H), which is the primary binding phase in most contemporary concrete materials. However, the influence of Al-induced structural changes on the mechanical properties at atomistic scale is not well understood. Herein, synchrotron radiation-based high-pressure X-ray diffraction is used to quantify the influence of dreierketten chain cross-linking on the anisotropic mechanical behavior of C-(A-)S-H. We show that the ab-planar stiffness is independent of dreierketten chain defects, e.g. vacancies in bridging tetrahedra sites and Al for Si substitution. The c-axis of non-cross-linked C-(A-)S-H is more deformable due to the softer interlayer opening but stiffens with decreased spacing and/or increased zeolitic water and Ca2+ of the interlayer. Dreierketten chain cross-links act as ‘columns’ to resist compression, thus increasing the bulk modulus of C-(A-)S-H. We provide the first experimental evidence on the influence of the Al-induced atomistic configurational change on the mechanical properties of C-(A-)S-H. Our work advances the fundamental knowledge of C-(A-)S-H on the lowest level of its hierarchical structure, and thus can impact the way that innovative C-(A-)S-H-based cementitious materials are developed using a ‘bottom-up’ approach. PMID:28281635

  1. Randomized controlled trial to study plaque inhibition in calcium sodium phosphosilicate dentifrices.

    Science.gov (United States)

    Claydon, Nicholas C A; Hall, Claire; Hughes, Alison J; Shaw, David; Seong, Joon; Davies, Maria; West, Nicola X

    2016-03-01

    To evaluate the effect of three calcium sodium phosphosilicate (CSPS)/sodium monofluorophosphate containing dentifrices, compared to positive and negative controls on plaque re-growth in a non-brushing model, after 4 days of twice daily use, as determined by plaque area and Turesky plaque index (TPI). This was an exploratory, single-centre, examiner-blind, randomised, controlled, five treatment period, crossover, plaque re-growth study, with supervised use of study products. Twenty-three healthy adult volunteers were randomized to receive experimental 5% CSPS dentifrice; two marketed 5% CSPS dentifrices; active comparator mouthrinse and negative control dentifrice. At the start of each treatment period, zero plaque was established by dental prophylaxis and study products were dispensed as either dentifrice slurries or mouthrinse, twice daily for the next 4 days. No other forms of oral hygiene were permitted. After 96h, supra-gingival plaque was determined by plaque area (direct entry, planimetric method) and TPI. Changes from zero plaque were analysed. For both measures, plaque re-growth at 96h was significantly lower following treatment with active comparator mouthrinse and significantly higher following treatment with the experimental 5% CSPS dentifrice, compared to all other treatments. There were no statistically significant differences between the three other treatments, except between the marketed 5% CSPS dentifrices, for overall plaque area. The comparator mouthwash was significantly more effective at preventing plaque accumulation than the dentifrice slurries. The three marketed dentifrices contained sodium lauryl sulphate and were more effective at reducing plaque re-growth than the experimental dentifrice formulated with a tegobetaine/adinol surfactant system. The CSPS containing dentifrices tested in this study showed no significant chemical-therapeutic anti-plaque benefits compared to a negative control dentifrice. However, sodium lauryl sulphate

  2. Synthesis and hydration behavior of calcium zirconium aluminate (Ca{sub 7}ZrAl{sub 6}O{sub 18}) cement

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Eun-Hee [Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 151-744 (Korea, Republic of); Yoo, Jun-Sang [Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul 110-749 (Korea, Republic of); Kim, Bo-Hye; Choi, Sung-Woo [Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 151-744 (Korea, Republic of); Hong, Seong-Hyeon, E-mail: shhong@snu.ac.kr [Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2014-02-15

    Calcium zirconium aluminate (Ca{sub 7}ZrAl{sub 6}O{sub 18}) cements were prepared by solid state reaction and polymeric precursor methods, and their phase evolution, morphology, and hydration behavior were investigated. In polymeric precursor method, a nearly single phase Ca{sub 7}ZrAl{sub 6}O{sub 18} was obtained at relatively lower temperature (1200 °C) whereas in solid state reaction, a small amount of CaZrO{sub 3} coexisted with Ca{sub 7}ZrAl{sub 6}O{sub 18} even at higher temperature (1400 °C). Unexpectedly, Ca{sub 7}ZrAl{sub 6}O{sub 18} synthesized by polymeric precursor process was the large-sized and rough-shaped powder. The planetary ball milling was employed to control the particle size and shape. The hydration behavior of Ca{sub 7}ZrAl{sub 6}O{sub 18} was similar to that of Ca{sub 3}Al{sub 2}O{sub 6} (C3A), but the hydration products were Ca{sub 3}Al{sub 2}O{sub 6}·6H{sub 2}O (C3AH6) and several intermediate products. Thus, Zr (or ZrO{sub 2}) stabilized the intermediate hydration products of C3A.

  3. A short introduction to the new principle of binding ration calcium with sodium zeolite

    DEFF Research Database (Denmark)

    Jørgensen, R J; Bjerrum, M J; Classen, H

    2003-01-01

    This paper summarise the development of the new principle of preventing parturient hypocalcaemia by reducing the bioavailability of ration calcium with calcium binders, based on the idea that a negative calcium balance would stimulate natural defence mechanisms against threatening hypocalcaemia. ...

  4. Scientific Opinion on the safety and efficacy of vitamin C (ascorbic acid, sodium ascorbate, calcium ascorbate, ascorbyl palmitate, sodium calcium ascorbyl phosphate and sodium ascorbyl phosphate as a feed additive for all animal species based on a dossier submitted by DSM Nutritional Products Ltd

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2013-02-01

    Full Text Available Vitamin C is essential for primates, guinea pigs and fish. Vitamin C, in the form of ascorbic acid and its calcium and sodium salts, ascorbyl palmitate, sodium calcium ascorbyl phosphate and sodium ascorbyl phosphate, is safe for all animal species. Setting a maximum content in feed and water for drinking is not considered necessary. Data on the vitamin C consumption of consumers are based on the levels of vitamin C in foodstuffs, including food of animal origin, produced in accordance with current EU legislation on the supplementation of feed with vitamin C. The exposure is far below the guidance level. Any potential contribution of the use of vitamin C in feed is therefore already considered in the above data. Consequently, the use of vitamin C in animal nutrition is not of concern for consumer safety. In the absence of inhalation toxicity studies it would be prudent to assume that inhalation of dust from the additives presents a health hazard to workers. Sodium calcium ascorbyl phosphate is not an irritant to skin and eyes and is unlikely to be a skin sensitiser. This conclusion is extrapolated to sodium ascorbyl phosphate. In the absence of data, ascorbic acid, sodium ascorbate, calcium ascorbate and ascorbyl palmitate should be considered as irritant to skin and eyes and as dermal sensitisers. The supplementation of feed with vitamin C does not pose a risk to the environment. Ascorbic acid, sodium calcium ascorbyl phosphate and sodium ascorbyl phosphate are regarded as effective sources of vitamin C when added to feed or water for drinking. Since ascorbic acid, sodium ascorbate, calcium ascorbate and ascorbyl palmitate are authorised for use as antioxidants in food and their function in feed is essentially the same as that in food, no further demonstration of efficacy is considered necessary.

  5. Possible roles of exceptionally conserved residues around the selectivity filters of sodium and calcium channels.

    Science.gov (United States)

    Tikhonov, Denis B; Zhorov, Boris S

    2011-01-28

    In the absence of x-ray structures of sodium and calcium channels their homology models are used to rationalize experimental data and design new experiments. A challenge is to model the outer-pore region that folds differently from potassium channels. Here we report a new model of the outer-pore region of the NaV1.4 channel, which suggests roles of highly conserved residues around the selectivity filter. The model takes from our previous study (Tikhonov, D. B., and Zhorov, B. S. (2005) Biophys. J. 88, 184-197) the general disposition of the P-helices, selectivity filter residues, and the outer carboxylates, but proposes new intra- and inter-domain contacts that support structural stability of the outer pore. Glycine residues downstream from the selectivity filter are proposed to participate in knob-into-hole contacts with the P-helices and S6s. These contacts explain the adapted tetrodotoxin resistance of snakes that feed on toxic prey through valine substitution of isoleucine in the P-helix of repeat IV. Polar residues five positions upstream from the selectivity filter residues form H-bonds with the ascending-limb backbones. Exceptionally conserved tryptophans are engaged in inter-repeat H-bonds to form a ring whose π-electrons would facilitate passage of ions from the outer carboxylates to the selectivity filter. The outer-pore model of CaV1.2 derived from the NaV1.4 model is also stabilized by the ring of exceptionally conservative tryptophans and H-bonds between the P-helices and ascending limbs. In this model, the exceptionally conserved aspartate downstream from the selectivity-filter glutamate in repeat II facilitates passage of calcium ions to the selectivity-filter ring through the tryptophan ring. Available experimental data are discussed in view of the models.

  6. Physicochemical characterizations and desulfurization properties in coal combustion of three calcium and sodium industrial wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jun Cheng; Junhu Zhou; Jianzhong Liu; Xinyu Cao; Kefa Cen [Zhejiang University, Hangzhou (China). State Key Laboratory of Clean Energy Utilization

    2009-05-15

    To recycle industrial wastes and reduce SO{sub 2} pollutant emission in coal combustion, the mineralogical compositions, porosity structures, surface morphologies, and desulfurization properties of three calcium and sodium industrial wastes were investigated via X-ray diffraction (XRD), porosimeter, scanning electron microscopy (SEM), and a fixed-bed reactor. (1) White lime mud (WLM) mainly composed of CaCO{sub 3} with Na{sub 2}O and K{sub 2}O impurities has smaller CaCO{sub 3} particles and a higher surface area than limestone. But calcined WLM has larger CaO particles and a lower surface area than limestone calcined at 1200{sup o}C for 300 s. (2) Calcium carbide residue (CCR) mainly composed of Ca(OH)2, has the highest surface area and smaller Ca(OH){sub 2} particles than the CaCO{sub 3} particles in WLM. Its surface area monotonously and dramatically decreases at 1200{sup o}C for 300 s, but the sintered CaO particles are still smaller than those in the limestone. (3) When brine sludge (BS), mainly composed of NaCl and CaCO{sub 3}, is heated at 1200{sup o}C for 300 s, the NaCl/CaO eutectic solvent facilitates the aggregation of some complex composites to form many larger particles. (4) WLM gives the highest desulfurization efficiency of 80.4% at 1000{sup o}C and 65.0% at 1100{sup o}C in coal combustion. Combined CCR and limestone give a synergistic desulfurization efficiency of 45.8% at 1200{sup o}C. BS with a molar ratio of Na/Ca at 1:15 effectively promotes the synergistic desulfurization efficiency of combined CCR and limestone to a peak of 54.9% at 1200{sup o}C. 23 refs., 10 figs., 3 tabs.

  7. Altervalent substitution of sodium for calcium in biogenic calcite and aragonite

    Science.gov (United States)

    Yoshimura, Toshihiro; Tamenori, Yusuke; Suzuki, Atsushi; Kawahata, Hodaka; Iwasaki, Nozomu; Hasegawa, Hiroshi; Nguyen, Luan T.; Kuroyanagi, Azumi; Yamazaki, Toshitsugu; Kuroda, Junichiro; Ohkouchi, Naohiko

    2017-04-01

    Sodium concentrations in biogenic CaCO3 are several thousands of parts per million, and, on a molar basis, Na is among the most abundant constituent minor element in these carbonates. Nevertheless, the chemical form of Na in CaCO3 is not well constrained. We used synchrotron X-ray spectroscopy to identify the dominant molecular host sites for Na in biogenic calcite and aragonite precipitated by corals, bivalves, and foraminifera. We also used the K-edge X-ray absorption near-edge structure to investigate the chemical environment of Na in biogenic calcium carbonates and identify the altervalent substitution of Na into Ca sites in the lattice structures of calcite and aragonite. Minor cation and anion concentrations in biogenic CaCO3 suggest that the principal substitution mechanism involves charge compensation through the creation of CO32- vacancies. The mostly homogeneous Na concentrations in the skeletal microstructures of the various biota we examined indicate that environmental and biological controls, such as temperature, skeletal microstructure, and calcification rates, have only minor influences on skeletal Na concentrations. A decrease of Na:Ca ratios with increasing age of foraminiferal shells picked from a Quaternary sediment core, indicates progressive release of Na, which suggests that structurally-substituted Na in biogenic CaCO3 is readily leached during burial diagenesis. Whereas the sediment that undergo diagenesis release some Na back to the water column, sodium co-precipitation in biogenic CaCO3 serves as a potential sink of Na for the ocean.

  8. Calcium oxalate crystal deposition in kidneys of hypercalciuric mice with disrupted type IIa sodium-phosphate cotransporter

    OpenAIRE

    Khan, Saeed R.; Glenton, Patricia A.

    2008-01-01

    The most common theories about the pathogenesis of idiopathic kidney stones consider precipitation of calcium phosphate (CaP) within the kidneys critical for the development of the disease. We decided to test the hypothesis that a CaP substrate can promote the deposition of calcium oxalate (CaOx) in the kidneys. Experimental hyperoxaluria was induced by feeding glyoxylate to male mice with knockout (KO) of NaPi IIa (Npt2a), a sodium-phosphate cotransporter. Npt2a KO mice are hypercalciuric an...

  9. Fibroblast growth factor 23 dysregulates late sodium current and calcium homeostasis with enhanced arrhythmogenesis in pulmonary vein cardiomyocytes.

    Science.gov (United States)

    Huang, Shih-Yu; Chen, Yao-Chang; Kao, Yu-Hsun; Hsieh, Ming-Hsiung; Lin, Yung-Kuo; Chung, Cheng-Chih; Lee, Ting-I; Tsai, Wen-Chin; Chen, Shih-Ann; Chen, Yi-Jen

    2016-10-25

    Fibroblast growth factor 23 (FGF23), elevated in chronic renal failure, increases atrial arrhythmogenesis and dysregulates calcium homeostasis. Late sodium currents (INa-Late) critically induces ectopic activity of pulmoanry vein (the most important atrial fibrillation trigger). This study was to investigate whether FGF23 activates the INa-Late leading to calcium dysregulation and increases PV arrhythmogenesis. Patch clamp, western blot, and confocal microscopy were used to evaluate the electrical activities, calcium homeostasis, and mitochondrial reactive oxygen species (ROS) in PV cardiomyocytes with or without FGF23 (0.1 or 1 ng/mL) incubation for 4~6 h. Compared to the control, FGF23 (1 ng/mL, but not 0.1 ng/mL)-treated PV cardiomyocytes had a faster beating rate. FGF23 (1 ng/mL)-treated PV cardiomyocytes had larger INa-Late, calcium transients, and mitochondrial ROS than controls. However, ranolazine (an inhibitor of INa-Late) attenuated FGF23 (1 ng/mL)-increased beating rates, calcium transients and mitochondrial ROS. FGF23 (1 ng/mL)-treated PV cardiomyocytes exhibited larger phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII). Chelerythrine chloride (an inhibitor of protein kinase C) decreased INa-Late in FGF23 (1 ng/mL)-treated PV cardiomyocytes. However, KN93 (a selective CaMKII blocker) decreased INa-Late in control and FGF23 (1 ng/mL)-treated PV cardiomyocytes to a similar extent. In conclusion, FGF23 increased PV arrhythmogenesis through sodium and calcium dysregulation by acting protein kinase C signaling.

  10. Calcium-Mediated Regulation of Proton-Coupled Sodium Transport - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Schumaker, Karen S [Professor

    2013-10-24

    The long-term goal of our experiments was to understand mechanisms that regulate energy coupling by ion currents in plants. Activities of living organisms require chemical, mechanical, osmotic or electrical work, the energy for which is supplied by metabolism. Adenosine triphosphate (ATP) has long been recognized as the universal energy currency, with metabolism supporting the synthesis of ATP and the hydrolysis of ATP being used for the subsequent work. However, ATP is not the only energy currency in living organisms. A second and very different energy currency links metabolism to work by the movement of ions passing from one side of a membrane to the other. These ion currents play a major role in energy capture and they support a range of physiological processes from the active transport of nutrients to the spatial control of growth and development. In Arabidopsis thaliana (Arabidopsis), the activity of a plasma membrane Na+/H+ exchanger, SALT OVERLY SENSITIVE1 (SOS1), is essential for regulation of sodium ion homeostasis during plant growth in saline conditions. Mutations in SOS1 result in severely reduced seedling growth in the presence of salt compared to the growth of wild type. SOS1 is a secondary active transporter coupling movement of sodium ions out of the cell using energy stored in the transplasma membrane proton gradient, thereby preventing the build-up of toxic levels of sodium in the cytosol. SOS1 is regulated by complexes containing the SOS2 and CALCINEURIN B-LIKE10 (CBL10) or SOS3 proteins. CBL10 and SOS3 (also identified as CBL4) encode EF-hand calcium sensors that interact physically with and activate SOS2, a serine/threonine protein kinase. The CBL10/SOS2 or SOS3/SOS2 complexes then activate SOS1 Na+/H+ exchange activity. We completed our studies to understand how SOS1 activity is regulated. Specifically, we asked: (1) how does CBL10 regulate SOS1 activity? (2) What role do two putative CBL10-interacting proteins play in SOS1 regulation? (3) Are

  11. Equilibrium studies of sodium-ammonium potassium-ammonium, and calcium-ammonium exchanges on clinoptilolite zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Jama, M.A.; Yuecel, H. (Middle East Technical Univ., Ankara (Turkey))

    1989-12-01

    Forward and reverse ion-exchange isotherms for the binary sodium-ammonium, potassium-ammonium, and calcium-ammonium systems on clinoptilolite have been measured in aqueous solutions at a total concentration of 0.1 equiv/dm{sup 3} and at 298 K. Prior to exchange experiments it was attempted to prepare homoionic forms of the zeolite by exhaustive treatments with appropriate salt solutions of cations. With no binary exchanges, full replacement of the cation by the ammonium ion is observed, which conflicts with some earlier work on clinoptilolite. Despite the observed partial exchange levels, clinoptilolite shows a very high preference for ammonium ion over sodium and calcium but not over potassium. Thermodynamic values for the exchanges were calculated and compared with data in the literature. Both the selectivity and thermodynamic affinity sequence, in agreement with previous work reported in the literature, are K{sup +} > NH{sub 4}{sup +} > Na{sup +} > Ca{sup 2+}.

  12. Optimization of the procedure for the synthesis of calcium and sodium citrate in laboratory and semi-industrial conditions

    Directory of Open Access Journals (Sweden)

    Ušćumlić Gordana S.

    2009-01-01

    Full Text Available The aim of this investigation is the development of the optimal laboratory procedure for the synthesis of calcium and sodium citrate and the application of obtained results in a project for a semi-industrial installation for its production. These salts are used as an additive in numerous food and pharmaceutical products. Basically, they have to satisfy quality requirements, which is the reason why the procedure for their synthesis needs to be optimized in aspects of selection of reactants, their molar ratio, necessary laboratory equipment, reactant addition order, working temperature, isolation of final product from the reaction mixture, yield and product quality. A semi-industrial installation for the production of calcium and sodium citrate will be projected on the basis of the results of this investigation. The importance of this investigation is the fact that these salts are not produced in our country and the entire quantity (about 20 t per year is imported.

  13. Preparation of calcium fluoroaluminosilicate glasses containing sodium and phosphorus by the nonhydrolytic sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Cestari, Alexandre; Bandeira, Lucimara C.; Calefi, Paulo S. [Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, Pq. Universitario, 14404-600 Franca, SP (Brazil); Nassar, Eduardo J. [Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, Pq. Universitario, 14404-600 Franca, SP (Brazil)], E-mail: ejnassar@unifran.br; Ciuffi, Katia J. [Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, Pq. Universitario, 14404-600 Franca, SP (Brazil)

    2009-03-20

    Aluminum and silicon oxide-based inorganic matrices have been extensively studied because of their countless applications. Dental cements consist of aluminum and silicon-based amorphous polymeric materials containing fluoride, sodium, phosphorus and calcium, which are also good candidates for bone replacement. The nonhydrolytic sol-gel method has emerged as an alternative route for the preparation of these materials under milder conditions than those employed in traditional methods, such as oxide fusion. The main advantages of the nonhydrolytic sol-gel method include the use of low temperatures and the ready availability and easy purification of the precursors. Together, these factors have contributed to the production of highly pure materials with controlled porosity and nanometric particles. Dental restorations based on aluminosilicate matrices are known as glass ionomer cements. These materials have interesting physical and dental properties, mainly because they display anticariogenic activity and exhibit prolonged adhesiveness to the dental structure. The base of the ionomer is an aluminosilicate that is industrially synthesized by the fusion of SiO{sub 2}, Al{sub 2}O{sub 3}, AlF{sub 3}, CaF{sub 2}, NaF and AlPO{sub 4}, in various concentrations. The characterizations conducted in this study reveal that this ionomer displays interesting properties, so its use as a precursor of dental cement and a biomaterial for bone replacement is highly recommended.

  14. Molecular Modeling of Ammonium, Calcium, Sulfur, and Sodium Lignosulphonates in Acid and Basic Aqueous Environments

    Science.gov (United States)

    Salazar Valencia, P. J.; Bolívar Marinez, L. E.; Pérez Merchancano, S. T.

    2015-12-01

    Lignosulphonates (LS), also known as lignin sulfonates or sulfite lignin, are lignins in sulfonated forms, obtained from the "sulfite liquors," a residue of the wood pulp extraction process. Their main utility lies in its wide range of properties, they can be used as additives, dispersants, binders, fluxing, binder agents, etc. in fields ranging from food to fertilizer manufacture and even as agents in the preparation of ion exchange membranes. Since they can be manufactured relatively easy and quickly, and that its molecular size can be manipulated to obtain fragments of very low molecular weight, they are used as transport agents in the food industry, cosmetics, pharmaceutical and drug development, and as molecular elements for the treatment of health problems. In this paper, we study the electronic structural and optical characteristics of LS incorporating ammonium, sulfur, calcium, and sodium ions in acidic and basic aqueous media in order to gain a better understanding of their behavior and the very interesting properties exhibit. The studies were performed using the molecular modeling program HyperChem 5 using the semiempirical method PM3 of the NDO Family (neglect of differential overlap), to calculate the structural properties. We calculated the electronic and optical properties using the semiempirical method ZINDO / CI.

  15. Synthesis, characterization, and in vitro release of diclofenac sodium from hybrid nanostructured magnetite-calcium pectinate

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Raj Kumar, E-mail: duttafcy@iitr.ernet.in; Sahu, Saurabh, E-mail: saurabhsahu12@gmail.com [Indian Institute of Technology Roorkee, Analytical Chemistry Laboratory, Department of Chemistry (India); Reddy, V. R., E-mail: vrreddy@csr.res.in [UGC-DAE Consortium for Scientific Research (India)

    2012-08-15

    A stable spherical nanostructured calcium pectinate loaded with diclofenac sodium (DS) and functionalized by superparamagnetic iron oxide nanoparticles, referred as MCPDS, was developed as a potential magnetically targeted drug delivery system. The sizes of the MCPDS were in the range of 100-200 nm in dried condition, confirmed by scanning electron microscopy and transmission electron microscopy. In the aqueous medium, the sizes of MCPDS were in the range 300 {+-} 50 nm, measured by dynamic light scattering technique. The X-ray diffraction and {sup 57}Fe Moessbauer spectroscopy confirmed magnetite phase in MCPDS. The magnetic property of the MCPDS nanostructures was confirmed from high saturation magnetization (44.05 emu/g), measured using a vibrating sample magnetometer. The superparamagnetic property of MCPDS was characterized by superconducting quantum unit interference device magnetometry and corroborated by Moessbauer spectroscopy. The loading efficiency of DS in MCPDS was measured by UV-Vis spectrophotometry and corroborated by thermal analysis. The in vitro release of the drug from MCPDS in simulated gastrointestinal fluids and in phosphate buffer solution was found to be pH sensitive and exhibited sustained release property. The cumulative drug release agreed well with that of swelling controlled diffusion mechanism, given by the Korsemeyer Peppas model.

  16. Transuranium removal from Hanford high level waste simulants using sodium permanganate and calcium

    Science.gov (United States)

    Wilmarth, W. R.; Rosencrance, S. W.; Nash, C. A.; Fonduer, F. F.; DiPrete, D. P.; DiPrete, C. C.

    2000-07-01

    Plutonium and americium are present in the Hanford high level liquid waste complexant concentrate (CC) due to the presence of complexing agents including di-(2-ethylhexyl) phosphoric acid (D2EHPA), tributylphosphate (TBP), hydroxyethylene diamine triacetic acid (HEDTA), ethylene diamine tetraacetic acid (EDTA), citric acid, glycolic acid, and sodium gluconate. The transuranic concentrations approach 600 nCi/g and require processing prior to encapsulation into low activity glass. BNFL's (British Nuclear Fuels Limited's) original process was a ferric co-precipitation method based on earlier investigations by Herting and Orth, et al. Furthermore, flocculation and precipitation are widely used for clarification in municipal water treatment. Co-precipitation of Np, Am, and Pu with ferric hydroxide is also used within an analytical method for the sum of those analytes. Tests to evaluate BNFL's original precipitation process indicated the measured decontamination factors (DFs) and filter fluxes were too low. Therefore, an evaluation of alternative precipitation agents to replace ferric ion was undertaken. Agents tested included various transition metals, lanthanide elements, uranium species, calcium, strontium, and permanganate.

  17. Stochastic spontaneous calcium release events and sodium channelopathies promote ventricular arrhythmias

    Science.gov (United States)

    Campos, Fernando O.; Shiferaw, Yohannes; Vigmond, Edward J.; Plank, Gernot

    2017-09-01

    Premature ventricular complexes (PVCs), the first initiating beats of a variety of cardiac arrhythmias, have been associated with spontaneous calcium release (SCR) events at the cell level. However, the mechanisms underlying the degeneration of such PVCs into arrhythmias are not fully understood. The objective of this study was to investigate the conditions under which SCR-mediated PVCs can lead to ventricular arrhythmias. In particular, we sought to determine whether sodium (Na+) current loss-of-function in the structurally normal ventricles provides a substrate for unidirectional conduction block and reentry initiated by SCR-mediated PVCs. To achieve this goal, a stochastic model of SCR was incorporated into an anatomically accurate compute model of the rabbit ventricles with the His-Purkinje system (HPS). Simulations with reduced Na+ current due to a negative-shift in the steady-state channel inactivation showed that SCR-mediated delayed afterdepolarizations led to PVC formation in the HPS, where the electrotonic load was lower, conduction block, and reentry in the 3D myocardium. Moreover, arrhythmia initiation was only possible when intrinsic electrophysiological heterogeneity in action potential within the ventricles was present. In conclusion, while benign in healthy individuals SCR-mediated PVCs can lead to life-threatening ventricular arrhythmias when combined with Na+ channelopathies.

  18. Structural Insight into the Ion-Exchange Mechanism of the Sodium/Calcium Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Jun; Li, Hua; Zeng, Weizhong; Sauer, David B.; Belmares, Ricardo; Jiang, Youxing (UTSMC)

    2012-06-19

    Sodium/calcium (Na{sup +}/Ca{sup 2+}) exchangers (NCX) are membrane transporters that play an essential role in maintaining the homeostasis of cytosolic Ca{sup 2+} for cell signaling. We demonstrated the Na{sup +}/Ca{sup 2+}-exchange function of an NCX from Methanococcus jannaschii (NCX{_}Mj) and report its 1.9 angstrom crystal structure in an outward-facing conformation. Containing 10 transmembrane helices, the two halves of NCX{_}Mj share a similar structure with opposite orientation. Four ion-binding sites cluster at the center of the protein: one specific for Ca{sup 2+} and three that likely bind Na{sup +}. Two passageways allow for Na{sup +} and Ca{sup 2+} access to the central ion-binding sites from the extracellular side. Based on the symmetry of NCX{_}Mj and its ability to catalyze bidirectional ion-exchange reactions, we propose a structure model for the inward-facing NCX{_}Mj.

  19. Quantitative X-ray pair distribution function analysis of nanocrystalline calcium silicate hydrates: a contribution to the understanding of cement chemistry

    Science.gov (United States)

    Grangeon, Sylvain; Baronnet, Alain; Marty, Nicolas; Poulain, Agnieszka; Elkaïm, Erik; Roosz, Cédric; Gaboreau, Stéphane; Henocq, Pierre; Claret, Francis

    2017-01-01

    The structural evolution of nanocrystalline calcium silicate hydrate (C–S–H) as a function of its calcium to silicon (Ca/Si) ratio has been probed using qualitative and quantitative X-ray atomic pair distribution function analysis of synchrotron X-ray scattering data. Whatever the Ca/Si ratio, the C–S–H structure is similar to that of tobermorite. When the Ca/Si ratio increases from ∼0.6 to ∼1.2, Si wollastonite-like chains progressively depolymerize through preferential omission of Si bridging tetrahedra. When the Ca/Si ratio approaches ∼1.5, nanosheets of portlandite are detected in samples aged for 1 d, while microcrystalline portlandite is detected in samples aged for 1 year. High-resolution transmission electron microscopy imaging shows that the tobermorite-like structure is maintained to Ca/Si > 3.

  20. Oral calcium pectinate-insulin nanoparticles: influences of alginate, sodium chloride and Tween 80 on their blood glucose lowering performance.

    Science.gov (United States)

    Wong, Tin W; Sumiran, Nurjaya

    2014-05-01

    Examine the formation of pectin-insulin nanoparticles and their blood glucose lowering properties. The calcium pectinate nanoparticles were prepared by ionotropic gelation method, with alginate, sodium chloride or Tween 80 as additive. Their in vitro physicochemical, drug release and in vivo blood glucose lowering characteristics were evaluated. Spherical calcium pectinate-insulin nanoparticles were characterized by size, zeta potential, insulin content and insulin association efficiency of 348.4 ± 12.9 nm, -17.9 ± 0.8 mV, 8.4 ± 1.0% and 63.8 ± 7.4%, respectively. They released less than 25% insulin following 24 h in simulated intestinal medium and exhibited delayed blood glucose lowering effect in rats. Incorporation of solubilizer sodium chloride or Tween 80 into nanoparticles did not enhance blood glucose lowering capacity owing to sodium chloride reduced matrix insulin content and Tween 80 interacted with water and had its blood glucose dilution effect negated. Combination of nanoparticles with alginate gel to allow prolonged intestinal residence and more insulin release did not enhance their blood glucose lowering capacity because of calcium alginate-cross-linked gel formation that could retard insulin release and migration into systemic circulation. Physicochemical responses of additives in vivo affected blood glucose regulation property of pectin-insulin nanoparticles. © 2013 Royal Pharmaceutical Society.

  1. Simultaneous measurements of magnesium, calcium and sodium influxes in perfused squid giant axons under membrane potential control.

    Science.gov (United States)

    Rojas, E; Taylor, R E

    1975-10-01

    1. Giant axons from the squids Dosidicus gigas, Loligo forbesi and Loligo vulgaris were internally perfused with 550 or 275 mM KF plus sucrose and bathed in artificial sea water containing 45Ca, 28Mg or mixtures of 45Ca-28Mg or 45Ca-22Na. Resting influxes and extra influxes during voltage-clamp pulses were measured by collecting and counting the internal perfusate. 2. For Dosidicus axons in 10 mM-CaCl2 the resting influx of calcium was 0-016 +/- 0-007 p-mole/cm2 sec and a linear function of external concentration. For two experiments in 10 and 84-7 mM-CaCl2, 100 nM tetrodotoxin had no effect. Resting calcium influx in 10 mM-CaCl2 was 0-017 +/- 0-013 p-mole/cm2 sec for Loligo axons. 3. With 55 mM-MgCl2 outside the average resting magnesium influx was 0-124 +/- 0-080 p-mole/cm2 sec for Loligo axons. Discarding one aberrant point the value is 0-105 +/- 0-046 which is not significantly different from the resting calcium influx for Dosidicus fibres in 55 mM-CaCl2, given as 0-094 p-mole/cm2 sec by the regression line shown in Fig. 1. In two experiments 150 nM tetrodotoxin had no effect. 4. With 430 mM-NaCl outside 100 nM tetrodotoxin reduced the average resting influx of sodium in Dosidicus axon from 27-7 +/- 4-5 to 25-1 +/- 6-2 p-mole/cm2 sec and for Loligo fibres in 460 mM-NaCl from 50-5 +/- 4 to 20 +/- 8 p-mole/cm2 sec. 5. Using depolarizing pulses of various durations, the extra calcium influx occurred in two phases. The early phase was eliminated by external application of tetrodotoxin. The results of analysis are consistent with, but do not rigorously demonstrate, the conclusion that the tetrodotoxin sensitive calcium entry is flowing through the normal sodium channels (cf. Baker, Hodgkin & Ridgway, 1971). 6. Measurements of extra influxes using 22Na and 45Ca simultaneously indicate that the time courses of tetrodotoxin sensitive calcium and sodium entry are similar but not necessarily identical. It is very doubtful that any significant calcium entry occurs before

  2. Gd3+ and calcium sensitive, sodium leak currents are features of weak membrane-glass seals in patch clamp recordings.

    Science.gov (United States)

    Boone, Adrienne N; Senatore, Adriano; Chemin, Jean; Monteil, Arnaud; Spafford, J David

    2014-01-01

    The properties of leaky patch currents in whole cell recording of HEK-293T cells were examined as a means to separate these control currents from expressed sodium and calcium leak channel currents from snail NALCN leak channels possessing both sodium (EKEE) and calcium (EEEE) selectivity filters. Leak currents were generated by the weakening of gigaohm patch seals by artificial membrane rupture using the ZAP function on the patch clamp amplifier. Surprisingly, we found that leak currents generated from the weakened membrane/glass seal can be surprisingly stable and exhibit behavior that is consistent with a sodium leak current derived from an expressible channel. Leaky patch currents differing by 10 fold in size were similarly reduced in size when external sodium ions were replaced with the large monovalent ion NMDG+. Leaky patch currents increased when external Ca2+ (1.2 mM) was lowered to 0.1 mM and were inhibited (>40% to >90%) with 10 µM Gd3+, 100 µM La3+, 1 mM Co2+ or 1 mM Cd2+. Leaky patch currents were relatively insensitive (Sylgard rubber.

  3. Computational Material Modeling of Hydrated Cement Paste Calcium Silicate Hydrate (C-S-H) Chemistry Structure - Influence of Magnesium Exchange on Mechanical Stiffness: C-S-H Jennite

    Science.gov (United States)

    2015-04-27

    material chemistry structure are studied following a molecular dynamics (MD) computational modeling methodology. Calcium ions are replaced with... chemistry structure. Conference Name: 1st Pan-American Conference on Computational Mechanics Conference Date: April 27, 2015 1st Pan-American Congress on...MODELING OF C-S-H Material chemistry level modeling following the principles and techniques commonly grouped under Computational Material Science is

  4. Enamel remineralization effect of a dentifrice containing calcium sodium phosphosilicate: an optical coherence tomography observation.

    Science.gov (United States)

    Matsuyoshi, Saki; Murayama, Ryosuke; Akiba, Shunsuke; Yabuki, Chiaki; Takamizawa, Toshiki; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2017-04-01

    The purpose of this study was to examine the effects of a dentifrice containing 5% calcium sodium phosphosilicate (CSP) on the remineralization of the enamel using optical coherence tomography (OCT). Bovine incisors were sliced and shaped in a rectangular form. One group of five specimens was treated with undersaturated 0.1 M lactic acid buffer solution (pH 4.75) for 10 min and then placed in artificial saliva (pH 7.0) (De group). Other specimens were stored in solutions of toothpaste containing CSP for 10 min, followed by 10-min immersion in the lactic acid buffer solution twice a day before storage in artificial saliva (CSP group). An additional group was stored in only artificial saliva (control group). OCT imaging on the selected location of the enamel surface was performed. The peak intensity and width at 1/e(2) were recorded in each of the six areas on the sample and averaged, and the sample size of each group was six. The integrated value in units (dB × μm) was calculated in the area of peak intensity. The data for each group was subjected to one-way repeated-measures ANOVA and Tukey HSD tests (α = 0.05). The changes in integrated values of each group were different. A slight but significant increase in the integrated value was observed in the control group, whereas a slight but significant decrease in the value was observed the De group. Integrated values increased in the CSP group. Remineralization occurred upon immersion in the toothpaste containing CSP.

  5. Calcium pentosan polysulfate and sodium pentosan polysulfate may be used to treat intervertebral disc degeneration.

    Science.gov (United States)

    Zhao, Jia-Guo; Wang, Jia; Xin, Qi; Zhang, Peng; Zhang, Sheng-Fei; Qi, Feng; Mao, Dong; Zhang, Zhi-Cheng

    2011-04-01

    Intervertebral disc degeneration (IDD) is a major health problem world-wide, and several spinal disorders are closely associated with it. Although people have invested a great deal of time and effort, how to prevent and reverse the IDD for the researchers is still a difficult and hot issue. Intervertebral disc belongs to cartilage tissue, and IDD also is the cartilage degeneration disease. A large quantity of studies have shown that Calcium pentosan polysulfate (CaPPS) and sodium pentosan polysulfate (NaPPS) possess chondroprotective activities and play an important role in maintaining cartilage integrity. We reasonably hypothesize that NaPPS and CaPPS may be used to treat IDD. The possible mechanism may include that: (1) the significant effects of NaPPS and CaPPS in improving capillary blood flow could maintain nutritional supply to intervertebral disc, and preserve intervertebral disc tissue against degeneration; (2) CaPPS and NaPPS preserve cartilage integrity, proteoglycan synthesis, and improve cartilage biomechanical properties; (3) as the multifaceted exosite inhibitors of proteinases NaPPS and CaPPS strongly impede the activity and production of proteinases; (4) promotion of the balance between proteinases and TIMPs also may be involved in treating IDD; (5) NaPPS and CaPPS exhibit potent anti-inflammatory effects, and then reduce inflammation-induced IDD. If the hypothesis were conformed, the symptoms caused by IDD and its related diseases would be a corresponding alleviation or even disappearance, which could greatly alleviate the suffering of patients from disc degeneration diseases. Certainly, many roles of CaPPS and NaPPS, such as effectiveness, safety and side effects, need to be tested, and further works such as animal model and clinical trial, need to be done to prove this hypothesis.

  6. Seeing the forest through the trees: towards a unified view on physiological calcium regulation of voltage-gated sodium channels.

    Science.gov (United States)

    Van Petegem, Filip; Lobo, Paolo A; Ahern, Christopher A

    2012-12-05

    Voltage-gated sodium channels (Na(V)s) underlie the upstroke of the action potential in the excitable tissues of nerve and muscle. After opening, Na(V)s rapidly undergo inactivation, a crucial process through which sodium conductance is negatively regulated. Disruption of inactivation by inherited mutations is an established cause of lethal cardiac arrhythmia, epilepsy, or painful syndromes. Intracellular calcium ions (Ca(2+)) modulate sodium channel inactivation, and multiple players have been suggested in this process, including the cytoplasmic Na(V) C-terminal region including two EF-hands and an IQ motif, the Na(V) domain III-IV linker, and calmodulin. Calmodulin can bind to the IQ domain in both Ca(2+)-bound and Ca(2+)-free conditions, but only to the DIII-IV linker in a Ca(2+)-loaded state. The mechanism of Ca(2+) regulation, and its composite effect(s) on channel gating, has been shrouded in much controversy owing to numerous apparent experimental inconsistencies. Herein, we attempt to summarize these disparate data and propose a novel, to our knowledge, physiological mechanism whereby calcium ions promote sodium current facilitation due to Ca(2+) memory at high-action-potential frequencies where Ca(2+) levels may accumulate. The available data suggest that this phenomenon may be disrupted in diseases where cytoplasmic calcium ion levels are chronically high and where targeted phosphorylation may decouple the Ca(2+) regulatory machinery. Many Na(V) disease mutations associated with electrical dysfunction are located in the Ca(2+)-sensing machinery and misregulation of Ca(2+)-dependent channel modulation is likely to contribute to disease phenotypes.

  7. Microstructure and Physical Properties of Sulfate Hydrate/Ice Eutectic Aggregates in the Binary System Sodium-Sulfate/Water at Planetary Conditions

    Science.gov (United States)

    McCarthy, C. M.; Kirby, S.; Durham, W.; Stern, L.

    2004-12-01

    Reflectance spectra data from Mars Odyssey, Galileo and potentially from Cassini suggest the presence of hydrated salts on numerous satellites in environments such as evaporate beds or combined with water ice. Improved mission data on these occurrences indicate that grain structures and properties of such materials merit a closer look using laboratory methods. Here we report the synthesis of a two-phase aggregate of sodium sulfate hydrate and water ice made by eutectic solidification from solution, characterization of its microstructure using cryogenic SEM, and comparison of its physical properties to those of its end-member components. Samples are crystallized from solution using a precision cryobath and seeded growth. The reaction is a "simple" one meaning that there is no solid solution formation in either of the two solid phases. The eutectic composition we studied for the sodium sulfate hydrate is 4wt% Na2SO4, which corresponds to about .06 volume fraction of Na2SO4ṡ10H2O, mirabilite, and .94 ice I. The eutectic microstructure observed with this volume fraction, which is termed "broken lamellar", consists of fairly uniform blade-like mirabilite grains arranged in roughly parallel columns within a water ice matrix. The blades and matrix material form a lamella that alternates with lamellae of pure ice. Energy dispersive spectroscopy of these eutectic mixtures confirms the presence of the two crystalline phases. Also, we find that lamellar spacing decreases with increasing growth rate. Constant-strain-rate tests in compression are carried out in the cryogenic gas deformation apparatus at LLNL in a pressure-temperature range appropriate to the icy satellites. We report the rheology of the two-phase aggregate and compare it to the strength properties of pure water ice and pure mirabilite. With the aid of numerous studies on similar structures in the literature on metals, we analyze the deformation mechanics from the perspective of defect and crack propagation

  8. Gd3+ and calcium sensitive, sodium leak currents are features of weak membrane-glass seals in patch clamp recordings.

    Directory of Open Access Journals (Sweden)

    Adrienne N Boone

    Full Text Available The properties of leaky patch currents in whole cell recording of HEK-293T cells were examined as a means to separate these control currents from expressed sodium and calcium leak channel currents from snail NALCN leak channels possessing both sodium (EKEE and calcium (EEEE selectivity filters. Leak currents were generated by the weakening of gigaohm patch seals by artificial membrane rupture using the ZAP function on the patch clamp amplifier. Surprisingly, we found that leak currents generated from the weakened membrane/glass seal can be surprisingly stable and exhibit behavior that is consistent with a sodium leak current derived from an expressible channel. Leaky patch currents differing by 10 fold in size were similarly reduced in size when external sodium ions were replaced with the large monovalent ion NMDG+. Leaky patch currents increased when external Ca2+ (1.2 mM was lowered to 0.1 mM and were inhibited (>40% to >90% with 10 µM Gd3+, 100 µM La3+, 1 mM Co2+ or 1 mM Cd2+. Leaky patch currents were relatively insensitive (<30% to 1 mM Ni2+ and exhibited a variable amount of block with 1 mM verapamil and were insensitive to 100 µM mibefradil or 100 µM nifedipine. We hypothesize that the rapid changes in leak current size in response to changing external cations or drugs relates to their influences on the membrane seal adherence and the electro-osmotic flow of mobile cations channeling in crevices of a particular pore size in the interface between the negatively charged patch electrode and the lipid membrane. Observed sodium leak conductance currents in weak patch seals are reproducible between the electrode glass interface with cell membranes, artificial lipid or Sylgard rubber.

  9. Calcium

    Science.gov (United States)

    ... in luck if you like sardines and canned salmon with bones. Almond milk. previous continue Working Calcium ... drinks, and cereals. Other Considerations for Building Bones Vitamin D is essential for calcium absorption, so it's ...

  10. Statement on the exposure assessment of sodium stearoyl-2-lactylate and calcium stearoyl-2-lactylate including exposure resulting from extension of the authorisation of sodium stearoyl-2-lactylates

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS

    2013-03-01

    Full Text Available Following a request by the European Commission, the Scientific Panel on Food Additives and Nutrient Sources added to Food (ANS carried out an exposure assessment of sodium stearoyl-2-lactylate (E 481 and calcium stearoyl-2-lactylate (E 482 as a food additive, including an extension of the uses to use the additives in emulsified cooked meat products (e.g. mortadella, paté. Reflecting the data on actual use levels provided by food industry, the combined exposure to sodium stearoyl-2-lactylate and calcium stearoyl-2-lactylate is in the range 6-55 mg/kg bw/day for toddlers, 14-54 mg/kg bw/day for children, 13-27 mg/kg bw/day for adolescents, 4-16 mg/kg bw/day for adults, and 3-13 mg/kg bw/day for the elderly at the mean level. For exposure at high levels, ranges of 22-109 mg/kg bw/day for toddlers, 28-107 mg/kg bw/day for children, 21-46 mg/kg bw/day for adolescents, 15-33 mg/kg bw/day for adults, and 9-30 mg/kg bw/day were calculated for the elderly. The extension of the authorisation for the use of sodium stearoyl-2-lactylate in emulsified cooked meat products (e.g. mortadella, paté would not lead to an increase of exposure based on the approach taken for the exposure assessment for the two food additives.

  11. Search for an exosphere in sodium and calcium in the transmission spectrum of exoplanet 55 Cancri e

    CERN Document Server

    Ridden-Harper, A R; Keller, C U; de Kok, R J; Di Gloria, E; Hoeijmakers, H J; Brogi, M; Fridlund, M; Vermeersen, B L A; van Westrenen, W

    2016-01-01

    [Abridged] The aim of this work is to search for an absorption signal from exospheric sodium (Na) and singly ionized calcium (Ca$^+$) in the optical transmission spectrum of the hot rocky super-Earth 55 Cancri e. Although current best-fitting models to the planet mass and radius require a possible atmospheric component, uncertainties in the radius exist, making it possible that 55 Cnc e could be a hot rocky planet without an atmosphere. High resolution (R$\\sim$110000) time-series spectra were analysed of five transits of 55 Cancri e, obtained with three different telescopes (UVES/VLT, HARPS/ESO 3.6m & HARPS-N/TNG). Targeting the sodium D lines and the calcium H and K lines the potential planet exospheric signal was filtered out from the much stronger stellar and telluric signals, making use of the change of the radial component of the orbital velocity of the planet over the transit from -57 to +57 km/sec. Combining all five transit data sets we detect a signal potentially associated with sodium in the pla...

  12. Glass powder blended cement hydration modelling

    Science.gov (United States)

    Saeed, Huda

    The use of waste materials in construction is among the most attractive options to consume these materials without affecting the environment. Glass is among these types of potential waste materials. In this research, waste glass in powder form, i.e. glass powder (GP) is examined for potential use in enhancing the characteristics of concrete on the basis that it is a pozzolanic material. The experimental and the theoretical components of the work are carried out primarily to prove that glass powder belongs to the "family" of the pozzolanic materials. The chemical and physical properties of the hydrated activated glass powder and the hydrated glass powder cement on the microstructure level have been studied experimentally and theoretically. The work presented in this thesis consists of two main phases. The first phase contains experimental investigations of the reaction of glass powder with calcium hydroxide (CH) and water. In addition, it includes experiments that are aimed at determining the consumption of water and CH with time. The reactivity, degree of hydration, and nature of the pore solution of the glass powder-blended cement pastes and the effect of adding different ratios of glass powder on cement hydration is also investigated. The experiments proved that glass powder has a pozzolanic effect on cement hydration; hence it enhances the chemical and physical properties of cement paste. Based on the experimental test results, it is recommended to use a glass powder-to-cement ratio (GP/C) of 10% as an optimum ratio to achieve the best hydration and best properties of the paste. Two different chemical formulas for the produced GP C-S-H gel due to the pure GP and GP-CH pozzolanic reaction hydration are proposed. For the pure GP hydration, the produced GP C-S-H gel has a calcium-to-silica ratio (C/S) of 0.164, water-to-silica ratio (H/S) of 1.3 and sodium/silica ratio (N/S) of 0.18. However, for the GP-CH hydration, the produced GP C-S-H gel has a C/S ratio of 1

  13. Cinética de hidratação de ligantes à base de alumina hidratável ou aluminato de cálcio Kinetics of hydration of binders based on hydratable alumina or calcium aluminate cement

    Directory of Open Access Journals (Sweden)

    I. R. Oliveira

    2007-03-01

    Full Text Available O estado de dispersão da matriz de um concreto refratário apresenta uma grande influência no comportamento reológico desse material, determinando as técnicas utilizadas para a sua aplicação. Tais métodos normalmente exigem a preparação de concretos com elevada fluidez, que possam ser bombeados com facilidade e sejam capazes de preencher moldes de formato complexo sem a necessidade de aplicação de vibração. Entretanto, embora tais requisitos favoreçam uma boa trabalhabilidade do concreto, tendem a aumentar o tempo requerido para efetuar a desmoldagem do corpo conformado. Uma vez que o desenvolvimento da resistência mecânica do concreto está intimamente relacionado ao processo de hidratação do ligante hidráulico, este necessita ser controlado quando se busca a redução do tempo para a desmoldagem. Tal controle depende de um profundo conhecimento das variáveis que determinam a cinética das reações. Neste contexto, o objetivo deste trabalho foi o de avaliar a influência do tipo de ligante hidráulico, da temperatura e da presença de finos (matriz ou de aditivos inorgânicos adicionados ao concreto sobre o processo de hidratação por meio de medidas de temperatura e ensaios reológicos oscilatórios em função do tempo.The dispersion of refractory castables matrix presents a great influence on their rheological behavior, which defines the most appropriate methods for placing these materials. The growing demand for automatically transported refractory castables has promoted the use of pumpable castables, usually specified as self flow compositions. Nevertheless, castables with higher fluidity present longer workability, leading to extended demoulding times. Because the strength development is intimately linked to the hydration process of calcium aluminate cement or hydratable alumina, it needs to be controlled in order to reach the minimum time for demoulding, contributing to reducing overall costs. The control of cement

  14. Tetrahydrofuran-promoted clathrate hydrate phase equilibria of CO{sub 2} in aqueous electrolyte solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sabil, K.M.; Roman, V.R. [Delft Univ. of Technology, Delft (Netherlands). Physical Chemistry and Molecular Thermodynamics; Witkamp, G.J.; Peters, C.J. [Delft Univ. of Technology, Delft, (Netherlands). Laboratory of Process Equipment, Mechanical, Maritime and Materials Engineering

    2008-07-01

    The phase behavior of a system consisting of carbon dioxide (CO{sub 2}) hydrates is of significant importance for many industrial and natural processes. Carbon dioxide and water are part of natural gas streams and they are also found in oil reservoirs during enhanced oil recovery. Formation of hydrate in these cases may cause problems during production and processing. Alternatively, carbon dioxide hydrate formation may be desirable since it can facilitate separation processes, freezing and refrigeration processes and sequestration of CO{sub 2}. The need for phase equilibrium data of systems, particularly electrolyte solutions containing CO{sub 2} are therefore needed. This paper presented a study that attempted to measure the hydrate equilibrium condition for quaternary system consisting of CO{sub 2}, tetrahydrofuran (THF), an electrolyte and water. The purpose of the study was to examine the competing effect of tetrahydrofuran and an electrolyte on the phase behavior of CO{sub 2} hydrates when both were simultaneously present in a system at hydrate forming condition and to compare the effect of different salts inhibition on tetrahydrofuran-promoted CO{sub 2} hydrate. Six different electrolytes were utilized, including sodium chloride, calcium chloride, magnesium chloride, potassium bromide, sodium fluoride and sodium bromide. It was concluded that the inhibiting effect among the cations increased with increasing charge of the cation and its radius. It was also found that the inhibiting effect of the anions decreased with a decrease on their ion radius. 12 refs., 4 figs.

