WorldWideScience

Sample records for hydrated nicotinamide adenine

  1. Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration.

    Science.gov (United States)

    Mukherjee, Sarmistha; Chellappa, Karthikeyani; Moffitt, Andrea; Ndungu, Joan; Dellinger, Ryan W; Davis, James G; Agarwal, Beamon; Baur, Joseph A

    2017-02-01

    The regenerative capacity of the liver is essential for recovery from surgical resection or injuries induced by trauma or toxins. During liver regeneration, the concentration of nicotinamide adenine dinucleotide (NAD) falls, at least in part due to metabolic competition for precursors. To test whether NAD availability restricts the rate of liver regeneration, we supplied nicotinamide riboside (NR), an NAD precursor, in the drinking water of mice subjected to partial hepatectomy. NR increased DNA synthesis, mitotic index, and mass restoration in the regenerating livers. Intriguingly, NR also ameliorated the steatosis that normally accompanies liver regeneration. To distinguish the role of hepatocyte NAD levels from any systemic effects of NR, we generated mice overexpressing nicotinamide phosphoribosyltransferase, a rate-limiting enzyme for NAD synthesis, specifically in the liver. Nicotinamide phosphoribosyltransferase overexpressing mice were mildly hyperglycemic at baseline and, similar to mice treated with NR, exhibited enhanced liver regeneration and reduced steatosis following partial hepatectomy. Conversely, mice lacking nicotinamide phosphoribosyltransferase in hepatocytes exhibited impaired regenerative capacity that was completely rescued by administering NR.

  2. Simultaneous quantitation of nicotinamide riboside, nicotinamide mononucleotide and nicotinamide adenine dinucleotide in milk by a novel enzyme-coupled assay.

    Science.gov (United States)

    Ummarino, Simone; Mozzon, Massimo; Zamporlini, Federica; Amici, Adolfo; Mazzola, Francesca; Orsomando, Giuseppe; Ruggieri, Silverio; Raffaelli, Nadia

    2017-04-15

    Nicotinamide riboside, the most recently discovered form of vitamin B3, and its phosphorylated form nicotinamide mononucleotide, have been shown to be potent supplements boosting intracellular nicotinamide adenine dinucleotide (NAD) levels, thus preventing or ameliorating metabolic and mitochondrial diseases in mouse models. Here we report for the first time on the simultaneous quantitation of nicotinamide riboside, nicotinamide mononucleotide and NAD in milk by means of a fluorometric, enzyme-coupled assay. Application of this assay to milk from different species revealed that the three vitamers were present in human and donkey milk, while being selectively distributed in the other milks. Human milk was the richest source of nicotinamide mononucleotide. Overall, the three vitamers accounted for a significant fraction of total vitamin B3 content. Pasteurization did not affect the bovine milk content of nicotinamide riboside, whereas UHT processing fully destroyed the vitamin. In human milk, NAD levels were significantly affected by the lactation time.

  3. The chemistry of nicotinamide adenine dinucleotide (NAD) analogues containing C-nucleosides related to nicotinamide riboside.

    Science.gov (United States)

    Pankiewicz, Krzysztof W; Watanabe, Kyoichi A; Lesiak-Watanabe, Krystyna; Goldstein, Barry M; Jayaram, Hiremagalur N

    2002-04-01

    Oncolytic C-nucleosides, tiazofurin (2-beta-D-ribofuranosylthiazole-4-carboxamide) and benzamide riboside (3-beta-D-ribofuranosylbenzamide) are converted in cell into active metabolites thiazole-4-carboxamide- and benzamide adenine dinucleotide, TAD and BAD, respectively. TAD and BAD as NAD analogues were found to bind at the nicotinamide adenine dinucleotide (cofactor NAD) site of inosine monophosphate dehydrogenase (IMPDH), an important target in cancer treatment. The synthesis and evaluation of anticancer activity of a number of C-nucleosides related to tiazofurin and nicotinamide riboside then followed and are reviewed herein. Interestingly, pyridine C-nucleosides (such as C-nicotinamide riboside) are not metabolized into the corresponding NAD analogues in cell. Their conversion by chemical methods is described. As dinucleotides these compounds show inhibition of IMPDH in low micromolar level. Also, the synthesis of BAD in metabolically stable bis(phosphonate) form is discussed indicating the usefulness of such preformed inhibitors in drug development. Among tiazofurin analogues, Franchetti and Grifantini found, that the replacement of the sulfur by oxygen (as in oxazafurin) but not the removal of nitrogen (tiophenfurin) of the thiazole ring resulted in inactive compounds. The anti cancer activity of their synthetic dinucleotide analogues indicate that inactive compounds are not only poorly metabolized in cell but also are weak inhibitors of IMPDH as dinucleotides.

  4. Regenerative Neurogenesis After Ischemic Stroke Promoted by Nicotinamide Phosphoribosyltransferase-Nicotinamide Adenine Dinucleotide Cascade.

    Science.gov (United States)

    Zhao, Yan; Guan, Yun-Feng; Zhou, Xiao-Ming; Li, Guo-Qiang; Li, Zhi-Yong; Zhou, Can-Can; Wang, Pei; Miao, Chao-Yu

    2015-07-01

    Nicotinamide adenine dinucleotide (NAD) is a ubiquitous fundamental metabolite. Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme for mammalian NAD salvage synthesis and has been shown to protect against acute ischemic stroke. In this study, we investigated the role of Nampt-NAD cascade in brain regeneration after ischemic stroke. Nampt transgenic (Nampt-Tg) mice and H247A mutant enzymatic-dead Nampt transgenic (ΔNampt-Tg) mice were subjected with experimental cerebral ischemia by middle cerebral artery occlusion. Activation of neural stem cells, neurogenesis, and neurological function recovery were measured. Besides, nicotinamide mononucleotide and NAD, two chemical enzymatic product of Nampt, were administrated in vivo and in vitro. Compared with wild-type mice, Nampt-Tg mice showed enhanced number of neural stem cells, improved neural functional recovery, increased survival rate, and accelerated body weight gain after middle cerebral artery occlusion, which were not observed in ΔNampt-Tg mice. A delayed nicotinamide mononucleotide administration for 7 days with the first dose at 12 hours post middle cerebral artery occlusion did not protect acute brain infarction and neuronal deficit; however, it still improved postischemic regenerative neurogenesis. Nicotinamide mononucleotide and NAD(+) promoted proliferation and differentiation of neural stem cells in vitro. Knockdown of NAD-dependent deacetylase sirtuin 1 (SIRT1) and SIRT2 inhibited the progrowth action of Nampt-NAD axis, whereas knockdown of SIRT1, SIRT2, and SIRT6 compromised the prodifferentiation effect of Nampt-NAD axis. Our data demonstrate that the Nampt-NAD cascade may act as a centralizing switch in postischemic regeneration through controlling different sirtuins and therefore represent a promising therapeutic target for long-term recovery of ischemic stroke. © 2015 American Heart Association, Inc.

  5. OTOTOXIC MODEL OF OXALIPLATIN AND PROTECTION FROM NICOTINAMIDE ADENINE DINUCLEOTIDE

    Institute of Scientific and Technical Information of China (English)

    DING Dalian; JIANG Haiyan; FU Yong; LI Yongqi; Richard Salvi; Shinichi Someya; Masaru Tanokura

    2013-01-01

    Oxaliplatin, an anticancer drug commonly used to treat colorectal cancer and other tumors, has a number of serious side effects, most notably neuropathy and ototoxicity. To gain insights into its ototoxic profile, oxaliplatin was applied to rat cochlear organ cultures. Consistent with it neurotoxic propensity, oxaliplatin selectively damaged nerve fibers at a very low dose 1 µM. In contrast, the dose required to damage hair cells and spiral ganglion neurons was 50 fold higher (50 µM). Oxailiplatin-induced cochlear lesions initial-ly increased with dose, but unexpectedly decreased at very high doses. This non-linear dose response could be related to depressed oxaliplatin uptake via active transport mechanisms. Previous studies have demon-strated that axonal degeneration involves biologically active processes which can be greatly attenuated by nicotinamide adenine dinucleotide (NAD+). To determine if NAD+would protect spiral ganglion axons and the hair cells from oxaliplatin damage, cochlear cultures were treated with oxaliplatin alone at doses of 10 µM or 50 µM respectively as controls or combined with 20 mM NAD+. Treatment with 10 µM oxaliplatin for 48 hours resulted in minor damage to auditory nerve fibers, but spared cochlear hair cells. However, when cochlear cultures were treated with 10 µM oxaliplatin plus 20 mM NAD+, most auditory nerve fibers were intact. 50 µM oxaliplatin destroyed most of spiral ganglion neurons and cochlear hair cells with apop-totic characteristics of cell fragmentations. However, 50 µM oxaliplatin plus 20 mM NAD+treatment great-ly reduced neuronal degenerations and hair cell missing. The results suggested that NAD+provides signifi-cant protection against oxaliplatin-induced neurotoxicity and ototoxicity, which may be due to its actions of antioxidant, antiapoptosis, and energy supply.

  6. Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy.

    Science.gov (United States)

    Sasaki, Yo; Araki, Toshiyuki; Milbrandt, Jeffrey

    2006-08-16

    Axonal degeneration occurs in many neurodegenerative diseases and after traumatic injury and is a self-destructive program independent from programmed cell death. Previous studies demonstrated that overexpression of nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1) or exogenous application of nicotinamide adenine dinucleotide (NAD) can protect axons of cultured dorsal root ganglion (DRG) neurons from degeneration caused by mechanical or neurotoxic injury. In mammalian cells, NAD can be synthesized from multiple precursors, including tryptophan, nicotinic acid, nicotinamide, and nicotinamide riboside (NmR), via multiple enzymatic steps. To determine whether other components of these NAD biosynthetic pathways are capable of delaying axonal degeneration, we overexpressed each of the enzymes involved in each pathway and/or exogenously administered their respective substrates in DRG cultures and assessed their capacity to protect axons after axotomy. Among the enzymes tested, Nmnat1 had the strongest protective effects, whereas nicotinamide phosphoribosyl transferase and nicotinic acid phosphoribosyl transferase showed moderate protective activity in the presence of their substrates. Strong axonal protection was also provided by Nmnat3, which is predominantly located in mitochondria, and an Nmnat1 mutant localized to the cytoplasm, indicating that the subcellular location of NAD production is not crucial for protective activity. In addition, we showed that exogenous application of the NAD precursors that are the substrates of these enzymes, including nicotinic acid mononucleotide, nicotinamide mononucleotide, and NmR, can also delay axonal degeneration. These results indicate that stimulation of NAD biosynthetic pathways via a variety of interventions may be useful in preventing or delaying axonal degeneration.

  7. Expanding antitumor therapeutic windows by targeting cancer-specific nicotinamide adenine dinucleotide phosphate-biogenesis pathways

    Directory of Open Access Journals (Sweden)

    Chakrabarti G

    2015-03-01

    Full Text Available Gaurab Chakrabarti,1,2,4 David E Gerber,3,4 David A Boothman1,2,4 1Department of Pharmacology, 2Department of Radiation Oncology, 3Division of Hematology and Oncology, 4Harold C Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA Abstract: Nicotinamide adenine dinucleotide phosphate (NADPH biogenesis is an essential mechanism by which both normal and cancer cells maintain redox balance. While antitumor approaches to treat cancers through elevated reactive oxygen species (ROS are not new ideas, depleting specific NADPH-biogenesis pathways that control recovery and repair pathways are novel, viable approaches to enhance cancer therapy. However, to elicit efficacious therapies exploiting NADPH-biogenic pathways, it is crucial to understand and specifically define the roles of NADPH-biogenesis pathways used by cancer cells for survival or recovery from cell stress. It is equally important to select NADPH-biogenic pathways that are expendable or not utilized in normal tissue to avoid unwanted toxicity. Here, we address recent literature that demonstrates specific tumor-selective NADPH-biogenesis pathways that can be exploited using agents that target specific cancer cell pathways normally not utilized in normal cells. Defining NADPH-biogenesis profiles of specific cancer-types should enable novel strategies to exploit these therapeutic windows for increased efficacy against recalcitrant neoplastic disease, such as pancreatic cancers. Accomplishing the goal of using ROS as a weapon against cancer cells will also require agents, such as NQO1 bioactivatable drugs, that selectively induce elevated ROS levels in cancer cells, while normal cells are protected. Keywords: reactive oxygen species (ROS, NQO1-bioactivatable drugs, nicotinamide adenine dinucleotide phosphate (NADPH, glutathione (GSH, biogenic pathways, antioxidant

  8. Decrease in nicotinamide adenine dinucleotide dehydrogenase is related to skin pigmentation.

    Science.gov (United States)

    Nakama, Mitsuo; Murakami, Yuhko; Tanaka, Hiroshi; Nakata, Satoru

    2012-03-01

    Skin pigmentation is caused by various physical and chemical factors. It might also be influenced by changes in the physiological function of skin with aging. Nicotinamide adenine dinucleotide (NADH) dehydrogenase is an enzyme related to the mitochondrial electron transport system and plays a key role in cellular energy production. It has been reported that the functional decrease in this system causes Parkinson's disease. Another study reports that the amount of NADH dehydrogenase in heart and skeletal muscle decreases with aging. A similar decrease in the skin would probably affect its physiological function. However, no reports have examined the age-related change in levels of NADH dehydrogenase in human skin. In this study, we investigated this change and its effect on skin pigmentation using cultured human epidermal keratinocytes. The mRNA expression of NDUFA1, NDUFB7, and NDUFS2, subunits of NADH dehydrogenase, and its activity were significantly decreased in late passage keratinocytes compared to early passage cells. Conversely, the mRNA expression of melanocyte-stimulating cytokines, interleukin-1 alpha and endothelin 1, was increased in late passage cells. On the other hand, the inhibition of NADH dehydrogenase upregulated the mRNA expression of melanocyte-stimulating cytokines. Moreover, the level of NDUFB7 mRNA was lower in pigmented than in nonpigmented regions of skin in vivo. These results suggest the decrease in NADH dehydrogenase with aging to be involved in skin pigmentation.

  9. Nicotinamide adenine dinucleotide: An essential factor in preserving hearing in cisplatin-induced ototoxicity.

    Science.gov (United States)

    Kim, Hyung-Jin; Oh, Gi-Su; Shen, AiHua; Lee, Su-Bin; Khadka, Dipendra; Pandit, Arpana; Shim, Hyeok; Yang, Sei-Hoon; Cho, Eun-Young; Song, Jeho; Kwak, Tae Hwan; Choe, Seong-Kyu; Park, Raekil; So, Hong-Seob

    2015-08-01

    Ototoxicity is an important issue in patients receiving cisplatin chemotherapy. Numerous studies have demonstrated that several mechanisms, including oxidative stress, DNA damage, and inflammatory responses, are closely associated with cisplatin-induced ototoxicity. Although much attention has been directed at identifying ways to protect the inner ear from cisplatin-induced damage, the precise underlying mechanisms have not yet been elucidated. The cofactor nicotinamide adenine dinucleotide (NAD(+)) has emerged as an important regulator of cellular energy metabolism and homeostasis. NAD(+) acts as a cofactor for various enzymes including sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs), and therefore, maintaining adequate NAD(+) levels has therapeutic benefits because of its effect on NAD(+)-dependent enzymes. Recent studies demonstrated that disturbance in intracellular NAD(+) levels is critically involved in cisplatin-induced cochlear damage associated with oxidative stress, DNA damage, and inflammatory responses. In this review, we describe the importance of NAD(+) in cisplatin-induced ototoxicity and discuss potential strategies for the prevention or treatment of cisplatin-induced ototoxicity with a particular focus on NAD(+)-dependent cellular pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Studies of yeast cell oxygenation and energetics by laser fluorometry of reduced nicotinamide adenine dinucleotide

    Science.gov (United States)

    Pan, Fu-shih; Chen, Stephen; Mintzer, Robert A.; Chen, Chin-Tu; Schumacker, Paul

    1991-03-01

    It is of fundamental importance for biological scientists to assess cellular energetics. Under aerobic conditions, the tricarboxylic acid cycle (TCA cycle) is coupled with the mitochondrial electron cascade pathway to provide the cell with energy. The nicotinamide adenine dinucleotide-conjugated pair (NAD and NADH) is the coenzyme in numerous important biomedical reactions which include several important dehydrogenase reactions in the TCA cycle. Based on Le Chatelier's principle, NADH will accumulate when this energy production mechanism is impaired. The relative amounts of NAD and NADH in a cell are defined as the redox state of the cell (Williamson et.al. 1967) which provides a valuable index of cellular energetics. The sum of the amounts of NAD and NADH in a cell may be assumed to be constant during a finite time; therefore, a reliable means of measuring the NADH concentration would provide us with a useful indicator of tissue viability. Traditionally, the quantities of NADH and NAD may be measured by chemical assay methods. We can avoid these tediois analyses by exploiting the significant difference between the ultraviolet absorption spectra of this redox pair. However, because of the opacity of biological samples and the interference of other biochemicals that also absorb ultraviolet radiation, measurement of NADH and NAD+ concentrations in vivo by absorption spectroscopy is not feasible.

  11. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.

    Science.gov (United States)

    Greenhouse, W V; Lehninger, A L

    1977-11-01

    Measurements of respiration, CO2 and lactate production, and changes in the levels of various key metabolites of the glycolytic sequence and tricarboxylic acid cycle were made on five lines of rodent ascites tumor cells (two strains of Ehrlich ascites tumor cells, Krebs II carcinoma, AS-30D carcinoma, and L1210 cells) incubated aerobically in the presence of uniformly labeled D-[14C]glucose. From these data, as well as earlier evidence demonstrating that the reduced nicotinamide adenine dinucleotide (NADH) shuttle in these cells requires a transaminase step and is thus identified as the malate-aspartate shuttle (W.V.V. Greenhouse and A.L. Lehninger, Cancer Res., 36: 1392-1396, 1976), metabolic flux diagrams were constructed for the five cell lines. These diagrams show the relative rates of glycolysis, the tricarboxylic acid cycle, electron transport, and the malate-aspartate shuttle in these tumors. Large amounts of cytosolic NADH were oxidized by the mitochondrial respiratory chain via the NADH shuttle, comprising anywhere from about 20 to 80% of the total flow of reducing equivalents to oxygen in these tumors. Calculations of the sources of energy for adenosine triphosphate synthesis indicated that on the average about one-third of the respiratory adenosine triphosphate is generated by electron flow originating from cytosolic NADH via the malate-aspartate shuttle.

  12. Thermal stabilization of formaldehyde dehydrogenase by encapsulation in liposomes with nicotinamide adenine dinucleotide.

    Science.gov (United States)

    Yoshimoto, Makoto; Yamashita, Takayuki; Kinoshita, Satoshi

    2011-07-10

    The thermal stability of formaldehyde dehydrogenase (FaDH) from Pseudomonas sp. was examined and controlled by encapsulation in liposomes with β-reduced nicotinamide adenine dinucleotide (NADH). The activity of 4.8 μg/mL free FaDH at pH 8.5 in catalyzing the oxidation of 50mM formaldehyde was highly dependent on temperature so that the activity at 60 °C was 27 times larger than that at 25 °C. Thermal stability of the FaDH activity was examined with and without liposomes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Rapid deactivation of free FaDH was observed at 60 °C because of its dissociation into two subunits. The rate of dissociative deactivation of POPC liposome-encapsulated FaDH was smaller than that of the free enzyme. The liposomal FaDH was however progressively deactivated for the incubation period of 60 min eventually leading to complete loss of its activity. The free FaDH and NADH molecules were revealed to form the thermostable binary complex. The thermal stability of POPC liposome-encapsulated FaDH and NADH system was significantly higher than the liposomal enzyme without cofactor. The above results clearly show that NADH is a key molecule that controls the activity and stability of FaDH in liposomes at high temperatures.

  13. Purification and characterization of the enzymes involved in nicotinamide adenine dinucleotide degradation by Penicillium brevicompactum NRC 829.

    Science.gov (United States)

    Ali, Thanaa Hamed; El-Ghonemy, Dina Helmy

    2016-06-01

    The present study was conducted to investigate a new pathway for the degradation of nicotinamide adenine dinucleotide (NAD) by Penicillium brevicompactum NRC 829 extracts. Enzymes involved in the hydrolysis of NAD, i.e. alkaline phosphatase, aminohydrolase and glycohydrolase were determined. Alkaline phosphatase was found to catalyse the sequential hydrolysis of two phosphate moieties of NAD molecule to nicotinamide riboside plus adenosine. Adenosine was then deaminated by aminohydrolase to inosine and ammonia. While glycohydrolase catalyzed the hydrolysis of the nicotinamide-ribosidic bond of NAD+ to produce nicotinamide and ADP-ribose in equimolar amounts, enzyme purification through a 3-step purification procedure revealed the existence of two peaks of alkaline phosphatases, and one peak contained deaminase and glycohydrolase activities. NAD deaminase was purified to homogeneity as estimated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis with an apparent molecular mass of 91 kDa. Characterization and determination of some of NAD aminohydrolase kinetic properties were conducted due to its biological role in the regulation of cellular NAD level. The results also revealed that NAD did not exert its feedback control on nicotinamide amidase produced by P. brevicompactum.

  14. Syntheses of nicotinamide riboside and derivatives: effective agents for increasing nicotinamide adenine dinucleotide concentrations in mammalian cells.

    Science.gov (United States)

    Yang, Tianle; Chan, Noel Yan-Ki; Sauve, Anthony A

    2007-12-27

    A new two-step methodology achieves stereoselective synthesis of beta-nicotinamide riboside and a series of related amide, ester, and acid nucleosides. Compounds were prepared through a triacetylated-nicotinate ester nucleoside, via coupling of either ethylnicotinate or phenylnicotinate with 1,2,3,5-tetra-O-acetyl-beta-D-ribofuranose. Nicotinamide riboside, nicotinic acid riboside, O-ethylnicotinate riboside, O-methylnicotinate riboside, and several N-alkyl derivatives increased NAD+ concentrations from 1.2-2.7-fold in several mammalian cell lines. These findings establish bioavailability and potent effects of these nucleosides in stimulating the increase of NAD+ concentrations in mammalian cells.

  15. Kinetic and thermodynamic study of the reaction catalyzed by glucose-6-phosphate dehydrogenase with nicotinamide adenine dinucleotide

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo, Julia S. [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados - Unidad Merida, Carretera antigua a Progreso Km. 6, A.P. 73 Cordemex, 97310, Merida, Yucatan (Mexico); Patino, Rodrigo, E-mail: rtarkus@mda.cinvestav.mx [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados - Unidad Merida, Carretera antigua a Progreso Km. 6, A.P. 73 Cordemex, 97310, Merida, Yucatan (Mexico)

    2011-04-20

    Research highlights: {yields} The reaction catalyzed by one enzyme of the pentose phosphate pathway was studied. {yields} A spectrophotometric method is proposed for kinetic and thermodynamic analysis. {yields} The pH and the temperature influences are reported on physical chemical properties. {yields} Relative concentrations of substrates are also important in the catalytic process. - Abstract: The enzyme glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) from Leuconostoc mesenteroides has a dual coenzyme specificity with oxidized nicotinamide adenine dinucleotide (NAD{sub ox}) and oxidized nicotinamide adenine dinucleotide phosphate as electron acceptors. The G6PD coenzyme selection is determined by the metabolic cellular prevailing conditions. In this study a kinetic and thermodynamic analysis is presented for the reaction catalyzed by G6PD from L. mesenteroides with NAD{sub ox} as coenzyme in phosphate buffer. For this work, an in situ spectrophotometric technique was employed based on the detection of one product of the reaction. Substrate and coenzyme concentrations as well as temperature and pH effects were evaluated. The apparent equilibrium constant, the Michaelis constant, and the turnover number were determined as a function of each experimental condition. The standard transformed Gibbs energy of reaction was determined from equilibrium constants at different initial conditions. For the product 6-phospho-D-glucono-1,5-lactone, a value of the standard Gibbs energy of formation is proposed, {Delta}{sub f}G{sup o} = -1784 {+-} 5 kJ mol{sup -1}.

  16. A Nicotinamide Adenine Dinucleotide Dispersed Multi-walled Carbon Nanotubes Electrode for Direct and Selective Electrochemical Detection of Uric Acid.

    Science.gov (United States)

    Chen, Yan; Li, Yiwei; Ma, Yaohong; Meng, Qingjun; Yan, Yan; Shi, Jianguo

    2015-01-01

    A nanocomposite platform built with multi-walled carbon nanotubes (MWCNTs) and nicotinamide adenine dinucleotide (NAD(+)) via a noncovalent interaction between the large π systems in NAD(+) molecules and MWCNTs on a glassy carbon substrate was successfully developed for the sensitive and selective detection of uric acid (UA) in the presence of ascorbic acid (AA), dopamine (DA). NAD(+) has an adenine subunit and a nicotinamide subunit, which enabled interaction with the purine subunit of UA through a strong π-π interaction to enhance the specificity of UA. Compared with a bare glassy carbon electrode (GCE) and MWCNTs/GCE, the MWCNTs-NAD(+)/GCE showed a low background current and a remarkable enhancement of the oxidation peak current of UA. Using differential pulse voltammetry (DPV), a high sensitivity for the determination of UA was explored for the MWCNTs-NAD(+) modified electrode. A linear relationship between the DPV peak current of UA and its concentration could be obtained in the range of 0.05 - 10 μM with the detection limit as low as 10 nM (S/N = 3). This present strategy provides a novel and promising platform for the detection of UA in human urine and serum samples.

  17. A label-free fluorescence DNA probe based on ligation reaction with quadruplex formation for highly sensitive and selective detection of nicotinamide adenine dinucleotide.

    Science.gov (United States)

    Zhao, Jingjin; Zhang, Liangliang; Jiang, Jianhui; Shen, Guoli; Yu, Ruqin

    2012-05-11

    A simple label-free fluorescent sensing scheme for sensitive and selective detection of nicotinamide adenine dinucleotide (NAD(+)) has been developed based on DNA ligation reaction with ligand-responsive quadruplex formation. This approach can detect 0.5 nM NAD(+) with high selectivity against other NAD(+) analogs.

  18. Photosensitized oxidation of nicotinamide adenine dinucleotide by diethoxyphosphorus(V)tetraphenylporphyrin and its fluorinated derivative: Possibility of chain reaction.

    Science.gov (United States)

    Hirakawa, Kazutaka; Murata, Atsushi

    2017-07-31

    Water-soluble porphyrins, diethoxyphosphorus(V)tetraphenylporphyrin (EtP(V)TPP) and its fluorinated analogue (FEtP(V)TPP), decreased the typical absorption around 340nm of nicotinamide adenine dinucleotide (NADH) under visible light irradiation, indicating oxidative decomposition. A singlet oxygen quencher, sodium azide, and a triplet quencher, potassium iodide, slightly inhibited photosensitized NADH oxidation. However, these inhibitory effects were very small. Furthermore, the fluorescence lifetime of these P(V)porphyrins was decreased by NADH, suggesting the contribution of electron transfer to the singlet excited (S1) state of P(V)porphyrin. The redox potential measurement supports the electron transfer-mediated oxidation of NADH. The quantum yields of NADH photodecomposition by P(V)porphyrins could be estimated from the kinetic data and the effect of these quenchers on NADH oxidation. The obtained values suggest that the electron accepting by the S1 states of P(V)porphyrins triggers a chain reaction of NADH oxidation. This photosensitized reaction may play an important role in the photocytotoxicity of P(V)porphyrins. The axial ligand fluorination of P(V)porphyrins improved electron accepting ability. However, fluorination slightly suppressed static interaction with NADH, resulting in decreased oxidation quantum yield. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Activation of protein kinase C and nicotinamide adenine dinucleotide phosphate oxidase in leukocytes of spontaneously hypertensive rats.

    Science.gov (United States)

    Maeda, Kensaku; Yasunari, Kenichi; Sato, Eisuke F; Yoshikawa, Junichi; Inoue, Masayasu

    2003-12-01

    The involvement of oxidative stress in polymorphonuclear leukocytes (PMN) in the pathogenesis of hypertension remains to be elucidated. We analyzed the generation of reactive oxygen species (ROS) by the circulating and peritoneally infiltrating PMN from spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). Flow cytometric analysis revealed that ROS generation by PMN from SHR was higher than that from WKY before (at 6 weeks of age) and after (at 16 weeks of age) the onset of hypertension. In vivo, ROS generation by PMN from SHR, but not that by PMN from WKY, was significantly suppressed by 10-week treatment with 50 mg/kg/day carvedilol, and this treatment did not affect blood pressure. Western blotting analysis revealed that protein kinase C alpha (PKCalpha), but not PKCbetaI or betaII, was activated more strongly in PMN from SHR than in PMN from WKY. Furthermore, expression of p47phox of nicotinamide adenine dinucleotide phosphate oxidase, but not of p67phox, in PMN from SHR was higher than that in PMN from WKY. These results suggest that ROS generation by PMN is principally enhanced in SHR through activation of PKCalpha and p47phox.

  20. A comparative cluster analysis of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry in the brains of amphibians.

    Science.gov (United States)

    Pinelli, Claudia; Rastogi, Rakesh K; Scandurra, Anna; Jadhao, Arun G; Aria, Massimo; D'Aniello, Biagio

    2014-09-01

    Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) is a key enzyme in the synthesis of the gaseous neurotransmitter nitric oxide. We compare the distribution of NADPH-d in the brain of four species of hylid frogs. NADPH-d-positive fibers are present throughout much of the brain, whereas stained cell groups are distributed in well-defined regions. Whereas most brain areas consistently show positive neurons in all species, in some areas species-specific differences occur. We analyzed our data and those available for other amphibian species to build a matrix on NADPH-d brain distribution for a multivariate analysis. Brain dissimilarities were quantified by using the Jaccard index in a hierarchical clustering procedure. The whole brain dendrogram was compared with that of its main subdivisions by applying the Fowlkes-Mallows index for dendrogram similarity, followed by bootstrap replications and a permutation test. Despite the differences in the distribution map of the NADPH-d system among species, cluster analysis of data from the whole brain and hindbrain faithfully reflected the evolutionary history (framework) of amphibians. Dendrograms from the secondary prosencephalon, diencephalon, mesencephalon, and isthmus showed some deviation from the main scheme. Thus, the present analysis supports the major evolutionary stability of the hindbrain. We provide evidence that the NADPH-d system in main brain subdivisions should be cautiously approached for comparative purposes because specific adaptations of a single species could occur and may affect the NADPH-d distribution pattern in a brain subdivision. The minor differences in staining pattern of particular subdivisions apparently do not affect the general patterns of staining across species. © 2014 Wiley Periodicals, Inc.

  1. Induction of ischemic tolerance in rat liver via reduced nicotinamide adenine dinucleotide phosphate oxidase in Kupffer cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To elucidate the mechanisms of hepatocyte preconditioning by H2O2 to better understand the pathophysiology of ischemic preconditioning.METHODS: The in vitro effect of H2O2 pretreatment was investigated in rat isolated hepatocytes subjected to anoxia/reoxygenation. Cell viability was assessed with propidium iodide fluorometry. In other experiments, rat livers were excised and subjected to warm ischemia/reperfusion in an isolated perfused liver system to determine leakage of liver enzymes. Preconditioning was performed by H2O2 perfusion, or by stopping the perfusion for 10 min followed by 10 min of reperfusion.To inhibit Kupffer cell function or reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase,gadolinium chloride was injected prior to liver excision, or diphenyleneiodonium, an inhibitor of NADPH oxidase, was added to the perfusate, respectively. Histological detection of o~gen radical formation in Kupffer cells was performed by perfusion with nitro blue tetrazolium.RESULTS: Anoxia/reoxygenation decreased hepatocyte viability compared to the controls. Pretreatment with H2O2 did not improve such hepatocyte injury. In liver perfusion experiments, however, H2O2 preconditioning reduced warm ischemia/reperfusion injury, which was reversed by inhibition of Kupffer cell function or NADPH oxidase. Histological examination revealed that H2O2 preconditioning induced oxygen radical formation in Kupffer cells. NADPH oxidase inhibition also reversed hepatoprotection by ischemic preconditioning.CONCLUSION: H2O2 preconditioning protects hepatocytes against warm ischemia/reperfusion injury via NADPH oxidase in Kupffer cells, and not directly. NADPH oxidase also mediates hepatoprotection by ischemic preconditioning.

  2. Association of nicotinamide adenine dinucleotide phosphate oxidase p22phox gene 549C>T polymorphism with coronary artery disease

    Institute of Scientific and Technical Information of China (English)

    LIU Tong-tao; WANG Li-li; FANG Sheng-xia; JIA Chong-qi

    2012-01-01

    Background The p22phox is a critical component of the superoxide-generating vascular nicotinamide adenine dinucleotide phosphate (NADPH) oxidase.Several polymorphisms in p22phox gene are studied for their association with cardiovascular diseases.However,no publication is available to assess the relation of 549C>T polymorphism in p22phox gene to coronary artery disease (CAD) risk.This study was to investigate the effect of the p22phox gene 549C>T polymorphism on CAD risk.Methods Hospital-based case-control study was conducted with 297 CAD patients and 343 healthy persons as the control group.Polymerase chain reaction and pyrosequencing using PSQ 96 MA Pyrosequencer (Biotage AB) were used to detect the polymorphisms.Multiple Logistic regression model was used to adjust the potential confounders and to estimate odds ratio (OR) with 95% confidence intervals (Cls).Results The observed genotype frequencies of this polymorphism obeyed the Hardy-Weinberg equilibrium in both cases (P=0.439) and controls (P=0.668).The frequency of mutant genotypes (TT+CT) in cases (41.08%) was higher than that in controls (36.73%) with an OR=-1.20 (95% CI=0.87-1.65).After the adjustment of the potential confounders,there was a significant association of the mutant genotypes with increased risk of CAD (OR=1.57,95% CI=1.01-2.46,P=0.047).Conclusions The mutant genotypes of the p22phox gene 549C>T polymorphism had a significant effect on the increased risk of CAD in this studied population.

  3. Changes of collagen and nicotinamide adenine dinucleotide in human cancerous and normal prostate tissues studied using native fluorescence spectroscopy with selective excitation wavelength

    Science.gov (United States)

    Pu, Yang; Wang, Wubao; Tang, Guichen; Alfano, Robert R.

    2010-07-01

    The fluorescence spectra of human cancerous and normal prostate tissues obtained by the selective excitation wavelength of 340 nm were measured. The contributions of principle biochemical components to tissue fluorescence spectra were investigated using the method of multivariate curve resolution with alternating least squares. The results show that there is a reduced contribution from the emission of collagen and increased contribution from nicotinamide adenine dinucleotide (NADH) in cancerous tissues as compared with normal tissue. This difference is attributed to the changes of relative contents of NADH and collagen during cancer development. This research may present a potential native biomarker for prostate cancer detection.

  4. Catalytic activity of iron hexacyanoosmate(II) towards hydrogen peroxide and nicotinamide adenine dinucleotide and its use in amperometric biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Kotzian, Petr; Janku, Tereza [Department of Analytical Chemistry, University of Pardubice, Nam. Cs. Legii 565, CZ-532 10 Pardubice (Czech Republic); Kalcher, Kurt [Institute of Chemistry - Analytical Chemistry, Karl-Franzens University, Universitaetsplatz 1, A-8010 Graz (Austria); Vytras, Karel [Department of Analytical Chemistry, University of Pardubice, Nam. Cs. Legii 565, CZ-532 10 Pardubice (Czech Republic)], E-mail: karel.vytras@upce.cz

    2007-09-19

    Hydrogen peroxide and nicotinamide adenine dinucleotide (NADH) may be determined amperometrically using screen-printed electrodes chemically modified with iron(III) hexacyanoosmate(II) (Osmium purple) in flow injection analysis (FIA). The determination is based on the exploitation of catalytic currents resulting from the oxidation/reduction of the modifier. The performance of the sensor was characterized and optimized by controlling several operational parameters (applied potential, pH and flow rate of the phosphate buffer). Comparison has been made with analogous complexes of ruthenium (Ruthenium purple) and iron (Prussian blue). Taking into account the sensitivity and stability of corresponding sensors, the best results were obtained with the use of Osmium purple. The sensor exhibited a linear increase of the amperometric signal with the concentration of hydrogen peroxide in the range of 0.1-100 mg L{sup -1} with a detection limit (evaluated as 3{sigma}) of 0.024 mg L{sup -1} with a R.S.D. 1.5% for 10 mg L{sup -1} H{sub 2}O{sub 2} under optimized flow rate of 0.4 mL min{sup -1} in 0.1 M phosphate buffer carrier (pH 6) and a working potential of +0.15 V versus Ag/AgCl. Afterwards, a biological recognition element - either glucose oxidase or ethanol dehydrogenase - was incorporated to achieve a sensor facilitating the determination of glucose or ethanol, respectively. The glucose sensor gave linearity between current and concentration in the range from 1 to 250 mg L{sup -1} with a R.S.D. 2.4% for 100 mg L{sup -1} glucose, detection limit 0.02 mg L{sup -1} (3{sigma}) and retained its original activity after 3 weeks when stored at 6 deg. C. Optimal parameters in the determination of ethanol were selected as: applied potential +0.45 V versus Ag/AgCl, flow rate 0.2 mL min{sup -1} in 0.1 M phosphate buffer carrier (pH 7). Different structural designs of the ethanol sensor were tested and linearity obtained was up to 1000 mg L{sup -1} with a maximum R.S.D. of 5

  5. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation.

    Science.gov (United States)

    Rose, Nicholas D; Regan, John M

    2015-12-01

    Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD(+), respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP(+), respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190 mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  6. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation

    KAUST Repository

    Rose, Nicholas D.

    2015-12-01

    © 2015 Elsevier B.V. Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD+, respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP+, respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  7. Tissue-specific regulation of sirtuin and nicotinamide adenine dinucleotide biosynthetic pathways identified in C57Bl/6 mice in response to high-fat feeding.

    Science.gov (United States)

    Drew, Janice E; Farquharson, Andrew J; Horgan, Graham W; Williams, Lynda M

    2016-11-01

    The sirtuin (SIRT)/nicotinamide adenine dinucleotide (NAD) system is implicated in development of type 2 diabetes (T2D) and diet-induced obesity, a major risk factor for T2D. Mechanistic links have not yet been defined. SIRT/NAD system gene expression and NAD/NADH levels were measured in liver, white adipose tissue (WAT) and skeletal muscle from mice fed either a low-fat diet or high-fat diet (HFD) for 3 days up to 16 weeks. An in-house custom-designed multiplex gene expression assay assessed all 7 mouse SIRTs (SIRT1-7) and 16 enzymes involved in conversion of tryptophan, niacin, nicotinamide riboside and metabolic precursors to NAD. Significantly altered transcription was correlated with body weight, fat mass, plasma lipids and hormones. Regulation of the SIRT/NAD system was associated with early (SIRT4, SIRT7, NAPRT1 and NMNAT2) and late phases (NMNAT3, NMRK2, ABCA1 and CD38) of glucose intolerance. TDO2 and NNMT were identified as markers of HFD consumption. Altered regulation of the SIRT/NAD system in response to HFD was prominent in liver compared with WAT or muscle. Multiple components of the SIRTs and NAD biosynthetic enzymes network respond to consumption of dietary fat. Novel molecular targets identified above could direct strategies for dietary/therapeutic interventions to limit metabolic dysfunction and development of T2D.