  15. Tolperisone-type drugs inhibit spinal reflexes via blockade of voltage-gated sodium and calcium channels.

    Science.gov (United States)

    Kocsis, Pál; Farkas, Sándor; Fodor, László; Bielik, Norbert; Thán, Márta; Kolok, Sándor; Gere, Anikó; Csejtei, Mónika; Tarnawa, István

    2005-12-01

    The spinal reflex depressant mechanism of tolperisone and some of its structural analogs with central muscle relaxant action was investigated. Tolperisone (50-400 microM), eperisone, lanperisone, inaperisone, and silperisone (25-200 microM) dose dependently depressed the ventral root potential of isolated hemisected spinal cord of 6-day-old rats. The local anesthetic lidocaine (100-800 microM) produced qualitatively similar depression of spinal functions in the hemicord preparation, whereas its blocking effect on afferent nerve conduction was clearly stronger. In vivo, tolperisone and silperisone as well as lidocaine (10 mg/kg intravenously) depressed ventral root reflexes and excitability of motoneurons. However, in contrast with lidocaine, the muscle relaxant drugs seemed to have a more pronounced action on the synaptic responses than on the excitability of motoneurons. Whole-cell measurements in dorsal root ganglion cells revealed that tolperisone and silperisone depressed voltage-gated sodium channel conductance at concentrations that inhibited spinal reflexes. Results obtained with tolperisone and its analogs in the [3H]batrachotoxinin A 20-alpha-benzoate binding in cortical neurons and in a fluorimetric membrane potential assay in cerebellar neurons further supported the view that blockade of sodium channels may be a major component of the action of tolperisone-type centrally acting muscle relaxant drugs. Furthermore, tolperisone, eperisone, and especially silperisone had a marked effect on voltage-gated calcium channels, whereas calcium currents were hardly influenced by lidocaine. These data suggest that tolperisone-type muscle relaxants exert their spinal reflex inhibitory action predominantly via a presynaptic inhibition of the transmitter release from the primary afferent endings via a combined action on voltage-gated sodium and calcium channels.

  16. Ecological comparison of calcium hydroxide and sodium hydrogen carbonate as sorbents; Oekologischer Vergleich der Sorptionsmittel Calciumhydroxid und Natriumhydrogencarbonat

    Energy Technology Data Exchange (ETDEWEB)

    Pacher, Christian; Weber-Blaschke, Gabriele [Technische Univ. Muenchen, Freising (Germany). Lehrstuhl fuer Rohstoff- und Energietechnologie; Mocker, Mario [ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany); Faulstich, Martin [Technische Univ. Muenchen, Straubing (Germany). Wissenschaftszentrum Straubing

    2009-07-01

    Lime products have long been used with success for flue gas purification in waste incineration plants, where they serve to eliminate acid gas pollutants such as sulphur dioxide, hydrogen chloride and hydrogen fluoride. This article presents excerpts of a study commissioned by the German lime industry association for the purpose of obtaining an unbiased well-founded comparison of the environmental impact of the two sorbents calcium hydroxide and sodium hydrogen carbonate. The following questions were addressed by the study: Which of the two flue gas additives provides greater environmental benefit under specified conditions? What parameters influence the outcome? How can the results be viewed in regard to different plant configurations?.

  17. Interactions of Organic Additives with Ionic Crystal Hydrates

    Science.gov (United States)

    Füredi-Milhofer, H.; Sikirić, M.; Tunik, L.; Filipović-Vinceković, N.; Garti, N.

    The interactions of two groups of hydrated model crystals, calcium hydrogenphosphate dihydrate (DCPD) vs. octacalcium phosphate (OCP) and calcium oxalate monohydrate (COM) vs. calcium oxalate dihydrate (COD) with different organic additives are considered. DCPD precipitates as platelet-like crystals with the dominant faces shielded by hydrated layers and charged lateral faces. In the second system COM has charged surfaces, while all faces of COD are covered with layers containing water molecules. The organic molecules tested include negatively charged, flexible and rigid small and macromolecules (glutamic and aspartic acid, citrate, hexaammonium polyphosphate, phytate and polyaspartate) and anionic surfactants (sodium dodecyl sulphate, SDS, sodium diisooctyl sulfosuccinate, AOT, sodium cholate NaC and disodium oleoamido PEG-2 sulfosuccinate, PEG). Two types of effects have been demonstrated: (1) Effect on crystal growth morphology: Flexible organic molecules with high charge density and anionic surfactants affected the growth morphology of DCPD and COM by selectively interacting with the charged lateral faces while rigid molecules (phytate, polyaspartate) specifically recognized the dominant (010) face of DCPD due to structural and stereochemical compatibility. (2) Effect on phase composition: Anionic surfactants at concentrations above the cmc promoted growth of OCP and COD respectively by selectively adsorbing at, and inhibiting growth oif nuclei of DCPD and/or COM, which were dominant in the respective control systems. The effect was especially pronounced in the calcium oxalate precipitation system, where in some cases complete reversal of the phase composition occurred. The important role of the hydrated layer, as part of the structure of the investigated crystal hydrates, in the above crystal additive interactions is discussed.

  18. Comparative evaluation of a dentifrice containing calcium sodium phosphosilicate to a dentifrice containing potassium nitrate for dentinal hypersensitivity: A clinical study

    Directory of Open Access Journals (Sweden)

    Tanya Satyapal

    2014-01-01

    Full Text Available Background: Calcium sodium phosphosilicate is a recently introduced desensitizing agent which acts by occluding the dentinal tubules and also resists acid decalcification. This study was designed to assess the efficacy of a new toothpaste containing 5% calcium sodium phosphosilicate for the treatment of dentinal hypersensitivity and also compare it with 5% potassium nitrate. Materials and Methods: Sixty patients with the chief complaint of dentinal hypersensitivity were enrolled and randomly divided into two groups. The visual analog scale (VAS scores were taken for water and air stimuli at baseline, 3 weeks after usage of the respective toothpaste, and 3 weeks after discontinuation of the respective toothpaste. Results: Both the groups showed reduction in hypersensitivity scores at 3 weeks and 6 weeks for air stimulus and cold water. The calcium sodium phosphosilicate group, however, showed significantly reduction in hypersensitivity compared to the potassium nitrate group at any time point for both measures of hypersensitivity. Conclusion: The 5% calcium sodium phosphosilicate group showed immense reduction in dentinal hypersensitivity symptoms. The 5% calcium sodium phosphosilicate showed prolonged effects even after discontinuation as compared to 5% potassium nitrate, due to its dentinal tubular occlusion property.

  19. Influence of saline solution on hydration behavior of β-dicalcium silicate in comparison with biphasic calcium phosphate/hydroxyapatite bio-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Radwan, M.M., E-mail: mmahmoudradwan@yahoo.com [Ceramics Dept, National Research Centre, Cairo (Egypt); Abd El-Hamid, H.K. [Ceramics Dept, National Research Centre, Cairo (Egypt); Mohamed, A.F. [The Holding Company for Production of Vaccines, Sera and Drugs (EGYVAC) (Egypt)

    2015-12-01

    The influence of using saline solution as mixing and curing liquid on some characteristics of β-dicalcium silicate (β-C{sub 2}S) and biphasic compound tri-calcium phosphate/hydroxyapatite (TCP/HAp) bio-ceramics was investigated. β-C{sub 2}S (27–30 nm) was prepared by solid state reaction at 1450 °C, while biphasic compound TCP/HAp (7–15 nm) was synthesized from an aqueous solution of Ca(NO{sub 3}){sub 2}·4H{sub 2}O and (NH{sub 4}){sub 2}HPO{sub 4}·12H{sub 2}O by chemical precipitation method. Setting times, compressive strength, pH values, X-ray diffraction analysis, infrared spectroscopy, scanning electron microscopy (SEM) were investigated. The evaluation of cytotoxicity of both calcium silicate and biphasic compounds to human gingival fibroblasts was carried out. The use of saline solution as mixing and immersing liquid shortened the setting time for the two bio-cements. TCP/HAp did not show any mechanical strength but β-C{sub 2}S showed good strength values. Both synthesized compounds showed a moderate cytotoxicity and both materials were effective in a no significant way. - Highlights: • The dissolution and hydration of β-C{sub 2}S and TCP/HAp in distilled water and saline solution were studied. • TCP/HAp did not show mechanical strength, while β-C{sub 2}S showed good mechanical strength. • The use of saline solution did enhances the dissolution & hydration rate. • An increase in pH values was detected when using saline solution. • Both materials showed a moderate cytotoxicity in no significant way.

  20. Actions of a hydrogen sulfide donor (NaHS) on transient sodium, persistent sodium, and voltage-gated calcium currents in neurons of the subfornical organ.

    Science.gov (United States)

    Kuksis, Markus; Ferguson, Alastair V

    2015-09-01

    Hydrogen sulfide (H2S) is an endogenously found gasotransmitter that has been implicated in a variety of beneficial physiological functions. This study was performed to investigate the cellular mechanisms underlying actions of H2S previously observed in subfornical organ (SFO), where H2S acts to regulate blood pressure through a depolarization of the membrane and an overall increase in the excitability of SFO neurons. We used whole cell patch-clamp electrophysiology in the voltage-clamp configuration to analyze the effect of 1 mM NaHS, an H2S donor, on voltage-gated potassium, sodium, and calcium currents. We observed no effect of NaHS on potassium currents; however, both voltage-gated sodium currents (persistent and transient) and the N-type calcium current had a depolarized activation curve and an enhanced peak-induced current in response to a series of voltage-step and ramp protocols run in the control and NaHS conditions. These effects were not responsible for the previously observed depolarization of the membrane potential, as depolarizing effects of H2S were still observed following block of these conductances with tetrodotoxin (5 μM) and ω-conotoxin-GVIA (100 nM). Our studies are the first to investigate the effect of H2S on a variety of voltage-gated conductances in a single brain area, and although they do not explain mechanisms underlying the depolarizing actions of H2S on SFO neurons, they provide evidence of potential mechanisms through which this gasotransmitter influences the excitability of neurons in this important brain area as a consequence of the modulation of multiple ion channels.

  1. Nutrient balance of layers fed diets with different calcium levels and the inclusion of phytase and/or sodium butyrate

    Directory of Open Access Journals (Sweden)

    MM Vieira

    2011-06-01

    Full Text Available In this study, Hisex Brown layers in lay were evaluated between 40 and 44 weeks of age to evaluate the inclusion of bacterial phytase (Ph and sodium butyrate (SB to diets containing different calcium levels (CaL. Performance, average egg weight and eggshell percentage, in addition to nutrient metabolizability and Ca and P balance were evaluated for 28 days. Birds were distributed according to a completely randomized experimental design with a 3x2x2 factorial arrangement, with three calcium levels (2.8, 3.3, 3.8%; the addition or not of phytase (500PhU/kg and the addition or not of sodium butyrate (20mEq/kg, composing 12 treatments with eight replicates of one bird each. There was no additive effect of phytase or SB on the evaluated responses. Feed intake and feed conversion ratio were influenced by CaL, with the best performance obtained with 3.3% dietary Ca. Ca balance was positively affected by dietary Ca, and P balance by the addition of phytase. Ca dietary concentration, estimated to obtain Ca body balance, was 3.41%, corresponding to an apparent retention of 59.9% of Ca intake.

  2. Influence of Pyrethroid Insecticides on Sodium and Calcium Influx in Neocortical Neurons

    Science.gov (United States)

    Pyrethroid insecticides bind to voltage-gated sodium channels and modify their gating kinetics, thereby disrupting neuronal function. Using murine neocortical neurons in primary culture, we have compared the ability of 11 structurally diverse pyrethroid insecticides to evoke Na+ ...

  3. Occurrence of methane hydrate in saturated and unsaturated solutions of sodium chloride and water in dependence of temperature and pressure

    Energy Technology Data Exchange (ETDEWEB)

    de Roo, J.L.; Diepen, G.A.M.; Lichtenthaler, R.N.; Peters, C.J.

    1983-07-01

    Experimental results of the formation of methane hydrate in dependence of temperature and pressure in unsaturated solutions of NaCl in water will be presented in a temperature range from 261.85 to 285.98 K and pressure up to 11.0 MPa. Furthermore the four-phase equilibrium NaCl X 2H/sub 2/O /SUB s/ -CH/sub 4/ X nH/sub 2/O /SUB s/ -L-G has been calculated from the experimental results. Also the heats of transformation of several other equilibria in the ternary system CH/sub 4/-H/sub 2/O-NaCl are obtained.

  4. The Plasma Membrane Ca2+ ATPase and the Plasma Membrane Sodium Calcium Exchanger Cooperate in the Regulation of Cell Calcium

    Science.gov (United States)

    Brini, Marisa; Carafoli, Ernesto

    2011-01-01

    Calcium is an ambivalent signal: it is essential for the correct functioning of cell life, but may also become dangerous to it. The plasma membrane Ca2+ ATPase (PMCA) and the plasma membrane Na+/Ca2+ exchanger (NCX) are the two mechanisms responsible for Ca2+ extrusion. The NCX has low Ca2+ affinity but high capacity for Ca2+ transport, whereas the PMCA has a high Ca2+ affinity but low transport capacity for it. Thus, traditionally, the PMCA pump has been attributed a housekeeping role in maintaining cytosolic Ca2+, and the NCX the dynamic role of counteracting large cytosolic Ca2+ variations (especially in excitable cells). This view of the roles of the two Ca2+ extrusion systems has been recently revised, as the specific functional properties of the numerous PMCA isoforms and splicing variants suggests that they may have evolved to cover both the basal Ca2+ regulation (in the 100 nM range) and the Ca2+ transients generated by cell stimulation (in the μM range). PMID:21421919

  5. Effect of polymers on the nanostructure and on the carbonation of calcium silicate hydrates: a scanning transmission X-ray microscopy study

    KAUST Repository

    Ha, J.

    2011-09-07

    This study investigated the effects of organic polymers (polyethylene glycol and hexadecyltrimethylammonium) on structures of calcium silicate hydrates (C-S-H) which is the major product of Portland cement hydration. Increased surface areas and expansion of layers were observed for all organic polymer modified C-S-H. The results from attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopic measurements also suggest lowered water contents in the layered structures for the C-S-H samples that are modified by organic polymers. Scanning transmission X-ray microscopy (STXM) results further supports this observation. We also observed difference in the extent of C-S-H carbonation due to the presence of organic polymers. No calcite formed in the presence of HDTMA whereas formation of calcite was observed with C-S-H sample modified with PEG. We suggest that the difference in the carbonation reaction is possibly due to the ease of penetration and diffusion of the CO 2. This observation suggests that CO 2 reaction strongly depends on the presence of organic polymers and the types of organic polymers incorporated within the C-S-H structure. This is the first comprehensive study using STXM to quantitatively characterize the level of heterogeneity in cementitious materials at high spatial and spectral resolutions. The results from BET, XRD, ATR-FTIR, and STXM measurements are consistent and suggest that C-S-H layer structures are significantly modified due to the presence of organic polymers, and that the chemical composition and structural differences among the organic polymers determine the extent of the changes in the C-S-H nanostructures as well as the extent of carbonation reaction. © 2011 Springer Science+Business Media, LLC.

  6. Final report of the safety assessment of L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate as used in cosmetics.

    Science.gov (United States)

    Elmore, Amy R

    2005-01-01

    L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate function in cosmetic formulations primarily as antioxidants. Ascorbic Acid is commonly called Vitamin C. Ascorbic Acid is used as an antioxidant and pH adjuster in a large variety of cosmetic formulations, over 3/4 of which were hair dyes and colors at concentrations between 0.3% and 0.6%. For other uses, the reported concentrations were either very low (Sodium Ascorbyl Phosphate functions as an antioxidant in cosmetic products and is used at concentrations ranging from 0.01% to 3%. Magnesium Ascorbyl Phosphate functions as an antioxidant in cosmetics and was reported being used at concentrations from 0.001% to 3%. Sodium Ascorbate also functions as an antioxidant in cosmetics at concentrations from 0.0003% to 0.3%. Related ingredients (Ascorbyl Palmitate, Ascorbyl Dipalmitate, Ascorbyl Stearate, Erythorbic Acid, and Sodium Erythorbate) have been previously reviewed by the Cosmetic Ingredient Review (CIR) Expert Panel and found "to be safe for use as cosmetic ingredients in the present practices of good use." Ascorbic Acid is a generally recognized as safe (GRAS) substance for use as a chemical preservative in foods and as a nutrient and/or dietary supplement. Calcium Ascorbate and Sodium Ascorbate are listed as GRAS substances for use as chemical preservatives. L-Ascorbic Acid is readily and reversibly oxidized to L-dehydroascorbic acid and both forms exist in equilibrium in the body. Permeation rates of Ascorbic Acid through whole and stripped mouse skin were 3.43 +/- 0.74 microg/cm(2)/h and 33.2 +/- 5.2 microg/cm(2)/h. Acute oral and parenteral studies in mice, rats, rabbits, guinea pigs, dogs, and cats demonstrated little toxicity. Ascorbic Acid and Sodium Ascorbate acted as a nitrosation inhibitor in several food and cosmetic product studies. No compound-related clinical signs or gross or microscopic pathological effects were

  7. Search for an exosphere in sodium and calcium in the transmission spectrum of exoplanet 55 Cancri e

    Science.gov (United States)

    Ridden-Harper, A. R.; Snellen, I. A. G.; Keller, C. U.; de Kok, R. J.; Di Gloria, E.; Hoeijmakers, H. J.; Brogi, M.; Fridlund, M.; Vermeersen, B. L. A.; van Westrenen, W.

    2016-10-01

    Context. The atmospheric and surface characterization of rocky planets is a key goal of exoplanet science. Unfortunately, the measurements required for this are generally out of reach of present-day instrumentation. However, the planet Mercury in our own solar system exhibits a large exosphere composed of atomic species that have been ejected from the planetary surface by the process of sputtering. Since the hottest rocky exoplanets known so far are more than an order of magnitude closer to their parent star than Mercury is to the Sun, the sputtering process and the resulting exospheres could be orders of magnitude larger and potentially detectable using transmission spectroscopy, indirectly probing their surface compositions. Aims: The aim of this work is to search for an absorption signal from exospheric sodium (Na) and singly ionized calcium (Ca+) in the optical transmission spectrum of the hot rocky super-Earth 55 Cancri e. Although the current best-fitting models to the planet mass and radius require a possible atmospheric component, uncertainties in the radius exist, making it possible that 55 Cancri e could be a hot rocky planet without an atmosphere. Methods: High resolution (R ~ 110 000) time-series spectra of five transits of 55 Cancri e, obtained with three different telescopes (UVES/VLT, HARPS/ESO 3.6 m and HARPS-N/TNG) were analysed. Targeting the sodium D lines and the calcium H and K lines, the potential planet exospheric signal was filtered out from the much stronger stellar and telluric signals, making use of the change of the radial component of the orbital velocity of the planet over the transit from -57 to +57 km s-1. Results: Combining all five transit data sets, we detect a signal potentially associated with sodium in the planet exosphere at a statistical significance level of 3σ. Combining the four HARPS transits that cover the calcium H and K lines, we also find a potential signal from ionized calcium (4.1σ). Interestingly, this latter

  8. Whole-cell recordings of voltage-gated Calcium, Potassium and Sodium currents in acutely isolated hippocampal pyramidal neurons

    Institute of Scientific and Technical Information of China (English)

    Shuyun Huang; Qing Cai; Weitian Liu; Xiaoling Wang; Tao Wang

    2009-01-01

    Objective:To record Calcium, Potassium and Sodium currents in acutely isolated hippocampal pyramidal neurons. Methods:Hip-pocampal CA3 neurons were freshly isolated by 1 mg protease/3 ml SES and mechanical trituration with polished pipettes of progressively smaller tip diameters. Patch clamp technique in whole-cell mode was employed to record voltage-gated channel currents. Results:The procedure dissociated hippocampal neurons, preserving apical dendrites and several basal dendrites, without impairing the electrical characteristics of the neurons. Whole-cell patch clamp configuration was successfully used to record voltage-gated Ca2+ currents, delayed rectifier K+ current and voltage-gated Na+ currents. Conclusion:Protease combined with mechanical trituration may be used for the dissociation of neurons from rat hippocampus. Voltage-gated channels currents could be recorded using a patch clamp technique.

  9. Evaluation of genotoxic effects of sodium propionate, calcium propionate and potassium propionate on the root meristem cells of Allium cepa.

    Science.gov (United States)

    Türkoğlu, Sifa

    2008-06-01

    The effects of different treatments with food preservatives, sodium propionate (SP), calcium propionate (CP) and potassium propionate (PP), on the cytology and DNA content of Allium cepa were investigated. Five concentrations of these additives - 1000, 1500, 2000, 2500, and 3000ppm - were applied for 24, 48, and 72h. All concentrations of these chemicals showed an inhibitory effect on cell division in root-tips of A. cepa and caused a decrease in mitotic index values. Additionally, all treatments changed the frequency of mitotic phases when compared with the control groups. These compounds increased chromosome abnormalities in test material. Among these abnormalities were C-mitosis, anaphase bridges, micronuclei, binucleated cells, stickiness, laggards, and chromosome breaks. The nuclear DNA contents decreased when compared with control groups.

  10. Investigation on Gas Storage in Methane Hydrate

    Institute of Scientific and Technical Information of China (English)

    Zhigao Sun; Rongsheng Ma; Shuanshi Fan; Kaihua Guo; Ruzhu Wang

    2004-01-01

    The effect of additives (anionic surfactant sodium dodecyl sulfate (SDS), nonionic surfactant alkyl polysaccharide glycoside (APG), and liquid hydrocarbon cyclopentane (CP)) on hydrate induction time and formation rate, and storage capacity was studied in this work. Micelle surfactant solutions were found to reduce hydrate induction time, increase methane hydrate formation rate and improve methane storage capacity in hydrates. In the presence of surfactant, hydrate could form quickly in a quiescent system and the energy costs of hydrate formation were reduced. The critical micelle concentrations of SDS and APG water solutions were found to be 300× 10-6 and 500× 10-6 for methane hydrate formation system respectively. The effect of anionic surfactant (SDS) on methane storage in hydrates is more pronounced compared to a nonionic surfactant (APG). CP also reduced hydrate induction time and improved hydrate formation rate, but could not improve methane storage in hydrates.

  11. Changes in Sodium, Calcium, and Magnesium Ion Concentrations That Inhibit Geobacillus Biofilms Have No Effect on Anoxybacillus flavithermus Biofilms.

    Science.gov (United States)

    Somerton, B; Lindsay, D; Palmer, J; Brooks, J; Flint, S

    2015-08-01

    This study investigated the effects of varied sodium, calcium, and magnesium concentrations in specialty milk formulations on biofilm formation by Geobacillus spp. and Anoxybacillus flavithermus. The numbers of attached viable cells (log CFU per square centimeter) after 6 to 18 h of biofilm formation by three dairy-derived strains of Geobacillus and three dairy-derived strains of A. flavithermus were compared in two commercial milk formulations. Milk formulation B had relatively high sodium and low calcium and magnesium concentrations compared with those of milk formulation A, but the two formulations had comparable fat, protein, and lactose concentrations. Biofilm formation by the three Geobacillus isolates was up to 4 log CFU cm(-2) lower in milk formulation B than in milk formulation A after 6 to 18 h, and the difference was often significant (P ≤ 0.05). However, no significant differences (P ≤ 0.05) were found when biofilm formations by the three A. flavithermus isolates were compared in milk formulations A and B. Supplementation of milk formulation A with 100 mM NaCl significantly decreased (P ≤ 0.05) Geobacillus biofilm formation after 6 to 10 h. Furthermore, supplementation of milk formulation B with 2 mM CaCl2 or 2 mM MgCl2 significantly increased (P ≤ 0.05) Geobacillus biofilm formation after 10 to 18 h. It was concluded that relatively high free Na(+) and low free Ca(2+) and Mg(2+) concentrations in milk formulations are collectively required to inhibit biofilm formation by Geobacillus spp., whereas biofilm formation by A. flavithermus is not impacted by typical cation concentration differences of milk formulations.

  12. Combination of sodium chlorite and calcium propionate reduces enzymatic browning and microbial population of fresh-cut ‘Granny Smith’ apples

    Science.gov (United States)

    Tissue browning and microbial growth are the main concerns associated with fresh-cut apples. In this study, effects of sodium chlorite (SC) and calcium propionate (CP), individually and combined, on quality and microbial population of apple slices were investigated. ‘Granny Smith’ apple slices, dipp...

  13. Impacts of sodium chlorite combined with calcium chloride, and calcium ascorbate on microbial population, browning, and quality of fresh-cut rose apple

    Directory of Open Access Journals (Sweden)

    Sunthon Mola

    2016-09-01

    Full Text Available Microbial activity and browning were minimized and fresh-cut rose apple quality was maintained using sodium chlorite (SC combined with calcium chloride (CC and calcium ascorbate (CaAs and by investigating the optimal concentration and dipping time of SC for inhibiting microbial activity and browning. Fresh-cut rose apple samples were dipped in SC solution at 100 mg/L and 200 mg/L for 1 min and 3 min, with filtered water and non-dipped samples as controls. All samples were kept at 4 ± 2 °C for 9 d. The results showed that 200 mg/L SC for 3 min was the best treatment to inhibit microbial growth (total bacteria, yeast and molds, Escherichia coli and coliforms, delay browning and polyphenol oxidase (PPO activity of fresh-cut rose apples, but could not maintain the fresh firmness. A firmness experiment was conducted by dipping fresh-cut rose apples in 200 mg/L SC and in 200 mg/L SC combined with 20 g/L CC and 20 g/L CaAs (SC + CC + CaAs for 3 min before storage at 4 ± 2 °C for 9 d. Samples immersed in filtered water were used as the control. The combined treatment delayed microbial contamination and browning by reducing the PPO activity and the accumulation of phenolic content, and maintained the fresh firmness of fresh-cut rose apples. Thus, the combination treatment of SC + CC + CaAs solution can protect fresh-cut rose apples against microbial contamination and delay browning and maintain firmness.

  14. Comparative evaluation of the remineralizing efficacy of calcium sodium phosphosilicate agent and fluoride based on quantitative and qualitative analysis

    Directory of Open Access Journals (Sweden)

    Saranya Mony

    2015-01-01

    Full Text Available Background: Calcium sodium phosphosilicate (NovaMin is an agent that is claimed to release calcium and phosphate ions intraorally to help the self-repair process of enamel. It is used extensively as a desensitizing agent, but the chemical reactions that occur may promote apatite formation enhancing remineralization. The present study was undertaken to evaluate the ability of NovaMin to remineralize an experimentally induced demineralized lesion. The evaluation was done based on the quantitative and qualitative analysis of enamel over the period of 15 and 30 days. Materials and Methods: A sample of 120 noncarious premolar teeth extracted for orthodontic reasons were used for the study. Baseline data for hardness, Ca/PO 4 , and surface characteristics before and after demineralization process was obtained. All the teeth were brushed twice daily at 12 h interval with the test agents using a powered toothbrush for 2 min. The samples were tested on the 15 th and 30 th day. Results: Calcium phosphate ratio and hardness in both the groups improved during the study period. Fluoride group showed higher values for Ca/PO 4 and hardness but was not statistically significant with the P > 0.05. Scanning electron microscope pictures showed that the deposition of the material over the decalcified enamel is more smoother and uniform with NovaMin and more irregular with fluoride. Relevance: NovaMin is found to be as effective in improving the Ca/PO 4 ratio and hardness in a demineralized enamel as fluoride. Hence, it can be a new alternate material for remineralization of enamel with less toxic effects compared to fluorides.

  15. A study of sodium alginate and calcium chloride interaction through films for intervertebral disc regeneration uses

    Energy Technology Data Exchange (ETDEWEB)

    Laia, Andreia Grossi Santos de; Costa Junior, Ezequiel de Souza; Costa, Hermes de Souza, E-mail: andreiagrossi@yahoo.com.br [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil)

    2014-07-01

    The injured intervertebral disc (IVD) requires some measures in order to promote its regeneration. The sodium alginate in conjunction with CaCl{sub 2} forms a net, potentiating its mechanical properties so it may be an alternative for IVD treatment. In this work, the viability of films of sodium alginate crosslinked with CaCl{sub 2} and submitted to variations in their solutions' preparations is verified, comparing the effects of the addition of CaCl{sub 2} through their immersions, before and after drying the films. The films had their physicochemical properties analyzed by FTIR, DSC and XRD. The results indicated that films with a greater proportion of CaCl{sub 2} were more stable in the DSC analysis when compared to films with smaller proportions of CaCl{sub 2}. These results indicate alginate's modulation capacity which may be useful for IVD regeneration. (author)

  16. Determination of uranium(VI) sorbed species in calcium silicate hydrate phases: a laser-induced luminescence spectroscopy and batch sorption study.

    Science.gov (United States)

    Tits, Jan; Geipel, Gerhard; Macé, Nathalie; Eilzer, Manuela; Wieland, Erich

    2011-07-01

    Batch sorption experiments and time-resolved luminescence spectroscopy investigations were carried out to study the U(VI) speciation in calcium silicate hydrates for varying chemical conditions representing both fresh and altered cementitious environments. U(VI) uptake was found to be fast and sorption distribution ratios (R(d) values) were very high indicating strong uptake by the C-S-H phases. In addition a strong dependence of pH and solid composition (Ca:Si mol ratio) was observed. U(VI) luminescence spectroscopy investigations showed that the U(VI) solid speciation continuously changed over a period up to 6 months in contrast to the fast sorption kinetics observed in the batch sorption studies. Decay profile analysis combined with factor analysis of series of spectra of U(VI)-C-S-H suspensions, recorded with increasing delay times, revealed the presence of four luminescent U(VI) species in C-S-H suspensions, in agreement with the batch sorption data. Along with the aqueous UO(2)(OH)(4)(2-) species and a Ca-uranate precipitate, two different sorbed species were identified which are either bound to silanol groups on the surface or incorporated in the interlayer of the C-S-H structure.

  17. Microanalyses of the hydroxyl-poly-calcium sodium phosphate coatings produced by ion beam assisted deposition

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Thin calcium phosphate coatings on titanium alloy substrates wereprepared by Ar+ ion beam assisted deposition (IBAD) from hydroxyl-poly-calciumsodium phosphate (HPPA) target. The coatings were analyzed by XRD, FTIR, XPS.These analyses revealed that the as-deposited films were amorphous or no apparentcrystallinity. No distinct absorption band of the hydroxyl group was observed in FTIRspectra of the coatings but new absorption bands were presented for CO3-2. Thecalcium to phosphorous ratio of these coatings in different IBAD conditions variedfrom 0.46 to 3.36.

  18. Hydration kinetics for the alite, belite, and calcium aluminate phase in Portland cements from 27Al and 29Si MAS NMR spectroscopy

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Jensen, Ole Mejlhede; Jakobsen, Hans Jørgen

    1997-01-01

    29Si magic-angle spinning (MAS) NMR spectroscopy is shown to be a valuable tool for obtaining the quantities of alite and belite in hydrated Portland cements. The hydration (1-180 days) of a white Portland cement with 10 wt.% silica fume added is investigated and the degrees of hydration for alite...... belite, and silica fume are determined. It is demonstrated that 27Al MAS NMR spectra of hydrated Portland cements can give quantitative information about the formation of ettringite and the conversion of this phase to monosulphate during hydration....

  19. PART II. HYDRATED CEMENTS

    Directory of Open Access Journals (Sweden)

    Milan Drabik

    2014-09-01

    Full Text Available Essential focus of the study has been to acquire thermoanalytical events, incl. enthalpies of decompositions - ΔH, of technological materials based on two types of Portland cements. The values of thermoanalytical events and also ΔH of probes of technological compositions, if related with the data of a choice of minerals of calcium-silicate-sulfate-aluminate hydrates, served as a valued input for the assessment of phases present and phase changes due to the topical hydraulic processes. The results indicate mainly the effects of "standard humidity" or "wet storage" of the entire hydration/hydraulic treatment, but also the presence of cement residues alongside calcium-silicate-sulfate-aluminate hydrates (during the tested period of treatment. "A diluting" effect of unhydrated cement residues upon the values of decomposition enthalpies in the studied multiphase system is postulated and discussed

  20. The effect of calcium and sodium lactates on growth from spores of Bacillus cereus and Clostridium perfringens in a 'sous-vide' beef goulash under temperature abuse.

    Science.gov (United States)

    Aran, N

    2001-01-22

    The effect of calcium and sodium lactates on growth from spores of Bacillus cereus and Clostridium perfringens at three different concentrations (0, 1.5 and 3% w/w) and at different temperatures (10, 15 and 20 degrees C for B. cereus and 15, 20 and 25 degrees C for C. perfringens) was investigated, using beef goulash as a model system for pasteurised vacuum-packaged convenience foods. Calcium lactate at a level of 3% reduced the pH values of the samples from 6.0 to 5.5. No B. cereus growth was observed at 10 degrees C, but after 7 days at an incubation temperature of 15 degrees C, cell number increased by 1 log cfu/g in the control samples. At this temperature, lactates were seen to be effective at inhibiting growth. Calcium lactate was more inhibitory than sodium lactate as the growth of B. cereus was inhibited at 1.5 and 3% concentrations at 20 degrees C, respectively. Growth of C. perfringens was arrested in the presence of 1.5% calcium lactate at all storage temperatures, whereas growth was inhibited by 3% sodium lactate only at 15 degrees C.

  1. Quantitative study on La3+ influx mediated by sodium-calcium exchanger in human lymphocytes

    Institute of Scientific and Technical Information of China (English)

    魏春英; 杨频

    2002-01-01

    Whether La3+ can enter human peripheral blood lymphocytes by the Na+/Ca2+ exchanger or not and the effect of La3+ on the Na+/Ca2+ exchanger activity are examined by fura-2 technique. And that whether La3+ is sequestered by intracellular organelles (mainly endoplasmic reticulum and mitochondria) is studied by this method. La3+ uptake is obviously stimulated by pretreating the cells with ouabain and by removing extracellular Na+, and intracellular La3+ concentration ([La3+]i) is directly proportional to its extracellular concentration ([La3+]o). But when [La3+]o exceeds 0.4 mmol/L, the 340/380 nm ratio of fluorescence is no longer varied and the maximum [La3+]i is 1.5×10-12 mol@L-1. The higher concentration of La3+ (0.1 mmol/L) increases Na+/Ca2+ exchange-mediated calcium influx, but lower concentration (10 mmol/L) appears to block calcium influx. The results also suggest that cytosolic La3+ is transported by the ATP-dependent Ca2+ pump. Intracellular Ca2+ stores are depleted by ionomycin, and then ionomycin is added again during the period of La3+ uptake, the 340/380 nm ratio of fluorescence is also increased, these results indicate that La3+ is sequestered by intracellular organelles. A characterization of fura-2-La3+ interaction in solution simulating intracellular ionic composition (pH 7.05) shows that La3+ forms a 1:1 fura-2-La3+complex, and the apparent dissociation constant of La3+ for fura-2 (Kd) is 1.7×10-12 mol@L-1. In addition, the limit of detection of fura-2 for La3+ and Ca2+ is 10?12 and 10?8 mol@L-1 respectively.

  2. Diffusion of sodium, potassium, calcium, manganese, and radon in tuff and clinoptilolite under leaching

    Science.gov (United States)

    Dikii, N. P.; Dovbnya, A. N.; Lyashko, Yu. V.; Medvedev, D. V.; Medvedeva, E. P.; Uvarov, V. L.; Achkasov, K. V.

    2011-07-01

    Nuclear physics methods are used to determine the diffusion coefficients of Na, Ca, Mn, K, and 222Rn in clinoptilolite (Sokirnitsa occurrence, Ukraine) and in natural tuff (Yucca Mountain, Nevada, United States) and in tuff irradiated by γ-quanta ( E max = 23 MeV) to a dose of 107 Gy at a leaching temperature of 37°C. The diffusion coefficients of sodium and potassium in clinoptilolite are found to differ considerably: 4 × 10-17 and 2 × 10-20 m2/s, respectively. This indicates the influence of aquacomplexes on the cation transfer. The diffusion coefficient of radon in these materials is determined: in clinoptilolite it equals 2.5 × 10-12 m2/s.

  3. Efficacy of estramustine phosphate sodium hydrate (EMP) monotherapy in castration-resistant prostate cancer patients: report of 102 cases and review of literature.

    Science.gov (United States)

    Matsumoto, Kazuhiro; Tanaka, Nobuyuki; Hayakawa, Nozomi; Ezaki, Taisuke; Suzuki, Kenjiro; Maeda, Takahiro; Ninomiya, Akiharu; Nakamura, So

    2013-12-01

    This retrospective chart review study was conducted to evaluate the efficacy of estramustine phosphate sodium hydrate (EMP) monotherapy in patients with castration-resistant prostate cancer (CRPC) and to determine who would benefit from EMP therapy. EMP was administered at a daily dose of 560 mg to 102 patients as a third-line therapy, who had already received combined androgen blockade (CAB) and subsequent alternative antiandrogen therapy. The responses to EMP after its induction and its toxicity were evaluated. We also analyzed the association between the clinicopathological factors of the patients and their responses to EMP therapy. A reduction in the serum prostate-specific antigen (PSA) 4 weeks after induction was observed in 70 patients (68.6%), while 30 cases (29.4%) achieved more than 50% reduction of PSA. Long-term reduction of PSA from baseline for more than 6 months was observed in 31 patients (30.4%). EMP treatment was discontinued in 11 patients (10.8%) because of side effects (nausea in six patients, gynecomastia in three patients, eruption in one patient, and liver dysfunction in one patient). Multivariate analysis demonstrated that long duration of prior hormonal therapy was an independent favorable factor for reduced PSA levels, long responses, and overall survival. The data suggest that oral EMP administration as a third-line monotherapy is well tolerated and effective to some degree in patients with CRPC who have already received CAB and subsequent alternative antiandrogen therapy. Thus, EMP can be regarded as one treatment option, especially for patients whose prior duration of hormonal therapy was long.

  4. Early age hydration of calcium sulfoaluminate (synthetic ye'elimite, C{sub 4}A{sub 3}S{sup ¯}) in the presence of gypsum and varying amounts of calcium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Craig W. [Department of Civil and Environmental Engineering, University of California, Berkeley, CA (United States); Kirchheim, Ana Paula [Department of Civil Engineering, Federal University of Rio Grande do Sul, Porto Alegre, RS (Brazil); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA (United States); Gartner, Ellis M. [Lafarge Centre de Recherche, St. Quentin Fallavier, Isere (France)

    2013-06-15

    Suspensions of synthetic ye'elimite (C{sub 4}A{sub 3}S{sup ¯}) in a saturated gypsum (CS{sup ¯}H{sub 2}) and calcium hydroxide (CH) solution were examined in-situ in a wet cell by soft X-ray transmission microscopy and ex-situ by scanning electron microscopy. The most voluminous hydration product observed was ettringite. Ettringite commonly displayed acicular, filiform, reticulated, and stellate crystal habits. Additionally, pastes with C{sub 4}A{sub 3}S{sup ¯}, 15% CS{sup ¯}H{sub 2}, and varying amounts of CH were prepared and examined with X-ray diffraction (XRD) and isothermal calorimetry. The XRD experiments showed that increasing CH content caused more solid solution (SO{sub 4}{sup 2−}/OH{sup −}) AFm phases to form at early ages (< 1 d) and more monosulfate to form at later ages (> 1 d). Calorimetry indicated that the increased production of solid solution AFm was accompanied with an increase in the initial (< 30 min) rate of heat evolution, and increasing CH generally reduced the time till the second maximum rate of heat evolution due to the formation of ettringite and monosulfate.

  5. Combination of sodium chlorite and calcium propionate reduces enzymatic browning and microbial population of fresh-cut "Granny Smith" apples.

    Science.gov (United States)

    Guan, Wenqiang; Fan, Xuetong

    2010-03-01

    Tissue browning and microbial growth are the main concerns associated with fresh-cut apples. In this study, effects of sodium chlorite (SC) and calcium propionate (CP), individually and combined, on quality and microbial population of apple slices were investigated. "Granny Smith" apple slices, dipped for 5 min in CP solutions at 0%, 0.5%, 1%, and 2% (w/v) either alone or in combination with 0.05% (w/v) SC, were stored at 3 and 10 degrees C for up to 14 d. Color, firmness, and microflora population were measured at 1, 7, and 14 d of storage. Results showed that CP alone had no significant effect on the browning of cut apples. Even though SC significantly inhibited tissue browning initially, the apple slices turned brown during storage at 10 degrees C. The combination of CP and SC was able to inhibit apple browning during storage. Samples treated with the combination of SC with CP did not show any detectable yeast and mold growth during the entire storage period at 3 degrees C. At 10 degrees C, yeast and mold count increased on apple slices during storage while CP reduced the increase. However, high concentrations of CP reduced the efficacy of SC in inactivating E. coli inoculated on apples. Overall, our results suggested that combination of SC with 0.5% and 1% CP could be used to inhibit tissue browning and maintain firmness while reducing microbial population. Practical Application: Apple slices, which contain antioxidants and other nutrient components, have emerged as popular snacks in food service establishments, school lunch programs, and for family consumption. However, the further growth of the industry is limited by product quality deterioration caused by tissue browning, short shelf-life due to microbial growth, and possible contamination with human pathogens during processing. Therefore, this study was conducted to develop treatments to reduce microbial population and tissue browning of "Granny Smith" apple slices. Results showed that an antimicrobial

  6. Inhibition of nitrite-induced toxicity in channel catfish by calcium chloride and sodium chloride

    Science.gov (United States)

    Tommasso J.R., Wright; Simco, B.A.; Davis, K.B.

    1980-01-01

    Environmental chloride has been shown to inhibit methemoglobin formation in fish, thereby offering a protective effect against nitrite toxicity. Channel catfish (Ictalurus punctatus) were simultaneously exposed to various environmental nitrite and chloride levels (as either CaCl2 or NaCl) in dechlorinated tap water (40 mg/L total hardness, 47 mg/L alkalinity, 4 mg/L chloride, pH = 6.9-7.1, and temperature 21-24°C). Methemoglobin levels in fish simultaneously exposed to 2.5 mg/L nitrite and up to 30 mg/L chloride as either CaCl2 or NaCl were similar but significantly lower than in unprotected fish. Exposure to 10 mg/L nitrite and 60 mg/L chloride resulted in methemoglobin levels similar to those of the controls; most unprotected fish died. Fish exposed to 10 mg/L nitrite had significantly lower methemoglobin levels when protected with 15.0 mg/L chloride as CaCl2 than with NaCl. Fish exposed to nitrite in the presence of 60 mg/L chloride (as either CaCl2 or NaCl) had similar 24-h LC50 values that were significantly elevated above those obtained in the absence of chloride. Calcium had little effect on tolerance to nitrite toxicity in channel catfish in contrast to its large effect reported in steelhead trout (Salmo gairdneri).

  7. Midbrain dopaminergic neurons generate calcium and sodium currents and release dopamine in the striatum of pups

    Directory of Open Access Journals (Sweden)

    Diana Carolina Ferrari

    2012-03-01

    Full Text Available Midbrain dopaminergic neurons (mDA neurons are essential for the control of diverse motor and cognitive behaviors. However, our understanding of the activity of immature mDA neurons is rudimentary. Rodent mDA neurons migrate and differentiate early in embryonic life and dopaminergic axons enter the striatum and contact striatal neurons a few days before birth, but when these are functional is not known. Here, we recorded Ca2+ transients and Na+ spikes from embryonic (E16-E18 and early postnatal (P0-P7 mDA neurons with dynamic two photon imaging and patch clamp techniques in slices from tyrosine hydroxylase-GFP mice, and measured evoked dopamine release in the striatum with amperometry. We show that half of identified E16-P0 mDA neurons spontaneously generate non-synaptic, intrinsically-driven Ca2+ spikes and Ca2+ plateaus mediated by N- and L-type voltage-gated Ca2+ channels. Starting from E18-P0, half of the mDA neurons also reliably generate overshooting Na+ spikes with an abrupt maturation at birth (P0 = E19. At that stage (E18-P0, dopaminergic terminals release dopamine in a calcium-dependent manner in the striatum in response to local stimulation. We propose that the intrinsic spontaneous activity of mouse mDA neurons may impact the development/activity of the striatal network from birth.

  8. Kinetic of formation for single carbon dioxide and mixed carbon dioxide and tetrahydrofuran hydrates in water and sodium chloride aqueous solution

    NARCIS (Netherlands)

    Sabil, K.M.; Duarte, A.R.C.; Zevenbergen, J.F.; Ahmad, M.M.; Yusup, S.; Omar, A.A.; Peters, C.J.

    2010-01-01

    A laboratory-scale reactor system is built and operated to measure the kinetic of formation for single and mixed carbon dioxide-tetrahydrofuran hydrates. The T-cycle method, which is used to collect the kinetic data, is briefly discussed. For single carbon dioxide hydrate, the induction time

  9. Kinetic of formation for single carbon dioxide and mixed carbon dioxide and tetrahydrofuran hydrates in water and sodium chloride aqueous solution

    NARCIS (Netherlands)

    Sabil, K.M.; Duarte, A.R.C.; Zevenbergen, J.F.; Ahmad, M.M.; Yusup, S.; Omar, A.A.; Peters, C.J.

    2010-01-01

    A laboratory-scale reactor system is built and operated to measure the kinetic of formation for single and mixed carbon dioxide-tetrahydrofuran hydrates. The T-cycle method, which is used to collect the kinetic data, is briefly discussed. For single carbon dioxide hydrate, the induction time decreas

  10. Evaluation of strength-enhancing factors of a ductile binder in direct compression of sodium bicarbonate and calcium carbonate powders.

    Science.gov (United States)

    Mattsson, S; Nyström, C

    2000-03-01

    This study evaluated the effectiveness of a ductile binder in direct compression of sodium bicarbonate and calcium carbonate powders. Properties associated with both the binder and the compound were studied. The addition of binder materials, such as polyethylene glycols (PEGs) of differing molecular weights or microcrystalline cellulose, generally resulted in an increase in the axial tensile strength of the corresponding compacts. The increase in tablet strength was generally greater with the PEGs than with microcrystalline cellulose. The results indicate that the improvement in tablet strength caused by the binder is dependent on properties of both the binder and the compound. By utilising different methods it was established that the fracture during tablet strength testing mainly occurred around the compound particles. As a consequence of this, it appears that the ability of the binder to fill the voids between the compound particles is a determinative factor for increasing tablet strength. The binder appeared to have less effect when added to compounds that fragmented during compaction. Characteristics of the binder resulting in the greatest decrease in porosity, and thus the greatest increase in the tensile strength of the compound, included a high degree of plastic deformation with a limited elastic component and a small particle size. Obviously, the amount of binder added to the mixture also affected the results.