  8. Substrate specificity and stereospecificity of nicotinamide adenine dinucleotide-linked alcohol dehydrogenases from methanol-grown yeasts.

    OpenAIRE

    Hou, C T; Patel, R; Laskin, A I; Barnabe, N; Marczak, I

    1981-01-01

    Nicotine adenine dinucleotide-linked primary alcohol dehydrogenase and a newly discovered secondary alcohol dehydrogenase coexist in most strains of methanol-grown yeasts. Alcohol dehydrogenases from methanol-grown yeasts oxidize (--)-2-butanol preferentially over its (+) enantiomorph. This is substantially different from alcohol dehydrogenases from bakers' yeast and horse liver.

  9. "Your funeral... my trial": a review of the mechanisms leading to cancer cells death when targeting nicotinamide adenine dinucleotide

    OpenAIRE

    MORISOD, L.

    2014-01-01

    Le nicotinamide adénine dinucléotide (NAD) est un métabolite jouant un rôle crucial dans la vie cellulaire. Dans la mitochondrie, il est surtout utilisé comme co-enzyme d'oxydo-réduction afin de produire de l'énergie sous forme d'ATP (respiration cellulaire). Dans le noyau, il est utilisé en tant que co-substrat par plusieurs enzymes (sirtuines, PARP,...) impliquées dans diverses fonctions d'expression génique, de réparation cellulaire ou d'apoptose. Le NAD tend dès lors à deveni...

  10. Two novel mutations in the reduced nicotinamide adenine dinucleotide (NADH)-cytochrome b5 reductase gene of a patient with generalized type, hereditary methemoglobinemia.

    Science.gov (United States)

    Manabe, J; Arya, R; Sumimoto, H; Yubisui, T; Bellingham, A J; Layton, D M; Fukumaki, Y

    1996-10-15

    Hereditary methemoglobinemia due to reduced nicotinamide adenine dinucleotide (NADH) cytochrome b5 reductase (b5R) deficiency is classified into two types, an erythrocyte (type I) and a generalized (type II). We investigated the b5R gene of a patient with type II from a white United Kingdom (UK) family and found that the patient was a compound heterozygote for two novel mutations. The first mutation was a C-to-A transversion changing codon 42 (TAC: Tyr) to a stop codon in the one allele. From this mutant allele, the product without the catalytic portion of the enzyme is generated. The second one was a missense mutation at codon 95 (CCC-->CAC) in the other allele with the result that Pro changed to His within the flavin adenine dinucleotide (FAD)-binding domain of the enzyme. To characterize effects of this missense mutation on the enzyme function, we compared glutathione S-transferase (GST)-fused b5R with the GST-fused mutant enzyme with the codon 95 missense mutation (P95H) expressed in Escherichia coll. The mutant enzyme showed less catalytic activity, less thermostability, and a greater susceptibility to trypsin than did the normal counterpart. The absorption spectrum of the mutant enzyme in the visual region differed from that of the wild-type. These results suggest that this amino acid substitution influences both secondary structure and catalytic activity of the enzyme. The compound heterozygosity for the nonsense and the missense mutations apparently caused hereditary methemoglobinemia type II in this patient.

  11. A label-free fluorescence strategy for selective detection of nicotinamide adenine dinucleotide based on a dumbbell-like probe with low background noise.

    Science.gov (United States)

    Chen, Xuexu; Lin, Chunshui; Chen, Yiying; Wang, Yiru; Chen, Xi

    2016-03-15

    In this work we developed a novel label-free fluorescence sensing approach for the detection of nicotinamide adenine dinucleotide (NAD(+)) based on a dumbbell-like DNA probe designed for both ligation reaction and digestion reaction with low background noise. SYBR Green I (SG I), a double-helix dye, was chosen as the readout fluorescence signal. In the absence of NAD(+), the ligation reaction did not occur, but the probe was digested to mononucleotides after the addition of exonuclease I (Exo I) and exonuclease I (Exo III), resulting in a weak fluorescence intensity due to the weak interaction between SG I and mononucleotides. In the presence of NAD(+), the DNA probe was ligated by Escherichia coli DNA ligase, blocking the digestion by Exo I and Exo III. As a result, SG I was intercalated into the stem part of the DNA dumbbell probe and fluorescence enhancement was achieved. This method was simple in design, fast to operate, with good sensitivity and selectivity which could discriminate NAD(+) from its analogs.

  12. Discovery of Nicotinamide Adenine Dinucleotide Binding Proteins in the Escherichia coli Proteome Using a Combined Energetic- and Structural-Bioinformatics-Based Approach.

    Science.gov (United States)

    Zeng, Lingfei; Shin, Woong-Hee; Zhu, Xiaolei; Park, Sung Hoon; Park, Chiwook; Tao, W Andy; Kihara, Daisuke

    2017-02-03

    Protein-ligand interaction plays a critical role in regulating the biochemical functions of proteins. Discovering protein targets for ligands is vital to new drug development. Here, we present a strategy that combines experimental and computational approaches to identify ligand-binding proteins in a proteomic scale. For the experimental part, we coupled pulse proteolysis with filter-assisted sample preparation (FASP) and quantitative mass spectrometry. Under denaturing conditions, ligand binding affected protein stability, which resulted in altered protein abundance after pulse proteolysis. For the computational part, we used the software Patch-Surfer2.0. We applied the integrated approach to identify nicotinamide adenine dinucleotide (NAD)-binding proteins in the Escherichia coli proteome, which has over 4200 proteins. Pulse proteolysis and Patch-Surfer2.0 identified 78 and 36 potential NAD-binding proteins, respectively, including 12 proteins that were consistently detected by the two approaches. Interestingly, the 12 proteins included 8 that are not previously known as NAD binders. Further validation of these eight proteins showed that their binding affinities to NAD computed by AutoDock Vina are higher than their cognate ligands and also that their protein ratios in the pulse proteolysis are consistent with known NAD-binding proteins. These results strongly suggest that these eight proteins are indeed newly identified NAD binders.

  13. Protective effect of nicotinamide adenine dinucleotide (NAD(+)) against spinal cord ischemia-reperfusion injury via reducing oxidative stress-induced neuronal apoptosis.

    Science.gov (United States)

    Xie, Lei; Wang, Zhenfei; Li, Changwei; Yang, Kai; Liang, Yu

    2017-02-01

    As previous studies demonstrate that oxidative stress and apoptosis play crucial roles in ischemic pathogenesis and nicotinamide adenine dinucleotide (NAD(+)) treatment attenuates oxidative stress-induced cell death among primary neurons and astrocytes as well as significantly reduce cerebral ischemic injury in rats. We used a spinal cord ischemia injury (SCII) model in rats to verify our hypothesis that NAD(+) could ameliorate oxidative stress-induced neuronal apoptosis. Adult male rats were subjected to transient spinal cord ischemia for 60min, and different doses of NAD(+) were administered intraperitoneally immediately after the start of reperfusion. Neurological function was determined by Basso, Beattie, Bresnahan (BBB) scores. The oxidative stress level was assessed by superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. The degree of apoptosis was analyzed by deoxyuridinetriphosphate nick-end labeling (TUNEL) staining and protein levels of cleaved caspase-3 and AIF (apoptosis inducing factor). The results showed that NAD(+) at 50 or 100mg/kg significantly decreased the oxidative stress level and neuronal apoptosis in the spinal cord of ischemia-reperfusion rats compared with saline, as accompanied with the decreased oxidative stress, NAD(+) administration significantly restrained the neuronal apoptosis after ischemia injury while improved the neurological and motor function. These findings suggested that NAD(+) might protect against spinal cord ischemia-reperfusion via reducing oxidative stress-induced neuronal apoptosis.

  14. Enhancement of anaerobic degradation of azo dye with riboflavin and nicotinamide adenine dinucleotide harvested by osmotic lysis of wasted fermentation yeasts.

    Science.gov (United States)

    Victral, Davi M; Dias, Heitor R A; Silva, Silvana Q; Baeta, Bruno E L; Aquino, Sérgio F

    2017-02-01

    The study presented here aims at identifying the source of redox mediators (riboflavin), electron carriers nicotinamide adenine dinucleotide (NAD) and carbon to perform decolorization of azo dye under anaerobic conditions after osmotic shock pretreatment of residual yeast from industrial fermentation. Pretreatment conditions were optimized by Doehlert experiment, varying NaCl concentration, temperature, yeast density and time. After the optimization, the riboflavin concentration in the residual yeast lysate (RYL) was 46% higher than the one present in commercial yeast extract. Moreover, similar NAD concentration was observed in both extracts. Subsequently, two decolorization experiments were performed, that is, a batch experiment (48 h) and a kinetic experiment (102 h). The results of the batch experiment showed that the use of the RYL produced by the optimized method increased decolorization rates and led to color removal efficiencies similar to those found when using the commercial extract (∼80%) and from 23% to 50% higher when compared to the control (without redox mediators). Kinetics analysis showed that methane production was also higher in the presence of yeast extract and RYL, and biogas was mostly generated after stabilization of color removal. In all kinetics experiments the azo dye degradation followed the pseudo-second-order model, which suggested that there was a concomitant adsorption/degradation of the dye on the biomass cell surface. Therefore, results showed the possibility of applying the pretreated residual yeast to improve color removal under anaerobic conditions, which is a sustainable process.

  15. Spectroscopy and Speciation Studies on the Interactions of Aluminum (III with Ciprofloxacin and β-Nicotinamide Adenine Dinucleotide Phosphate in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Xiaodi Yang

    2012-08-01

    Full Text Available In this study, both experimental and theoretical approaches, including absorption spectra, fluorescence emission spectra, 1H- and 31P-NMR, electrospray ionization mass spectrometry (ESI-MS, pH-potentiometry and theoretical approaches using the BEST & SPE computer programs were applied to study the competitive complexation between ciprofloxacin (CIP and b-nicotinamide adenine dinucleotide phosphate (NADP with aluminum (III in aqueous solutions. Rank annihilation factor analysis (RAFA was used to analyze the absorption and fluorescence emission spectra of the ligands, the binary complexes and the ternary complexes. It is found, at the mM total concentration level and pH = 7.0, the bidentate mononuclear species [Al(CIP]2+ and [Al(NADP] predominate in the aqueous solutions of the Al(III-CIP and Al(III-NADP systems, and the two complexes have similar conditional stability constants. However, the pH-potentiometry results show at the mM total concentration level and pH = 7.0, the ternary species [Al(CIP(HNADP] predominates in the ternary complex system. Comparing predicted NMR spectra with the experimental NMR results, it can be concluded that for the ternary complex, CIP binds to aluminum ion between the 3-carboxylic and 4-carbonyl groups, while the binding site of oxidized coenzyme II is through the oxygen of phosphate, which is linked to adenosine ribose, instead of pyrophosphate. The results also suggested CIP has the potential to be a probe molecular for the detection of NADP and the Al(III-NADP complexes under physiological condition.

  16. The distribution of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the medulla oblongata, spinal cord, cranial and spinal nerves of frog, Microhyla ornata.

    Science.gov (United States)

    Jadhao, Arun G; Biswas, Saikat P; Bhoyar, Rahul C; Pinelli, Claudia

    2017-04-01

    Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) enzymatic activity has been reported in few amphibian species. In this study, we report its unusual localization in the medulla oblongata, spinal cord, cranial nerves, spinal nerves, and ganglions of the frog, Microhyla ornata. In the rhombencephalon, at the level of facial and vagus nerves, the NADPH-d labeling was noted in the nucleus of the abducent and facial nerves, dorsal nucleus of the vestibulocochlear nerve, the nucleus of hypoglossus nerve, dorsal and lateral column nucleus, the nucleus of the solitary tract, the dorsal field of spinal grey, the lateral and medial motor fields of spinal grey and radix ventralis and dorsalis (2-10). Many ependymal cells around the lining of the fourth ventricle, both facial and vagus nerves and dorsal root ganglion, were intensely labeled with NADPH-d. Most strikingly the NADPH-d activity was seen in small and large sized motoneurons in both medial and lateral motor neuron columns on the right and left sides of the brain. This is the largest stained group observed from the caudal rhombencephalon up to the level of radix dorsalis 10 in the spinal cord. The neurons were either oval or elongated in shape with long processes and showed significant variation in the nuclear and cellular diameter. A massive NADPH-d activity in the medulla oblongata, spinal cord, and spinal nerves implied an important role of this enzyme in the neuronal signaling as well as in the modulation of motor functions in the peripheral nervous systems of the amphibians.

  17. β-Nicotinamide adenine dinucleotide acts at prejunctional adenosine A1 receptors to suppress inhibitory musculomotor neurotransmission in guinea pig colon and human jejunum.

    Science.gov (United States)

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Xia, Yun; Zou, Fei; Qu, Meihua; Needleman, Bradley J; Mikami, Dean J; Wood, Jackie D

    2015-06-01

    Intracellular microelectrodes were used to record neurogenic inhibitory junction potentials in the intestinal circular muscle coat. Electrical field stimulation was used to stimulate intramural neurons and evoke contraction of the smooth musculature. Exposure to β-nicotinamide adenine dinucleotide (β-NAD) did not alter smooth muscle membrane potential in guinea pig colon or human jejunum. ATP, ADP, β-NAD, and adenosine, as well as the purinergic P2Y1 receptor antagonists MRS 2179 and MRS 2500 and the adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine, each suppressed inhibitory junction potentials in guinea pig and human preparations. β-NAD suppressed contractile force of twitch-like contractions evoked by electrical field stimulation in guinea pig and human preparations. P2Y1 receptor antagonists did not reverse this action. Stimulation of adenosine A1 receptors with 2-chloro-N6-cyclopentyladenosine suppressed the force of twitch contractions evoked by electrical field stimulation in like manner to the action of β-NAD. Blockade of adenosine A1 receptors with 8-cyclopentyl-1,3-dipropylxanthine suppressed the inhibitory action of β-NAD on the force of electrically evoked contractions. The results do not support an inhibitory neurotransmitter role for β-NAD at intestinal neuromuscular junctions. The data suggest that β-NAD is a ligand for the adenosine A1 receptor subtype expressed by neurons in the enteric nervous system. The influence of β-NAD on intestinal motility emerges from adenosine A1 receptor-mediated suppression of neurotransmitter release at inhibitory neuromuscular junctions.

  18. Effect of telmisartan on the expression of adiponectin receptors and nicotinamide adenine dinucleotide phosphate oxidase in the heart and aorta in type 2 diabetic rats

    Science.gov (United States)

    2012-01-01

    Background Diabetic cardiovascular disease is associated with decreased adiponectin and increased oxidative stress. This study investigated the effect of telmisartan on the expression of adiponectin receptor 2 (adipoR2) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits in the heart and the expression of adiponectin receptor 1 (adipoR1) in aorta in type 2 diabetic rats. Methods Type 2 diabetes was induced by high-fat and high-sugar diet and intraperitoneal injection of a low dose of streptozotocin (STZ). Heart function, adipoR2, p22phox, NOX4, glucose transporter 4(GLUT4), monocyte chemoattractant protein-1(MCP-1) and connective tissue growth factor (CTGF)in the heart, and adipoR1, MCP-1 and nuclear factor kappa B (NF-κB) in aorta were analyzed in controls and diabetic rats treated with or without telmisartan (5mg/kg/d) by gavage for 12 weeks. Results Heart function, plasma and myocardial adiponectin levels, the expression of myocardial adipoR2 and GLUT4 were significantly decreased in diabetic rats (P Telmisartan treatment significantly attenuated these changes in diabetic rats (P telmisartan upregulates the expression of myocardial adiponectin, its receptor 2 and GLUT4. Simultaneously, it downregulates the expression of myocardial p22phox, NOX4, MCP-1, and CTGF, contributing so to the improvement of heart function in diabetic rats. Telmisartan also induces a protective role on the vascular system by upregulating the expression of adipoR1 and downregulating the expression of MCP-1 and NF-κB in the abdominal aorta in diabetic rats. PMID:22873349

  19. A Novel Nicotinamide Adenine Dinucleotide Correction Method for Mitochondrial Ca(2+) Measurement with FURA-2-FF in Single Permeabilized Ventricular Myocytes of Rat.

    Science.gov (United States)

    Lee, Jeong Hoon; Ha, Jeong Mi; Leem, Chae Hun

    2015-07-01

    Fura-2 analogs are ratiometric fluoroprobes that are widely used for the quantitative measurement of [Ca(2+)]. However, the dye usage is intrinsically limited, as the dyes require ultraviolet (UV) excitation, which can also generate great interference, mainly from nicotinamide adenine dinucleotide (NADH) autofluorescence. Specifically, this limitation causes serious problems for the quantitative measurement of mitochondrial [Ca(2+)], as no available ratiometric dyes are excited in the visible range. Thus, NADH interference cannot be avoided during quantitative measurement of [Ca(2+)] because the majority of NADH is located in the mitochondria. The emission intensity ratio of two different excitation wavelengths must be constant when the fluorescent dye concentration is the same. In accordance with this principle, we developed a novel online method that corrected NADH and Fura-2-FF interference. We simultaneously measured multiple parameters, including NADH, [Ca(2+)], and pH/mitochondrial membrane potential; Fura-2-FF for mitochondrial [Ca(2+)] and TMRE for Ψm or carboxy-SNARF-1 for pH were used. With this novel method, we found that the resting mitochondrial [Ca(2+)] concentration was 1.03 µM. This 1 µM cytosolic Ca(2+) could theoretically increase to more than 100 mM in mitochondria. However, the mitochondrial [Ca(2+)] increase was limited to ~30 µM in the presence of 1 µM cytosolic Ca(2+). Our method solved the problem of NADH signal contamination during the use of Fura-2 analogs, and therefore the method may be useful when NADH interference is expected.

  20. Effect of telmisartan on the expression of adiponectin receptors and nicotinamide adenine dinucleotide phosphate oxidase in the heart and aorta in type 2 diabetic rats

    Directory of Open Access Journals (Sweden)

    Guo Zhixin

    2012-08-01

    Full Text Available Abstract Background Diabetic cardiovascular disease is associated with decreased adiponectin and increased oxidative stress. This study investigated the effect of telmisartan on the expression of adiponectin receptor 2 (adipoR2 and nicotinamide adenine dinucleotide phosphate (NADPH oxidase subunits in the heart and the expression of adiponectin receptor 1 (adipoR1 in aorta in type 2 diabetic rats. Methods Type 2 diabetes was induced by high-fat and high-sugar diet and intraperitoneal injection of a low dose of streptozotocin (STZ. Heart function, adipoR2, p22phox, NOX4, glucose transporter 4(GLUT4, monocyte chemoattractant protein-1(MCP-1 and connective tissue growth factor (CTGFin the heart, and adipoR1, MCP-1 and nuclear factor kappa B (NF-κB in aorta were analyzed in controls and diabetic rats treated with or without telmisartan (5mg/kg/d by gavage for 12 weeks. Results Heart function, plasma and myocardial adiponectin levels, the expression of myocardial adipoR2 and GLUT4 were significantly decreased in diabetic rats (P Conclusions Our results suggest that telmisartan upregulates the expression of myocardial adiponectin, its receptor 2 and GLUT4. Simultaneously, it downregulates the expression of myocardial p22phox, NOX4, MCP-1, and CTGF, contributing so to the improvement of heart function in diabetic rats. Telmisartan also induces a protective role on the vascular system by upregulating the expression of adipoR1 and downregulating the expression of MCP-1 and NF-κB in the abdominal aorta in diabetic rats.

  1. Fabrication and characterization of Meldola's blue/zinc oxide hybrid electrodes for efficient detection of the reduced form of nicotinamide adenine dinucleotide at low potential

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. Ashok [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China)]. E-mail: sakumar80@gmail.com; Chen Shenming [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China)]. E-mail: smchen78@ms15.hinet.net

    2007-05-29

    We report the synthesis and the electrochemical properties of hybrid films made of zinc oxide (ZnO) and Meldola's blue dye (MB) using cyclic voltammetry (CV). MB/ZnO hybrid films were electrochemically deposited onto glassy carbon, gold and indium tin oxide-coated glass (ITO) electrodes at room temperature (25 {+-} 2 deg. C) from the bath solution containing 0.1 M Zn(NO{sub 3}){sub 2}, 0.1 M KNO{sub 3} and 1 x 10{sup -4} M MB. The surface morphology and deposition kinetics of MB/ZnO hybrid films were studied by means of scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrochemical quartz crystal microbalance (EQCM) techniques, respectively. SEM and AFM images of MB/ZnO hybrid films have revealed that the surfaces are well crystallized, porous and micro structured. MB molecules were immobilized and strongly fixed in a transparent inorganic matrix. MB/ZnO hybrid films modified glassy carbon electrode (MB/ZnO/GC) showed one reversible redox couple centered at formal potential (E {sup 0}') -0.12 V (pH 6.9). The surface coverage ({gamma}) of the MB immobilized on ZnO/GC was about 9.86 x 10{sup -12} mol cm{sup -2} and the electron transfer rate constant (ks) was determined to be 38.9 s{sup -1}. The MB/ZnO/GC electrode acted as a sensor and displayed an excellent specific electrocatalytic response to the oxidation of nicotinamide adenine dinucleotide (NADH). The linear response range between 50 and 300 {mu}M NADH concentration at pH 6.9 was observed with a detection limit of 10 {mu}M (S/N = 3). The electrode was stable during the time it was used for the full study (about 1 month) without a notable decrease in current. Indeed, dopamine (DA), ascorbic acid (AA), acetaminophen (AP) and uric acid (UA) did not show any interference during the detection of NADH at this modified electrode.

  2. Relationship between reduced nicotinamide adenine dinucleotide phosphate oxidase subunit p22phox gene polymorphism and obstructive sleep apnea-hypopnea syndrome in the Chinese Han population

    Institute of Scientific and Technical Information of China (English)

    LIU Hui-guo; LIU Kui; ZHOU Yan-ning; XU Yong-jian

    2009-01-01

    Background Increased production of reactive oxygen species (ROS) is thought to play a major role in the pathogenesis of obstructive sleep apnea-hypopnea syndrome (OSAHS). The reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex is an important source of ROS. The p22phox subunit is polymorphic with a C242T variant that changes histidine-72 for a tyrosine in the potential heme binding site. This study aimed to investigate the relationship between NADPH oxidase subunit p22phox gene polymorphism and OSAHS. Methods The genotypes of p22phox polymorphism were determined by polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) assay in 176 unrelated subjects of the Han population in southern region of China (including 107 OSAHS subjects and 69 non-OSAHS subjects), while the plasma concentration of superoxide dismutase (SOD) was detected in the two groups, and p22phox mRNA expression in peripheral blood mononuclear cell (PBMC) was determined with reverse transcription polymerase chain reaction (RT-PCR).Results The phagocyte NADPH oxidase subunit p22phox mRNA expression was significantly increased in the OSAHS group than that in the non-OSAHS group (P<0.01). Compared with the non-OSAHS control group ((85.31±9.23) U/ml), the levels of SOD were lower in patients with OSAHS ((59.65±11.61) U/ml (P<0.01). There were significant differences in genotypes distribution in p22phox polymorphism between the two groups (P=0.02). Compared with the non-OSAHS control group, the OSAHS group had a significantly higher T allele frequency in p22phox polymorphism (P=0.03). There were independent effects of p22phox polymorphism on body mass index (BMI), neck circumference (NC), waist-to-hip ratio (WHR) in the OSAHS group, and the carriers of the T allele of p22phox polymorphism had greater NC, WHR, systolic blood pressure (SBP), diastolic blood pressure (DBP) and apnea-hypopnea index (AHI) (P <0.05), but the carriers of the T allele had lower SOD

  3. Deficiency of the iron-sulfur clusters of mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase (complex I) in an infant with congenital lactic acidosis.

    OpenAIRE

    Moreadith, R W; Batshaw, M L; Ohnishi, T; Kerr, D.; Knox, B; Jackson, D.; Hruban, R; Olson, J.; Reynafarje, B; Lehninger, A L

    1984-01-01

    We report the case of an infant with hypoglycemia, progressive lactic acidosis, an increased serum lactate/pyruvate ratio, and elevated plasma alanine, who had a moderate to profound decrease in the ability of mitochondria from four organs to oxidize pyruvate, malate plus glutamate, citrate, and other NAD+-linked respiratory substrates. The capacity to oxidize the flavin adenine dinucleotide-linked substrate, succinate, was normal. The most pronounced deficiency was in skeletal muscle, the le...

  4. Role of Nicotinamide in DNA Damage, Mutagenesis, and DNA Repair

    OpenAIRE

    Devita Surjana; Halliday, Gary M.; Damian, Diona L

    2010-01-01

    Nicotinamide is a water-soluble amide form of niacin (nicotinic acid or vitamin B3). Both niacin and nicotinamide are widely available in plant and animal foods, and niacin can also be endogenously synthesized in the liver from dietary tryptophan. Nicotinamide is also commercially available in vitamin supplements and in a range of cosmetic, hair, and skin preparations. Nicotinamide is the primary precursor of nicotinamide adenine dinucleotide (NAD+), an essential coenzyme in ATP production a...

  5. Role of Nicotinamide in DNA Damage, Mutagenesis, and DNA Repair

    OpenAIRE

    Devita Surjana; Halliday, Gary M.; Damian, Diona L.

    2010-01-01

    Nicotinamide is a water-soluble amide form of niacin (nicotinic acid or vitamin B3). Both niacin and nicotinamide are widely available in plant and animal foods, and niacin can also be endogenously synthesized in the liver from dietary tryptophan. Nicotinamide is also commercially available in vitamin supplements and in a range of cosmetic, hair, and skin preparations. Nicotinamide is the primary precursor of nicotinamide adenine dinucleotide (NAD+), an essential coenzyme in ATP production a...

  6. Effects of aqueous extract of Ruta graveolens and its ingredients on cytochrome P450, uridine diphosphate (UDP-glucuronosyltransferase, and reduced nicotinamide adenine dinucleotide (phosphate (NAD(PH-quinone oxidoreductase in mice

    Directory of Open Access Journals (Sweden)

    Yune-Fang Ueng

    2015-09-01

    Full Text Available Ruta graveolens (the common rue has been used for various therapeutic purposes, including relief of rheumatism and treatment of circulatory disorder. To elucidate the effects of rue on main drug-metabolizing enzymes, effects of an aqueous extract of the aerial part of rue and its ingredients on cytochrome P450 (P450/CYP, uridine diphosphate (UDP-glucuronosyltransferase, and reduced nicotinamide adenine dinucleotide (phosphate (NAD(PH:quinone oxidoreductase were studied in C57BL/6JNarl mice. Oral administration of rue extract to males increased hepatic Cyp1a and Cyp2b activities in a dose-dependent manner. Under a 7-day treatment regimen, rue extract (0.5 g/kg induced hepatic Cyp1a and Cyp2b activities and protein levels in males and females. This treatment increased hepatic UDP-glucuronosyltransferase activity only in males. However, NAD(PH:quinone oxidoreductase activity remained unchanged. Based on the contents of rutin and furanocoumarins of mouse dose of rue extract, rutin increased hepatic Cyp1a activity and the mixture of furanocoumarins (Fmix increased Cyp2b activities in males. The mixture of rutin and Fmix increased Cyp1a and Cyp2b activities. These results revealed that rutin and Fmix contributed at least in part to the P450 induction by rue.

  7. Deficiency of the iron-sulfur clusters of mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase (complex I) in an infant with congenital lactic acidosis.

    Science.gov (United States)

    Moreadith, R W; Batshaw, M L; Ohnishi, T; Kerr, D; Knox, B; Jackson, D; Hruban, R; Olson, J; Reynafarje, B; Lehninger, A L

    1984-09-01

    We report the case of an infant with hypoglycemia, progressive lactic acidosis, an increased serum lactate/pyruvate ratio, and elevated plasma alanine, who had a moderate to profound decrease in the ability of mitochondria from four organs to oxidize pyruvate, malate plus glutamate, citrate, and other NAD+-linked respiratory substrates. The capacity to oxidize the flavin adenine dinucleotide-linked substrate, succinate, was normal. The most pronounced deficiency was in skeletal muscle, the least in kidney mitochondria. Enzymatic assays on isolated mitochondria ruled out defects in complexes II, III, and IV of the respiratory chain. Further studies showed that the defect was localized in the inner membrane mitochondrial NADH-ubiquinone oxidoreductase (complex I). When ferricyanide was used as an artificial electron acceptor, complex I activity was normal, indicating that electrons from NADH could reduce the flavin mononucleotide cofactor. However, electron paramagnetic resonance spectroscopy performed on liver submitochondrial particles showed an almost total loss of the iron-sulfur clusters characteristic of complex I, whereas normal signals were noted for other mitochondrial iron-sulfur clusters. This infant is presented as the first reported case of congenital lactic acidosis caused by a deficiency of the iron-sulfur clusters of complex I of the mitochondrial electron transport chain.

  8. Photoprotective effects of nicotinamide.

    Science.gov (United States)

    Damian, Diona L

    2010-04-01

    Sun protective measures can reduce numbers of both precancerous actinic keratoses and cutaneous squamous cell carcinomas within relatively short periods of time even in high-risk populations. Sunscreens, which tend to provide greater protection against shortwave UVB than against longer wavelength UVA radiation, can however provide only partial protection from the mutagenic and immune suppressive effects of sunlight. In large part, this reflects poor compliance with proper sunscreen application and reapplication. Skin cancer is by far the most common malignancy in Caucasian populations, and additional strategies to reduce the morbidity and economic burden of this disease are now urgently needed. Nicotinamide, the amide form of vitamin B3, is an inexpensive agent which is used for a variety of dermatological applications with little or no toxicity even at high doses. Nicotinamide has photoprotective effects against carcinogenesis and immune suppression in mice, and is photoimmunoprotective in humans when used as a lotion or orally. UV irradiation depletes keratinocytes of cellular energy and nicotinamide, which is a precursor of nicotinamide adenine dinucleotide, may act at least in part by providing energy repletion to irradiated cells.

  9. Hydration properties of natural and synthetic DNA sequences with methylated adenine or cytosine bases in the R.DpnI target and BDNF promoter studied by molecular dynamics simulations

    Science.gov (United States)

    Shanak, Siba; Helms, Volkhard

    2014-12-01

    Adenine and cytosine methylation are two important epigenetic modifications of DNA sequences at the levels of the genome and transcriptome. To characterize the differential roles of methylating adenine or cytosine with respect to their hydration properties, we performed conventional MD simulations and free energy perturbation calculations for two particular DNA sequences, namely the brain-derived neurotrophic factor (BDNF) promoter and the R.DpnI-bound DNA that are known to undergo methylation of C5-methyl cytosine and N6-methyl adenine, respectively. We found that a single methylated cytosine has a clearly favorable hydration free energy over cytosine since the attached methyl group has a slightly polar character. In contrast, capping the strongly polar N6 of adenine with a methyl group gives a slightly unfavorable contribution to its free energy of solvation. Performing the same demethylation in the context of a DNA double-strand gave quite similar results for the more solvent-accessible cytosine but much more unfavorable results for the rather buried adenine. Interestingly, the same demethylation reactions are far more unfavorable when performed in the context of the opposite (BDNF or R.DpnI target) sequence. This suggests a natural preference for methylation in a specific sequence context. In addition, free energy calculations for demethylating adenine or cytosine in the context of B-DNA vs. Z-DNA suggest that the conformational B-Z transition of DNA transition is rather a property of cytosine methylated sequences but is not preferable for the adenine-methylated sequences investigated here.

  10. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition.

    Science.gov (United States)

    Bogan, Katrina L; Brenner, Charles

    2008-01-01

    Although baseline requirements for nicotinamide adenine dinucleotide (NAD+) synthesis can be met either with dietary tryptophan or with less than 20 mg of daily niacin, which consists of nicotinic acid and/or nicotinamide, there is growing evidence that substantially greater rates of NAD+ synthesis may be beneficial to protect against neurological degeneration, Candida glabrata infection, and possibly to enhance reverse cholesterol transport. The distinct and tissue-specific biosynthetic and/or ligand activities of tryptophan, nicotinic acid, nicotinamide, and the newly identified NAD+ precursor, nicotinamide riboside, reviewed herein, are responsible for vitamin-specific effects and side effects. Because current data suggest that nicotinamide riboside may be the only vitamin precursor that supports neuronal NAD+ synthesis, we present prospects for human nicotinamide riboside supplementation and propose areas for future research.

  11. Quadracyclic adenine

    DEFF Research Database (Denmark)

    Dierckx, Anke; Miannay, Francois-Alexandre; Ben Gaied, Nouha

    2012-01-01

    Fluorescent-base analogues (FBAs) comprise a group of increasingly important molecules for the investigation of nucleic acid structure and dynamics as well as of interactions between nucleic acids and other molecules. Here, we report on the synthesis, detailed spectroscopic characterisation...... fluorescent adenine analogues for future detailed studies of nucleic acid-containing systems....... and base-pairing properties of a new environment-sensitive fluorescent adenine analogue, quadracyclic adenine (qA). After developing an efficient route of synthesis for the phosphoramidite of qA it was incorporated into DNA in high yield by using standard solid-phase synthesis procedures. In DNA qA serves...

  12. Role of Nicotinamide in DNA Damage, Mutagenesis, and DNA Repair

    Directory of Open Access Journals (Sweden)

    Devita Surjana

    2010-01-01

    Full Text Available Nicotinamide is a water-soluble amide form of niacin (nicotinic acid or vitamin B3. Both niacin and nicotinamide are widely available in plant and animal foods, and niacin can also be endogenously synthesized in the liver from dietary tryptophan. Nicotinamide is also commercially available in vitamin supplements and in a range of cosmetic, hair, and skin preparations. Nicotinamide is the primary precursor of nicotinamide adenine dinucleotide (NAD+, an essential coenzyme in ATP production and the sole substrate of the nuclear enzyme poly-ADP-ribose polymerase-1 (PARP-1. Numerous in vitro and in vivo studies have clearly shown that PARP-1 and NAD+ status influence cellular responses to genotoxicity which can lead to mutagenesis and cancer formation. This paper will examine the role of nicotinamide in the protection from carcinogenesis, DNA repair, and maintenance of genomic stability.

  13. Moisturizing effects of topical nicotinamide on atopic dry skin.

    Science.gov (United States)

    Soma, Yoshinao; Kashima, Masato; Imaizumi, Akiko; Takahama, Hideto; Kawakami, Tamihiro; Mizoguchi, Masako

    2005-03-01

    Certain moisturizers can improve skin barrier function in atopic dermatitis. The effect of topical nicotinamide on atopic dry skin is unknown. We examined the effect of topical nicotinamide on atopic dry skin and compared the results with the effect of white petrolatum in a left-right comparison study. Twenty-eight patients with atopic dermatitis, with symmetrical lesions of dry skin on both forearms, were enrolled, and were instructed to apply nicotinamide cream containing 2% nicotinamide on the left forearm and white petrolatum on the right forearm, twice daily over a 4- or 8-week treatment period. Transepidermal water loss and stratum corneum hydration were measured by instrumental devices. The amount of the stratum corneum exfoliated by tape stripping (desquamation index) was determined by an image analyzer. Nicotinamide significantly decreased transepidermal water loss, but white petrolatum did not show any significant effect. Both nicotinamide and white petrolatum increased stratum corneum hydration, but nicotinamide was significantly more effective than white petrolatum. The desquamation index was positively correlated with stratum corneum hydration at baseline and gradually increased in the nicotinamide group, but not in the white petrolatum group. Nicotinamide cream is a more effective moisturizer than white petrolatum on atopic dry skin, and may be used as a treatment adjunct in atopic dermatitis.

  14. The NAD+ precursor nicotinamide riboside decreases exercise performance in rats

    OpenAIRE

    Kourtzidis, Ioannis A.; Stoupas, Andreas T.; Gioris, Ioannis S.; Veskoukis, Aristidis S.; Margaritelis, Nikos V.; Tsantarliotou, Maria; Taitzoglou, Ioannis; Vrabas, Ioannis S.; Paschalis, Vassilis; Kyparos, Antonios; Nikolaidis, Michalis G.

    2016-01-01

    Background Nicotinamide adenine dinucleotide (NAD+) and its phosphorylated form (NADP+) are key molecules in ubiquitous bioenergetic and cellular signaling pathways, regulating cellular metabolism and homeostasis. Thus, supplementation with NAD+ and NADP+ precursors emerged as a promising strategy to gain many and multifaceted health benefits. In this proof-of-concept study, we sought to investigate whether chronic nicotinamide riboside administration (an NAD+ precursor) affects exercise perf...

  15. The 2.5 Å Crystal Structure of the SIRT1 Catalytic Domain Bound to Nicotinamide Adenine Dinucleotide (NAD + ) and an Indole (EX527 Analogue) Reveals a Novel Mechanism of Histone Deacetylase Inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xun; Allison, Dagart; Condon, Bradley; Zhang, Feiyu; Gheyi, Tarun; Zhang, Aiping; Ashok, Sheela; Russell, Marijane; MacEwan, Iain; Qian, Yuewei; Jamison, James A.; Luz, John Gately

    2013-02-14

    The sirtuin SIRT1 is a NAD+-dependent histone deacetylase, a Sir2 family member, and one of seven human sirtuins. Sirtuins are conserved from archaea to mammals and regulate transcription, genome stability, longevity, and metabolism. SIRT1 regulates transcription via deacetylation of transcription factors such as PPARγ, NFκB, and the tumor suppressor protein p53. EX527 (27) is a nanomolar SIRT1 inhibitor and a micromolar SIRT2 inhibitor. To elucidate the mechanism of SIRT inhibition by 27, we determined the 2.5 Å crystal structure of the SIRT1 catalytic domain (residues 241–516) bound to NAD+ and the 27 analogue compound 35. 35 binds deep in the catalytic cleft, displacing the NAD+ nicotinamide and forcing the cofactor into an extended conformation. The extended NAD+ conformation sterically prevents substrate binding. The SIRT1/NAD+/35 crystal structure defines a novel mechanism of histone deacetylase inhibition and provides a basis for understanding, and rationally improving, inhibition of this therapeutically important target by drug-like molecules.