  11. Effects of the Addition of Sodium Alginate and the Concentration of Calcium Chloride on the Properties of Composite Nonwoven Fabrics

    Directory of Open Access Journals (Sweden)

    Lou Ching-Wen

    2016-01-01

    Full Text Available Nonwoven fabrics have merits, and for example, they can be simply and quickly processed with a variety of materials and an easily changeable manufacturing process. This study aims to examine the influences of the addition of sodium alginate (SA and the concentration of calcium chloride (CaCl2 on the properties of the composite nonwoven fabrics. Chitosan (CS micro-particles and SA solution are cross-linked with CaCl2 with various concentrations, combined with farir heat preservative staples (FT/cotton (C nonwoven fabrics, and then freeze-dried to form CS/SA/FT/C composite nonwoven fabrics. Afterwards, physical property tests are performed on the resulting composite nonwoven fabrics to determine their properties as related to various concentrations of CaCl2. The addition of SA decreases the water vapor permeability of FT/C nonwoven fabrics by 15 %, but the concentrations of CaCl2 do not influence the water vapor permeability. Compared to FT/C nonwoven fabrics, CS/SA/FT/C composite nonwoven fabrics have significantly lower water absorbency and water vapor permeability, but a greater stiffness.

  12. Stabilization/solidification of mercury-contaminated waste ash using calcium sodium phosphate (CNP) and magnesium potassium phosphate (MKP) processes.

    Science.gov (United States)

    Cho, Jae Han; Eom, Yujin; Lee, Tai Gyu

    2014-08-15

    This study examined the stabilization and solidification (S/S) of mercury (Hg)-contaminated waste ash generated from an industrial waste incinerator using chemically bonded phosphate ceramic (CBPC) technology. A magnesium potassium phosphate (MKP; MgKPO4 · 6H2O) ceramic, fabricated from MgO and KH2PO4, and a calcium sodium phosphate (CNP; CaNaPO4) ceramic, fabricated from CaO and Na2HPO4, were used as solidification binders in the CBPC process, and Na2S or FeS was added to each solidification binder to stabilize the Hg-contaminated waste ash. The S/S processes were conducted under various operating conditions (based on the solidification binder and stabilization reagent, stabilization reagent dosage, and waste loading ratio), and the performance characteristics of the S/S sample under each operating condition were compared, including the Hg leaching value and compressive strength. The Hg leaching value of untreated Hg-contaminated waste ash was 231.3 μg/L, whereas the S/S samples treated using the MKP and CNP processes exhibited Hg leaching values below the universal treatment standard (UTS) limit (25 μg/L). Although the compressive strengths of the S/S samples decreased as the sulfide dosage and waste loading ratio were increased, most of the S/S samples fabricated by the MKP and CNP processes exhibited good mechanical properties.

  13. Calcium H & K and sodium D absorption induced by the interstellar and circumgalactic media of the Milky Way

    CERN Document Server

    Murga, Maria; Ménard, Brice; Lan, Ting-Wen

    2015-01-01

    We map out calcium II & sodium I absorption (Fraunhofer H, K & D lines) induced by both the interstellar medium and the circumgalactic medium of the Milky Way. Our measurements cover more than $9000$ deg$^2$ and make use of about $300,000$ extragalactic spectra from the Sloan Digital Sky Survey. We present absorption maps for these two species and then compare their distributions to those of neutral hydrogen and dust. We show that the abundance of Na I with respect to neutral hydrogen stays roughly constant in different environments, while that of Ca II decreases with hydrogen column density. Studying how these tracers vary as a function of velocity, we show that, on average, the N(Na I)/N(Ca II) ratio decreases at higher velocity with respect to the local standard of rest, similar to the local Routly-Spitzer effect but seen on Galactic scale. We show that it is likely caused by higher gas/dust density at lower velocity. Finally, we show that Galactic Ca II and Na I absorption needs to be taken into a...

  14. Individual effects of sodium, potassium, calcium, and magnesium chloride salts on Lactobacillus pentosus and Saccharomyces cerevisiae growth.

    Science.gov (United States)

    Bautista-Gallego, J; Arroyo-López, F N; Durán-Quintana, M C; Garrido-Fernandez, A

    2008-07-01

    A quantitative investigation on the individual effects of sodium (NaCl), potassium (KCl), calcium (CaCl2), and magnesium (MgCl2) chloride salts against Lactobacillus pentosus and Saccharomyces cerevisiae, two representative microorganisms of table olives and other fermented vegetables, was carried out. In order to assess their potential activities, both the kinetic growth parameters and dose-response profiles in synthetic media (deMan Rogosa Sharpe broth medium and yeast-malt-peptone-glucose broth medium, respectively) were obtained and analyzed. Microbial growth was monitored via optical density measurements as a function of contact time in the presence of progressive chloride salt concentrations. Relative maximum specific growth rate and lag-phase period were modeled as a function of the chloride salt concentrations. Moreover, for each salt and microorganism tested, the noninhibitory concentrations and the MICs were estimated and compared. All chloride salts exerted a significant antimicrobial effect on the growth cycle; particularly, CaCl2 showed a similar effect to NaCl, while KCl and MgCl2 were progressively less inhibitory. Microbial susceptibility and resistance were found to be nonlinearly dose related.

  15. Microstructural, textural, and sensory characteristics of probiotic yogurts fortified with sodium calcium caseinate or whey protein concentrate.

    Science.gov (United States)

    Akalın, A S; Unal, G; Dinkci, N; Hayaloglu, A A

    2012-07-01

    The influence of milk protein-based ingredients on the textural characteristics, sensory properties, and microstructure of probiotic yogurt during a refrigerated storage period of 28 d was studied. Milk was fortified with 2% (wt/vol) skim milk powder as control, 2% (wt/vol) sodium calcium caseinate (SCaCN), 2% (wt/vol) whey protein concentrate (WPC) or a blend of 1% (wt/vol) SCaCN and 1% (wt/vol) WPC. A commercial yogurt starter culture and Bifidobacterium lactis Bb12 as probiotic bacteria were used for the production. The fortification with SCaCN improved the firmness and adhesiveness. Higher values of viscosity were also obtained in probiotic yogurts with SCaCN during storage. However, WPC enhanced water-holding capacity more than the caseinate. Addition of SCaCN resulted in a coarse, smooth, and more compact protein network; however, WPC gave finer and bunched structures in the scanning electron microscopy micrographs. The use of SCaCN decreased texture scores in probiotic yogurt; probably due to the lower water-holding capacity and higher syneresis values in the caseinate-added yogurt sample. Therefore, the textural characteristics of probiotic yogurts improved depending on the ingredient variety.

  16. The Effect of a Novel Highly Selective Inhibitor of the Sodium/Calcium Exchanger (NCX) on Cardiac Arrhythmias in In Vitro and In Vivo Experiments

    OpenAIRE

    Kohajda, Zsófia; Farkas-Morvay, Nikolett; Jost, Norbert; Nagy, Norbert; Geramipour, Amir; Horváth, András; Varga, Richárd S.; Hornyik, Tibor; Corici, Claudia; Acsai, Károly; Horváth, Balázs; Prorok, János; Ördög, Balázs; Déri, Szilvia; Tóth, Dániel

    2016-01-01

    Background In this study the effects of a new, highly selective sodium-calcium exchanger (NCX) inhibitor, ORM-10962 were investigated on cardiac NCX current, Ca2+ transients, cell shortening and in experimental arrhythmias. The level of selectivity of the novel inhibitor on several major transmembrane ion currents (L-type Ca2+ current, major repolarizing K+ currents, late Na+ current, Na+/K+ pump current) was also determined. Methods Ion currents in single dog ventricular cells (cardiac myocy...

  17. Scientific Opinion on the safety assessment of the active substances iron powder, activated carbon, calcined kaolin, sodium chloride, polyacrylic acid, sodium salt, crosslinked and calcium chloride, for use as active system in food contact materials

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF

    2014-05-01

    Full Text Available This scientific opinion of the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety assessment of the active substances iron powder, activated carbon, calcined kaolin, sodium chloride, polyacrylic acid, sodium salt, crosslinked and calcium chloride, used in mixture which is packed into labels, for absorbing oxygen from the headspace surrounding packed food. All substances of this formulation have been evaluated and approved for use as additives in plastic food contact materials or as food supplements. Migration of substances from the labels and formation and release of volatile constituents are not expected under the intended conditions of use. The CEF Panel concluded that the use of substances iron powder, activated carbon, calcined kaolin, sodium chloride, polyacrylic acid, sodium salt, crosslinked and calcium chloride does not raise a safety concern when used in oxygen absorbers in labels, which prevent the physical release of their content into the food. When placed in the headspace of the packaging or when used in direct contact with foods, the labels should not intentionally or unintentionally come into direct contact with liquid foods or foods that have an external aqueous phase on the surface such as sliced fruits.

  18. Evaluation of the efficacy of a 5% calcium sodium phosphosilicate (Novamin® containing dentifrice for the relief of dentinal hypersensitivity: A clinical study

    Directory of Open Access Journals (Sweden)

    K S Rajesh

    2012-01-01

    Full Text Available Context: Dentinal hypersensitivity (DH is a commonly encountered problem. Several products are used in management of DH with varying results. Need is felt in dentistry for a material that chemically reacts, physically occludes and adheres intimately to dentinal tubules to reduce the possibility of its recurrence. One such material is calcium sodium phosphosilicate-Novamin ® . Aim: To evaluate an efficacy of a 5% calcium sodium phosphosilicate (Novamin ® SHY NM TM containing dentifrice compared to placebo for the relief of DH. Settings and Design: Outpatients visiting Dept of Periodontics, Yenepoya Dental College with DH were deemed eligible for this case-control clinical trial after an informed consent. Materials and Methods: 30 patients having at least 2 sensitive teeth with a VAS (Visual Analogue Scale of >3 cm after air blast stimulation, qualified to participate in the study. Test (SHY NM TM toothpaste containing 5% calcium sodium phosphosilicate and control (Pepsodent toothpaste without a desensitizing agent groups, each containing 15 participants, were subjected to cold water and air blast stimulation for an assessment of DH at baseline, 6 th and 8 th week using VAS. Statistical analysis used: Unpaired t-test and repeated measures ANOVA. Results: 5% Novamin ® containing dentifrice significantly reduced DH within 6 th and 8 th week of usage when compared to a placebo dentifrice. Conclusions: A Novamin ® containing dentifrice significantly reduced DH when compared to a placebo dentifrice.

  19. Evaluation of the efficacy of a 5% calcium sodium phosphosilicate (Novamin) containing dentifrice for the relief of dentinal hypersensitivity: a clinical study.

    Science.gov (United States)

    Rajesh, K S; Hedge, Shashikanth; Arun Kumar, M S; Shetty, Deepa Gajendra

    2012-01-01

    Dentinal hypersensitivity (DH) is a commonly encountered problem. Several products are used in management of DH with varying results. Need is felt in dentistry for a material that chemically reacts, physically occludes and adheres intimately to dentinal tubules to reduce the possibility of its recurrence. One such material is calcium sodium phosphosilicate-Novamin. To evaluate an efficacy of a 5% calcium sodium phosphosilicate (Novamin SHY NM) containing dentifrice compared to placebo for the relief of DH. Outpatients visiting Dept of Periodontics, Yenepoya Dental College with DH were deemed eligible for this case-control clinical trial after an informed consent. 30 patients having at least 2 sensitive teeth with a VAS (Visual Analogue Scale) of >3 cm after air blast stimulation, qualified to participate in the study. Test (SHY NM toothpaste containing 5% calcium sodium phosphosilicate) and control (Pepsodent toothpaste without a desensitizing agent) groups, each containing 15 participants, were subjected to cold water and air blast stimulation for an assessment of DH at baseline, 6 th and 8 th week using VAS. Unpaired t-test and repeated measures ANOVA. 5% Novamin containing dentifrice significantly reduced DH within 6 th and 8 th week of usage when compared to a placebo dentifrice. A Novamin containing dentifrice significantly reduced DH when compared to a placebo dentifrice.

  20. Increased sodium/calcium exchanger activity enhances beta-adrenergic-mediated increase in heart rate: Whole-heart study in a homozygous sodium/calcium exchanger overexpressor mouse model.

    Science.gov (United States)

    Kaese, Sven; Bögeholz, Nils; Pauls, Paul; Dechering, Dirk; Olligs, Jan; Kölker, Katharina; Badawi, Sascha; Frommeyer, Gerrit; Pott, Christian; Eckardt, Lars

    2017-08-01

    The cardiac sodium/calcium (Na(+)/Ca(2+)) exchanger (NCX) contributes to diastolic depolarization in cardiac pacemaker cells. Increased NCX activity has been found in heart failure and atrial fibrillation. The influence of increased NCX activity on resting heart rate, beta-adrenergic-mediated increase in heart rate, and cardiac conduction properties is unknown. The purpose of this study was to investigate the influence of NCX overexpression in a homozygous transgenic whole-heart mouse model (NCX-OE) on sinus and AV nodal function. Langendorff-perfused, beating whole hearts of NCX-OE and the corresponding wild-type (WT) were studied ± isoproterenol (ISO; 0.2 μM). Epicardial ECG, AV nodal Wenckebach cycle length (AVN-WCL), and retrograde AVN-WCL were obtained. At baseline, basal heart rate was unaltered between NCX-OE and WT (WT: cycle length [CL] 177.6 ± 40.0 ms, no. of hearts [n] = 20; NCX-OE: CL 185.9 ± 30.5 ms, n = 18; P = .21). In the presence of ISO, NCX-OE exhibited a significantly higher heart rate compared to WT (WT: CL 133.4 ± 13.4 ms, n = 20; NCX-OE: CL 117.7 ± 14.2 ms, n = 18; P heart rate. Mechanistically, increased NCX inward mode activity may promote acceleration of diastolic depolarization in sinus nodal pacemaker cells, thus enhancing chronotropy in NCX-OE. These findings suggest a novel potential therapeutic target for heart rate control in the presence of increased NCX activity, such as heart failure. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  1. [Experiments on the mechanism of action of vascular spasmolytics. 4. Effect of nitroprusside sodium, nitroglycerin, prenylamine and verapamil on the calcium uptake of microsomes of the smooth bascular muscles].

    Science.gov (United States)

    Klinner, U; Ehlers, D; Fermum, R; Meisel, P

    1977-01-01

    Nitroprusside-sodium, nitroglycerol, and verapamil had no effect on the calcium uptake by microsomes from the carotid artery of cattle. Prenylamine reduced the passive binding and the active uptake and released already bound calcium. The basal Mg-dependendent ATPase and Ca-stimulatable Mg-ATPase were inhibited by prenylamine.

  2. Effects of sodium bicarbonate and 1,25-dihydroxy-cholecalciferol on calcium and phosphorus balances in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Goulding, A.; McIntosh, J.; Campbell, D.

    1984-04-01

    Metabolic balance studies were undertaken to determine whether sodium bicarbonate (NaHCO/sub 3/) supplements (4.5 mmol/day) altered 7-day cumulative calcium (Ca) phosphorus (P) balances in growing rats consuming either a basal diet providing 0.6% Ca and 0.3% P, or this diet plus 1,25-dihydroxycholecalciferol (40 ng 1,25(OH)/sub 2/D/sub 3//day). Feeding bicarbonate lowered urinary Ca but raised fecal Ca so that Ca balance became less positive. However, 1,25(OH)/sub 2/D/sub 3/ increased net absorption of Ca and P to the same degree when given to control rats and rats consuming bicarbonate. Nevertheless, bicarbonate-fed rats had lower net Ca absorption than controls, even when treated with high doses of 1,25(OH)/sub 2/D/sub 3/. Changes in net Ca absorption induced by bicarbonate may occur at a point in the gut distal to the duodenum since duodenal /sup 45/Ca absorption was decreased by bicarbonate feeding. The present results show that bicarbonate consumption depressed net Ca absorption in the rat. The effect appears to be independent of changes in 1,25(OH)/sub 2/D/sub 3/ metabolism because it is manifest in animals receiving high doses of 1,25(OH)/sub 2/D/sub 3/, which stimulate alimentary Ca absorption maximally, and because bicarbonate-fed rats are able to respond normally to exogenous 1,25(OH)/sub 2/D/sub 3/ by increasing their net absorption of Ca and P. In view of this demonstration that NaHCO/sub 3/ supplements elevate fecal Ca loss in the rat, it is suggested that studies should be undertaken to determine whether bicarbonate exerts similar adverse effects on Ca balance in humans.

  3. Genetic control and transgressive segregation of zinc, iron, potassium, phosphorus, calcium, and sodium accumulation in cowpea (Vigna unguiculata) seeds.

    Science.gov (United States)

    Fernandes Santos, C A; Boiteux, L S

    2015-01-16

    Cowpea crop, through combining a range of essential minerals with high quality proteins, plays an important role in providing nutritional security to human population living in semi-arid regions. Studies on genetics of biofortification with essential minerals are still quite scarce, and the major objective of the present study was to provide genetic information on development of cowpea cultivars with high seed mineral contents. Genetic parameters heritability and minimum number of genes were estimated for seed accumulation of zinc (Zn), iron (Fe), calcium (Ca), phosphorus (P), potassium (K), and sodium (Na). Generation mean and variance analyses were conducted using contrasting parental lines, F₁, F₂, and backcross populations derived from IT97K-1042-3 x BRS Tapaihum and IT97K-1042-3 x Canapu crosses. High narrow-sense heritability (h²) values were found for accumulation of Fe (65-86%), P (74-77%), and K (77-88%), whereas moderate h(2) values were observed for accumulation of Ca (41-56%), Zn (51-83%), and Na (50-55%) in seeds. Significant additive genetic effects as well as parental mean effects were detected in both crosses for all minerals, whereas epistasis was important genetic component in Zn content. The minimum number of genes controlling the accumulation of minerals ranged from two (K) to 11 (P). Transgressive segregation was observed in F2 populations of both crosses for all minerals analyzed. The results suggest that, although under either oligogenic or polygenic control, the seed content of these six minerals in cowpea can be improved via standard breeding methods largely used for self-pollinated crops.

  4. Influence of the redox state on the neptunium sorption under alkaline conditions. Batch sorption studies on titanium dioxide and calcium silicate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Tits, Jan; Laube, Andreas; Wieland, Erich [Paul Scherrer Institute (PSI), Villigen (Switzerland). Lab. for Waste Management; Gaona, Xavier [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Nuclear Waste Disposal

    2014-07-01

    Wet chemistry experiments were carried out to investigate the effect of the redox state and aqueous speciation on the uptake of neptunium by titanium dioxide (TiO{sub 2}) and by calcium silicate hydrates (C-S-H) under alkaline conditions. TiO{sub 2} was chosen as a reference sorbent to determine the surface complexation behaviour of neptunium under alkaline conditions. C-S-H phases are important constituents of cement and concrete. They may contribute significantly to radionuclide retention due to their high recrystallization rates making incorporation the dominating sorption mechanism for many radionuclides (e.g. the actinides) on these materials. The sorption of neptunium on both solids was found to depend strongly on the degree of hydrolysis. On TiO{sub 2}R{sub d} values for Np(IV), Np(V) and Np(VI) are identical at pH = 10 and decrease with progressing hydrolysis in case of Np(V) and Np(VI). On C-S-H phases, R{sub d} values for the three redox states are also identical at pH = 10. While the R{sub d} values for Np(VI) sorption on C-S-H phases decrease with progressing hydrolysis, the R{sub d} values for Np(IV) and Np(V) sorption are not affected by the pH. In addition to the effect of hydrolysis, the presence of Ca is found to promote Np(V) and Np(VI) sorption on TiO{sub 2} whereas on C-S-H phases, the present wet chemistry data do not give unambiguous evidence. Thus, the aqueous speciation appears to have a similar influence on the sorption of the actinides on both types of solids despite the different sorption mechanism. The similar R{sub d} values for Np(IV,V,VI) sorption at pH = 10 can be explained qualitatively by invoking inter-ligand electrostatic repulsion between OH groups in the coordination sphere of Np(V) and Np(VI). This mechanism was proposed earlier in the literature for the prediction of actinide complexation constants with inorganic ligands. A limiting coordination number for each Np redox state, resulting from the inter-ligand electrostatic

  5. Mucoadhesion on pig vesical mucosa: influence of polycarbophil/calcium interactions.

    Science.gov (United States)

    Kerec, M; Bogataj, M; Mugerle, B; Gasperlin, M; Mrhar, A

    2002-07-08

    The influence of polycarbophil/calcium interactions on the mucoadhesive properties of polycarbophil has been examined. Polycarbophil dispersions and films with different concentrations of calcium or sodium ions were prepared and the following parameters were measured: detachment force on pig vesical mucosa, zeta potential, pH and viscosity. Polycarbophil detachment force decreased significantly in the presence of calcium but not sodium. Both ions decrease the pH of polycarbophil dispersions. On the other hand, altering the pH of hydrated polycarbophil films in the absence of added ions had an insignificant effect on detachment force. Both ions reduce the absolute values of polycarbophil zeta potential, calcium more efficiently than sodium. We could conclude that decreased mucoadhesion strength of polycarbophil in the presence of calcium is due to the chelation of polycarbophil carboxylic groups by calcium and crosslinking of polymer. The crosslinked polymer chains would be expected to be less flexible, and therefore, interpenetrate to a lesser extent with the glycosaminoglycans of mucus. Additionally, the interactions between functional groups of polycarbophil and mucus glycosaminoglycans are lowered due to the calcium, blocking the carboxylic groups. The mechanism of calcium influence on viscosity of polycarbophil dispersions appears to be different: repulsion between ionised carboxylic groups of polycarbophil prevails over the crosslinking of polycarbophil by calcium.

  6. Studying the Hydration of a Retarded Suspension of Ground Granulated Blast-Furnace Slag after Reactivation

    Directory of Open Access Journals (Sweden)

    Nick Schneider

    2016-11-01

    Full Text Available This article presents a combined use of a retarder (d-gluconic acid and an alkaline activator (sodium hydroxide in a binder system based on ground granulated blast-furnace slag. The properties of the retarder are extending the dormant hydration period and suppressing the generation of strength-giving phases. Different retarder concentrations between 0.25 and 1.00 wt.% regulate the intensity and the period of the retardation and also the characteristics of the strength development. The activator concentration of 30 and 50 wt.% regulates the overcoming of the dormant period and thereby the solution of the slag and hence the formation of the hydration products. The research objective is to produce a mineral binder system based on two separate liquid components. The highest concentration of retarder and activator generates the highest compressive strength and mass of hydration products—after 90 days of hydration a compressive strength of more than 50 N/mm2. The main phases are calcium silicate hydrate and hydrotalcite. Generally, the combination of retarder and activator shows a high potential in the performance increase of the hydration process.

  7. Inhibition of collagen synthesis by select calcium and sodium channel blockers can be mitigated by ascorbic acid and ascorbyl palmitate.

    Science.gov (United States)

    Ivanov, Vadim; Ivanova, Svetlana; Kalinovsky, Tatiana; Niedzwiecki, Aleksandra; Rath, Matthias

    2016-01-01

    Calcium, sodium and potassium channel blockers are widely prescribed medications for a variety of health problems, most frequently for cardiac arrhythmias, hypertension, angina pectoris and other disorders. However, chronic application of channel blockers is associated with numerous side effects, including worsening cardiac pathology. For example, nifedipine, a calcium-channel blocker was found to be associated with increased mortality and increased risk for myocardial infarction. In addition to the side effects mentioned above by different channel blockers, these drugs can cause arterial wall damage, thereby contributing to vascular wall structure destabilization and promoting events facilitating rupture of plaques. Collagen synthesis is regulated by ascorbic acid, which is also essential for its optimum structure as a cofactor in lysine and proline hydroxylation, a precondition for optimum crosslinking of collagen and elastin. Therefore, the main objective in this study was to evaluate effects of various types of channel blockers on intracellular accumulation and cellular functions of ascorbate, specifically in relation to formation and extracellular deposition of major collagen types relevant for vascular function. Effects of select Na- and Ca- channel blockers on collagen synthesis and deposition were evaluated in cultured human dermal fibroblasts and aortic smooth muscle cells by immunoassay. All channel blockers tested demonstrated inhibitory effects on collagen type I deposition to the ECM by fibroblasts, each to a different degree. Ascorbic acid significantly increased collagen I ECM deposition. Nifedipine (50 µM), a representative of channel blockers tested, significantly reduced ascorbic acid and ascorbyl palmitate-dependent ECM deposition of collagen type l and collagen type lV by cultured aortic smooth muscle cells. In addition, nifedipine (50 µM) significantly reduced ascorbate-dependent collagen type l and type lV synthesis by cultured aortic smooth

  8. Scientific Opinion on the safety and efficacy of malic acid and a mixture of sodium and calcium malate when used as technological additives for all animal species

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2014-02-01

    Full Text Available An application has been made for the re-authorisation of malic acid as a preservative in feed and an acidity regulator in feed for cats and dogs and for the authorisation of a mixture of sodium and calcium salts of malic acid to be used as an acidity regulator in feed for all animal species. Evidence from feeding studies with dogs, poultry, piglets, veal calves and ruminants showed that the highest typical use level of 1 600 mg malic acid/kg complete feedingstuffs (supplied as acid or salts is safe for all animal species. Setting a maximum content was not considered as necessary. Malic acid and its sodium and calcium salts are permitted food additives without limit in the EU. The use of malic acid and its sodium and calcium salts in animal nutrition is safe for the consumer. Malic acid and its salts are considered as strongly irritant to the skin and mucosa and as a particular risk to the eyes. Exposure via inhalation for those handling the additives is also considered to present a risk. Malates are components of the diet of humans and animals and are rapidly and completely metabolised to CO2. Consequently, their use in animal production would not pose a risk to the environment. Malic acid is used in food as a preservative. It is reasonable to expect that the effect seen in food will be observed in feed when it is used at comparable concentrations and under similar conditions. However, the FEEDAP Panel has reservations about the effectiveness of malic acid as a preservative in complete feedingstuffs with a moisture content of ≤ 12 %. The ability of malic acid and its salts to act as acidity regulators in feed has not been demonstrated.

  9. Addition of 1, 2 and 3% in mass of sodium alginate in calcium phosphate cement; Adicao de alginato de sodio a cimento de fosfato de calcio

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, W.T.; Fernandes, J.M.; Vieira, R.S.; Thurmer, M.B.; Santos, L.A., E-mail: trajano@ufrgs.br [Universidade Federal do Rio Grande do Sul (LABIOMAT/UFRS), RS (Brazil)

    2011-07-01

    The calcium phosphate cement (CFC) are bone substitutes with great potential for use in orthopedics, traumatology and dentistry because of their biocompatibility, bioactivity, osteoconductivity and osteotransdutivity, and a paste that can be easily molded and placed into the surgical site. However, CFCs have low mechanical strength, which equals the maximum mechanical strength of trabecular bone. Aiming to evaluate the strength and time to handle a CFC phase composed mainly of alpha were added to sodium alginate (1%, 2% and 3% wt) and an accelerator handle in an aqueous medium. The cement powder was mixed with liquid takes 2 minutes and resigned in specimens and assessed for apparent density and porosity by the Archimedes method, X-ray diffraction and mechanical strength. We noticed a significant increase in mechanical properties of cement added sodium alginate. (author)

  10. Experimental Study of Natural Gas Storage in Hydrates

    Institute of Scientific and Technical Information of China (English)

    孙志高; 王如竹; 郭开华; 樊栓狮

    2004-01-01

    Hydrate formation rate plays an important role in the making of hydrates for natural gas storage. The effect of sodium dodecyl sulfate (SDS), alkyl polysaccharide glycoside (APG) and cyclopentane (CP) on natural gas hydrate formation rate, induction time and storage capacity was studied. Micellar surfactant solutions were found to increase hydrate formation rate in a quiescent system and improve hydrate formation rate and natural gas storage capacity. The process of hydrate formation includes two stages with surfactant presence. Hydrate forms quickly in the first stage, and then the formation rate is slowed down. Surfactants (SDS or APG) reduce the induction time of hydrate formation. The effect of an anionic surfactant (SDS) on gas storage in hydrates is more pronounced compared to a nonionic surfactant (APG). CP also reduces the induction time of hydrate formation, but can not improve the natural gas storage capacity in hydrates.

  11. Computational approaches to understand the adverse drug effect on potassium, sodium and calcium channels for predicting TdP cardiac arrhythmias.

    Science.gov (United States)

    Sharifi, Mohsen

    2017-09-01

    Ion channels play a crucial role in the cardiovascular system. Our understanding of cardiac ion channel function has improved since their first discoveries. The flow of potassium, sodium and calcium ions across cardiomyocytes is vital for regular cardiac rhythm. Blockage of these channels, delays cardiac repolarization or tend to shorten repolarization and may induce arrhythmia. Detection of drug risk by channel blockade is considered essential for drug regulators. Advanced computational models can be used as an early screen for torsadogenic potential in drug candidates. New drug candidates that are determined to not cause blockage are more likely to pass successfully through preclinical trials and not be withdrawn later from the marketplace by manufacturer. Several different approved drugs, however, can cause a distinctive polymorphic ventricular arrhythmia known as torsade de pointes (TdP), which may lead to sudden death. The objective of the present study is to review the mechanisms and computational models used to assess the risk that a drug may TdP. There is strong evidence from multiple studies that blockage of the L-type calcium current reduces risk of TdP. Blockage of sodium channels slows cardiac action potential conduction, however, not all sodium channel blocking antiarrhythmic drugs produce a significant effect, while late sodium channel block reduces TdP. Interestingly, there are some drugs that block the hERG potassium channel and therefore cause QT prolongation, but they are not associated with TdP. Recent studies confirmed the necessity of studying multiple distinctionic ion channels which are responsible for cardiac related diseases or TdP, to obtain an improved clinical TdP risk prediction of compound interactions and also for designing drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Chemical and isotopic characteristics of gas hydrate- and pore-water samples obtained from gas hydrate-bearing sediment cores retrieved from a mud volcano in the Kukuy Canyon, Lake Baikal

    Energy Technology Data Exchange (ETDEWEB)

    Minami, H.; Hachikubo, A.; Krylov, A.; Sakagami, H.; Ohashi, M.; Bai, J.; Kataoka, S.; Yamashita, S.; Takahashi, N.; Shoji, H. [Kitami Inst. of Technology, Kitami (Japan); Khlystov, O.; Zemskaya, T.; Grachev, M. [Russian Academy of Sciences, Irkutsk (Russian Federation). Limnological Inst.

    2008-07-01

    This paper provided details of a method developed to obtain gas hydrate water samples from a mud volcano in Lake Baikal, Russia. Chemical and isotopic analyses were conducted to examine the hydrate and pore water samples as well as to evaluate the original water involved in shallow gas hydrate accumulations in the region. Lake sediment core samples were retrieved from the bottom of the lake with gravity corers. A squeezer was used to take pore water samples from the sediments. Hydrate samples were taken from a gas hydrate placed on a polyethylene funnel. Dissolved hydrate water was filtered through a membrane into bottles. Both samples were kept under chilled or liquid nitrogen temperatures. Ion chromatography was used to determine concentrations of anions and hydrogen carbonate ions. Sodium and magnesium concentrations were determined using an inductively coupled plasma atomic emission spectrometer. An absorption spectrometer was used to determine potassium and calcium concentrations, and a mass spectrometer was used to analyze stable isotopes of oxygen and hydrogen. Results of the study suggested that the gas dissolved in pore water and adsorbed on the surfaces of sediment particles was not the original gas from the hydrates retrieved at the mud volcano. Original gas hydrate-forming fluids were chemically different from the pore- and lake-water samples. The oxygen isotopic composition of the gas hydrate water samples correlated well with hydrogen values. It was concluded that ascending fluid and water delivered the gas into the gas stability zone, and is the main gas hydrate-forming fluid in the area of study. 12 refs., 1 fig.

  13. Continuous Intravenous Infusion of Sodium Fusidate Sodium and Calcium Gluconate are Incompatibility%静脉连续输注夫西地酸钠与葡萄糖酸钙存在配伍禁忌

    Institute of Scientific and Technical Information of China (English)

    叶富云

    2014-01-01

    随着我国医药科学的发展,不断出现一些新的药物,原来的药物配伍禁忌表已经不能满足新药的查询要求。夫西地酸钠是临床常用的抗菌药物,主要治疗葡萄球菌引起的各种感染,葡萄糖酸钙注射液为常用的钙补充剂,临床上有将这两种药物在同一患者身上序贯输入的情况。我科于2013年9月收治1例急性上呼吸道感染并患急性荨麻疹的患儿,在遵医嘱静脉输液时我们发现夫西地酸钠与葡萄糖酸钙之间存在配伍禁忌,不能依次序贯输注。%With the development of medical science in China, some of the emerging of new drugs, the original drug incompatibility table has been unable to meet the requirements of new query. Sodium fusidate is the clinical commonly used antibiotics, causing the main treatment of staphylococcal infection, Calcium gluconate injection calcium supplements commonly used, there wil be the two drugs in the same patient is clinical on sequential input. Division in 2013.9 treated 1 cases of acute upper respiratory tract infection and acute urticaria in children, in the prescribed intravenous infusion we find there is incompatibility between fusidic acid sodium and calcium gluconate, cannot turn the sequential infusion.

  14. 柠檬酸钠表面改性重钙粉体的研究%Study on sodium citrate surface modification ground calcium carbonate powder

    Institute of Scientific and Technical Information of China (English)

    周国永; 陈丽莎; 成琳

    2011-01-01

    研究了柠檬酸钠用量、反应温度、反应时间、浆料浓度对重钙粉体表面改性的影响.结果表明,柠檬酸钠用量为重钙粉体的6.0%(质量分数),改性温度65℃,改性时间45 min,浆料浓度为12.5%时,重钙粉体沉降体积降为0.65 mL/g,活化度可达到67.9%,吸油值降为230 mg/g,粘度值降低为120 mPa·s,pH值8.50.%The effect of modifier amount, modification temperature, time and slurry concentration on modification were studied. The results showed sodium citrate can be used to modify calcium carbonate powder, the best conditions were as follows: sodium citrate amount 6% , modification temperature 65 X., modification time 45 min, slurry concentration 12.5%. The settling volume reduced to 0.65 Ml/g, the activation grade was 67. 9% ,the oil absorption decreased to 230 mg/g, viscosity of calcium carbonate reduced to 120 mPa·S,Ph value was 8.50.

  15. The effect of sulfate activation on the early age hydration of BFS:PC composite cement

    Energy Technology Data Exchange (ETDEWEB)

    Collier, N.C., E-mail: nick.collier@sheffield.ac.uk; Li, X.; Bai, Y.; Milestone, N.B.

    2015-09-15

    Blast furnace slag/Portland cement composites are routinely used for immobilising intermediate level nuclear wastes in the UK. Using high cement replacement levels reduces hydration exotherm and lowers pH. Although a lower grout pH will be beneficial in reducing the corrosion of certain encapsulated reactive metals such as aluminium, the degree of slag reaction will also be lower which may result in the formation of less hydration products and which in turn may reduce the capacity to immobilise waste ions. Adding neutral salts such as calcium and sodium sulfate to the composite cement can potentially increase slag activation without significantly altering the pH of the cement matrix. Thus the corrosion of any encapsulated metals would not be affected. This paper describes some of the properties of a hydrated 9:1 blast furnace slag:Portland cement matrix containing added sulfates of calcium and sodium. The findings show that all additives caused an increase in the amount of slag that reacted when cured for up to 28 days. This produced more material able to chemically bind waste ions. Activation with gypsum produced the highest rate of slag reaction.

  16. Interplay of Ca(2+) and Mg (2+) in sodium-calcium exchanger and in other Ca(2+)-binding proteins: magnesium, watchdog that blocks each turn if able.

    Science.gov (United States)

    Levitsky, Dmitri O; Takahashi, Masayuki

    2013-01-01

    Sodium-calcium exchange across plasma membrane is regulated by intracellular calcium ions. The sodium-calcium exchanger (NCX1) is activated by successive saturation of numerous Ca(2+)-binding sites located in the intracellular loop of the protein. The progressive saturation of the binding domain CBD12 by Ca(2+) results in a series of conformational changes of CBD12 as well as of entire NCX1 molecule. Like other soluble and membrane Ca(2+)-binding proteins, NCX1 can also be regulated by Mg(2+) that antagonises Ca(2+) at the level of divalent cation-binding sites. This chapter summarises data on Mg(2+) impacts in the cells. Regulatory action of Mg(2+) on intracellular Ca(2+)-dependent processes can be achieved due to changes of its cytoplasmic level, which take place in the range of [Mg(2+)](i) from 0.5 to 3 mM. Under normal conditions, these changes are ensured by activation of plasmalemmal Mg(2+) transport systems and by variations in ATP level in cytoplasm. In heart and in brain, some pathological conditions, such as hypoxia, ischemia and ischemia followed by reperfusion, are associated with an important increase in intracellular Ca(2+). The tissue damage due to Ca(2+) overload may be prevented by Mg(2+). The protective actions of Mg(2+) can be achieved due to its ability to compete with Ca(2+) for the binding sites in a number of proteins responsible for the rise in intracellular free Ca(2+), including NCX1, in case when the reverse mode of Na(+)/Ca(2+) exchange becomes predominant. Saturation of CBD12 by Mg(2+) results in important changes of NCX1 conformation. Modulating actions of Mg(2+) on the conformation of NCX1 were detected at a narrow range of Mg(2+) concentration, from 0.5 to 1 mM. These data support an idea that variations of intracellular Mg(2+) could modify transmembrane Ca(2+) movements ensured by NCX1.

  17. The effect of casein phosphopeptide-amorphous calcium phosphate paste and sodium fluoride mouthwash on the prevention of dentine erosion: An in vitro study

    Directory of Open Access Journals (Sweden)

    Maryam Moezizadeh

    2014-01-01

    Full Text Available Aim: The purpose was to compare the effect of 0.2% sodium fluoride mouthwash and casein phosphopeptide-amorphous calcium phosphate paste on prevention of dentin erosion. Materials and Methods: Buccal surfaces of 36 sound premolar teeth were ground flat and polished with abrasive discs. Half the polished surfaces were covered with tape to maintain a reference surface. Samples were randomly allocated into three groups. Group A was pretreated with tooth mousse (TM 4 times a day for 5 days. Group B was pretreated with 0.2% sodium fluoride mouthwash 4 times a day for 5 days. Group C was considered as the control group with no pretreatment. In the next step, the samples were exposed to Coca-Cola 4 times a day for 3 days. After each erosive cycle, the samples were rinsed with deionized water and stored in artificial saliva. The surface loss was determined using profilometry. Results: The erosion in both Groups A and B was less than the control group. The surface loss in mouthwash group was significantly lower than in the control group. Erosion in TM group was more than the mouthwash group and less than the control group. Conclusion: Sodium fluoride mouthwash is more effective for prevention of dentin erosion.

  18. INFLUENCE OF CHEMICAL ADDITIVES ON GAS HYDRATE FORMATION

    Institute of Scientific and Technical Information of China (English)

    TANG Cuiping; FAN Shuanshi

    2003-01-01

    One surfactant as sodium dodecyl sulfate (SDS) and one synthesized sample as gas hydrate inhibitor are introduced in this paper. Through experiments we prove sodium dodecyl sulfate can accelerate the formation rate of gas hydrate and the synthesized sample can inhibit the formation and growth.

  19. XANES analysis of calcium and sodium phosphates and silicates and hydroxyapatite-Bioglass (registered) 45S5 co-sintered bioceramics

    Energy Technology Data Exchange (ETDEWEB)

    Demirkiran, Hande [Graduate Student, Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX (United States); Hu Yongfeng; Zuin, Lucia [Beamline Scientist, Canadian Light Source, Saskatoon, SK (Canada); Appathurai, Narayana [Beamline Scientist, Synchrotron Radiation Center, Madison, WI (United States); Aswath, Pranesh B., E-mail: aswath@uta.edu [Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX (United States)

    2011-03-12

    Bioglass (registered) 45S5 was co-sintered with hydroxyapatite at 1200 deg. C. When small amounts (< 5 wt.%) of Bioglass (registered) 45S5 was added it behaved as a sintering aid and also enhanced the decomposition of hydroxyapatite to {beta}-tricalcium phosphate. However when 10 wt.% and 25 wt.% Bioglass (registered) 45S5 was used it resulted in the formation of Ca{sub 5}(PO{sub 4}){sub 2}SiO{sub 4} and Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} in an amorphous silicate matrix respectively. These chemistries show improved bioactivity compared to hydroxyapatite and are the subject of this study. The structure of several crystalline calcium and sodium phosphates and silicates as well as the co-sintered hydroxyapatite-Bioglass (registered) 45S5 bioceramics were examined using XANES spectroscopy. The nature of the crystalline and amorphous phases were studied using silicon (Si) and phosphorus (P) K- and L{sub 2,3}-edge and calcium (Ca) K-edge XANES. Si L{sub 2,3}-edge spectra of sintered bioceramic compositions indicates that the primary silicates present in these compositions are sodium silicates in the amorphous state. From Si K-edge spectra, it is shown that the silicates are in a similar structural environment in all the sintered bioceramic compositions with 4-fold coordination. Using P L{sub 2,3}-edge it is clearly shown that there is no evidence of sodium phosphate present in the sintered bioceramic compositions. In the P K-edge spectra, the post-edge shoulder peak at around 2155 eV indicates that this shoulder to be more defined for calcium phosphate compounds with decreasing solubility and increasing thermodynamic stability. This shoulder peak is more noticeable in hydroxyapatite and {beta}-TCP indicating greater stability of the phosphate phase. The only spectra that does not show a noticeable peak is the composition with Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} in a silicate matrix indicating that it is more soluble compared to the other compositions.

  20. Formation of ettringite, Ca 6Al 2(SO 4) 3(OH) 12·26H 2O, AFt, and monosulfate, Ca 4Al 2O 6(SO 4)·14H 2O, AFm-14, in hydrothermal hydration of Portland cement and of calcium aluminum oxide—calcium sulfate dihydrate mixtures studied by in situ synchrotron X-ray powder diffraction

    Science.gov (United States)

    Christensen, Axel Nørlund; Jensen, Torben R.; Hanson, Jonathan C.

    2004-06-01

    In the hydration of calcium aluminum oxide-gypsum mixtures, i.e., Ca 3Al 2O 6, Ca 12Al 14O 33 and CaSO 4·2H 2O, the reaction products can be ettringite, Ca 6Al 2(SO 4) 3(OH) 12·26H 2O, monosulfate, Ca 4Al 2O 6(SO 4)·14H 2O, or the calcium aluminum oxide hydrate, Ca 4Al 2O 7·19H 2O. Ettringite is formed if sufficient CaSO 4·2H 2O is present in the mixture. Ettringite is converted to monosulfate when all CaSO 4·2H 2O is consumed in the synthesis of ettringite. The reactions were investigated in the temperature range 25-170°C using in situ synchrotron X-ray powder diffraction. This technique allows the study of very fast chemical reactions that are observed here under hydrothermal conditions. A new experimental approach was developed to perform in situ mixing of the reactants during X-ray data collection.

  1. SODIUM CITRATE INFLUENCE ON FORMATION OF CEMENT STONE IN THE ALUMINOUS BINDER

    Directory of Open Access Journals (Sweden)

    S. N. Leonovich

    2016-01-01

    Full Text Available The paper deals with the effect of sodium citrate on the formation of a cement stone in the aluminous binder. Formation of cement stone framework in cement hydraulic binder is accompanied with complicated physical and chemical processes of interphase interactions and dispersion, these processes are predicated on qualitative and quantitative composition of the cement mortar, continuous changes in its properties from preparation stage till curing. Addition of sodium citrate to tempering water enhances hydration of both Portland cement and calcium aluminate cement. Process pertaining to an increase of cement hydration rate is considered as a consequence of destruction in surface formations and exclusion of damping effect in respect of hydration rate and hydrolysis of products resulted from interaction of clinker material with tempering. It has been established that sodium citrate makes it possible to control processes of hydration, hydrolysis, binding and curing for cement mass. High degree of hydration of aluminous cement in the presence of sodium citrate provides fast binding and curing of binder, low porosity and rather high compression breaking strength of cement stone for all curing stages. An increase in concentration of sodium citrate in cement mixture up to 10 % of the cement mass exerts an influence not only on the process of cement mortar liquefaction, reduction of time for cement mass setting and hardening but also increases compression strength of cement stone. An analysis of the structure for cleavage surface of cement stone gives ground to declare that the addition of sodium citrate provides cement stone sealing and reduces its water absorption.

  2. Comparative evaluation of human pulp tissue dissolution by different concentrations of chlorine dioxide, calcium hypochlorite and sodium hypochlorite: An in vitro study

    Directory of Open Access Journals (Sweden)

    Sonali Taneja

    2014-01-01

    Full Text Available Introduction: Irrigation plays an indispensable role in removal of tissue remnants and debris from the complicated root canal system. This study compared the human pulp tissue dissolution by different concentrations of chlorine dioxide, calcium hypochlorite and sodium hypochlorite. Materials and Methods: Pulp tissue was standardized to a weight of 9 mg for each sample. In all,60 samples obtained were divided into 6 groups according to the irrigating solution used- 2.5% sodium hypochlorite (NaOCl, 5.25% NaOCl, 5% calcium hypochlorite (Ca(OCl 2 , 10% Ca(OCl 2 , 5%chlorine dioxide (ClO 2 and 13% ClO 2 . Pulp tissue was placed in each test tube carrying irrigants of measured volume (5ml according to their specified subgroup time interval: 30 minutes (Subgroup A and 60 minutes (Subgroup B. The solution from each sample test tube was filtered and was left for drying overnight. The residual weight was calculated by filtration method. Results: Mean tissue dissolution increases with increase in time period. Results showed 5.25% NaOCl to be most effective at both time intervals followed by 2.5% NaOCl at 60 minutes, 10%Ca(OCl 2 and 13% ClO 2 at 60 minutes. Least amount of tissue dissolving ability was demonstrated by 5% Ca(OCl 2 and 5% ClO 2 at 30 minutes. Distilled water showed no pulp tissue dissolution. Conclusion: Withinthe limitations of the study, NaOCl most efficiently dissolved the pulp tissue at both concentrations and at both time intervals. Mean tissue dissolution by Ca(OCl 2 and ClO 2 gradually increased with time and with their increase in concentration.

  3. Gas hydrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    and the role it plays in the global climate and the future of fuels. Russia, Japan, Nigeria, Peru, Chile, Pakistan, Indonesia, Korea, etc are various countries who are perusing the gas hydrates studies as a future resource for fuel. Indian Initiative..., 1993, Free gas at the base of the gas hydrate zone in the vicinity of the Chile Triple junction: Geology, v. 21, pp. 905-908. Borowski, W.S., C.K. Paull, and U. William, III, 1999, Global and local variations of interstitial sulfate gradients...

  4. Characterization of un-hydrated and hydrated BioAggregate™ and MTA Angelus™.

    Science.gov (United States)

    Camilleri, J; Sorrentino, F; Damidot, D

    2015-04-01

    BioAggregate™ is a novel material introduced for use as a root-end filling material. It is tricalcium silicate-based, free of aluminium and uses tantalum oxide as radiopacifier. BioAggregate contains additives to enhance the material performance. The purpose of this research was to characterize the un-hydrated and hydrated forms of BioAggregate using a combination of techniques, verify whether the additives if present affect the properties of the set material and compare these properties to those of MTA Angelus™. Un-hydrated and hydrated BioAggregate and MTA Angelus were assessed. Un-hydrated cement was tested for chemical composition, specific surface area, mineralogy and kinetics of hydration. The set material was investigated for mineralogy, microstructure and bioactivity. Scanning electron microscopy, X-ray energy dispersive spectroscopic analysis, X-ray fluorescence spectroscopy, X-ray diffraction and isothermal calorimetry were employed. The specific surface area was investigated using a gas adsorption method with nitrogen as the probe. BioAggregate was composed of tricalcium silicate, tantalum oxide, calcium phosphate and silicon dioxide and was free of aluminium. On hydration, the tricalcium silicate produced calcium silicate hydrate and calcium hydroxide. The former was deposited around the cement grains, while the latter reacted with the silicon dioxide to form additional calcium silicate hydrate. This resulted in reduction of calcium hydroxide in the aged cement. MTA Angelus reacted in a similar fashion; however, since it contained no additives, the calcium hydroxide was still present in the aged cement. Bioactivity was demonstrated by deposition of hydroxyapatite. BioAggregate exhibited a high specific surface area. Nevertheless, the reactivity determined by isothermal calorimetry appeared to be slow compared to MTA Angelus. The tantalum oxide as opposed to bismuth oxide was inert, and tantalum was not leached in solution. BioAggregate exhibited

  5. In situ sodium persulfate/calcium peroxide oxidation in remediation of TPH-contaminated soil in 3D-sand box.

    Science.gov (United States)

    Wu, Hao; Sun, Lina; Wang, Hui; Wang, Xiaoxu

    2017-03-08

    The aim of this article was to obtain the application parameters and conditions of in situ sodium persulfate/calcium peroxide oxidation. For the purposes of remediation, soil from a total petroleum hydrocarbons (TPH)-contaminated site was collected and prepared to reflect the actual stratum condition in a newly developed soil remediation modeling apparatus. Application methods of soil mixture, natural infiltration, direct injection and groundwater circulation were used to simulate in situ sodium persulfate oxidation in TPH-contaminated soil. Results showed that the transfer capability of Na2S2O8 in simulated soil was strong Na2S2O8 migrated to the saturated layer after 3 days of in situ injection, which then continued both horizontal and vertical migration. After 7 days the oxidant was widespread in the saturated layer with a radius of influence of 0.4 m. It was found that mixing CaO2/Fe(2+)/CA with soil and spraying Na2S2O8 can effectively repair the surface-contaminated soil, and the longitudinal migration of Na2S2O8 in the reaction process can further strengthen the remediation of the upper layer soil. Due to the buffering effect of the soil, the effect of oxidation on the pH and temperature of different soil layers was small, but detectable in comparison to natural environmental factors.

  6. Effects of Angiotensin Ⅱ and ACE Inhibitor, Captopril on L-type Calcium Current and Sodium Current of Single Guinea Myocytes

    Institute of Scientific and Technical Information of China (English)

    徐延敏; 黄体钢; 陈元禄

    2002-01-01

    Objectives To investigateeffect of AngⅡ, captopril on single guinea myocytes onL - type calcium current and sodium current. MethodsMembrane patch clamp whole cell recording tech-nique was used to investigate effect of angⅡ, captoprilon L- Ca maximum current density and sodium maxi-mum current density. Resutls AngⅡ increased themaximum current density compared with control afterpeffused 5 min, 357.7±219.7 Vs 279.5±240.5PA/PF, increase rate is 27.9 %, the shape of current- voltage relationship curve was unchanged, peaked at+ 10 my, indicated that angⅡ increased L- Ca cur-rent density in voltage -dependent. After perfusedwith captopril, captopril ± angⅡ 3, 5 rmin, L-Cacurrent was recorded, results suggest L - Ca maximumcurrent density decreased significantly compared withcontrol, in captopril group, 128.4 ± 92.6Vs286.2 ±89.7, 66.7 ±68.3Vs 286.2 ± 89.7, respectively, rateof inhibition is 55.1%, 76.6 %, respectively. L - Cacurrent further decreased in captopril perfused 5 mincompared with 3 rmin, 66.7 ± 68.3 Vs 128.4 ± 92.6,in captopril + angⅡ group, L- Ca current decreasedgreatly in 3, 5 min than control, 143.4 ± 117.6Vs267.7±141.4, 96.4±82.5 Vs 267.7+141.4, re-spectively, rate of inhibition is 46.4 %, 63.9 % re-spectively. We also investigated effect of captopril onNa current, which decreased significantly in 1 rmin and3 rmin compared with control, 939.1 ±319. 1 Vs1398.0 ± 144.6 PA/PF, 469.95±314.9 Vs 1398.0±144.6 PA/PF, respectively, rate of inhibition is32.8 %, 66. 3 %, respectively. Na current density de-creased significantly in 3 min compared with 1 min,469.9 ± 314.9 Vs 939. 1 ± 319. 1PA/PF, rate of in-hibition is 49.9 % . Conclusions Angiotensin Ⅱexerts increased maximum current density of L - Ca involtage dependent, captopril decreased maximum cur-rent density of L - Ca in voltage dependent, decreasedsodium maximum current density, which is the promi-nently antiarrhythmia mechanisms through inhibition ofangiotensin Ⅱ evoked

  7. Evaluation of a dentifrice containing 8% arginine, calcium carbonate, and sodium monofluorophosphate to prevent enamel loss after erosive challenges using an intra-oral erosion model.

    Science.gov (United States)

    Sullivan, R; Rege, A; Corby, P; Klaczany, G; Allen, K; Hershkowitz, D; Godder, B; Wolff, M

    2014-01-01

    The objective of this study was to assess the ability of a dentifrice containing 8% arginine and calcium carbonate (Pro-Argin' Technology), and 1450 ppm fluoride as sodium monofluorophosphate (MFP) to prevent enamel loss from an erosive acid challenge in comparison to a silica-based dentifrice with 1450 ppm fluoride as MFP using an intra-oral erosion model. The intra-oral clinical study used a double blind, two-treatment, crossover design. A palatal retainer was used to expose the enamel specimens to the oral environment during the five-day treatment period. The retainer was designed to house three partially demineralized bovine enamel samples. The study population was composed of 24 adults, ages 18 to 70 years. The study consisted of two treatment periods, with a washout period lasting seven (+/- three) days preceding each treatment phase. A silica-based dentifrice without fluoride was used during the washout period. The Test Dentifrice used in this study contained 8% arginine and calcium carbonate (Pro-Argin Technology), and 1450 ppm fluoride as sodium monofluorophosphate (MFP). The Control Dentifrice was silica-based and contained 1450 ppm fluoride as MFP. The treatment period lasted five days, during which the panelists wore the retainer 24 hours a day (except during meals and the ex vivo acid challenges) and brushed with their assigned product while wearing the retainer. The panelists brushed once in the morning and once in the evening each day for one minute, followed by a one-minute swish with the slurry and a rinse with 15 ml of water. The panelists brushed only their teeth and not the specimens directly. There were four ex vivo challenges with 1% citric acid dispersed throughout the day: two in the morning, one in the afternoon, and one in the evening. Mineral loss was monitored by a quantitative light fluorescence (QLF) technique. Twenty-three of 24 subjects successfully completed the study. The one subject who did not complete the study did so for

  8. Evaluation of a dentifrice containing 8% arginine, calcium carbonate, and sodium monofluorophosphate to repair acid-softened enamel using an intra-oral remineralization model.

    Science.gov (United States)

    Sullivan, R; Rege, A; Corby, P; Klaczany, G; Allen, K; Hershkowitz, D; Goldder, B; Wolff, M

    2014-01-01

    An intra-oral remineralization study was conducted to compare the ability of a dentifrice containing 8% arginine and calcium carbonate (Pro-Argin Technology), and 1450 ppm fluoride as sodium monofluorophosphate (MFP) to remineralize acid-softened bovine enamel specimens compared to a silica-based dentifrice with 1450 ppm fluoride as MFP. The intra-oral clinical study employed a double blind, two-treatment, crossover design, and used an upper palatal retainer to expose the enamel specimens to the oral environment during product use and periods of remineralization. The retainer was designed to house three partially demineralized bovine enamel samples. The study population was comprised of 30 adults, ages 18 to 70 years. The study consisted of two treatment phases with a washout period lasting seven (+/- three) days preceding each treatment phase. A silica-based dentifrice without fluoride was used during the washout period. The Test Dentifrice used in this study contained 8% arginine, calcium carbonate, and 1450 ppm fluoride as sodium monofluorophosphate (MFP). The Control Dentifrice was silica-based and contained 1450 ppm fluoride as MFP. The treatment period consisted of a three-day lead-in period with the assigned product. The panelists brushed two times per day during the three-day lead-in period with the assigned product. On the fourth day, the panelists began brushing with the assigned product with the retainer in their mouth. The panelists brushed for one minute, followed by a one-minute swish with the slurry and a rinse with 15 ml of water in the morning, in the afternoon, and night with the retainer in the mouth. The panelists brushed only their teeth and not the specimens directly. Changes in mineral content before and after treatment were measured using a Knoop microhardness tester. The results of the study showed that percent remineralization values for the Test Dentifrice and Control Dentifrice were 14.99% and 8.66%, respectively. A statistical analysis

  9. The effects of a sodium and a calcium channel blocker on lethality of mice injected with the yellow scorpion (Leiurus quinquestriatus venom

    Directory of Open Access Journals (Sweden)

    A. R. Al-Shanawani

    2005-06-01

    Full Text Available Scorpion venom toxins generally produce similar effects by mainly acting on sodium channels, and to a lesser extent, on potassium, calcium, and chloride channels. This leads to increased release of neurotransmitters and mediators, resulting in a cascade of pathological events, involving the central nervous system, the autonomic nervous system, the cardiovascular and the respiratory system, eventually leading to death. The objective of this paper was to discover whether a sodium channel blocker, lidocaine, or a calcium channel blocker, verapamil, would prolong the survival of mice injected with the venom from the common yellow scorpion Leiurus quinquestriatus quinquestriatus (LQQ. For this purpose, mice were divided into 2 groups, each injected with a different venom dose (250 or 300 µg.kg-1, s.c.. Subgroups (n=10 from each group were given venom alone; different doses of lidocaine (4, 10, 15, or 20 mg.kg-1; or several doses of verapamil (0.01, 0.03, 0.1, 0.3, or 1 mg.kg-1. All doses of lidocaine and verapamil were intravenously administered 3 minutes before, 1, 5, and 15 minutes after venom injection. Percent surviving after 24 hours was recorded in addition to the time of death. In general, lidocaine significantly prolonged survival at the dose of 10 mg.kg-1 (P<0.05 and P<0.01, versus low and high dose of venom, respectively or 15 mg.kg-1 (P<0.01 and P<0.001, versus low and high dose of venom, respectively; Covariance Wilcoxon survival statistics, especially when injected before the venom or in the early stages of envenomation. On the other hand, in all doses administered, verapamil was either toxic or showed non-significant results. Lidocaine, the sodium channel blocker, appears to play an important role in the protection from lethality of mice injected with LQQ venom, and significantly prolonged the survival time of mice whether injected before or in the early stages of envenomation.

  10. Hydration Properties of Ground Granulated Blast-Furnace Slag (GGBS Under Different Hydration Environments

    Directory of Open Access Journals (Sweden)

    Shuhua LIU

    2017-02-01

    Full Text Available The hydration properties of various cementitious materials containing Ground Granulated Blast-furnace Slag (GGBS, two alkali-activated slag cements (AAS-1 and AAS-2 in which sodium silicate and sodium hydroxide act as alkaline activators respectively, supersulfated cement (SSC and slag Portland cement(PSC, are compared with ordinary Portland cement (OPC to investigate the effect of activating environment on the hydration properties in this study by determining the compressive strength of the pastes, the hydration heat of binders within 96 hours, and the hydration products at age of 28 days. The results show that C-S-H gels are the main hydrated products for all cementitious systems containing GGBS. Ca(OH2 is the hydration products of OPC and PSC paste. However, ettringite and gypsum crystals instead of Ca(OH2 are detected in SSC paste. Additionally, tobermorite, a crystalline C-S-H, and calcite are hydrated products in AAS-1. Tobermorite, cowlesite and calcite are hydrated products of AAS-2 as well. Based on strength results, AAS-1 paste exhibits the highest compressive strength followed by POC, PSC, SSC in order at all testing ages and AAS-2 give the lowest compressive strength except for the early age at 3 days, which is higher than SSC but still lower than PSC. From hydration heat analysis, alkalinity in the reaction solution is a vital factor influencing the initial hydration rate and the initial hydration rate from higher to lower is AAS-2, AAS-1, OPC, PSC and SSC. Although AAS possesses a faster reaction rate in the initial hours, cumulative hydration heat of AAS is comparably lower than that of OPC, but higher than those of PSC and SSC in turn, which indicates that the hydration heat of clinkers is much higher than that of slag.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14934

  11. Growth of brushite crystals in sodium silicate gel and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R.R.; Wang, M. [Nanyang Technological Univ. (Singapore). School of Mechanical and Production Engineering

    2001-07-01

    Brushite (CaHPO{sub 4}.2H{sub 2}O, DCPD) single crystals were grown in sodium silicate gel at room temperature. The single diffusion technique was employed in growing crystals. Suitable reactants such as ammonium di-hydrogen phosphate and calcium nitrate tetra hydrate were used as inner and outer reactants. Growth parameters, such as concentration of reactants, gel density and period of growth, were investigated. With 1M ammonium di-hydrogen phosphate and 2M calcium nitrate tetra hydrate, Brushite needles of the size up to 40 mm in length were obtained in a period of 45 days. The crystals grown were confirmed to be Brushite by XRD and FTIR analyses. As determined by nano-indentation tests, these crystals had average modulus and hardness values of 22.5 GPa and 1.75 GPa, respectively. (orig.)

  12. Fluid and salt supplementation effect on body hydration and electrolyte homeostasis during bed rest and ambulation

    Science.gov (United States)

    Zorbas, Yan G.; Kakurin, Vassily J.; Kuznetsov, Nikolai A.; Yarullin, Vladimir L.

    2002-06-01

    Bed rest (BR) induces significant urinary and blood electrolyte changes, but little is known about the effect of fluid and salt supplements (FSS) on catabolism, hydration and electrolytes. The aim was to measure the effect of FSS on catabolism, body hydration and electrolytes during BR. Studies were done during 7 days of a pre-bed rest period and during 30 days of a rigorous bed rest period. Thirty male athletes aged, 24.6±7.6 years were chosen as subjects. They were divided into three groups: unsupplemented ambulatory control subjects (UACS), unsupplemented bed rested subjects (UBRS) and supplemented bed rested subjects (SBRS). The UBRS and SBRS groups were kept under a rigorous bed rest regime for 30 days. The SBRS daily took 30 ml water per kg body weight and 0.1 sodium chloride per kg body weight. Plasma sodium (Na), potassium (K), calcium (Ca) and magnesium (Mg) levels, urinary Na, K, Ca and Mg excretion, plasma osmolality, plasma protein level, whole blood hemoglobin (Hb) and hematocrit (Hct) level increased significantly ( p≤0.05), while plasma volume (PV), body weight, body fat, peak oxygen uptake, food and fluid intake decreased significantly ( p≤0.05) in the UBRS group when compared with the SBRS and UACS groups. In contrast, plasma and urinary electrolytes, osmolality, protein level, whole blood Hct and Hb level decreased significantly ( p≤0.05), while PV, fluid intake, body weight and peak oxygen uptake increased significantly ( p≤0.05) in the SBRS group when compared with the UBRS group. The measured parameters did not change significantly in the UACS group when compared with their baseline control values. The data indicate that FSS stabilizes electrolytes and body hydration during BR, while BR alone induces significant changes in electrolytes and body hydration. We conclude that FSS may be used to prevent catabolism and normalize body hydration status and electrolyte values during BR.

  13. TRPM8 and Nav1.8 sodium channels are required for transthyretin-induced calcium influx in growth cones of small-diameter TrkA-positive sensory neurons

    Directory of Open Access Journals (Sweden)

    Vincent Adele J

    2011-03-01

    Full Text Available Abstract Background Familial amyloidotic polyneuropathy (FAP is a peripheral neuropathy caused by the extracellular accumulation and deposition of insoluble transthyretin (TTR aggregates. However the molecular mechanism that underlies TTR toxicity in peripheral nerves is unclear. Previous studies have suggested that amyloidogenic proteins can aggregate into oligomers which disrupt intracellular calcium homeostasis by increasing the permeability of the plasma membrane to extracellular calcium. The aim of the present study was to examine the effect of TTR on calcium influx in dorsal root ganglion neurons. Results Levels of intracellular cytosolic calcium were monitored in dorsal root ganglion (DRG neurons isolated from embryonic rats using the calcium-sensitive fluorescent indicator Fluo4. An amyloidogenic mutant form of TTR, L55P, induced calcium influx into the growth cones of DRG neurons, whereas wild-type TTR had no significant effect. Atomic force microscopy and dynamic light scattering studies confirmed that the L55P TTR contained oligomeric species of TTR. The effect of L55P TTR was decreased by blockers of voltage-gated calcium channels (VGCC, as well as by blockers of Nav1.8 voltage-gated sodium channels and transient receptor potential M8 (TRPM8 channels. siRNA knockdown of TRPM8 channels using three different TRPM8 siRNAs strongly inhibited calcium influx in DRG growth cones. Conclusions These data suggest that activation of TRPM8 channels triggers the activation of Nav1.8 channels which leads to calcium influx through VGCC. We suggest that TTR-induced calcium influx into DRG neurons may contribute to the pathophysiology of FAP. Furthermore, we speculate that similar mechanisms may mediate the toxic effects of other amyloidogenic proteins such as the β-amyloid protein of Alzheimer's disease.

  14. Influence of saline solution on hydration behavior of β-dicalcium silicate in comparison with biphasic calcium phosphate/hydroxyapatite bio-ceramics.

    Science.gov (United States)

    Radwan, M M; Abd El-Hamid, H K; Mohamed, A F

    2015-12-01

    The influence of using saline solution as mixing and curing liquid on some characteristics of β-dicalcium silicate (β-C2S) and biphasic compound tri-calcium phosphate/hydroxyapatite (TCP/HAp) bio-ceramics was investigated. β-C2S (27-30 nm) was prepared by solid state reaction at 1450°C, while biphasic compound TCP/HAp (7-15 nm) was synthesized from an aqueous solution of Ca(NO3)2·4H2O and (NH4)2HPO4·12H2O by chemical precipitation method. Setting times, compressive strength, pH values, X-ray diffraction analysis, infrared spectroscopy, scanning electron microscopy (SEM) were investigated. The evaluation of cytotoxicity of both calcium silicate and biphasic compounds to human gingival fibroblasts was carried out. The use of saline solution as mixing and immersing liquid shortened the setting time for the two bio-cements. TCP/HAp did not show any mechanical strength but β-C2S showed good strength values. Both synthesized compounds showed a moderate cytotoxicity and both materials were effective in a no significant way.

  15. EXPERIMENTAL INVESTIGATION ON GAS HYDRATE FORMATION IN PRESENCE OF ADDITIVE COMPONENTS

    Institute of Scientific and Technical Information of China (English)

    SUN Zhigao; FAN Shuanshi; GUO Kaihua

    2003-01-01

    Additives were used to increase gas hydrate formation rate and storage capacity. Experimental tests of methane hydrate formation were carried out in surfactant water solutions in a high-pressure cell.Sodium dodecyl sulfate (SDS) and alkyl polysaccharide glycoside (APG) were used to increase hydrate formation. The effect of SDS on hydrate formation is more pronounced compared APG. Cyclopentane (CP) also improves hydrate formation rates while it cannot increase methane gas storage capacity.

  16. Thermodynamics of calcium silicate hydrates, development of a database to model concrete dissolution at 25°C using the EQ3/6 geochemical modeling code

    Energy Technology Data Exchange (ETDEWEB)

    Clodic, L; Meike, A

    1997-08-18

    Examination of the ability to model aqueous systems of interest to the repository proposed by the Yucca Mountain Project has revealed an historical deficit in the ability to model complex waterÐmaterial systems that contain ordinary Portland cement (OPC) at elevated temperature (e.g., Bruton et al., 1994; Meike et al., 1994). One of the reasons is that cement chemistry typically concentrates on two issues of importance to the concrete industry: the hydration of cement powder, which contains reactive phases that do not persist in the cured concrete, and the causes of mechanical degradation at earth surface temperatures such as delayed ettringite formation and alkali silica reaction. Such modeling capability is not available in the open literature, even from applications that might have developed high temperature approaches, such as deep drilling for oil and geothermal resource recovery. The ability to simulate the interaction between concrete, as it evolves over time, and water has become more critical as repository designers begin to consider the incorporation of OPC materials in the emplacement drifts. The Yucca Mountain Project is unique among the high-level radioactive waste repository projects in the world in terms of the need to understand and predict processes in excess of 100°C (see, e.g., Meike, 1997). Our aim has been to develop this capability in the area of aqueous chemistry.

  17. Effect of dietary moisture and sodium content on urine composition and calcium oxalate relative supersaturation in healthy miniature schnauzers and labrador retrievers.

    Science.gov (United States)

    Stevenson, A E; Hynds, W K; Markwell, P J

    2003-04-01

    The aim of this series of studies was to evaluate two possible feeding strategies as methods for reducing the risk of calcium oxalate (CaOx) formation in two breeds of healthy dog. The studies compared the effect of dietary moisture (Study 1) and dietary sodium (Na), (Study 2) on urine composition of labrador retrievers (LR) and miniature schnauzers (MS). A nutritionally complete dry dog food was fed to 16 dogs (eight LR, eight MS; Study 1) and 15 dogs (seven LR, eight MS; Study 2) for 24 days (Study 1), or 36 days (Study 2). The dogs were fed the diet alone (7% moisture, 0.06 g Na/100 kcal), or supplemented with deionised water to 73% moisture (Study 1), or dietary Na, to deliver 0.20 or 0.30 g Na per 100 kcal (Study 2). Urine pH, volume, specific gravity, and concentrations of 12 analytes were measured for each dog. Urinary relative supersaturations (RSS) with CaOx were calculated from these values. The effects of supplemental Na or water were established using t tests (Study 1) or analysis of variance, and multiple range tests (least significant difference) (Study 2); Phigh moisture diet may reduce the risk of CaOx formation in high-risk breeds. Increasing dietary Na led to production of urine with a significantly lower CaOx RSS in both breeds, indicating that sodium supplementation to dry diet formats may reduce the risk of CaOx formation. These feeding strategies should be considered when evaluating methods for preventing CaOx formation within high-risk groups.

  18. A five way crossover human volunteer study to compare the pharmacokinetics of paracetamol following oral administration of two commercially available paracetamol tablets and three development tablets containing paracetamol in combination with sodium bicarbonate or calcium carbonate.

    Science.gov (United States)

    Grattan, T; Hickman, R; Darby-Dowman, A; Hayward, M; Boyce, M; Warrington, S

    2000-05-01

    This report concerns a single dose randomized five way crossover study to compare the pharmacokinetics of paracetamol from two commercially available paracetamol (500 mg) tablets and three different development paracetamol (500 mg) tablet formulations containing either sodium bicarbonate (400 mg), sodium bicarbonate (630 mg) or calcium carbonate (375 mg). The results demonstrated that addition of sodium bicarbonate (630 mg) to paracetamol tablets, increased the rate of absorption of paracetamol relative to conventional paracetamol tablets and soluble paracetamol tablets. Addition of sodium bicarbonate (400 mg) to paracetamol tablets increased the absorption rate of paracetamol relative to conventional paracetamol tablets, but there was no difference in the rate of absorption compared to soluble paracetamol tablets. Inclusion of calcium carbonate (375 mg) to paracetamol tablets had no effect on absorption kinetics compared to the conventional paracetamol tablet. The faster absorption observed for the sodium bicarbonate formulations may be as a result of an increase in gastric emptying rate leading to faster transport of paracetamol to the small intestine where absorption takes place.

  19. Evaluation of a mixture of zinc oxide, calcium hydroxide, and sodium fluoride as a new root canal filling material for primary teeth

    Directory of Open Access Journals (Sweden)

    Chawla H

    2008-06-01

    Full Text Available Endodontic treatment was performed on 25 pulpally involved mandibular primary molars in 4 to 9-year-old children; the root canals were obturated with a new root canal filling material consisting of a mixture of calcium hydroxide, zinc oxide, and 10% sodium fluoride solution, using hand-operated lentulo-spirals. All cases were evaluated clinically every 3 months and also radiographically every 6 months to assess the success of the treatment; we also examined the resorption of the root canal filling material from the root canals and the status of overpushed material, if any, as the tooth resorbed with the passage of time. At 6 months, endodontic treatment in 2 of the 25 teeth had failed and one tooth had exfoliated; the remaining 22 teeth were without any signs or symptoms. At the end of 2 years, 14 teeth could be evaluated; out of these 12 had physiologically exfoliated. It was observed that the rate of resorption of this new root canal obturating mixture was quite similar to the rate of physiologic root resorption in primary teeth. In three cases, where there was an overpush of the mixture, a gradual partial resorption was noted.

  20. Solubility of PdI/sub 2/ in nitrate and perchlorate solutions. [For use in spent fuels processing; solvents are water, nitric acid, calcium nitrate, and sodium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Horner, D.E.; Mailen, J.C.; Bigelow, H.R.

    1976-01-01

    This paper reports the solubilities of PdI/sub 2/ as measured in nitric acid by a tracer technique and in water, calcium nitrate, and sodium perchlorate solutions by a specific ion electrode technique. The tracer technique measures all the soluble iodine species, whereas the specific ion electrode measures only simple iodide ions (I/sup -/). When compared on the basis of ionic strength, the values obtained in the nitrate solutions by the two methods were in reasonable agreement. The solubilities in perchlorate solution were much higher than in nitrate, possibly because of ionic equilibria involving Pd/sup 4 +/, but this was not resolved in this work. The activity product constant, K/sub ap(PdI/sub 2/)/ = (2.5 +- 0.4) x 10/sup -23/ (25/sup 0/C), was calculated from PdI/sub 2/ solubility in water. With this value and the standard electrode potentials from the literature, the free energy of formation for PdI/sub 2/ was calculated to be --13.6 kcal/mol.

  1. The clinical significance of testing serum calcium and sodium in children with febrile convulsion%热性惊厥患儿血清钙、钠检测及其临床意义

    Institute of Scientific and Technical Information of China (English)

    王刚

    2014-01-01

    To investigate the variation of Serum calcium and sodium concentration in children with febrile convulsion and its significance.Methods:Detect the serum calcium and sodium levels using automatic biochemical analyzer in 76 cases of children with febrile convulsion and 69 cases of the control group with fever,and compared it.Results:Serum calcium and sodium in febrile convulsion group were significantly lower than those of the control group(P<0.05).Conclusion:Children with febrile convulsion is in low calcium and low blood sodium.Reciprocal causation between febrile convulsion and low calcium and low sodium.For the treatment of febrile seizure,we should pay attention to correct the low calcium hyponatremia in addition to conventional anti convulsion and cooling,in order to prevent repeated attack of convulsion,and alleviate the damage on brain and other important organs.%目的:探讨热性惊厥患儿血清钙、钠浓度变化及其意义。方法:采用全自动生化测定仪检测76例热性惊厥患儿和对照组69例发热患儿的血清钙、钠水平,并进行比较分析。结果:热性惊厥组血清钙、钠明显低于对照组(P<0.05)。结论:热性惊厥患儿存在低血钙、低血钠。热性惊厥与低钙、低钠之间互为因果,针对热性惊厥治疗时除常规止惊、降温外应注意纠正低钙低钠血症,预防惊厥反复发作,减轻脑组织和其他重要脏器的损害。

  2. The influence of calcium magnesium, and sodium on the spectrographic analysis of natural waters; Estudio de la influencia del calcio, magnesio y sodio en un metodo de analisis espectrografico de aguas naturales

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Guerra, J. P.; Capdevilla, C.

    1969-07-01

    The influences of 1000 {mu}g/ml of calcium and sodium and 300 {mu}g/ml of magnesium, on the spectrographic determination of Al, Ba, Cr, Fe, Li , Mn, Ni, Pb, Sr and Ti, minor constituents in natural waters, have been studied, In order to eliminate them, the elements Ga, In, La, Ti and Zn, as well as a mixture containing 30 % Tl-70 % In, have been tested as spectrochemical buffers. (Author) 7 refs.

  3. Scientific Opinion on the safety and efficacy of vitamin C (ascorbic acid and sodium calcium ascorbyl phosphate) as a feed additive for all animal species based on a dossier submitted by VITAC EEIG

    OpenAIRE

    2013-01-01

    Vitamin C (formerly known as antiscorbutic vitamin) is essential for primates, guinea pigs and fish. Vitamin C, in the form of ascorbic acid and sodium calcium ascorbyl phosphate, is safe for all animal species. Setting a maximum content in feed and water for drinking is not considered necessary. Data on the vitamin C consumption of consumers are based on the levels of vitamin C in foodstuffs, including food of animal origin, produced in accordance with current EU legislation on the supplemen...

  4. Study of formation and stability conditions of gas hydrates in drilling fluids; Etude des conditions de formation et de stabilite des hydrates de gaz dans les fluides de forage

    Energy Technology Data Exchange (ETDEWEB)

    Kharrat, M.

    2004-10-15

    Drilling fluids are complex media, in which solid particles are in suspension in a water-in-oil emulsion. The formation of gas hydrates in these fluids during off shore drilling operations has been suspected to be the cause of serious accidents. The purpose of this thesis is the study of the formation conditions as well as the stability of gas hydrates in complex fluids containing water-in-oil emulsions. The technique of high-pressure differential scanning calorimetry was used to characterise the conditions of hydrates formation and dissociation. Special attention has first been given to the validation of thermodynamic measurements in homogeneous solutions, in the pressure range 4 to 12 Mpa; the results were found to be in good agreement with literature data, as well as with modelling results. The method was then applied to water-in-oil emulsion, used as a model for real drilling fluids. It was proven that thermodynamics of hydrate stability are not significantly influenced by the state of dispersion of the water phase. On the other hand, the kinetics of formation and the amount of hydrates formed are highly increased by the dispersion. Applying the technique to real drilling fluids confirmed the results obtained in emulsions. Results interpretation allowed giving a representation of the process of hydrate formation in emulsion. Empirical modelling was developed to compute the stability limits of methane hydrate in the presence of various inhibitors, at pressures ranging from ambient to 70 MPa. Isobaric phase diagrams were constructed, that allow predicting the inhibiting efficiency of sodium chloride and calcium chloride at constant pressure, from 0,25 to 70 MPa. (author)

  5. Scientific Opinion on the safety and efficacy of vitamin C (ascorbic acid and sodium calcium ascorbyl phosphate as a feed additive for all animal species based on a dossier submitted by VITAC EEIG

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2013-02-01

    Full Text Available Vitamin C (formerly known as antiscorbutic vitamin is essential for primates, guinea pigs and fish. Vitamin C, in the form of ascorbic acid and sodium calcium ascorbyl phosphate, is safe for all animal species. Setting a maximum content in feed and water for drinking is not considered necessary. Data on the vitamin C consumption of consumers are based on the levels of vitamin C in foodstuffs, including food of animal origin, produced in accordance with current EU legislation on the supplementation of feed with vitamin C. The exposure is far below the guidance level. Any potential contribution of the use of vitamin C in feed is therefore already considered in the above data. Consequently, the use of vitamin C in animal nutrition is not of concern for consumer safety. In the absence of inhalation toxicity studies it would be prudent to assume that inhalation of dust from the additives presents a health hazard to workers and measures should be taken to minimise inhalation exposure. In the absence of data, ascorbic acid and sodium calcium ascorbyl phosphate should be considered as irritant to skin and eyes and as dermal sensitisers. The supplementation of feed with vitamin C does not pose a risk to the environment. Ascorbic acid and sodium calcium ascorbyl phosphate are regarded as effective sources of vitamin C when added to feed or water for drinking.

  6. Investigations into surfactant/gas hydrate relationship

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Rudy; Zhang, Guochang; Dearman, Jennifer; Woods, Charles [Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762 (United States)

    2007-03-15

    Gas hydrates have unique physical properties portending useful industrial applications of gas storage, gas separation, or water desalination. When gas hydrates were found in the early 1990s to occur naturally and abundantly in seafloors, three other primary interests and concerns emerged: potential new energy source, climate threat from their greenhouse gases, and seafloor instabilities. This paper presents research showing how anionic synthetic surfactants helped develop an industrial gas hydrate storage process for natural gas and how naturally-occurring in-situ anionic biosurfactants influence the formation and placement of gas hydrates in ocean sediments. The catalytic effects, mechanisms, and surface specificities imparted by synthetic surfactants in the gas storage process and imparted by biosurfactants in porous media are discussed. The Bacillus subtilis bacterium that is indigenous to gas hydrate mounds in the Gulf of Mexico was cultured in the laboratory. Its biosurfactant was separated and found to catalyze gas hydrates in porous media. The experiments indicate that seafloor-biosurfactants can be produced rapidly in-situ to achieve threshold concentrations whereby hydrates are promoted. The biosurfactants accumulate and promote hydrate formation on specific mineral surfaces such as sodium montmorillonite. (author)

  7. XPS of fast-frozen hematite colloids in NaCl aqueous solutions: I. Evidence for the formation of multiple layers of hydrated sodium and chloride ions induced by the {001} basal plane

    Energy Technology Data Exchange (ETDEWEB)

    Shchukarev, Andrei; Boily, Jean F.; Felmy, Andrew R.

    2007-12-13

    The influence of the {001} basal plane of hematite on the composition of fast-frozen centrifuged wet pastes of hematite prepared at pH 4 and 9 and at ionic strengths of 0, 10 and 100 mM NaCl was investigated by x-ray photoelectron spectroscopy. Two hematite preparations consisted of micrometer-sized platelets with 42% (HEM-1) and 95% (HEM-8) of the surface terminated by the {001} basal plane. A third preparation of spherical shape with no recognizable crystal plane (HEM-control) was used as a control to these experiments. All hematite samples responded to changes in pH and ionic strength, showing that acid/base reactions of surface hydroxyl groups control the composition of the paste. The HEM-1 and HEM-8 sample exhibited divergent properties at the highest ionic strength (100 mM) with energy loss features in the Na 1s and Cl 2p spectra and an important water content. As the spectra were typical of hydrated Na+ and Cl- ions and that the surface concentrations were unusually large, the HEM-1 and HEM-8 samples are proposed to induce the formation of a three-dimensional distribution of these ions in the paste. The sodium, chloride and water content was also correlated to the fraction of the {001} basal plane present in the sample and provided evidence for an approximate stochiometric Na:Cl:H2O ratio of 1:1:2. The {001} basal plane of hematite is consequently proposeD to be the cause of this feature.

  8. Hidratação com bicarbonato de sódio não previne a nefropatia de contraste: ensaio clínico multicêntrico Hydration with sodium bicarbonate does not prevent contrast nephropathy: a multicenter clinical trial

    Directory of Open Access Journals (Sweden)

    Vitor O. Gomes

    2012-12-01

    Full Text Available FUNDAMENTO: A exposição ao meio de contraste radiográfico pode causar comprometimento agudo da função renal. Há evidências limitadas e conflitantes de que a hidratação com bicarbonato de sódio previne a Nefropatia Induzida por Contraste (NIC em pacientes submetidos a cateterismo cardíaco. OBJETIVO: O presente estudo teve como objetivo determinar se o bicarbonato de sódio é superior à hidratação com soro fisiológico para evitar a nefropatia em pacientes de risco submetidos a cateterismo cardíaco. MÉTODOS: Trezentos e um pacientes submetidos a intervenção coronariana percutânea ou angiografia coronariana com creatinina sérica > 1,2 mg/dL ou Taxa de Filtração Glomerular (TFG BACKGROUND: Radiographic contrast media exposition can cause acute renal function impairment. There is limited and conflicting evidence that hydration with sodium bicarbonate prevents contrast-induced nephropathy (CIN in patients undergoing cardiac catheterization. OBJECTIVE: The present study was aimed at determining whether sodium bicarbonate is superior to hydration with saline to prevent nephropathy in patients at risk undergoing cardiac catheterization. METHODS: Three hundred and one patients undergoing coronary angiography or percutaneous coronary intervention with serum creatinine > 1.2mg/dL or glomerular filtration rate (GFR < 50ml/min were randomized to receive hydration with sodium bicarbonate starting 1 hour before the procedure and 6 hours after the procedure, or hydration with 0.9% saline. CIN was defined as an increase of 0.5mg/dL in creatinine in 48h RESULTS: Eighteen patients (5.9% developed contrast induced nephropathy: 9 patients in the bicarbonate group (6.1% and 9 patients in the saline group (6.0%, p = 0.97. The change in serum creatinine was similar in both groups, 0.01 ± 0.26 mg/dL in the bicarbonate group and 0.01 ± 0.35 mg/dL in the saline group, p = 0.9. No statistical difference was observed between the change in glomerular

  9. Hidratação com bicarbonato de sódio não previne a nefropatia de contraste: ensaio clínico multicêntrico Hydration with sodium bicarbonate does not prevent contrast nephropathy: a multicenter clinical trial

    Directory of Open Access Journals (Sweden)

    Vitor O. Gomes

    2012-01-01

    Full Text Available FUNDAMENTO: A exposição ao meio de contraste radiográfico pode causar comprometimento agudo da função renal. Há evidências limitadas e conflitantes de que a hidratação com bicarbonato de sódio previne a Nefropatia Induzida por Contraste (NIC em pacientes submetidos a cateterismo cardíaco. OBJETIVO: O presente estudo teve como objetivo determinar se o bicarbonato de sódio é superior à hidratação com soro fisiológico para evitar a nefropatia em pacientes de risco submetidos a cateterismo cardíaco. MÉTODOS: Trezentos e um pacientes submetidos a intervenção coronariana percutânea ou angiografia coronariana com creatinina sérica > 1,2 mg/dL ou Taxa de Filtração Glomerular (TFG BACKGROUND: Radiographic contrast media exposition can cause acute renal function impairment. There is limited and conflicting evidence that hydration with sodium bicarbonate prevents contrast-induced nephropathy (CIN in patients undergoing cardiac catheterization. OBJECTIVE: The present study was aimed at determining whether sodium bicarbonate is superior to hydration with saline to prevent nephropathy in patients at risk undergoing cardiac catheterization. METHODS: Three hundred and one patients undergoing coronary angiography or percutaneous coronary intervention with serum creatinine > 1.2mg/dL or glomerular filtration rate (GFR < 50ml/min were randomized to receive hydration with sodium bicarbonate starting 1 hour before the procedure and 6 hours after the procedure, or hydration with 0.9% saline. CIN was defined as an increase of 0.5mg/dL in creatinine in 48h RESULTS: Eighteen patients (5.9% developed contrast induced nephropathy: 9 patients in the bicarbonate group (6.1% and 9 patients in the saline group (6.0%, p = 0.97. The change in serum creatinine was similar in both groups, 0.01 ± 0.26 mg/dL in the bicarbonate group and 0.01 ± 0.35 mg/dL in the saline group, p = 0.9. No statistical difference was observed between the change in glomerular

  10. Hydration process in Portland cement blended with activated coal gangue

    Institute of Scientific and Technical Information of China (English)

    Xian-ping LIU; Pei-ming WANG; Min-ju DING

    2011-01-01

    This paper deals with the hydration of a blend of Portland cement and activated coal gangue in order to determine the relationship between the degree of hydration and compressive strength development.The hydration process was investigated by various means:isothermal calorimetry,thermal analysis,non-cvaporable water measurement,and X-ray diffraction analysis.The results show that the activated coal gangue is a pozzolanic material that contributes to the hydration of the cement blend.The pozzolanic reaction occurs over a period of between 7 and 90 d,consuming portlandite and forming both crystal hydrates and ill-crystallized calcium silicate hydrates.These hydrates are similar to those found in pure Portland cement.The results show that if activated coal gangue is substituted for cement at up to 30% (w/w),it does not significantly affect the final compressive strength of the blend.A long-term compressive strength improvement can in fact be achieved by using activated coal gangue as a supplementary cementing material.The relationship between compressive strength and degree of hydration for both pure Portland cement and blended cement can be described with the same equation.However,the parameters are different since blended cement produces fewer calcium silicate hydrates than pure Portland cement at the same degree of hydration.

  11. Methods to determine hydration states of minerals and cement hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Thorell, Alva; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2014-11-15

    This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate are presented. Some of the methods used were validated with the system Na{sub 2}SO{sub 4}–H{sub 2}O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions.

  12. Non-free ionic transport of sodium, magnesium, and calcium in streams of two adjacent headwater catchments with different vegetation types in Japan

    Science.gov (United States)

    Terajima, Tomomi; Moriizumi, Mihoko; Nakamura, Tomohiro

    2017-01-01

    Sodium (Na), magnesium (Mg), calcium (Ca) are usually believed to occur mostly as free ions in the fresh water and consequently little is known about their chemical species. To understand the importance of non-free ionic fractions (NIF) of major metals in freshwater streams, Na, Mg, Ca, silicon (Si), and fulvic acid-like materials (FAM) were measured in streams of mountainous adjacent headwater catchments dominated by different vegetation types (planted evergreen coniferous forest and natural deciduous broadleaf forest). During both no rainfall periods and rainstorms, the proportion of NIF relative to total elements was lower in the coniferous catchment than in the deciduous catchment, although it sometimes accounted for half or more of the total concentrations of Na, Mg, and Ca in both catchments. The solubility of metal compounds was higher than the measured maximum concentrations of Na+, Mg2+, and Ca2+ to the extent that inorganic bonding was hardly possible. During no rainfall periods when FAM was slightly produced into the streams, the fluxes of NIF and Si were highly correlated (r > 0.92, p NIF correlated weakly with that of Si but did not correlate with that of FAM in both catchments. In contrast, during a heavy rainstorm, the flux of NIF correlated strongly (r ⩾ 0.83, p NIF originated in the quick-flow component (i.e., surface or near-surface water) in stream water (ΔNIF) correlated strongly (r ⩾ 0.81, p < 0.0001, n = 22) with that of FAM. These findings imply that heavy rainstorms may enhance the bonding of the major metals with humic substances mainly in the deciduous catchment; and also exhibit that, in the headwater catchments, both water flow pathways resulted from the different vegetation types play a very important role to promote the bonding of major metals with humic substances in stream water.

  13. Scientific Opinion on the re-evaluation of propionic acid (E 280, sodium propionate (E 281, calcium propionate (E 282 and potassium propionate (E 283 as food additives

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Additives and Nutrient Sources added to food (ANS

    2014-07-01

    Full Text Available The EFSA ANS Panel provides a scientific opinion re-evaluating the safety of propionic acid (E 280, sodium propionate (E 281, calcium propionate (E 282 and potassium propionate (E 283 which are authorised as food additives in the EU and have been previously evaluated by the SCF and JECFA. JECFA allocated an ADI “not limited”. The SCF concluded that potassium propionate could be added to the list of preservatives and established an ADI ”not specified”. Propionates are naturally occurring substances in the normal diet. The Panel considered that forestomach hyperplasia reported in long-term studies in rodents is not a relevant endpoint for humans because humans lack this organ. Based on the reported presence of reversible diffuse epithelial hyperplasia in the oesophagus the LOAEL for a 90-day study in dogs was considered by the Panel to be 1 % propionic acid in the diet and the NOAEL to be 0.3 % propionic acid in the diet. The Panel considered that there is no concern with respect to genotoxicity and carcinogenicity. The Panel concluded that the present database did not allow allocation of an ADI for propionic acid - propionates. The overall mean and 95th percentile exposures to propionic acid - propionates resulting from their use as food additives (major contributor to exposure ranged from 0.7-21.1 and 3.6-40.8 mg/kg bw/day, respectively. The Panel noted that the concentration provoking site of contact effect in the 90-day study in dogs (1 % propionic acid in the diet is a factor of three higher than the concentration of propionic acid - propionates in food at the highest permitted level and concluded that for food as consumed, there would not be a safety concern from the maximum concentrations of propionic acid and its salts at their currently authorised uses and use levels as food additives.

  14. Clathrate hydrates in nature.

    Science.gov (United States)

    Hester, Keith C; Brewer, Peter G

    2009-01-01

    Scientific knowledge of natural clathrate hydrates has grown enormously over the past decade, with spectacular new findings of large exposures of complex hydrates on the sea floor, the development of new tools for examining the solid phase in situ, significant progress in modeling natural hydrate systems, and the discovery of exotic hydrates associated with sea floor venting of liquid CO2. Major unresolved questions remain about the role of hydrates in response to climate change today, and correlations between the hydrate reservoir of Earth and the stable isotopic evidence of massive hydrate dissociation in the geologic past. The examination of hydrates as a possible energy resource is proceeding apace for the subpermafrost accumulations in the Arctic, but serious questions remain about the viability of marine hydrates as an economic resource. New and energetic explorations by nations such as India and China are quickly uncovering large hydrate findings on their continental shelves.

  15. Hydration states of AFm cement phases

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  16. Changes of Calcium Concentration after Ceftriaxone Sodium Mixed with Different Concentrations of Calcium Solution%头孢曲松钠与不同浓度含钙溶液混合后钙离子浓度的变化研究

    Institute of Scientific and Technical Information of China (English)

    林金华; 周艳芳; 凌丽燕; 姜宠华; 陆卫良

    2013-01-01

    目的:研究头孢曲松钠与含钙溶液产生沉淀的浓度范围,指导临床合理用药.方法:采用全自动生化测定仪测定初始钙离子浓度为0.16、0.38、0.61、0.85、1.10、1.35、1.58、1.84、2.13、2.37 mmol/L的合钙溶液与1、0.5、0.25 g头孢曲松钠混合后0、0.5、1.0、2.0、3.0、4.0、6.0、24.0h内上清液中的钙离子浓度变化,并分析其变化规律.结果:1、0.5、0.25 g头孢曲松钠与各个初始浓度的含钙溶液混合后,上清液中钙离子浓度相互间区别不大;3种头孢曲松钠加入量的上清液中钙离子浓度0.5 h时均较0h时下降,但1.0~24.0h与0h比较均变化不大;3种头孢曲松钠加入量的上清液中钙离子浓度差别不大;且从0.5~24.0h初始钙离子浓度越高,上清液中的钙离子浓度反而更低;钙离子浓度≥1.35 mmol/L时均产生沉淀,浓度越大,产生的沉淀越多,钙离子浓度≤0.85mmol/L时并未见沉淀产生.结论:高血钙患者(血钙>2.6 mmol/L),特别是甲状旁腺危象患者(血钙>4 mmol/L),如需使用头孢曲松钠,使用前应该测定血清钙离子浓度,≥1.35 mmol/L时,风险较大,应避免使用;如果合用含钙制剂(包括口服),应增加水分的摄入,以稀释尿液中的钙离子浓度,从而降低使用风险.%OBJECTIVE: To study the range of concentration that the precipitation appears after ceftriaxone sodium mixed with solution containing calcium, and to provide reference for rational use of drugs in the clinic. METHODS:Using automatic biochemical analyzer, the changes of calcium concentrations in supernatant were determined within 0, 0.5, 1.0, 2.0, 3.0, 4.0, 6.0 and 24.0 h after solution containing calcium (initial concentrations of 0.16, 0.38, 0.61, 0.85, 1.10, 1.35, 1.58, 1.84, 2.13 and 2.37 mmol/L) mixed with ceftriaxone sodium (1, 0.5, 0.25 g); the variation regularity was analyzed. RESULTS: The concentration of calcium ions had no significant difference when ceftriaxone sodium

  17. 氯化钠和氯化钙对玉米淀粉-瓜尔胶复配体系的影响%Effects of Sodium Chloride and Calcium Chloride on Corn Starch and Guar Gum Mixed System

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      通过测定分析玉米淀粉-瓜尔胶复配体系在有无氯化钠和氯化钙存在条件下的糊化特性、动态与静态流变学特性,研究氯化钠和氯化钙对玉米淀粉-瓜尔胶复配体系的影响。结果表明,氯化钠和氯化钙的加入,提高了玉米淀粉-瓜尔胶复配体系的成糊温度,降低了崩解值和回升值,峰值黏度也略微下降;玉米淀粉-瓜尔胶复配体系的弹性模量G′值显著减小,黏性模量G″值的频率依赖性较大;氯化钠和氯化钙使玉米淀粉-瓜尔胶复配体系的假塑性增强,且氯化钙的作用大于氯化钠。%Through the analysis and determination of pasting property, dynamic and static rheological properties of corn starch and guar gum mixed system with or without sodium chloride and calcium chloride, the effects of sodium chloride and calcium chloride on corn starch and guar gum mixed system were studied. The results showed, the addition of sodium chloride and calcium chloride increased the pasting temperature of corn starch and guar gum mixed system, decreased the breakdown value and consistence value, and the peak viscosity also dropped slightly. The G′ value of elastic modulus decreased significantly, the frequency dependence of G" value of viscous modulus was larger. The addition of sodium chloride and calcium chloride enhanced pseudo-plasticity of corn starch and guar gum mixed system, and calcium chloride was more effective.

  18. Study on P2O5 recovery in production of sodium dihydrogen phosphate with calcium biphosphate%磷酸二氢钙制备磷酸二氢钠磷收率研究

    Institute of Scientific and Technical Information of China (English)

    王勃; 向伟; 陈红琼; 应建康

    2012-01-01

    Calcium biphosphate is an important product in fine processing wet-process phosphoric acid (WPA), it conforms to the present market needing to develop the middle production of calcium biphosphate refined series product, and is of great significance.Process conditions of preparation of sodium dihydrogen phosphate with double decomposition reaction between calcium biphosphate and sodium sulfate were studied,and product by concentrated crystallization process was obtained. Influences of the reaction temperature, mix ratio of sodium sulfate to calcium biphosphate, ratio of liquid to solid, and reaction time on P2O5 recovery were investigated.Optimal process parameters of the reaction obtained were as follows:the reaction temperature was 50 ℃, mix ratio of sodium sulfate to calcium biphosphate was 1.2:1, mass ratio of liquid to solid was 4:1, and reaction time was 120 min.Under the conditions,the P2O5 recovery was 79.1%.Advantages of this process were the purity of product was high, process flow was short, and operation was simple etc.%磷酸二氢钙是湿法磷酸精细加工的重要产品,开发以磷酸二氢钙为中间产物的精加工系列产品符合目前市场需求.研究了磷酸二氢钙与硫酸钠复分解反应制备磷酸二氢钠的工艺条件,并通过浓缩结晶得到磷酸二氢钠产品.对反应温度、物料配比、液固比以及反应时间诸因素对磷收率的影响进行了研究,确定了复分解过程适宜的工艺条件:反应温度为50℃,物料配比(硫酸钠与磷酸二氢钙物质的量比)为1.2∶1,液固比(质量比)为4∶1,反应时间为120 min.在此条件下磷收率可达79.1%.该工艺具产品纯度高、工艺流程简单、操作简便等优点.

  19. Molecular dynamics study of the effect of calcium ions on the monolayer of SDC and SDSn surfactants at the vapor/liquid interface.

    Science.gov (United States)

    Yan, Hui; Guo, Xin-Li; Yuan, Shi-Ling; Liu, Cheng-Bu

    2011-05-17

    The effect of Ca(2+) ions on the hydration shell of sodium dodecyl carboxylate (SDC) and sodium dodecyl sulfonate (SDSn) monolayer at vapor/liquid interfaces was studied using molecular dynamics simulations. For each surfactant, two different surface concentrations were used to perform the simulations, and the aggregation morphologies and structural details have been reported. The results showed that the aggregation structures relate to both the surface coverage and the calcium ions. The divalent ions can screen the interaction between the polar head and Na(+) ions. Thus, Ca(2+) ions locate near the vapor/liquid interface to bind to the headgroup, making the aggregations much more compact via the salt bridge. The potential of mean force (PMF) between Ca(2+) and the headgroups shows that the interaction is decided by a stabilizing solvent-separated minimum in the PMF. To bind to the headgroup, Ca(2+) should overcome the energy barrier. Among contributions to the PMF, the major repulsive interaction was due to the rearrangement of the hydration shell after the calcium ions entered into the hydration shell of the headgroup. The PMFs between the headgroup and Ca(2+) in the SDSn systems showed higher energy barriers than those in the SDC systems. This result indicated that SDSn binds the divalent ions with more difficulty compared with SDC, so the ions have a strong effect on the hydration shell of SDC. That is why sulfonate surfactants have better efficiency in salt solutions with Ca(2+) ions for enhanced oil recovery.