  16. In vitro evaluation of nicotinamide riboside analogs against Haemophilus influenzae.

    Science.gov (United States)

    Godek, C P; Cynamon, M H

    1990-08-01

    Exogenous NAD, nicotinamide mononucleotide, or nicotinamide riboside is required for the growth of Haemophilus influenzae. These compounds have been defined as the V-factor growth requirement. We have previously shown that the internalization of nicotinamide riboside is energy dependent and carrier mediated with saturation kinetics. Thionicotinamide riboside, 3-pyridinealdehyde riboside, 3-acetylpyridine riboside, and 3-aminopyridine riboside were prepared from their corresponding NAD analogs. These compounds and several other nicotinamide riboside analogs were evaluated for their ability to support the growth of H. influenzae and for their ability to block the uptake of [carbonyl-14C]nicotinamide riboside by H. influenzae. 3-Aminopyridine riboside blocked the uptake of [carbonyl-14C]nicotinamide riboside and inhibited the growth of H. influenzae when NAD, nicotinamide mononucleotide, or nicotinamide riboside served as the V factor. The antibacterial activity of 3-aminopyridine riboside was found to be specific for H. influenzae but had no effect on the growth of Staphylococcus aureus or Escherichia coli. In additional experiments by reversed-phase high-performance liquid chromatography, it was determined that whole cells of H. influenzae degrade 3-aminopyridine adenine dinucleotide to 3-aminopyridine riboside, which is then internalized. Inside the cell, 3-aminopyridine riboside has the ability to interfere with the growth of H. influenzae by an undetermined mechanism.

  17. Synthesis and Biological Evaluation of Nicotinamide Adenine Dinucleotides Analogues as Inhibitors of CD38%烟酰胺腺嘌呤二核苷酸类CD38抑制剂的合成及生物活性评价

    Institute of Scientific and Technical Information of China (English)

    陈哲; KWONGAnnaKa-Yee; 杨振军; 张亮仁; LEEHonCheung; 张礼和

    2012-01-01

    CD38 is the main mammalian ADP-ribosyl cyclase and a signaling enzyme responsible for catalyzing the synthesis of Ca2+-messengers and plays a critical role in a wide range of physiological functions. It is of great interest to develop specific and generally applicable inhibitors of CD38. Fluoro-substituted nicotina-mide adenine dinucleotides( NAD) , such as ara-F NMN and ara-F NAD, are catalysis-dependent inhibitors of CD38 and are often used as probes for investigating the function of CD38. For understanding the effect of fluo-ro-substitution on activity in more detail and discovery of active inhibitors of CD38, compounds 2a-2c were synthesized and their inhibition against the hydrolysis activities of CD38 were evaluated. The syntheses were performed by starting from the corresponding fluoro-substituted sugar, then followed by coupling with nicoti-namide, regio-seleclive 5 '-phosphorylation and condensation with adenosine monophosphate, successively. All target compounds were purified by HPLC and characterized by NMR and HRMS. Two compounds showed strong inhibitions, especially 2'-deoxy-2'-fluororibonofuranosyl which gave activity with IC50 of 0. 056μmol/L and was two orders of magnitude higher than positive control ara-F NAD. The results also showed that the activity was greatly affected by the number and the position of fluorine atom on the sugar ring, as well as the configuration of the inhibitors. The detailed biological investigation and structure-activity relationship are underway.%分别以1,3,5-三苯甲酰基-α-D-核糖、3,5-二苯甲酰基-2-脱氧-2,2-氟戊呋喃糖-1-酮和D-木糖为原料,经由烟酰胺核苷及烟酰胺核苷酸中间体,合成了系列糖环经氟原子取代的烟酰胺腺嘌呤二核苷酸(NAD)类CD38抑制剂.基于对CD38的水解抑制能力的考察,评价了所合成氟代NAD类似物的活性.结果表明,糖环上氟原子取代的数目和位置对抑制剂活性的影响十分明显,烟酰胺核苷的端

  18. Nicotinamide and the skin.

    Science.gov (United States)

    Chen, Andrew C; Damian, Diona L

    2014-08-01

    Nicotinamide, an amide form of vitamin B3, boosts cellular energy and regulates poly-ADP-ribose-polymerase 1, an enzyme with important roles in DNA repair and the expression of inflammatory cytokines. Nicotinamide shows promise for the treatment of a wide range of dermatological conditions, including autoimmune blistering disorders, acne, rosacea, ageing skin and atopic dermatitis. In particular, recent studies have also shown it to be a potential agent for reducing actinic keratoses and preventing skin cancers.

  19. Vitamin B Derivative (Nicotinamide)Appears to Reduce Skin Cancer Risk.

    Science.gov (United States)

    Nazarali, S; Kuzel, P

    2017-09-01

    Nicotinamide, an amide form of vitamin B3, has shown the potential to treat a variety of dermatological conditions, including acne, rosacea, and atopic dermatitis. Recent studies have demonstrated the role of nicotinamide, in both topical and oral forms, as a chemopreventive agent against skin cancer. Its anti-carcinogenic role may be due to its ability to enhance DNA repair and prevent ultraviolet (UV)-induced immunosuppression, which is known to contribute to the progression of pre-malignant lesions. Furthermore, nicotinamide is a precursor of essential coenzymes for many important reactions in the body, including the production of nicotinamide adenine dinucleotide (NAD). NAD is a key coenzyme in the synthesis of adenosine triphosphate (ATP), which transports chemical energy within cells. Therefore, nicotinamide plays a significant role in supporting energy-dependent cellular processes, including DNA repair.

  20. Nicotinamide riboside kinase structures reveal new pathways to NAD+.

    Science.gov (United States)

    Tempel, Wolfram; Rabeh, Wael M; Bogan, Katrina L; Belenky, Peter; Wojcik, Marzena; Seidle, Heather F; Nedyalkova, Lyudmila; Yang, Tianle; Sauve, Anthony A; Park, Hee-Won; Brenner, Charles

    2007-10-02

    The eukaryotic nicotinamide riboside kinase (Nrk) pathway, which is induced in response to nerve damage and promotes replicative life span in yeast, converts nicotinamide riboside to nicotinamide adenine dinucleotide (NAD+) by phosphorylation and adenylylation. Crystal structures of human Nrk1 bound to nucleoside and nucleotide substrates and products revealed an enzyme structurally similar to Rossmann fold metabolite kinases and allowed the identification of active site residues, which were shown to be essential for human Nrk1 and Nrk2 activity in vivo. Although the structures account for the 500-fold discrimination between nicotinamide riboside and pyrimidine nucleosides, no enzyme feature was identified to recognize the distinctive carboxamide group of nicotinamide riboside. Indeed, nicotinic acid riboside is a specific substrate of human Nrk enzymes and is utilized in yeast in a novel biosynthetic pathway that depends on Nrk and NAD+ synthetase. Additionally, nicotinic acid riboside is utilized in vivo by Urh1, Pnp1, and Preiss-Handler salvage. Thus, crystal structures of Nrk1 led to the identification of new pathways to NAD+.

  1. Nicotinamide riboside kinase structures reveal new pathways to NAD+.

    Directory of Open Access Journals (Sweden)

    Wolfram Tempel

    2007-10-01

    Full Text Available The eukaryotic nicotinamide riboside kinase (Nrk pathway, which is induced in response to nerve damage and promotes replicative life span in yeast, converts nicotinamide riboside to nicotinamide adenine dinucleotide (NAD+ by phosphorylation and adenylylation. Crystal structures of human Nrk1 bound to nucleoside and nucleotide substrates and products revealed an enzyme structurally similar to Rossmann fold metabolite kinases and allowed the identification of active site residues, which were shown to be essential for human Nrk1 and Nrk2 activity in vivo. Although the structures account for the 500-fold discrimination between nicotinamide riboside and pyrimidine nucleosides, no enzyme feature was identified to recognize the distinctive carboxamide group of nicotinamide riboside. Indeed, nicotinic acid riboside is a specific substrate of human Nrk enzymes and is utilized in yeast in a novel biosynthetic pathway that depends on Nrk and NAD+ synthetase. Additionally, nicotinic acid riboside is utilized in vivo by Urh1, Pnp1, and Preiss-Handler salvage. Thus, crystal structures of Nrk1 led to the identification of new pathways to NAD+.

  2. Role of adenine in thymine-dimer repair by reduced flavin-adenine dinucleotide.

    Science.gov (United States)

    Li, Guifeng; Sichula, Vincent; Glusac, Ksenija D

    2008-08-28

    We present a study of excited-state behavior of reduced flavin cofactors using femtosecond optical transient absorption spectroscopy. The reduced flavin cofactors studied were in two protonation states: flavin-adenine dinucleotide (FADH2 and FADH-) and flavin-mononucleotide (FMNH2 and FMNH-). We find that FMNH- exhibits multiexponential decay dynamics due to the presence of two bent conformers of the isoalloxazine ring. FMNH2 exhibits an additional fast deactivation component that is assigned to an iminol tautomer. Reduced flavin cofactors also exhibit a long-lived component that is attributed to the semiquinone and the hydrated electron that are produced in photoinduced electron transfer to the solvent. The presence of adenine in FADH2 and FADH- further changes the excited-state dynamics due to intramolecular electron transfer from the isoalloxazine to the adenine moiety of cofactors. This electron transfer is more pronounced in FADH2 due to pi-stacking interactions between two moieties. We further studied cyclobutane thymine dimer (TT-dimer) repair via FADH- and FMNH- and found that the repair is much more efficient in the case of FADH-. These results suggest that the adenine moiety plays a significant role in the TT-dimer repair dynamics. Two possible explanations for the adenine mediation are presented: (i) a two-step electron transfer process, with the initial electron transfer occurring from flavin to adenine moiety of FADH-, followed by a second electron transfer from adenine to TT-dimer; (ii) the preconcentration of TT-dimer molecules around the flavin cofactor due to the hydrophobic nature of the adenine moiety.

  3. Nicotinamide overload may play a role in the development of type 2 diabetes

    Institute of Scientific and Technical Information of China (English)

    Shi-Sheng Zhou; Li-Bin Zhang; Ning Luo; Fu-Ning Bian; Wei Zou; Lai-Bin Dong; Zhi-Gang Zhao; Sheng-Fan Li; Xiao-Jie Gong; Zeng-Guo Yu; Chang-Bin Sun; Da Li; Cong-Long Zheng; Dong-Ju Jiang; Zheng-Ning Li; Wu-Ping Sun; Ming Guo; Yong-Zhi Lun; Yi-Ming Zhou; Fu-Cheng Xiao; Li-Xin Jing; Shen-Xia Sun

    2009-01-01

    AIM: To investigate whether nicotinamide overload plays a role in type 2 diabetes.METHODS: Nicotinamide metabolic patterns of 14 diabetic and 14 non-diabetic subjects were compared using HPLC. Cumulative effects of nicotinamide and N~1-methylnicotinamide on glucose metabolism, plasma H_2O_2 levels and tissue nicotinamide adenine dinucleotide (NAD) contents of adult Sprague-Dawley rats were observed. The role of human sweat glands and rat skin in nicotinamide metabolism was investigated using sauna and burn injury, respectively.RESULTS: Diabetic subjects had significantly higher plasma N~1-methylnicotinamide levels 5 h after a 100-mg nicotinamide load than the non-diabetic subjects (0.89 ± 0.13 μmol/L vs 0.6 ± 0.13 μmol/L, P< 0.001). Cumulative doses of nicotinamide (2 g/kg) significantly increased rat plasma N~1-methylnicotinamide concentrations associated with severe insulin resistance, which was mimicked by N~1-methylnicotinamide. Moreover, cumulative exposure to N~1-methylnicotinamide (2 g/kg) markedly reduced rat muscle and liver NAD contents and erythrocyte NAD/ NADH ratio, and increased plasma H_2O_2 levels. Decrease in NAD/NADH ratio and increase in H_2O_2 generation were also observed in human erythrocytes after exposure to N~1-methylnicotinamide in vitro. Sweating eliminated excessive nicotinamide (5.3-fold increase in sweat nicotinamide concentration 1 h after a 100-mg nicotinamide load). Skin damage or aldehyde oxidase inhibition with tamoxifen or olanzapine, both being notorious for impairing glucose tolerance, delayed N~1-methylnicotinamide clearance.CONCLUSION: These findings suggest that nicotinamide overload, which induced an increase in plasma N~1-methylnicotinamide, associated with oxidative stress and insulin resistance, plays a role in type 2 diabetes.

  4. Nicotinamide overload may play a role in the development of type 2 diabetes.

    Science.gov (United States)

    Zhou, Shi-Sheng; Li, Da; Sun, Wu-Ping; Guo, Ming; Lun, Yong-Zhi; Zhou, Yi-Ming; Xiao, Fu-Cheng; Jing, Li-Xin; Sun, Shen-Xia; Zhang, Li-Bin; Luo, Ning; Bian, Fu-Ning; Zou, Wei; Dong, Lai-Bin; Zhao, Zhi-Gang; Li, Sheng-Fan; Gong, Xiao-Jie; Yu, Zeng-Guo; Sun, Chang-Bin; Zheng, Cong-Long; Jiang, Dong-Ju; Li, Zheng-Ning

    2009-12-07

    To investigate whether nicotinamide overload plays a role in type 2 diabetes. Nicotinamide metabolic patterns of 14 diabetic and 14 non-diabetic subjects were compared using HPLC. Cumulative effects of nicotinamide and N(1)-methylnicotinamide on glucose metabolism, plasma H(2)O(2) levels and tissue nicotinamide adenine dinucleotide (NAD) contents of adult Sprague-Dawley rats were observed. The role of human sweat glands and rat skin in nicotinamide metabolism was investigated using sauna and burn injury, respectively. Diabetic subjects had significantly higher plasma N(1)-methylnicotinamide levels 5 h after a 100-mg nicotinamide load than the non-diabetic subjects (0.89 +/- 0.13 micromol/L vs 0.6 +/- 0.13 micromol/L, P nicotinamide (2 g/kg) significantly increased rat plasma N(1)-methylnicotinamide concentrations associated with severe insulin resistance, which was mimicked by N(1)-methylnicotinamide. Moreover, cumulative exposure to N(1)-methylnicotinamide (2 g/kg) markedly reduced rat muscle and liver NAD contents and erythrocyte NAD/NADH ratio, and increased plasma H(2)O(2) levels. Decrease in NAD/NADH ratio and increase in H(2)O(2) generation were also observed in human erythrocytes after exposure to N(1)-methylnicotinamide in vitro. Sweating eliminated excessive nicotinamide (5.3-fold increase in sweat nicotinamide concentration 1 h after a 100-mg nicotinamide load). Skin damage or aldehyde oxidase inhibition with tamoxifen or olanzapine, both being notorious for impairing glucose tolerance, delayed N(1)-methylnicotinamide clearance. These findings suggest that nicotinamide overload, which induced an increase in plasma N(1)-methylnicotinamide, associated with oxidative stress and insulin resistance, plays a role in type 2 diabetes.

  5. 脊髓烟酰胺腺嘌呤二核苷酸磷酸氧化酶在大鼠糖尿病神经痛维持中的作用%Role of nicotinamide adenine dinucleotide phosphate oxidase in spinal cord in maintenance of diabetic neuropathic pain in rats

    Institute of Scientific and Technical Information of China (English)

    黄晓雷; 李晓芸; 吴铭广; 文亚杰; 齐晓非; 胡薇; 李元涛

    2014-01-01

    目的 评价脊髓烟酰胺腺嘌呤二核苷酸磷酸氧化酶(NADPH氧化酶)在大鼠糖尿病神经痛维持中的作用.方法 清洁级雄性SD大鼠,2月龄,体重180 ~ 220 g,采用腹腔注射1%链脲佐菌素(STZ)的方法制备糖尿病模型,注射STZ后72 h血糖>16.7 mmol/L的大鼠作为糖尿病大鼠.采用随机数字表法,将20只糖尿病大鼠分为2组(n=10):糖尿病神经痛组(DN组)和NADPH氧化酶特异性抑制剂香荚兰乙酮组(A组),另取10只大鼠为正常对照组(C组).A组于注射STZ后28 d腹腔注射香荚兰乙酮5 mg/kg,1次/d,连续7d.分别于注射STZ前(T1)、注射STZ后7、14、21、28、35 d(T2-6)时测定机械缩足反应阈(PWT).于T6时PWT测定结束后,处死大鼠,取L4,5节段脊髓组织,检测NADPH氧化酶亚基gp91phox和p47phox的表达、MDA含量及SOD活性.结果 与C组比较,DN组和A组T3-5时PWT降低,脊髓gp91phpx和p47phox的表达上调,MDA含量升高,SOD活性降低(P<0.05);与DN组比较,A组T6时PWT升高,脊髓gp91phox和p47phox的表达下调,MDA含量降低,SOD活性升高(P<0.05).结论 脊髓NADPH氧化酶参与了大鼠糖尿病神经痛的维持.%Objective To evaluate the role of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) in the spinal cord in the maintenance of diabetic neuropathic pain in rats.Methods Pathogenfree male Sprague-Dawley rats,aged 2 months,weighing 180-220 g,were used in the study.Diabetes mellitus was induced by intraperitoneal streptozotocin (STZ) 60mg/kg and confirmed by blood glucose > 16.7 mmol/L at 72 h after STZ injection.Twenty diabetic rats were randomly allocated to diabetic neuropathic pain group (DN group,n =10) and apocynin (specific NADPH oxidase inhibitor) group (A group,n =10).Another 10 agematched normal rats served as control group (C group,n =10).Twenty-eight days after STZ injection,apyconin 5 mg/kg was injected intraperitoneally once a day for 7 consecutive days in A group.Paw withdrawal threshold to yon

  6. PnuC and the utilization of the nicotinamide riboside analog 3-aminopyridine in Haemophilus influenzae.

    Science.gov (United States)

    Sauer, Elizabeta; Merdanovic, Melisa; Mortimer, Anne Price; Bringmann, Gerhard; Reidl, Joachim

    2004-12-01

    The utilization pathway for the uptake of NAD and nicotinamide riboside was previously characterized for Haemophilus influenzae. We now report on the cellular location, topology, and substrate specificity of PnuC. pnuC of H. influenzae is only distantly related to pnuC of Escherichia coli and Salmonella enterica serovar Typhimurium. When E. coli PnuC was expressed in an H. influenzae pnuC mutant, it was able to take up only nicotinamide riboside and not nicotinamide mononucleotide. Therefore, we postulated that PnuC transporters in general possess specificity for nicotinamide riboside. Earlier studies showed that 3-aminopyridine derivatives (e.g., 3-aminopyridine adenine dinucleotide) are inhibitory for H. influenzae growth. By testing characterized strains with mutations in the NAD utilization pathway, we show that 3-aminopyridine riboside is inhibitory to H. influenzae and is taken up by the NAD-processing and nicotinamide riboside route. 3-Aminopyridine riboside is utilized effectively in a pnuC+ background. In addition, we demonstrate that 3-aminopyridine adenine dinucleotide resynthesis is produced by NadR. 3-Aminopyridine riboside-resistant H. influenzae isolates were characterized, and mutations in nadR could be detected. We also tested other species of the family Pasteurellaceae, Pasteurella multocida and Actinobacillus actinomycetemcomitans, and found that 3-aminopyridine riboside does not act as a growth inhibitor; hence, 3-aminopyridine riboside represents an anti-infective agent with a very narrow host range.

  7. Application of a coupled enzyme assay to characterize nicotinamide riboside kinases.

    Science.gov (United States)

    Dölle, Christian; Ziegler, Mathias

    2009-02-15

    The recently identified nicotinamide riboside kinases (Nrks) constitute a distinct pathway of nicotinamide adenine dinucleotide (NAD) biosynthesis. Here we present the combination of an established optical adenosine triphosphatase (ATPase) test, the pyruvate kinase/lactate dehydrogenase system, with the Nrk-catalyzed reaction to determine kinetic properties of these enzymes, in particular affinities for ATP. The assay allows variation of both nucleoside and phosphate donor substrates, thereby providing major advantages for the characterization of these enzymes. We confirm previously established kinetic parameters and identify differences in substrate selectivity between the two human Nrk isoforms. The proposed assay is inexpensive and may be applied for high-throughput screening.

  8. 尼克酰胺腺嘌呤二核苷酸磷酸氧化酶4源性活性氧过量产生抑制胚胎干细胞向心肌细胞的分化%Excessive production of nicotinamide adenine dinucleotide phosphate oxidase 4-dependent reactive oxygen species suppresses cardiomyocyte differentiation from embrvonic stem cells

    Institute of Scientific and Technical Information of China (English)

    张小勇; 国汉邦; 黎健

    2007-01-01

    二核苷酸磷酸氧化酶4过表达诱导的细胞凋亡.结果:①不同水平的活性氧对心肌细胞分化具有不同的效应.在分化后4 d用较低浓度(1~100 nmol/L)的过氧化氢处理胚小体2 h可明显促进心肌细胞分化(P<0.01),而较高浓度(> 1 μmol/L)的过氧化氢则显示出抑制作用(P<0.01).②尼克酰胺腺嘌呤二核苷酸磷酸氧化酶4程小鼠胚胎干细胞中的表达水平最高,尼克酰胺腺嘌呤二核苷酸磷酸氧化酶3虽然也在胚胎干细胞中表达,但表达水平低,丽尼克酰胺腺嘌呤二核苷酸磷酸氧化酶1、2在胚胎干细胞中不表达.RT-PCR检测结果显示,与单纯转染pcDNA3.1细胞相比,转染pcDNA3.1-NOX4质粒的CGR8细胞中尼克酰胺腺嘌呤二核苷酸磷酸氧化酶4过表达.③四唑氮蓝实验检测结果显示,高水平表达的尼克酰胺腺嘌呤二核苷酸磷酸氧化酶4引起过量活性氧产生(P<0.05).与未转染质粒的细胞相比,尼克酰胺腺嘌呤二核苷酸磷酸氧化酶4过表达抑制了心肌细胞的分化(P<0.01). Western Blot结果显示高水平尼克酰胺腺嘌呤二核苷酸磷酸氧化酶4导致胚小体内MLC2v蛋白水平降低.④p21和p53可能参与了NADPH氧化酶4诱导的凋亡过程.转染尼克酰胺腺嘌呤二核苷酸磷酸氧化酶4的p53-/-ES细胞R72D27并未发生凋亡,高水平的Bcl-2可以抑制尼克酰胺腺嘌呤二核苷酸磷酸氧化酶4过表达诱导的细胞凋亡.结论:尼克酰胺腺嘌呤二核苷酸磷酸氧化酶4在心肌细胞分化中起关键作用,p53和p21以及Bcl-2可能参与了凋亡信号通路的调控.%BACKGROUND: Reactive oxygen species (ROS), including superoxide anion (O2) and hydrogen peroxide (H2O2), have been recognized as specific second messengers in signaling cascades involved in the growth and differentiation of cells.The generation of excessive ROS initiates cardiomyocyte apoptosis. This paper is aimed to corroborate the hypothesis that excessive amounts of nicotinamide adenine

  9. Nicotinamide enhances repair of ultraviolet radiation-induced DNA damage in human keratinocytes and ex vivo skin.

    Science.gov (United States)

    Surjana, Devita; Halliday, Gary M; Damian, Diona L

    2013-05-01

    Nicotinamide (vitamin B3) protects from ultraviolet (UV) radiation-induced carcinogenesis in mice and from UV-induced immunosuppression in mice and humans. Recent double-blinded randomized controlled Phase 2 studies in heavily sun-damaged individuals have shown that oral nicotinamide significantly reduces premalignant actinic keratoses, and may reduce new non-melanoma skin cancers. Nicotinamide is a precursor of nicotinamide adenine dinucleotide (NAD(+)), an essential coenzyme in adenosine triphosphate (ATP) production. Previously, we showed that nicotinamide prevents UV-induced ATP decline in HaCaT keratinocytes. Energy-dependent DNA repair is a key determinant of cellular survival after exposure to DNA-damaging agents such as UV radiation. Hence, in this study we investigated whether nicotinamide protection from cellular energy loss influences DNA repair. We treated HaCaT keratinocytes with nicotinamide and exposed them to low-dose solar-simulated UV (ssUV). Excision repair was quantified using an assay of unscheduled DNA synthesis. Nicotinamide increased both the proportion of cells undergoing excision repair and the repair rate in each cell. We then investigated ssUV-induced cyclobutane pyrimidine dimers (CPDs) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8oxoG) formation and repair by comet assay in keratinocytes and with immunohistochemistry in human skin. Nicotinamide reduced CPDs and 8oxoG in both models and the reduction appeared to be due to enhancement of DNA repair. These results show that nicotinamide enhances two different pathways for repair of UV-induced photolesions, supporting nicotinamide's potential as an inexpensive, convenient and non-toxic agent for skin cancer chemoprevention.

  10. Nicotinamide for skin cancer chemoprevention.

    Science.gov (United States)

    Damian, Diona L

    2017-03-20

    Nicotinamide (vitamin B3 ) has a range of photoprotective effects in vitro and in vivo; it enhances DNA repair, reduces UV radiation-induced suppression of skin immune responses, modulates inflammatory cytokine production and skin barrier function and restores cellular energy levels after UV exposure. Pharmacological doses of nicotinamide have been shown to reduce actinic keratoses and nonmelanoma skin cancer incidence in high-risk individuals, making this a nontoxic and accessible option for skin cancer chemoprevention in this population.

  11. Creation of bioorthogonal redox systems depending on nicotinamide flucytosine dinucleotide.

    Science.gov (United States)

    Ji, Debin; Wang, Lei; Hou, Shuhua; Liu, Wujun; Wang, Jinxia; Wang, Qian; Zhao, Zongbao K

    2011-12-28

    Many enzymes catalyzing biological redox chemistry depend on the omnipresent cofactor, nicotinamide adenine dinucleotide (NAD). NAD is also involved in various nonredox processes. It remains challenging to disconnect one particular NAD-dependent reaction from all others. Here we present a bioorthogonal system that catalyzes the oxidative decarboxylation of l-malate with a dedicated abiotic cofactor, nicotinamide flucytosine dinucleotide (NFCD). By screening the multisite saturated mutagenesis libraries of the NAD-dependent malic enzyme (ME), we identified the mutant ME-L310R/Q401C, which showed excellent activity with NFCD, yet marginal activity with NAD. We found that another synthetic cofactor, nicotinamide cytosine dinucleotide (NCD), also displayed similar activity with the ME mutants. Inspired by these observations, we mutated d-lactate dehydrogenase (DLDH) and malate dehydrogenase (MDH) to DLDH-V152R and MDH-L6R, respectively, and both mutants showed fully active with NFCD. When coupled with DLDH-V152R, ME-L310R/Q401C required only a catalytic amount of NFCD to convert l-malate. Our results opened the window to engineer bioorthogonal redox systems for a wide variety of applications in systems biology and synthetic biology.

  12. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease.

    Science.gov (United States)

    Yao, Zhiwen; Yang, Wenhao; Gao, Zhiqiang; Jia, Peng

    2017-04-24

    Amyloid-β (Aβ) oligomers have been accepted as major neurotoxic agents in the therapy of Alzheimer's disease (AD). It has been shown that the activity of nicotinamide adenine dinucleotide (NAD+) is related with the decline of Aβ toxicity in AD. Nicotinamide mononucleotide (NMN), the important precursor of NAD+, is produced during the reaction of nicotinamide phosphoribosyl transferase (Nampt). This study aimed to figure out the potential therapeutic effects of NMN and its underlying mechanisms in APPswe/PS1dE9 (AD-Tg) mice. We found that NMN gave rise to a substantial improvement in behavioral measures of cognitive impairments compared to control AD-Tg mice. In addition, NMN treatment significantly decreased β-amyloid production, amyloid plaque burden, synaptic loss, and inflammatory responses in transgenic animals. Mechanistically, NMN effectively controlled JNK activation. Furthermore, NMN potently progressed nonamyloidogenic amyloid precursor protein (APP) and suppressed amyloidogenic APP by mediating the expression of APP cleavage secretase in AD-Tg mice. Based on our findings, it was suggested that NMN substantially decreases multiple AD-associated pathological characteristically at least partially by the inhibition of JNK activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Meat and Nicotinamide: A Causal Role in Human Evolution, History, and Demographics

    Directory of Open Access Journals (Sweden)

    Adrian C Williams

    2017-04-01

    Full Text Available Hunting for meat was a critical step in all animal and human evolution. A key brain-trophic element in meat is vitamin B 3 /nicotinamide. The supply of meat and nicotinamide steadily increased from the Cambrian origin of animal predators ratcheting ever larger brains. This culminated in the 3-million-year evolution of Homo sapiens and our overall demographic success. We view human evolution, recent history, and agricultural and demographic transitions in the light of meat and nicotinamide intake. A biochemical and immunological switch is highlighted that affects fertility in the ‘de novo’ tryptophan-to-kynurenine-nicotinamide ‘immune tolerance’ pathway. Longevity relates to nicotinamide adenine dinucleotide consumer pathways. High meat intake correlates with moderate fertility, high intelligence, good health, and longevity with consequent population stability, whereas low meat/high cereal intake (short of starvation correlates with high fertility, disease, and population booms and busts. Too high a meat intake and fertility falls below replacement levels. Reducing variances in meat consumption might help stabilise population growth and improve human capital.

  14. Prevention of non-melanoma skin cancers with nicotinamide in transplant recipients: a case-control study.

    Science.gov (United States)

    Drago, Francesco; Ciccarese, Giulia; Cogorno, Ludovica; Calvi, Camillo; Marsano, Luigina A; Parodi, Aurora

    2017-08-01

    Nicotinamide is the precursor of nicotinamide adenine dinucleotide (NAD+), an essential cofactor for adenosine triphosphate (ATP) production. It has recently been reported to be effective in reducing the rates of new non-melanoma skin cancers (NMSCs) and actinic keratosis (AKs). We studied the efficacy of oral nicotinamide as treatment for AKs in transplant recipients. We recruited 38 transplant (eight liver and 30 kidney) patients with single or multiple AKs. Nineteen patients were randomly assigned to Group 1 and took nicotinamide 500 mg/daily (cases); the other 19 patients were randomly assigned to Group 2 without nicotinamide (controls). At baseline, AKs were identified, measured, and photographed for follow-up. Five patients underwent an AK biopsy for histopathology. Statistical analyses were performed using the Student t test. At baseline, no statistically significant differences were observed regarding AK size between the two groups. After six months, among the cases, AKs had significantly decreased in size in 18/19 patients (88%). Among these 18 patients, seven patients (42%) had shown complete clinical regression and no patient developed new AKs. Conversely, among the controls, 91% showed an increase in AK size and/or developed new AKs. Seven pre-existing AKs progressed to squamous-cell carcinoma. Nicotinamide appears to be effective in preventing and treating AKs, although the mechanisms are still unclear. Further studies with a larger sample of organ transplant recipients and a longer follow-up period are needed to further support our conclusions.

  15. Quantitative Fluorimetric Analysis of Plant Nicotinamide

    Institute of Scientific and Technical Information of China (English)

    王泽斌; 冯闻铮; 曹竹安; 刘进元

    2001-01-01

    Fluorimetry was used to measure the amount of nicotinamide in plant samples. The nicotinamide was extracted and purified from plant tissues with ethyl acetate; converted to the fluorescent derivative, N1-methylnicotinamide, by reacting with methyl iodide; and quantified according to its fluorescent strength. The nicotinamide in the leaf tissue of ten kinds of plants was measured, and the results showed that the nicotinamide content for different plants varied from 0. 1 to 3.0 μg/g of fresh leaf weight. In addition, the crossing value of the fluorescent strength and the nicotinamide amount demonstrated that the linear correlation coefficient generally reached 0. 997, with a detectable limit of 0. 02 mg/L and the relative standard deviation of less than 9%. The results suggested that this method of quantifying nicotinamide in plants is useful and beneficial for functional research.

  16. Safety assessment of nicotinamide riboside, a form of vitamin B3.

    Science.gov (United States)

    Conze, D B; Crespo-Barreto, J; Kruger, C L

    2016-01-20

    Nicotinamide riboside (NR) is a naturally occurring form of vitamin B3 present in trace amounts in some foods. Like niacin, it has been shown to be a precursor in the biosynthesis of nicotinamide adenine dinucleotide (NAD+). The safety of Niagen™, a synthetic form of NR, was determined using a bacterial reverse mutagenesis assay (Ames), an in vitro chromosome aberration assay, an in vivo micronucleus assay, and acute, 14-day and 90-day rat toxicology studies. NR was not genotoxic. There was no mortality at an oral dose of 5000 mg/kg. Based on the results of a 14-day study, a 90-day study was performed comparing NR at 300, 1000, and 3000 mg/kg/day to an equimolar dose of nicotinamide at 1260 mg/kg/day as a positive control. Results from the study show that NR had a similar toxicity profile to nicotinamide at the highest dose tested. Target organs of toxicity were liver, kidney, ovaries, and testes. The lowest observed adverse effect level for NR was 1000 mg/kg/day, and the no observed adverse effect level was 300 mg/kg/day.

  17. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans.

    Science.gov (United States)

    Trammell, Samuel A J; Schmidt, Mark S; Weidemann, Benjamin J; Redpath, Philip; Jaksch, Frank; Dellinger, Ryan W; Li, Zhonggang; Abel, E Dale; Migaud, Marie E; Brenner, Charles

    2016-10-10

    Nicotinamide riboside (NR) is in wide use as an NAD(+) precursor vitamin. Here we determine the time and dose-dependent effects of NR on blood NAD(+) metabolism in humans. We report that human blood NAD(+) can rise as much as 2.7-fold with a single oral dose of NR in a pilot study of one individual, and that oral NR elevates mouse hepatic NAD(+) with distinct and superior pharmacokinetics to those of nicotinic acid and nicotinamide. We further show that single doses of 100, 300 and 1,000 mg of NR produce dose-dependent increases in the blood NAD(+) metabolome in the first clinical trial of NR pharmacokinetics in humans. We also report that nicotinic acid adenine dinucleotide (NAAD), which was not thought to be en route for the conversion of NR to NAD(+), is formed from NR and discover that the rise in NAAD is a highly sensitive biomarker of effective NAD(+) repletion.

  18. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light

    Science.gov (United States)

    Emmanuel, Megan A.; Greenberg, Norman R.; Oblinsky, Daniel G.; Hyster, Todd K.

    2016-12-01

    Enzymes are ideal for use in asymmetric catalysis by the chemical industry, because their chemical compositions can be tailored to a specific substrate and selectivity pattern while providing efficiencies and selectivities that surpass those of classical synthetic methods. However, enzymes are limited to reactions that are found in nature and, as such, facilitate fewer types of transformation than do other forms of catalysis. Thus, a longstanding challenge in the field of biologically mediated catalysis has been to develop enzymes with new catalytic functions. Here we describe a method for achieving catalytic promiscuity that uses the photoexcited state of nicotinamide co-factors (molecules that assist enzyme-mediated catalysis). Under irradiation with visible light, the nicotinamide-dependent enzyme known as ketoreductase can be transformed from a carbonyl reductase into an initiator of radical species and a chiral source of hydrogen atoms. We demonstrate this new reactivity through a highly enantioselective radical dehalogenation of lactones—a challenging transformation for small-molecule catalysts. Mechanistic experiments support the theory that a radical species acts as an intermediate in this reaction, with NADH and NADPH (the reduced forms of nicotinamide adenine nucleotide and nicotinamide adenine dinucleotide phosphate, respectively) serving as both a photoreductant and the source of hydrogen atoms. To our knowledge, this method represents the first example of photo-induced enzyme promiscuity, and highlights the potential for accessing new reactivity from existing enzymes simply by using the excited states of common biological co-factors. This represents a departure from existing light-driven biocatalytic techniques, which are typically explored in the context of co-factor regeneration.

  19. Metabolomics Analysis of Metabolic Effects of Nicotinamide Phosphoribosyltransferase (NAMPT) Inhibition on Human Cancer Cells

    Science.gov (United States)

    Tolstikov, Vladimir; Nikolayev, Alexander; Dong, Sucai; Zhao, Genshi; Kuo, Ming-Shang

    2014-01-01

    Nicotinamide phosphoribosyltransferase (NAMPT) plays an important role in cellular bioenergetics. It is responsible for converting nicotinamide to nicotinamide adenine dinucleotide, an essential molecule in cellular metabolism. NAMPT has been extensively studied over the past decade due to its role as a key regulator of nicotinamide adenine dinucleotide–consuming enzymes. NAMPT is also known as a potential target for therapeutic intervention due to its involvement in disease. In the current study, we used a global mass spectrometry–based metabolomic approach to investigate the effects of FK866, a small molecule inhibitor of NAMPT currently in clinical trials, on metabolic perturbations in human cancer cells. We treated A2780 (ovarian cancer) and HCT-116 (colorectal cancer) cell lines with FK866 in the presence and absence of nicotinic acid. Significant changes were observed in the amino acids metabolism and the purine and pyrimidine metabolism. We also observed metabolic alterations in glycolysis, the citric acid cycle (TCA), and the pentose phosphate pathway. To expand the range of the detected polar metabolites and improve data confidence, we applied a global metabolomics profiling platform by using both non-targeted and targeted hydrophilic (HILIC)-LC-MS and GC-MS analysis. We used Ingenuity Knowledge Base to facilitate the projection of metabolomics data onto metabolic pathways. Several metabolic pathways showed differential responses to FK866 based on several matches to the list of annotated metabolites. This study suggests that global metabolomics can be a useful tool in pharmacological studies of the mechanism of action of drugs at a cellular level. PMID:25486521

  20. Metabolomics analysis of metabolic effects of nicotinamide phosphoribosyltransferase (NAMPT) inhibition on human cancer cells.

    Science.gov (United States)

    Tolstikov, Vladimir; Nikolayev, Alexander; Dong, Sucai; Zhao, Genshi; Kuo, Ming-Shang

    2014-01-01

    Nicotinamide phosphoribosyltransferase (NAMPT) plays an important role in cellular bioenergetics. It is responsible for converting nicotinamide to nicotinamide adenine dinucleotide, an essential molecule in cellular metabolism. NAMPT has been extensively studied over the past decade due to its role as a key regulator of nicotinamide adenine dinucleotide-consuming enzymes. NAMPT is also known as a potential target for therapeutic intervention due to its involvement in disease. In the current study, we used a global mass spectrometry-based metabolomic approach to investigate the effects of FK866, a small molecule inhibitor of NAMPT currently in clinical trials, on metabolic perturbations in human cancer cells. We treated A2780 (ovarian cancer) and HCT-116 (colorectal cancer) cell lines with FK866 in the presence and absence of nicotinic acid. Significant changes were observed in the amino acids metabolism and the purine and pyrimidine metabolism. We also observed metabolic alterations in glycolysis, the citric acid cycle (TCA), and the pentose phosphate pathway. To expand the range of the detected polar metabolites and improve data confidence, we applied a global metabolomics profiling platform by using both non-targeted and targeted hydrophilic (HILIC)-LC-MS and GC-MS analysis. We used Ingenuity Knowledge Base to facilitate the projection of metabolomics data onto metabolic pathways. Several metabolic pathways showed differential responses to FK866 based on several matches to the list of annotated metabolites. This study suggests that global metabolomics can be a useful tool in pharmacological studies of the mechanism of action of drugs at a cellular level.

  1. Metabolomics analysis of metabolic effects of nicotinamide phosphoribosyltransferase (NAMPT inhibition on human cancer cells.