  20. First-principles elasticity of monocarboaluminate hydrates

    KAUST Repository

    Moon, J.

    2014-07-01

    The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.

  1. The effectiveness of various chelates used alone or in combination with sodium hypochlorite in the removal of calcium hydroxide from root canals

    Directory of Open Access Journals (Sweden)

    Emel Uzunoglu

    2015-01-01

    Full Text Available Aim: To evaluate the effectiveness of various chelates used alone or in combination with sodium hypochlorite (NaOCl in the removal of calcium hydroxide (Ca(OH2 from root canals. Materials and Methods: The root canals of 72 mandibular incisors were prepared up to the ProTaper F2 file. Among these, six randomly selected teeth were used as negative and positive controls, while the root canals of the remaining 66 were filled with Ca(OH2 paste for 1 week. Then, the experimental group specimens were divided into six groups (n = 11. The access cavities were reopened and the Ca(OH2 paste in each group was removed using the following solutions: 2.5 mL ethylenediaminetetraacetic acid (EDTA; Group 1, 2.5 mL peracetic acid (PAA; Group 2, 2.5 mL QMix (Group 3, 2.5 mL NaOCl/2.5 mL EDTA (Group 4, 2.5 mL NaOCl/2.5 mL PAA (Group 5, and 2.5 mL NaOCl/2.5 mL QMix (Group 6. Digital photographs of longitudinally split specimens were imported into image analyzer software, and the amount of residual Ca (OH 2 was recorded as a percentage of the overall canal surface area. The results were analyzed using Kruskal–Wallis and Conover–Dunn tests. Results: The canal walls in the positive control group were completely covered with Ca(OH 2 compared with those in the negative control group. The lowest Ca(OH2 removal efficiency was observed for Group 4 (P < 0.001, while Group 6 showed favorable results (P < 0.05. Conclusions: QMix combined with NaOCl can remove Ca(OH2 from root canals as effectively as 17% EDTA and 1% PAA. The type and sequence of irrigants are more important than the total irrigant volume for effective Ca(OH 2 removal.

  2. Protein Phosphatase 1c Associated with the Cardiac Sodium Calcium Exchanger 1 Regulates Its Activity by Dephosphorylating Serine 68-phosphorylated Phospholemman.

    Science.gov (United States)

    Hafver, Tandekile Lubelwana; Hodne, Kjetil; Wanichawan, Pimthanya; Aronsen, Jan Magnus; Dalhus, Bjørn; Lunde, Per Kristian; Lunde, Marianne; Martinsen, Marita; Enger, Ulla Helene; Fuller, William; Sjaastad, Ivar; Louch, William Edward; Sejersted, Ole Mathias; Carlson, Cathrine Rein

    2016-02-26

    The sodium (Na(+))-calcium (Ca(2+)) exchanger 1 (NCX1) is an important regulator of intracellular Ca(2+) homeostasis. Serine 68-phosphorylated phospholemman (pSer-68-PLM) inhibits NCX1 activity. In the context of Na(+)/K(+)-ATPase (NKA) regulation, pSer-68-PLM is dephosphorylated by protein phosphatase 1 (PP1). PP1 also associates with NCX1; however, the molecular basis of this association is unknown. In this study, we aimed to analyze the mechanisms of PP1 targeting to the NCX1-pSer-68-PLM complex and hypothesized that a direct and functional NCX1-PP1 interaction is a prerequisite for pSer-68-PLM dephosphorylation. Using a variety of molecular techniques, we show that PP1 catalytic subunit (PP1c) co-localized, co-fractionated, and co-immunoprecipitated with NCX1 in rat cardiomyocytes, left ventricle lysates, and HEK293 cells. Bioinformatic analysis, immunoprecipitations, mutagenesis, pulldown experiments, and peptide arrays constrained PP1c anchoring to the K(I/V)FF motif in the first Ca(2+) binding domain (CBD) 1 in NCX1. This binding site is also partially in agreement with the extended PP1-binding motif K(V/I)FF-X5-8Φ1Φ2-X8-9-R. The cytosolic loop of NCX1, containing the K(I/V)FF motif, had no effect on PP1 activity in an in vitro assay. Dephosphorylation of pSer-68-PLM in HEK293 cells was not observed when NCX1 was absent, when the K(I/V)FF motif was mutated, or when the PLM- and PP1c-binding sites were separated (mimicking calpain cleavage of NCX1). Co-expression of PLM and NCX1 inhibited NCX1 current (both modes). Moreover, co-expression of PLM with NCX1(F407P) (mutated K(I/V)FF motif) resulted in the current being completely abolished. In conclusion, NCX1 is a substrate-specifying PP1c regulator protein, indirectly regulating NCX1 activity through pSer-68-PLM dephosphorylation.

  3. Study of mechanical properties of calcium phosphate cement with addition of sodium alginate and dispersant; Estudo das propriedades mecanicas de cimento de fosfato de calcio com adicao de alginato de sodio e defloculante

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, J.M.; Coelho, W.T.; Thurmer, M.B.; Vieira, P.S.; Santos, L.A., E-mail: julianafernandes2@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRS), RS (Brazil)

    2011-07-01

    Several studies in literature have shown that the addition of polymer additives and deflocculant has a strong influence on the mechanical properties of cements in general.The low mechanical strength is the main impediment to wider use of bone cement of calcium phosphate (CFCs) as the implant material, since they have mechanical strength which equals the maximum of trabecular bone.In order to evaluate the strength of a CFC compound alpha-tricalcium phosphate, sodium alginate were added (1%, 2% and 3% by weight) and dispersant ammonium polyacrylate (3%) in aqueous solution.Specimens were made and evaluated for density, porosity, crystalline phases and mechanical strength.The results show the increase of the mechanical properties of cement when added sodium alginate and dispersant. (author)

  4. 21 CFR 184.1763 - Sodium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of.... 1310-73-2) is also known as sodium hydrate, soda lye, caustic soda, white caustic, and lye....

  5. The specific surface area of methane hydrate formed in different conditions and manners

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The specific surface area of methane hydrates, formed both in the presence and absence of sodium dodecyl sulfate (SDS) and processed in different manners (stirring, compacting, holding the hydrates at the formation conditions for different periods of time, cooling the hydrates for different periods of time before depressurizing them), was measured under atmospheric pressure and temperatures below ice point. It was found that the specific surface area of hydrate increased with the decreasing temperature. The methane hydrate in the presence of SDS was shown to be of bigger specific surface areas than pure methane hydrates. The experimental results further demonstrated that the manners of forming and processing hydrates affected the specific surface area of hydrate samples. Stirring or compacting made the hydrate become finer and led to a bigger specific surface area.

  6. Authigenic gypsum found in gas hydrate-associated sediments from Hydrate Ridge, the eastern North Pacific

    Institute of Scientific and Technical Information of China (English)

    WANG; Jiasheng; Erwin; Suess; Dirk; Rickert

    2004-01-01

    Characteristic gypsum micro-sphere and granular mass were discovered by binocular microscope in the gas hydrate-associated sediments at cores SO143-221 and SO143/TVG40-2A respectively on Hydrate Ridge of Cascadia margin, the eastern North Pacific. XRD patterns and EPA analyses show both micro-sphere and granular mass of the crystals have the typical peaks and the typical main chemical compositions of gypsum, although their weight percents are slightly less than the others in the non-gas hydrate-associated marine regions. SEM pictures show that the gypsum crystals have clear crystal boundaries, planes, edges and cleavages of gypsum in form either of single crystal or of twin crystals. In view of the fact that there are meanwhile gas hydrate-associated authigenic carbonates and SO42(-rich pore water in the same sediment cores, it could be inferred reasonably that the gypsums formed also authigenically in the gas hydrate-associated environment too, most probably at the interface between the downward advecting sulfate-rich seawater and the below gas hydrate, which spilled calcium during its formation on Hydrate Ridge. The two distinct forms of crystal intergrowth, which are the granular mass of series single gypsum crystals at core SO143/TVG40-2A and the microsphere of gypsum crystals accompanied with detrital components at core SO143-221 respectively, indicate that they precipitated most likely in different interstitial water dynamic environments. So, the distinct authigenic gypsums found in gas hydrate-associated sediments on Hydrate Ridge could also be believed as one of the parameters which could be used to indicate the presence of gas hydrate in an unknown marine sediment cores.

  7. Surfactant effects on SF6 hydrate formation.

    Science.gov (United States)

    Lee, Bo Ram; Lee, Ju Dong; Lee, Hyun Ju; Ryu, Young Bok; Lee, Man Sig; Kim, Young Seok; Englezos, Peter; Kim, Myung Hyun; Kim, Yang Do

    2009-03-01

    Sulfur hexafluoride (SF(6)) has been widely used in a variety of industrial processes, but it is one of the most potent greenhouse gases. For this reason, it is necessary to separate or collect it from waste gas streams. One separation method is through hydrate crystal formation. In this study, SF(6) hydrate was formed in aqueous surfactant solutions of 0.00, 0.01, 0.05, 0.15 and 0.20 wt% to investigate the effects of surfactants on the hydrate formation rates. Three surfactants, Tween 20 (Tween), sodium dodecyl sulfate (SDS) and linear alkyl benzene sulfonate (LABS), were tested in a semi-batch stirred vessel at the constant temperature and pressures of 276.2 K and 0.78 MPa, respectively. All surfactants showed kinetic promoter behavior for SF(6) hydrate formation. It was also found that SF(6) hydrate formation proceeded in two stages with the second stage being the most rapid. In situ Raman spectroscopy analysis revealed that the increased gas consumption rate with the addition of surfactant was possibly due to the increased gas filling rate in the hydrate cavity.

  8. The Hydration and Carbonation of Tricalcium Aluminate (C3A) in the Presence of Heavy Metals

    Institute of Scientific and Technical Information of China (English)

    CHEN Quanyuan; C. D. Hills; M. Tyrer; I. Slipper

    2005-01-01

    The hydration of tricalcium aluminate (C3A) has a significant effect on the effectiveness of cement-based systems. In addition, the carbonation of hydration products of C3A is particularly important in respect of durability performance. The present work investigates the hydration and carbonation reactions of C3A and the changes induced by the presence of the heavy metal ions such as Zn2+, Pb2+, Cu2+ and Cr3+ by X-ray diffractometry (XRD). During hydration of C3A, gehlenite hydrate, hydrogarnet, calcium monoaluminate (C4AHx) and calcium carboaluminate were detected in C3A pastes except the Zn2+doped paste, where hydrogarnet did not form. The examinations revealed that heavy metals coexisted with gehlenite hydrate, calcium monoaluminate (C4AHx) and calcium carboaluminate, inhibiting the formation of hydrogarnet. Hydrating C3A was liable to be carbonated on exposure to air and carbon dioxide, especially in the presence of heavy metals, resulting in the formation of carboaluminate and/or calcium carbonate. The presence of heavy metals in-fluenced the polymorphism of calcium carbonate,ndicating that heavy metals could co-precipitate with calcium to form a carbonate solid solution.

  9. The effect of a high-protein, high-sodium diet on calcium and bone metabolism in postmenopausal women stratified by hormone replacement therapy use

    DEFF Research Database (Denmark)

    Harrington, M.; Bennett, T.; Jakobsen, Jette;

    2004-01-01

    randomly assigned to a diet high in protein ( 90 g/day) and sodium (180 mmol/day) ( calciuric diet) or a diet moderate in protein ( 70 g/day) and low in sodium ( 65 mmol/day) for 4 weeks followed by crossover to alternative dietary regimen for a further 4 weeks. The calciuric diet significantly (P......The objective of this study was to investigate the influence of a high-sodium, high-protein diet on bone metabolism in postmenopausal women ( aged 49 - 60 y) stratified by hormone replacement therapy (HRT) use. In a crossover trial, 18 women (n = 8 HRT users (+HRT) and n = 10 nonusers (-HRT)) were...

  10. The effect of a high-protein, high-sodium diet on calcium and bone metabolism in postmenopausal women stratified by hormone replacement therapy use

    DEFF Research Database (Denmark)

    Harrington, M.; Bennett, T.; Jakobsen, Jette

    2004-01-01

    randomly assigned to a diet high in protein ( 90 g/day) and sodium (180 mmol/day) ( calciuric diet) or a diet moderate in protein ( 70 g/day) and low in sodium ( 65 mmol/day) for 4 weeks followed by crossover to alternative dietary regimen for a further 4 weeks. The calciuric diet significantly (P......The objective of this study was to investigate the influence of a high-sodium, high-protein diet on bone metabolism in postmenopausal women ( aged 49 - 60 y) stratified by hormone replacement therapy (HRT) use. In a crossover trial, 18 women (n = 8 HRT users (+HRT) and n = 10 nonusers (-HRT)) were...

  11. 湖北某高钙低品位含钒石煤钠化焙烧研究%Sodium Roast and Extraction of Vanadium from Low Grade Stone Coal with High Calcium from Hubei

    Institute of Scientific and Technical Information of China (English)

    韩诗华; 张一敏; 包申旭; 胡杨甲

    2012-01-01

    对湖北某高钙低品位含钒石煤进行了NaCl、Na2SO4和两者复配焙烧及水浸—稀酸浸试验.添加单一NaCl焙烧时,过多的游离氧化钙容易与钒结合生成不溶于水的钒酸钙,影响钒的水浸率;添加单一Na2SO4焙烧时,虽然可以固定钙离子,但Na2SO4用量过大,经济和环境成本较高;当NaCl和Na2SO4添加量分别为7%和16%,焙烧温度为850℃,焙烧时间为3h,水浸率可提高到51.47%,总浸率可达79.81%.在复合添加剂用量较低情况下取得了较好的浸出效果,一方面源于Na2SO4对较高含量钙离子的固定作用,抑制了难溶性钒酸钙的形成;另一方面,NaCl焙烧生成了氧化性较强的气体HCl、Cl2,既有助于破坏云母晶格结构,又有助于钒的氧化转价.%Sodium roast using NaCl,Na2 SO4 and compound of both as roasting additives was studied in vanadium extraction from low grade stone coal with high calcium from Hubei Province. On the condition of roasting with sodium chloride,the water leaching rate of vanadium was affected because of too much free calcium oxide in the raw ore,which inclines to combine with vanadium,producing water-insoluble calcium vanadate. On the condition of roasting with sodium sulfate,even though it can fix calcium,the dosage of sodium sulfate was too large,and economic costs and environmental costs were very high. When roasting with the mixture of 7% NaCl and 16% Na2SO4 at the conditions of roasting temperature of 850 ℃ and roasting time of 3 h,the water leaching rate increased to 51.47% ,and the total leaching rate of vanadium could reach 79. 81%. The leaching results were good at small dosage of roasting compound additives. On one hand,roasting with Na2 SO4 can fix calcium,so as to inhibit the formation of water-insoluble calcium vanadate. On the other hand,the strong oxidizing atmosphere of HC1 and Cl2 produced by adding NaCl can strengthen the destruction of the crystal structure of mica and promote the oxidation

  12. Low-temperature fabrication of macroporous scaffolds through foaming and hydration of tricalcium silicate paste and their bioactivity

    NARCIS (Netherlands)

    Huan, Z.; Chang, J.; Zhou, J.

    2009-01-01

    A low-temperature fabrication method for highly porous bioactive scaffolds was developed. The two-step method involved the foaming of tricalcium silicate cement paste and hydration to form calcium silicate hydrate and calcium hydroxide. Scaffolds with a combination of interconnected macro- and micro

  13. Determination of calcium carbonate and sodium carbonate melting curves up to Earth's transition zone pressures with implications for the deep carbon cycle

    Science.gov (United States)

    Li, Zeyu; Li, Jie; Lange, Rebecca; Liu, Jiachao; Militzer, Burkhard

    2017-01-01

    Melting of carbonated eclogite or peridotite in the mantle influences the Earth's deep volatile cycles and bears on the long-term evolution of the atmosphere. Existing data on the melting curves of calcium carbonate (CaCO3) and sodium carbonate (Na2CO3) are limited to 7 GPa and therefore do not allow a full understanding of carbon storage and cycling in deep Earth. We determined the melting curves of CaCO3 and Na2CO3 to the pressures of Earth's transition zone using a multi-anvil apparatus. Melting was detected in situ by monitoring a steep and large increase in ionic conductivity, or inferred from sunken platinum markers in recovered samples. The melting point of CaCO3 rises from 1870 K at 3 GPa to ∼2000 K at 6 GPa and then stays within 50 K of 2000 K between 6 and 21 GPa. In contrast, the melting point of Na2CO3 increases continuously from ∼1123 K at 3 GPa to ∼1950 K at 17 GPa. A pre-melting peak in the alternating current through solid CaCO3 is attributed to the transition from aragonite to calcite V. Accordingly the calcite V-aragonite-liquid invariant point is placed at 13 ± 1 GPa and 1970 ± 40 K, with the Clapeyron slope of the calcite V to aragonite transition constrained at ∼70 K/GPa. The experiments on CaCO3 suggest a slight decrease in the melting temperature from 8 to 13 GPa, followed by a slight increase from 14 to 21 GPa. The negative melting slope is consistent with the prediction from our ab initio simulations that the liquid may be more compressible and become denser than calcite V at sufficiently high pressure. The positive melting slope at higher pressures is supported by the ab initio prediction that aragonite is denser than the liquid at pressures up to 30 GPa. At transition zone pressures the melting points of CaCO3 are comparable to that of Na2CO3 but nearly 400 K and 500 K lower than that of MgCO3. The fusible nature of compressed CaCO3 may be partially responsible for the majority of carbonatitic melts found on Earth's surface

  14. Formation of calcium complexes by borogluconate in vitro and during calcium borogluconate infusion in sheep.

    Science.gov (United States)

    Farningham, D A

    1985-07-01

    The effect of borogluconate on plasma calcium fractions was studied in vitro and in vivo in sheep. In vitro calcium chloride was more effective in raising ionised plasma calcium than calcium borogluconate. Sodium borate or gluconate added to blood caused only small decreases in blood ionised calcium. However, together, a synergistic reduction in ionised calcium was observed. Following calcium borogluconate infusions into sheep, total plasma calcium rose primarily because of an increase in the unionised ultrafiltrable fraction. Other changes observed following the infusion were hypercalciuria, decreased glomerular filtration rate and acidosis. Sodium borogluconate administered subcutaneously lowered total plasma calcium. This probably resulted from enhanced calcium excretion. It is suggested that since the anionic component of calcium solutions alters the availability and retention of calcium, it is likely to affect clinical efficacy significantly.

  15. A realistic molecular model of cement hydrates

    OpenAIRE

    PELLENQ, Roland J.-M.; Kushima, Akihiro; Shahsavari, Rouzbeh; Van Vliet, Krystyn J.; Markus J. Buehler; Yip, Sidney; Ulm, Franz-Josef

    2009-01-01

    Despite decades of studies of calcium-silicate-hydrate (C-S-H), the structurally complex binder phase of concrete, the interplay between chemical composition and density remains essentially unexplored. Together these characteristics of C-S-H define and modulate the physical and mechanical properties of this “liquid stone” gel phase. With the recent determination of the calcium/silicon (C/S = 1.7) ratio and the density of the C-S-H particle (2.6 g/cm3) by neutron scattering measurements, there...

  16. Origins of hydration lubrication.

    Science.gov (United States)

    Ma, Liran; Gaisinskaya-Kipnis, Anastasia; Kampf, Nir; Klein, Jacob

    2015-01-14

    Why is friction in healthy hips and knees so low? Hydration lubrication, according to which hydration shells surrounding charges act as lubricating elements in boundary layers (including those coating cartilage in joints), has been invoked to account for the extremely low sliding friction between surfaces in aqueous media, but not well understood. Here we report the direct determination of energy dissipation within such sheared hydration shells. By trapping hydrated ions in a 0.4-1 nm gap between atomically smooth charged surfaces as they slide past each other, we are able to separate the dissipation modes of the friction and, in particular, identify the viscous losses in the subnanometre hydration shells. Our results shed light on the origins of hydration lubrication, with potential implications both for aqueous boundary lubricants and for biolubrication.

  17. 钙基及钠基膨润土涂膜对芒果保鲜效果的研究%Fresh-Keeping Effect of Coating with Calcium Bentonite or Sodium Bentonite on Mango at Ambient Temperature

    Institute of Scientific and Technical Information of China (English)

    刘琨; 王雪玲; 陈勇

    2012-01-01

    "Guiqi" mangoes were coated with calcium bentonite or sodium bentonite and stored at ambient temperature(28–33 ℃).Physicochemical and physiological indexes were measured during the storage,including decay index,weight loss rate,respiration intensity,soluble sugar content,titritable acidity,soluble solids,membrane permeability,protopectin and soluble pectin.The results show both calcium bentonite and sodium bentonite could significantly decrease decay index and water loss,restrain the appearance of peak values of respiration intensity,soluble sugar content and soluble solids content,retard the decrease of titritable acidity,slow down the degradation speed of pectin,and maintain cell membrane functionality well.Furthermore,sodium bentonite was more effective in preserving mango than calcium bentonite.%以桂七芒果为试验材料,用钙基及钠基膨润土进行涂膜处理后在室温下(28~33℃)贮藏,对贮藏过程中发病指数、质量损失率、呼吸强度、可溶糖、可滴定酸、可溶性固形物、细胞膜透性、原果胶等物理、化学及生理指标进行测定。结果表明:经涂膜后可以明显降低芒果发病情况和失水率,抑制呼吸强度、可溶糖和可溶性固形物高峰的出现,降低了可滴定酸的下降程度,延缓了果胶的降解速度,较好的保持了细胞膜的功能活性。钠基膨润土涂膜处理的保鲜效果好于钙基膨润土。

  18. 4-氨基吡啶对豚鼠心室肌钙和钠电流的影响%EFFECTS OF 4-AMINOPYRIDINE ON CALCIUM CURRENTS AND SODIUM CURRENTS IN GUINEA PIG VENTRICULAR MYOCYTES

    Institute of Scientific and Technical Information of China (English)

    傅丽英; 李泱; 夏国瑾; 姚伟星; 江明性

    2001-01-01

    目的研究4-氨基吡啶(4-AP)对心肌细胞L型钙通道和钠通道的影响。方法用全细胞膜片钳技术考察4-AP对豚鼠心室肌细胞L型钙电流和钠电流的作用。结果 4-AP 0.1, 0.5, 1.0 mmol*L-1浓度依赖性地抑制L型钙电流(ICa,L)和钠电流(INa),抑制率分别为(11.6±1.7)%,(37.5±8.3)%和(54.5±6.9)%以及(22.1±14.3)%,(39.4±8.8)%和(62.3±6.8)%。0.5 mmol*L-1 4-AP使ICa,L和INa I-V曲线均上移。结论 4-AP可浓度依赖性地阻滞豚鼠心室肌细胞L型钙通道和钠通道。%AIM To investigate the effect of 4-aminopyridine (4-AP) on ion channels of myocytes. METHODS L-type calcium channel and sodium channel currents were recorded in guinea pig single ventricular myocyte using whole-cell patch-clamp techniques. RESULTS 4-AP, 0.1, 0.5 and 1.0 mmol*L-1 were shown to inhibit L-type calcium channel currents (ICa,L) and sodium channel currents (INa) concentration-dependently. The percentage of inhibition were (11.6±1.7)%, (37.5±8.3)% and (54.5±6.9)% (P<0.01) respectively for ICa,L, and (22.1±14.3)% (P<0.05), (39.4±8.8)% and (62.3±6.8)% (P<0.01) respectively for INa. 4-AP 0.5 mmol*L-1 shifted the I-V curves of ICa,L and INa upwardly. CONCLUSION 4-AP blocked L-type calcium channel and sodium channels in guinea-pig ventricular myocytes concentration-dependently.

  19. Co-Localization of Sodium Channel Na[v]1.6 and the Sodium--Calcium Exchanger at Sites of Axonal Injury in the Spinal Cord in EAE

    Science.gov (United States)

    Craner, Matthew J.; Hains, Bryan C.; Lo, Albert C.; Black, Joel A.; Waxman, Stephen G.

    2004-01-01

    Axonal degeneration contributes to the development of non-remitting neurological deficits and disability in multiple sclerosis, but the molecular mechanisms that underlie axonal loss in multiple sclerosis are not clearly understood. Studies of white matter axonal injury have demonstrated that voltage-gated sodium channels can provide a route for…

  20. Sealing of cracks in cement using microencapsulated sodium silicate

    Science.gov (United States)

    Giannaros, P.; Kanellopoulos, A.; Al-Tabbaa, A.

    2016-08-01

    Cement-based materials possess an inherent autogenous self-healing capability allowing them to seal, and potentially heal, microcracks. This can be improved through the addition of microencapsulated healing agents for autonomic self-healing. The fundamental principle of this self-healing mechanism is that when cracks propagate in the cementitious matrix, they rupture the dispersed capsules and their content (cargo material) is released into the crack volume. Various healing agents have been explored in the literature for their efficacy to recover mechanical and durability properties in cementitious materials. In these materials, the healing agents are most commonly encapsulated in macrocontainers (e.g. glass tubes or capsules) and placed into the material. In this work, microencapsulated sodium silicate in both liquid and solid form was added to cement specimens. Sodium silicate reacts with the calcium hydroxide in hydrated cement paste to form calcium-silicate-hydrate gel that fills cracks. The effect of microcapsule addition on rheological and mechanical properties of cement is reported. It is observed that the microcapsule addition inhibits compressive strength development in cement and this is observed through a plateau in strength between 28 and 56 days. The improvement in crack-sealing for microcapsule-containing specimens is quantified through sorptivity measurements over a 28 day healing period. After just seven days, the addition of 4% microcapsules resulted in a reduction in sorptivity of up to 45% when compared to specimens without any microcapsule addition. A qualitative description of the reaction between the cargo material and the cementitious matrix is also provided using x-ray diffraction analysis.

  1. Adição de cimento de aluminato de cálcio e seus efeitos na hidratação do óxido de magnésio Effects of calcium aluminate cement addition on magnesia hydration

    Directory of Open Access Journals (Sweden)

    R Salomão

    2010-06-01

    Full Text Available Cimento de aluminato de cálcio (CAC e óxido de magnésio (MgO são duas importantes matérias primas para a indústria de concretos refratários e apresentam grande tendência à hidratação. Os efeitos dessa reação em cada caso isolado são distintos e bem conhecidos: enquanto o CAC hidratado atua como ligante e garante a resistência mecânica do material antes da sinterização, a hidratação do MgO pode causar sua total desintegração em alguns casos. Devido ao interesse tecnológico nesses materiais, é importante investigar as peculiaridades desses processos e as potenciais interações entre eles. Neste trabalho, os efeitos da adição de diferentes teores de CAC na hidratação do MgO foram investigados em suspensões aquosas usando medidas de expansão volumétrica aparente, pH das suspensões e difração de raios X. Foi observado que os efeitos danosos da hidratação do MgO podem ser significativamente reduzidos com um controle adequado do teor de CAC nas formulações.Calcium aluminate cement (CAC and magnesium oxide (MgO are two of the most important raw materials for refractory castables industry and both present a high driving force for hydration. The effects of this reaction for each compound are well known: whereas the hydrated CAC behaves as a binder, hardening the castable, MgO hydration can cause the total disintegration of the material. Due to the technological interests involved, it is important to study the peculiarities in these processes and their potential interactions. In the present work, the effects of the addition of different CAC contents on MgO hydration were investigated in aqueous suspensions by means of apparent volumetric expansion, pH measurements and qualitative X-ray diffraction. It was found out that the deleterious effects of MgO hydration can be significantly reduced with a proper control of the CAC content for the formulations.

  2. Simultaneous determination of free calcium, magnesium, sodium and potassium ion concentrations in simulated milk ultrafiltrate and reconstituted skim milk using the Donnan Membrane Technique

    NARCIS (Netherlands)

    Gao, R.; Temminghoff, E.J.M.; Leeuwen, van H.P.; Valenberg, van H.J.F.; Eisner, M.D.; Boekel, van M.A.J.S.

    2009-01-01

    This study focused on determination of free Ca2+, Mg2+, Na+ and K+ concentrations in a series of CaCl2 solutions, simulated milk ultrafiltrate and reconstituted skim milk using a recently developed Donnan Membrane Technique (DMT). A calcium ion selective electrode was used to compare the DMT results

  3. Prostaglandin E2 release from dermis regulates sodium permeability of frog skin epithelium

    DEFF Research Database (Denmark)

    Rytved, Klaus A.; Brodin, Birger; Nielsen, Robert

    1995-01-01

    Arachidonic acid, cAMP, epithelium, frog skin, intracellular calcium, prostaglandin E*U2, sodium transport, tight epithelium.......Arachidonic acid, cAMP, epithelium, frog skin, intracellular calcium, prostaglandin E*U2, sodium transport, tight epithelium....

  4. Mortar and concrete based on calcium sulphate binders

    NARCIS (Netherlands)

    Bakker, J.J.F.; Brouwers, H.J.H.

    2006-01-01

    In this study both hemi-hydrate and anhydrite are tested as calcium sulphate binders for structural mortar and concrete. The advantage of using calcium sulphates instead of cement as a binder is the fact that the production of calcium sulphate is more environmental friendly than that of cement. For

  5. Hydration Assessment of Athletes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ KEY POINTS · Although there is no scientific consensus for 1 ) howbest to assess the hydration status of athletes, 2)what criteria to use as acceptable outcome measurements, or 3) the best time to apply practical assessment methods, there are methods that can be used toprovide athletes with useful feedback about their hydration status

  6. Limestone reaction in calcium aluminate cement–calcium sulfate systems

    Energy Technology Data Exchange (ETDEWEB)

    Bizzozero, Julien, E-mail: julien.bizzozero@gmail.com; Scrivener, Karen L.

    2015-10-15

    This paper reports a study of ternary blends composed of calcium aluminate cement, calcium sulfate hemihydrate and limestone. Compressive strength tests and hydration kinetics were studied as a function of limestone and calcium sulfate content. The phase evolution and the total porosity were followed and compared to thermodynamic simulation to understand the reactions involved and the effect of limestone on these binders. The reaction of limestone leads to the formation of hemicarboaluminate and monocarboaluminate. Increasing the ratio between sulfate and aluminate decreases the extent of limestone reaction.

  7. Identification of mutations in SLC24A4, encoding a potassium-dependent sodium/calcium exchanger, as a cause of amelogenesis imperfecta.

    Science.gov (United States)

    Parry, David A; Poulter, James A; Logan, Clare V; Brookes, Steven J; Jafri, Hussain; Ferguson, Christopher H; Anwari, Babra M; Rashid, Yasmin; Zhao, Haiqing; Johnson, Colin A; Inglehearn, Chris F; Mighell, Alan J

    2013-02-07

    A combination of autozygosity mapping and exome sequencing identified a null mutation in SLC24A4 in a family with hypomineralized amelogenesis imperfect a (AI), a condition in which tooth enamel formation fails. SLC24A4 encodes a calcium transporter upregulated in ameloblasts during the maturation stage of amelogenesis. Screening of further AI families identified a missense mutation in the ion-binding site of SLC24A4 expected to severely diminish or abolish the ion transport function of the protein. Furthermore, examination of previously generated Slc24a4 null mice identified a severe defect in tooth enamel that reflects impaired amelogenesis. These findings support a key role for SLC24A4 in calcium transport during enamel formation.

  8. Influence of sodium, calcium, magnesium, and ammonium in the sorption of cadmium in a zeolite rock; Influencia del sodio, calcio, magnesio y amonio en la sorcion de cadmio en una roca zeolitica

    Energy Technology Data Exchange (ETDEWEB)

    Teutli S, E.A

    2007-07-01

    The cadmium is one of the more toxic heavy metals and the water pollution by this metal, is originated by industries whose turn is the production of batteries, electroplating processes, the production of pigments and in the refinement process of others metals. The objective of this work was to evaluate the ion exchange of cadmium using natural zeolite, obtained from the Arroyo zone, La Haciendita Municipality, in the State of Chihuahua. The parameters considered in this investigation were: the sorption time, the pH, the initial concentration of cadmium and the influence of sodium, calcium, magnesium and ammonium on the sorption of cadmium in the natural zeolite. Also, the theoretical pattern for kinetics and isotherm that better it is adjusted to those experimental results it was determined. The experimentation results allowed to establish the following conclusions: the sorption of the cadmium doesn't depend on the pH in an interval between 4 and 6; the pattern that better it describes the kinetics it is that of Pseudo-second order of Ho and Mc Kay; the Langmuir-Freundlich pattern is the one that better it describes the sorption isotherm and the calcium is the component that interferes in an important manner in the sorption of cadmium. The carried out investigation contributes to the definition of some of the parameters that should be considered in the development of ion exchangers for the cadmium removal. (Author)

  9. Hyperosmolar sodium chloride is toxic to cultured neurons and causes reduction of glucose metabolism and ATP levels, an increase in glutamate uptake, and a reduction in cytosolic calcium.

    Science.gov (United States)

    Morland, Cecilie; Pettersen, Mi Nguyen; Hassel, Bjørnar

    2016-05-01

    Elevation of serum sodium, hypernatremia, which may occur during dehydration or treatment with sodium chloride, may cause brain dysfunction and damage, but toxic mechanisms are poorly understood. We found that exposure to excess NaCl, 10-100mmol/L, for 20h caused cell death in cultured cerebellar granule cells (neurons). Toxicity was due to Na(+), since substituting excess Na(+) with choline reduced cell death to control levels, whereas gluconate instead of excess Cl(-) did not. Prior to cell death from hyperosmolar NaCl, glucose consumption and lactate formation were reduced, and intracellular aspartate levels were elevated, consistent with reduced glycolysis or glucose uptake. Concomitantly, the level of ATP became reduced. Pyruvate, 10mmol/L, reduced NaCl-induced cell death. The extracellular levels of glutamate, taurine, and GABA were concentration-dependently reduced by excess NaCl; high-affinity glutamate uptake increased. High extracellular [Na(+)] caused reduction in intracellular free [Ca(2+)], but a similar effect was seen with mannitol, which was not neurotoxic. We suggest that inhibition of glucose metabolism with ensuing loss of ATP is a neurotoxic mechanism of hyperosmolar sodium, whereas increased uptake of extracellular neuroactive amino acids and reduced intracellular [Ca(2+)] may, if they occur in vivo, contribute to the cerebral dysfunction and delirium described in hypernatremia.

  10. Hydration rate of obsidian.

    Science.gov (United States)

    Friedman, I; Long, W

    1976-01-30

    The hydration rates of 12 obsidian samples of different chemical compositions were measured at temperatures from 95 degrees to 245 degrees C. An expression relating hydration rate to temperature was derived for each sample. The SiO(2) content and refractive index are related to the hydration rate, as are the CaO, MgO, and original water contents. With this information it is possible to calculate the hydration rate of a sample from its silica content, refractive index, or chemical index and a knowledge of the effective temperature at which the hydration occurred. The effective hydration temperature can be either measured or approximated from weather records. Rates have been calculated by both methods, and the results show that weather records can give a good approximation to the true EHT, particularly in tropical and subtropical climates. If one determines the EHT by any of the methods suggested, and also measures or knows the rate of hydration of the particular obsidian used, it should be possible to carry out absolute dating to +/- 10 percent of the true age over periods as short as several years and as long as millions of years.

  11. Conservation of body calcium by increased dietary intake of potassium: A potential measure to reduce the osteoporosis process during prolonged exposure to microgravity

    Science.gov (United States)

    Nechay, Bohdan R.

    1989-01-01

    During the 1988 NASA Summer Faculty Fellowship Program, it was proposed that the loss of skeletal calcium upon prolonged exposure to microgravity could be explained, in part, by a renal maladjustment characterized by an increased urinary excretion of calcium. It was theorized that because the conservation of body fluids and electrolytes depends upon the energy of adenosine triphosphate and enzymes that control the use of its energy for renal ion transport, an induction of renal sodium and potassium-dependent adenosine triphosphatase (Na + K ATPase) by oral loading with potassium would increase the reabsorption of sodium directly and that of calcium indirectly, leading to improved hydration and to reduced calcium loss. Preliminary studies showed the following. Rats drinking water containing 0.2 M potassium chloride for six to 13 days excreted in urine 22 muEq of calcium and 135 muEq of sodium per 100 grams of body weight per day. The corresponding values for control rats drinking tap water were 43 muEq and 269 muEq respectively. Renal Na + K ATPase activity in potassium loaded rats was higher than in controls. Thus, oral potassium loading resulted in increased Na + K ATPase activity and diminished urinary excretion of calcium and of sodium as predicted by the hypothesis. An extension of these studies to humans has the potential of resulting in development of harmless, non-invasive, drug-free, convenient measures to reduce bone loss and other electrolyte and fluid problems in space travelers exposed to prolonged periods of microgravity.

  12. Study on gas hydrate as a new energy resource in the twenty first century

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Byung Jae; Kim, Won Sik; Oh, Jae Ho [Korea Institute of Geology Mining and Materials, Taejon (Korea)] [and others

    1998-12-01

    Methane hydrate, a special type of clathrate hydrates, is a metastable solid compound mainly consisted of methane and water and generally called as gas hydrate. It is stable in the specific low- temperature/high-pressure conditions. Very large amount of methane that is the main component of natural gas, is accumulated in the form of methane hydrate subaquatic areas. Methane hydrate are the major reservoir of methane on the earth. On the other hand, the development and transmission through pipeline of oil and natural gas in the permafrost and deep subaquatic regions are significantly complicated by formation and dissociation of methane hydrate. The dissociation of natural methane hydrates caused by increasing temperature and decreasing pressure could cause the atmospheric pollution and geohazard. The formation, stable existence and dissociation of natural methane hydrates depend on the temperature, pressure, and composition of gas and characteristics of the interstitial waters. For the study on geophysical and geological conditions for the methane hydrate accumulation and to find BSR in the East Sea, Korea, the geophysical surveys using air-gun system, multibeam echo sounder, SBP were implemented in last September. The water temperature data vs. depth were obtained to determine the methane hydrate stability zone in the study area. The experimental equilibrium condition of methane hydrate was also measured in 3 wt.% sodium chloride solution. The relationship between Methane hydrate formation time and overpressure was analyzed through the laboratory work. (author). 49 refs., 6 tabs., 26 figs.

  13. 水化硅酸钙与沸石滤柱去除水中低浓度氮磷%Removal of Low Concentration of Nitrogen and Phosphorus from Water Processes of Filter Columns Adsorption Filled with Hydrated Calcium Silicate and Natural Zeolite

    Institute of Scientific and Technical Information of China (English)

    董阳; 雷月华; 李春杰; 刘红美; 孟莎; 张伟; 吉宏坤

    2012-01-01

    Condition of inflowing river, Roshi River with the low concentration of nutrient was simulated. Study took the hydrate calcium silicate and natural zeolite as the adsorbing medium. The experiment designed the different kind of filter columns operated at the same time, filling with hydrated calcium silicate, natural zeolite and mixtures of calcium hydrate and zeolite with ratio 1:3, 1:1 respectively. Through researching the removal effect of the nutrient by 4 different kinds of fdter columns by controlling the material proportion and HRT, it was affirmed that the filter columns with only silicate hydrate had best effect on the removal of phosphate, with average removal efficiency of 90.75 %, but the absorbing ability to ammonia nitrogen was unstable. The filter columns filled with only natural zeolite possess the weaker ability to absorb the phosphate, with average removal rate at 77.30 %, and was also affected by the filter velocity easily. It is concluded when the proportion of material is 1:1 and the filter velocity is 0.696 m/d, the removal effect of the nutrient is promoted definitely. The nutrient concentration of effluent could reach the Level Ⅲ standard of surface water in China. It could be used as the theory base in the project which removing the nutrient in the constructed wetland.%模拟洱海的入湖河流——罗时江低浓度氮磷营养盐条件,采用水化硅酸钙与天然沸石作为吸附介质进行滤柱试验.试验设计4个滤柱并列运行,分别装填单一水化硅酸钙滤料、单一沸石滤料、水化硅酸钙与沸石双层滤料(1:3)和水化硅酸钙与沸石双层滤料(1:1),对比不同滤柱在不同滤速条件下的效果.单一水化硅酸钙填充滤柱对磷酸盐的去除效果最高,平均可保持在90.75%左右,但对氨氮去除不稳定;单一的沸石填充滤柱对磷酸盐吸附能力较弱,平均在77.30%,且受滤速影响较大.在水化硅酸钙与天然沸石配比为1:1,滤速为0.696 m/d时,对

  14. Vibrational spectra of the two hydrates of strontium oxalate.

    Science.gov (United States)

    D'Antonio, Maria C; Torres, María M; Palacios, Daniel; González-Baró, Ana C; Baran, Enrique J

    2015-02-25

    The infrared and Raman spectra of the two hydrates of strontium oxalate, SrC2O4⋅H2O and SrC2O4⋅2H2O, were recorded and discussed on the basis of their structural peculiarities and in comparison with the spectra of the related calcium oxalates and other previously investigated metallic oxalates.

  15. Preliminary Study on a Novel Process for Manufacturing Soda Ash from Sodium Sulfate

    Institute of Scientific and Technical Information of China (English)

    王天贵; 李佐虎

    2004-01-01

    The purpose of this work is to find a new way for utilizing the rich sodium sulfate resource to produce soda ash. A novel process is proposed which uses aqueous dichromate solution as working medium through decomposition of calcium carbonate in aqueous sodium dichromate, complex decomposition of aqueous sodium sulfate and calcium chromate, regeneration of sodium dichromate and production of sodium bicarbonate from carbonation of aqueous sodium chromate solution, processing and utilization of byproduct calcium sulfate, and production of sodium carbonate from sodium bicarbonate. The process has the features of less corrosion and pollution and low energy consumption.

  16. 乳酸钙部分替代氯化钠对西式盐水火腿感官品质的影响%Effect of calcium lactate as sodium chloride substitute on the quality of cooked ham

    Institute of Scientific and Technical Information of China (English)

    徐雯雅; 刘登勇; 周光宏; 徐幸莲

    2012-01-01

    Calcium lactate was selected to replace part of NaCl in cooked ham.A series of substitution ratios such as 5%,10%,15% and 20% according to mass based on 2% total sodium were investigated.Effect of calcium lactate as NaCl substitution at various ratios on color,texture,sensory evaluation and water content in cooked pork ham were studied.Results indicated that calcium lactate resulted in a significant increase in brightness,redness,yellowness and hardness of cooked ham.However,excessive calcium lactate would result in a negative effect on springiness,cohesiveness,gumminess,chewiness,resilience and sensory quality of cooked pork ham.The optimal substitution ratio was 10%.%在西式盐水火腿加工中应用乳酸钙部分替代氯化钠,在氯化钠使用总量2%的前提下,按照氯化钠质量的5%、10%、15%、20%设计乳酸钙的替代比,单因素实验观察不同替代比对切片西式盐水火腿色差、质构、水分含量和感官指标的影响。结果发现,适量使用乳酸钙可以显著提高西式盐水火腿的亮度L*值、红度a*值、黄度b*值和硬度;但是当替代比过大时对产品的弹性、内聚性、胶着性、咀嚼性有一定负面影响;适当的使用乳酸钙替代氯化钠对产品感官品质有积极影响,适宜的替代比为10%左右。

  17. Effect of CaF2 on Process of Mineral Formation and Hydration of Calcium Strontium Sulphoaluminate Cement%CaF2对硫铝酸锶钙水泥矿物形成及水化过程的影响

    Institute of Scientific and Technical Information of China (English)

    谭文杰; 艾红梅; 常钧; 鲁统卫; 王勇威

    2012-01-01

    The compressive strength of calcium strontium sulphoaluminate cement with CaF2 added was tested. The influence of CaF2 on process of mineral formation and hydration of calcium strontium sulphoaluminate cement were studied by thermal analysis(DTA-TG), X-ray diffractionCXRD) and scanning electron microscopy(SEM). The results show that compressive strength of calcium strontium sulphoaluminate cement with 0. 2% ( by mass) of CaF2 added is optimal, the compressive strength for 3.28 d is 65. 0, 86.2 MPa respectively, CaF2 accelerates decomposition of CaCO3 and formation of C1.50 Sr2.50 A3S during sintering of clinker. Due to CaF2 , hydration rate of cement is speeded up and CAH10 changes to C3 AH6.%测试了掺CaF2硫铝酸锶钙水泥的抗压强度.通过热分析、X射线衍射分析和扫描电子显微镜观察,研究了CaF2对硫铝酸锶钙水泥熟料矿物形成和水化过程的影响.结果表明,当CaF2掺量为0.2%(质量分数)时,硫铝酸锶钙水泥抗压强度最高,3,28 d抗压强度分别达到65.0,86.2 MPa.在水泥煅烧过程中,CaF2能加速CaCO3的分解及C1.50Sr2.50A3S矿物的形成.此外,CaF2可以加快硫铝酸锶钙水泥的水化速率并促使水化产物CAH10转化为C3 AH6.

  18. Influence of Cellulose Ethers on Hydration Products of Portland Cement

    Institute of Scientific and Technical Information of China (English)

    MA Baoguo; OU Zhihua; JIAN Shouwei; XU Rulin

    2011-01-01

    Cellulose ethers are widely used to mortar formulations, and it is significant to understand the interaction between cellulose ethers and cement pastes. FT-IR spectra, thermal analysis and SEM are used to investigate hydration products in the cement pastes modified by HEMC and HPMC in this article. The results show that the hydration products in modified cement pastes were finally identical with those in the unmodified cement paste, but the major hydration products, such as CH (calcium hydroxide), ettringite and C-S-H, appeared later in the modified cement pastes than in the unmodified cement paste. The cellulose ethers decrease the outer products and increase inner products of C-S-H gels. Compared to unmodified cement pastes, no new products are found in the modified cement pastes in the present experiment. The HEMC and HPMC investigation shows almost the same influence on the hydration products of Portland cement.

  19. Hydrate morphology: Physical properties of sands with patchy hydrate saturation

    Science.gov (United States)

    Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.

    2012-01-01

    The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.

  20. Wet hydrate dissolution plant

    OpenAIRE

    Stanković Mirjana S.; Kovačević Branimir T.; Pezo Lato L.

    2003-01-01

    The IGPC Engineering Department designed basic projects for a wet hydrate dissolution plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant with capacity of 50,000 t/y was manufactured, at "Zeolite Mira", Mira (VE), Italy, in 1997, for increasing detergent zeolite production from 50,000 to 100,000 t/y. Several goals were realized by designing a wet hydrate ...

  1. Study on activity evaluation of activated coal-gangue and the hydration process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chemical compositions, mineral compositions and the activated mechanism of the coal-gangue were analyzed. And pozzolana activities of the coal-gangue were evaluated after activated. Moreover, hydration heat and hydration compositions of activated coal-gangue-calcium oxide system, as well as hydration degree and hardened paste microstructures of activated coal-gangue-cement system were studied. Results show that pozzolana activities of the activated coal-gangue root in amorphous SiO2 and activated Al2 O3. With the exciting of gypsum, the reaction of activated coal-gangue and Ca(OH)2 would produce hydration products as ettringite, calcium silicate hydrate, and calcium aluminate. The relationship between the curing age and the content of Ca(OH)2 in coal-gangue-cement system was ascertained. Unhydrated particles in the coal-gangue-cement paste were more than that in the neat cement paste at the same hydration periods, and even existed at the later stage of hydration. Furthermore, the activated coal-gangue could inhibit growth and gathering of the calcium oxide crystal, and improve the structure of hardened cement paste.

  2. The Early Strength of Slag Cements with Addition of Hydrate Microcrystals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effect of hydrate microcrystals such as calcium silicate hydrates (CSH) and ettringite on the early strength of slag cements was studied.The authors explored the possibility of improving the early strength of the slag cement by applying crystal seed technology.It is shown that slag crystal seeds make the early strength of the cement increased due to the action of hydrate crystal seeds,which speed up the hydration of clinker minerals in the nucleation of ettringite.Therefore,the early strength of the slag cement is obviously improved.