    Directory of Open Access Journals (Sweden)

    Vladimir Tolstikov

    Full Text Available Nicotinamide phosphoribosyltransferase (NAMPT plays an important role in cellular bioenergetics. It is responsible for converting nicotinamide to nicotinamide adenine dinucleotide, an essential molecule in cellular metabolism. NAMPT has been extensively studied over the past decade due to its role as a key regulator of nicotinamide adenine dinucleotide-consuming enzymes. NAMPT is also known as a potential target for therapeutic intervention due to its involvement in disease. In the current study, we used a global mass spectrometry-based metabolomic approach to investigate the effects of FK866, a small molecule inhibitor of NAMPT currently in clinical trials, on metabolic perturbations in human cancer cells. We treated A2780 (ovarian cancer and HCT-116 (colorectal cancer cell lines with FK866 in the presence and absence of nicotinic acid. Significant changes were observed in the amino acids metabolism and the purine and pyrimidine metabolism. We also observed metabolic alterations in glycolysis, the citric acid cycle (TCA, and the pentose phosphate pathway. To expand the range of the detected polar metabolites and improve data confidence, we applied a global metabolomics profiling platform by using both non-targeted and targeted hydrophilic (HILIC-LC-MS and GC-MS analysis. We used Ingenuity Knowledge Base to facilitate the projection of metabolomics data onto metabolic pathways. Several metabolic pathways showed differential responses to FK866 based on several matches to the list of annotated metabolites. This study suggests that global metabolomics can be a useful tool in pharmacological studies of the mechanism of action of drugs at a cellular level.

  2. Effects of glucagon-like peptide-1 on the expression of nicotinamide adenine dinucleotide phosphate oxidase subunits in the heart of type 1 diabetic rats%胰高血糖素样肽1对1型糖尿病大鼠心肌烟酰胺腺嘌呤二核苷酸氧化酶亚单位表达的影响

    Institute of Scientific and Technical Information of China (English)

    俞媛贤; 郭志新; 齐伟; 杜时晶; 刘晋津; 吴杰萍

    2013-01-01

    Objective To explore the effect of glucagon-like peptide-1 on the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits p22phox and Nox4 in the heart tissue of type 1 diabetic rats.Methods Forty-two male Sprague-Dawley(SD) rats were randomly divided into normal control group (group A,n=7) and diabetic model group (n =35) with the random number table.Type 1 diabetic model was established by intraperitoneal injection of streptozotocin.Twenty-nine successfully-induced diabetic rats were randomly divided into diabetic (group DM,n =10),diabetic treated with low-dose of GLP-1 (group DL,n =10) and diabetic treated with high-dose of GLP-1 (group DH,n =9) with the random number table method.The rats in group DL were given exenatide in dose of 1 μg/kg twice daily by subcutaneous injection.The rats in group DH were given exenatide in dose of 5 μg/kg twice daily by subcutaneous injection.All rats were sacrificed after exenatide treatment for eight weeks.The mRNA expression of myocardial p22phox and Nox4 in the rats of four groups was detected by real-time fluorescence quantitative polymerase chain reaction(PCR),and the protein expression of myocardial copper zinc-superoxide dismutase (Cu-Zn-SOD) was detected by immunohistochemical staining.Statistical analysis among groups was performed by using one way ANOVA.Results Compared with group NC,the mRNA expression of myocardial p22phox and Nox4 and the myocardial Cu-Zn-SOD protein expression increased significantly in group DM(t =5.77,5.36,59.91,all P <0.05).After exenatide treatment for 8 weeks,the mRNA expression of myocardial p22phox and Nox4 and the myocardial Cu-Zn-SOD protein expression decreased significantly in group DL and DH (t =16.86,7.66 and 16.11,7.59 and 56.00,47.05,and all P < 0.05).Compared with group DL,the mRNA expression of myocardial p22phox and Nox4 decreased significantly in group DH (t =10.14,8.67,both P < 0.05).There was no significant difference in the expression of

  3. Adenine N6-methylation in diverse fungi.

    Science.gov (United States)

    Seidl, Michael F

    2017-05-26

    A DNA modification-methylation of cytosines and adenines-has important roles in diverse processes such as regulation of gene expression and genome stability, yet until recently adenine methylation had been considered to be only a hallmark of prokaryotes. A new study identifies abundant adenine methylation of transcriptionally active genes in early-diverging fungi that, together with recent other work, emphasizes the importance of adenine methylation in eukaryotes.

  4. Big brains, meat, tuberculosis and the nicotinamide switches: co-evolutionary relationships with modern repercussions on longevity and disease?

    Science.gov (United States)

    Williams, Adrian C; Dunbar, Robin I M

    2014-07-01

    Meat eating has been an important trigger for human evolution however the responsible component in meat has not been clearly identified. Here we propose that the limiting factors for expanding brains and increasing longevity were the micronutrient nicotinamide (vitamin B3) and the metabolically related essential amino-acid, tryptophan. Meat offers significant sourcing challenges and lack causes a deficiency of nicotinamide and tryptophan and consequently the energy carrier nicotinamide adenine dinucleotide (NAD) that gets consumed in regulatory circuits important for survival, resulting in premature ageing, poor cognition and brain atrophy. If a trophic supply of dietary nicotinamide/tryptophan is so essential for building brains, constraining their size and connectivity, we hypothesise that back-up mechanisms to ensure the supply evolved. One strategy may be increasing the reliance on gut symbionts to break down celluloses that produces NADH and only nicotinamide indirectly, and may cause diarrhoea. We suggest that a direct supplier was the chronic mycobacterial infection tuberculosis (TB) that is a surprise candidate but it co-evolved early, does not inevitably cause disease (90-95% of those infected are healthy), and secretes (and is inhibited by) nicotinamide. We hypothesise that TB evolved first as a symbiont that enabled humans to cope with short-lived shortages of meat and only later behaved as a pathogen when the supply deteriorated chronically, for those in poverty. (TB immunology and epidemiology is riddled with paradoxes for a conventional pathogen). We test this in pilot data showing that sharp declines in TB (and diarrhoea) - `environmental enteropathy' strongly correlate with increasing meat consumption and therefore nicotinamide exposure, unlike later onset cancers and Parkinson's disease that increased in incidence, perhaps - as we propose a hypothetical hypervitaminosis B3 (to include obesity and the metabolic syndrome) - as the trade-off for

  5. Effect of Nicotinamide on Experimental Induced Diabetes

    Directory of Open Access Journals (Sweden)

    Q. Alenzi Faris

    2009-03-01

    Full Text Available Insulin dependent diabetes mellitus (IDDM results from irreversible loss of beta cells (β-cells of the pancreas. A Streptozotocin (STZ-induced diabetes in animal model mimics, in some aspects, recent onset IDDM. This study was conducted to investigate the effect of nicotinamide on experimentally-induced IDDM. Thirty Spraque Dawley rats were divided into 3 groups; a control group, a diabetic group which received an intraperitoneal (i.p. injection of 55 mg/kg STZ and a nicotinamide group (1g/kg/day which were dosed orally for 3 days followed by (i.p. STZ (55 mg/kg with the nicotinamide treatment continuing for an additional 14 days. Rats receiving STZ became diabetic after 2 weeks. This diabetic group showed hyperglycemia, and a very low level of C-peptide. Furthermore, pancreatic islets exhibited increased nitric oxide (NO production together with an increased apoptotic index (as detected by TUNEL and electron microscopy. Nicotinamide treatment prevented STZ-induced diabetes, it also antagonized an increase in NO, and inhibited β-cell apoptosis. Fasting blood glucose, serum insulin and serum C-peptide were all within the normal range in the nicotinamide group. The nicotinamide protection of β-cells may be facilitated via inhibition of apoptosis and nitric oxide generation. It is suggested that nicotinamide might be considered an effective agent for the prevention and treatment of IDDM in prediabetic, and early stages, of IDDM.

  6. Comparison of three typing assays for nicotinamide adenine dinucleotide-independent Actinobacillus pleuropneumoniae.

    Science.gov (United States)

    Maldonado, Jaime; Blanco, Mónica; Martínez, Eva; Navas, Jesús

    2011-07-01

    Three tests for typing clinical isolates of Actinobacillus pleuropneumoniae biovar 2 were compared: 1) standard coagglutination with type-specific antisera against serovars 1-12 of biovar 1 of A. pleuropneumoniae; 2) a previously described polymerase chain reaction system for detecting the apx genes encoding the ApxI, ApxII, and ApxIII toxins in A. pleuropneumoniae; and 3) a restriction fragment length polymorphism analysis of the transferrin-binding protein B gene. The panel of strains tested included 112 field isolates of biovar 2 recovered from pigs between 1979 and 2007 in Italy and Spain, and reference strains for all described serovars of both biovars. The values of Simpson index of diversity obtained for the 3 methods were 0.68, 0.20, and 0.60, respectively. Coagglutination assays identified the field isolates as belonging to serovars 2 (9 strains), 4 (13 strains), 7 (61 strains), 9 (17 strains), and 11 (1 strain). Eleven strains were not typeable, and cross-reactivity was observed between serovars 2 and 4, 4 and 7, and 9 and 11. Isolates of A. pleuropneumoniae biovar 2 displayed 2 apx patterns: ApxII(+) (94 strains) and ApxI(+)/ApxII(+) (18 strains). The restriction fragment length polymorphism analysis assigned the strains tested to 3 different patterns. This method distinguished between biovar 2 reference strains and field strains that could not be identified by other methods, thus constituting a useful complementary test for the typing of A. pleuropneumoniae biovar 2.

  7. Nucleotide sequence of yeast GDH1 encoding nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase.

    Science.gov (United States)

    Moye, W S; Amuro, N; Rao, J K; Zalkin, H

    1985-07-15

    The yeast GDH1 gene encodes NADP-dependent glutamate dehydrogenase. This gene was isolated by complementation of an Escherichia coli glutamate auxotroph. NADP-dependent glutamate dehydrogenase was overproduced 6-10-fold in Saccharomyces cerevisiae bearing GDH1 on a multicopy plasmid. The nucleotide sequence of the 1362-base pair coding region and 5' and 3' flanking sequences were determined. Transcription start sites were located by S1 nuclease mapping. Regulation of GDH1 was not maintained when the gene was present on a multicopy plasmid. Protein secondary structure predictions identified a region with potential to form the dinucleotide-binding domain. The amino acid sequences of the yeast and Neurospora crassa enzymes are 63% conserved. Unlike the N. crassa gene, yeast GDH1 has no introns.

  8. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells

    OpenAIRE

    Ratajczak, Joanna; Joffraud, Magali; Trammell, Samuel A.J.; Ras, Rosa; Canela, Nuria; Boutant, Marie; Kulkarni, Sameer S; Rodrigues,Marcelo; Redpath, Philip; Migaud, Marie E.; Auwerx, Johan; Yanes, Oscar; Brenner, Charles; Cantó, Carles

    2016-01-01

    NAD+ is a vital redox cofactor and a substrate required for activity of various enzyme families, including sirtuins and poly(ADP-ribose) polymerases. Supplementation with NAD+ precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), protects against metabolic disease, neurodegenerative disorders and age-related physiological decline in mammals. Here we show that nicotinamide riboside kinase 1 (NRK1) is necessary and rate-limiting for the use of exogenous NR and NMN...

  9. Nicotinamide mononucleotide adenylyltransferase 1 gene NMNAT1 regulates neuronal dendrite and axon morphogenesis in vitro

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hong; ZHANG Jing-yu; YANGZi-chao; LIU Ming; GANG Bao-zhi; ZHAO Qing-jie

    2011-01-01

    Background Wallerian degeneration is a self-destructive process of axonal degeneration that occurs after an axonal injury or during neurodegenerative disorders such as Parkinson's or Alzheimer's disease.Recent studies have found that the activity of the nicotinamide adenine dinucleotide (NAD) synthase enzyme,nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1) can affect the rate of Wallerian degeneration in mice and drosophila.NMNAT1 protects neurons and axons from degeneration.However,the role of NMNAT1 in neurons of central nervous system is still not well understood.Methods We set up the culture of primary mouse neurons in vitro and manipulated the expression level of NMNAT1 by RNA interference and gene overexpression methods.Using electroporation transfection we can up-regulate or down-regulate NMNAT1 in cultured mouse dendrites and axons and study the neuronal morphogenesis by immunocytochemistry.In all functional assays,FK-866 (CAS 658084-64-1),a highly specific non-competitive inhibitor of nicotinamide phosphoribosyltransferase was used as a pharmacological and positive control.Results Our results showed that knocking down NMNAT1 by RNA interference led to a marked decrease in dendrite outgrowth and branching and a significant decrease in axon growth and branching in developing cortical neurons in vitro.Conclusions These findings reveal a novel role for NMNAT1 in the morphogenesis of developing cortical neurons,which indicate that the loss of function of NMNAT1 may contribute to different neurodegenerative disorders in central nervous system.

  10. Activation of SIRT3 by the NAD⁺ precursor nicotinamide riboside protects from noise-induced hearing loss.

    Science.gov (United States)

    Brown, Kevin D; Maqsood, Sadia; Huang, Jing-Yi; Pan, Yong; Harkcom, William; Li, Wei; Sauve, Anthony; Verdin, Eric; Jaffrey, Samie R

    2014-12-02

    Intense noise exposure causes hearing loss by inducing degeneration of spiral ganglia neurites that innervate cochlear hair cells. Nicotinamide adenine dinucleotide (NAD(+)) exhibits axon-protective effects in cultured neurons; however, its ability to block degeneration in vivo has been difficult to establish due to its poor cell permeability and serum instability. Here, we describe a strategy to increase cochlear NAD(+) levels in mice by administering nicotinamide riboside (NR), a recently described NAD(+) precursor. We find that administration of NR, even after noise exposure, prevents noise-induced hearing loss (NIHL) and spiral ganglia neurite degeneration. These effects are mediated by the NAD(+)-dependent mitochondrial sirtuin, SIRT3, since SIRT3-overexpressing mice are resistant to NIHL and SIRT3 deletion abrogates the protective effects of NR and expression of NAD(+) biosynthetic enzymes. These findings reveal that administration of NR activates a NAD(+)-SIRT3 pathway that reduces neurite degeneration caused by noise exposure.

  11. Adenine N6-methylation in diverse fungi

    NARCIS (Netherlands)

    Seidl, Michael F.

    2017-01-01

    A DNA modification - methylation of cytosines and adenines - has important roles in diverse processes such as regulation of gene expression and genome stability, yet until recently adenine methylation had been considered to be only a hallmark of prokaryotes. A new study identifies abundant

  12. 21 CFR 172.315 - Nicotinamide-ascorbic acid complex.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Nicotinamide-ascorbic acid complex. 172.315 Section... HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.315 Nicotinamide-ascorbic acid complex. Nicotinamide-ascorbic acid complex may be safely used in accordance with the following prescribed...

  13. Novel non-specific DNA adenine methyltransferases

    Science.gov (United States)

    Drozdz, Marek; Piekarowicz, Andrzej; Bujnicki, Janusz M.; Radlinska, Monika

    2012-01-01

    The mom gene of bacteriophage Mu encodes an enzyme that converts adenine to N6-(1-acetamido)-adenine in the phage DNA and thereby protects the viral genome from cleavage by a wide variety of restriction endonucleases. Mu-like prophage sequences present in Haemophilus influenzae Rd (FluMu), Neisseria meningitidis type A strain Z2491 (Pnme1) and H. influenzae biotype aegyptius ATCC 11116 do not possess a Mom-encoding gene. Instead, at the position occupied by mom in Mu they carry an unrelated gene that encodes a protein with homology to DNA adenine N6-methyltransferases (hin1523, nma1821, hia5, respectively). Products of the hin1523, hia5 and nma1821 genes modify adenine residues to N6-methyladenine, both in vitro and in vivo. All of these enzymes catalyzed extensive DNA methylation; most notably the Hia5 protein caused the methylation of 61% of the adenines in λ DNA. Kinetic analysis of oligonucleotide methylation suggests that all adenine residues in DNA, with the possible exception of poly(A)-tracts, constitute substrates for the Hia5 and Hin1523 enzymes. Their potential ‘sequence specificity’ could be summarized as AB or BA (where B = C, G or T). Plasmid DNA isolated from Escherichia coli cells overexpressing these novel DNA methyltransferases was resistant to cleavage by many restriction enzymes sensitive to adenine methylation. PMID:22102579

  14. European Nicotinamide Diabetes Intervention Trial (ENDIT)

    DEFF Research Database (Denmark)

    Gale, E A M; Bingley, P J; Emmett, C L;

    2004-01-01

    Juvenile Diabetes Federation (JDF) units or more, and a non-diabetic oral glucose tolerance test. Participants were recruited from 18 European countries, Canada, and the USA, and were randomly allocated oral modified release nicotinamide (1.2 g/m2) or placebo for 5 years. Random allocation was done...

  15. [Chronic nicotinamide overload and type 2 diabetes].

    Science.gov (United States)

    Zhou, Shi-Sheng; Li, Da; Zhou, Yi-Ming; Sun, Wu-Ping; Liu, Xing-Xing; Lun, Yong-Zhi

    2010-02-25

    Type 2 diabetes is a major global health problem. It is generally accepted that type 2 diabetes is the result of gene-environmental interaction. However, the mechanism underlying the interaction is unclear. Diet change is known to play an important role in type 2 diabetes. The fact that the global high prevalence of type 2 diabetes has occurred following the spread of food fortification worldwide suggests a possible involvement of excess niacin intake. Our recent study found that nicotinamide overload and low nicotinamide detoxification may induce oxidative stress associated with insulin resistance. Based on the relevant facts, this review briefly summarized the relationship between the prevalence of type 2 diabetes and the nicotinamide metabolism changes induced by excess niacin intake, aldehyde oxidase inhibitors, liver diseases and functional defects of skin. We speculate that the gene-environmental interaction in type 2 diabetes may be a reflection of the outcome of the association of chronic nicotinamide overload-induced toxicity and the relatively low detoxification/excretion capacity of the body. Reducing the content of niacin in foods may be a promising strategy for the control of type 2 diabetes.

  16. Nicotinamide ribosyl uptake mutants in Haemophilus influenzae.

    Science.gov (United States)

    Herbert, Mark; Sauer, Elizabeta; Smethurst, Graeme; Kraiss, Anita; Hilpert, Anna-Karina; Reidl, Joachim

    2003-09-01

    The gene for the nicotinamide riboside (NR) transporter (pnuC) was identified in Haemophilus influenzae. A pnuC mutant had only residual NR uptake and could survive in vitro with high concentrations of NR, but could not survive in vivo. PnuC may represent a target for the development of inhibitors for preventing H. influenzae disease.

  17. Preparation of a sol-gel-derived carbon nanotube ceramic electrode by microwave irradiation and its application for the determination of adenine and guanine

    Energy Technology Data Exchange (ETDEWEB)

    Abbaspour, Abdolkarim, E-mail: abbaspour@chem.susc.ac.i [Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars 71456-85464 (Iran, Islamic Republic of); Ghaffarinejad, Ali [Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars 71456-85464 (Iran, Islamic Republic of)

    2010-01-01

    In this study, microwave irradiation was used for the fast preparation (min) of a sol-gel-derived carbon nanotube ceramic electrode (MW-CNCE). For confirmation of the preparation of the ceramic by MW irradiation, Fourier transform infrared, X-ray diffraction spectra and scanning electron microscopy images of the produced ceramic were compared with those of conventional ceramic (which is produced by drying the ceramic in air for 48 h). The electrochemical behavior of MW-CNCE in nicotinamide adenine dinucleotide, L-cysteine, adenine and guanine was compared with that of a conventional sol-gel-derived carbon nanotube ceramic electrode (CNCE). In all systems, similar peak potentials and lower background currents were obtained with respect to CNCE. Finally, the MW-CNCE was used for the simultaneous determination of adenine and guanine using differential pulse voltammetry. The linear ranges of 0.1-10 and 0.1-20 muM were obtained for adenine and guanine, respectively. These results are comparable with some modified electrodes that have recently been reported for the determination of adenine and guanine, with the advantage that the proposed electrode did not contain modifier. In addition, the proposed electrode was successfully used for the oxidation of adenine and guanine in DNA, and the detection limit for this measurement was 0.05 mug mL{sup -1} DNA.

  18. Electrochemical study in both classical cell and microreactors of flavin adenine dinucleotide as a redox mediator for NADH regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Tzedakis, Theodore, E-mail: tzedakis@chimie.ups-tlse.f [Laboratoire de Genie Chimique, UMR 5503, Universite Paul Sabatier, 31062 Toulouse cedex 04 (France); Cheikhou, Kane [Ecole Superieure Polytechnique de Dakar BP: 16263 Dakar-Fann (Senegal); Jerome, Roche; Karine, Groenen Serrano; Olivier, Reynes [Laboratoire de Genie Chimique, UMR 5503, Universite Paul Sabatier, 31062 Toulouse cedex 04 (France)

    2010-02-28

    The electrochemical reduction of flavin adenine dinucleotide (FAD) is studied in a classical electrochemical cell as well as in two types of microreactors: the first one is a one-channel reactor and the other one, a multichannel filter-press reactor. The ultimate goal is to use the reduced form of flavin (FADH{sub 2}), in the presence of formate dehydrogenase (FDH), in order to continuously regenerate the reduced form of nicotinamide adenine dinucleotide (NADH) for chiral syntheses. Various voltammetric and adsorption measurements were carried out for a better understanding of the redox behavior of the FAD as well as its adsorption on gold. Diffusivity and kinetic electrochemical parameters of FAD were determined.

  19. Bound anionic states of adenine

    Energy Technology Data Exchange (ETDEWEB)

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  20. Inhibitor of Nicotinamide Phosphoribosyltransferase Sensitizes Glioblastoma Cells to Temozolomide via Activating ROS/JNK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jun Feng

    2016-01-01

    Full Text Available Overcoming temozolomide (TMZ resistance is a great challenge in glioblastoma (GBM treatment. Nicotinamide phosphoribosyltransferase (NAMPT is a rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide and has a crucial role in cancer cell metabolism. In this study, we investigated whether FK866 and CHS828, two specific NAMPT inhibitors, could sensitize GBM cells to TMZ. Low doses of FK866 and CHS828 (5 nM and 10 nM, resp. alone did not significantly decrease cell viability in U251-MG and T98 GBM cells. However, they significantly increased the antitumor action of TMZ in these cells. In U251-MG cells, administration of NAMPT inhibitors increased the TMZ (100 μM-induced apoptosis and LDH release from GBM cells. NAMPT inhibitors remarkably enhanced the activities of caspase-1, caspase-3, and caspase-9. Moreover, NAMPT inhibitors increased reactive oxygen species (ROS production and superoxide anion level but reduced the SOD activity and total antioxidative capacity in GBM cells. Treatment of NAMPT inhibitors increased phosphorylation of c-Jun and JNK. Administration of JNK inhibitor SP600125 or ROS scavenger tocopherol with TMZ and NAMPT inhibitors substantially attenuated the sensitization of NAMPT inhibitor on TMZ antitumor action. Our data indicate a potential value of NAMPT inhibitors in combined use with TMZ for GBM treatment.

  1. Nicotinamide phosphoribosyl transferase (Nampt) is required for de novo lipogenesis in tumor cells.

    Science.gov (United States)

    Bowlby, Sarah C; Thomas, Michael J; D'Agostino, Ralph B; Kridel, Steven J

    2012-01-01

    Tumor cells have increased metabolic requirements to maintain rapid growth. In particular, a highly lipogenic phenotype is a hallmark of many tumor types, including prostate. Cancer cells also have increased turnover of nicotinamide adenine dinucleotide (NAD(+)), a coenzyme involved in multiple metabolic pathways. However, a specific role for NAD(+) in tumor cell lipogenesis has yet to be described. Our studies demonstrate a novel role for the NAD(+)-biosynthetic enzyme Nicotinamide phosphoribosyltransferase (Nampt) in maintaining de novo lipogenesis in prostate cancer (PCa) cells. Inhibition of Nampt reduces fatty acid and phospholipid synthesis. In particular, short chain saturated fatty acids and the phosphatidylcholine (PC) lipids into which these fatty acids are incorporated were specifically reduced by Nampt inhibition. Nampt blockade resulted in reduced ATP levels and concomitant activation of AMP-activated protein kinase (AMPK) and phosphorylation of acetyl-CoA carboxylase (ACC). In spite of this, pharmacological inhibition of AMPK was not sufficient to fully restore fatty acid synthesis. Rather, Nampt blockade also induced protein hyperacetylation in PC-3, DU145, and LNCaP cells, which correlated with the observed decreases in lipid synthesis. Moreover, the sirtuin inhibitor Sirtinol, and the simultaneous knockdown of SIRT1 and SIRT3, phenocopied the effects of Nampt inhibition on fatty acid synthesis. Altogether, these data reveal a novel role for Nampt in the regulation of de novo lipogenesis through the modulation of sirtuin activity in PCa cells.

  2. Nicotinamide phosphoribosyl transferase (Nampt is required for de novo lipogenesis in tumor cells.

    Directory of Open Access Journals (Sweden)

    Sarah C Bowlby

    Full Text Available Tumor cells have increased metabolic requirements to maintain rapid growth. In particular, a highly lipogenic phenotype is a hallmark of many tumor types, including prostate. Cancer cells also have increased turnover of nicotinamide adenine dinucleotide (NAD(+, a coenzyme involved in multiple metabolic pathways. However, a specific role for NAD(+ in tumor cell lipogenesis has yet to be described. Our studies demonstrate a novel role for the NAD(+-biosynthetic enzyme Nicotinamide phosphoribosyltransferase (Nampt in maintaining de novo lipogenesis in prostate cancer (PCa cells. Inhibition of Nampt reduces fatty acid and phospholipid synthesis. In particular, short chain saturated fatty acids and the phosphatidylcholine (PC lipids into which these fatty acids are incorporated were specifically reduced by Nampt inhibition. Nampt blockade resulted in reduced ATP levels and concomitant activation of AMP-activated protein kinase (AMPK and phosphorylation of acetyl-CoA carboxylase (ACC. In spite of this, pharmacological inhibition of AMPK was not sufficient to fully restore fatty acid synthesis. Rather, Nampt blockade also induced protein hyperacetylation in PC-3, DU145, and LNCaP cells, which correlated with the observed decreases in lipid synthesis. Moreover, the sirtuin inhibitor Sirtinol, and the simultaneous knockdown of SIRT1 and SIRT3, phenocopied the effects of Nampt inhibition on fatty acid synthesis. Altogether, these data reveal a novel role for Nampt in the regulation of de novo lipogenesis through the modulation of sirtuin activity in PCa cells.

  3. Crystal structure of human nicotinamide riboside kinase.

    Science.gov (United States)

    Khan, Javed A; Xiang, Song; Tong, Liang

    2007-08-01

    Nicotinamide riboside kinase (NRK) has an important role in the biosynthesis of NAD(+) as well as the activation of tiazofurin and other NR analogs for anticancer therapy. NRK belongs to the deoxynucleoside kinase and nucleoside monophosphate (NMP) kinase superfamily, although the degree of sequence conservation is very low. We report here the crystal structures of human NRK1 in a binary complex with the reaction product nicotinamide mononucleotide (NMN) at 1.5 A resolution and in a ternary complex with ADP and tiazofurin at 2.7 A resolution. The active site is located in a groove between the central parallel beta sheet core and the LID and NMP-binding domains. The hydroxyl groups on the ribose of NR are recognized by Asp56 and Arg129, and Asp36 is the general base of the enzyme. Mutation of residues in the active site can abolish the catalytic activity of the enzyme, confirming the structural observations.

  4. Crystal Structure of Human Nicotinamide Riboside Kinase

    Energy Technology Data Exchange (ETDEWEB)

    Khan,J.; Xiang, S.; Tong, L.

    2007-01-01

    Nicotinamide riboside kinase (NRK) has an important role in the biosynthesis of NAD{sup +} as well as the activation of tiazofurin and other NR analogs for anticancer therapy. NRK belongs to the deoxynucleoside kinase and nucleoside monophosphate (NMP) kinase superfamily, although the degree of sequence conservation is very low. We report here the crystal structures of human NRK1 in a binary complex with the reaction product nicotinamide mononucleotide (NMN) at 1.5 {angstrom} resolution and in a ternary complex with ADP and tiazofurin at 2.7 {angstrom} resolution. The active site is located in a groove between the central parallel {beta} sheet core and the LID and NMP-binding domains. The hydroxyl groups on the ribose of NR are recognized by Asp56 and Arg129, and Asp36 is the general base of the enzyme. Mutation of residues in the active site can abolish the catalytic activity of the enzyme, confirming the structural observations.

  5. Is sensitization with nicotinamide and carbogen dependent on nicotinamide concentration at the time of irradiation?

    Science.gov (United States)

    Rojas, A; Stratford, M R L; Bentzen, S M; Denekamp, J

    2004-07-01

    To determine whether tumour radiosensitization and the therapeutic benefit of administering carbogen with nicotinamide depend upon irradiating at the time of peak drug concentration. Local tumour control of CaNT tumours in CBA mice and acute skin reactions in albino WHT mice were assessed after treatment with 10 X-ray fractions in air, carbogen alone or combined with 0.1, 0.2 or 0.5 mg g(-1) nicotinamide, injected 15, 30 or 60 min before irradiation. Plasma and tumour drug pharmacokinetics were performed. Nicotinamide was rapidly taken up into tumours; a six- and threefold higher concentration was obtained with 0.5 mg g(-1) compared with 0.1 and 0.2 mg g(-1), respectively. Tumour, but not skin, radiosensitization increased as the dose of nicotinamide increased (p = 0.03), but at each dose level there was no significant difference in radiosensitivity when irradiations were done at or after the time of peak concentration. An almost eightfold increase in plasma levels increased tumour enhancement ratios from 1.74 to 1.92 (p skin radiosensitivity was independent of time of nicotinamide administration. Higher drug concentrations were not mirrored by proportionally higher enhancement ratios. Lower plasma levels than previously suggested significantly enhanced tumour radiosensitivity relative to carbogen alone. The clinical implications of these findings are discussed.

  6. Assimilation of endogenous nicotinamide riboside is essential for calorie restriction-mediated life span extension in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lu, Shu-Ping; Kato, Michiko; Lin, Su-Ju

    2009-06-19

    NAD(+) (nicotinamide adenine dinucleotide) is an essential cofactor involved in various biological processes including calorie restriction-mediated life span extension. Administration of nicotinamide riboside (NmR) has been shown to ameliorate deficiencies related to aberrant NAD(+) metabolism in both yeast and mammalian cells. However, the biological role of endogenous NmR remains unclear. Here we demonstrate that salvaging endogenous NmR is an integral part of NAD(+) metabolism. A balanced NmR salvage cycle is essential for calorie restriction-induced life span extension and stress resistance in yeast. Our results also suggest that partitioning of the pyridine nucleotide flux between the classical salvage cycle and the NmR salvage branch might be modulated by the NAD(+)-dependent Sir2 deacetylase. Furthermore, two novel deamidation steps leading to nicotinic acid mononucleotide and nicotinic acid riboside production are also uncovered that further underscore the complexity and flexibility of NAD(+) metabolism. In addition, utilization of extracellular nicotinamide mononucleotide requires prior conversion to NmR mediated by a periplasmic phosphatase Pho5. Conversion to NmR may thus represent a strategy for the transport and assimilation of large nonpermeable NAD(+) precursors. Together, our studies provide a molecular basis for how NAD(+) homeostasis factors confer metabolic flexibility.

  7. Nicotinamide phosphoribosyltransferase inhibitors, design, preparation and SAR

    DEFF Research Database (Denmark)

    Christensen, Mette Knak; Erichsen, Kamille Dumong; Olesen, Uffe Hogh;

    2013-01-01

    Existing pharmacological inhibitors for nicotinamide phosphoribosyltransferase (NAMPT) are promising therapeutics for treating cancer. Using medicinal and computational chemistry methods, the structure-activity relationship for novel classes of NAMPT inhibitors is described and compounds optimized....... Compounds are designed inspired by the NAMPT inhibitor APO866 and cyanoguanidine inhibitor scaffolds. In comparison with recently published derivatives the new analogues exhibit an equally potent anti-proliferative activity in vitro and comparable activity in vivo. The best performing compounds from...

  8. Gas hydrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    and the role it plays in the global climate and the future of fuels. Russia, Japan, Nigeria, Peru, Chile, Pakistan, Indonesia, Korea, etc are various countries who are perusing the gas hydrates studies as a future resource for fuel. Indian Initiative..., 1993, Free gas at the base of the gas hydrate zone in the vicinity of the Chile Triple junction: Geology, v. 21, pp. 905-908. Borowski, W.S., C.K. Paull, and U. William, III, 1999, Global and local variations of interstitial sulfate gradients...

  9. Optimization of Process Parameters for Conversion of 3-cyanpyridine to Nicotinamide Using Resting Cells of Mutant 4D Strain of Rhodococcus rhodochrous PA-34

    Directory of Open Access Journals (Sweden)

    Amit Seth

    2011-11-01

    Full Text Available Mutant of Rhodococcus rhodochrous PA-34, named as 'mutant 4D' has been reported for the hyperconversion of 3-cyanopyridine to nicotinamide. This mutant 4D generated through chemical mutagenesis has much more hydration potential than its wild strain. The reaction conditions for prolonged reaction and process parameters for the conversion of 3-cyanopyridine to nicotinamide were optimized. Under the optimized reaction conditions the mutant 4D is stable at higher temperature (55°C, high ionic strength (0.3 M and at acidic pH conditions (5.5 and exhibited 8.0, 7.9 and 7.0 U/mg dcw NHase activity, respectively. In a batch reaction of (One litre, 7M 3-cyanopyridine was completely converted to nicotinamide in 3h at 55°C using 7g resting cells (dry cell mass of mutant 4D of R. rhodochrous PA-34.

  10. In vitro evaluation of nicotinamide riboside analogs against Haemophilus influenzae.

    OpenAIRE

    Godek, C P; Cynamon, M H

    1990-01-01

    Exogenous NAD, nicotinamide mononucleotide, or nicotinamide riboside is required for the growth of Haemophilus influenzae. These compounds have been defined as the V-factor growth requirement. We have previously shown that the internalization of nicotinamide riboside is energy dependent and carrier mediated with saturation kinetics. Thionicotinamide riboside, 3-pyridinealdehyde riboside, 3-acetylpyridine riboside, and 3-aminopyridine riboside were prepared from their corresponding NAD analogs...

  11. Oral nicotinamide and actinic keratosis: a supplement success story.

    Science.gov (United States)

    Kim, Burcu; Halliday, Gary M; Damian, Diona L

    2015-01-01

    Nicotinamide has shown potential as a safe and effective intervention for the prevention of malignant and premalignant skin lesions. Recent studies have shown that nicotinamide, in both oral and topical forms, is able to prevent ultraviolet-induced immunosuppression in humans [1,2,3] and mice [4,5]. Immunosuppression is a known factor for the progression of premalignant lesions, such as actinic keratosis [6]. Murine studies have shown that nicotinamide is also able to protect against photocarcinogenesis [4,5]. Preliminary human studies suggest that nicotinamide may help prevent skin cancers and enhance the regression of actinic keratoses.

  12. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells.

    Science.gov (United States)

    Ratajczak, Joanna; Joffraud, Magali; Trammell, Samuel A J; Ras, Rosa; Canela, Núria; Boutant, Marie; Kulkarni, Sameer S; Rodrigues, Marcelo; Redpath, Philip; Migaud, Marie E; Auwerx, Johan; Yanes, Oscar; Brenner, Charles; Cantó, Carles

    2016-10-11

    NAD(+) is a vital redox cofactor and a substrate required for activity of various enzyme families, including sirtuins and poly(ADP-ribose) polymerases. Supplementation with NAD(+) precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), protects against metabolic disease, neurodegenerative disorders and age-related physiological decline in mammals. Here we show that nicotinamide riboside kinase 1 (NRK1) is necessary and rate-limiting for the use of exogenous NR and NMN for NAD(+) synthesis. Using genetic gain- and loss-of-function models, we further demonstrate that the role of NRK1 in driving NAD(+) synthesis from other NAD(+) precursors, such as nicotinamide or nicotinic acid, is dispensable. Using stable isotope-labelled compounds, we confirm NMN is metabolized extracellularly to NR that is then taken up by the cell and converted into NAD(+). Our results indicate that mammalian cells require conversion of extracellular NMN to NR for cellular uptake and NAD(+) synthesis, explaining the overlapping metabolic effects observed with the two compounds.

  13. 小分子干扰RNA抑制高氧暴露下人肺腺癌A549细胞中的硫氧还蛋白-2对还原型烟酰胺腺嘌呤二核苷酸脱氢酶亚单位1、细胞色素C氧化酶工表达的影响%Suppressed expression of thioredoxin-2 by small interference RNA in A549 cells exposed to hyperoxia reduced expression of nicotinamide-adenine dinucleotide dehydrogenase subunit 1 and cytochrome C oxidase Ⅰ

    Institute of Scientific and Technical Information of China (English)

    蔡成; 常立文; 李文斌; 陈燕; 单瑞艳; 刘伟; 潘睿

    2010-01-01

    Objective To explore the effects of expression of thioredoxin-2(Trx-2) suppressed by small interference RNA(SiRNA) in A549 cells exposed to hyperoxia on expression of nicotinamide adenine dinucleotide(NADH) dehydrogenase subunit 1(ND1)and cytochrome C oxidase Ⅰ(COX Ⅰ). Methods A549 cells were gained by serial subcultivation in vitro and transfered with synthetic Trx-2 sequence-specific SiRNA and then were randomly divided into air group without interference,hyperoxia group without interference,air group after interference,and hyperoxia group after interference.After exposure to oxygen or room air for 12,24 and 48 h,expressions of Trx-2,ND1 and COX Ⅰ mRNA of these cells were detected by reverse transcription-polymerase chain reaction (RT-PCR),and Trx-2 protein was detected by Western blot. Results (1)Sequence-specific SiRNA targeting Trx-2 could significantly down-regulate its expression in A549 cells.(2)Trx-2 mRNA levds in hyperoxia group without interference at 24 h was higher than those in air group without interference(0.7799±0.1249 VS 0.4424±Ⅰ.1140,P<0.05).Th-2 mRNA levels in hyperoxia group after ireedcrence at 24 h and 48 h were 0.2774±0.0174 and 0.2587±0.0069,lower than those in air group after interference and hyperoxia group without interference (P<0.05).(3)ND1 mRNA levels in hyperoxia group without interference at 24 h was 0.6609±0.0368,lower than those in air group without interference(0.8898±0.1049)(P<0.05).ND1 mRNA levels in hyperoxia group after interference at 12 h was 0.8848±0.0135,higher than those in air group after imederence(P<0.05).ND1 mRNA levels in hypemxia group after interference at 48 h was 0.3808±0.0937,lower than those in air group after imerference and hyperoxia group without interference(P<0.05).(4)COXI mRNA levels in hypemxia group without inteference at 12,24 and 48 h were 1.7313±0.4331,2.1929±0.6722 and 2.0754±0.2584,higher than those in air group witheUt interference,respectively (P<0.05). Conclusions ND1 and

  14. BULLOUS PEMPHIGOID SUCCESSFULLY CONTROLLED BY TETRACYCLINE AND NICOTINAMIDE

    NARCIS (Netherlands)

    KOLBACH, DN; REMME, JJ; BOS, WH; JONKMAN, MF; DEJONG, MCJM; PAS, HH; VANDERMEER, JB

    1995-01-01

    In 1986, Berk and Lorincz reported the efficacy of tetracycline and nicotinamide in the treatment of bullous pemphigoid (BP). In the present study of seven patients with BP, we found that a regimen of 2 g tetracycline combined with 2 g nicotinamide daily was effective in clearing the skin lesions. T

  15. Action of nucleotide phosphotransferase of Escherichia coli on nicotinamide riboside and nicotinamide mononucleotide.