  3. Determination of Calcium Chloride in Compound Sodium Chloride Injection by Atomic Absorption Spectrometry%原子吸收光谱法测定复方氯化钠注射液中氯化钙含量

    Institute of Scientific and Technical Information of China (English)

    童永鑫; 何宇新

    2014-01-01

    A method was established to determine the content of calcium chloride in compound sodium chloride injection .By atom-ic absorption spectrometry , the content of calcium chloride in compound sodium chloride injection was determined under the condition as follows:detection wavelength was 422.7 nm,the flame tape was air/acetylene(13.5∶2.0),the lamp current was 10 mA,slit width was 0.5 nm.Good linear relationship of concentration and absorption of Ca 2+was within the range of 1μg/mL-9μg/mL, the recovery rate range from 98.42%to 100.93%, detectability was 0.008206μg/mL,the RSD between results obtained from official method and ones obtained from comparative method is 1.21%.This method has good specificity, stability, reproducibility, and is accurate for de-tecting the content of Ca 2+,and can be supplementary method to official one .The concentration of calcium chloride in compound sodi-um chloride injection is between 0.0329296%g/mL and 0.0340398%g/mL, which meets the required quality standards .%目的:建立原子吸收光谱法测定复方氯化钠注射液氯化钙含量的方法。方法:采用火焰原子吸收光谱法测定复方氯化钠注射液氯化钙的含量,检测波长为422.7 nm;燃气类型为空气-乙炔,燃气比为空气体积︰乙炔体积=13.5∶2;灯电流:10 mA;狭缝宽度:0.5 nm。结果:Ca2+浓度在1~9μg/mL之间,与对应吸光度值呈良好的线性关系,回收率在98.42%~100.93%,检测限为0.008206μg/mL,与药典方法含量检测结果之间的RSD值为1.21%。结论:该方法进行复方氯化钠注射液Ca2+含量的测定专属性好,精密度高,稳定性强,重复性好,可作为药典补充方法。复方氯化钠注射液CaCl2·2H2 O质量浓度测定结果为0.0329296%~0.0340398% g/mL,符合质量标准要求。

  4. Determination of the physiological plasmatic values of sodium, potassium and ion calcium and its pre and post exercise Variations in “paso fino” horses in the bogota savannah

    Directory of Open Access Journals (Sweden)

    Camila Valdés Restrepo

    2010-12-01

    Full Text Available This research intends to be a contribution to the Colombian sports equine medicine by providing data on electrolytes standards, a field where there is a substantial lack of literature. This research analyze and determines the normal values of sodium (Na+,potassium (K+ and ion calcium (iCa2+ electrolytes for Colombian Paso Fine horses. The establishment of the reference intervals was done at rest and after exercise. To achieve this, blood samples were taken from farms located in the Bogotá savannah. The 115 mares and stallions used for this study were actively competing with ages ranging from 43 to 78 months old. The samples were taken at three intervals: T0 (Rest,T1 (immediately after 45 minutes of exercise, and T2(1 hour post exercise. The samples were processed using a portable blood analyzer i-STAT® and the data was interpreted using descriptive and comparative statistic according to Turkey tests. The normal values for the breed were established and an electrolytic behavior curve was created, using values inside interval sat 95% confidence levels. The values obtained inmEq/L were: for T0: Na+ (136,71+/-0,23, K+ (4,05+/-0,03, Ca2+ (1,58+/-0,006; for T1: Na+ (136,44+/-0,24, K+ (3,92+/-0,24, Ca2+ (1,42+/-0,008; and for T2: Na+ (137,32+/-0,23, K+ (3,68+/-0,03, Ca2+(1,51+/-0,009. Na+ values increased after exercise. On the contrary K+ and Ca2+ values didn’t increase inT1. Calcium increased on T2 and K+ decreased. The findings of this research will serve as a framework for future analysis. Moreover, further studies and developments in this field are recommended and will prove to be very useful for equine practitioners.

  5. 钠钙交换体在支气管哮喘发病中的作用%The role of sodium-calcium exchanger in the pathogenesis of bronchial asthma

    Institute of Scientific and Technical Information of China (English)

    徐希; 张畅; 商艳; 李强; 白冲

    2015-01-01

    Bronchial asthma (asthma) is a prevalent chronic respiratory systemic disease,whose characteristic representation is airway hyperreactivity and airway remodeling,in which airway smooth muscle cells (ASMCs) as major effective cells,play a very important role.Though the relevant controlling pathogenesis is uncertain,a lot of studies found that the homeostatic unbalance of ASMCs cytoplasmic calcium could result in the dysfunction of cellular contraction and relaxation,which have a close relationship with the morbidity of asthma.The sodium-calcium exchanger (NCX) is a Na+-Ca2+ transporting protein in the plasmalemma,play an important role in maintaining ASMCs cytoplasmic calcium homeostasis and cellular structure and function via regulation of intracellular Ca2+ concentration ([Ca2+]i).In this review,we will give a summary of the structure,the function and the pathophysiologic significance in the of asthmatic morbidity of NCX.%支气管哮喘(简称哮喘)是一种常见的慢性呼吸系统疾病,特征性表现为气道高反应性和气道重塑,其中气道平滑肌细胞作为主要的效应细胞,发挥了非常重要的作用.尽管相关调控机制尚不清楚,但大量研究表明平滑肌细胞胞浆钙稳态失衡能够导致细胞收缩及舒张功能紊乱,与哮喘发病关系密切.钠钙交换体是一种存在于细胞膜上的Na+-Ca2+转运蛋白,通过调控细胞内钙离子浓度对维持平滑肌细胞钙稳态以及细胞结构与功能具有重要作用.本文就钠钙交换体的结构、功能及其在哮喘发病中的病理生理学意义作一综述.

  6. Inhibition and Promotion of Heat-Induced Gelation of Whey Proteins in the Presence of Calcium by Addition of Sodium Caseinate.

    Science.gov (United States)

    Nguyen, Bach T; Balakrishnan, Gireeshkumar; Jacquette, Boris; Nicolai, Taco; Chassenieux, Christophe; Schmitt, Christophe; Bovetto, Lionel

    2016-11-14

    Heat-induced aggregation and gelation of aqueous solutions of whey protein isolate (WPI) in the presence of sodium caseinate (SC) and CaCl2 was studied at pH 6.6. The effect of adding SC (0-100 g/L) on the structure of the aggregates and the gels was investigated by light scattering and confocal laser scanning microscopy at different CaCl2 concentration ([CaCl2] = 0-30 mM). The gelation process was studied by oscillatory shear rheology. At the whey protein concentrations studied here (34 and 60 g/L), no gels were formed in the absence of CaCl2 and SC. However, WPI solutions gelled above a critical CaCl2 concentration that increased with increasing SC concentration. In the absence of CaCl2, WPI gels were formed only above a critical SC concentration. The critical SC concentration needed to induce WPI gelation decreased weakly when CaCl2 was added. In an intermediate range of CaCl2 concentrations, gels were formed both at low and high SC concentrations, but not at intermediate SC concentrations. Finally, at high CaCl2 concentrations gels were formed at all SC concentrations. The gelation rate and the gel structure of the gels formed at low and high casein concentrations were very different. The effect of SC on the thermal gelation of WPI was interpreted by competition for Ca(2+), a chaperon effect, and microphase separation.

  7. Effects of Halogen Ions on Phase Equilibrium of Methane Hydrate in Porous Media

    Science.gov (United States)

    Yang, Mingjun; Song, Yongchen; Liu, Yu; Lam, Wei-Haur; Li, Qingping; Yu, Xichong

    2012-05-01

    The influences of halogen ions extracted from sodium fluoride, sodium chloride, sodium bromide, and sodium iodide and their concentrations on methane hydrate phase equilibrium conditions in porous media were investigated experimentally using an orthogonal test method at a pressure of 8 MPa. The experimental results showed that the equilibrium temperature of methane hydrate decreased when halogen ions were added. The equilibrium temperature decreased with the increase of halogen ion concentrations. The influence of the sources of the halogens ion to the methane hydrate equilibrium temperature were insensitive according to variance analysis, which could be explained by about the same mean ionic activity coefficient (a dimensionless coefficient relates the activity to a measured concentration) of sodium fluoride, sodium chloride, sodium bromide, and sodium iodide. The experimental measurements were also in close agreement with the thermodynamic model of Song et al. (J. Nat. Gas Chem. 19, 241 (2010)), in which the mechanical equilibrium of force between the interfaces in a hydrate-liquid-vapor system was considered.

  8. Drug: D08814 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D08814 Mixture, Drug Potassium chloride - calcium chloride hydrate - sodium chlorid...Miscellaneous 7990 Miscellaneous D08814 Potassium chloride - calcium chloride hydrate - sodium chloride - magnesium chloride - Sodium bicarbonate mixt PubChem: 96025497 ...

  9. Evaluation of calcium, magnesium, potassium and sodium in biological samples of male human immunodeficiency virus patients with tuberculosis and diarrhea compared to healthy control subjects in Pakistan.

    Science.gov (United States)

    Afridi, Hassan Imran; Kazi, Tasneem Gul; Talpur, Farah Naz; Kazi, Naveed; Naeemullah, Faheem Shah; Arain, Sadaf Sadia; Brahman, Kapil Dev

    2013-01-01

    Electrolyte deficiency has been associated with an increased risk of human immunodeficiency virus type 1 (HIV-1) disease progression and mortality. This study examined the association between low electrolyte concentrations in blood and scalp hair and the presence of opportunistic infections in patients with acquired immune deficiency syndrome (AIDS). Sixty-two male HIV positive patients (HIV-1) from various cities in Pakistan were recruited to the study. These Patients were divided into two groups according to secondary infections (tuberculosis and high fever with diarrhea), and biological samples (scalp hair, serum, blood and urine) were collected from them. As a comparative control group, 120 healthy subjects (males) of the same age group (31 - 45 years), socio-economic status, localities and dietary habits were also included in the study. The elements in the biological samples were analyzed by flame atomic absorption spectrophotometry after microwave-assisted acid digestion. Validity and accuracy of the methodology were checked using certified reference materials (CRMs) and against values obtained by a conventional wet acid digestion method on the same CRMs. The results indicated significantly lower levels of calcium, potassium, magnesium and natrium in all analyzed biological samples (blood, serum and scalp hair) of male patients with Acquired Immune Deficiency Syndrome (AIDS) in comparison to healthy controls (p < 0.01), while the levels of these elements were found to be higher in urine samples of the AIDS patients than in those of the control group. These data offer guidance to clinicians and other professionals investigating the deficiency of electrolytes in biological samples (scalp hair, serum and blood) of AIDS patients in relation to healthy subjects.

  10. Sodium-dependent phosphate uptake in the jejunum is post-transcriptionally regulated in pigs fed a low-phosphorus diet and is independent of dietary calcium concentration.

    Science.gov (United States)

    Saddoris, Kari L; Fleet, James C; Radcliffe, John S

    2010-04-01

    In rodents, severe dietary P restriction increases active phosphate absorption by the intestine. However, it remains unknown if moderate dietary P restriction has a similar effect. Weanling pigs (n = 32; body weight 7.4 +/- 0.55 kg) were used in a 2 x 2 factorial design and fed dietary available P (aP) concentrations of 0.23 or 0.40% and Ca concentrations of 0.58 or 1.00% for 14 d. Diets were formulated on an aP basis instead of a total P basis, because pigs are unable to absorb phytate-P present in corn and soybean meal. Jejunal segments were mounted in modified Ussing chambers for determination of Na(+)-dependent nutrient transport. Intestinal mucosal scrapings were taken for RNA isolation and brush border membrane (BBM) vesicle isolation. Na(+)-dependent phosphate uptake and gene expression of Na-phosphate cotransporter IIb (NaPi-IIb), SGLT-1 (sodium/glucose cotransporter-1), and calbindin D(9k) and protein expression of NaPi-IIb were evaluated. Na(+)-dependent phosphate transport increased (P dietary aP concentration was decreased. However, increased Na(+)-dependent phosphate uptake was not accompanied by increased NaPi-IIb mRNA expression. Expression of NaPi-IIb protein in the BBM increased (P pigs fed low-P diets compared with pigs fed adequate-P diets. No dietary Ca effects or aP x Ca interactions were detected for Na-dependent P uptake, mRNA or protein expression of NaPi-IIb, or mRNA expression of calbindin D(9k). These data suggest that restricting dietary aP concentration by only 43% stimulates Na(+)-dependent phosphate uptake and expression of the NaPi-IIb protein in the BBM of the small intestine and through a post-transcriptional mechanism.

  11. Formation of porous gas hydrates

    CERN Document Server

    Salamatin, Andrey N

    2015-01-01

    Gas hydrates grown at gas-ice interfaces are examined by electron microscopy and found to have a submicron porous texture. Permeability of the intervening hydrate layers provides the connection between the two counterparts (gas and water molecules) of the clathration reaction and makes further hydrate formation possible. The study is focused on phenomenological description of principal stages and rate-limiting processes that control the kinetics of the porous gas hydrate crystal growth from ice powders. Although the detailed physical mechanisms involved in the porous hydrate formation still are not fully understood, the initial stage of hydrate film spreading over the ice surface should be distinguished from the subsequent stage which is presumably limited by the clathration reaction at the ice-hydrate interface and develops after the ice grain coating is finished. The model reveals a time dependence of the reaction degree essentially different from that when the rate-limiting step of the hydrate formation at...

  12. Clinical value study of low molecular heparin sodium for calcium-phosphorus metabolism and blood lipid of hemodialysis patients%探究低分子肝素钠对血液透析患者钙磷代谢及血脂影响的临床价值

    Institute of Scientific and Technical Information of China (English)

    王聪

    2016-01-01

    Objective To explore clinical value of low molecular heparin sodium for calcium-phosphorus metabolism and blood lipid of hemodialysis patients.MethodsChoose 60 cases hemodialysis patients in our hospital from August 2014 to August 2015, and randomly divide them into two groups, 30 cases in control group, 30 in study group, which was treated with common heparin sodium and low molecular heparin sodium injection. Analyze and compare two groups with changes of triglyceride (TG), total cholesterol (TC), calcium and phosphorus before treatment, 6 months and one year after treatment.results Before treatment, TG, TC, calcium, phosphorus indexes of two groups patients showed no significant difference (P> 0.05). 6 months after treatment, the above indexes improvement of study group was significantly better than control group, difference between groups showed statistical significant (P0.05)),治疗6个月后,研究组在上述各项质改善情况显著优于对照组,组间数据对比差异明显,(P<0.05)具有统计学意义。结论对血液透析患者采用低分子肝素注射,可有效改善他们钙磷代谢、血脂紊乱的情况,效果安全,值得推广。

  13. Icariin, a Novel Blocker of Sodium and Calcium Channels, Eliminates Early and Delayed Afterdepolarizations, As Well As Triggered Activity, in Rabbit Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Wanzhen Jiang

    2017-05-01

    Full Text Available Icariin, a flavonoid monomer from Herba Epimedii, has confirmed pharmacological and biological effects. However, its effects on arrhythmias and cardiac electrophysiology remain unclear. Here we investigate the effects of icariin on ion currents and action potentials (APs in the rabbit myocardium. Furthermore, the effects of icariin on aconitine-induced arrhythmias were assessed in whole rabbits. Ion currents and APs were recorded in voltage-clamp and current-clamp mode in rabbit left ventricular myocytes (LVMs and left atrial myocytes (LAMs, respectively. Icariin significantly shortened action potential durations (APDs at 50 and 90% repolarization (APD50 and APD90 and reduced AP amplitude (APA and the maximum upstroke velocity (Vmax of APs in LAMs and LVMs; however, icariin had no effect on resting membrane potential (RMP in these cells. Icariin decreased the rate-dependence of the APD and completely abolished anemonia toxin II (ATX-II-induced early afterdepolarizations (EADs. Moreover, icariin significantly suppressed delayed afterdepolarizations (DADs and triggered activities (TAs elicited by isoproterenol (ISO, 1 μM and high extracellular calcium concentrations ([Ca2+]o, 3.6 mM in LVMs. Icariin also decreased INaT in a concentration-dependent manner in LAMs and LVMs, with IC50 values of 12.28 ± 0.29 μM (n = 8 cells/4 rabbits and 11.83 ± 0.92 μM (n = 10 cells/6 rabbits; p > 0.05 vs. LAMs, respectively, and reversed ATX-II-induced INaL in a concentration-dependent manner in LVMs. Furthermore, icariin attenuated ICaL in a dose-dependent manner in LVMs. The corresponding IC50 value was 4.78 ± 0.89 μM (n = 8 cells/4 rabbits, indicating that the aforementioned current in LVMs was 2.8-fold more sensitive to icariin than ICaL in LAMs (13.43 ± 2.73 μM; n = 9 cells/5 rabbits. Icariin induced leftward shifts in the steady-state inactivation curves of INaT and ICaL in LAMs and LVMs but did not have a significant effect on their activation

  14. Effect of food preservatives on the hydration properties and taste behavior of amino acids: a volumetric and viscometric approach.

    Science.gov (United States)

    Banipal, Tarlok S; Kaur, Navalpreet; Kaur, Amanpreet; Gupta, Mehak; Banipal, Parampaul K

    2015-08-15

    Thermodynamic and transport properties of aqueous solutions are very useful in the elucidation of solute-solvent and solute-solute interactions, which help to understand the hydration and taste behavior of solutes. The densities and viscosities of L-glycine, β-alanine and L-leucine have been determined in water and in aqueous solutions of sodium propionate (NaP) and calcium propionate (CaP) at temperatures 298.15 and 308.15K. From these data, apparent molar volumes (V2,ϕ), viscosity B-coefficients and corresponding transfer parameters (ΔtrV2,ϕo and ΔtrB) have been calculated. The dB/dT values suggest that L-glycine and β-alanine act as structure-breaker, while L-leucine acts as structure-maker both in water and in aqueous solutions of NaP and CaP. The decrease in hydration number and change in taste behavior have also been observed with increasing concentration of the cosolute.

  15. Effect of sodium, potassium, magnesium, and calcium salt cations on pH, proteolysis, organic acids, and microbial populations during storage of full-fat Cheddar cheese.

    Science.gov (United States)

    McMahon, D J; Oberg, C J; Drake, M A; Farkye, N; Moyes, L V; Arnold, M R; Ganesan, B; Steele, J; Broadbent, J R

    2014-01-01

    Sodium reduction in cheese can assist in reducing overall dietary Na intake, yet saltiness is an important aspect of cheese flavor. Our objective was to evaluate the effect of partial substitution of Na with K on survival of lactic acid bacteria (LAB) and nonstarter LAB (NSLAB), pH, organic acid production, and extent of proteolysis as water-soluble nitrogen (WSN) and protein profiles using urea-PAGE, in Cheddar cheese during 9mo of storage. Seven Cheddar cheeses with molar salt contents equivalent to 1.7% salt but with different ratios of Na, K, Ca, and Mg cations were manufactured as well as a low-salt cheese with 0.7% salt. The 1.7% salt cheeses had a mean composition of 352g of moisture/kg, 259g of protein/kg and 50% fat-on-dry-basis, and 17.5g of salt/kg (measured as Cl(-)). After salting, a faster initial decrease in cheese pH occurred with low salt or K substitution and it remained lower throughout storage. No difference in intact casein levels or percentage WSN levels between the various cheeses was observed, with the percentage WSN increasing from 5% at d 1 to 25% at 9mo. A greater decrease in intact αs1-casein than β-casein was detected, and the ratio of αs1-casein (f121-199) to αs1-casein could be used as an index of ripening. Typical changes in bacteria microflora occurred during storage, with lactococci decreasing gradually and NSLAB increasing. Lowering the Na content, even with K replacement, extended the crossover time when NSLAB became dominant. The crossover time was 4.5mo for the control cheese and was delayed to 5.2, 6.0, 6.1, and 6.2mo for cheeses with 10, 25, 50, and 75% K substitution. Including 10% Mg or Ca, along with 40% K, further increased crossover time, whereas the longest crossover time (7.3mo) was for low-salt cheese. By 9mo, NSLAB levels in all cheeses had increased from initial levels of ≤10(2) to approximately 10(6)cfu/g. Lactococci remained at 10(6) cfu/g in the low-salt cheese even after 9mo of storage. The propionic acid

  16. [Hydration in clinical practice].

    Science.gov (United States)

    Maristany, Cleofé Pérez-Portabella; Segurola Gurruchaga, Hegoi

    2011-01-01

    Water is an essential foundation for life, having both a regulatory and structural function. The former results from active and passive participation in all metabolic reactions, and its role in conserving and maintaining body temperature. Structurally speaking it is the major contributer to tissue mass, accounting for 60% of the basis of blood plasma, intracellular and intersticial fluid. Water is also part of the primary structures of life such as genetic material or proteins. Therefore, it is necessary that the nurse makes an early assessment of patients water needs to detect if there are signs of electrolyte imbalance. Dehydration can be a very serious problem, especially in children and the elderly. Dehydrations treatment with oral rehydration solution decreases the risk of developing hydration disorders, but even so, it is recommended to follow preventive measures to reduce the incidence and severity of dehydration. The key to having a proper hydration is prevention. Artificial nutrition encompasses the need for precise calculation of water needs in enteral nutrition as parenteral, so the nurse should be part of this process and use the tools for calculating the patient's requirements. All this helps to ensure an optimal nutritional status in patients at risk. Ethical dilemmas are becoming increasingly common in clinical practice. On the subject of artificial nutrition and hydration, there isn't yet any unanimous agreement regarding hydration as a basic care. It is necessary to take decisions in consensus with the health team, always thinking of the best interests of the patient.

  17. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural...

  18. Sodium Test

    Science.gov (United States)

    ... low levels of cortisol, aldosterone and sex hormones ( Addison disease ) Drinking too much water as might occur during ... urinary sodium levels may indicate diuretic use or Addison disease. Sodium levels are often evaluated in relation to ...

  19. Sodium Phosphate

    Science.gov (United States)

    Sodium phosphate is used in adults 18 years of age or older to empty the colon (large intestine, bowel) ... view of the walls of the colon. Sodium phosphate is in a class of medications called saline ...

  20. Sodium Oxybate

    Science.gov (United States)

    Sodium oxybate is used to prevent attacks of cataplexy (episodes of muscle weakness that begin suddenly and ... urge to sleep during daily activities, and cataplexy). Sodium oxybate is in a class of medications called ...

  1. Conduction calorimetric studies of ternary binders based on Portland cement, calcium aluminate cement and calcium sulphate

    OpenAIRE

    Torrens Martín, David; Fernández Carrasco, Lucía; Blanco Varela, M.Teresa

    2013-01-01

    Different binders of Portland cement, calcium aluminate cement and calcium sulphate (PC/CAC/CS) have been investigated to determinate the in¿uence the CAC and CS amount in the reactions mechanism. Several mixtures were studied, ratios of 100, 85/15 and 75/25 of PC/CAC with 0, 3 and 5 % of CS. Conduction calorimetric technique was used to follow the hydration during 100 h. The XRD and FTIR techniques were used as support in the analysis of the hydration products. The results have shown tha...

  2. Hemograma, sódio, potássio, cálcio, osmolalidade e viscosidade durante angiocardiografia pediátrica com ioxaglato Blood cell count, sodium, potassium, calcium, osmolality and viscosity, during pediatric angiocardiography with ioxaglate

    Directory of Open Access Journals (Sweden)

    Mauro Regis Silva Moura

    1998-04-01

    Full Text Available OBJETIVO: Os meios de contraste (MC introduzem alterações em alguns parâmetros sangüíneos, adquirindo, assim, mais importância na angiocardiografia pediátrica. MÉTODOS: Estudamos a presença e a severidade das mudanças no hematócrito, hemoglobina, leucócitos, sódio, potássio, cálcio, osmolalidade e viscosidade, em 35 crianças submetidas a angiocardiografia com ioxaglato, identificando, também, as variáveis independentes responsáveis por essas alterações. As amostras sangüíneas foram colhidas no início do procedimento (S1, no fim (S2 e 2h após (S3. RESULTADOS: Hematócrito: S1= 47,3±6,9%; S2= 40,7±7,4% (pPURPOSE: Children's blood changes during angiocardiography may not be only due to the contrast media (CM. METHODS: We studied the presence and severity of changes in those parameters in 35 pediatric patients undergoing angiocardiography with ioxaglate aiming to identify independent variables responsible for those changes. Blood samples were taken at the beginning of the procedure (S1, at the end (S2 and two hours later (S3. RESULTS: Hematocrit: S1= 47.3±6.9%; S2= 40.7± 7.4% (p<0.001, (related to the CM volume r=0.37, p<0.05. Hemoglobin: S1= 15±2.1g%; S2= 13.2±2.4g% (p<0.001, and S3= 12.7±2.5g% (NS. White blood cell count: S1= 7940±3040 leukocytes/mm³; S2= 6950± 2700/mm³ (NS; S3= 10830±4690 leukocytes/mm³, (p<0.001. Procedure duration (r=0.38, p<0.05 and 5% glucose fluid given between S2 and S3 (r=0.49, p<0.05 were isolated. Sodium: S1= 134.5±0.4mEq/L; S2= 130.7±0.4mEq/L (p<0.001 (due to 5% glucose fluid injected, r=0.61, p<0.01. Potassium: S1= 4.22±0.45mEq/L, S2= 3.83±0.4mEq/L (p<0.001. Calcium: S1= 9.13± 1.03mg%; S2= 8.4±0.91mg/dL. (related to the CM, r=0.43, p<0.01. Osmolality: S1= 293.3±12.5mOsm/kg; S2= 300.6±13.3mOsm/kg (p<0.001. Viscosity: S1= 3.36±0.81; S2= 3.09±0.74 (p<0.01; S3= 3.87±0.89, p<0.001. There was an indirect linear regression with the CM. CONCLUSION: There were profound

  3. Immersion corrosion tests on metal-salt hydrate pairs used for latent heat storage in the 32 to 36 C temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Cabeza, L.F.; Illa, J.; Roca, J.; Badia, F. [Univ. de Lleida, Escola Univ. Politecnica, Lleida (Spain); Mehling, H.; Hiebler, S.; Ziegler, F. [Bavarian Center for Applied Energy Research, Garching (Germany). Div. of Energy Conversion and Storage

    2001-02-01

    During the last decades, energy storage has become more and more important. It is required in order to utilize alternative energy sources, which often are available at times when energy is not needed. The main applications of PCMs (phase change materials) in thermal energy storage are when space restrictions limit larger thermal storage units. But widespread use of latent heat stores has not been realized till today due to two main problems: the low heat flux, and the insufficient long term stability of the storage materials and containers. In the present work, we studied this second problem selecting different common metals (aluminum, brass, copper, steel, and stainless steel) and testing their corrosion resistance in contact with salt hydrates that are used as PCMs (zinc nitrate hexahydrate, sodium hydrogen phosphate dodecahydrate, calcium chloride hexahydrate). The method used was the immersion corrosion test. The tests here presented and evaluated were short term. As a consequence of the results from the experiments several pairs can be ruled out. The combinations of zinc nitrate hexahydrate with stainless steel, sodium hydrogen phosphate dodecahydrate with brass, copper and stainless steel, and calcium chloride hexahydrate with brass and copper shared no significant corrosion in the short term and should be studied further. (orig.)

  4. Tunable luminescence and white light emission of novel multiphase sodium calcium silicate nanophosphors doped with Ce{sup 3+}, Tb{sup 3+}, and Mn{sup 2+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Mickens, Matthew A. [Energy and Environmental Systems, North Carolina A and T State University, Greensboro, NC 27411 (United States); Assefa, Zerihun, E-mail: zassefa@ncat.edu [Department of Chemistry, North Carolina A and T State University, Greensboro, NC 27411 (United States)

    2014-01-15

    This study reports the sol–gel synthesis of sodium calcium multiphase silicate (SCMS) nanophosphors. X-ray powder diffraction indicated the crystallization of devitrite (Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}), wollastonite-2M (CaSiO{sub 3}), and cristobalite (SiO{sub 2}) phases that consistently occurred together upon repeated syntheses. The multiphase silicate system was used as a host matrix for varied concentrations of Ce{sup 3+}, Tb{sup 3+}, and Mn{sup 2+} dopant ions which resulted in tunable photoluminescence. A broad violet/UV emission band of Ce{sup 3+} (350–425 nm) combined with blue-green emissions of Tb{sup 3+} (488 and 545 nm) and a yellow-orange emission of Mn{sup 2+} (560 nm) resulted in the observance of white light (x=0.31, y=0.32, T{sub C}=6624 K) under midwave UV excitation (300–340 nm). Energy transfer from Ce{sup 3+}→Tb{sup 3+} and Ce{sup 3+}→Mn{sup 2+} was confirmed by steady state and time-resolved emission spectra, lifetime, and quantum yield measurements. The structural properties, morphology, and elemental composition of the nanophosphors were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). -- Highlights: • White light-emitting multiphase silicate nanophosphors were prepared for the first time. • Multiple crystalline silicate phases were reproduced consistently by repeated syntheses. • Energy transfer from Ce{sup 3+}→Tb{sup 3+} and Ce{sup 3+}→Mn{sup 2+} was confirmed by PL, lifetime, and QY measurements.

  5. ICP-OES法同时测定燕麦片中的钾、钠、钙、镁、铁、锌%Simultaneous determination of potassium, sodium, calcium, magnesium, iron, zinc in oatmeal with ICP-OES

    Institute of Scientific and Technical Information of China (English)

    孙丽萍; 张素娟; 梁宝爱

    2015-01-01

    The determination method of potassium, sodium, calcium, magnesium, iron, zinc in oatmeal was established by the optimization of ICP-AES instruments conditions, with three different digestion methods. The results show that the linear relationship of each element elements is good, the correlation coefficient is above 0.999 9, the relative standard deviation is 1.5%~3.3% and the recovery rate is 82.3%~ 109.4%. The method is operated conveniently, with high accuracy and good precision. The test results of both the method (ICP-OES) and the national standard method are consistent, with no significant difference, and suitable for determination of mineral element in oatmeal.%通过对ICP-OES仪器条件的优化,采用3种不同消解方法,建立了燕麦片中钾、钠、钙、镁、铁、锌各元素的测定方法。试验结果表明,该方法中各元素的线性关系良好,相关系数均在0.9999以上,其相对标准偏差为1.5%~3.3%,回收率为82.3%~109.4%。该方法操作便捷、准确度高、精密度好,与国标方法比较检测结果一致,无显著性差异,适用于燕麦片中矿物质元素的测定。

  6. Petrophysical Characterization and Reservoir Simulator for Methane Gas Production from Gulf of Mexico Hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Kishore Mohanty; Bill Cook; Mustafa Hakimuddin; Ramanan Pitchumani; Damiola Ogunlana; Jon Burger; John Shillinglaw

    2006-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Estimates of the amounts of methane sequestered in gas hydrates worldwide are speculative and range from about 100,000 to 270,000,000 trillion cubic feet (modified from Kvenvolden, 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In this project novel techniques were developed to form and dissociate methane hydrates in porous media, to measure acoustic properties and CT properties during hydrate dissociation in the presence of a porous medium. Hydrate depressurization experiments in cores were simulated with the use of TOUGHFx/HYDRATE simulator. Input/output software was developed to simulate variable pressure boundary condition and improve the ease of use of the simulator. A series of simulations needed to be run to mimic the variable pressure condition at the production well. The experiments can be matched qualitatively by the hydrate simulator. The temperature of the core falls during hydrate dissociation; the temperature drop is higher if the fluid withdrawal rate is higher. The pressure and temperature gradients are small within the core. The sodium iodide concentration affects the dissociation pressure and rate. This procedure and data will be useful in designing future hydrate studies.

  7. Polyethylene Glycol Drilling Fluid for Drilling in Marine Gas Hydrates-Bearing Sediments: An Experimental Study

    OpenAIRE

    Lixin Kuang; Yibing Yu; Yunzhong Tu; Ling Zhang; Fulong Ning; Guosheng Jiang; Tianle Liu

    2011-01-01

    Shale inhibition, low-temperature performance, the ability to prevent calcium and magnesium-ion pollution, and hydrate inhibition of polyethylene glycol drilling fluid were each tested with conventional drilling-fluid test equipment and an experimental gas-hydrate integrated simulation system developed by our laboratory. The results of these tests show that drilling fluid with a formulation of artificial seawater, 3% bentonite, 0.3% Na 2 CO 3 , 10% polyethylene glycol, 20% NaCl, 4% SMP-2, 1% ...

  8. Utilization of industrial solid wastes able to generate calcium trisulphoaluminate and silicate hydrates in stabilization processes and for the manufacture of building materials; Utilizzazione di residui solidi industriali in grado di generare trisolfoalluminato e silicato di calcio idrati nei processi di stabilizzazione e nella produzione di materiali da costruzione

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, L. [Naples, Univ. `Federico II` (Italy). Dipt. di Chimica; Cioffi, R. [Naples, Univ. `Federico II` (Italy). Ditp. di Ingegneria dei Materiali e della Produzione

    1998-01-01

    In this work the stabilization of hazardous solid wastes containing heavy metals has been studied by means of novel matrices able to generate calcium trisulphoaluminate and silicate hydrates. The process is based on the hydration of two different mixtures containing blast furnace slag, coal ashes, chemical gypsum and Portland cement. The stabilization capacity of the two mixtures has been checked with regard to both a residue from an incinerator of municipal solid wastes and model systems obtained by adding 5 and 10% of soluble nitrates of Cd, Cr, Cu, Ni, Pb and Zn. The stabilized products have been validated from the point of view of mechanical properties by determining the unconfined compressive strength, and from the environmental point of view by means of static and dynamic leaching tests. Both matrices have proved to have great potentiality for the stabilization of hazardous solid wastes, the one based on blast furnace slag being better. Finally, evidence is given that different leaching tests are necessary to fully understand the immobilization mechanism responsible for stabilization. [Italiano] In questo lavoro e` stata studiata la atbilizzazione di residui tossici e nocivi contenenti metalli pesanti per mezzo di matrici leganti innovative capaci di generare trisolfoalluminato e silicato di calcio idrati. Il processo e` basato sull`idratazione di due diverse miscele contenenti scoria d`alto forno, ceneri di carbone, gessi chimici e cemento Portland. Le capacita` stabilizzanti delle due miscele sono state verificate sia nei confronti di un residuo solido generato a seguito dell`incenerimento di RSU, che nei confronti di sistemi modello ottenuti aggiungendo singolarmente il 5 e 10% dei nitrati solubili di Cd, Cr, Cu, Ni, Pb e Zn. I prodotti solidi stabilizzati sono stati validati dal punto di vista delle prestazioni meccaniche mediante prove di resistenza a compressione, e dal punto di vista ambientale mediante test di rilascio sia statici che dinamici

  9. Modeling Hydrates and the Gas Hydrate Markup Language

    Directory of Open Access Journals (Sweden)

    Weihua Wang

    2007-06-01

    Full Text Available Natural gas hydrates, as an important potential fuels, flow assurance hazards, and possible factors initiating the submarine geo-hazard and global climate change, have attracted the interest of scientists all over the world. After two centuries of hydrate research, a great amount of scientific data on gas hydrates has been accumulated. Therefore the means to manage, share, and exchange these data have become an urgent task. At present, metadata (Markup Language is recognized as one of the most efficient ways to facilitate data management, storage, integration, exchange, discovery and retrieval. Therefore the CODATA Gas Hydrate Data Task Group proposed and specified Gas Hydrate Markup Language (GHML as an extensible conceptual metadata model to characterize the features of data on gas hydrate. This article introduces the details of modeling portion of GHML.

  10. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  11. A study on gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byoung Jae; Jung, Tae Jin; Sunwoo, Don [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    Sufficient documents were reviewed to understand solid components of water and gaseous hydrocarbon known as gas hydrates, which represent an important potential energy resource of the future. The review provides us with valuable information on crystal structures, kinetics, origin and distribution of gas hydrates. In addition, the review increased our knowledge of exploration and development methods of gas hydrates. Large amounts of methane, the principal component of natural gas, in the form of solid gas hydrate are found mainly offshore in outer continental margin sediment and, to a lesser extent, in polar regions commonly associated with permafrost. Natural gas hydrates are stable in some environments where the hydrostatic pressure exerted by overlying water column is sufficient for hydrate formation and stability. The required high pressures generally restrict gas hydrate to sediments beneath water of approximately 400 m. Higher sediment temperatures at greater subbottom depths destabilize gas hydrates. Based on the pressure- temperature condition, the outer continental margin of East Sea where water depth is deep enough to form gas hydrate is considered to have high potential of gas hydrate accumulations. (author). 56 refs., tabs., figs.

  12. CaCl2-Accelerated Hydration of Tricalcium Silicate: A STXM Study Combined with 29Si MAS NMR

    Directory of Open Access Journals (Sweden)

    Qinfei Li

    2015-01-01

    Full Text Available The effect of calcium chloride (CaCl2 on tricalcium silicate (C3S hydration was investigated by scanning transmission X-ray microscopy (STXM with Near Edge X-ray Absorption Fine Structure (NEXAFS spectra and 29Si MAS NMR. STXM is demonstrated to be a powerful tool for studying the chemical composition of a cement-based hydration system. The Ca L3,2-edge NEXAFS spectra obtained by examining C3S hydration in the presence of CaCl2 showed that this accelerator does not change the coordination of calcium in the calcium silicate hydrate (C-S-H, which is the primary hydration product. O K-edge NEXAFS is also very useful in distinguishing the chemical components in hydrated C3S. Based on the Ca L3,2-edge spectra and chemical component mapping, we concluded that CaCl2 prefers to coexist with unhydrated C3S instead of C-S-H. In Si K-edge NEXAFS analysis, CaCl2 increases the degree of silicate polymerization of C-S-H in agreement with the 29Si CP/MAS NMR results, which show that the presence of CaCl2 in hydrated C3S considerably accelerates the formation of middle groups (Q2 and branch sites (Q3 in the silicate chains of C-S-H gel at 1-day hydration.

  13. Drilling Gas Hydrates on hydrate Ridge, Oregon continental margin

    Science.gov (United States)

    Trehu, A. M.; Bohrmann, G.; Leg 204 Science Party

    2002-12-01

    During Leg 204, we cored and logged 9 sites on the Oregon continental margin to determine the distribution and concentration of gas hydrates in an accretionary ridge and adjacent slope basin, investigate the mechanisms that transport methane and other gases into the gas hydrate stability zone (GHSZ), and obtain constraints on physical properties of hydrates in situ. A 3D seismic survey conducted in 2000 provided images of potential subsurface fluid conduits and indicated the position of the GHSZ throughout the survey region. After coring the first site, we acquired Logging-While-Drilling (LWD) data at all but one site to provide an overview of downhole physical properties. The LWD data confirmed the general position of key seismic stratigraphic horizons and yielded an initial estimate of hydrate concentration through the proxy of in situ electrical resistivity. These records proved to be of great value in planning subsequent coring. The second new hydrate proxy to be tested was infrared thermal imaging of cores on the catwalk as rapidly as possible after retrieval. The thermal images were used to identify hydrate samples and to estimate the distribution and texture of hydrate within the cores. Geochemical analyses of interstitial waters and of headspace and void gases provide additional information on the distribution and concentration of hydrate within the stability zone, the origin and pathway of fluids into and through the GHSZ, and the rates at which gas hydrate is forming. Bio- and lithostratigraphic description of cores, measurement of physical properties, and in situ pressure core sampling and thermal measurements complement the data set, providing ground-truth tests of inferred physical and sedimentological properties. Among the most interesting preliminary results are: 1) that gas hydrates are distributed through a broad depth range within the GHSZ and that different physical and chemical proxies for hydrate distribution and concentration give generally

  14. Ionic modification of calcium phosphate cement viscosity. Part II: hypodermic injection and strength improvement of brushite cement.

    Science.gov (United States)

    Barralet, J E; Grover, L M; Gbureck, U

    2004-05-01

    Brushite-forming calcium phosphate cements are of great interest as bone replacement materials because they are resorbable in physiological conditions. However, their short setting times, low mechanical strengths and limited injectability limit broad clinical application. In this study, we showed that a significant improvement of these properties of brushite cement could be achieved by the use of sodium citrate or citric acid as setting retardants, such that workable cement pastes with a powder to liquid ratio of up to 5 could be manufactured. The cement used in this study consisted of an equimolar powder mixture of beta-tricalcium phosphate and monocalcium phosphate hydrate The use of 500 mM-1M retardant solutions as liquid phase enabled initial setting times of 8-12 min. Wet compressive strength were found to be in the range between 12-18 MPa after immersion of uncompacted cement samples in serum for 24 h. A further strength improvement to 32 MPa was obtained by compaction of the cement paste during samples preparation. This is significant because high-temperature processes cannot be used to fabricate hydrated calcium phosphate materials. Cement pastes were injectable through a hypodermic needle at a powder to liquid ratio of 3.3 g/ml when a 1M citric acid was used as liquid phase, thus enabling precise controlled delivery to small defects.

  15. Rapid gas hydrate formation process

    Science.gov (United States)

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  16. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus.

    Science.gov (United States)

    Camilleri, Josette; Sorrentino, François; Damidot, Denis

    2013-05-01

    Novel root-end filling materials are composed of tricalcium silicate (TCS) and radiopacifier as opposed to the traditional mineral trioxide aggregate (MTA) which is made up of clinker derived from Portland cement and bismuth oxide. The aim of this research was to characterize and investigate the hydration of a tricalcium silicate-based proprietary brand cement (Biodentine™) and a laboratory manufactured cement made with a mixture of tricalcium silicate and zirconium oxide (TCS-20-Z) and compare their properties to MTA Angelus™. The materials investigated included a cement containing 80% of TCS and 20% zirconium oxide (TCS-20-Z), Biodentine™ and MTA Angelus™. The specific surface area and the particle size distribution of the un-hydrated cements and zirconium oxide were investigated using a gas adsorption method and scanning electron microscopy. Un-hydrated cements and set materials were tested for mineralogy and microstructure, assessment of bioactivity and hydration. Scanning electron microscopy, X-ray energy dispersive analysis, X-ray fluorescence spectroscopy, X-ray diffraction, Rietveld refined X-ray diffraction and calorimetry were employed. The radiopacity of the materials was investigated using ISO 6876 methods. The un-hydrated cements were composed of tricalcium silicate and a radiopacifier phase; zirconium oxide for both Biodentine™ and TCS-20-Z whereas bismuth oxide for MTA Angelus™. In addition Biodentine™ contained calcium carbonate particles and MTA Angelus™ exhibited the presence of dicalcium silicate, tricalcium aluminate, calcium, aluminum and silicon oxides. TCS and MTA Angelus™ exhibited similar specific surface area while Biodentine™ had a greater specific surface area. The cements hydrated and produced some hydrates located either as reaction rim around the tricalcium silicate grain or in between the grains at the expense of volume containing the water initially present in the mixture. The rate of reaction of tricalcium

  17. Hydration of Biodentine, Theracal LC, and a prototype tricalcium silicate-based dentin replacement material after pulp capping in entire tooth cultures.

    Science.gov (United States)

    Camilleri, Josette; Laurent, Patrick; About, Imad

    2014-11-01

    The calcium-releasing ability of pulp-capping materials induces pulp tissue regeneration. Tricalcium silicate-based materials produce calcium hydroxide as a by-product of hydration. Assessment of hydration and calcium ion leaching is usually performed on samples that have been aged in physiological solution for a predetermined period of time. The hydration and activity of the materials in vivo may not be similar to those displayed in vitro because of insufficient fluid available in contact with dentin. The aim of this research was the assessment of hydration of Biodentine, Theracal LC, and a prototype radiopacified tricalcium silicate-based material after pulp capping and to compare it with direct hydration in an aqueous solution. The extent of hydration of Biodentine, Theracal LC, and a prototype radiopacified tricalcium silicate-based material with a similar composition to Biodentine but not incorporating the additives was assessed by scanning electron microscopy and energy dispersive spectroscopy of polished specimens after being allowed to hydrate in Hank's balanced salt solution for 14 days. The extent of hydration was compared with material hydration when used as direct pulp capping materials by using a tooth culture model. Material activity was also assessed by x-ray diffraction analysis to investigate the deposition of calcium hydroxide by the materials, and calcium ion leaching in Hank's balanced salt solution was assessed by ion chromatography. Biodentine and the prototype tricalcium silicate cement hydrated and reaction by-products were deposited in the cement matrix both after pulp capping and when incubated in an aqueous solution. Calcium hydroxide was formed, and calcium ions were leached in solution. Theracal LC hydration was incomplete because of the limited moisture diffusion within the material. Thus, no calcium hydroxide was produced, and a lower calcium ion leaching was recorded. Theracal LC had a heterogeneous structure with large unhydrated

  18. Sodium and Food Sources

    Science.gov (United States)

    ... Sources Top 10 Sources of Sodium How to Reduce Sodium Sodium Reduction Resources for Everyone Sodium Reduction Fact ... in processed food [PDF-867K] and how to reduce sodium. Sodium Reduction Is Challenging Types of food matter: ...

  19. Sodium in diet

    Science.gov (United States)

    Diet - sodium (salt); Hyponatremia - sodium in diet; Hypernatremia - sodium in diet; Heart failure - sodium in diet ... The body uses sodium to control blood pressure and blood volume. Your body also needs sodium for your muscles and nerves to work ...

  20. Effect of Ions Doping on Calcining and Hydration Properties of High-strength Low-calcium Portland Clinker%离子掺杂对高强低钙硅酸盐水泥熟料煅烧性能的影响

    Institute of Scientific and Technical Information of China (English)

    周双喜; 陈鹏飞; 喻乐华; 邓文武

    2015-01-01

    With view to the new requirements of energy-saving emission reduction and low-carbon economy, the research and development ( R&D ) of low calcium cement has great significance . This paper probes into firing different content belite cement clinkers and proportioning different raw materials, which finds out that the burnability of clinkers can be improved remarkably by ions adopting and the crystal form can be stabilized by adopting B2O3. Using chemical reagent and industrial raw materials, by chemical analysis, XRD (X-ray diffraction), lithofacies analysis and SEM, effects of ions doping on calcining and hydration properties of high strength low calcium portland clinker are discussed in details. Results show that the most suitable temperature of clinkers sintering is 1 350℃, can be in steady existence by adding stabilizers, and fossil has its best morphology under the condition of complete mineral crystallizing cement when the calcination temperature ranges from 1 400℃ to 1 450℃ with w(C2S) being 45% and w(C3S) 30% of the content.%选择几种不同生料进行配方,烧制不同含量硅酸二钙水泥熟料,在煅烧过程中通过阴离子掺杂来研究对熟料易烧性能的影响,并添加稳定剂B2O3使贝利特保持活性较高的晶型;运用XRD、岩相分析、SEM等测试手段,初步探讨了离子掺杂对高强低钙硅酸盐水泥熟料煅烧和水化性能的影响. 主要结论是,最佳的煅烧温度为1 350℃,稳定剂的加入可以促进熟料中的稳定存在;其次,当煅烧温度在1 400~1 450℃,w(C2S)含量在45%、w(C3S)含量30%时,熟料矿物结晶完整,矿物形貌最好,其早龄期的水化产物量也最多.

  1. New high-capacity, calcium-based sorbents, calcium silicate sorbents. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kenney, M.E.

    1996-02-28

    A search is being carried out for new calcium-based SO{sub 2} sorbents for induct injection. More specifically, a search is being carried out for induct injection calcium silicate sorbents that are highly cost effective. The current year objectives include the study of sorbents made by hydrating ordinary or Type I portland cement or portland cement clinker (a cement intermediate) under carefully selected conditions. Results of this study show that an excellent portland cement sorbent can be prepared by milling cement at 120{degrees}C at 600 rpm for 15 minutes with MgO-stabilized ZrO{sub 2} beads. They also show that clinker, which is cheaper than cement can be used interchangeably with cement as a starting material. Further, it is clear that while a high surface area may be a desirable property of a good sorbent, it is not a requisite property. Among the hydration reaction variables, milling time is highly important, reaction temperature is important and stirring rate and silicate-to-H{sub 2}O ratio are moderately important. The components of hydrated cement sorbent are various combinations of C-S-H, calcium silicate hydrate:Ca(OH){sub 2};AFm. a phase in hydrated cement.

  2. 奥扎格雷钠和低分子肝素钙治疗糖尿病下肢动脉疾病的疗效和安全性比较%Comparison of the efficacy and safety under integrated treatment to diabetic patients with peripheral artery disease between ozagrel sodium and low molecular heparin calcium

    Institute of Scientific and Technical Information of China (English)

    顾雪明; 叶军; 刘宏; 许蕾; 钱泓洁; 方萍; 张杉杉; 汤正义; 宁光

    2012-01-01

    目的 观察奥扎格雷钠和低分子肝素钙治疗糖尿病下肢动脉疾病的疗效和安全性.方法 64例糖尿病伴下肢严重动脉狭窄的患者,随机分为奥扎格雷钠组和低分子肝素钙治疗组,所有患者在全身情况稳定的基础上,分别接受奥扎格雷钠和低分子肝素钙治疗2周,观察治疗前后腘动脉收缩期峰值血流速度(PSV)和踝肱指数(ABI),安全性评估指标包括活化部分凝血酶时间(APTT)和凝血酶原时间(PT).结果 两组患者治疗前后腘动脉PSV变化值比较差异显著,其中奥扎格雷钠组PSV增加(7.29±8.81)cm/s,低分子肝素钙组PSV增加(13.55±13.11)cm/s,组间差异具有统计学意义(P<0.05);两组治疗前后ABi变化值分别为(0.07±0.07)和(0.08±0.06),组间差异具有统计学意义(P<0.05):但两组患者治疗前后APTT和PT比较差异均无统计学意义.且药物不良反应轻.结论 两种抗凝治疗均能显著改善糖尿病下肢动脉血流,且低分子肝素钙疗效优于奥扎格雷钠.%Objective To evaluate the efficacy and safety of ozagrel sodium and low molecular heparin calcium on integrated treatment to diabetic patients with peripheral artery disease. Methods Diabetic patients with peripheral artery disease were randomly divided into ozagrel sodium group and low molecular heparin calcium group. Under intensive blood glucose control and regular treatment to other complications, ozagrel sodium and low molecular heparin calcium were used for 2 weeks in either group. The peak systolic velocity (PSV) of posterior tibia! Artery and ankle brachial index (ABI) were measured before and at the end of treatment. Activated partial thromboplastin time (APTT) and prothrombin (PT) were tested as safe index. Results After 2 weeks treatment with ozagrel sodium and low molecular heparin calcium, PSV of posterior tibial artery were increased in both groups (P<0.05). Compared with low molecular heparin calcium group, increased PSV of ozagrel

  3. Effect of the Additives on the Desulphurization Rate of Flash Hydrated and Agglomerated CFB Fly Ash

    Science.gov (United States)

    Li, D. X.; Li, H. L.; Xu, M.; Lu, J. F.; Liu, Q.; Zhang, J. S.; Yue, G. X.

    CFB fly ash from separators was mixed with water or the mixture of water and additives under the temperature of 363K by use of a blender. Then, this compound of fly ash and water or additives was pumped into a CFB combustion chamber by a sludge pump. Because the temperature of flue gas was high in CFB, the fly ash was hydrated fast and agglomerated in the same time. Through this process, the size of agglomerating fly ash is larger than the original particle and the relative residence time of agglomerated fly ash in CFB becomes longer. Therefore, the rate of utility of calcium in fly ash improves and the content of carbon in fly ash decreases. This results in a low Ca/S and low operational cost for CFB boiler. The additive is one key factor, which affects the rate of desulfurization of agglomerated fly ash. Effect of different additives on rate of desulfurization is not same. Cement and limestone are beneficiated to sulfur removal of agglomerated fly ash, but sodium silicate does not devote to the rate of sulfur removal of agglomerated fly ash.

  4. Characteristics of a hydrated, alginate-based delivery system for cultivation of the button mushroom.

    Science.gov (United States)

    Romaine, C P; Schlagnhaufer, B

    1992-09-01

    The production of the button mushroom Agaricus bisporus with mycelium-colonized alginate pellets as an inoculant of the growing medium was investigated. Pellets having an irregular surface and porous internal structure were prepared by complexing a mixture of 1% sodium alginate, 2 to 6% vermiculite, 2% hygramer, and various concentrations of Nutrisoy (soy protein) with calcium chloride. The porous structure allowed the pellets to be formed septically and then inoculated and colonized with the fungus following sterilization. By using an enzyme-linked immunosorbent assay (ELISA) to estimate fungal biomass, the matrix components of the pellet were found to be of no nutritive value to A. bisporus. Pellets amended with Nutrisoy at a concentration of 0.5 to 8% supported extensive mycelial growth, as determined by significantly increased ELISA values, with a concentration of 4% being optimal and higher concentrations proving inhibitory. The addition of hydrated, mycelium-invaded pellets to the compost or casing layer supported the thorough colonization of the growing substrate and culminated in the formation of mushrooms that showed normal development and typical morphology. Yields and sizes of mushrooms were comparable from composts seeded with either colonized pellets or cereal grain spawn. Similarly, amending the casing layer with pelletized-mycelium-colonized compost resulted in a 2- to 3-day-earlier and more-synchronous emergence of mushrooms than with untreated casing. This technology shows the greatest potential as a pathogen-free inoculant of the casing layer in the commercial cultivation of mushrooms.

  5. Cryopegs as destabilization factor of intra-permafrost gas hydrates

    Science.gov (United States)

    Chuvilin, Evgeny; Bukhanov, Boris; Istomin, Vladimir

    2016-04-01

    A characteristic feature of permafrost soils in the Arctic is widespread intra-permafrost unfrozen brine lenses - cryopegs. They are often found in permafrost horizons in the north part of Western Siberia, in particular, on the Yamal Peninsula. Cryopegs depths in permafrost zone can be tens and hundreds of meters from the top of frozen strata. The chemical composition of natural cryopegs is close to sea waters, but is characterized by high mineralization. They have a sodium-chloride primary composition with a minor amount of sulphate. Mineralization of cryopegs brine is often hundreds of grams per liter, and the temperature is around -6…-8 °C. The formation of cryopegs in permafrost is associated with processes of long-term freezing of sediments and cryogenic concentration of salts and salt solutions in local areas. The cryopegs' formation can take place in the course of permafrost evolution at the sea transgressions and regressions during freezing of saline sea sediments. Very important feature of cryopegs in permafrost is their transformation in the process of changing temperature and pressure conditions. As a result, the salinity and chemical composition are changed and in addition the cryopegs' location can be changed during their migration. The cryopegs migration violates the thermodynamic conditions of existence intra-permafrost gas hydrate formations, especially the relic gas hydrates deposits, which are situated in the shallow permafrost up to 100 meters depth in a metastable state [1]. The interaction cryopegs with gas hydrates accumulations can cause decomposition of intra-permafrost hydrates. Moreover, the increasing of salt and unfrozen water content in sedimentary rocks sharply reduce the efficiency of gas hydrates self-preservation in frozen soils. It is confirmed by experimental investigations of interaction of frozen gas hydrate bearing sediments with salt solutions [2]. So, horizons with elevated pressure can appear, as a result of gas hydrate

  6. Hidden Sodium

    Centers for Disease Control (CDC) Podcasts

    2013-03-04

    In this podcast, learn about reducing sodium intake by knowing what to eat and the main sources of sodium in the diet. It's important for a healthy lifestyle.  Created: 3/4/2013 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 3/4/2013.

  7. Preliminary Study on a Novel Process for Manufacturing Soda Ash from Sodium Sulfate%一种新的芒硝制碱法实验室研究

    Institute of Scientific and Technical Information of China (English)

    王天贵; 李佐虎

    2004-01-01

    The purpose of this work is to find a new way for utilizing the rich sodium sulfate resource to produce soda ash.A novel process is proposed which uses aqueous dichromate solution as working medium through decomposition of calcium carbonate in aqueous sodium dichromate,complex decomposition of aqueous sodium sulfate and calcium chromate,regeneration of sodium dichromate and production of sodium bicarbonate from carbonation of aqueous sodium chromate solution,processing and utilization of byproduct calcium sulfate,and production of sodium carbonate from sodium bicarbonate.The process has the features of less corrosion and pollution and low energy consumption.

  8. 液体钙应用于硫酸钠型矿卤生产制碱用液体盐的工艺浅析%Brief Discussion on the Application of Liquid Calcium Used in Producing Liquid Salt with Sodium Sulfate Type Brine

    Institute of Scientific and Technical Information of China (English)

    黄承; 曹军; 戴克洋

    2015-01-01

    分析比较硫酸钠型矿卤生产液体盐中的脱硝和除钙镁的各种方法,探讨了液体钙应用于硫酸钠型矿卤生产液体盐的各种工艺,并与固体钙应用于生产液体盐的工艺进行了比较,突出了液体钙用于液体盐生产中的优势,展现了液体钙应用于液体盐生产中的良好经济效益和环境效益。%This paper mainly comparatively analyzes all kinds of process of removing calcium, magnesium and sulfate from sodium sulfate-type brine. It also discusses the processing liquid salt by liquid calcium chloride and make the technology and economic comparison with solid calcium chloride. This paper highlights the advantage of sulfate-removing by the liquid calcium chloride and shows the significant economic and environmental benefits in producing liquid salt.

  9. Dietary sodium

    DEFF Research Database (Denmark)

    Graudal, Niels

    2015-01-01

    The 2013 Institute of Medicine (IOM) report "Sodium Intake in Populations: Assessment of Evidence" did not support the current recommendations of the IOM and the American Heart Association (AHA) to reduce daily dietary sodium intake to below 2,300 mg. The report concluded that the population...... Control (CDC), other public health advisory bodies, and major medical journals have continued to support the current policy of reducing dietary sodium.......-based health outcome evidence was not sufficient to define a safe upper intake level for sodium. Recent studies have extended this conclusion to show that a sodium intake below 2,300 mg/day is associated with increased mortality. In spite of this increasing body of evidence, the AHA, Centers for Disease...

  10. Hydration and physical performance.

    Science.gov (United States)

    Murray, Bob

    2007-10-01

    There is a rich scientific literature regarding hydration status and physical function that began in the late 1800s, although the relationship was likely apparent centuries before that. A decrease in body water from normal levels (often referred to as dehydration or hypohydration) provokes changes in cardiovascular, thermoregulatory, metabolic, and central nervous function that become increasingly greater as dehydration worsens. Similarly, performance impairment often reported with modest dehydration (e.g., -2% body mass) is also exacerbated by greater fluid loss. Dehydration during physical activity in the heat provokes greater performance decrements than similar activity in cooler conditions, a difference thought to be due, at least in part, to greater cardiovascular and thermoregulatory strain associated with heat exposure. There is little doubt that performance during prolonged, continuous exercise in the heat is impaired by levels of dehydration >or= -2% body mass, and there is some evidence that lower levels of dehydration can also impair performance even during relatively short-duration, intermittent exercise. Although additional research is needed to more fully understand low-level dehydration's effects on physical performance, one can generalize that when performance is at stake, it is better to be well-hydrated than dehydrated. This generalization holds true in the occupational, military, and sports settings.

  11. Ductile flow of methane hydrate

    Science.gov (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  12. 聚丙烯酸钠的合成及其相对分子质量对CaCO3分散性的影响%Synthesis of sodium polyacrylate and the effect of its relative molecular mass on dispersion of calcium carbonate

    Institute of Scientific and Technical Information of China (English)

    范宝安

    2011-01-01

    The author prepared sodium polyacrylate with different relative molecular mass via aqueous solution polymerization in the presence of Na2S2O8 as initiator and NaHSO3 as chain transfer agent by regulating the molar ratio of the initiator to the chain transfer agent. The effect of the relative molecular mass of sodium polyacrylate as dispersing agent on dispersancy of calcium carbonate was studied. The results show that the dispersancy effectiveness of the sodium polyacrylate is closely dependent on its relative molecular mass and is undesirable in the case of too high or too low relative molecular mass. The dispersancy to the calcium carbonate attains its maximum when the viscosity average molecular mass of sodium polyacrylate is in the range of 3 000 to 3 500.%采用水溶液聚合法,以NaSO作引发剂,NaHSO作链转移剂,通过调整引发剂和链转移剂之间的摩尔比制备了具有不同相对分子质量的聚丙烯酸钠.研究了聚丙烯酸钠作为分散剂时,其相对分子质量对CaCO分散性的影响.结果表明:聚丙烯酸钠的分散效果与其相对分子质量有很大关系,相对分子质量过高或过低,分散效果都不理想.当聚丙烯酸钠黏均分子量在3 000-3 500时,对CaCO的分散性最好.

  13. The In-situ Reinforcement of Calcium Phosphate Cement and Its Micro-structural Analysis

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Carbon nanotubes ( CNTs ) and polyacrylic acid were employed to modify the setting process and hydration products of β- TCP/ TTCP calcium phosphate cement. The micro-structure of hydration product and the fashion of how additives and hydration particles interconnected were investigated. With the modification effect of CNTs, the setting particles and CNTs got winded and interconnected and thus made the composite more compact and denser.

  14. Some thermodynamical aspects of protein hydration water

    Energy Technology Data Exchange (ETDEWEB)

    Mallamace, Francesco, E-mail: francesco.mallamace@unime.it [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Corsaro, Carmelo [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); CNR-IPCF, Viale F. Stagno D’Alcontres 37, I-98158 Messina (Italy); Mallamace, Domenico [Dipartimento SASTAS, Università di Messina, I-98166 Messina (Italy); Vasi, Sebastiano [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Vasi, Cirino [CNR-IPCF, Viale F. Stagno D’Alcontres 37, I-98158 Messina (Italy); Stanley, H. Eugene [Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Chen, Sow-Hsin [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-06-07

    We study by means of nuclear magnetic resonance the self-diffusion of protein hydration water at different hydration levels across a large temperature range that includes the deeply supercooled regime. Starting with a single hydration shell (h = 0.3), we consider different hydrations up to h = 0.65. Our experimental evidence indicates that two phenomena play a significant role in the dynamics of protein hydration water: (i) the measured fragile-to-strong dynamic crossover temperature is unaffected by the hydration level and (ii) the first hydration shell remains liquid at all hydrations, even at the lowest temperature.

  15. Characterization of set Intermediate Restorative Material, Biodentine, Bioaggregate and a prototype calcium silicate cement for use as root-end filling materials.

    Science.gov (United States)

    Grech, L; Mallia, B; Camilleri, J

    2013-07-01

    To investigate the composition of materials and leachate of a hydrated prototype cement composed of tricalcium silicate and radiopacifier and compare this to other tricalcium silicate-based cements (Biodentine and Bioaggregate) to assess whether the additives in the proprietary brand cements affect the hydration of the materials, using Intermediate Restorative Material (IRM), a standard root-end filling material as a control. The materials investigated included a prototype-radiopacified tricalcium silicate cement, Biodentine, Bioaggregate and Intermediate Restorative Material (IRM). The pH and calcium ion concentration of the leachate were investigated. The hydrated cements were characterized using scanning electron microscopy (SEM) and X-ray energy dispersive analysis (EDX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). All the cements tested were alkaline. The tricalcium silicate-based cements leached calcium in solution. Scanning electron microscopy of the prototype-radiopacified tricalcium silicate cement, Biodentine and Bioaggregate displayed hydrating cement grains, surrounded by a matrix composed of calcium silicate hydrate and calcium hydroxide. The presence of calcium hydroxide was evident from the XRD plots. FT-IR indicated the occurrence of a poorly crystalline calcium silicate hydrate. Biodentine displayed the presence of calcium carbonate. Bioaggregate incorporated a phosphate-containing phase. IRM consisted of zinc oxide interspersed in an organic matrix. The hydration of prototype-radiopacified tricalcium silicate cement, Biodentine and Bioaggregate resulted in the formation of calcium silicate hydrate and calcium hydroxide, which was leached in solution. The hydrated materials were composed of a cementitous phase that was rich in calcium and silicon and a radiopacifying material. Biodentine included calcium carbonate, and Bioaggregate included silica and calcium phosphate in the powders. IRM was composed of zinc oxide

  16. Effect of calcium chelators on physical changes in casein micelles in concentrated micellar casein solutions

    NARCIS (Netherlands)

    Kort, de E.J.P.; Minor, M.; Snoeren, T.H.M.; Hooijdonk, van A.C.M.; Linden, van der E.

    2011-01-01

    The effect of calcium chelators on physical changes of casein micelles in concentrated micellar casein solutions was investigated by measuring calcium-ion activity, viscosity and turbidity, and performing ultracentrifugation. The highest viscosities were measured on addition of sodium

  17. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)

    2012-07-01

    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  18. 驼初乳中钾、钙、钠、镁、铜、铁、锌质量浓度的检测%Detection of potassium,calcium,sodium, magnesium,copper,iron,zinc concentration in Xinjiang Bactrian milk Camel colostrum

    Institute of Scientific and Technical Information of China (English)

    苏薇; 杨洁

    2011-01-01

    为研究新疆双峰驼驼初乳中钾、钙、钠、镁、铜、铁、锌的质量浓度及其在泌乳期内的变化,采用火焰原子吸收分光光度法进行测定,回收率为92.45%~110.85%之间,相对标准偏差小于5%,说明该法具有良好的准确性和精密度.结果表明,新疆双峰驼驼初乳中钾的质量浓度最为丰富高,其次为钠、钙和镁;检测发现驼初乳中铜、铁、锌质量浓度未达到仪器最佳工作条件下的最低检出限.在泌乳期1~6d内,钙元素和镁元素质量浓度的变化有相关性,差异显著;钠元素和钙元素质量浓度的变化与泌乳天数有相关性,差异显著;钙元素质量浓度的变化与泌乳天数有相关性,差异极显著.与牛乳相比,新疆双峰驼驼初乳中含有相对较高质量浓度的钾、钙、钠、镁的质量浓度较高,饮用驼初乳可作为补充人体所需钾、钙、钠、镁元素的一种有效途径.%The content of potassium,calcium,sodium, magnesium,copper,iron,zinc in Xinjiang Bactrian camel colostrum changes in the lactation period. By flame atomic absorption spectrometry were determined,recovery was between 92.45%~110.85%, the relative standard deviation less than 5%, it showed that the method has good accuracy and precision. The concentrantion of potassium was highest in Xinjiang Bactrian camel colostrum, followed by sodium,calcium and magnesium. The concentrantion of Ccopper, iron, zinc content in camel milk does did not meet the minimum detection limit of the instrument. In lactation 1 ~6 days,calcium and magnesium concentration changes was relevant,significant difference. The concentration changes of sodium,calcium and days of lactation was relevant,significant difference. Compared with bovine milk, the concentration of potassium,calcium,sodium, magnesium are higher in Xinjiang Bactrian camel colostrum. Drinking camel milk is an effective way as a supplement of potassium,calcium,sodium,magnesium elements needed by

  19. Predicting hydrate forming pressure of pure alkanes in the presence of inhibitors

    Institute of Scientific and Technical Information of China (English)

    Alireza Bahadori; Hari B.Vuthaluru; Saeid Mokhatab; Moses O.Tade

    2008-01-01

    An inherent problem with natural gas production or transmission is the formation of gas hydrates.which can lead to safety hazards for production/transportation systems.and substantial economic risks.Hydrate inhibition with different inhibitors such as,methanol,ethylene glycol(EG),triethylene glycol(TEG),and sodium chloride solution continues to play a critical role in many operations.An understanding of when the hydrates form in the presence of these hydrate inhibitors.is therefore necessary to overcome hydrate problems.Several thermodynamic models have been proposed for predicting the hydrate formation conditions in aqueous solutions containing methanol/glycOls and electrolytes.However,available models have limitations that include the types of liquid,compositions of fluids,and inhibitors used.The aim of this study is to develop a simple-to-use correlation for accurate prediction of hydrate-forming pressures of pure alkanes in the presence of different hydrate inhibitors,where the obtained results illustrate good agreement with the reported experimental data.

  20. Sodium - blood

    Science.gov (United States)

    ... gland problems such as Cushing syndrome or hyperaldosteronism Diabetes insipidus (type of diabetes in which kidneys are not able to conserve water) Too much salt or sodium bicarbonate in the diet Use of certain medicines, including corticosteroids, laxatives, lithium, ...

  1. WOOD PRE-TREATMENT INFLUENCE ON THE HYDRATION OF PORTLAND CEMENT IN COMBINATION WITH SOME TROPICAL WOOD SPECIES

    Directory of Open Access Journals (Sweden)

    Nusirat Aderinsola SADIKU

    2014-06-01

    Full Text Available The influence of three pre-treatment methods on the hydration characteristics of Portland cement in combination with three tropical hardwood species was investigated. The maximum hydration temperature and time to reach maximum hydration temperature were analysed for the wood-cement-water mixtures of the three species after removing inhibitory extractives of wood samples by extraction with 5% Sodium hydroxide (NaOH, cold and hot water after removing inhibitory extractives of wood samples. There were differences in the hydration reaction of the wood species with Portland cement using the different pre-treatment methods. The compatibility of the wood species with Portland cement improved following pre-treatment. Sodium hydroxide pre-treatment had the most significant effect followed by hot water. Terminalia ivorensis (Idigbo, and Antiaris africana (Oriro species showed considerable improvement in their compatibility with Portland cement at 5% Sodium hydroxide pre-treatment with maximum hydration temperature of 65oC where Arere had 60.5oC where both cold and hot water were unable to raise the hydration temperature beyond 55.5oC . This study shows that the wood species requires more than cold and hot water extraction to make them suitable for wood cement composite materials as extraction with sodium hydroxide (1% solution was found to be the most effective treatment for the wood species under investigation.

  2. Removal of phosphate from greenhouse wastewater using hydrated lime.

    Science.gov (United States)

    Dunets, C Siobhan; Zheng, Youbin

    2014-01-01

    Phosphate (P) contamination in nutrient-laden wastewater is currently a major topic of discussion in the North American greenhouse industry. Precipitation of P as calcium phosphate minerals using hydrated lime could provide a simple, inexpensive method for retrieval. A combination of batch experiments and chemical equilibrium modelling was used to confirm the viability of this P removal method and determine lime addition rates and pH requirements for greenhouse wastewater of varying nutrient compositions. Lime: P ratio (molar ratio of CaMg(OH)₄: PO₄‒P) provided a consistent parameter for estimating lime addition requirements regardless of initial P concentration, with a ratio of 1.5 providing around 99% removal of dissolved P. Optimal P removal occurred when lime addition increased the pH from 8.6 to 9.0, suggesting that pH monitoring during the P removal process could provide a simple method for ensuring consistent adherence to P removal standards. A Visual MINTEQ model, validated using experimental data, provided a means of predicting lime addition and pH requirements as influenced by changes in other parameters of the lime-wastewater system (e.g. calcium concentration, temperature, and initial wastewater pH). Hydrated lime addition did not contribute to the removal of macronutrient elements such as nitrate and ammonium, but did decrease the concentration of some micronutrients. This study provides basic guidance for greenhouse operators to use hydrated lime for phosphate removal from greenhouse wastewater.

  3. Hydrates fighting tools; Des outils de lutte contre les hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-04-01

    Shell Exploration and Production company (SEPCo) is the operator of the 'Popeye' deep offshore field in the Gulf of Mexico. Thanks to the introduction of a low dosing hydrates inhibitor (LDHI) elaborated by Shell Global Solutions, the company has added a 7.5 Gpc extra volume of gas to its recoverable reserves. This new technology avoids the plugging of pipes by hydrates formation. (J.S.)

  4. Combination of sodium ozagrel, aspirin and low molecular heparin calcium for patients with NSTEACS%奥扎格雷钠联合阿司匹林肠溶片和低分子肝素钙治疗非ST段抬高型急性冠状动脉综合征疗效观察

    Institute of Scientific and Technical Information of China (English)

    宋军; 王平; 李勇; 宋执敬; 付玉英

    2009-01-01

    目的 探讨奥扎格雷钠联合阿司匹林肠溶片和低分子肝素钙治疗非ST段抬高型急性冠状动脉综合征疗效和安全性.方法 60例非ST段抬高型急性冠状动脉综合征患者完全随机分为2组,每组30例,治疗组给予奥扎格雷钠、阿司匹林肠溶片和低分子肝素钙三联治疗,对照组给予阿司匹林肠溶片和低分子肝素钙二联治疗,观察2组疗效和药物不良反应.结果 治疗组治疗总有效27例(90.0%),较对照组22例(73.3%)高,差异有统计学意义(P<0.05);2组患者治疗前、后各项凝血指标及药物他不良反应情况比较,差异无统计学意义(P0.05).结论 奥扎格雷钠、阿司匹林肠溶片和低分子肝素钙三联治疗非ST段抬高型急性冠状动脉综合征疗效较好且安全性良好.%Objective To explore the efficacy and safety of a combination of sodium ozagrel, aspirin and low molecular heparin calcium for patients with NSTEACS. Methods A total of 30 patients received aspirin and low molecular heparin calcium and 30 received aspirin and low molecular heparin plus sodium ozagrel. Results The therapeutic effect in sodium ozagrel group was significandy better than in control group (P<0.05). All blood clotting indexes and adverse reactions showed no significant difference between the two groups (P 0. 05). Conclusion The combination of aspirin and low molecular heparin calcium plus sodium ozagrel showes better outcome and safety for patients with NSTEACS.

  5. 钠钾镁钙葡萄糖注射液(乐加)在急诊低血容量性休克液体复苏中的应用研究%The Application of the Emergency Hypovolemic Shock Fluid Resuscitation by Sodium, Potassium, Magnesium Calcium Glucose Injection (Lejia)

    Institute of Scientific and Technical Information of China (English)

    覃双全; 刘笋; 曾宪华; 曾景亭; 张春阳; 贺永明

    2014-01-01

    Objective To study the emergency hypovolemic shock lfuid resuscitation, sodium, potassium, magnesium, calcium process to give glucose injection methods and results. Methods July 2011 - February 2014 in our hospital emergency department patients with hypovolemic shock were 52 cases of clinical study, patients were randomly divided into two groups. Control group of 26 patients using conventional lfuid resuscitation Ringer's lactate;26 cases of patients in the experimental group, given the sodium, potassium, magnesium, calcium and glucose injection recovery, patients were compared before and after potassium treatment, sodium, calcium, magnesium equivalent; determination 1 h after resuscitation of patients in mean arterial pressure (MAP) and heart rate.Result Patients Experimental group after resuscitation 1 h, the patient's serum sodium, potassium, calcium, magnesium blood-related indicators are better than the control group of patients, the statistical analysis, P<0.05, signiifcant difference;patients in the experimental group after recovery 1h, MAP higher heart rate is relatively low, compared with the control group, P<0.05, the difference was statistically signiifcant. Conclusions Patients with hypovolemic shock emergency resuscitation sodium, potassium, magnesium, calcium given glucose injection treatment and better clinical results, helps to maintain a stable internal environment, worthy of promotion.%目的:研究急诊低血容量性休克液体复苏过程中给予钠钾镁钙葡萄糖注射液的方法和效果。方法选择2011年7月至2014年2月我院急诊低血容量性休克患者共52例为临床研究对象,将患者随机分为两组。对照组共26例,使用乳酸林格液常规液体复苏;实验组患者26例,给予钠钾镁钙葡萄糖注射液复苏,观察比较患者治疗前后的血钾、钠、钙、镁等值;测定复苏1h后患者平均动脉压(MAP)和心率。结果实验组患者在复苏1h后,患者的血钠、

  6. 猪场废水灌溉对地下水中钾、钙、钠、镁含量的影响%Influence of Livestock Wastewater Irrigation on Potassium,Calcium,Sodium and Magnesium Contents in Groundwater

    Institute of Scientific and Technical Information of China (English)

    赵君怡; 张克强; 王风; 刘鸣达

    2011-01-01

    Three volumes of anaerobic water and the output of three stages of livestock wastewater treatment mixed with groundwater were used as irrigation water three years in the area where maize-wheat rotated.As the monitoring of potassium,calcium,sodium,magnesium concentration in groundwater,the results showed that:(1)The change trends of potassium concentration in groundwater with different volume of anaerobic wastewater was HaMaLa,with the three tragedy of livestock wastewater treatment mixed with groundwater,the tendency of potassium concentration in groundwater was TagTogTeg;(2)The change trends of other three ions concentration in groundwater was LaMaHa with different volume of anaerobic wastewater and TegTogTag with the three stages of livestock wastewater treatment mixed with groundwater.%应用猪场废水处理工程中产出的厌氧水不同灌溉量和3个处理阶段出水与地下水按体积比1∶5混合对冬小麦-夏玉米轮作系统进行3年的小区灌溉试验,监测地下水的总矿化度及钾、钙、钠、镁等含量的变化。结果表明:(1)地下水中钾含量在厌氧水不同灌溉量条件下呈现高量厌氧水(Ha)〉中量厌氧水(Ma)〉低量厌氧水(La)的变化趋势,在混水灌溉处理地下水中钾含量均呈厌氧水与地下水1∶5混合(Tag)〉原水与地下水1∶5混合(Tog)〉仿生态塘水与地下水1∶5混合(Teg)的变化趋势;(2)地下水中钠、钙、镁含量大致呈现低量厌氧水(La)〉中量厌氧水(Ma)〉高量厌氧水(Ha),仿生态塘水与地下水1∶5混合(Teg)〉原水与地下水1∶5混合(Tog)〉厌氧水与地下水1∶5混合(Tag)的变化趋势。

  7. Calcium in diet

    Science.gov (United States)

    ... D is needed to help your body use calcium. Milk is fortified with vitamin D for this reason. ... of calcium dietary supplements include calcium citrate and calcium carbonate. Calcium citrate is the more expensive form of ...

  8. Hydration products of lime-metakaolin pastes at ambient temperature with ageing

    Energy Technology Data Exchange (ETDEWEB)

    Gameiro, A., E-mail: agameiro@lnec.pt [National Laboratory of Civil Engineering, Materials Department, Av. do Brasil, 101, 1700 Lisbon (Portugal); Santos Silva, A., E-mail: ssilva@lnec.pt [National Laboratory of Civil Engineering, Materials Department, Av. do Brasil, 101, 1700 Lisbon (Portugal); Veiga, R., E-mail: rveiga@lnec.pt [National Laboratory of Civil Engineering, Buildings Department, Av. do Brasil, 101, 1700 Lisbon (Portugal); Velosa, A., E-mail: avelosa@ua.pt [Department of Civil Engineering, Geobiotec, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal)

    2012-05-10

    Highlights: Black-Right-Pointing-Pointer We study the compounds formed in lime/MK blended pastes and their stability over time. Black-Right-Pointing-Pointer Different mixes of lime/MK pastes show different reaction kinetics during curing time, being the pozzolanic compounds formed directly proportional to the lime by MK replacement. Black-Right-Pointing-Pointer Some pozzolanic products are found to be unstable during the hydration reaction employed in our study. - Abstract: Mortars constituted of lime mixtures with pozzolanic additions have been extensively used in the past for the construction of historic and traditional buildings. This paper presents the results of blended pastes of lime and metakaolin (MK), namely compounds formed and their stability over time. This research is part of an extensive study aiming at the formulation of lime based mortars for restoration purposes. It has been shown for several years that MK has been applied in inorganic binders due to its capacity to react vigorously with calcium hydroxide (CH). In the presence of water originating a series of major hydrated phases, namely tetra calcium aluminate hydrate (C{sub 4}AH{sub 13}), calcium silicates hydrates (CSH) and calcium aluminium silicate hydrates (stratlingite - C{sub 2}ASH{sub 8}). Several blended pastes of lime and MK, with different substitution rates of lime by MK (wt%) were prepared and cured at a temperature of 20 Degree-Sign C and relative humidity RH > 95%. The phase composition of the formed hydrated phases was determined by X-ray diffraction (XRD) and simultaneous thermal analysis (TG-DTA). The obtained results showed that lime/MK pastes compositions displayed different reaction kinetics during curing time, being the pozzolanic products content directly proportional to the substitution rate of lime by MK. Also, a relationship between the increase stratlingite content and the MK substitution rate of lime by MK was found.

  9. Obsidian Hydration: A New Paleothermometer

    Energy Technology Data Exchange (ETDEWEB)

    Anovitz, Lawrence {Larry} M [ORNL; Riciputi, Lee R [ORNL; Cole, David R [ORNL; Fayek, Mostafa [ORNL; Elam, J. Michael [University of Tennessee, Knoxville (UTK)

    2006-01-01

    The natural hydration of obsidian was first proposed as a dating technique for young geological and archaeological specimens by Friedman and Smith (1960), who noted that the thickness of the hydrated layer on obsidian artifacts increases with time. This approach is, however, sensitive to temperature and humidity under earth-surface conditions. This has made obsidian hydration dating more difficult, but potentially provides a unique tool for paleoclimatic reconstructions. In this paper we present the first successful application of this approach, based on combining laboratory-based experimental calibrations with archaeological samples from the Chalco site in the Basin of Mexico, dated using stratigraphically correlated 14C results and measuring hydration depths by secondary ion mass spectrometry. The resultant data suggest, first, that this approach is viable, even given the existing uncertainties, and that a cooling trend occurred in the Basin of Mexico over the past 1450 yr, a result corroborated by other paleoclimatic data.

  10. Obsidian hydration: A new paleothermometer

    Science.gov (United States)

    Anovitz, Lawrence M.; Riciputi, Lee R.; Cole, David R.; Fayek, Mostafa; Elam, J. Michael

    2006-07-01

    The natural hydration of obsidian was first proposed as a dating technique for young geological and archaeological specimens by Friedman and Smith (1960), who noted that the thickness of the hydrated layer on obsidian artifacts increases with time. This approach is, however, sensitive to temperature and humidity under earth-surface conditions. This has made obsidian hydration dating more difficult, but potentially provides a unique tool for paleoclimatic reconstructions. In this paper we present the first successful application of this approach, based on combining laboratory-based experimental calibrations with archaeological samples from the Chalco site in the Basin of Mexico, dated using stratigraphically correlated 14C results and measuring hydration depths by secondary ion mass spectrometry. The resultant data suggest, first, that this approach is viable, even given the existing uncertainties, and that a cooling trend occurred in the Basin of Mexico over the past 1450 yr, a result corroborated by other paleoclimatic data.

  11. Obsidian hydration dates glacial loading?

    Science.gov (United States)

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  12. Influence of silicate anions structure on desilication in silicate-bearing sodium aluminate solution

    Institute of Scientific and Technical Information of China (English)

    刘桂华; 张闻; 齐天贵; 彭志宏; 周秋生; 李小斌

    2016-01-01

    The structural changes of silicate anions in the desilication process with the addition of calcium hydrate alumino-carbonate were studied by measuring Raman spectra, infrared spectra and corresponding second derivative spectra. The results show that the desilication ratio in the solution prepared by the addition of sodium silicate (solution-SS) is much greater than that in the solution by the addition of green liquor (solution-GL), and low alumina concentration in the sodium aluminate solutions facilitates the desilication process. It is also shown that alumino-silicate anions in the solution-GL, and Q3 polymeric silicate anions in solution-SS are predominant, respectively. In addition, increasing the concentration of silica favors respectively the formation of the alumino-silicate or the Q3 silicate anions in the solution-GL or the solution-SS. Therefore, it can be inferred that the low desilication ratio in the silicate-bearing aluminate solution is mainly attributed to the existence of alumino-silicate anions.

  13. Developments in TEM Nanotomography of Calcium Silicate Hydrate

    KAUST Repository

    Taylor, Rae

    2015-04-01

    This investigation was designed to explore the possibility of using transmission electron microscope (TEM) tomography on cement-based systems gain a greater understanding of their nanostructure and pore network. The preliminary results show a clearly a well-defined pore network at the nanoscale, with pore size approximately 1.7-2.4 nm in diameter and spaced around 5-8 nm apart. A comparison of small angle X-ray scattering data with 2-D TEM images analyzed with the Fourier slice theorem documents an excellent structural correlation. © 2015 The American Ceramic Society.

  14. Storing natural gas as frozen hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, J.S.; Khokhar, A.A. (Univ. of Trondheim (Norway)); Parlaktuna, M. (Middle East Technical Univ., Ankara (Turkey))

    1994-02-01

    The formation of natural gas hydrates is a well-known problem in the petroleum and natural gas industries. Hydrates are solid materials that form when liquid water and natural gas are brought in contact under pressure. Hydrate formation need not be a problem. On the contrary, it can be an advantage. The volume of hydrates is much less than that of natural gas. At standard conditions, hydrates occupy 150 to 170 times less volume than the corresponding gas. Typically, natural gas hydrates contain 15% gas and 85% water by mass. It follows that hydrates can be used for large-scale storage of natural gas. Benesh proposed using hydrates to improve the load factor of natural gas supply systems. The author suggested that hydrates could be produced by bringing liquid water into contact with natural gas at the appropriate temperature and high pressure. The hydrate then would be stored at a temperature and pressure where it was stable. When gas was needed for the supply system, the hydrate would be melted at low pressure. The stability of a natural gas hydrate during storage at atmospheric pressure and below-freezing temperatures was studied in the laboratory. The gas hydrate was produced in a stirred vessel at 2- to 6-MPa pressure and temperatures from 0 to 20 C. The hydrate was refrigerated and stored in deep freezers at [minus]5, [minus]10, and [minus]18 C for up to 10 days. The natural gas hydrate remained stable when kept frozen at atmospheric pressure.

  15. INFLUENCE OF POZZOLANA ON THE HYDRATION OF C4AF RICH CEMENT IN CHLORIDE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    IRMANTAS BARAUSKAS

    2013-03-01

    Full Text Available This study investigated the influence of natural pozzolana - opoka additive on the hydration of C4AF rich cement and the effects of chloride ions on the hydrates formed. In the samples, 25 % (by weight of the sintered C4AF rich cement and OPC was replaced with pozzolana. The mixtures were hardened for 28 days in water, soaked in a saturated NaCl solution for 3 months at 20°C. It was estimated that under normal conditions, pozzolana additive accelerates the hydration of calcium silicates and initiates the formation of CO32- - AFm in the Brownmillerite rich cement. However, the hydration of Brownmillerite cement with opoka additive is still slower to compare with hydration of Portland cement. Also, opoka decreases total porosity and threshold pore diameter of Brownmillerite cement paste after two days of hydration. After 28 days of hydration threshold pore diameter became smaller even to compare with threshold pore diameter of Portland cement. Opoka additive promotes the formation of Friedel’s salt in Brownmillerite samples treated in saturated NaCl solution, because CO32-–AFm affected by saturated NaCl solution become unstable and takes part in reactions producing Friedel’s salt.

  16. Degree of Hydration of OPC and OPC/Fly ash Paste Samples Conditioned at Different Relative Humidity

    Directory of Open Access Journals (Sweden)

    Nasir Shafiq

    2011-05-01

    Full Text Available Degree of hydration of cement paste controls many properties of hardened concrete and/or mortar such as compressive strength. During the drying process, the degree and the rate of hydration of cement paste in concrete/mortar samples are significantly affected by the ambient relative humidity of the exposure conditions. There are various parameters such as the amount of calcium hydroxide, Ca(OH2 in the paste, quantity of the chemically bound water, specific gravity of the paste, fraction of un-hydrated cement, liberated heat of hydration and strength of the hydrated cement may be used to determine the degree of hydration of the cement paste. This paper presents the results of the experimental investigation for the determination of the degree of hydration of 100% cement paste and fly ash blended cement pastes. After 28 days moist curing, the samples were conditioned in 100%, 75%, 65%, 40% and 12% relative humidity. Conditioning of samples in different relative humidity had significant effects on the compressive strength of the mortar samples and the degree of hydration of the paste samples. Conditioning of samples in 100% RH resulted in higher compressive strength and the degree of hydration. Because of the 28 days moist curing and 12 weeks moisture conditioning in different RH, fly ash based samples showed better compressive strength than the OPC samples.

  17. Airway Hydration and COPD

    Science.gov (United States)

    Ghosh, Arunava; Boucher, R.C.; Tarran, Robert

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the prevalent causes of worldwide mortality and encompasses two major clinical phenotypes, i.e., chronic bronchitis (CB) and emphysema. The most common cause of COPD is chronic tobacco inhalation. Research focused on the chronic bronchitic phenotype of COPD has identified several pathological processes that drive disease initiation and progression. For example, the lung’s mucociliary clearance (MCC) system performs the critical task of clearing inhaled pathogens and toxic materials from the lung. MCC efficiency is dependent on: (i) the ability of apical plasma membrane ion channels such as the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na+ channel (ENaC) to maintain airway hydration; (ii) ciliary beating; and, (iii) appropriate rates of mucin secretion. Each of these components is impaired in CB and likely contributes to the mucus stasis/accumulation seen in CB patients. This review highlights the cellular components responsible for maintaining MCC and how this process is disrupted following tobacco exposure and with CB. We shall also discuss existing therapeutic strategies for the treatment of chronic bronchitis and how components of the MCC can be used as biomarkers for the evaluation of tobacco or tobacco-like-product exposure. PMID:26068443

  18. Mechanism of gypsum hydration

    Directory of Open Access Journals (Sweden)

    Pacheco, G.

    1991-06-01

    Full Text Available There is an hypothesis that the mechanism o f gypsum hydration and dehydration is performed through two simultaneous phenomena. In this study we try to clear up this phenomenon using chlorides as accelerators or a mixture of ethanol-methanol as retarders to carry out the gypsum setting. Natural Mexican gypsum samples and a hemihydrate prepared in the laboratory are used. The following analytical techniques are used: MO, DRX, DTA, TG and DTG. In agreement with the obtained results, it can be concluded: that colloid formation depends on the action of accelerators or retarders and the crystals are a consequence of the quantity of hemihydrate formed.

    En el mecanismo de hidratación y deshidratación del yeso existe la hipótesis de que éste se efectúa por dos fenómenos simultáneos. Este estudio intenta esclarecer estos fenómenos, empleando: cloruros como aceleradores o mezcla etanol-metanol como retardadores para efectuar el fraguado del yeso. Se emplean muestras de yeso de origen natural mexicano y hemihydrate preparado en laboratorio; se utilizan técnicas analíticas: MO, DRX, DTA, TG y DTG. De acuerdo a los resultados obtenidos se puede deducir: que la formación del coloide depende de la acción de los agentes aceleradores o retardadores y que los cristales son consecuencia de la cantidad de hemihidrato formado.

  19. THERMAL DEGRADATION AND FLAME RETARDANCY OF CALCIUM ALGINATE FIBERS

    Institute of Scientific and Technical Information of China (English)

    Qing-shan Kong; Bing-bing Wang; Quan Ji; Yan-zhi Xia; Zhao-xia Guo; Jian Yu

    2009-01-01

    Calcium alginate fibers were prepared by wet spinning of sodium alginate into a coagulating bath containing calcium chloride. The thermal degradation and flame retardancy of calcium alginate fibers were investigated with thermal gravimetry (TG), X-ray diffraction (XRD), limiting oxygen index (LOI) and cone calorimeter (CONE). The results show that calcium alginate fibers are inherently flame retardant with a LOI value of 34, and the heat release rate (HRR), total heat release (THR), CO and CO_2 concentrations during combustion are much lower compared with those of viscose fibers. Calcium carbonate and calcium oxide were formed during thermal degradation of calcium alginate fibers at different temperatures. The shape of calcium alginate fibers is well kept after LOI test. The rigid combustion residue char acts as an effective barrier to the outward diffusion of flame and heat. The combustion process and flame retardant mechanism of calcium alginate fibers are also discussed.

  20. Calcium supplements

    Science.gov (United States)

    ... Related Bone Diseases National Resource Center. Calcium and vitamin D: Important at every age. NIAMS.NIH.gov website. www.niams.nih.gov/Health_Info/Bone/Bone_Health/Nutrition . Updated May 2015. Accessed March ...

  1. Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha;

    2015-01-01

    BACKGROUND: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill...... efficacy-and normal cell sensitivity. METHODS: Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780......), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). RESULTS: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p

  2. Experimental study of enhanced gas recovery from gas hydrate bearing sediments by inhibitor and steam injection methods

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, T.; Ohtake, M.; Sakamoto, Y.; Yamamoto, Y.; Haneda, H. [National Inst. of Advanced Industrial Science and Technology, Tsukuba (Japan). Methane Hydrate Research Laboratory; Komai, T. [National Inst. of Advanced Industrial Science and Technoloyg, Tsukuba (Japan). Inst. for Geo-Resource and Environment; Higuchi, S. [Nihon Axis Co. Ltd., Mito (Japan)

    2008-07-01

    Inhibitor and steam injection methods for recovering methane hydrate-bearing sediments were investigated. New apparatus designs were used to inject steam into artificial methane hydrate-bearing sediments. Aqueous methanol was injected into a silica-based hydrate-bearing sediment in order to examine the dissociation behaviour of the methane hydrates. Experiments were conducted to examine the effects of steam injection using pure water; an aqueous methyl alcohol (MeOh) solution at 10 wt per cent; and an aqueous sodium chloride (NaC1) solution at 3 wt per cent. Temperatures for the injected fluids were set at 40 degrees C. Total gas production behaviour was divided into 3 stages: (1) the replacement of the remaining gas with the injected solution in the pore space; (2) gas production by hydrate dissociation; and (3) steady state and gas release. Results showed that cumulative gas production using the inhibitor solutions of MeOH and NaC1 proceeded more rapidly than the pure water samples. Downstream temperatures were not maintained at initial temperatures but decreased following the initiation of hydrate dissociation. Temperature changes were attributed to the coupling effect of the dissociation temperature and changes in inhibitor concentrations at the methane hydrate's surface. The use of inhibitors resulted in higher levels of cumulative gas production and more rapid hydrate dissociation rates. It was concluded that depressurization and steam injection induced hydrate dissociation from both upstream and downstream to the center of the sediment sample. 18 refs., 9 figs.

  3. Fast in situ x-ray-diffraction studies of chemical reactions: A synchrotron view of the hydration of tricalcium aluminate

    Science.gov (United States)

    Jupe, A. C.; Turrillas, X.; Barnes, P.; Colston, S. L.; Hall, C.; Häusermann, D.; Hanfland, M.

    1996-06-01

    We report observations on the early hydration of tricalcium aluminate, the most reactive component of Portland cement, using rapid-energy dispersive diffraction on a high brilliance synchrotron source. In situ observations of the hydration process over short time scales, and through bulk samples, reveal an intermediate calcium aluminate hydrate appearing just prior to the formation of the final stable hydrate, demonstrating the nucleating role of this intermediate. The superior quality of the data is sufficient to yield concentration versus time plots for each phase over the whole hydration sequence. This improvement derives from being able to use smaller diffracting volumes and consequent removal of time smearing due to inhomogenetics, and thus now offers the possibility of extending the technique in terms of time resolution and diversity of system.

  4. Effects of bran pre-hydration on functional characteristics and bread baking quality of bran and flour blends

    Science.gov (United States)

    The effect of bran pre-hydration on the composition and bread baking quality was determined using bran and flour of two wheat varieties. Bran was hydrated in sodium acetate buffer (50 mM, pH 5.3) to 50% moisture at 25 or 55°C for 1.5 or 12 h. The soluble sugar content in bran increased with pre-hydr...

  5. Gel time of calcium acrylate grouting material

    Institute of Scientific and Technical Information of China (English)

    韩同春

    2004-01-01

    Calcium acrylate is a polymerized grout, and can polymerize in an aqueous solution. The polymerization reaction utilizes ammonium persulfate as a catalyst and sodium thiosulfate as the activator. Based on the theory of reaction kinetics, this study on the relation between gel time and concentration of activator and catalyst showed that gel time of calcium acrylate is inversely proportional to activator and catalyst concentration. A formula of gel time is proposed, and an example is provided to verify the proposed formula.

  6. Tetrahydrofuran hydrate decomposition characteristics in porous media

    Science.gov (United States)

    Song, Yongchen; Wang, Pengfei; Wang, Shenglong; Zhao, Jiafei; Yang, Mingjun

    2016-12-01

    Many tetrahydrofuran (THF) hydrate properties are similar to those of gas hydrates. In the present work THF hydrate dissociation in four types of porous media is studied. THF solution was cooled to 275.15 K with formation of the hydrate under ambient pressure, and then it dissociated under ambient conditions. THF hydrate dissociation experiments in each porous medium were conducted three times. Magnetic resonance imaging (MRI) was used to obtain images. Decomposition time, THF hydrate saturation and MRI mean intensity (MI) were measured and analyzed. The experimental results showed that the hydrate decomposition time in BZ-4 and BZ-3 was similar and longer than that in BZ-02. In each dissociation process, the hydrate decomposition time of the second and third cycles was shorter than that of the first cycle in BZ-4, BZ-3, and BZ-02. The relationship between THF hydrate saturation and time is almost linear.

  7. Chemical heat pumping - a rapid experimental procedure for investigating the suitability of salt hydrates under dynamic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jan; Azoulay, Michel; Pablo, J. de

    A rapid experimental procedure of interest in determining the suitability of salt hydrates to be used in chemical heat pumping is described. Thermogravimetry under controlled water vapour pressure is utilized as the key diagnostic method. The test procedure relies largely on two critical tests: a cycling and an inhibition test. The former gives information on the stoichiometric reversibility and hysteresis between the dehydration and rehydration branches, while the inhibition test yields more quantitative information about the extent of inhibition. The latter represents a source of irreversibility inherent to the salt hydrate system. The test procedure is discussed and illustrated using four different salt hydrates: barium chloride, sodium sulphide, magnesium chloride and lithium hydroxide.

  8. Hydration in non-suckling neonatal Brahman-cross calves.

    Science.gov (United States)

    Fordyce, G; Olchowy, T W J; Anderson, A

    2015-06-01

    To identify measures that most closely relate to hydration in healthy Brahman-cross neonatal calves that experience milk deprivation. In a dry tropical environment, eight neonatal Brahman-cross calves were prevented from suckling for 2-3 days during which measurements were performed twice daily. Mean body water, as estimated by the mean urea space, was 74±3% of body weight at full hydration. The mean decrease in hydration was 7.3±1.1% per day. The rate of decrease was more than three-fold higher during the day than at night. At an ambient temperature of 39°C, the decrease in hydration averaged 1.1% hourly. Measures that were most useful in predicting the degree of hydration in both simple and multiple-regression prediction models were body weight, hindleg length, girth, ambient and oral temperatures, eyelid tenting, alertness score and plasma sodium. These parameters are different to those recommended for assessing calves with diarrhoea. Single-measure predictions had a standard error of at least 5%, which reduced to 3-4% if multiple measures were used. We conclude that simple assessment of non-suckling Brahman-cross neonatal calves can estimate the severity of dehydration, but the estimates are imprecise. Dehydration in healthy neonatal calves that do not have access to milk can exceed 20% (>15% weight loss) in 1-3 days under tropical conditions and at this point some are unable to recover without clinical intervention. © 2015 Australian Veterinary Association.

  9. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Lachowski, Eric E.;

    1999-01-01

    Vapour phase hydration of purl cement clinker minerals at reduced relative humidities is described. This is relevant to modern high performance concrete that may self-desiccate during hydration and is also relevant to the quality of the cement during storage. Both the oretical considerations...... and experimental data are presented showing that C(3)A can hydrate at lower humidities than either C3S or C2S. It is suggested that the initiation of hydration during exposure to water vapour is nucleation controlled. When C(3)A hydrates at low humidity, the characteristic hydration product is C(3)AH(6...

  10. Progress of Gas Hydrate Studies in China

    Institute of Scientific and Technical Information of China (English)

    樊栓狮; 汪集旸

    2006-01-01

    A brief overview is given on the gas hydrate-related research activities carried out by Chinese researchers in the past 15 years. The content involves: (1) Historical review. Introducing the gas hydrate research history in China; (2) Gas hydrate research groups in China. There are nearly 20 groups engaged in gas hydrate research now; (3) Present studies.Including fundamental studies, status of the exploration of natural gas hydrate resources in the South China Sea region, and development of hydrate-based new techniques; (4) Future development.