    Science.gov (United States)

    Brunngraber, E F; Chargaff, E

    1977-10-01

    The action of the nucleotide phosphotransferase of Escherichia coli on nicotinamide riboside and on its 5'-phosphate results in the addition of one phosphate moiety to each of the substrates. Although the proof is not conclusive, it is likely that the phosphate group is transferred to the 3'-hydroxyl of the ribose. This is in contrast to the behavior of the enzyme toward NAD in which only the adenylic acid portion is phosphorylated enzymically.

  16. Nicotinamide prevents ultraviolet radiation-induced cellular energy loss.

    Science.gov (United States)

    Park, Joohong; Halliday, Gary M; Surjana, Devita; Damian, Diona L

    2010-01-01

    UV radiation is carcinogenic by causing mutations in the skin and also by suppressing cutaneous antitumor immunity. We previously found nicotinamide (vitamin B3) to be highly effective at reducing UV-induced immunosuppression in human volunteers, with microarray studies on in vivo irradiated human skin suggesting that nicotinamide normalizes subsets of apoptosis, immune function and energy metabolism-related genes that are downregulated by UV exposure. Using human adult low calcium temperature keratinocytes, we further investigated nicotinamide's effects on cellular energy metabolism. We found that nicotinamide prevented UV-induced cellular ATP loss and protected against UV-induced glycolytic blockade. To determine whether nicotinamide alters the effects of UV-induced oxidative stress posttranslationally, we also measured UV-induced reactive oxygen species (ROS). Nicotinamide had no effect on ROS formation, and at the low UV doses used in these studies, equivalent to ambient daily sun exposure, there was no evidence of apoptosis. Hence, nicotinamide appears to exert its UV protective effects on the skin via its role in cellular energy pathways.

  17. Evaluation of nicotinamide microemulsion on the skin penetration enhancement.

    Science.gov (United States)

    Boonme, Prapaporn; Boonthongchuay, Chalida; Wongpoowarak, Wibul; Amnuaikit, Thanaporn

    2016-01-01

    This study purposed to evaluate a microemulsion containing nicotinamide for its characteristics, stability, and skin penetration and retention comparing with a solution of nicotinamide in 2:1 mixture of water and isopropyl alcohol (IPA). The microemulsion system was composed of 1:1 mixture of Span80 and Tween80 as a surfactant mixture, isopropyl palmitate (IPP) as an oil phase, and 2:1 mixture of water and IPA as an aqueous phase. Nicotinamide microemulsion was prepared by dissolving the active in the aqueous phase before simply mixing with the other components. It was determined for its characteristics and stability under various conditions. The skin penetration and retention studies of nicotinamide microemulsion and solution were performed by modified Franz diffusion cells, using newborn pig skin as the membrane. The results showed that nicotinamide microemulsion could be obtained as clear yellowish liquid, was water-in-oil (w/o) type, possessed Newtonian flow, and exhibited physicochemical stability when kept at 4 °C and room temperature (≈30 ± 2 °C) during 3 months. From the skin penetration data, the microemulsion could enhance the skin penetration of nicotinamide comparing with the solution. Additionally, nicotinamide microemulsion could provide much higher amount of skin retention than that of skin penetration, resulting in suitability for a cosmeceutical product.

  18. The Vitamin Nicotinamide: Translating Nutrition into Clinical Care

    Directory of Open Access Journals (Sweden)

    Zhao Zhong Chong

    2009-09-01

    Full Text Available Nicotinamide, the amide form of vitamin B3 (niacin, is changed to its mononucleotide compound with the enzyme nicotinic acide/nicotinamide adenylyltransferase, and participates in the cellular energy metabolism that directly impacts normal physiology. However, nicotinamide also influences oxidative stress and modulates multiple pathways tied to both cellular survival and death. During disorders that include immune system dysfunction, diabetes, and aging-related diseases, nicotinamide is a robust cytoprotectant that blocks cellular inflammatory cell activation, early apoptotic phosphatidylserine exposure, and late nuclear DNA degradation. Nicotinamide relies upon unique cellular pathways that involve forkhead transcription factors, sirtuins, protein kinase B (Akt, Bad, caspases, and poly (ADP-ribose polymerase that may offer a fine line with determining cellular longevity, cell survival, and unwanted cancer progression. If one is cognizant of the these considerations, it becomes evident that nicotinamide holds great potential for multiple disease entities, but the development of new therapeutic strategies rests heavily upon the elucidation of the novel cellular pathways that nicotinamide closely governs.

  19. The vitamin nicotinamide: translating nutrition into clinical care.

    Science.gov (United States)

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen

    2009-09-09

    Nicotinamide, the amide form of vitamin B(3) (niacin), is changed to its mononucleotide compound with the enzyme nicotinic acide/nicotinamide adenylyltransferase, and participates in the cellular energy metabolism that directly impacts normal physiology. However, nicotinamide also influences oxidative stress and modulates multiple pathways tied to both cellular survival and death. During disorders that include immune system dysfunction, diabetes, and aging-related diseases, nicotinamide is a robust cytoprotectant that blocks cellular inflammatory cell activation, early apoptotic phosphatidylserine exposure, and late nuclear DNA degradation. Nicotinamide relies upon unique cellular pathways that involve forkhead transcription factors, sirtuins, protein kinase B (Akt), Bad, caspases, and poly (ADP-ribose) polymerase that may offer a fine line with determining cellular longevity, cell survival, and unwanted cancer progression. If one is cognizant of the these considerations, it becomes evident that nicotinamide holds great potential for multiple disease entities, but the development of new therapeutic strategies rests heavily upon the elucidation of the novel cellular pathways that nicotinamide closely governs.

  20. [Intervention of nicotinamide on skin melanin genesis after UVA exposed].

    Science.gov (United States)

    Patam, Muhammad; Jin, Xi-peng; Zhang, Yu-bin; Pan, Jian-ying; Shen, Guang-zu

    2007-08-01

    To investigate the interference effect of nicotinamide on UVA-induced melanin genesis and melanin transport in human skin melanocyte. The optimum UVA dose expected to cause cell proliferation: 0.2 J/cm(2), nicotinamide was added immediately after the 0.2 J/cm(2) UVA exposure and the melanin content, cell cycles, cell apoptosis and mRNA express level were measured respectively. Melanin content in melanocytes was increased significantly after exposed to 0.2 J/cm(2) UVA. Melanin content in melanocytes was decreased after treatment with 10.0 mmol/ml nicotinamide following UVA exposure, but the cell cycles and the cell apoptosis rate were not significantly altered. mRNA express levels of TYR, TRP-1 were modulated by nicotinamide. Nicotinamide has more effect on decreasing melanin genesis after UVA exposure, nicotinamide also plays a role in modulating the mRNA express of TYR, TRP-1 gene. It is possible to consider nicotinamide as an efficient and safe sun screen to provide a certain level of protection for UVA exposed skin.

  1. Extracellular nicotinamide phosphoribosyltransferase, a new cancer metabokine

    Science.gov (United States)

    Grolla, Ambra A; Travelli, Cristina

    2016-01-01

    Abstract In this review, we focus on the secreted form of nicotinamide phosphoribosyltransferase (NAMPT); extracellular NAMPT (eNAMPT), also known as pre‐B cell colony‐enhancing factor or visfatin. Although intracellular NAMPT is a key enzyme in controlling NAD metabolism, eNAMPT has been reported to function as a cytokine, with many roles in physiology and pathology. Circulating eNAMPT has been associated with several metabolic and inflammatory disorders, including cancer. Because cytokines produced in the tumour micro‐environment play an important role in cancer pathogenesis, in part by reprogramming cellular metabolism, future improvements in cancer immunotherapy will require a better understanding of the crosstalk between cytokine action and tumour biology. In this review, the knowledge of eNAMPT in cancer will be discussed, focusing on its immunometabolic function as a metabokine, its secretion, its mechanism of action and possible roles in the cancer micro‐environment. PMID:27128025

  2. Nicotinamide preferentially protects glycolysis in dermal fibroblasts under oxidative stress conditions.

    Science.gov (United States)

    Rovito, H A; Oblong, J E

    2013-07-01

    Daily exposure of human skin to environmental insults such as solar radiation, pollution and smoke can lead to an elevation of oxidative stress, causing premature acceleration of skin ageing. Oxidative stress is known to disrupt cellular metabolism, which negatively impacts the skin's functionality at the cellular and tissue level. To examine the changes in cellular metabolism due to oxidative stress. Glycolysis and oxidative phosphorylation rates in human dermal fibroblasts were monitored in real time under controlled nonlethal oxidative stress conditions. Hydrogen peroxide was utilized as a surrogate stressor because numerous environmental stressors as well as intrinsic ageing trigger its production. Hydrogen peroxide ranging between 0.5 and 3 mmol L(-1) caused a significant decrease in glycolytic and oxidative phosphorylation rates along with cellular ATP levels. Nicotinamide (NAM) was found to protect dose dependently as well as restore glycolytic rates concurrent with restoring ATP to control levels. NAM had an effective dose-response range between 0.1 and 1.0 mmol L(-1) , with maximal effects attained at 0.5 mmol L(-1) . Relative to oxidative phosphorylation, NAM was able to provide a diminished level of protection. FK866, a known NAM phosphoribosyltransferase inhibitor, was found to inhibit the protective effects of NAM significantly, suggesting part of the NAM mechanism of action involves nicotinamide adenine dinucleotide (NAD(+) ) synthesis. These results support previous findings that NAM protects cellular metabolism from oxidative stress by preferentially affecting glycolysis. Additionally, part of its mechanism of action appears to include NAD(+) synthesis. © 2013 The Authors BJD © 2013 British Association of Dermatologists.

  3. Inhibiting pollen reduced nicotinamide adenine dinucleotide phosphate oxidase–induced signal by intrapulmonary administration of antioxidants blocks allergic airway inflammation

    Science.gov (United States)

    Dharajiya, Nilesh; Choudhury, Barun K.; Bacsi, Attila; Boldogh, Istvan; Alam, Rafeul; Sur, Sanjiv

    2011-01-01

    Background Ragweed extract (RWE) contains NADPH oxidases that induce oxidative stress in the airways independent of adaptive immunity (signal 1) and augment antigen (signal 2)–induced allergic airway inflammation. Objective To test whether inhibiting signal 1 by administering antioxidants inhibits allergic airway inflammation in mice. Methods The ability of ascorbic acid (AA), N-acetyl cystenine (NAC), and tocopherol to scavenge pollen NADPH oxidase–generated reactive oxygen species (ROS) was measured. These antioxidants were administered locally to inhibit signal 1 in the airways of RWE-sensitized mice. Recruitment of inflammatory cells, mucin production, calcium-activated chloride channel 3, IL-4, and IL-13 mRNA expression was quantified in the lungs. Results Antioxidants inhibited ROS generation by pollen NADPH oxidases and intracellular ROS generation in cultured epithelial cells. AA in combination with NAC or Tocopherol decreased RWE-induced ROS levels in cultured bronchial epithelial cells. Coadministration of antioxidants with RWE challenge inhibited 4-hydroxynonenal adduct formation, upregulation of Clca3 and IL-4 in lungs, mucin production, recruitment of eosinophils, and total inflammatory cells into the airways. Administration of antioxidants with a second RWE challenge also inhibited airway inflammation. However, administration of AA+NAC 4 or 24 hours after RWE challenge failed to inhibit allergic inflammation. Conclusion Signal 1 plays a proinflammatory role during repeated exposure to pollen extract. We propose that inhibiting signal 1 by increasing antioxidant potential in the airways may be a novel therapeutic strategy to attenuate pollen-induced allergic airway inflammation. Clinical implications Administration of antioxidants in the airways may constitute a novel therapeutic strategy to prevent pollen induced allergic airway inflammation. PMID:17336614

  4. A novel twist on molecular interactions between thioredoxin and nicotinamide adenine dinucleotide phosphate-dependent thioredoxin reductase

    DEFF Research Database (Denmark)

    Kirkensgaard, Kristine Groth; Hägglund, Per; Shahpiri, Azar;

    2013-01-01

    dinucleotide (FAD)-binding domain of HvNTR2 to strongly affect the interaction with Trx. In particular, Trp42 and Met43 play key roles for recognition of the endogenous HvTrxh2. Trx from Arabidopsis thaliana is also efficiently recycled by HvNTR2 but turnover in this case appears to be less dependent...... on these two residues, suggesting a distinct mode for NTR:Trx recognition. Comparison between the HvNTR2:HvTrxh2 model and the crystal structure of the Escherichia coli NTR:Trx complex reveals major differences in interactions involving the FAD- and NADPH-binding domains as supported by our experiments...

  5. The catalase activity of diiron adenine deaminase

    Energy Technology Data Exchange (ETDEWEB)

    Kamat S. S.; Swaminathan S.; Holmes-Hampton, G. P.; Bagaria, A.; Kumaran, D.; Tichy, S. E.; Gheyi, T.; Zheng, X.; Bain, K.; Groshong, C.; Emtage, S.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn{sup 2+} before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO{sub 4}. Inductively coupled plasma mass spectrometry and Moessbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe{sup II}/Fe{sup II}]-ADE catalyzed the conversion of H{sub 2}O{sub 2} to O{sub 2} and H{sub 2}O. The values of k{sub cat} and k{sub cat}/K{sub m} for the catalase activity are 200 s{sup -1} and 2.4 x 10{sup 4} M{sup -1} s{sup -1}, respectively. [Fe{sup II}/Fe{sup II}]-ADE underwent more than 100 turnovers with H{sub 2}O{sub 2} before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g{sub ave} = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H{sub 2}O{sub 2} by [Fe{sup II}/Fe{sup II}]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.

  6. Nicotinamide phosphoribosyl transferase (Nampt is a target of microRNA-26b in colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Chenpeng Zhang

    Full Text Available A number of cancers show increased expression of Nicotinamide phosphoribosyl transferase (Nampt. However, the mechanism through which Nampt is upregulated is unclear. In our study, we found that the Nampt-specific chemical inhibitor FK866 significantly inhibited cell survival and reduced nicotinamide adenine dinucleotide (NAD levels in LoVo and SW480 cell lines. Bioinformatics analyses suggested that miR-26b targets Nampt mRNA. We identified Nampt as a new target of miR-26b and demonstrated that miR-26b inhibits Nampt expression at the protein and mRNA levels by binding to the Nampt 3'-UTR. Moreover, we found that miR-26b was down regulated in cancer tissues relative to that in adjacent normal tissues in 18 colorectal cancer patients. A statistically significant inverse correlation between miR-26b and Nampt expression was observed in samples from colorectal cancer patients and in 5 colorectal cell lines (HT-29, SW480, SW1116, LoVo, and HCT116. In addition, over expression of miR-26b strongly inhibited LoVo cell survival and invasion, an effect partially abrogated by the addition of NAD. In conclusion, this study demonstrated that the NAD-salvaging biosynthesis pathway involving Nampt might play a role in colorectal cancer cell survival. MiR-26b may serve as a tumor suppressor by targeting Nampt.

  7. Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes

    NARCIS (Netherlands)

    Knaus, T.; Paul, C.E.; Levy, C.W.; de Vries, S.; Mutti, F.G.; Hollmann, F.; Scrutton, N.S.

    2016-01-01

    The search for affordable, green biocatalytic processes is a challenge for chemicals manufacture. Redox biotransformations are potentially attractive, but they rely on unstable and expensive nicotinamide coenzymes that have prevented their widespread exploitation. Stoichiometric use of natural coenz

  8. An efficient chemical synthesis of nicotinamide riboside (NAR) and analogues.

    Science.gov (United States)

    Tanimori, Shinji; Ohta, Takeshi; Kirihata, Mitsunori

    2002-04-22

    A simple and efficient synthesis of nicotinamide riboside (NAR) 1 and derivatives 4 and 5 via trimethylsilyl trifluoromethanesulfonate (TMSOTf)-mediated N-glycosilation followed by spontaneous deacetylation by treating with methanol is reported.

  9. Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes

    NARCIS (Netherlands)

    Knaus, T.; Paul, C.E.; Levy, C.W.; de Vries, S.; Mutti, F.G.; Hollmann, F.; Scrutton, N.S.

    2016-01-01

    The search for affordable, green biocatalytic processes is a challenge for chemicals manufacture. Redox biotransformations are potentially attractive, but they rely on unstable and expensive nicotinamide coenzymes that have prevented their widespread exploitation. Stoichiometric use of natural

  10. Nicotinamide reduces photodynamic therapy-induced immunosuppression in humans.

    Science.gov (United States)

    Thanos, S M; Halliday, G M; Damian, D L

    2012-09-01

    The immune suppressive effects of topical photodynamic therapy (PDT) are potential contributors to treatment failure after PDT for nonmelanoma skin cancer. Nicotinamide (vitamin B(3) ) prevents immune suppression by ultraviolet radiation, but its effects on PDT-induced immunosuppression are unknown. To determine the effects of topical and oral nicotinamide on PDT-induced immunosuppression in humans. Twenty healthy Mantoux-positive volunteers received 5% nicotinamide lotion or vehicle to either side of the back daily for 3 days. Another group of 30 volunteers received 500 mg oral nicotinamide or placebo twice daily for 1 week in a randomized, double-blinded, crossover design. In each study, methylaminolaevulinate cream was applied to discrete areas on the back, followed by narrowband red light irradiation (37 J cm(-2) ) delivered at high (75 mW cm(-2) ) or low (15 mW cm(-2) ) irradiance rates. Adjacent, nonirradiated sites served as controls. Delayed-type hypersensitivity (Mantoux) reactions were assessed at treatment and control sites to determine immunosuppression. High irradiance rate PDT with vehicle or with placebo caused significant immunosuppression (equivalent to 48% and 50% immunosuppression, respectively; both P nicotinamide reduced this immunosuppression by 59% and 66%, respectively (both P nicotinamide study (15% immunosuppression, not significant), but caused 22% immunosuppression in the oral study (placebo arm; P = 0·006); nicotinamide reduced this immunosuppression by 69% (P = 0·045). While the clinical relevance of these findings is currently unknown, nicotinamide may provide an inexpensive means of preventing PDT-induced immune suppression and enhancing PDT cure rates. © 2012 The Authors. BJD © 2012 British Association of Dermatologists.

  11. Clathrate hydrates in nature.

    Science.gov (United States)

    Hester, Keith C; Brewer, Peter G

    2009-01-01

    Scientific knowledge of natural clathrate hydrates has grown enormously over the past decade, with spectacular new findings of large exposures of complex hydrates on the sea floor, the development of new tools for examining the solid phase in situ, significant progress in modeling natural hydrate systems, and the discovery of exotic hydrates associated with sea floor venting of liquid CO2. Major unresolved questions remain about the role of hydrates in response to climate change today, and correlations between the hydrate reservoir of Earth and the stable isotopic evidence of massive hydrate dissociation in the geologic past. The examination of hydrates as a possible energy resource is proceeding apace for the subpermafrost accumulations in the Arctic, but serious questions remain about the viability of marine hydrates as an economic resource. New and energetic explorations by nations such as India and China are quickly uncovering large hydrate findings on their continental shelves.

  12. Influence of Magnetic Microparticles Isolation on Adenine Homonucleotides Structure

    Directory of Open Access Journals (Sweden)

    Monika Kremplova

    2014-02-01

    Full Text Available The electroactivity of purine and pyrimidine bases is the most important property of nucleic acids that is very useful for determining oligonucleotides using square wave voltammetry. This study was focused on the electrochemical behavior of adenine-containing oligonucleotides before and after their isolation using paramagnetic particles. Two peaks were detected—peak A related to the reduction of adenine base and another peak B involved in the interactions between individual adenine strands and contributes to the formation of various spatial structures. The influence of the number of adenine bases in the strand in the isolation process using paramagnetic particles was investigated too.

  13. A review of nicotinamide: treatment of skin diseases and potential side effects.

    Science.gov (United States)

    Rolfe, Heidi M

    2014-12-01

    Nicotinamide, also known as niacinamide, is the amide form of vitamin B3. It is a precursor of essential coenzymes for numerous reactions in the body including adenosine triphosphate (ATP) production. Nicotinic acid, also known as niacin, is converted into nicotinamide in the body. The use of topical nicotinamide in the treatment of acne vulgaris; melasma; atopic dermatitis; rosacea; and oral nicotinamide in preventing nonmelanoma skin cancer is discussed. The possible side effects and consequences of excessive nicotinamide exposure are reviewed, including suggestions nicotinamide might have a role in the development of diabetes, Parkinson's disease, and liver damage.

  14. [Nicotinamide influence on pancreatic cells viability].

    Science.gov (United States)

    Kuchmerovs'ka, T M; Donchenko, H V; Tykhonenko, T M; Huzyk, M M; Stavniĭchuk, R V; Ianits'ka, L V; Stepanenko, S P; Klymenko, A P

    2012-01-01

    The study was undertaken to investigate the modulating effect of nicotinamide (NAm) in different concentrations and under different glucose concentrations on the viability and oxidative stress induced by streptozotocin (STZ, 5 mmol/l) and hydrogen peroxide (H2O2, 100 micromol/l) on isolated rat pancreatic cells of the Langerhans islets in vitro. Cell viability did not depend on the concentration of glucose in the range of 5-20 mmol/l, and in subsequent studies we used glucose in concentration of 10 mmol/l to protect cells against its hypo- and hyperglycemic action. Cytoprotective effect of NAm in concentrations from 5 to 20 mmol/l on cells survival was the same. It was found that the destructive action of STZ and H2O2 during 24 hours on isolated cells of the pancreas resulted in the significant cell death. It was revealed that NAm in concentration of 5 mmol/l not only had cytoprotective effects against STZ and H2O2 but also partially reduced the level of oxidative stress in the investigated cells induced by these compounds. High concentration of NAm, 35 mmol/l, causes cytotoxic effect on the viability of pancreatic islet cells and increase of oxidative stress induced by STZ and H2O2. Most likely these effects could be associated with direct modulatory action of NAm on important effector mechanisms involved in cell death, including PARP-dependent processes, or/and indirectly, through metabolic and antioxidant effects of the compound.

  15. Advances in the application of nicotinamide in dermatology%烟酰胺在皮肤科的应用进展

    Institute of Scientific and Technical Information of China (English)

    黄畋; 林熙然

    2009-01-01

    研究显示,烟酰胺腺嘌呤二核苷酸不但是细胞氧化还原的辅酶,而且是单腺苷酸二磷酸核糖转移酶、多聚单腺苷酸二磷酸核糖聚合酶和去乙酰化酶的底物,在多种细胞生理学功能中超重要作用.烟酰胺是合成烟酰胺腺嘌呤二核苷酸的前体,又是烟酰胺腺嘌呤二核苷酸一消耗酶的抑制剂,其作用已超出于防治糙皮病.在皮肤科,烟酰胺已用于治疗免疫性大疱病、特应性皮炎、痤疮和酒渣鼻等,并在抗皮肤老化和皮肤美容方面有良好的应用前景.烟酰胺外用的安全性已经确认,但大剂量内服尚未经规范的新药安全性评估.%Recent studies have shown that nicotinamide adenine dinucleotide(NAD)is not only a co-enzyme in cellular oxidation.reduction reactions.but also a substrate for reactions catalyzed by mono (ADP-ribose) transferases,poly (ADP-ribose) polymemses and acetylase,and it play important roles in numerous cellular physiologic functions.Nicotinamide is not only a precursor for the synthesis of NAD,but also an inhibitor of NAD-consuming enzymes.Besides pellagra,nicotinamide has been used to ireat immune bullous diseases,atopic dermatitis,rosacea and aene,and so on.Moreover,nicotinamide has shown a favorable perspective in anti-skin aging and cosmetic dermatology.The safety of topical nicotinamide has been already confirmed.but a forlnal safety evaluation routinely designed for a new drug has not been performed for oral nicotinamide at high dose.

  16. Gas-phase hydration thermochemistry of sodiated and potassiated nucleic acid bases.

    Science.gov (United States)

    Wincel, Henryk

    2012-09-01

    Hydration reactions of sodiated and potassiated nucleic acid bases (uracil, thymine, cytosine, and adenine) produced by electrospray have been studied in a gas phase using the pulsed ion-beam high-pressure mass spectrometer. The thermochemical properties, ΔH(o)(n), ΔS(o)(n), and ΔG(o)(n), for the hydrated systems were obtained from hydration equilibrium measurement. The structural aspects of the hydrated complexes are discussed in conjunction with available literature data. The correlation between water binding energies in the hydrated complexes and the corresponding metal ion affinities of nucleobases suggests that a significant (if not dominant) amount of the canonical structure of cytosine undergoes tautomerization during electrospray ionization, and the thermochemical values for cationized cytosine probably correspond to a mixture of tautomeric complexes.

  17. 4-Hydroxy-3-methoxybenzaldehyde–nicotinamide (1/1

    Directory of Open Access Journals (Sweden)

    Fiona N.-F. How

    2011-12-01

    Full Text Available In the title compound, C6H6N2O·C8H8O3, an equimolar co-crystal of nicotinamide and vanillin, the aromatic ring and the amide fragment of the nicotinamide molecule make a dihedral angle of 32.6 (2°. The vanillin molecule is almost planar, with an r.m.s. deviation for all non-H atoms of 0.0094 Å. The vaniline and nicotinamide aromatic rings are nearly coplanar, the dihedral angle between them being 3.20 (9°. In the crystal, the two components are linked through N—H...O and O—H...N hydrogen bonds into chains along the a axis. The chains are connected via C—H...O interactions, forming a three-dimensional polymeric structure.

  18. Sirtuins are Unaffected by PARP Inhibitors Containing Planar Nicotinamide Bioisosteres.

    Science.gov (United States)

    Ekblad, Torun; Schüler, Herwig

    2016-03-01

    PARP-family ADP-ribosyltransferases (PARPs) and sirtuin deacetylases all use NAD(+) as cosubstrate for ADP-ribosyl transfer. PARP inhibitors are important research tools and several are being evaluated in cancer treatment. With the exception of a few tankyrase inhibitors, all current PARP inhibitors mimic the nicotinamide moiety in NAD(+) and block the nicotinamide binding pocket. We report here that while the activities of the four human sirtuin isoforms SIRT1, SIRT2, SIRT3 and SIRT6 are blocked by sirtuin inhibitor Ex527 in vitro, they are unaffected by the seven clinical and commonly used PARP inhibitors niraparib, olaparib, rucaparib, talazoparib, veliparib, PJ34, and XAV939. These findings indicate that PARP inhibitors containing planar nicotinamide mimetics do not bind to sirtuin cofactor sites. In conclusion, a simple commercially available assay can be used to rule out interference of novel PARP inhibitors with sirtuin NAD(+) binding. © 2015 John Wiley & Sons A/S.

  19. Radiation and thermal stabilities of adenine nucleotides.

    Science.gov (United States)

    Demidov, V V; Potaman, V N; Solyanina, I P; Trofimov, V I

    1995-03-01

    We have investigated in detail radiation and thermal stabilities and transformations of adenosine mono- and triphosphates in liquid and frozen solid aqueous solutions within a wide range of absorbed radiation dose (up to 75 kGy) and temperature (up to 160 degrees C). Dephosphorylation is the main pathway of high temperature hydrolysis of adenine nucleotides. Basic thermodynamic and kinetic parameters of this process have been determined. Radiolysis of investigated compounds at room temperature results in scission of N-glycosidic bond with a radiation yield about of 1 mol/100 eV. Solution freezing significantly enhances radiation stability of nucleotides as well as other biomolecules. This circumstance is essential in the discussion of panspermia concepts.

  20. The Copper-nicotinamide complex: sustainable applications in coupling and cycloaddition reactions

    Science.gov (United States)

    Crystalline copper (II)-nicotinamide complex, synthesized via simple mixing of copper chloride and nicotinamide solution at room temperature, catalyzes the C-S, C-N bond forming and cycloaddition reactions under a variety of sustainable reaction conditions.

  1. Nicotinamide riboside phosphorylase from beef liver: purification and characterization.

    Science.gov (United States)

    Imai, T; Anderson, B M

    1987-04-01

    Nicotinamide riboside phosphorylase (NR phosphorylase) from beef liver has been purified to apparent homogeneity at 300-fold purification with a 35% yield. Kinetic constants for the enzyme-catalyzed phosphorolysis were as follows Knicotinamide riboside, 2.5 +/- 0.4 mM; Kinorganic phosphate, 0.50 +/- 0.12 mM; Vmax, 410 +/- 30 X 10(-6) mol min-1 mg protein-1, respectively. The molecular weights of the native enzyme and subunit structure were determined to be 131,000 and 32,000, respectively, suggesting the beef liver NR phosphorylase to be tetrameric in structure and consistent with the presence of identical subunits. The amino acid composition was shown to be very similar to that reported for human erythrocyte purine-nucleoside phosphorylase but differing considerably from that found for rat liver purine-nucleoside phosphorylase. In addition to catalytic activity with nicotinamide riboside, the beef liver enzyme catalyzed a phosphorolytic reaction with inosine and guanosine exhibiting activity ratios, nicotinamide riboside:inosine: guanosine of 1.00:0.35:0.29, respectively. These ratios of activity remained constant throughout purification of the beef liver enzyme and no separation of these activities was detected. Phosphorolysis of nicotinamide riboside was inhibited competitively by inosine (Ki = 75 microM) and guanosine (Ki = 75 microM). Identical rates of thermal denaturation of the beef liver enzyme were observed when determined for the phosphorolysis of either nicotinamide riboside or inosine. These observations coupled with studies of pH and specific buffer effects indicate the phosphorolysis of nicotinamide riboside, inosine, and guanosine to be catalyzed by the same enzyme.

  2. 14N NQR study of nicotinamide and related compounds.

    Science.gov (United States)

    Seliger, J; Zagar, V

    2008-01-01

    14N nuclear quadrupole resonance (NQR) frequencies have been measured in picolinamide, nicotinamide, isonicotinamide, 2,6-pyridine dicarboxamide, and acetamide by double resonance. The 14N NQR spectra in picolinamide, nicotinamide, isonicotinamide, and 2,6-pyridine dicarboxamide show the presence of two distinct nitrogen positions: the ring position with the quadrupole coupling constant about 4,5 MHz and the amide position with the quadrupole coupling constant about 2.6 MHz. The NQR data are related to the structure of the investigated compounds and to the N--H...O hydrogen bonds.

  3. Coordination behaviour of nicotinamide: an infrared spectroscopic study

    Science.gov (United States)

    Bayarı, Sevgi; Ataç, Ahmet; Yurdakul, Şenay

    2003-07-01

    A series of Hofmann-type complexes containing two nicotinamide(nia) molecules attached to transition metal (II) (M) tetracyanonickelate frame with the formula: M(nia) 2Ni(CN) 4 (where M=Mn, Co, Ni, Cu or Cd) have been synthesised for the first time. Metal (II) halide complexes of nicotinamide complexes of the type [M(nia) 2X 2 (M=Cd, Ni, Cu, Hg; X=Cl, Br) and Ni(nia) 4Br 2 nia=nicotinamide] have also synthesised. The FTIR spectra are reported in the 4000-400 cm -1 region. Vibrational assignments are given for all the observed bands. The analysis of the vibrational spectra indicates that there are some structure-spectra correlations. A pronounced change was observed in the N-H stretching frequencies of the NH 2 group. It is proposed that the amide NH 2 group influence by the intramolecular hydrogen bond in the complexes. The coordination effect on the nicotinamide modes is analysed.

  4. 21 CFR 573.625 - Menadione nicotinamide bisulfite.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.625 Menadione nicotinamide bisulfite. The food additive may be safely... supplemental niacin as follows: (1) In chicken and turkey feeds at a level not to exceed 2 grams per ton...

  5. What is adenine doing in photolyase?

    Science.gov (United States)

    Acocella, Angela; Jones, Garth A; Zerbetto, Francesco

    2010-03-25

    The short answer to the title question is that it acts as an electrostatic bouncer that shoves the charge flow from flavin toward the DNA lesion that photolyase repairs. This explanation is provided by an explicit time-dependent quantum mechanical approach, which is used to investigate the electron transfer process that triggers the repair mechanism. The transfer occurs from the flavin photolyase cofactor to the cyclobutane ring of DNA, previously formed by light-induced cycloaddition of adjacent pyrimidine bases. The electron wave function dynamics accurately accounts for the previously proposed mechanism of transfer via the terminal methyl group of the flavin moiety present in the catalytic electron-donor cofactor, FADH(-), which also contains adenine. This latter moiety, which has often been assumed to be present mainly for structural reasons, instantaneously modifies the interaction between acceptor and donor by a variation of the electrostatic interactions so that the presence of its local atomic charges is necessary to trigger the transfer. In principle, knowledge of the details of the electron transfer dynamics and of the important role of polarization effects can be exploited to improve the efficiency of the repair mechanism in artificial systems.

  6. Adenine nucleotides of the stria vascularis.

    Science.gov (United States)

    Thalmann, I; Marcus, N Y; Thalmann, R

    1979-01-01

    The levels of the adenine nucleotides ATP, ADP, and AMP in the stria vascularis were measured under normal conditions, and following various durations of ischemia. The concentrations of these compounds were used for the calculation of the adenylate energy charge, the energy status and the phosphorylation state of the stria. Following 10 min of ischemia the adenylate energy charge had decreased three fold, the energy status seven fold and the phosphorylation state 14 fold. To study the potential for recovery of strial function following various brief and prolonged ischemic intervals, a method for the perfusion of the ear via the anterior inferior cerebellar artery was developed. For various reasons it was found advantageous to use "artifical blood" as perfusate, relying upon fluorocarbons as oxygen carriers. The endolymphatic potential was used as electrical indicator of strial function. Recovery of the endolymphatic potential following brief periods of ischemia was paralleled by a corresponding increase of the ATP levels and a drastic decrease of the AMP levels of the stria vascularis. Preliminary results on the effects of substrate-free perfusion are presented.

  7. Origins of hydration lubrication.

    Science.gov (United States)

    Ma, Liran; Gaisinskaya-Kipnis, Anastasia; Kampf, Nir; Klein, Jacob

    2015-01-14

    Why is friction in healthy hips and knees so low? Hydration lubrication, according to which hydration shells surrounding charges act as lubricating elements in boundary layers (including those coating cartilage in joints), has been invoked to account for the extremely low sliding friction between surfaces in aqueous media, but not well understood. Here we report the direct determination of energy dissipation within such sheared hydration shells. By trapping hydrated ions in a 0.4-1 nm gap between atomically smooth charged surfaces as they slide past each other, we are able to separate the dissipation modes of the friction and, in particular, identify the viscous losses in the subnanometre hydration shells. Our results shed light on the origins of hydration lubrication, with potential implications both for aqueous boundary lubricants and for biolubrication.

  8. Nicotinamide-Induced Apoptosis Can Be Enhanced by Melatonin in Mouse Myeloma Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guiyou; SHENG Hongzhi; LIU Jia

    2006-01-01

    The mechanism of apoptosis induced by nicotinamide was investigated by treating mouse myeloma cells (Sp2/0) with various concentrations of nicotinamide. The typical hallmarks of apoptosis, including chromatin condensation and DNA fragmentation, were detected when cells were treated with nicotinamide at concentrations of 30, 40, 50, and 60 mmol/L. The apoptosis percentage increased with increasing nicotinamide concentration. Interestingly, the strong antioxidant melatonin did not restrain the apoptosis induced by nicotinamide in mouse myeloma cells but greatly increased the induction of nicotinamide on apoptosis. When cells were preincubated with 0.1, 1, and 10 mmol/L melatonin before nicotinamide induction, the percentage of apoptosis induced by 50 mmol/L nicotinamide markedly increased with increasing melatonin concentration. These results suggest that apoptosis induced by nicotinamide has no relationship with oxidative stress and melatonin could enhance nicotinamide-induced apoptosis in mouse myeloma cells by stimulating cell division in a certain manner. Nicotinamide may provide a new method to treat some kinds of tumors with no damage to normal tissues.

  9. Hydration Assessment of Athletes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ KEY POINTS · Although there is no scientific consensus for 1 ) howbest to assess the hydration status of athletes, 2)what criteria to use as acceptable outcome measurements, or 3) the best time to apply practical assessment methods, there are methods that can be used toprovide athletes with useful feedback about their hydration status

  10. Saccharomyces cerevisiae YOR071C encodes the high affinity nicotinamide riboside transporter Nrt1.

    Science.gov (United States)

    Belenky, Peter A; Moga, Tiberiu G; Brenner, Charles

    2008-03-28

    NAD(+) is an essential coenzyme for hydride transfer enzymes and a substrate of sirtuins and other NAD(+)-consuming enzymes. Nicotinamide riboside is a recently discovered eukaryotic NAD(+) precursor converted to NAD(+) via the nicotinamide riboside kinase pathway and by nucleosidase activity and nicotinamide salvage. Nicotinamide riboside supplementation of yeast extends replicative life span on high glucose medium. The molecular basis for nicotinamide riboside uptake was unknown in any eukaryote. Here, we show that deletion of a single gene, YOR071C, abrogates nicotinamide riboside uptake without altering nicotinic acid or nicotinamide import. The gene, which is negatively regulated by Sum1, Hst1, and Rfm1, fully restores nicotinamide riboside import and utilization when resupplied to mutant yeast cells. The encoded polypeptide, Nrt1, is a predicted deca-spanning membrane protein related to the thiamine transporter, which functions as a pH-dependent facilitator with a K(m) for nicotinamide riboside of 22 microm. Nrt1-related molecules are conserved in particular fungi, suggesting a similar basis for nicotinamide riboside uptake.

  11. Nicotinamide exacerbates hypoxemia in ventilator-induced lung injury independent of neutrophil infiltration.

    Directory of Open Access Journals (Sweden)

    Heather D Jones

    Full Text Available Ventilator-induced lung injury is a form of acute lung injury that develops in critically ill patients on mechanical ventilation and has a high degree of mortality. Nicotinamide phosphoribosyltransferase is an enzyme that is highly upregulated in ventilator-induced lung injury and exacerbates the injury when given exogenously. Nicotinamide (vitamin B3 directly inhibits downstream pathways activated by Nicotinamide phosphoribosyltransferase and is protective in other models of acute lung injury.We administered nicotinamide i.p. to mice undergoing mechanical ventilation with high tidal volumes to study the effects of nicotinamide on ventilator-induced lung injury. Measures of injury included oxygen saturations and bronchoalveolar lavage neutrophil counts, protein, and cytokine levels. We also measured expression of nicotinamide phosophoribosyltransferase, and its downstream effectors Sirt1 and Cebpa, Cebpb, Cebpe. We assessed the effect of nicotinamide on the production of nitric oxide during ventilator-induced lung injury. We also studied the effects of ventilator-induced lung injury in mice deficient in C/EBPε.Nicotinamide treatment significantly inhibited neutrophil infiltration into the lungs during ventilator-induced lung injury, but did not affect protein leakage or cytokine production. Surprisingly, mice treated with nicotinamide developed significantly worse hypoxemia during mechanical ventilation. This effect was not linked to increases in nitric oxide production or alterations in expression of Nicotinamide phosphoribosyl transferase, Sirt1, or Cebpa and Cebpb. Cebpe mRNA levels were decreased with either nicotinamide treatment or mechanical ventilation, but mice lacking C/EBPε developed the same degree of hypoxemia and ventilator-induced lung injury as wild-type mice.Nicotinamide treatment during VILI inhibits neutrophil infiltration of the lungs consistent with a strong anti-inflammatory effect, but paradoxically also leads to the

  12. Nicotinamide Exacerbates Hypoxemia in Ventilator-Induced Lung Injury Independent of Neutrophil Infiltration

    Science.gov (United States)

    Jones, Heather D.; Yoo, Jeena; Crother, Timothy R.; Kyme, Pierre; Ben-Shlomo, Anat; Khalafi, Ramtin; Tseng, Ching W.; Parks, William C.; Arditi, Moshe

    2015-01-01

    Background Ventilator-induced lung injury is a form of acute lung injury that develops in critically ill patients on mechanical ventilation and has a high degree of mortality. Nicotinamide phosphoribosyltransferase is an enzyme that is highly upregulated in ventilator-induced lung injury and exacerbates the injury when given exogenously. Nicotinamide (vitamin B3) directly inhibits downstream pathways activated by Nicotinamide phosphoribosyltransferase and is protective in other models of acute lung injury. Methods We administered nicotinamide i.p. to mice undergoing mechanical ventilation with high tidal volumes to study the effects of nicotinamide on ventilator-induced lung injury. Measures of injury included oxygen saturations and bronchoalveolar lavage neutrophil counts, protein, and cytokine levels. We also measured expression of nicotinamide phosophoribosyltransferase, and its downstream effectors Sirt1 and Cebpa, Cebpb, Cebpe. We assessed the effect of nicotinamide on the production of nitric oxide during ventilator-induced lung injury. We also studied the effects of ventilator-induced lung injury in mice deficient in C/EBPε. Results Nicotinamide treatment significantly inhibited neutrophil infiltration into the lungs during ventilator-induced lung injury, but did not affect protein leakage or cytokine production. Surprisingly, mice treated with nicotinamide developed significantly worse hypoxemia during mechanical ventilation. This effect was not linked to increases in nitric oxide production or alterations in expression of Nicotinamide phosphoribosyl transferase, Sirt1, or Cebpa and Cebpb. Cebpe mRNA levels were decreased with either nicotinamide treatment or mechanical ventilation, but mice lacking C/EBPε developed the same degree of hypoxemia and ventilator-induced lung injury as wild-type mice. Conclusions Nicotinamide treatment during VILI inhibits neutrophil infiltration of the lungs consistent with a strong anti-inflammatory effect, but

  13. Successful monotherapy of pemphigus vegetans with minocycline and nicotinamide.

    Science.gov (United States)

    von Köckritz, A; Ständer, S; Zeidler, C; Metze, D; Luger, T; Bonsmann, G

    2017-01-01

    Pemphigus vegetans is a rare variant of pemphigus vulgaris, accounting for 1-2% of all pemphigus diseases. Systemic corticosteroids are the therapy of first choice in combination with immunosuppressants as steroid-sparing agents. To highlight the exceptional but successful use of minocycline/nicotinamide monotherapy in pemphigus vegetans. A review of the literature to date about pemphigus vegetans with special emphasis on therapy was performed. Due to its rarity, multiple anecdotal reports without long-term follow-up are available and prospective controlled trials are lacking. Only one retrospective study from Tunisia includes 17 patients with pemphigus vegetans. We present a 76-year-old woman with pemphigus vegetans achieving complete response to a minocycline/nicotinamide monotherapy at onset and at relapse of the disease. Treatment has been discontinued after repeated direct immunofluorescence (DIF) of previously affected normal skin and anti-desmoglein 3 antibodies had become negative. In addition, DIF of previously involved oral mucosa was negative. During long-term follow-up clinical remission has been maintained for more than 5 years. Up to now, negative results of serial performed indirect immunofluorescence and desmoglein ELISA testing also predict immunological remission. In our patient and in a case with oesophageal involvement, published more than 20 years ago, clearly the benefit of minocycline/nicotinamide monotherapy was demonstrated. We propose to consider minocycline/nicotinamide as first-line monotherapy in pemphigus vegetans, especially in elderly patients with comorbidities and contraindications to standard therapy, as it avoids the toxicities of systemic corticosteroids and immunosuppressants. © 2016 European Academy of Dermatology and Venereology.

  14. In vitro activity of nicotinamide/antileishmanial drug combinations

    OpenAIRE

    Gazanion, Elodie; Vergnes, Baptiste; Seveno, Marie; Garcia, Deborah; Oury, Bruno; Ait-Oudhia, K.; Ouaissi, A.; Sereno, Denis

    2011-01-01

    To improve the management of leishmaniasis, new drugs and/or alternative therapeutic strategies are required. Combination therapy of antileishmanial drugs is currently considered as one of the most rational approaches to lower treatment failure rate and limit drug resistance spreading. Nicotinamide (NAm), also known as vitamin B3 that is already is used in human therapy, exerts in vitro antileishmanial activity. Drug combination studies, performed on L. infantum axenic amastigotes, revealed t...

  15. Nicotinamide metabolism in ferns: formation of nicotinic acid glucoside.

    Science.gov (United States)

    Ashihara, Hiroshi; Yin, Yuling; Watanabe, Shin

    2011-03-01

    The metabolic fate of [carbonyl-(14)C]nicotinamide was investigated in 9 fern species, Psilotum nudum, Angiopteris evecta, Lygodium japonicum, Acrostichum aureum, Asplenium antiquum, Diplazium subsinuatum, Thelypteris acuminate, Blechnum orientale and Crytomium fortune. All fern species produce a large quantity of nicotinic acid glucoside from [(14)C]nicotinamide, but trigonelline formation is very low. Increases in the release of (14)CO(2) with incubation time was accompanied by decreases in [carboxyl-(14)C]nicotinic acid glucoside. There was slight stimulation of nicotinic acid glucoside formation by 250 mM NaCl in mature leaves of the mangrove fern, Acrostichum aureum, but it is unlikely that this compound acts as a compatible solute. Nicotinamide and nicotinic acid salvage for pyridine nucleotide synthesis was detected in all fern species, although this activity was always less than nicotinic acid glucoside synthesis. Predominant formation of nicotinic acid glucoside is characteristic of nicotinic acid metabolism in ferns. This reaction appears to act as a detoxication mechanism, removing excess nicotinic acid.

  16. Characterization of cytokinin and adenine transport in Arabidopsis cell cultures.

    Science.gov (United States)

    Cedzich, Anna; Stransky, Harald; Schulz, Burkhard; Frommer, Wolf B

    2008-12-01

    Cytokinins are distributed through the vascular system and trigger responses of target cells via receptor-mediated signal transduction. Perception and transduction of the signal can occur at the plasma membrane or in the cytosol. The signal is terminated by the action of extra- or intracellular cytokinin oxidases. While radiotracer studies have been used to study transport and metabolism of cytokinins in plants, little is known about the kinetic properties of cytokinin transport. To provide a reference dataset, radiolabeled trans-zeatin (tZ) was used for uptake studies in Arabidopsis (Arabidopsis thaliana) cell culture. Uptake kinetics of tZ are multiphasic, indicating the presence of both low- and high-affinity transport systems. The protonophore carbonyl cyanide m-chlorophenylhydrazone is an effective inhibitor of cytokinin uptake, consistent with H(+)-mediated uptake. Other physiological cytokinins, such as isopentenyl adenine and benzylaminopurine, are effective competitors of tZ uptake, whereas allantoin has no inhibitory effect. Adenine competes for zeatin uptake, indicating that the degradation product of cytokinin oxidases is transported by the same systems. Comparison of adenine and tZ uptake in Arabidopsis seedlings reveals similar uptake kinetics. Kinetic properties, as well as substrate specificity determined in cell cultures, are compatible with the hypothesis that members of the plant-specific purine permease family play a role in adenine transport for scavenging extracellular adenine and may, in addition, be involved in low-affinity cytokinin uptake.

  17. Hydration rate of obsidian.

    Science.gov (United States)

    Friedman, I; Long, W

    1976-01-30

    The hydration rates of 12 obsidian samples of different chemical compositions were measured at temperatures from 95 degrees to 245 degrees C. An expression relating hydration rate to temperature was derived for each sample. The SiO(2) content and refractive index are related to the hydration rate, as are the CaO, MgO, and original water contents. With this information it is possible to calculate the hydration rate of a sample from its silica content, refractive index, or chemical index and a knowledge of the effective temperature at which the hydration occurred. The effective hydration temperature can be either measured or approximated from weather records. Rates have been calculated by both methods, and the results show that weather records can give a good approximation to the true EHT, particularly in tropical and subtropical climates. If one determines the EHT by any of the methods suggested, and also measures or knows the rate of hydration of the particular obsidian used, it should be possible to carry out absolute dating to +/- 10 percent of the true age over periods as short as several years and as long as millions of years.

  18. Inhibition of lactate production in rat brain extracts and synaptosomes by 3-[4-(reduced 3-pyridine aldehyde-adenine dinucleotide)]-pyruvate.

    Science.gov (United States)

    Cooper, A J; Lai, J C; Coleman, A E; Pulsinelli, W A

    1987-06-01

    In basic solutions, pyruvate enolizes and reacts (through its 3-carbon) with the 4-carbon of the nicotinamide ring of NAD+, yielding an NAD-pyruvate adduct in which the nicotinamide ring is in the reduced form. This adduct is a strong inhibitor of lactate dehydrogenase, presumably because it binds simultaneously to the NADH and pyruvate sites. The potency of the inhibition, however, is muted by the adduct's tendency to cyclize to a lactam. We prepared solutions of the pyruvate adduct of NAD+ and of NAD+ analogues in which the -C(O)NH2 of NAD+ was replaced with -C(S)NH2, -C(O)CH3, and -C(O)H. Of the four, only the last analogue, 3-[4-(reduced 3-pyridine aldehyde-adenine dinucleotide)]-pyruvate (RAP) cannot cyclize and it was found to be the most potent inhibitor of beef heart and rat brain lactate dehydrogenases. The inhibitor binds very tightly to the NADH site (Ki approximately 1 nM for the A form). Even at high concentrations (20 microM), RAP had little or no effect on rat brain glyceraldehyde-3-phosphate, pyruvate, alpha-ketoglutarate, isocitrate, soluble and mitochondrial malate, and glutamate dehydrogenases. The glycolytic enzymes, hexokinase and phosphofructokinase, were similarly unaffected. RAP strongly inhibited lactate production from glucose in rat brain extracts but was less effective in inhibiting lactate production from glucose in synaptosomes.

  19. Fractionated irradiation combined with carbogen breathing and nicotinamide of two human glioblastomas grafted in nude mice

    OpenAIRE

    Sun, Lin-Quan; Buchegger, Franz; Coucke, Philippe; MIRIMANOFF

    2001-01-01

    This study addressed the potential radiosensitizing effect of nicotinamide and/or carbogen on human glioblastoma xenografts in nude mice. U-87MG and LN-Z308 tumors were irradiated with either 20 fractions over 12 days or 5 fractions over 5 days in air-breathing mice, mice injected with nicotinamide, mice breathing carbogen, or mice receiving nicotinamide plus carbogen. The responses to treatment were assessed using local control and moist desquamation. In U-87MG tumors, the enhancement ratios...

  20. Preparation and pharmaceutical evaluation of nicotinamide stick for eradication of Staphylococcus epidermidis

    OpenAIRE

    Mohammad Ali Shahtalebi; Rahim Bahrinajafi; Sima Nahavandi

    2014-01-01

    Background: Staphylococcus epidermidis is a part of the skin′s normal flora that can cause acne. This study was designed to evaluate the efficacy of nicotinamide as a stick in eradication of staphylococcus. Materials and Methods: For evaluating of Anti-microbial effect on S. epidermidis used well plate method. We chose five plates for nicotinamide and five for mupirocin. The zones of inhibition were measured and compared. Results: The results showed nicotinamide stick had anti-microbial effec...

  1. Preparation and pharmaceutical evaluation of nicotinamide stick for eradication of Staphylococcus epidermidis

    OpenAIRE

    Mohammad Ali Shahtalebi; Rahim Bahrinajafi; Sima Nahavandi

    2014-01-01

    Background: Staphylococcus epidermidis is a part of the skin's normal flora that can cause acne. This study was designed to evaluate the efficacy of nicotinamide as a stick in eradication of staphylococcus. Materials and Methods: For evaluating of Anti-microbial effect on S. epidermidis used well plate method. We chose five plates for nicotinamide and five for mupirocin. The zones of inhibition were measured and compared. Results: The results showed nicotinamide stick had anti-microbial effec...

  2. Fractionated irradiation combined with carbogen breathing and nicotinamide of two human glioblastomas grafted in nude mice

    OpenAIRE

    SUN, Lin-Quan; Buchegger, Franz; Coucke, Philippe; MIRIMANOFF

    2001-01-01

    This study addressed the potential radiosensitizing effect of nicotinamide and/or carbogen on human glioblastoma xenografts in nude mice. U-87MG and LN-Z308 tumors were irradiated with either 20 fractions over 12 days or 5 fractions over 5 days in air-breathing mice, mice injected with nicotinamide, mice breathing carbogen, or mice receiving nicotinamide plus carbogen. The responses to treatment were assessed using local control and moist desquamation. In U-87MG tumors, the enhancement ratios...

  3. [The intervention of nicotinamide on skin melanocyte's cell proliferation after UVA (365 nm) exposed.].

    Science.gov (United States)

    Patam, Muhammad; Jin, Xi-peng; Pan, Jian-ying; Shen, Guang-zu; Jin, Tai-Yi

    2005-02-01

    To investigate the interference effect of nicotinamide on UVA-induced cell proliferation in human skin melanocyte. To apply the optimum UVA dose expected to cause cell proliferation: 0.2 cm2, nicotinamide was added after the 0.2 cm2 UVA exposure immediately or 48 h later, then the rate of cell proliferation, calcium concentration and the activities of Na+-K+, Ca2+-ATP enzymes of melanocytes were measured respectively. After treatment with 1.000 mg/ml nicotinamide following UVA exposure, the rate of cell proliferation was decreased significantly 24 hours later. Treatment with 0.125 mg/ml nicotinamide 48 hours after UVA exposure also significantly inhibited the cell proliferation; 1.25 mg/ml nicotinamide increased calcium concentration in cells; 0.250 mg/ml nicotinamide increased the activities of Na+-K+, Ca2+-ATP enzymes in melanocytes (P Nicotinamide has more obvious effect on inhibiting melanocyte's proliferation if added immediately following UVA exposure. Our discovery indicated that nicotinamide may affect the melanocyte through modulating the calcium concentration. It is possible to consider nicotinamide as an efficient and safe sun screen to provide a certain level of protection for UVA exposed skin.

  4. Hydrate morphology: Physical properties of sands with patchy hydrate saturation

    Science.gov (United States)

    Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.

    2012-01-01

    The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.

  5. Wet hydrate dissolution plant

    OpenAIRE

    Stanković Mirjana S.; Kovačević Branimir T.; Pezo Lato L.

    2003-01-01

    The IGPC Engineering Department designed basic projects for a wet hydrate dissolution plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant with capacity of 50,000 t/y was manufactured, at "Zeolite Mira", Mira (VE), Italy, in 1997, for increasing detergent zeolite production from 50,000 to 100,000 t/y. Several goals were realized by designing a wet hydrate ...

  6. DIETARY ADENINE ALLEVIATES FATTY LIVER INDUCED BY OROTIC ACID

    Directory of Open Access Journals (Sweden)

    Yohanes Buang

    2010-12-01

    Full Text Available The effects of dietary adenine in fatty liver induced by orotic acid (OA were studied. Rats were paired-fed 1% OA-supplemented diets with/or without 0.25% adenine or a diet without OA for 10 days. Serum lipid profiles were measured using enzyme assay kits. Lipids of liver tissues were extracted and liver lipid contents were determined. A peach of liver was prepared to determine the activities of fatty acid synthase (FAS and fatty acid β-oxidation. The results showed that liver TG content of OA-fed rats increased markedly in comparison to basal group.  However, the addition of adenine to the diet reversed promotion of liver TG content to basal level. It was also found that FAS activities decreased. Furthermore, these diets reversed the inhibition of fatty acid β-oxidation to basal level and induced the serum lipid levels secretion. Therefore, the alleviation of fatty liver in OA-treated rats given dietary adenine is associated with the inhibition of FAS activities accompanied with the promotion of mitochondrial fatty acid β-oxidation and the promotion of serum lipid secretion from the hepatic tissue into the bloodstream.

  7. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    Energy Technology Data Exchange (ETDEWEB)

    Kamat, S.S.; Swaminathan, S.; Bagaria, A.; Kumaran, D.; Holmes-Hampton, G. P.; Fan, H.; Sali, A.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-03-22

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with kcat and kcat/Km values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism and the

  8. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    Energy Technology Data Exchange (ETDEWEB)

    S Kamat; A Bagaria; D Kumaran; G Holmes-Hampton; H Fan; A Sali; J Sauder; S Burley; P Lindahl; et. al.

    2011-12-31

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with k{sub cat} and k{sub cat}/K{sub m} values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction

  9. Deracemization of Axially Chiral Nicotinamides by Dynamic Salt Formation with Enantiopure Dibenzoyltartaric Acid (DBTA

    Directory of Open Access Journals (Sweden)

    Fumitoshi Yagishita

    2013-11-01

    Full Text Available Dynamic atroposelective resolution of chiral salts derived from oily racemic nicotinamides and enantiopure dibenzoyltartaric acid (DBTA was achieved by crystallization. The absolute structures of the axial chiral nicotinamides were determined by X-ray structural analysis. The chirality could be controlled by the selection of enantiopure DBTA as a chiral auxiliary. The axial chirality generated by dynamic salt formation was retained for a long period after dissolving the chiral salt in solution even after removal of the chiral acid. The rate of racemization of nicotinamides could be controlled based on the temperature and solvent properties, and that of the salts was prolonged compared to free nicotinamides, as the molecular structure of the pyridinium ion in the salts was different from that of acid-free nicotinamides.

  10. Preparation and pharmaceutical evaluation of nicotinamide stick for eradication of Staphylococcus epidermidis

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Shahtalebi

    2014-01-01

    Full Text Available Background: Staphylococcus epidermidis is a part of the skin′s normal flora that can cause acne. This study was designed to evaluate the efficacy of nicotinamide as a stick in eradication of staphylococcus. Materials and Methods: For evaluating of Anti-microbial effect on S. epidermidis used well plate method. We chose five plates for nicotinamide and five for mupirocin. The zones of inhibition were measured and compared. Results: The results showed nicotinamide stick had anti-microbial effects, but in comparison to mupirocin it was significantly less (P = 0.003. Conclusion: Nicotinamide stick was made and evaluated. This study showed that nicotinamide had anti-microbial effect on staphylococcus.

  11. Nicotinamide enhances repair of ultraviolet radiation-induced DNA damage in primary melanocytes.

    Science.gov (United States)

    Thompson, Benjamin C; Surjana, Devita; Halliday, Gary M; Damian, Diona L

    2014-07-01

    Cutaneous melanoma is a significant cause of morbidity and mortality. Nicotinamide is a safe, widely available vitamin that reduces the immune suppressive effects of UV, enhances DNA repair in keratinocytes and has shown promise in the chemoprevention of non-melanoma skin cancer. Here, we report the effect of nicotinamide on DNA damage and repair in primary human melanocytes. Nicotinamide significantly enhanced the repair of oxidative DNA damage (8-oxo-7,8-dihydro-2'-deoxyguanosine) and cyclobutane pyrimidine dimers induced by UV exposure. It also enhanced the repair of 8-oxo-7,8-dihydro-2'-deoxyguanosine induced by the culture conditions in unirradiated melanocytes. A significant increase in the percentage of melanocytes undergoing unscheduled but not scheduled DNA synthesis was observed, confirming that nicotinamide enhances DNA repair in human melanocytes. In summary, nicotinamide, by enhancing DNA repair in melanocytes, is a potential agent for the chemoprevention of cutaneous melanoma.

  12. PART II. HYDRATED CEMENTS

    Directory of Open Access Journals (Sweden)

    Milan Drabik

    2014-09-01

    Full Text Available Essential focus of the study has been to acquire thermoanalytical events, incl. enthalpies of decompositions - ΔH, of technological materials based on two types of Portland cements. The values of thermoanalytical events and also ΔH of probes of technological compositions, if related with the data of a choice of minerals of calcium-silicate-sulfate-aluminate hydrates, served as a valued input for the assessment of phases present and phase changes due to the topical hydraulic processes. The results indicate mainly the effects of "standard humidity" or "wet storage" of the entire hydration/hydraulic treatment, but also the presence of cement residues alongside calcium-silicate-sulfate-aluminate hydrates (during the tested period of treatment. "A diluting" effect of unhydrated cement residues upon the values of decomposition enthalpies in the studied multiphase system is postulated and discussed

  13. Excited-State Deactivation of Adenine by Electron-Driven Proton-Transfer Reactions in Adenine-Water Clusters: A Computational Study.

    Science.gov (United States)

    Wu, Xiuxiu; Karsili, Tolga N V; Domcke, Wolfgang

    2016-05-04

    The reactivity of photoexcited 9H-adenine with hydrogen-bonded water molecules in the 9H-adenine-(H2 O)5 cluster is investigated by using ab initio electronic structure methods, focusing on the photoreactivity of the three basic sites of 9H-adenine. The energy profiles of excited-state reaction paths for electron/proton transfer from water to adenine are computed. For two of the three sites, a barrierless or nearly barrierless reaction path towards a low-lying S1 -S0 conical intersection is found. This reaction mechanism, which is specific for adenine in an aqueous environment, can explain the substantially shortened excited-state lifetime of 9H-adenine in water. Depending on the branching ratio of the nonadiabatic dynamics at the S1 -S0 conical intersection, the electron/proton transfer process can enhance the photostability of 9H-adenine in water or can lead to the generation of adenine-H(⋅) and OH(⋅) free radicals. Although the branching ratio is yet unknown, these findings indicate that adenine might have served as a catalyst for energy harvesting by water splitting in the early stages of the evolution of life. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Formation of porous gas hydrates

    CERN Document Server

    Salamatin, Andrey N

    2015-01-01

    Gas hydrates grown at gas-ice interfaces are examined by electron microscopy and found to have a submicron porous texture. Permeability of the intervening hydrate layers provides the connection between the two counterparts (gas and water molecules) of the clathration reaction and makes further hydrate formation possible. The study is focused on phenomenological description of principal stages and rate-limiting processes that control the kinetics of the porous gas hydrate crystal growth from ice powders. Although the detailed physical mechanisms involved in the porous hydrate formation still are not fully understood, the initial stage of hydrate film spreading over the ice surface should be distinguished from the subsequent stage which is presumably limited by the clathration reaction at the ice-hydrate interface and develops after the ice grain coating is finished. The model reveals a time dependence of the reaction degree essentially different from that when the rate-limiting step of the hydrate formation at...

  15. Study on the oxidation form of adenine in phosphate buffer solution.

    Science.gov (United States)

    Song, Yuan-Zhi; Zhou, Jian-Feng; Zhu, Feng-Xia; Ye, Yong; Xie, Ji-Min

    2010-07-01

    The oxidation of adenine in phosphate buffer solution is investigated using square-wave voltammetry and in situ UV spectroelectrochemistry. The geometry of adenine and the derivatives optimized at DFTB3LYP-6-31G (d, p)-PCM level is in agreement with the crystal structure, and the imitated UV spectra of adenine and the product at electrode are consistent with the in situ UV spectra. The relationship between the electrochemical property and the molecular structure is also discussed. The experimental and theoretical results show that the adenine oxidation origins from the neutral adenine.

  16. [Hydration in clinical practice].

    Science.gov (United States)

    Maristany, Cleofé Pérez-Portabella; Segurola Gurruchaga, Hegoi

    2011-01-01

    Water is an essential foundation for life, having both a regulatory and structural function. The former results from active and passive participation in all metabolic reactions, and its role in conserving and maintaining body temperature. Structurally speaking it is the major contributer to tissue mass, accounting for 60% of the basis of blood plasma, intracellular and intersticial fluid. Water is also part of the primary structures of life such as genetic material or proteins. Therefore, it is necessary that the nurse makes an early assessment of patients water needs to detect if there are signs of electrolyte imbalance. Dehydration can be a very serious problem, especially in children and the elderly. Dehydrations treatment with oral rehydration solution decreases the risk of developing hydration disorders, but even so, it is recommended to follow preventive measures to reduce the incidence and severity of dehydration. The key to having a proper hydration is prevention. Artificial nutrition encompasses the need for precise calculation of water needs in enteral nutrition as parenteral, so the nurse should be part of this process and use the tools for calculating the patient's requirements. All this helps to ensure an optimal nutritional status in patients at risk. Ethical dilemmas are becoming increasingly common in clinical practice. On the subject of artificial nutrition and hydration, there isn't yet any unanimous agreement regarding hydration as a basic care. It is necessary to take decisions in consensus with the health team, always thinking of the best interests of the patient.

  17. Excited State Pathways Leading to Formation of Adenine Dimers.

    Science.gov (United States)

    Banyasz, Akos; Martinez-Fernandez, Lara; Ketola, Tiia-Maaria; Muñoz-Losa, Aurora; Esposito, Luciana; Markovitsi, Dimitra; Improta, Roberto

    2016-06-02

    The reaction intermediate in the path leading to UV-induced formation of adenine dimers A═A and AA* is identified for the first time quantum mechanically, using PCM/TD-DFT calculations on (dA)2 (dA: 2'deoxyadenosine). In parallel, its fingerprint is detected in the absorption spectra recorded on the millisecond time-scale for the single strand (dA)20 (dA: 2'deoxyadenosine).

  18. Adenine nucleotide concentrations in patients with erythrocyte autoantibodies.

    OpenAIRE

    Strong, V F; Sokol, R J; Rodgers, S A; Hewitt, S.

    1985-01-01

    Erythrocyte adenine nucleotide concentrations were measured in 154 patients with erythrocyte autoantibodies and 811 normal subjects using a luciferin-luciferase bioluminescent assay. The patients were initially divided into haemolysing and non-haemolysing groups. Red cell adenosine triphosphate (ATP) concentrations were significantly raised in the 96 patients with active haemolysis compared with the normal subjects and with the 58 patients in the non-haemolysing group. Although the patients c...

  19. Association of nicotinamide with parabens: effect on solubility, partition and transdermal permeation.

    Science.gov (United States)

    Nicoli, Sara; Zani, Franca; Bilzi, Stefania; Bettini, Ruggero; Santi, Patrizia

    2008-06-01

    Nicotinamide is a hydrophilic molecule, freely soluble in water, used as cosmetic active ingredient for its moisturizing and depigmenting properties. Moreover it has the ability to augment the solubility of poorly water-soluble molecules acting as a hydrotrope. The aim of this work was to study the effect of nicotinamide on the transdermal permeation of methyl, ethyl, propyl and butyl paraben. Parabens flux was measured in vitro in the presence and absence of different amounts of nicotinamide. From solubility studies it was found that nicotinamide forms one or more complexes with methyl, propyl and butyl paraben in water, even though with low stability constants. The interaction of ethyl paraben seems to be less easy to explain. The association of nicotinamide with parabens causes a significant reduction of the permeability coefficients of these preservatives through rabbit ear skin, caused by a reduction of the stratum corneum/vehicle partition coefficient. The effects of nicotinamide on parabens solubility, permeation and partitioning are potentially very interesting because nicotinamide can facilitate paraben dissolution in aqueous media (solutions, gels), reduce parabens partitioning in the oily phase thus guaranteeing an effective concentration in the water phase in emulsion and reduce transdermal penetration, thus reducing the toxicological risk.

  20. In vitro activity of nicotinamide/antileishmanial drug combinations.

    Science.gov (United States)

    Gazanion, Elodie; Vergnes, Baptiste; Seveno, Marie; Garcia, Deborah; Oury, Bruno; Ait-Oudhia, Khatima; Ouaissi, Ali; Sereno, Denis

    2011-01-01

    To improve the management of leishmaniasis, new drugs and/or alternative therapeutic strategies are required. Combination therapy of antileishmanial drugs is currently considered as one of the most rational approaches to lower treatment failure rate and limit drug resistance spreading. Nicotinamide (NAm), also known as vitamin B3 that is already is used in human therapy, exerts in vitro antileishmanial activity. Drug combination studies, performed on L. infantum axenic amastigotes, revealed that NAm significantly improves the antileishmanial activity of trivalent antimony in a synergistic manner while it shows additive activity with amphotericin B and slightly antagonizes pentamidine activity. NAm also significantly increases the toxicity of pentavalent antimony against the intracellular forms of L. infantum, L. amazonensis and L. braziliensis. The potential of NAm to be used as adjuvant during leishmaniasis chemotherapy is further discussed.

  1. Head to head comparison of short-term treatment with the NAD+ precursor nicotinamide mononucleotide (NMN and six weeks of exercise in obese female mice

    Directory of Open Access Journals (Sweden)

    Golam Mezbah Uddin

    2016-08-01

    Full Text Available Obesity is well known to be a major cause of several chronic metabolic diseases, which can be partially counteracted by exercise. This is due, in part, to an upregulation of mitochondrial activity through increased nicotinamide adenine dinucleotide (NAD+. Recent studies have shown that NAD+ levels can be increased by using the NAD+ precursor, nicotinamide mononucleotide (NMN leading to the suggestion that NMN could be a useful intervention in diet related metabolic disorders. In this study we compared the metabolic, and especially mitochondrial-associated, effects of exercise and NMN in ameliorating the consequences of high-fat diet (HFD induced obesity in mice. Sixty female 5 week old C57BL6/J mice were allocated across 5 interventions: Chow sedentary: CS; Chow exercise: CEX; HFD sedentary: HS; HFD NMN: HNMN; HFD exercise: HEX (12/group. After 6 weeks of diet, exercise groups underwent treadmill exercise (15 m/min for 45 minutes, 6 days per week for 6 weeks. NMN or vehicle (500 mg/kg body weight was injected (i.p. daily for the last 17 days. No significant alteration in body weight was observed in response to exercise or NMN. The HFD significantly altered adiposity, glucose tolerance, plasma insulin, NADH levels and citrate synthase activity in muscle and liver. HEX and HNMN groups both showed significantly improved glucose tolerance compared to the HS group. NAD+ levels were increased significantly both in muscle and liver by NMN whereas exercise increased NAD+ only in muscle. Both NMN and exercise ameliorated the HFD-induced reduction in liver citrate synthase activity. However, exercise, but not NMN, ameliorated citrate synthase activity in muscle. Overall these data suggest that while exercise and NMN-supplementation can induce similar reversal of the glucose intolerance induced by obesity, they are associated with tissue-specific effects and differential alterations to mitochondrial function in muscle and liver.

  2. Enhanced Reduced Nicotinamide Adenine Dinucleotide electrocatalysis onto multi-walled carbon nanotubes-decorated gold nanoparticles and their use in hybrid biofuel cell

    Science.gov (United States)

    Aquino Neto, S.; Almeida, T. S.; Belnap, D. M.; Minteer, S. D.; De Andrade, A. R.

    2015-01-01

    We report the preparation of Au nanoparticles synthetized by different protocols and supported on the surface of multi-walled carbon nanotubes containing different functional groups, focusing on their electrochemical performance towards NADH oxidation, ethanol bioelectrocatalysis, and ethanol/O2 biofuel cell. We describe four different synthesis protocols: microwave-assisted heating, water-in-oil, and dendrimer-encapsulated nanoparticles using acid or thiol species in the extraction step. The physical characterization of the metallic nanoparticles indicated that both the synthetic protocol as well as the type of functional groups on the carbon nanotubes affect the final particle size (varying from 13.4 to 2.4 nm) and their distribution onto the carbon surface. Moreover, the electrochemical data indicated that these two factors also influence their performance toward the electrooxidation of NADH. We observed that the samples containing Au nanoparticles with smaller size leads to higher catalytic currents and also shifts the oxidation potential of the targeted reaction, which varied from 0.13 to -0.06 V vs Ag/AgCl. Ethanol/O2 biofuel cell tests indicated that the hybrid bioelectrodes containing smaller and better distributed Au nanoparticles on the surface of carbon nanotubes generates higher power output, confirming that the electrochemical regeneration of NAD+ plays an important role in the overall biofuel cell performance.

  3. Novel concept of enzyme selective nicotinamide adenine dinucleotide (NAD)-modified inhibitors based on enzyme taxonomy from the diphosphate conformation of NAD.

    Science.gov (United States)

    Fujii, Mikio; Kitagawa, Yasuyuki; Iida, Shui; Kato, Keisuke; Ono, Machiko

    2015-11-15

    The dihedral angle θ of the diphosphate part of NAD(P) were investigated to distinguish the differences in the binding-conformation of NAD(P) to enzymes and to create an enzyme taxonomy. Furthermore, new inhibitors with fixed dihedral angles showed that enzymes could recognize the differences in the dihedral angle θ. We suggest the taxonomy and the dihedral angle θ are important values for chemists to consider when designing inhibitors and drugs that target enzymes.

  4. AB154. Testosterone improves erectile function through regulation of nicotinamide adenine dinucleotide phosphate-oxidase and cyclooxygenase-2 expression in castrated rats

    Science.gov (United States)

    Li, Rui; Wang, Tao; Yang, Jun; Zhang, Yan; Niu, Yonghua; Wang, Shaogang; Ye, Zhangqun; Rao, Ke; Liu, Jihong

    2015-01-01

    Objective Testosterone significantly improves hypogonadal-related erectile dysfunction (ED). However, the molecular mechanisms are poorly understood. The purpose of this study was to explore the effect and mechanism of testosterone in castrated rats. Methods Forty male Sprague-Dawley rats were randomized to 4 groups (control, sham-operated, castration and castration-with-testosterone-replacement). After 2 months, reactive oxygen species (ROS) production was measured by dihydroethidium (DHE) staining. Erectile function was tested by recording intracavernosal pressure (ICP) and mean arterial blood pressure (MAP). Protein expression levels were examined by Western blot. Results Castration reduced erectile function, and testosterone restored it. The concentrations of testosterone, cyclic guanosine mono-phosphate (cGMP) and cyclic adenosine monophosphate (cAMP) were lower in castrated rats than in controls, and testosterone restored these decreases (each P<0.05). The expression levels of cyclooxygenase-2 (COX-2), prostacyclin synthase (PTGIS or PGIS), endothelial nitric oxide synthase (eNOS) and phospho-eNOS were reduced in castrated rats compared with controls. The expression levels were significantly elevated in rats treated with testosterone (each P<0.05). The expression levels of p40phox and p67phox were increased in castrated rats, and testosterone significantly reduced these increases (each P<0.05). ROS production was markedly enhanced in castrated rats, and testosterone administration reversed this effect (P<0.05). Conclusions Testosterone can ameliorate ED after castration by reducing ROS production and increasing activity of the eNOS/cGMP and COX-2/PTGIS/cAMP signaling pathways.

  5. Pioglitazone inhibits the expression of nicotinamide adenine dinucleotide phosphate oxidase and p38 mitogen-activated protein kinase in rat mesangial cells

    Institute of Scientific and Technical Information of China (English)

    WANG Shan; YE Shan-dong; SUN Wen-jia; HU Yuan-yuan

    2013-01-01

    Background Oxidative Stress and p38 mitogen-activated protein kinase (p38MAPK) play a vital role in renal fibrosis.Pioglitazone can protect kidney but the underlying mechanisms are less clear.The purpose of this study was to investigate the effect of pioglitazone on oxidative stress and whether the severity of oxidative stress was associated with the phosphorylation level of p38MAPK.Methods Rat mesangial cells were cultured and randomly assigned to control group,high glucose group and pioglitazone group.After 48-hour exposure,the supernatants and ceils were collected.The protein levels of p22phox,p47phox,phosphorylated p38MAPK,total p38MAPK were measured by Western blotting.The gene expressions of p22phox,p47phox were detected by RT-PCR.The levels of intracellular reactive oxygen species (ROS) were determined by flow cytometry.The levels of superoxide dismutase (SOD) and maleic dialdehyde (MDA) in the supernatant were determined respectively.Results Compared with the control group,the expression levels of p22phox,p47phox,phospho-p38 and ROS significantly increased,activity of SOD decreased in high glucose group,while the level of MDA greatly increased (P <0.01).Pioglitazone significantly suppressed p22phox,p47phox expressions and oxidative stress induced by high glucose.The expressions of p22phox,p47phox,phospho-p38MAPK and ROS generation were markedly reduced after pioglitazone treatment (P <0.05).The activity of SOD in the the supernatant increased (P <0.05),while the level of MDA decreased greatly by pioglitazone (P <0.05).The level of oxidative stress was associated with the phosphorylation level of p38MAPK (P <0.01).Conclusion Pioglitazone can inhibit oxidative stress through suppressing NADPH oxidase expression and p38MAPK phosphorylation.

  6. Renal reduced nicotinamide adenine dinucleotide phosphate:cytochrome c reductase-mediated metabolism of the carcinogen N-(4-(5-nitro-2-furyl)-2-thiazolyl)acetamide

    Energy Technology Data Exchange (ETDEWEB)

    Mattammal, M.B.; Zenser, T.V.; Palmier, M.O.; Davis, B.B.

    1985-01-01

    N-(4-(5-Nitro-2-furyl)-2-thiazolyl)acetamide (NFTA) metabolism was examined in vitro using microsomes prepared from rat liver and renal cortex and from rabbit liver and renal cortex and outer and inner medulla. NFTA nitroreduction was observed with each tissue. Three mol of NADPH were used per mol of NFTA reduced. Substrate and inhibitor specificity suggested that the microsomal nitroreduction was due to NADPH:cytochrome c reductase. Metabolite(s) formed bound to protein, RNA, DNA, and synthetic polyribonucleotides. Maximum covalent binding was seen with polyguanylic acid. A guanosine-NFTA adduct was isolated. Binding was inhibited by sulfhydryl compounds and vitamin E. The (/sup 14/C)NFTA:glutathione or (/sup 3/H)glutathione:NFTA conjugates obtained from microsomal incubations showed identical chromatographic properties as the product obtained by the reaction of synthetic N-hydroxy-NFTA with (/sup 3/H)glutathione. Structures of synthetic N-hydroxy-NFTA and the microsomal reduction product 1-(4-(2-acetylaminothiazolyl))-3-cyano-1-propanone were established by mass spectrometry. The latter reduction product did not bind macromolecules. These results suggest that renal NADPH:cytochrome c reductase reduces NFTA to an N-hydroxy-NFTA intermediate that binds nucleophilic sites on macromolecules.