  11. 0℃以下含SDS的甲烷水合物生成方式及过程对其分解速率的影响%The Dependence of the Dissociation Rate of Methane-SDS Hydrate below Ice Point on Its Manners of Forming and Processing

    Institute of Scientific and Technical Information of China (English)

    王秀林; 陈卫东; 陈光进; 孙长宇; 杨兰英; 马庆兰; 陈俊; 刘鹏; 唐绪龙; 赵焕伟

    2009-01-01

    The dissociation rates of methane hydrates formed with and without the presence of sodium dodecyl sulfate (methane-SDS hydrates), were measured under atmospheric pressure and temperatures below ice point to investigate the influence of the hydrate production conditions and manners upon its dissociation kinetic behavior. The experimental results demonstrated that the dissociation rate of methane hydrate below ice point is strongly dependent on the manners of hydrate formation and processing. The dissociation rate of hydrate formed quiescently was lower than that of hydrate formed with stirring; the dissociation rate of hydrate formed at lower pressure was higher than that of hydrate formed at higher pressure; the compaction of hydrate after its formation lowered its sta-bility, i.e., increased its dissociation rate. The stability of hydrate could be increased by prolonging the time period for which hydrate was held at formation temperature and pressure before it was cooled down, or by prolonging the time period for which hydrate was held at dissociation temperature and formation pressure before it was depressurized to atmospheric pressure. It was found that the dissociation rate of methane hydrate varied with the temperature (ranging from 245.2 to 272.2 K) anomalously as reported on the dissociation of methane hydrate without the presence of surfactant as kinetic promoter. The dissociation rate at 268 K was found to be the lowest when the manners and conditions at which hydrates were formed and processed were fixed.

  12. Hydration of fly ash cement

    Energy Technology Data Exchange (ETDEWEB)

    Etsuo Sakai; Shigeyoshi Miyahara; Shigenari Ohsawa; Seung-Heun Lee; Masaki Daimon [Tokyo Institute of Technology, Tokyo (Japan). Department of Metallurgy and Ceramics Science, Graduate School of Science and Engineering

    2005-06-01

    It is necessary to establish the material design system for the utilization of large amounts of fly ash as blended cement instead of disposing of it as a waste. Cement blended with fly ash is also required as a countermeasure to reduce the amount of CO{sub 2} generation. In this study, the influences of the glass content and the basicity of glass phase on the hydration of fly ash cement were clarified and hydration over a long curing time was characterized. Two kinds of fly ash with different glass content, one with 38.2% and another with 76.6%, were used. The hydration ratio of fly ash was increased by increasing the glass content in fly ash in the specimens cured for 270 days. When the glass content of fly ash is low, the basicity of glass phase tends to decrease. Reactivity of fly ash is controlled by the basicity of the glass phase in fly ash during a period from 28 to 270 days. However, at an age of 360 days, the reaction ratios of fly ash show almost identical values with different glass contents. Fly ash also affected the hydration of cement clinker minerals in fly ash cement. While the hydration of alite was accelerated, that of belite was retarded at a late stage.

  13. Test Your Sodium Smarts

    Science.gov (United States)

    ... You may be surprised to learn how much sodium is in many foods. Sodium, including sodium chloride ... foods with little or no salt. Test your sodium smarts by answering these 10 questions about which ...

  14. Comparison of stromal hydration techniques for clear corneal cataract incisions: conventional hydration versus anterior stromal pocket hydration.

    Science.gov (United States)

    Mifflin, Mark D; Kinard, Krista; Neuffer, Marcus C

    2012-06-01

    Anterior stromal pocket hydration was compared with conventional hydration for preventing wound leak after 2.8 mm uniplanar clear corneal incisions (CCIs) in patients having routine cataract surgery. Conventional hydration involves hydration of the lateral walls of the main incision with visible whitening of the stroma. The anterior stromal pocket hydration technique involves creation of an additional supraincisional stromal pocket overlying the main incision, which is then hydrated instead of the main incision. Sixty-six eyes of 48 patients were included in the data analysis with 33 assigned to each study group. The anterior stromal pocket hydration technique was significantly better than conventional hydration in preventing wound leak due to direct pressure on the posterior lip of the incision. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  15. Hydration of swelling clays: multi-scale sequence of hydration and determination of macroscopic energies from microscopic properties; Hydratation des argiles gonflantes: sequence d'hydratation multi-echelle determination des energies macroscopiques a partir des proprietes microscopiques

    Energy Technology Data Exchange (ETDEWEB)

    Salles, F

    2006-10-15

    Smectites have interesting properties which make them potential candidates for engineered barriers in deep geological nuclear waste repository: low permeability, swelling and cations retention. The subject of this thesis consists in the determination of the relationship between hydration properties, swelling properties and cations mobility in relation with confinement properties of clayey materials. The aim is to understand and to predict the behaviour of water in smectites, following two research orientations: the mechanistic aspects and the energetic aspects of the hydration of smectites. We worked on the Na-Ca montmorillonite contained in the MX80 bentonite, with the exchanged homo ionic structure (saturated with alkaline cations and calcium cations). The approach crosses the various scales (microscopic, mesoscopic and macroscopic) and implied the study of the various components of the system (layer-cation-water), by using original experimental methods (thermo-poro-metry and electric conductivity for various relative humidities (RH) and electrostatic calculations. Initially, the dry state is defined by SCTA (scanning calorimetry thermal analysis). Then a classical characterization of the smectite porosity for the dry state is carried out using mercury intrusion and nitrogen adsorption. We evidenced the existence of a meso-porosity which radius varies from 2 to 10 nm depending on the compensating cation. The thermo-poro-metry and conductivity experiments performed at various hydration states made it possible to follow the increase in the pore sizes and the cations mobility as a function of the hydration state. We highlight in particular the existence of an osmotic mesoscopic swelling for low RH (approximately 50-60%RH for Li and Na). By combining the results of thermo-poro-metry, X-ray diffraction and electric conductivity, we are able to propose a complete hydration sequence for each cation, showing the crucial role of the compensating cation in the hydration of

  16. Gas hydrates forming and decomposition conditions analysis

    Directory of Open Access Journals (Sweden)

    А. М. Павленко

    2017-07-01

    Full Text Available The concept of gas hydrates has been defined; their brief description has been given; factors that affect the formation and decomposition of the hydrates have been reported; their distribution, structure and thermodynamic conditions determining the gas hydrates formation disposition in gas pipelines have been considered. Advantages and disadvantages of the known methods for removing gas hydrate plugs in the pipeline have been analyzed, the necessity of their further studies has been proved. In addition to the negative impact on the process of gas extraction, the hydrates properties make it possible to outline the following possible fields of their industrial use: obtaining ultrahigh pressures in confined spaces at the hydrate decomposition; separating hydrocarbon mixtures by successive transfer of individual components through the hydrate given the mode; obtaining cold due to heat absorption at the hydrate decomposition; elimination of the open gas fountain by means of hydrate plugs in the bore hole of the gushing gasser; seawater desalination, based on the hydrate ability to only bind water molecules into the solid state; wastewater purification; gas storage in the hydrate state; dispersion of high temperature fog and clouds by means of hydrates; water-hydrates emulsion injection into the productive strata to raise the oil recovery factor; obtaining cold in the gas processing to cool the gas, etc.

  17. Nutrição de mudas de açaizeiro sob relações cálcio:potássio:sódio em solução nutritiva Nutrition of açai seedlings (Euterpe oleracea Mart. under different ratios of calcium:potassium: sodium in nutrient solution

    Directory of Open Access Journals (Sweden)

    Humberto Umbelino de Sousa

    2004-02-01

    Full Text Available Objetivando-se estudar diferentes relações entre os cátions cálcio, potássio e sódio na produção de matéria seca e acúmulo de macronutrientes em mudas de açaizeiro (Euterpe oleracea Mart., realizou-se um experimento em casa-de-vegetação no Departamento de Ciência do Solo da UFLA. Utilizou-se o delineamento estatístico em blocos casualisados com nove tratamentos em quatro repetições. Os tratamentos foram constituídos por nove relações cálcio: potássio: sódio (4:2:1, 3:3:1, 2:4:1, 1:5:1, 5:1:1, 4:1:2, 6:0:1; 0:6:1, e 4:2:0 em solução nutritiva. A unidade experimental constituiu-se de um vaso com capacidade para três litros de solução, contendo duas plantas. Avaliaram-se as seguintes características: produção de matéria seca e o acúmulo dos macronutrientes fósforo, cálcio, potássio, magnésio e enxofre na matéria seca da planta. A relação cálcio:potássio:sódio influenciou todas as características avaliadas; as soluções contendo cálcio, potássio e sódio nas relações 4:2:1 e 3:3:1 resultaram no desenvolvimento de mudas com maior produção de matéria seca e maior acúmulo de nutrientes.Aiming to evaluate the effects of different ratios of calcium, potassium and sodium cations on the mineral nutrition of açai seedlings (Euterpe oleracea Mart., a greenhouse experiment was carried out in the Soil Science Department at the Federal University of Lavras-UFLA. The randomized block design, with nine treatments and four replications, was used. The treatments were nine ratios of calcium, potassium and sodium (4:2:1, 3:3:1, 2:4:1, 1:5:1, 5:1:1, 4:1:2, 6:0:1; 0:6:1, e 4:2:0 in the nutrient solution. The experimental unit was a plastic pot with three liters of solution, containing two plants. The total dry matter and nutrient accumulation were evaluated. The relationship calcium:potassium:sodium influenced all the appraised characteristics, and the solutions containing calcium, potassium and sodium in the ratios

  18. Cementing properties of steel slag activated by sodium silicates and sodium hydroxide

    Institute of Scientific and Technical Information of China (English)

    Wen Ni; En Wang; Jianping Li; Han Sun

    2005-01-01

    Steel slag which is mainly composed of γ-CasSiO4 and other silicates or alumino-silicates is activated by sodium silicates and sodium hydroxide. The powders of such steel slag are usually inert to hydrate and subsequently have very low ability of cementing. But when sodium silicates and sodium hydroxide are used as activators the steel slag shows very good properties of cementing. When activated with NaOH solution the hardened slurry of the steel slag has a compressive strength of 11.13 MPa after being cured for 28 days. When activated with Na2SiO3 solution the samples after being cured for 28 days have an average compressive strength of 40.23 MPa. While the steel slag slurry which is only mixed with water has a compressive of 0.88 MPa after being cured for 28 days.

  19. Low sodium diet (image)

    Science.gov (United States)

    ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, or ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, or ...

  20. [Formulation of calcium carbonate tablets with various binding substances].

    Science.gov (United States)

    Gazikalović, E; Obrenović, D; Nidzović, Z; Toskić-Radojicić, M

    1996-01-01

    The test results of calcium carbonate tablets, made of different binding substances (microcrystal cellulose, gelatin, 7pp sodium carboxymethylcellulose and starch) were presented. The content of calcium-carbonate in tablets as well as varying, solidity, prodigality and aptness to decay was determined. The best properties were observed in tablets made with starch.

  1. Depressing effect of sodium hexametaphosphate on apatite in flotation of rutile

    Institute of Scientific and Technical Information of China (English)

    Hao Ding; Hai Lin; Yanxi Deng

    2007-01-01

    The separation of mtile from apatite by flotation and the mechanism of depressing the apatite of sodium hexametaphosphate were studied. The results showed that rutile and apatite could be separated by using alkyl-imino-bismethylene phosphoric acid and sodium hexametaphosphate as a collector and a regulator, respectively. Sodium hexametaphosphate could selectively dissolve calcium ions on the apatite surface, and make calcium ions break away from lattice binding through combining.

  2. Hydration of highly charged ions.

    Science.gov (United States)

    Hofer, Thomas S; Weiss, Alexander K H; Randolf, Bernhard R; Rode, Bernd M

    2011-08-01

    Based on a series of ab initio quantum mechanical charge field molecular dynamics (QMCF MD) simulations, the broad spectrum of structural and dynamical properties of hydrates of trivalent and tetravalent ions is presented, ranging from extreme inertness to immediate hydrolysis. Main group and transition metal ions representative for different parts of the periodic system are treated, as are 2 threefold negatively charged anions. The results show that simple predictions of the properties of the hydrates appear impossible and that an accurate quantum mechanical simulation in cooperation with sophisticated experimental investigations seems the only way to obtain conclusive results.

  3. Observation directe de la croissance d'hydrosilicate de calcium sur des surfaces d'alité et de silice par microscopie à force atomique

    Science.gov (United States)

    Gauffinet, Sandrine; Finot, Éric; Lesniewska, Eric; Nonat, André

    1998-08-01

    Direct observation of the growth of calcium silicate hydrates, the tricalcium silicate hydration products, at the solid-solution interface were performed by atomic force microscopy. The covering of the surface of alite or silica by a three-dimensional oriented aggregation of nano particles of calcium silicate hydrate is always observed whatever the sample. All observations and quantifications made on calcium silicate growth at the submicronic level are in agreement with the data deduced from the study of the system evolution at the macroscopic level.

  4. Great Market Potential of Hydrazine Hydrate

    Institute of Scientific and Technical Information of China (English)

    Shi Yuying

    2007-01-01

    @@ Stable consumption growth worldwide Hydrazine hydrate is an organic chemical raw material with extensive applications. The world's capacity to produce hydrazine hydrate has reached more than 200 thousand t/atoday (based on 100% hydrazine content).

  5. Calcium and bones

    Science.gov (United States)

    Bone strength and calcium ... calcium (as well as phosphorus) to make healthy bones. Bones are the main storage site of calcium in ... your body does not absorb enough calcium, your bones can get weak or will not grow properly. ...

  6. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Science.gov (United States)

    2010-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium...

  7. Hydration and Thermal Expansion in Anatase Nanoparticles.

    Science.gov (United States)

    Zhu, He; Li, Qiang; Ren, Yang; Fan, Longlong; Chen, Jun; Deng, Jinxia; Xing, Xianran

    2016-08-01

    A tunable thermal expansion is reported in nanosized anatase by taking advantage of surface hydration. The coefficient of thermal expansion of 4 nm TiO2 along a-axis is negative with a hydrated surface and is positive without a hydrated surface. High-energy synchrotron X-ray pair distribution function analysis combined with ab initio calculations on the specific hydrated surface are carried out to reveal the local structure distortion that is responsible for the unusual negative thermal expansion.

  8. Hydration and Thermal Expansion in Anatase Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, He [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Li, Qiang [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Ren, Yang [Argonne National Laboratory, X-Ray Science Division, Argonne IL 60439 USA; Fan, Longlong [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Chen, Jun [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Deng, Jinxia [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Xing, Xianran [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China

    2016-06-06

    A tunable thermal expansion is reported in nanosized anatase by taking advantage of surface hydration. The coefficient of thermal expansion of 4 nm TiO2 along a-axis is negative with a hydrated surface and is positive without a hydrated surface. High-energy synchrotron X-ray pair distribution function analysis combined with ab initio calculations on the specific hydrated surface are carried out to reveal the local structure distortion that is responsible for the unusual negative thermal expansion.

  9. Hydration and microstructure of Portland cement partially substituted with ultrafine silica

    Directory of Open Access Journals (Sweden)

    Escalante, J. I.

    2009-12-01

    Full Text Available Geothermal waste, a by-product of steam power plants that use geothermal underground resources, was studied as a possible replacement for Portland cement. This waste consists primarily in amorphous nanometric silica with traces of sodium and potassium chlorides. The replacement ratios studied were 0, 10 and 20% in cements cured at 20 and 60 ºC. X-ray diffraction analysis showed that clinker phase hydration took place earlier in the presence of the geothermal waste. Scanning electron microscopy, in turn, revealed a reduction in porosity and intense calcium hydroxide consumption as a result of the pozzolanic reaction. The pastes containing 20% waste, however, an intense cracking was observed due to the formation of alkali silica reaction gel and ettringite. Cracking was more prominent at 60 ºC but was not observed in either the neat cement or the blend with 10 % waste. The presence of these detrimental phases was attributed to the formation of Friedel’s salt in the initial hydration stages, induced by the chlorides in the geothermal material.Se investigaron pastas de cemento Portland sustituido con un desecho geotérmico, subproducto de la generación de electricidad en plantas que emplean recursos geotérmicos. El desecho está compuesto principalmente de sílice amorfa de tamaño nanométrico, con cloruros de sodio y potasio. Se investigaron cementos con niveles de substitución de 0, 10 y 20%, curados a 20 y 60 °C. En presencia del desecho geotérmico, se observó por Difracción de rayos X cuantitativa que la hidratación de las fases del clínker se aceleró; además mediante microscopía electrónica de barrido se encontró una disminución en la porosidad y un intenso consumo de hidróxido de calcio por la reacción puzolánica. Sin embargo, para pastas con 20% de desecho geotérmico, se observó agrietamiento con la presencia de gel de reacción álcali sílice y ettringita; fue más acentuado a 60 °C y no se observó para pastas de

  10. Calcium Carbonate

    Science.gov (United States)

    ... doctor if you have or have ever had kidney disease or stomach conditions.tell your doctor if you are pregnant, plan to become pregnant, or are breast-feeding. If you become pregnant while taking calcium carbonate, call your doctor.

  11. Calcium Test

    Science.gov (United States)

    ... if a person has symptoms of a parathyroid disorder , malabsorption , or an overactive thyroid. A total calcium level is often measured as part of a routine health screening. It is included in the comprehensive metabolic panel (CMP) and the basic metabolic panel (BMP) , ...

  12. Polyethylene Glycol Drilling Fluid for Drilling in Marine Gas Hydrates-Bearing Sediments: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Lixin Kuang

    2011-01-01

    Full Text Available Shale inhibition, low-temperature performance, the ability to prevent calcium and magnesium-ion pollution, and hydrate inhibition of polyethylene glycol drilling fluid were each tested with conventional drilling-fluid test equipment and an experimental gas-hydrate integrated simulation system developed by our laboratory. The results of these tests show that drilling fluid with a formulation of artificial seawater, 3% bentonite, 0.3% Na2CO3, 10% polyethylene glycol, 20% NaCl, 4% SMP-2, 1% LV-PAC, 0.5% NaOH and 1% PVP K-90 performs well in shale swelling and gas hydrate inhibition. It also shows satisfactory rheological properties and lubrication at temperature ranges from −8 °C to 15 °C. The PVP K-90, a kinetic hydrate inhibitor, can effectively inhibit gas hydrate aggregations at a dose of 1 wt%. This finding demonstrates that a drilling fluid with a high addition of NaCl and a low addition of PVP K-90 is suitable for drilling in natural marine gas-hydrate-bearing sediments.

  13. In Situ Soft X-ray Spectromicroscopy of Early Tricalcium Silicate Hydration

    Directory of Open Access Journals (Sweden)

    Sungchul Bae

    2016-12-01

    Full Text Available The understanding and control of early hydration of tricalcium silicate (C3S is of great importance to cement science and concrete technology. However, traditional characterization methods are incapable of providing morphological and spectroscopic information about in situ hydration at the nanoscale. Using soft X-ray spectromicroscopy, we report the changes in morphology and molecular structure of C3S at an early stage of hydration. In situ C3S hydration in a wet cell, beginning with induction (~1 h and acceleration (~4 h periods of up to ~8 h, was studied and compared with ex situ measurements in the deceleration period after 15 h of curing. Analysis of the near-edge X-ray absorption fine structure showed that the Ca binding energy and energy splitting of C3S changed rapidly in the early age of hydration and exhibited values similar to calcium silicate hydrate (C–S–H. The formation of C–S–H nanoseeds in the C3S solution and the development of a fibrillar C–S–H morphology on the C3S surface were visualized. Following this, silicate polymerization accompanied by C–S–H precipitation produced chemical shifts in the peaks of the main Si K edge and in multiple scattering. However, the silicate polymerization process did not significantly affect the Ca binding energy of C–S–H.

  14. Hydration characteristics of Biodentine and Theracal used as pulp capping materials.

    Science.gov (United States)

    Camilleri, Josette

    2014-07-01

    Investigation of the hydration and characterization of Theracal and Biodentine used for pulp capping. The setting mechanism and characterization of set Biodentine and Theracal after immersion in Hank's balanced salt solution (HBSS) for 28 days was investigated by scanning electron microscopy (SEM) of polished specimens and X-ray diffraction (XRD) analysis. The bioactivity and surface microstructure of cements immersed in HBSS or water was also assessed by similar techniques together with leaching in solution investigated by ion chromatography (IC). Biodentine hydration resulted in the formation of calcium hydroxide which was present in the material matrix and also on the material surface. Theracal was composed of large cement particles which showed some evidence of reaction rims on hydration. The material matrix included a barium zirconate phase as radiopacifier and also a glass phase composed of strontium, silicon and aluminum. This phase could not be detected in XRD analysis. Formation of a calcium phosphate phase was demonstrated on Theracal immersed in HBSS. Both materials leached calcium ions in solution. The presence of a resin matrix modifies the setting mechanism and calcium ion leaching of Theracal. The clinical implications of these findings need to be investigated. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. 21 CFR 172.715 - Calcium lignosulfonate.

    Science.gov (United States)

    2010-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... of sulfonated lignin, primarily as calcium and sodium salts. (b) It is used in an amount not to exceed that reasonably required to accomplish the intended physical or technical effect when added as...

  16. Terahertz sensing of corneal hydration.

    Science.gov (United States)

    Singh, Rahul S; Tewari, Priyamvada; Bourges, Jean Louis; Hubschman, Jean Pierre; Bennett, David B; Taylor, Zachary D; Lee, H; Brown, Elliott R; Grundfest, Warren S; Culjat, Martin O

    2010-01-01

    An indicator of ocular health is the hydrodyanmics of the cornea. Many corneal disorders deteriorate sight as they upset the normal hydrodynamics of the cornea. The mechanisms include the loss of endothelial pump function of corneal dystophies, swelling and immune response of corneal graft rejection, and inflammation and edema, which accompany trauma, burn, and irritation events. Due to high sensitivity to changes of water content in materials, a reflective terahertz (300 GHz and 3 THz) imaging system could be an ideal tool to measure the hydration level of the cornea. This paper presents the application of THz technology to visualize the hydration content across ex vivo porcine corneas. The corneas, with a thickness variation from 470 - 940 µm, were successfully imaged using a reflective pulsed THz imaging system, with a maximum SNR of 50 dB. To our knowledge, no prior studies have reported on the use of THz in measuring hydration in corneal tissues or other ocular tissues. These preliminary findings indicate that THz can be used to accurately sense hydration levels in the cornea using a pulsed, reflective THz imaging system.

  17. Physical properties of gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Kliner, J.T.R.; Grozic, J.L.H. [Calgary Univ., AB (Canada)

    2003-07-01

    Gas hydrates are naturally occurring, solid crystalline compounds (clathrates) that encapsulate gas molecules inside the lattices of hydrogen bonded water molecules within a specific temperature-pressure stability zone. Estimates of the total quantity of available methane gas in natural occurring hydrates are based on twice the energy content of known conventional fossil fuels reservoirs. Accurate and reliable in-situ quantification techniques are essential in determining the economic viability of this potential energy yield, which is dependent upon several factors such as sensitivity of the temperature-pressure stability zone, sediment type, porosity, permeability, concentration/abundance of free gas, spatial distribution in pore spaces, specific cage occupancy, and the influence of inhibitors. Various techniques like acoustic P and S waves, time domain reflectometry, and electrical resistance have been used to analyze the quantity and spatial distribution of the gas hydrate samples. These techniques were reviewed and the results obtained in the course of gas hydrate research were presented. 34 refs., 8 figs.

  18. Hydration kinetics of transgenic soybeans

    Directory of Open Access Journals (Sweden)

    Aline Francielle Fracasso

    2015-01-01

    Full Text Available The kinetic and experimental analyses of the hydration process of transgenic soybeans (BRS 225 RR are provided. The importance of the hydration process consists of the grain texture modifications which favor grinding and extraction of soybeans. The soaking isotherms were obtained for four different temperatures. Results showed that temperature affected transgenic soybeans´ hydration rate and time. Moisture content d.b. of the soybeans increased from 0.12 ± 0.01 kg kg-1 to 1.45 ± 0.19 kg kg-1 during 270 min. of process. Two models were used to fit the kinetic curves: an empirical model developed by Peleg (1988 and a phenomenological one, proposed by Omoto et al. (2009. The two models adequately represented the hydration kinetics. Peleg model was applied to the experimental data and the corresponding parameters were obtained and correlated to temperature. The model by Omoto et al. (2009 showed a better statistical fitting. Although Ks was affected by temperature (Ks = 0.38079 exp (-2289.3 T-1, the equilibrium concentration remained practically unchanged.

  19. Characterisation of gas hydrates formation and dissociation using high pressure DSC

    Energy Technology Data Exchange (ETDEWEB)

    Le Parlouer, P. [Thermal Consulting, Caluire (France); Etherington, G. [Setaram Inc., Pennsauken, NJ (United States)

    2008-07-01

    This paper provided details of an innovative methodology that used a high pressure micro-scale differential scanning calorimetry (DSC) method to characterize the thermodynamic properties and kinetics of gas hydrate formation. The calorimeter was based on a symmetrical heat flux design that used a Peltier cooling and heating principle. No refrigerating fluids were required. The method described phase transitions in relation to time, temperature and pressure. The DSC method was designed for use with gas hydrates trapped in marine sediments; hydrate formation in drilling muds and annulars during offshore oil and gas extraction; the storage and transportation of natural gas; and gas hydrate formation and dissociation for cold storage and transportation. Tests demonstrated that the DSC accurately predicted the formation of gas hydrates under high pressure conditions. Experimental studies were conducted to investigate salt solutions under methane pressure; and hydrate dissociation in a sodium chloride (NaC1) and ethyleneglycol solution. Data obtained comparing the method with classical PVT techniques showed that the MicroDSC technique was less time-consuming and required smaller sample volumes. It was concluded that the method is suitable for use with various types of fluids. 13 refs., 7 figs.

  20. Para-amino benzoic acid–mediated synthesis of vaterite phase of calcium carbonate

    Indian Academy of Sciences (India)

    T N Ramesh; S A Inchara; K Pallavi

    2015-05-01

    Calcium carbonate polymorphs were precipitated at room temperature and 80°C by varying the precipitation pH, carbonate source, effect of solvent in presence and absence of structure directing agent such as para-aminobenzoic acid. Calcite phase of calcium carbonate was obtained when sodium hydrogen carbonate and/or sodium carbonate (used as precipitating agents) were added to calcium chloride solution at different pHs in water and/or methanol as solvent in separate experiments. Vaterite phase of calcium carbonate (CaCO3) has been synthesized by mixing calcium chloride and sodium carbonate in presence of para-aminobenzoic acid when water–methanol binary mixture was used as solvent. Vaterite phase of calcium carbonate crystallizes in P63/mmc, while that of calcite phase in R-3mc, respectively. Calcite phase of calcium carbonate exhibits rhombohedral morphology, while vaterite phase has spherical morphology.

  1. Evidence for a distinct light-induced calcium-dependent potassium current in Hermissenda crassicornis.

    Science.gov (United States)

    Blackwell, K T

    2000-01-01

    A model of phototransduction is developed as a first step toward a model for investigating the critical interaction of light and turbulence stimuli within the type B photoreceptor of Hermissenda crassicronis. The model includes equations describing phototransduction, release of calcium from intracellular stores, and other calcium regulatory mechanisms, as well as equations describing ligand-gating of a rhabdomeric sodium current. The model is used to determine the sources of calcium in the soma, whether calcium or IP3 is a plausible ligand of the light-induced sodium current, and whether the light-induced potassium current is equivalent to the calcium-dependent potassium current activated by light-induced calcium release. Simulations show that the early light-induced calcium elevation is due to influx through voltage-dependent channels, whereas the later calcium elevation is due to release from intracellular stores. Simulations suggest that the ligand of the fast, light-induced sodium current is IP3 but that there is a smaller, prolonged component of the light-induced sodium current that is activated by calcium. In the model, the calcium-dependent potassium current, located in the soma, is activated only slightly by light-induced calcium elevation, leading to the prediction that a calcium-dependent potassium current, active at resting potential, is located in the rhabdomere and is responsible for the light-induced potassium current.

  2. Physical activity, hydration and health

    Directory of Open Access Journals (Sweden)

    Ascensión Marcos

    2014-06-01

    Full Text Available Since the beginning of mankind, man has sought ways to promote and preserve health as well as to prevent disease. Hydration, physical activity and exercise are key factors for enhancing human health. However, either a little dose of them or an excess can be harmful for health maintenance at any age. Water is an essential nutrient for human body and a major key to survival has been to prevent dehydration. However, there is still a general controversy regarding the necessary amount to drink water or other beverages to properly get an adequate level of hydration. In addition, up to now the tools used to measure hydration are controversial. To this end, there are several important groups of variables to take into account such as water balance, hydration biomarkers and total body water. A combination of methods will be the most preferred tool to find out any risk or situation of dehydration at any age range. On the other hand, physical activity and exercise are being demonstrated to promote health, avoiding or reducing health problems, vascular and inflammatory diseases and helping weight management. Therefore, physical activity is also being used as a pill within a therapy to promote health and reduce risk diseases, but as in the case of drugs, dose, intensity, frequency, duration and precautions have to be evaluated and taken into account in order to get the maximum effectiveness and success of a treatment. On the other hand, sedentariness is the opposite concept to physical activity that has been recently recognized as an important factor of lifestyle involved in the obesogenic environment and consequently in the risk of the non-communicable diseases. In view of the literature consulted and taking into account the expertise of the authors, in this review a Decalogue of global recommendations is included to achieve an adequate hydration and physical activity status to avoid overweight/obesity consequences.

  3. Calcium binding to low molecular weight compounds and health promoting products

    DEFF Research Database (Denmark)

    Vavrusova, Martina

    Calcium precipitation in the almost neutral environment of the intestines is a process related to weight loss management and plays an important role in the prevention of colon cancer development. This process also affects calcium bioavailability which is decreased due to decreased calcium....... The solubility of calcium L-lactate and calcium D-lactobionate were higher compared to calcium Dgluconate as shown by the solubility products determined electrochemically for aqueous 1.0 mol·L -1 NaCl at 25 °C. The association constants for individual calcium hydroxycarboxylates and later for their mixed...... binding. The continuing dissolution of calcium L-lactate in already saturated aqueous solution of calcium Llactate after addition of solid sodium gluconate was found to form a homogeneous solution. This homogeneous solution became increasingly supersaturated in calcium D-gluconate, and calcium Dgluconate...

  4. 低分子肝素钠对血液透析患者钙磷代谢影响的临床观察%Effect of Low Molecular Weight Heparin Sodium on Calcium Phosphorus Metabolism in Patients Undergoing Hemodialysis:Clinical Observation

    Institute of Scientific and Technical Information of China (English)

    王猛

    2015-01-01

    OBJECTIVE:To explore the effect of low molecular weight heparin sodium on calcium-phosphorus metabolism in patients undergoing hemodialysis.METHODS: From May 2012 to May 2013, a total of 166 patients undergoing hemodialysis were randomly divided into either control group receiving unfractionated heparin or experimental group receiving low molecular weight heparin sodium.The two groups were followed and compared with regard to serum levels of calcium, phosphorus, parathyroid hormone (PTH) and alkaline phosphatase (ALP), the incidences of bleeding and blood clotting during cardiopulmonary bypass.RESULTS:Before treatment, serum levels of calcium, phosphorus, PTH and ALP showed no significant difference between the two groups ( P >0.05 ) .Serum phosphorus and PTH levels did not change significantly in the control group before and after treatment ( P>0.05 ) . After hemodialysis, serum phosphorus and PTH levels were significantly reduced in the experimental group, and the differences were statistically significant between the experimental group and the control group ( P 0.05 ) .The incidence of bleeding in the experimental group was significantly lower than in the control group ( P0.05).CONCLUSION:The low molecular heparin sodium might be effective for improving calcium-phosphorus metabolism.%目的:探讨低分子肝素钠对维持性血液透析患者钙磷代谢的影响。方法:选取2012年5月至2013年5月收治的166例血液透析患者作为研究对象,按随机表法将其分成对照组和试验组,对照组予以普通肝素钠,试验组予以低分子肝素钠,对两组患者的血钙、血磷、甲状旁腺激素( PTH)、碱性磷酸酶( ALP)水平、出血发生率、体外循环凝血发生率进行观察比较。结果:治疗前两组患者血钙、血磷、PTH、ALP水平差异无统计学意义(P>0.05)。对照组治疗前后血磷、PTH水平无明显变化(P>0.05)。透析后,试验组血磷及PTH水平显

  5. 奥扎格雷钠和低分子肝素钙治疗糖尿病下肢动脉疾病的疗效%Effect of Sodium Ozagrel and Low Molecular Heparin Calcium in the Treatment of Diabetes and Lower Extremity Arterial Disease

    Institute of Scientific and Technical Information of China (English)

    丁广军

    2015-01-01

    目的 探究奥扎格雷钠和低分子肝素钙治疗糖尿病下肢动脉疾病的临床疗效. 方法 选取该院2013年3月—2014年10月收治的糖尿病下肢动脉疾病患者80例作为该次的研究对象,按照随机数字法将其分为两组,分别为实验组和常规组,实验组患者40例,常规组患者40例. 其中对常规组患者给予低分子肝素钙治疗,实验组患者在上述治疗方法的基础上加用奥扎格雷钠联合治疗,比较两组糖尿病下肢动脉疾病患者的临床治疗效果、不良反应情况等.结果 经过临床治疗后,实验组患者的总有效率为95.0%,常规组患者的总有效率为77.5%,实验组患者的总有效率明显高于常规组(P<0.05);治疗前后实验组患者各项生化指标的改善程度明显优于常规组(P<0.05);不良反应情况:实验组患者的不良反应发生率明显少于常规组(P<0.05). 结论 对糖尿病下肢动脉疾病患者给予奥扎格雷钠联合低分子肝素钙治疗的临床效果显著,不良反应少,药物安全有效,对疾病治疗具有重要的指导意义.%Objective To explore the clinical effect of sodium ozagrel and low molecular heparin calcium in the treatment of diabetes and lower extremity artery disease. Methods 80 cases with diabetes and lower extremity artery disease admitted in our hospital from March 2013 to October 2014 were selected as the subjects and divided into two groups, the experimental group and the control group with 40 cases in each according to the random number method. Patients in the control group were treated by low molecular heparin calcium, and those in the experimental group were treated by sodium ozagrel and low molecular heparin calcium. And the clinical effect and incidence of adverse reactions were compared between the two groups. Results After clinical treatment, the total effective rate of the experimental group was much higher than that of the control group(95.0%vs 77.5%)(P<0.05). The improvement of

  6. The observation of the curative effect of anti-inflammatory analgesic cream combined with heparin sodium cream coated in the treatment of iatrogenic neonatal calcium salt deposition disease%止痛消炎膏联合肝素钠乳膏外涂治疗医源性新生儿钙盐沉积症的疗效观察

    Institute of Scientific and Technical Information of China (English)

    赵磊; 侯钰佩; 李丹凤

    2014-01-01

    目的:探讨止痛消炎膏联合肝素钠乳膏外涂治疗医源性新生儿钙盐沉积症的临床疗效。方法:2012年4月-2014年3月收治医源性新生儿钙盐沉积症患儿30例,随机分为试验组和对照组,各15例。试验组在钙盐沉积处用0.9%氯化钠注射液清洗干净后先涂抹肝素钠乳膏并适当局部按摩后用止痛消炎膏敷于患处,3次/日;对照组用透明质酸酶局部封闭。结果:试验组全部治愈,疗程18~29天,平均(23.7±3.5)天;对照组治愈率86.7%,疗程47~56天,平均(52.2±2.7)天,两组比较差异均有统计学意义(P<0.05)。结论:止痛消炎膏联合肝素钠乳膏外涂治疗医源性新生儿钙盐沉积症治愈率高,疗程短,可行性较强,疗效好,值得临床推广。%Objective:To investigate the clinical effect of anti-inflammatory analgesic cream combined with heparin sodium cream coated in the treatment of iatrogenic neonatal calcium salt deposition disease.Methods:30 cases of iatrogenic neonatal calcium salt deposition disease were selected from April 2012 to March 2014.They were randomly divided into the experimental group and the control group with 15 cases in each.The experimental group were washed the deposition of calcium salts cleaning using physiological saline,smeared heparin sodium cream at first and appropriate local massage,then applyed anti-inflammatory analgesic cream to affected area,3 times/day.The control group were partial closed with hyaluronidase.Results:The experimental group were all cured;the course of treatment was 18~29 days,with an average of 23.7±3.5 days.The cure rate of the control group was 86.7%;the course of treatment was 47~56 days,with an average of 52.2±2.7 days.The difference were statistically significant between the two groups(P<0.05).Conclusion:Analgesic anti-inflammatory ointment combined with heparin sodium cream in the treatment of iatrogenic neonatal calcium salt deposition disease have

  7. Efeito do cloreto de cálcio e da película de alginato de sódio na conservação de laranja 'Pera' minimamente processada Effect of calcium chloride and film of sodium alginate in the conservation of minimally processed 'Pera' orange

    Directory of Open Access Journals (Sweden)

    Vanessa Daniel Groppo

    2009-03-01

    Full Text Available Este trabalho teve como objetivo avaliar o efeito de solução de cloreto de cálcio e película de alginato de sódio na conservação de laranja 'Pera' minimamente processada. A qualidade da laranja minimamente processada submetida aos tratamentos com cloreto de cálcio a 1%, alginato de sódio a 1% e o controle (sem aplicação de tratamento foi monitorada a cada três dias, por análises físicas e químicas, microbiológicas e sensoriais por um período de 12 dias de armazenamento a 5 ºC. O tratamento com alginato de sódio (1% apresentou menor perda de massa ao longo do período de armazenamento, porém, as amostras submetidas a este tratamento, tiveram sua qualidade prejudicada quanto aos teores de ácido ascórbico, açúcares, teor de sólidos solúveis e firmeza. No final do armazenamento, o tratamento com cloreto de cálcio (1% apresentou a melhor eficiência na manutenção das características iniciais do fruto, preservando os teores de ácido ascórbico, acidez titulável, 'ratio', açúcares e firmeza, evidenciada pela menor solubilização de pectinas. Análise microbiológica detectou valores insignificantes para bactérias psicrotróficas, bolores e leveduras e coliformes totais em todos os tratamentos, mostrando que os cuidados tomados com as condições higiênicas levaram à obtenção de um produto com padrão microbiológico de acordo com a legislação de alimentos, apresentando ausência de Salmonella e ausência de coliformes a 45 ºC. Sensorialmente, a laranja minimamente processada tratada com cloreto de cálcio (1% e o controle, apresentou-se em condições de consumo por nove dias de armazenamento.The aim of this study was to assess the effect of a calcium chloride solution and a film of sodium alginate on the conservation of minimally processed 'Pera' oranges. The quality of minimally processed orange submitted to treatments with 1% calcium chloride and 1% sodium alginate and the control (without treatment

  8. Dysbalance of astrocyte calcium under hyperammonemic conditions.

    Directory of Open Access Journals (Sweden)

    Nicole Haack

    Full Text Available Increased brain ammonium (NH4(+/NH3 plays a central role in the manifestation of hepatic encephalopathy (HE, a complex syndrome associated with neurological and psychiatric alterations, which is primarily a disorder of astrocytes. Here, we analysed the influence of NH4(+/NH3 on the calcium concentration of astrocytes in situ and studied the underlying mechanisms of NH4(+/NH3-evoked calcium changes, employing fluorescence imaging with Fura-2 in acute tissue slices derived from different regions of the mouse brain. In the hippocampal stratum radiatum, perfusion with 5 mM NH4(+/NH3 for 30 minutes caused a transient calcium increase in about 40% of astrocytes lasting about 10 minutes. Furthermore, the vast majority of astrocytes (∼ 90% experienced a persistent calcium increase by ∼ 50 nM. This persistent increase was already evoked at concentrations of 1-2 mM NH4(+/NH3, developed within 10-20 minutes and was maintained as long as the NH4(+/NH3 was present. Qualitatively similar changes were observed in astrocytes of different neocortical regions as well as in cerebellar Bergmann glia. Inhibition of glutamine synthetase resulted in significantly larger calcium increases in response to NH4(+/NH3, indicating that glutamine accumulation was not a primary cause. Calcium increases were not mimicked by changes in intracellular pH. Pharmacological inhibition of voltage-gated sodium channels, sodium-potassium-chloride-cotransporters (NKCC, the reverse mode of sodium/calcium exchange (NCX, AMPA- or mGluR5-receptors did not dampen NH4(+/NH3-induced calcium increases. They were, however, significantly reduced by inhibition of NMDA receptors and depletion of intracellular calcium stores. Taken together, our measurements show that sustained exposure to NH4(+/NH3 causes a sustained increase in intracellular calcium in astrocytes in situ, which is partly dependent on NMDA receptor activation and on release of calcium from intracellular stores. Our study

  9. Calcium paradox and calcium entry blockers

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Slade, A.M.; Nayler, W.G.; Meijler, F.L.

    1984-01-01

    Reperfusion of isolated hearts with calcium-containing solution after a short period of calcium-free perfusion results in irreversible cell damage (calcium paradox). This phenomenon is characterized by an excessive influx of calcium into the cells, the rapid onset of myocardial contracture, exhausti

  10. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K.

    1995-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  11. Handbook of gas hydrate properties and occurrence

    Energy Technology Data Exchange (ETDEWEB)

    Kuustraa, V.A.; Hammershaimb, E.C.

    1983-12-01

    This handbook provides data on the resource potential of naturally occurring hydrates, the properties that are needed to evaluate their recovery, and their production potential. The first two chapters give data on the naturally occurring hydrate potential by reviewing published resource estimates and the known and inferred occurrences. The third and fourth chapters review the physical and thermodynamic properties of hydrates, respectively. The thermodynamic properties of hydrates that are discussed include dissociation energies and a simplified method to calculate them; phase diagrams for simple and multi-component gases; the thermal conductivity; and the kinetics of hydrate dissociation. The final chapter evaluates the net energy balance of recovering hydrates and shows that a substantial positive energy balance can theoretically be achieved. The Appendices of the Handbook summarize physical and thermodynamic properties of gases, liquids and solids that can be used in designing and evaluating recovery processes of hydrates. 158 references, 67 figures, 47 tables.

  12. Separation of water through gas hydrate formation

    DEFF Research Database (Denmark)

    Boch Andersen, Torben; Thomsen, Kaj

    2009-01-01

    Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goa...... volumes and the needs for high pressure. The process could be interesting for concentration of heat sensitive, high value products......Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goal...... of the project was to formulate an alternative separation concept, which can replace the traditional water evaporation process in the sugar production. Work with the separation concept showed that gas hydrates can be used for water separation. The process is not suitable for sugar production because of large...

  13. Removing vanadium from sodium chromate neutral liquid by non­calcium roasting technology with chromium salt%铬盐无钙焙烧工艺铬酸钠中性液铁盐除钒

    Institute of Scientific and Technical Information of China (English)

    杨得军; 王少娜; 陈晓芳; 郑诗礼; 李世厚

    2014-01-01

    According to the current existing problem in the vanadium precipitating process in calcium salt by non­calcium roasting technology with chromium salt, such problems as large amount of calcium salt, repeatedly adjusting the pH value, slag containing calcium chromate and other issues, iron salts were used as precipitating agent to remove vanadium. The amount of iron salt added, pH value, temperature and other major factors on the impact of vanadium removal were investigated, the optimum conditions are that the vanadium concentration in final liquid is less than 0.08 g/L, which satisfies the follow­up process requirements. Utilizing iron salt to remove vanadium can be operated in wide pH range, without repeatedly adjusting the pH value. By analyzing, the slag phase is ferric hydroxide, which adsorbs vanadium, containing no chromium. And by further exploring against adsorption mechanism, vanadium is adsorbed on the surface of the iron hydroxide by inner layer complexation.%针对铬盐无钙焙烧工艺浸出液除钒现行钙盐沉钒法钙盐加入量大、需反复调节pH值、脱钒渣含铬酸钙等问题,提出采用铁盐作为沉钒剂进行除钒。考察铁盐加入量、pH 值和温度等主要因素对钒脱除的影响,得到了最佳工艺条件,且终液钒浓度低于0.08 g/L,满足后续工艺要求。铁盐除钒可在较宽的pH值范围内操作,不需反复调节溶液pH值。渣相分析表明:脱钒渣为吸附钒酸根的氢氧化铁,其中不含铬,进一步探讨氢氧化铁对钒的吸附机理,确定钒酸根通过内层络合方式吸附在氢氧化铁表面。

  14. Well log characterization of natural gas hydrates

    Science.gov (United States)

    Collett, Timothy S.; Lee, Myung W.

    2011-01-01

    In the last 25 years we have seen significant advancements in the use of downhole well logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From an early start of using wireline electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells drilled in Arctic permafrost environments to today where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. The most established and well known use of downhole log data in gas hydrate research is the use of electrical resistivity and acoustic velocity data (both compressional- and shear-wave data) to make estimates of gas hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. New downhole logging tools designed to make directionally oriented acoustic and propagation resistivity log measurements have provided the data needed to analyze the acoustic and electrical anisotropic properties of both highly inter-bedded and fracture dominated gas hydrate reservoirs. Advancements in nuclear-magnetic-resonance (NMR) logging and wireline formation testing have also allowed for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids (i.e., free-water along with clay and capillary bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms controlling the formation and occurrence of gas hydrate in nature along with data on gas hydrate reservoir properties (i.e., permeabilities) needed to accurately predict gas production rates for various gas hydrate

  15. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn

    2009-11-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate-saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate-bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  16. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, D.D.; Martin, A.I.; Yun, T.S.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate-saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate-bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces. Copyright 2009 by the American Geophysical Union.

  17. Herbal extracts of Tribulus terrestris and Bergenia ligulata inhibit growth of calcium oxalate monohydrate crystals in vitro

    Science.gov (United States)

    Joshi, V. S.; Parekh, B. B.; Joshi, M. J.; Vaidya, A. B.

    2005-02-01

    A large number of people in this world are suffering from urinary stone problem. Calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) containing stones (calculi) are commonly found. In the present study, COM crystals were grown by a double diffusion gel growth technique using U-tubes. The gel was prepared from hydrated sodium metasilicate solution. The gel framework acts like a three-dimensional crucible in which the crystal nuclei are delicately held in the position of their formation, and nutrients are supplied for the growth. This technique can be utilized as a simplified screening static model to study the growth, inhibition and dissolution of urinary stones in vitro. The action of putative litholytic medicinal plants, Tribulus terrestris Linn. ( T.t) and Bergenia ligulata Linn. ( B.l.), has been studied in the growth of COM crystals. Tribulus terrestris and Bergenia ligulata are commonly used as herbal medicines for urinary calculi in India. To verify the inhibitive effect, aqueous extracts of Tribulus terrestris and Bergenia ligulata were added along with the supernatant solutions. The growth was measured and compared, with and without the aqueous extracts. Inhibition of COM crystal growth was observed in the herbal extracts. Maximum inhibition was observed in Bergenia ligulata followed by Tribulus terrestris. The results are discussed.

  18. The crucial effect of early-stage gelation on the mechanical properties of cement hydrates

    Science.gov (United States)

    Ioannidou, Katerina; Kanduč, Matej; Li, Lunna; Frenkel, Daan; Dobnikar, Jure; Del Gado, Emanuela

    2016-07-01

    Gelation and densification of calcium-silicate-hydrate take place during cement hydration. Both processes are crucial for the development of cement strength, and for the long-term evolution of concrete structures. However, the physicochemical environment evolves during cement formation, making it difficult to disentangle what factors are crucial for the mechanical properties. Here we use Monte Carlo and Molecular Dynamics simulations to study a coarse-grained model of cement formation, and investigate the equilibrium and arrested states. We can correlate the various structures with the time evolution of the interactions between the nano-hydrates during the preparation of cement. The novel emerging picture is that the changes of the physicochemical environment, which dictate the evolution of the effective interactions, specifically favour the early gel formation and its continuous densification. Our observations help us understand how cement attains its unique strength and may help in the rational design of the properties of cement and related materials.

  19. Relationships between different hydration properties of commercial and laboratory soybean isolates.

    Science.gov (United States)

    Añón, M C; Sorgentini, D A; Wagner, J R

    2001-10-01

    Functional properties related to water protein interactions of soy protein isolates depend on the structural and aggregation characteristics of their major components (storage globulins 7S and 11S) that could be modified by the preparation procedure, thermal and/or chemical treatments, and drying methods. Commercial and laboratory isolates with different functionalities resulting from their structural modifications were compared. Isolates with high solubility or excessive thermally induced insolubilization or compact calcium-induced aggregates caused low water-imbibing capacity (WIC) values. The highest WIC results from the balance between intermediate solubility and the formation of aggregates with good hydration properties. The apparent viscosity of dispersions of commercial (spray dried) and laboratory (lyophilized) isolates depends on the WIC, the morphology and size of the particles, and the interaction of the hydrated particles. The hydration properties and viscosity of protein isolate suspensions were strongly determined by the amount and properties of the insoluble fraction.

  20. The effect of hydrate saturation on water retention curves in hydrate-bearing sediments

    Science.gov (United States)

    Mahabadi, Nariman; Zheng, Xianglei; Jang, Jaewon

    2016-05-01

    The experimental measurement of water retention curve in hydrate-bearing sediments is critically important to understand the behavior of hydrate dissociation and gas production. In this study, tetrahydrofuran (THF) is selected as hydrate former. The pore habit of THF hydrates is investigated by visual observation in a transparent micromodel. It is confirmed that THF hydrates are not wetting phase on the quartz surface of the micromodel and occupy either an entire pore or part of pore space resulting in change in pore size distribution. And the measurement of water retention curves in THF hydrate-bearing sediments with hydrate saturation ranging from Sh = 0 to Sh = 0.7 is conducted for excess water condition. The experimental results show that the gas entry pressure and the capillary pressure increase with increasing hydrate saturation. Based on the experimental results, fitting parameters for van Genuchten equation are suggested for different hydrate saturation conditions.