  7. The activity of uridine diphosphate-D-glucose: Nicotinamide-adenine dinucleotide oxidoreductase in cambial tissue and differentiating xylem isolated from sycamore trees.

    Science.gov (United States)

    Rubery, P H

    1972-06-01

    The activity of UDPGlc: NAD oxidoreductase is measured in enzyme preparations obtained from sycamore cambium and xylem tissue. The activity of this enzyme is greater in xylem than in cambium whether expressed on a specific activity basis or on a per-cell basis. It is suggested that, in developing xylem, direct oxidation of UDPGlc may contribute significantly to the biosynthesis of polysaccharide precursors.

  8. The family of N9-adenine: New entry for adenine-benzamide conjugates linked via versatile spacers

    Indian Academy of Sciences (India)

    Prabhpreet Singh

    2014-01-01

    We have prepared 4-nitrobenzamide-adenine conjugates (8, 13 and 14) linked with versatile spacer such as triethylene glycol (TEG), aminocaproic acid and ethyl chains which were eventually reduced to obtain the corresponding 4-aminobenzamide-adenine conjugates (1-3) in good yields. These conjugates bear a nucleobase for DNA recognition or self-assembly through base-pair complementarity, a biocompatible linker for interfacing with biological system, and a p-aminobenzamide moiety for pharmacological applications. The use of hydrophilic or lipophilic linkers may tune the dispersibility of these conjugates in different solvents, as well as impart different properties. In the preliminary experiments the versatility and application of these linkers has been tested for functionalization of SWCNTs.

  9. Comparison of the effectiveness between 2% and 4% nicotinamide gel in reducing melanin index

    OpenAIRE

    Lisa Murtisari, Lisa Murtisari

    2015-01-01

    Background: Nicotinamide is a safe agent inhibiting melanosome transfer in vitro therefore it can reduce skin pigmentation. Two percent nicotinamide cream combined with sunscreen as a lightening agent in-creases skin lightness in vivo. Measurement of skin colour changes can be performed by mexameter to measure melanin index (MI).Objective: This study was aimed to compare the effectiveness of 2% and 4% nicotinamide gel as a lightening agent in reducing MI.Materials and Methods: This study was ...

  10. PnuC and the Utilization of the Nicotinamide Riboside Analog 3-Aminopyridine in Haemophilus influenzae

    OpenAIRE

    Sauer, Elizabeta; Merdanovic, Melisa; Price Mortimer, Anne; Bringmann, Gerhard; Reidl, Joachim

    2004-01-01

    The utilization pathway for the uptake of NAD and nicotinamide riboside was previously characterized for Haemophilus influenzae. We now report on the cellular location, topology, and substrate specificity of PnuC. pnuC of H. influenzae is only distantly related to pnuC of Escherichia coli and Salmonella enterica serovar Typhimurium. When E. coli PnuC was expressed in an H. influenzae pnuC mutant, it was able to take up only nicotinamide riboside and not nicotinamide mononucleotide. Therefore,...

  11. Comparison of the effectiveness between 2% and 4% nicotinamide gel in reducing melanin index

    OpenAIRE

    Lisa Murtisari, Lisa Murtisari

    2015-01-01

    Background: Nicotinamide is a safe agent inhibiting melanosome transfer in vitro therefore it can reduce skin pigmentation. Two percent nicotinamide cream combined with sunscreen as a lightening agent in-creases skin lightness in vivo. Measurement of skin colour changes can be performed by mexameter to measure melanin index (MI).Objective: This study was aimed to compare the effectiveness of 2% and 4% nicotinamide gel as a lightening agent in reducing MI.Materials and Methods: This study was ...

  12. Modeling Hydrates and the Gas Hydrate Markup Language

    Directory of Open Access Journals (Sweden)

    Weihua Wang

    2007-06-01

    Full Text Available Natural gas hydrates, as an important potential fuels, flow assurance hazards, and possible factors initiating the submarine geo-hazard and global climate change, have attracted the interest of scientists all over the world. After two centuries of hydrate research, a great amount of scientific data on gas hydrates has been accumulated. Therefore the means to manage, share, and exchange these data have become an urgent task. At present, metadata (Markup Language is recognized as one of the most efficient ways to facilitate data management, storage, integration, exchange, discovery and retrieval. Therefore the CODATA Gas Hydrate Data Task Group proposed and specified Gas Hydrate Markup Language (GHML as an extensible conceptual metadata model to characterize the features of data on gas hydrate. This article introduces the details of modeling portion of GHML.

  13. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  14. A study on gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byoung Jae; Jung, Tae Jin; Sunwoo, Don [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    Sufficient documents were reviewed to understand solid components of water and gaseous hydrocarbon known as gas hydrates, which represent an important potential energy resource of the future. The review provides us with valuable information on crystal structures, kinetics, origin and distribution of gas hydrates. In addition, the review increased our knowledge of exploration and development methods of gas hydrates. Large amounts of methane, the principal component of natural gas, in the form of solid gas hydrate are found mainly offshore in outer continental margin sediment and, to a lesser extent, in polar regions commonly associated with permafrost. Natural gas hydrates are stable in some environments where the hydrostatic pressure exerted by overlying water column is sufficient for hydrate formation and stability. The required high pressures generally restrict gas hydrate to sediments beneath water of approximately 400 m. Higher sediment temperatures at greater subbottom depths destabilize gas hydrates. Based on the pressure- temperature condition, the outer continental margin of East Sea where water depth is deep enough to form gas hydrate is considered to have high potential of gas hydrate accumulations. (author). 56 refs., tabs., figs.

  15. Drilling Gas Hydrates on hydrate Ridge, Oregon continental margin

    Science.gov (United States)

    Trehu, A. M.; Bohrmann, G.; Leg 204 Science Party

    2002-12-01

    During Leg 204, we cored and logged 9 sites on the Oregon continental margin to determine the distribution and concentration of gas hydrates in an accretionary ridge and adjacent slope basin, investigate the mechanisms that transport methane and other gases into the gas hydrate stability zone (GHSZ), and obtain constraints on physical properties of hydrates in situ. A 3D seismic survey conducted in 2000 provided images of potential subsurface fluid conduits and indicated the position of the GHSZ throughout the survey region. After coring the first site, we acquired Logging-While-Drilling (LWD) data at all but one site to provide an overview of downhole physical properties. The LWD data confirmed the general position of key seismic stratigraphic horizons and yielded an initial estimate of hydrate concentration through the proxy of in situ electrical resistivity. These records proved to be of great value in planning subsequent coring. The second new hydrate proxy to be tested was infrared thermal imaging of cores on the catwalk as rapidly as possible after retrieval. The thermal images were used to identify hydrate samples and to estimate the distribution and texture of hydrate within the cores. Geochemical analyses of interstitial waters and of headspace and void gases provide additional information on the distribution and concentration of hydrate within the stability zone, the origin and pathway of fluids into and through the GHSZ, and the rates at which gas hydrate is forming. Bio- and lithostratigraphic description of cores, measurement of physical properties, and in situ pressure core sampling and thermal measurements complement the data set, providing ground-truth tests of inferred physical and sedimentological properties. Among the most interesting preliminary results are: 1) that gas hydrates are distributed through a broad depth range within the GHSZ and that different physical and chemical proxies for hydrate distribution and concentration give generally

  16. Examination of tyrosine/adenine stacking interactions in protein complexes.

    Science.gov (United States)

    Copeland, Kari L; Pellock, Samuel J; Cox, James R; Cafiero, Mauricio L; Tschumper, Gregory S

    2013-11-14

    The π-stacking interactions between tyrosine amino acid side chains and adenine-bearing ligands are examined. Crystalline protein structures from the protein data bank (PDB) exhibiting face-to-face tyrosine/adenine arrangements were used to construct 20 unique 4-methylphenol/N9-methyladenine (p-cresol/9MeA) model systems. Full geometry optimization of the 20 crystal structures with the M06-2X density functional theory method identified 11 unique low-energy conformations. CCSD(T) complete basis set (CBS) limit interaction energies were estimated for all of the structures to determine the magnitude of the interaction between the two ring systems. CCSD(T) computations with double-ζ basis sets (e.g., 6-31G*(0.25) and aug-cc-pVDZ) indicate that the MP2 method overbinds by as much as 3.07 kcal mol(-1) for the crystal structures and 3.90 kcal mol(-1) for the optimized structures. In the 20 crystal structures, the estimated CCSD(T) CBS limit interaction energy ranges from -4.00 to -6.83 kcal mol(-1), with an average interaction energy of -5.47 kcal mol(-1), values remarkably similar to the corresponding data for phenylalanine/adenine stacking interactions. Geometry optimization significantly increases the interaction energies of the p-cresol/9MeA model systems. The average estimated CCSD(T) CBS limit interaction energy of the 11 optimized structures is 3.23 kcal mol(-1) larger than that for the 20 crystal structures.

  17. Oral nicotinamide protects against ultraviolet radiation-induced immunosuppression in humans.

    Science.gov (United States)

    Yiasemides, Eleni; Sivapirabu, Geetha; Halliday, Gary M; Park, Joohong; Damian, Diona L

    2009-01-01

    Cutaneous immunity, which is a key defence against the development of skin cancers, is suppressed by even small doses of ultraviolet (UV) radiation. Preventing this UV-induced immunosuppression may therefore reduce the incidence of skin cancer. Nicotinamide (vitamin B3) has immune-protective and cancer-preventive effects against UV radiation in mice, and we have shown previously that topical nicotinamide is immune protective in humans. Using the Mantoux model of skin immunity in healthy volunteers, we compared oral nicotinamide to placebo (both administered for 1 week) in a randomized, double-blinded, crossover design against the effects of solar-simulated ultraviolet (ssUV) radiation on delayed-type hypersensitivity to tuberculin purified protein derivative. Discrete areas of the back were irradiated with low doses of ssUV daily for three consecutive days. Immunosuppression, calculated as the difference in Mantoux-induced erythema of irradiated sites compared with unirradiated control sites, was determined in volunteers taking oral nicotinamide and placebo. Significant immunosuppression occurred in an UV dose-dependent manner in the presence of placebo. Oral nicotinamide, at doses of either 1500 or 500 mg daily, was well tolerated and significantly reduced UV immunosuppression with no immune effects in unirradiated skin. Oral nicotinamide is safe and inexpensive and looks promising as a chemopreventive supplement for reducing the immunosuppressive effects of sunlight.

  18. Nicotinamide and its metabolite N-methylnicotinamide increase skin vascular permeability in rats.

    Science.gov (United States)

    Pietrzak, L; Mogielnicki, A; Buczko, W

    2009-04-01

    It has been suggested that topically applied nicotinamide and its metabolite N-methylnicotinamide (NMN(+)) might be useful agents for treatment of dermatological disorders such as acne vulgaris and rosacea. This study aimed to find out if the mechanism of these therapeutic effects depends on their vascular effects, by investigating if nicotinamide and NMN(+) are able to influence vascular permeability of the vessels in the skin on the back of Wistar rats. A dose-dependent increase in vascular permeability was seen in rats treated intradermally with nicotinamide and NMN(+). Interestingly, a significantly stronger effect of NMN(+) compared with nicotinamide was evident. Increased vascular permeability in rats treated with 0.5% NMN(+) ointment was seen. Moreover, indomethacin, a cyclo-oxygenase 1 and 2 inhibitor and N(G)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide (NO) synthase inhibitor, reduced the observed effects of nicotinamide and NMN(+). This study provides direct in vivo evidence that nicotinamide and its metabolite NMN(+) increase skin vascular permeability in rats by a mechanism that may involve NO and prostaglandins.

  19. The antitumor effects of mitochondria-targeted 6-(nicotinamide methyl coumarin

    Directory of Open Access Journals (Sweden)

    Wang Huanan

    2016-01-01

    Full Text Available Cancer is the second leading cause of death worldwide. Traditional antitumor drugs exhibit severe cytotoxic and side effects. Lung cancer needs new and more effective treatment approaches. Coumarin derivatives can act on various tumor cells and show anti-proliferative activity through various mechanisms, including mitochondrial signaling cascades that regulate development and apoptosis of cells. Mitochondria-targeted coumarin derivatives have not been reported yet. Taking advantage of the fact that cancer cells frequently have higher mitochondria membrane potential, we synthesized a mitochondria-targeted 6-(nicotinamide methyl coumarin by coupling 6-methyl coumarin to nicotinamide. Our results demonstrate that 6-(nicotinamide methyl coumarin preferentially kills A549 cells through inducing A549 cells apoptosis, mediated by increasing ROS level and causing mitochondrial depolarization. Strikingly, the viability of the A31 cells treated with 6-(nicotinamide methyl coumarin did not decrease, indicating that 6-(nicotinamide methyl coumarin preferentially accumulates in A549 cells and A549 cells are much more susceptible to 6-(nicotinamide methyl coumarin treatment compared with A31 cells.

  20. Rapid gas hydrate formation process

    Science.gov (United States)

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  1. Sensitive and selective detection of adenine using fluorescent ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Meerabai Devi, L; Negi, Devendra P S, E-mail: dpsnegi@nehu.ac.in [Department of Chemistry, North-Eastern Hill University, Permanent Campus, Shillong 793022 (India)

    2011-06-17

    We have used fluorescent ZnS nanoparticles as a probe for the determination of adenine. A typical 2 x 10{sup -7} M concentration of adenine quenches 39.3% of the ZnS fluorescence. The decrease in ZnS fluorescence as a function of adenine concentration was found to be linear in the concentration range 5 x 10{sup -9}-2 x 10{sup -7} M. The limit of detection (LOD) of adenine by this method is 3 nM. Among the DNA bases, only adenine quenched the fluorescence of ZnS nanoparticles in the submicromolar concentration range, thus adding selectivity to the method. The amino group of adenine was important in determining the quenching efficiency. Steady-state fluorescence experiments suggest that one molecule of adenine is sufficient to quench the emission arising from a cluster of ZnS consisting of about 20 molecules. Time-resolved fluorescence measurements indicate that the adenine molecules block the sites on the surface of ZnS responsible for emission with the longest lifetime component. This method may be applied for the determination of adenine in biological samples since the measurements have been carried out at pH 7.

  2. Investigation of different emulsion systems for dermal delivery of nicotinamide.

    Science.gov (United States)

    Tuncay, Sakine; Özer, Özgen

    2013-01-01

    Nicotinamide (NA) has been shown to have beneficial effects on several skin diseases such as tumor, acne vulgaris, photodamage, cellulite and atopic dermatitis. The purpose of this study was to develop a multiple emulsion and a microemulsion formulation as delivery systems for NA. A two-step process was used to prepare the W/O/W multiple emulsion. Optimum microemulsion formulation was selected by using construction of pseudo-ternary phase diagram. The physicochemical properties such as droplet size and viscosity measurements, stability studies were also evaluated. Ex-vivo permeation studies were performed with Franz-type diffusion cells and the samples were analysed by high performance liquid chromatography (HPLC). The permeation data showed that there was no significant difference between multiple emulsion and microemulsion (p > 0.05). Transepidermal water loss (TEWL) was also measured. As a result of TEWL studies, a slight increase of TEWL values was observed for microemulsion formulation on rat skin when compared with multiple emulsion and commercial formulation. The results suggested that microemulsion and multiple emulsion formulations could be new and alternative dosage forms for topical application of NA.

  3. Nicotinamide Riboside Opposes Type 2 Diabetes and Neuropathy in Mice.

    Science.gov (United States)

    Trammell, Samuel A J; Weidemann, Benjamin J; Chadda, Ankita; Yorek, Matthew S; Holmes, Amey; Coppey, Lawrence J; Obrosov, Alexander; Kardon, Randy H; Yorek, Mark A; Brenner, Charles

    2016-05-27

    Male C57BL/6J mice raised on high fat diet (HFD) become prediabetic and develop insulin resistance and sensory neuropathy. The same mice given low doses of streptozotocin are a model of type 2 diabetes (T2D), developing hyperglycemia, severe insulin resistance and diabetic peripheral neuropathy involving sensory and motor neurons. Because of suggestions that increased NAD(+) metabolism might address glycemic control and be neuroprotective, we treated prediabetic and T2D mice with nicotinamide riboside (NR) added to HFD. NR improved glucose tolerance, reduced weight gain, liver damage and the development of hepatic steatosis in prediabetic mice while protecting against sensory neuropathy. In T2D mice, NR greatly reduced non-fasting and fasting blood glucose, weight gain and hepatic steatosis while protecting against diabetic neuropathy. The neuroprotective effect of NR could not be explained by glycemic control alone. Corneal confocal microscopy was the most sensitive measure of neurodegeneration. This assay allowed detection of the protective effect of NR on small nerve structures in living mice. Quantitative metabolomics established that hepatic NADP(+) and NADPH levels were significantly degraded in prediabetes and T2D but were largely protected when mice were supplemented with NR. The data justify testing of NR in human models of obesity, T2D and associated neuropathies.

  4. Identification of Isn1 and Sdt1 as Glucose- and Vitamin-regulated Nicotinamide Mononucleotide and Nicotinic Acid Mononucleotide 5′-Nucleotidases Responsible for Production of Nicotinamide Riboside and Nicotinic Acid Riboside*

    OpenAIRE

    Bogan, Katrina L.; Evans, Charles; Belenky, Peter; Song, Peng; Burant, Charles F.; Kennedy, Robert; Brenner, Charles

    2009-01-01

    Recently, we discovered that nicotinamide riboside and nicotinic acid riboside are biosynthetic precursors of NAD+, which are utilized through two pathways consisting of distinct enzymes. In addition, we have shown that exogenously supplied nicotinamide riboside is imported into yeast cells by a dedicated transporter, and it extends replicative lifespan on high glucose medium. Here, we show that nicotinamide riboside and nicotinic acid riboside are authentic intracellular metabolites in yeast...

  5. PA0148 from Pseudomonas aeruginosa Catalyzes the Deamination of Adenine

    Energy Technology Data Exchange (ETDEWEB)

    Goble, A.M.; Swaminathan, S.; Zhang, Z.; Sauder, J. M.; Burley, S. K.; Raushel, F. M.

    2011-08-02

    Four proteins from NCBI cog1816, previously annotated as adenosine deaminases, have been subjected to structural and functional characterization. Pa0148 (Pseudomonas aeruginosa PAO1), AAur1117 (Arthrobacter aurescens TC1), Sgx9403e, and Sgx9403g have been purified and their substrate profiles determined. Adenosine is not a substrate for any of these enzymes. All of these proteins will deaminate adenine to produce hypoxanthine with k{sub cat}/K{sub m} values that exceed 10{sup 5} M{sup -1} s{sup -1}. These enzymes will also accept 6-chloropurine, 6-methoxypurine, N-6-methyladenine, and 2,6-diaminopurine as alternate substrates. X-ray structures of Pa0148 and AAur1117 have been determined and reveal nearly identical distorted ({beta}/{alpha}){sub 8} barrels with a single zinc ion that is characteristic of members of the amidohydrolase superfamily. Structures of Pa0148 with adenine, 6-chloropurine, and hypoxanthine were also determined, thereby permitting identification of the residues responsible for coordinating the substrate and product.

  6. Pa0148 from Pseudomonas aeruginosa Catalyzes the Deamination of Adenine

    Energy Technology Data Exchange (ETDEWEB)

    A Goble; Z Zhang; J Sauder; S Burley; S Swaminathan; F Raushel

    2011-12-31

    Four proteins from NCBI cog1816, previously annotated as adenosine deaminases, have been subjected to structural and functional characterization. Pa0148 (Pseudomonas aeruginosa PAO1), AAur1117 (Arthrobacter aurescens TC1), Sgx9403e, and Sgx9403g have been purified and their substrate profiles determined. Adenosine is not a substrate for any of these enzymes. All of these proteins will deaminate adenine to produce hypoxanthine with k{sub cat}/K{sub m} values that exceed 10{sup 5} M{sup -1} s{sup -1}. These enzymes will also accept 6-chloropurine, 6-methoxypurine, N-6-methyladenine, and 2,6-diaminopurine as alternate substrates. X-ray structures of Pa0148 and AAur1117 have been determined and reveal nearly identical distorted ({beta}/{alpha}){sub 8} barrels with a single zinc ion that is characteristic of members of the amidohydrolase superfamily. Structures of Pa0148 with adenine, 6-chloropurine, and hypoxanthine were also determined, thereby permitting identification of the residues responsible for coordinating the substrate and product.

  7. Reconstruction of pathway modification induced by nicotinamide using multi-omic network analyses in triple negative breast cancer

    OpenAIRE

    Kim, Ji Young; Lee, Hyebin; Woo, Jongmin; Yue, Wang; Kim, Kwangsoo; Choi, Seongmin; Jang, Ja-June; Kim, Youngsoo; Park, In Ae; Han, Dohyun; Ryu, Han Suk

    2017-01-01

    Triple negative breast cancer (TNBC) is characterized by an aggressive biological behavior in the absence of a specific target agent. Nicotinamide has recently been proven to be a novel therapeutic agent for skin tumors in an ONTRAC trial. We performed combinatory transcriptomic and in-depth proteomic analyses to characterize the network of molecular interactions in TNBC cells treated with nicotinamide. The multi-omic profiles revealed that nicotinamide drives significant functional alteratio...

  8. Effect of nicotinamide on early graft failure following intraportal islet transplantation

    Science.gov (United States)

    Jung, Da-Yeon; Park, Jae Berm; Joo, Sung-Yeon; Joh, Jae-Won; Kwon, Choon-Hyuck; Kwon, Ghee-Young

    2009-01-01

    Intraportal islet transplantation (IPIT) may potentially cure Type 1 diabetes mellitus; however, graft failure in the early post-transplantation period presents a major obstacle. In this study, we tested the ability of nicotinamide to prevent early islet destruction in a syngeneic mouse model. Mice (C57BL/6) with chemically-induced diabetes received intraportal transplants of syngeneic islet tissue in various doses. Islets were cultured for 24 h in medium with or without 10 mM nicotinamide supplementation. Following IPIT, islet function was confirmed by an intraperitoneal glucose tolerance test (IPGTT) and hepatectomy. The effects of nicotinamide were evaluated by blood glucose concentration, serum monocyte chemoattractant protein-1 (MCP-1) concentration, and immunohistology at 3 h and 24 h after IPIT. Among the various islet doses, an infusion of 300 syngeneic islets treated with nicotinamide exhibited the greatest differences in glucose tolerance between recipients of treated and untreated (i.e., control) islets. One day after 300 islet equivalent (IEQ) transplantation, islets treated with nicotinamide were better granulated than the untreated islets (P = 0.01), and the recipients displayed a slight decrease in serum MCP-1 concentration, as compared to controls. After 15 days, recipients of nicotinamide-pretreated islets showed higher levels of graft function (as measured by IPGTT) than controls. The pretreatment also prolonged graft survival (> 100 days) and function; these were confirmed by partial hepatectomy, which led to the recurrence of diabetes. Pretreatment of islet grafts with nicotinamide may prevent their deterioration on the early period following IPIT in a syngeneic mouse model. PMID:19641379

  9. Hydration and physical performance.

    Science.gov (United States)

    Murray, Bob

    2007-10-01

    There is a rich scientific literature regarding hydration status and physical function that began in the late 1800s, although the relationship was likely apparent centuries before that. A decrease in body water from normal levels (often referred to as dehydration or hypohydration) provokes changes in cardiovascular, thermoregulatory, metabolic, and central nervous function that become increasingly greater as dehydration worsens. Similarly, performance impairment often reported with modest dehydration (e.g., -2% body mass) is also exacerbated by greater fluid loss. Dehydration during physical activity in the heat provokes greater performance decrements than similar activity in cooler conditions, a difference thought to be due, at least in part, to greater cardiovascular and thermoregulatory strain associated with heat exposure. There is little doubt that performance during prolonged, continuous exercise in the heat is impaired by levels of dehydration >or= -2% body mass, and there is some evidence that lower levels of dehydration can also impair performance even during relatively short-duration, intermittent exercise. Although additional research is needed to more fully understand low-level dehydration's effects on physical performance, one can generalize that when performance is at stake, it is better to be well-hydrated than dehydrated. This generalization holds true in the occupational, military, and sports settings.

  10. Ductile flow of methane hydrate

    Science.gov (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  11. Some thermodynamical aspects of protein hydration water

    Energy Technology Data Exchange (ETDEWEB)

    Mallamace, Francesco, E-mail: francesco.mallamace@unime.it [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Corsaro, Carmelo [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); CNR-IPCF, Viale F. Stagno D’Alcontres 37, I-98158 Messina (Italy); Mallamace, Domenico [Dipartimento SASTAS, Università di Messina, I-98166 Messina (Italy); Vasi, Sebastiano [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Vasi, Cirino [CNR-IPCF, Viale F. Stagno D’Alcontres 37, I-98158 Messina (Italy); Stanley, H. Eugene [Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Chen, Sow-Hsin [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-06-07

    We study by means of nuclear magnetic resonance the self-diffusion of protein hydration water at different hydration levels across a large temperature range that includes the deeply supercooled regime. Starting with a single hydration shell (h = 0.3), we consider different hydrations up to h = 0.65. Our experimental evidence indicates that two phenomena play a significant role in the dynamics of protein hydration water: (i) the measured fragile-to-strong dynamic crossover temperature is unaffected by the hydration level and (ii) the first hydration shell remains liquid at all hydrations, even at the lowest temperature.

  12. Absorption spectroscopy of adenine, 9-methyladenine, and 2-aminopurine in helium nanodroplets

    NARCIS (Netherlands)

    S. Smolarek; A.M. Rijs; W.J. Buma; M. Drabbels

    2010-01-01

    High-resolution absorption spectra of adenine, 9-methyladenine and 2-aminopurine in helium nanodroplets have been recorded. In contrast to molecular beam experiments, large variations in linewidths are observed for adenine and 9-methyladenine. At the same time, the spectrum of 2-aminopurine remains

  13. Absorption by DNA single strands of adenine isolated in vacuo: The role of multiple chromophores

    DEFF Research Database (Denmark)

    Nielsen, L.M.; Pedersen, S.O.; Kirketerp, M.-B.S.;

    2012-01-01

    strands of adenine reveal sign of exciton coupling between stacked bases from blueshifted absorption bands (~3 nm) relative to that of the dAMP mononucleotide (one adenine base). The bands are blueshifted by about 10 nm compared to those of solvated strands, which is a shift similar...

  14. Suppression of feline immunodeficiency virus infection in vivo by 9-(2-phosphonomethoxyethyl)adenine

    NARCIS (Netherlands)

    Horzinek, M.C.; Egberink, H.F.; Borst, M.; Niphuis, H.; Balzarini, J.; Neu, H.; Schellekens, H.; Clercq, H. de; Koolen, M.J.M.

    1990-01-01

    The acyclic purine nucleoside analogue 9-(2-phosphonomethoxyethyl)adenine [PMEA; formerly referred to as 9-(2-phosphonylmethoxyethyl)adenine] is a potent and selective inhibitor of human immunodeficiency virus replication in vitro and of Moloney murine sarcoma virus-induced tumor formation in mice.

  15. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)

    2012-07-01

    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  16. Fluorescence spectroscopic study of the interaction of adenine and nucleotide with trichosanthin.

    Science.gov (United States)

    Hao, Q; Zhang, Y; Yang, H; Liu, G; Huang, Z; Liu, B; Yao, Q; Li, Q

    1995-07-01

    Trichosanthin (TCS) is an N-glycosidase that can attack the 28s rRNA of the ribosome at a highly conserved adenine residue. The interactions of adenine and its derivative nucleotides with TCS are reported. The fluorescence of Trp 192 of TCS is sensitive to the proximity of adenine, and produces a marked red shift indicative of trytophan in a more hydrophilic environment. By contrast AMP and ATP quench the maximal emission at 328nm. The binding of the adenine and ATP with TCS result in lower tryptophan accessibility to the quencher acrylamide, but higher tryptophan accessibility to the quencher iodide, while AMP caused higher tryptophan accessibility to acrylamide, and lower tryptophan accessibility to iodide. Also, the binding of nucleotides induces tryptophan heterogeneity in the protein. These findings lead us to propose that binding of nucleotides and adenine base cause different microenvironmental changes of the tryptophan residue, and Trp 192 may be involved in the active site of TCS.

  17. Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: spectroscopic and molecular docking investigations.

    Science.gov (United States)

    Rajendiran, N; Thulasidhasan, J

    2015-06-05

    Interaction between sulfanilamide (SAM) and sulfamethoxazole (SMO) with BSA and DNA base (adenine) was investigated by UV-visible, fluorescence, cyclic voltammetry and molecular docking studies. Stern-Volmer fluorescence quenching constant (Ka) suggests SMO is more quenched with BSA/adenine than that of SAM. The distance r between donor (BSA/adenine) and acceptor (SAM and SMO) was obtained according to fluorescence resonance energy transfer (FRET). The results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the SAM and SMO with BSA/adenine binding interaction. During the interaction, sulfa drugs could insert into the hydrophobic pocket, where the non-radioactive energy transfer from BSA/adenine to sulfa drugs occurred with high possibility. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential deceased. The docking method indicates aniline group is interacted with the BSA molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Inhibitory effect of nicotinamide on enzymatic activity of selected fungal strains causing skin infection.

    Science.gov (United States)

    Ciebiada-Adamiec, Anna; Małafiej, Eugeniusz; Ciebiada, Ireneusz

    2010-05-01

    Pathogenicity of fungi is connected with their ability to easily penetrate the host tissues, survive in the infected host organism and use the elements of the host tissues as nutrients. Hence, the co-occurrence of pathogenic properties with the high enzymatic activity, which is manifested through the production of various enzymes including extracellular enzymes, was observed. It can be expected that it is possible to decrease fungal pathogenicity by lowering their enzymatic activity. The aim of the study was to determine the effect of nicotinamide on enzymatic activity of the fungi, which are most frequently isolated in cases of skin infection. Enzymatic activity was analysed using 15 Candida albicans, 15 Trichophyton rubrum and 15 Trichophyton mentagrophytes strains. The strains used for the study were collected from the current diagnostic material. API ZYM tests were used in diagnostic analysis. MICs of nicotinamide were determined by the macrodilution method in liquid medium. In the case of Candida strains, the presence of nicotinamide in the broth had a significant effect on the decrease of enzymatic activity (P nicotinamide was observed in the case of dermatophytes (P nicotinamide exhibited biological activity towards C. albicans, T. rubrum and Trichophyton mentagrophytes, which resulted in a decrease in the activity of enzymes produced by the fungi.

  19. UV radiation-induced immunosuppression is greater in men and prevented by topical nicotinamide.

    Science.gov (United States)

    Damian, Diona L; Patterson, Clare R S; Stapelberg, Michael; Park, Joohong; Barnetson, Ross St C; Halliday, Gary M

    2008-02-01

    UV radiation-induced immunosuppression augments cutaneous carcinogenesis. The incidence of skin cancer continues to increase despite increased use of sunscreens, which are less effective at preventing immunosuppression than sunburn. Using the Mantoux reaction as a model of skin immunity, we investigated the effects of solar-simulated (ss) UV and its component UVA and UVB wavebands and tested the ability of topical nicotinamide to protect from UV-induced immunosuppression. Healthy, Mantoux-positive volunteers were UV-irradiated on their backs, with 5% nicotinamide or vehicle applied to different sites in a randomized, double-blinded manner. Subsequent Mantoux testing at irradiated and adjacent unirradiated sites enabled measurement of UV-induced immunosuppression with and without nicotinamide. Suberythemal ssUV caused significant immunosuppression, although component UVB and UVA doses delivered independently did not. Men were immunosuppressed by ssUV doses three times lower than those required to immunosuppress women. This may be an important cause of the higher skin cancer incidence and mortality observed in men. Topical nicotinamide prevented immunosuppression, with gene chip microarrays suggesting that the mechanisms of protection may include alterations in complement, energy metabolism and apoptosis pathways. Nicotinamide is a safe and inexpensive compound that could be added to sunscreens or after-sun lotions to improve protection from immunosuppression. immunosuppression.JID JOURNAL CLUB ARTICLE: For questions, answers, and open discussion about this article, please go to http://network.nature.com/group/jidclub

  20. Pharmacologic doses of nicotinamide in the treatment of inflammatory skin conditions: a review.

    Science.gov (United States)

    Niren, Neil M

    2006-01-01

    Various skin disorders with an inflammatory component often have been treated with steroids and/or oral antibiotics. However, long-term use of these agents has drawbacks: steroids may induce numerous serious side effects such as hypertension, immunosuppression, and osteoporosis, and overuse of oral antibiotics may contribute to the development of bacterial resistance, as well as to a host of nuisance side effects such as diarrhea, yeast infections, and photosensitivity. As a result, alternative oral treatments, such as nicotinamide, have been investigated. During the past 50 years, many clinical reports have identified nicotinamide as a beneficial agent in the treatment of a variety of inflammatory skin disorders; what's more, its exceptional safety profile at pharmacologic doses makes it a potentially ideal long-term oral therapy for patients with inflammatory skin diseases. A recent large study evaluating nicotinamide for the treatment of acne or rosacea has confirmed the potential benefits of oral nicotinamide as an alternative approach to managing inflammatory lesions associated with acne vulgaris and acne rosacea. This article reviews the substantial number of reports published over the past 50 years that document the clinical utility and safety of oral and topical formulations of nicotinamide for the treatment of a variety of inflammatory skin conditions.

  1. Apoptosis Induced by High Concentrations of Nicotinamide in Tobacco Suspension Cells

    Institute of Scientific and Technical Information of China (English)

    张贵友; 朱瑞宇; 戴尧仁

    2004-01-01

    As an inhibitor of poly(ADP-ribose) polymerase (PARP), nicotinamide has a restraining effect on apoptosis at certain low concentrations. In our present study, apoptosis induced by high concentrations of nicotinamide was observed in tobacco suspension cells. When cells were preincubated with 250 mmol/L nicotinamide for 24 h, the hallmarks of apoptosis were detected, including DNA fragments increasing in size by multiples of 180-200 bp, the condensation and peripheral distribution of nuclear chromatin, and a positive reaction to the TUNEL assay. At the same time, the degradation of PARP and the reduction in the potential of the inner membrane of mitochondria appeared in apoptotic cells induced by high concentrations of nicotinamide. This result indicates that apoptosis induced by high concentrations of nicotinamide is associated with caspase-3-like activity and with the opening of mitochondrial permeability pores. These results partially support the hypothesis that high concentrations of PARP inhibitor could force cells to enter an apoptotic pathway by delay of DNA repair in replicating cells.

  2. Investigation on Gas Storage in Methane Hydrate

    Institute of Scientific and Technical Information of China (English)

    Zhigao Sun; Rongsheng Ma; Shuanshi Fan; Kaihua Guo; Ruzhu Wang

    2004-01-01

    The effect of additives (anionic surfactant sodium dodecyl sulfate (SDS), nonionic surfactant alkyl polysaccharide glycoside (APG), and liquid hydrocarbon cyclopentane (CP)) on hydrate induction time and formation rate, and storage capacity was studied in this work. Micelle surfactant solutions were found to reduce hydrate induction time, increase methane hydrate formation rate and improve methane storage capacity in hydrates. In the presence of surfactant, hydrate could form quickly in a quiescent system and the energy costs of hydrate formation were reduced. The critical micelle concentrations of SDS and APG water solutions were found to be 300× 10-6 and 500× 10-6 for methane hydrate formation system respectively. The effect of anionic surfactant (SDS) on methane storage in hydrates is more pronounced compared to a nonionic surfactant (APG). CP also reduced hydrate induction time and improved hydrate formation rate, but could not improve methane storage in hydrates.

  3. Gender differences in adenine-induced chronic kidney disease and cardiovascular complications in rats.

    Science.gov (United States)

    Diwan, Vishal; Small, David; Kauter, Kate; Gobe, Glenda C; Brown, Lindsay

    2014-12-01

    Gender contributes to differences in incidence and progression of chronic kidney disease (CKD) and associated cardiovascular disease. To induce kidney damage in male and female Wistar rats (n = 12/group), a 0.25% adenine diet for 16 wk was used. Kidney function (blood urea nitrogen, plasma creatinine, proteinuria) and structure (glomerular damage, tubulointerstitial atrophy, fibrosis, inflammation); cardiovascular function (blood pressure, ventricular stiffness, vascular responses, echocardiography) and structure (cardiac fibrosis); plasma testosterone and estrogen concentrations; and protein expression for oxidative stress [heme oxygenase-1, inflammation (TNF-α), fibrosis (transforming growth factor-β), ERK1/2, and estrogen receptor-α (ER-α)] were compared in males and females. Adenine-fed females had less decline in kidney function than adenine-fed males, although kidney atrophy, inflammation, and fibrosis were similar. Plasma estrogen concentrations increased and plasma testosterone concentrations decreased in adenine-fed males, with smaller changes in females. CKD-associated molecular changes in kidneys were more pronounced in males than females except for expression of ER-α in the kidney, which was completely suppressed in adenine-fed males but unchanged in adenine-fed females. Both genders showed increased blood pressure, ventricular stiffness, and cardiac fibrosis with the adenine diet. Cardiovascular changes with adenine were similar in males and females, except males developed concentric, and females eccentric cardiac hypertrophy. In hearts from adenine-fed male and female rats, expression of ER-α and activation of the ERK1/2 pathway were increased, in part explaining changes in cardiac hypertrophy. In summary, adenine-induced kidney damage may be increased in males due to the suppression of ER-α.

  4. Concentrations of Nicotinamide in Plasma by RP-HPLC With Fluorescence Detection

    Directory of Open Access Journals (Sweden)

    Pan Zhipeng

    2016-01-01

    Full Text Available The purpose of this study is to establish a new method for detecting nicotinamide concentration in plasma. In the experiment, the high performance liquid chromatography (HPLC method was used, with a fluorescence detector. The nicotinamide in the plasma was first converted to N1- methylnicotinamide, then reacted with acetophenone under certain conditions to produce fluorescent derivatives for testing. The method is a kind of highly sensitive detection, of which the lower limit is 10 ng/mL, the recovery rate is between 92.75% and 105.13%, and the relative standard deviation (RSD is between 3.76% and 4.43%. The results showed that this measurement method is accurate, sensitive and rapid. It meets the requirements of the experiment, and applies to the detection of nicotinamide concentration in plasma.

  5. The mechanisms of action of nicotinamide and zinc in inflammatory skin disease.

    Science.gov (United States)

    Fivenson, David P

    2006-01-01

    Nicotinamide (niacinamide), a physiologically active form of niacin (nicotinic acid), in combination with zinc is being assessed in clinical studies for the treatment of inflammatory skin diseases such as acne vulgaris and bullous pemphigoid. The basis for these investigations is the variety of potential mechanisms of action of nicotinamide and zinc, including an anti-inflammatory effect via inhibition of leukocyte chemotaxis, lysosomal enzyme release, lymphocytic transformation, mast cell degranulation, bacteriostatic effect against Propionibacterium acnes, inhibition of vasoactive amines, preservation of intracellular coenzyme homeostasis, and decreased sebum production. Other possible mechanisms involve suppression of vascular permeability and inflammatory cell accumulation, as well as protection against DNA damage. The goal of this paper is to review the pathophysiology of inflammatory skin diseases and discuss the role, mechanisms of action, and safety of nicotinamide and zinc as therapeutic options for these disorders.

  6. Effect of Biophytum sensitivum on streptozotocin and nicotinamide-induced diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Ananda Prabu K; Kumarappan CT; Sunil Christudas; Kalaichelvan VK

    2012-01-01

    Objective: To investigate the effect of aqueous solution of Biophytum sensitivum leaf extract (BSEt) on normal and streptozotocin (STZ)-nicotinamide-induced diabetic rats. Methods: Diabetes was induced in adult male Wistar rats by the administration of STZ-nicotinamide (40, 110 mg/kg b.w., respectively) intraperitoneally. BSEt (200 mg/kg) was administered to diabetic rats for 28 days. The effect of extract on blood glucose, plasma insulin, total haemoglobin, glycosylated haemoglobin, liver glycogen and carbohydrate metabolism regulating enzymes of liver was studied in diabetic rats. Results: BSEt significantly reduced the blood glucose and glycosylated haemoglobin levels and significantly increased the total haemoglobin, plasma insulin and liver glycogen levels in diabetic rats. It also increased the hexokinase activity and decreased glucose-6-phosphatase, fructose-1, 6-bisphosphatase activities in diabetic rats. Conclusions: The results of our study suggest that BSEt possesses a promising effect on STZ-nicotinamide-induced diabetes.

  7. Optimization of nicotinamide and riboflavin in the biodesulfurization of dibenzothiophene using response surface methodology

    Directory of Open Access Journals (Sweden)

    Hossein Saber

    2013-01-01

    Full Text Available Introduction: Dibenzothiophene (DBT is a sulfuric compound and resistant to Hydrodesulfurization process.Rhodococcuserythropolis R1, a previously isolated bacterial strain, is capable to bioconversion of DBT to 2-hydroxybiphenyl (2-HBP.Materials and methods: The effect of nicotinamide (precursor of NAD and riboflavin (precursor of FMN on DBT biodesulfurization and growth rate by this strain was studied using Gibbs assay and turbidimeteric assay respectively. The level of cofactor precursors were optimized using response surface methodology (RSM. Results: Analyses showed that both nicotinamide and riboflavin were statistically significant and could enhance the biodesulfurization rate of DBT by induction of dsz operon. The optimum level of nicotinamide and riboflavin was obtained at 10.67 mM and 34.2 µM respectively. Discussion and conclusion: In spite of increasing in BDS, the addition of these cofactor precursors led to decreased growth rate and biomass production due to limitated effect of produced 2-HBP.

  8. 5-((3-Amidobenzyl)oxy)nicotinamides as Sirtuin 2 Inhibitors.

    Science.gov (United States)

    Ai, Teng; Wilson, Daniel J; More, Swati S; Xie, Jiashu; Chen, Liqiang

    2016-04-14

    Derived from our previously reported human sirtuin 2 (SIRT2) inhibitors that were based on a 5-aminonaphthalen-1-yloxy nicotinamide core structure, 5-((3-amidobenzyl)oxy)nicotinamides offered excellent activity against SIRT2 and high isozyme selectivity over SIRT1 and SIRT3. Selected compounds also exhibited generally favorable in vitro absorption, distribution, metabolism, and excretion properties. Kinetic studies revealed that a representative SIRT2 inhibitor acted competitively against both NAD(+) and the peptide substrate, an inhibitory modality that was supported by our computational study. More importantly, two selected compounds exhibited significant protection against α-synuclein aggregation-induced cytotoxicity in SH-SY5Y cells. Therefore, 5-((3-amidobenzyl)oxy)nicotinamides represent a new class of SIRT2 inhibitors that are attractive candidates for further lead optimization in our continued effort to explore selective inhibition of SIRT2 as a potential therapy for Parkinson's disease.

  9. File list: Oth.Lar.50.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lar.50.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Larvae http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Lar.50.Adenine_N6-methylation.AllCell.bed ...

  10. File list: Oth.Emb.20.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.20.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Embryo http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Emb.20.Adenine_N6-methylation.AllCell.bed ...

  11. File list: Oth.Adl.50.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.50.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Adult http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Adl.50.Adenine_N6-methylation.AllCell.bed ...

  12. File list: Oth.Emb.05.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.05.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Embryo http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Emb.05.Adenine_N6-methylation.AllCell.bed ...

  13. File list: Oth.ALL.50.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.50.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n All cell types http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.ALL.50.Adenine_N6-methylation.AllCell.bed ...

  14. File list: Oth.Unc.05.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.05.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Unclassified http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Unc.05.Adenine_N6-methylation.AllCell.bed ...

  15. File list: Oth.Adl.05.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.05.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Adult http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Adl.05.Adenine_N6-methylation.AllCell.bed ...

  16. File list: Oth.Adl.10.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.10.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Adult http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Adl.10.Adenine_N6-methylation.AllCell.bed ...

  17. File list: Oth.Unc.20.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.20.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Unclassified http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Unc.20.Adenine_N6-methylation.AllCell.bed ...

  18. File list: Oth.Emb.50.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.50.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Embryo http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Emb.50.Adenine_N6-methylation.AllCell.bed ...

  19. File list: Oth.Emb.10.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.10.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Embryo http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Emb.10.Adenine_N6-methylation.AllCell.bed ...

  20. File list: Oth.Lar.20.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lar.20.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Larvae http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Lar.20.Adenine_N6-methylation.AllCell.bed ...

  1. File list: Oth.Unc.10.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.10.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Unclassified http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Unc.10.Adenine_N6-methylation.AllCell.bed ...

  2. File list: Oth.Unc.50.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.50.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Unclassified http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Unc.50.Adenine_N6-methylation.AllCell.bed ...

  3. File list: Oth.Lar.05.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lar.05.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Larvae http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Lar.05.Adenine_N6-methylation.AllCell.bed ...

  4. File list: Oth.ALL.20.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n All cell types http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.ALL.20.Adenine_N6-methylation.AllCell.bed ...

  5. File list: Oth.Adl.20.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.20.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Adult http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Adl.20.Adenine_N6-methylation.AllCell.bed ...

  6. File list: Oth.Lar.10.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lar.10.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Larvae http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Lar.10.Adenine_N6-methylation.AllCell.bed ...

  7. File list: Oth.ALL.10.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.10.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n All cell types http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.ALL.10.Adenine_N6-methylation.AllCell.bed ...

  8. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+.

    Science.gov (United States)

    Belenky, Peter; Racette, Frances G; Bogan, Katrina L; McClure, Julie M; Smith, Jeffrey S; Brenner, Charles

    2007-05-04

    Although NAD(+) biosynthesis is required for Sir2 functions and replicative lifespan in yeast, alterations in NAD(+) precursors have been reported to accelerate aging but not to extend lifespan. In eukaryotes, nicotinamide riboside is a newly discovered NAD(+) precursor that is converted to nicotinamide mononucleotide by specific nicotinamide riboside kinases, Nrk1 and Nrk2. In this study, we discovered that exogenous nicotinamide riboside promotes Sir2-dependent repression of recombination, improves gene silencing, and extends lifespan without calorie restriction. The mechanism of action of nicotinamide riboside is totally dependent on increased net NAD(+) synthesis through two pathways, the Nrk1 pathway and the Urh1/Pnp1/Meu1 pathway, which is Nrk1 independent. Additionally, the two nicotinamide riboside salvage pathways contribute to NAD(+) metabolism in the absence of nicotinamide-riboside supplementation. Thus, like calorie restriction in the mouse, nicotinamide riboside elevates NAD(+) and increases Sir2 function.

  9. Hydrates fighting tools; Des outils de lutte contre les hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-04-01

    Shell Exploration and Production company (SEPCo) is the operator of the 'Popeye' deep offshore field in the Gulf of Mexico. Thanks to the introduction of a low dosing hydrates inhibitor (LDHI) elaborated by Shell Global Solutions, the company has added a 7.5 Gpc extra volume of gas to its recoverable reserves. This new technology avoids the plugging of pipes by hydrates formation. (J.S.)

  10. Topical 4% nicotinamide vs. 1% clindamycin in moderate inflammatory acne vulgaris.

    Science.gov (United States)

    Khodaeiani, Effat; Fouladi, Rohollah Fadaei; Amirnia, Mehdi; Saeidi, Majid; Karimi, Elham Razagh

    2013-08-01

    Nicotinamide and clindamycin gels are two popular topical medications for acne vulgaris. This study aimed to compare efficacy of the topical 4% nicotinamide and 1% clindamycin gels in these patients. In this randomized, double-blind clinical trial, patients with moderate inflammatory facial acne vulgaris were randomly allocated to receive either topical 4% nicotinamide (n = 40) or 1% clindamycin gels (n = 40) twice daily. In each group, they were further categorized in two subgroups with oily and non-oily types of facial skin. The Cook's acne grade was determined at baseline and at weeks 4 and 8 post treatment. Acne grade decreased from an average of 5.93 ± 0.83 at baseline to 4.03 ± 1.33 at week 4 and 2.08 ± 1.59 at week 8 in nicotinamide receivers, and from an average of 5.70 ± 0.94 at baseline to 3.85 ± 1.66 at week 4 and 2.03 ± 1.53 at week 8 in the clindamycin group (within-group P  0.05). Comparing with each other, nicotinamide and clindamycin gels were significantly more efficacious in oily and non-oily skin types, respectively. No major side effect was encountered by any patient. Skin type is a significant factor in choosing between topical nicotinamide and clindamycin in patients with acne vulgaris.

  11. Nicotinamide inhibits vasculogenic mimicry, an alternative vascularization pathway observed in highly aggressive melanoma.

    Directory of Open Access Journals (Sweden)

    Orit Itzhaki

    Full Text Available Vasculogenic mimicry (VM describes functional vascular channels composed only of tumor cells and its presence predicts poor prognosis in melanoma patients. Inhibition of this alternative vascularization pathway might be of clinical importance, especially as several anti-angiogenic therapies targeting endothelial cells are largely ineffective in melanoma. We show the presence of VM structures histologically in a series of human melanoma lesions and demonstrate that cell cultures derived from these lesions form tubes in 3D cultures ex vivo. We tested the ability of nicotinamide, the amide form of vitamin B3 (niacin, which acts as an epigenetic gene regulator through unique cellular pathways, to modify VM. Nicotinamide effectively inhibited the formation of VM structures and destroyed already formed ones, in a dose-dependent manner. Remarkably, VM formation capacity remained suppressed even one month after the complete withdrawal of Nicotimamid. The inhibitory effect of nicotinamide on VM formation could be at least partially explained by a nicotinamide-driven downregulation of vascular endothelial cadherin (VE-Cadherin, which is known to have a central role in VM. Further major changes in the expression profile of hundreds of genes, most of them clustered in biologically-relevant clusters, were observed. In addition, nicotinamide significantly inhibited melanoma cell proliferation, but had an opposite effect on their invasion capacity. Cell cycle analysis indicated moderate changes in apoptotic indices. Therefore, nicotinamide could be further used to unravel new biological mechanisms that drive VM and tumor progression. Targeting VM, especially in combination with anti-angiogenic strategies, is expected to be synergistic and might yield substantial anti neoplastic effects in a variety of malignancies.

  12. [The influence of fasting, of a hyperprotein diet and of nicotinamide on hepatic L-threonine deaminase].

    Science.gov (United States)

    Aleo, M F; Casella, A; Marinello, E

    1981-09-15

    The induction of L-threonine deaminase, following nicotinamide injection has been studied: the effect of fasting and of hyperproteic diet have been also taken in consideration. Maximal induction is observed after 5 days hyperproteic diet, and is additional only with nicotinamide treatment. Results are interpreted assuming a different hepatic content and behavior of multiple forms of the enzyme.

  13. In situ enzymatic removal of orthophosphate by the nucleoside phosphorylase catalyzed phosphorolysis of nicotinamide riboside.

    Science.gov (United States)

    Shriver, J W; Sykes, B D

    1982-09-01

    An enzymatic orthophosphate removal system is described which can be effectively used to continuously remove orthophosphate from biochemical samples. The phosphorolysis of nicotinamide riboside is catalyzed by calf spleen nucleoside phosphorylase to give ribose-1-PO4 and nicotinamide along with a proton. At pH 8 the production of ribose-1-PO4 from orthophosphate is essentially quantitative. This reaction can be monitored optically or by 31P nuclear magnetic resonance (NMR). Equations are given for determining the time required to remove a given amount of phosphate from a typical NMR sample with a known amount of nucleoside phosphorylase. The effects of a competing orthophosphate-producing reaction are considered.

  14. A Phase 3 Randomized Trial of Nicotinamide for Skin-Cancer Chemoprevention.

    Science.gov (United States)

    Chen, Andrew C; Martin, Andrew J; Choy, Bonita; Fernández-Peñas, Pablo; Dalziell, Robyn A; McKenzie, Catriona A; Scolyer, Richard A; Dhillon, Haryana M; Vardy, Janette L; Kricker, Anne; St George, Gayathri; Chinniah, Niranthari; Halliday, Gary M; Damian, Diona L

    2015-10-22

    Nonmelanoma skin cancers, such as basal-cell carcinoma and squamous-cell carcinoma, are common cancers that are caused principally by ultraviolet (UV) radiation. Nicotinamide (vitamin B3) has been shown to have protective effects against damage caused by UV radiation and to reduce the rate of new premalignant actinic keratoses. In this phase 3, double-blind, randomized, controlled trial, we randomly assigned, in a 1:1 ratio, 386 participants who had had at least two nonmelanoma skin cancers in the previous 5 years to receive 500 mg of nicotinamide twice daily or placebo for 12 months. Participants were evaluated by dermatologists at 3-month intervals for 18 months. The primary end point was the number of new nonmelanoma skin cancers (i.e., basal-cell carcinomas plus squamous-cell carcinomas) during the 12-month intervention period. Secondary end points included the number of new squamous-cell carcinomas and basal-cell carcinomas and the number of actinic keratoses during the 12-month intervention period, the number of nonmelanoma skin cancers in the 6-month postintervention period, and the safety of nicotinamide. At 12 months, the rate of new nonmelanoma skin cancers was lower by 23% (95% confidence interval [CI], 4 to 38) in the nicotinamide group than in the placebo group (P=0.02). Similar differences were found between the nicotinamide group and the placebo group with respect to new basal-cell carcinomas (20% [95% CI, -6 to 39] lower rate with nicotinamide, P=0.12) and new squamous-cell carcinomas (30% [95% CI, 0 to 51] lower rate, P=0.05). The number of actinic keratoses was 11% lower in the nicotinamide group than in the placebo group at 3 months (P=0.01), 14% lower at 6 months (Pnicotinamide was discontinued. Oral nicotinamide was safe and effective in reducing the rates of new nonmelanoma skin cancers and actinic keratoses in high-risk patients. (Funded by the National Health and Medical Research Council; ONTRAC Australian New Zealand Clinical Trials

  15. The efficacy of nicotinamide gel 4% as an adjuvant therapy in the treatment of cutaneous erosions of pemphigus vulgaris.

    Science.gov (United States)

    Iraji, Fariba; Banan, Laleh

    2010-01-01

    The high rate of morbidity and mortality resulting from long-term use of corticosteroids in pemphigus vulgaris (PV) warrants discovery of a new treatment strategy. Based on the pathophysiology of PV, nicotinamide can block the process of blister formation through its anti-inflammatory properties. This study was conducted to evaluate the clinical effectiveness of nicotinamide gel in the treatment of skin lesions of PV. In a double-blind, placebo-controlled study, eight PV patients with a total of 60 skin lesions were treated by either nicotinamide or placebo gel. After 30 days of treatment, epithelialization index of the two groups was compared. The mean of the epithelialization index in skin lesions that received nicotinamide was significantly higher than that of the placebo group (26 vs. -5.8, p nicotinamide gel can effectively be used as an adjunctive treatment for PV lesions.

  16. Obsidian Hydration: A New Paleothermometer

    Energy Technology Data Exchange (ETDEWEB)

    Anovitz, Lawrence {Larry} M [ORNL; Riciputi, Lee R [ORNL; Cole, David R [ORNL; Fayek, Mostafa [ORNL; Elam, J. Michael [University of Tennessee, Knoxville (UTK)

    2006-01-01

    The natural hydration of obsidian was first proposed as a dating technique for young geological and archaeological specimens by Friedman and Smith (1960), who noted that the thickness of the hydrated layer on obsidian artifacts increases with time. This approach is, however, sensitive to temperature and humidity under earth-surface conditions. This has made obsidian hydration dating more difficult, but potentially provides a unique tool for paleoclimatic reconstructions. In this paper we present the first successful application of this approach, based on combining laboratory-based experimental calibrations with archaeological samples from the Chalco site in the Basin of Mexico, dated using stratigraphically correlated 14C results and measuring hydration depths by secondary ion mass spectrometry. The resultant data suggest, first, that this approach is viable, even given the existing uncertainties, and that a cooling trend occurred in the Basin of Mexico over the past 1450 yr, a result corroborated by other paleoclimatic data.

  17. Obsidian hydration: A new paleothermometer

    Science.gov (United States)

    Anovitz, Lawrence M.; Riciputi, Lee R.; Cole, David R.; Fayek, Mostafa; Elam, J. Michael

    2006-07-01

    The natural hydration of obsidian was first proposed as a dating technique for young geological and archaeological specimens by Friedman and Smith (1960), who noted that the thickness of the hydrated layer on obsidian artifacts increases with time. This approach is, however, sensitive to temperature and humidity under earth-surface conditions. This has made obsidian hydration dating more difficult, but potentially provides a unique tool for paleoclimatic reconstructions. In this paper we present the first successful application of this approach, based on combining laboratory-based experimental calibrations with archaeological samples from the Chalco site in the Basin of Mexico, dated using stratigraphically correlated 14C results and measuring hydration depths by secondary ion mass spectrometry. The resultant data suggest, first, that this approach is viable, even given the existing uncertainties, and that a cooling trend occurred in the Basin of Mexico over the past 1450 yr, a result corroborated by other paleoclimatic data.

  18. Obsidian hydration dates glacial loading?

    Science.gov (United States)

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  19. Renoprotective effect of the xanthine oxidoreductase inhibitor topiroxostat on adenine-induced renal injury.

    Science.gov (United States)

    Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Hibi, Chihiro; Nakamura, Takashi; Murase, Takayo; Oikawa, Tsuyoshi; Hoshino, Seiko; Hisamichi, Mikako; Hirata, Kazuaki; Kimura, Kenjiro; Shibagaki, Yugo

    2016-06-01

    The aim of the present study was to reveal the effect of a xanthine oxidoreductase (XOR) inhibitor, topiroxostat (Top), compared with another inhibitor, febuxostat (Feb), in an adenine-induced renal injury model. We used human liver-type fatty acid-binding protein (L-FABP) chromosomal transgenic mice, and urinary L-FABP, a biomarker of tubulointerstitial damage, was used to evaluate tubulointerstitial damage. Male transgenic mice (n = 24) were fed a 0.2% (wt/wt) adenine-containing diet. Two weeks after the start of this diet, renal dysfunction was confirmed, and the mice were divided into the following four groups: the adenine group was given only the diet containing adenine, and the Feb, high-dose Top (Top-H), and low-dose Top (Top-L) groups were given diets containing Feb (3 mg/kg), Top-H (3 mg/kg), and Top-L (1 mg/kg) in addition to adenine for another 2 wk. After withdrawal of the adenine diet, each medication was continued for 2 wk. Serum creatinine levels, the degree of macrophage infiltration, tubulointerstitial damage, renal fibrosis, urinary 15-F2t-isoprostane levels, and renal XOR activity were significantly attenuated in the kidneys of the Feb, Top-L, and Top-H groups compared with the adenine group. Serum creatinine levels in the Top-L and Top-H groups as well as renal XOR in the Top-H group were significantly lower than those in the Feb group. Urinary excretion of L-FABP in both the Top-H and Top-L groups was significantly lower than in the adenine and Feb groups. In conclusion, Top attenuated renal damage in an adenine-induced renal injury model.

  20. NadN and e (P4) are essential for utilization of NAD and nicotinamide mononucleotide but not nicotinamide riboside in Haemophilus influenzae.

    Science.gov (United States)

    Kemmer, G; Reilly, T J; Schmidt-Brauns, J; Zlotnik, G W; Green, B A; Fiske, M J; Herbert, M; Kraiss, A; Schlör, S; Smith, A; Reidl, J

    2001-07-01

    Haemophilus influenzae has an absolute requirement for NAD (factor V) because it lacks almost all the biosynthetic enzymes necessary for the de novo synthesis of that cofactor. Factor V can be provided as either nicotinamide adenosine dinucleotide (NAD), nicotinamide mononucleotide (NMN), or nicotinamide riboside (NR) in vitro, but little is known about the source or the mechanism of uptake of these substrates in vivo. As shown by us earlier, at least two gene products are involved in the uptake of NAD, the outer membrane lipoprotein e (P4), which has phosphatase activity and is encoded by hel, and a periplasmic NAD nucleotidase, encoded by nadN. It has also been observed that the latter gene product is essential for H. influenzae growth on media supplemented with NAD. In this report, we describe the functions and substrates of these two proteins as they act together in an NAD utilization pathway. Data are provided which indicate that NadN harbors not only NAD pyrophosphatase but also NMN 5'-nucleotidase activity. The e (P4) protein is also shown to have NMN 5'-nucleotidase activity, recognizing NMN as a substrate and releasing NR as its product. Insertion mutants of nadN or deletion and site-directed mutants of hel had attenuated growth and a reduced uptake phenotype when NMN served as substrate. A hel and nadN double mutant was only able to grow in the presence of NR, whereas no uptake of NMN was observed.

  1. Storing natural gas as frozen hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, J.S.; Khokhar, A.A. (Univ. of Trondheim (Norway)); Parlaktuna, M. (Middle East Technical Univ., Ankara (Turkey))

    1994-02-01

    The formation of natural gas hydrates is a well-known problem in the petroleum and natural gas industries. Hydrates are solid materials that form when liquid water and natural gas are brought in contact under pressure. Hydrate formation need not be a problem. On the contrary, it can be an advantage. The volume of hydrates is much less than that of natural gas. At standard conditions, hydrates occupy 150 to 170 times less volume than the corresponding gas. Typically, natural gas hydrates contain 15% gas and 85% water by mass. It follows that hydrates can be used for large-scale storage of natural gas. Benesh proposed using hydrates to improve the load factor of natural gas supply systems. The author suggested that hydrates could be produced by bringing liquid water into contact with natural gas at the appropriate temperature and high pressure. The hydrate then would be stored at a temperature and pressure where it was stable. When gas was needed for the supply system, the hydrate would be melted at low pressure. The stability of a natural gas hydrate during storage at atmospheric pressure and below-freezing temperatures was studied in the laboratory. The gas hydrate was produced in a stirred vessel at 2- to 6-MPa pressure and temperatures from 0 to 20 C. The hydrate was refrigerated and stored in deep freezers at [minus]5, [minus]10, and [minus]18 C for up to 10 days. The natural gas hydrate remained stable when kept frozen at atmospheric pressure.

  2. Airway Hydration and COPD

    Science.gov (United States)

    Ghosh, Arunava; Boucher, R.C.; Tarran, Robert

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the prevalent causes of worldwide mortality and encompasses two major clinical phenotypes, i.e., chronic bronchitis (CB) and emphysema. The most common cause of COPD is chronic tobacco inhalation. Research focused on the chronic bronchitic phenotype of COPD has identified several pathological processes that drive disease initiation and progression. For example, the lung’s mucociliary clearance (MCC) system performs the critical task of clearing inhaled pathogens and toxic materials from the lung. MCC efficiency is dependent on: (i) the ability of apical plasma membrane ion channels such as the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na+ channel (ENaC) to maintain airway hydration; (ii) ciliary beating; and, (iii) appropriate rates of mucin secretion. Each of these components is impaired in CB and likely contributes to the mucus stasis/accumulation seen in CB patients. This review highlights the cellular components responsible for maintaining MCC and how this process is disrupted following tobacco exposure and with CB. We shall also discuss existing therapeutic strategies for the treatment of chronic bronchitis and how components of the MCC can be used as biomarkers for the evaluation of tobacco or tobacco-like-product exposure. PMID:26068443

  3. Mechanism of gypsum hydration

    Directory of Open Access Journals (Sweden)

    Pacheco, G.

    1991-06-01

    Full Text Available There is an hypothesis that the mechanism o f gypsum hydration and dehydration is performed through two simultaneous phenomena. In this study we try to clear up this phenomenon using chlorides as accelerators or a mixture of ethanol-methanol as retarders to carry out the gypsum setting. Natural Mexican gypsum samples and a hemihydrate prepared in the laboratory are used. The following analytical techniques are used: MO, DRX, DTA, TG and DTG. In agreement with the obtained results, it can be concluded: that colloid formation depends on the action of accelerators or retarders and the crystals are a consequence of the quantity of hemihydrate formed.

    En el mecanismo de hidratación y deshidratación del yeso existe la hipótesis de que éste se efectúa por dos fenómenos simultáneos. Este estudio intenta esclarecer estos fenómenos, empleando: cloruros como aceleradores o mezcla etanol-metanol como retardadores para efectuar el fraguado del yeso. Se emplean muestras de yeso de origen natural mexicano y hemihydrate preparado en laboratorio; se utilizan técnicas analíticas: MO, DRX, DTA, TG y DTG. De acuerdo a los resultados obtenidos se puede deducir: que la formación del coloide depende de la acción de los agentes aceleradores o retardadores y que los cristales son consecuencia de la cantidad de hemihidrato formado.

  4. Nicotinamide phosphoribosyltransferase/pre-B-cell colony enhancing factor/visfatin plasma levels and clinical outcome in patients with dilated cardiomyopathy.

    Science.gov (United States)

    Bobbert, Peter; Kühl, Uwe; Poller, Wolfgang; Rauch, Ursula; Schultheiss, Heinz-Peter; Skurk, Carsten

    2015-04-01

    Nicotinamide phosphoribosyltransferase (Nampt) is an enzyme involved in nicotinamide adenine dinucleotide biosynthesis. Nampt functions as gatekeeper of energy status and survival in cardiac myocytes in animal models of ischemia-reperfusion and might regulate inflammatory processes. Therefore, we performed for the 1st time a clinical study to determine the effects of Nampt on cardiac function in patients with nonischemic dilated (DCM) and inflammatory (DCMi) cardiomyopathy. A total of 113 patients were enrolled in the study and classified into control (n = 25), DCM (n = 38), and DCMi (n = 50) groups. Cardiac functional and inflammatory parameters as well as plasma Nampt and cardiac mRNA and protein Nampt expression were determined at baseline and follow-up after 6 months. Patients with DCM (1.04 ± 0.8 ng/mL; P < .001) and DCMi (1.07 ± 0.7 ng/mL; P < .001) showed significantly increased Nampt plasma concentrations at baseline compared with the control group (0.57 ± 0.5 ng/mL). Patients with higher Nampt concentrations in both heart failure groups showed significant better improvement of cardiac functional parameters (correlation between Nampt plasma levels and the change of left ventricular ejection fraction after 6 months: DCM: r = 0.698, P < .001; DCMi: r = 0.503, P < .001). Moreover, cardiac inflammation did not influence Nampt expression, and Nampt concentrations did not modulate cardiac inflammation in DCMi. A multivariate linear regression model revealed high plasma Nampt expression to contribute to better improvement of cardiac function in patients of both heart failure groups. Moreover, heart failure patients with high plasma Nampt levels showed suppressed cardiac TNF-α and IL-6 mRNA expression after 6 months' follow-up as well as lower B-type natriuretic peptide levels compared with heart failure patients with low Nampt plasma concentrations. High Nampt expression in patients with nonischemic DCM and DCMi is associated with a favorable outcome and

  5. Design of laser pulses for selective vibrational excitation of the N6-H bond of adenine and adenine-thymine base pair using optimal control theory.

    Science.gov (United States)

    Sharma, Sitansh; Sharma, Purshotam; Singh, Harjinder; Balint-Kurti, Gabriel G

    2009-06-01

    Time dependent quantum dynamics and optimal control theory are used for selective vibrational excitation of the N6-H (amino N-H) bond in free adenine and in the adenine-thymine (A-T) base pair. For the N6-H bond in free adenine we have used a one dimensional model while for the hydrogen bond, N6-H(A)...O4(T), present in the A-T base pair, a two mathematical dimensional model is employed. The conjugate gradient method is used for the optimization of the field dependent cost functional. Optimal laser fields are obtained for selective population transfer in both the model systems, which give virtually 100% excitation probability to preselected vibrational levels. The effect of the optimized laser field on the other hydrogen bond, N1(A)...H-N3(T), present in A-T base pair is also investigated.

  6. Identification of Isn1 and Sdt1 as glucose- and vitamin-regulated nicotinamide mononucleotide and nicotinic acid mononucleotide [corrected] 5'-nucleotidases responsible for production of nicotinamide riboside and nicotinic acid riboside.

    Science.gov (United States)

    Bogan, Katrina L; Evans, Charles; Belenky, Peter; Song, Peng; Burant, Charles F; Kennedy, Robert; Brenner, Charles

    2009-12-11

    Recently, we discovered that nicotinamide riboside and nicotinic acid riboside are biosynthetic precursors of NAD(+), which are utilized through two pathways consisting of distinct enzymes. In addition, we have shown that exogenously supplied nicotinamide riboside is imported into yeast cells by a dedicated transporter, and it extends replicative lifespan on high glucose medium. Here, we show that nicotinamide riboside and nicotinic acid riboside are authentic intracellular metabolites in yeast. Secreted nicotinamide riboside was detected with a biological assay, and intracellular levels of nicotinamide riboside, nicotinic acid riboside, and other NAD(+) metabolites were determined by a liquid chromatography-mass spectrometry method. A biochemical genomic screen indicated that three yeast enzymes possess nicotinamide mononucleotide 5'-nucleotidase activity in vitro. Metabolic profiling of knock-out mutants established that Isn1 and Sdt1 are responsible for production of nicotinamide riboside and nicotinic acid riboside in cells. Isn1, initially classified as an IMP-specific 5'-nucleotidase, and Sdt1, initially classified as a pyrimidine 5'-nucleotidase, are additionally responsible for dephosphorylation of pyridine mononucleotides. Sdt1 overexpression is growth-inhibitory to cells in a manner that depends on its active site and correlates with reduced cellular NAD(+). Expression of Isn1 protein is positively regulated by the availability of nicotinic acid and glucose. These results reveal unanticipated and highly regulated steps in NAD(+) metabolism.

  7. Expression patterns of nicotinamide phosphoribosyltransferase and nicotinic acid phosphoribosyltransferase in human malignant lymphomas

    DEFF Research Database (Denmark)

    Olesen, Uffe Høgh; Hastrup, Nina; Sehested, Maxwell

    2011-01-01

    The purpose of the study was to determine in human malignant lymphomas the expression patterns of nicotinamide phosphoribosyltransferase (NAMPT) and nicotinic acid phosphoribosyltransferase (NAPRT), the primary, rate-limiting enzymes in the synthesis of NAD+. NAMPT is a potential biomarker for se...

  8. Hydrogen bonding interactions in nicotinamide Ionic Liquids: A comparative spectroscopic and DFT studies

    Science.gov (United States)

    Shukla, Madhulata

    2017-03-01

    Being biodegradable in nature nicotinamide based Ionic Liquids (ILs) are gaining much attention now a day. Nicotinamide iodide (i.e 1-methyl-3ethoxy carbonyl pyridinium iodide (mNicI)) and 1-methyl-3ethoxy carbonyl pyridinium trifilimide (mNicNTf2) new ILs has been synthesized and has been characterized using different spectroscopic techniques like NMR, UV visible and infrared spectroscopy. Theoretical studies have been performed on several nicotinamide ILs. Geometry and spectral features were further characterized by Density Functional Theory (DFT) calculation. NBO charge distribution and electrostatic potential diagram presents in depth knowledge about interactions between cation and anion. A comparative theoretical study between mNicI and its other analogues i. e 1-methyl-3 ethoxy carbonyl pyridinium chloride and bromide i. e mNicCl and mNicBr has also been performed. Csbnd H⋯X hydrogen bonding along with C⋯X interaction has been reported for the first time for the nicotinamide based ILs. C2sbnd H stretching frequency shifts to higher wavenumber with change to a lesser electronegative anion. mNicCl and mNicBr are expected to be solid in nature with the evidence from the red shift in stretching frequency as compared to mNicI. TD-DFT calculation of mNicI proved that pale yellow color of liquid is due to inherent transition from anion to cation.

  9. More than skin deep? Potential nicotinamide treatment applications in chronic kidney transplant recipients.

    Science.gov (United States)

    Bostom, Andrew G; Merhi, Basma; Walker, Joanna; Robinson-Bostom, Leslie

    2016-12-24

    Non-melanoma cutaneous carcinomas, or skin cancers, predominantly squamous cell carcinomas (SCCs), are the most common malignancies occurring in kidney transplant recipients (KTRs). Squamous cell carcinoma risk is dramatically elevated in KTRs, occurring at rates of up 45-250 times those reported in general populations. New non-melanoma skin cancers in KTRs with a prior non-melanoma skin cancer also develop at 3-times the rate reported in non-KTRs with the same clinical history. The unique aggressiveness of SCCs in KTRs increases patient morbidity, due to the high rate of new lesions requiring treatment, frequently surgical excision. Oral nicotinamide shows promise in the chemoprevention of the especially aggressive non-melanoma skin cancers which occur in KTRs. This benefit might be conferred via its inhibition of sirtuin enzymatic pathways. Nicotinamide's concurrent hypophosphatemic effect may also partially ameliorate the disturbed calcium-phosphorus homeostasis in these patients-a putative risk factor for mortality, and graft failure. Conceivably, a phase 3 trial of nicotinamide for the prevention of non-melanoma skin cancers in KTRs, lasting at least 12-mo, could also incorporate imaging and laboratory measures which assess nicotinamide's impact on subclinical cardiovascular and chronic kidney disease risk, and progression.

  10. Dietary resistant maltodextrin ameliorates testicular function and spermatogenesis in streptozotocin-nicotinamide-induced diabetic rats.

    Science.gov (United States)

    Liu, C-Y; Hsu, Y-J; Chien, Y-W E; Cha, T-L; Tsao, C-W

    2016-05-01

    This study investigated the effect of resistant maltodextrin (RMD) on reproduction in streptozotocin (STZ)-nicotinamide-induced type 2 diabetic male rats. Forty male rats were induced with diabetes by a single intraperitoneal injection of STZ (50 mg kg(-1)) and nicotinamide (100 mg kg(-1)). Five groups were analysed in total: normal, diabetic rats without RMD, diabetic rats with RMD 1.2 g per 100 g diet (1×), with RMD 2.4 g per 100 g (2×), and with RMD 6.0 g per 100 g (5×). The groups of diabetic rats with the RMD supplement, compared to those without supplement, showed improved plasma glucose control, attenuated insulin resistance and recovery of testosterone level and spermatogenesis stage. The STZ-nicotinamide-induced diabetes mellitus (DM) caused a significant reduction in serum testosterone, testis androgen receptor (AR), steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) protein, but a statistical recovery in each of these was observed in the 5× group. TUNEL-positive cells were observed in the diabetic without RMD group, and RMD treatment reduced apoptotic germ cells. The expression of Bax/Bcl2 was induced in the diabetic group and also significantly reduced in the 5× group. Dietary RMD may improve metabolic control in STZ-nicotinamide-induced diabetic rats and attenuate hyperglycaemia-related impaired male reproduction and testicular function.

  11. Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism.

    Science.gov (United States)

    Frederick, David W; Davis, James G; Dávila, Antonio; Agarwal, Beamon; Michan, Shaday; Puchowicz, Michelle A; Nakamaru-Ogiso, Eiko; Baur, Joseph A

    2015-01-16

    The NAD biosynthetic precursors nicotinamide mononucleotide and nicotinamide riboside are reported to confer resistance to metabolic defects induced by high fat feeding in part by promoting oxidative metabolism in skeletal muscle. Similar effects are obtained by germ line deletion of major NAD-consuming enzymes, suggesting that the bioavailability of NAD is limiting for maximal oxidative capacity. However, because of their systemic nature, the degree to which these interventions exert cell- or tissue-autonomous effects is unclear. Here, we report a tissue-specific approach to increase NAD biosynthesis only in muscle by overexpressing nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in the salvage pathway that converts nicotinamide to NAD (mNAMPT mice). These mice display a ∼50% increase in skeletal muscle NAD levels, comparable with the effects of dietary NAD precursors, exercise regimens, or loss of poly(ADP-ribose) polymerases yet surprisingly do not exhibit changes in muscle mitochondrial biogenesis or mitochondrial function and are equally susceptible to the metabolic consequences of high fat feeding. We further report that chronic elevation of muscle NAD in vivo does not perturb the NAD/NADH redox ratio. These studies reveal for the first time the metabolic effects of tissue-specific increases in NAD synthesis and suggest that critical sites of action for supplemental NAD precursors reside outside of the heart and skeletal muscle.

  12. Target enzyme mutations are the molecular basis for resistance towards pharmacological inhibition of nicotinamide phosphoribosyltransferase

    DEFF Research Database (Denmark)

    Olesen, Uffe H; Petersen, Jakob G; Garten, Antje;

    2010-01-01

    BACKGROUND: Inhibitors of nicotinamide phosphoribosyltransferase (NAMPT) are promising cancer drugs currently in clinical trials in oncology, including APO866, CHS-828 and the CHS-828 prodrug EB1627/GMX1777, but cancer cell resistance to these drugs has not been studied in detail. METHODS: Here, ...

  13. Tetrahydrofuran hydrate decomposition characteristics in porous media

    Science.gov (United States)

    Song, Yongchen; Wang, Pengfei; Wang, Shenglong; Zhao, Jiafei; Yang, Mingjun

    2016-12-01

    Many tetrahydrofuran (THF) hydrate properties are similar to those of gas hydrates. In the present work THF hydrate dissociation in four types of porous media is studied. THF solution was cooled to 275.15 K with formation of the hydrate under ambient pressure, and then it dissociated under ambient conditions. THF hydrate dissociation experiments in each porous medium were conducted three times. Magnetic resonance imaging (MRI) was used to obtain images. Decomposition time, THF hydrate saturation and MRI mean intensity (MI) were measured and analyzed. The experimental results showed that the hydrate decomposition time in BZ-4 and BZ-3 was similar and longer than that in BZ-02. In each dissociation process, the hydrate decomposition time of the second and third cycles was shorter than that of the first cycle in BZ-4, BZ-3, and BZ-02. The relationship between THF hydrate saturation and time is almost linear.

  14. Effects of hypobaric hypoxia on adenine nucleotide pools, adenine nucleotide transporter activity and protein expression in rat liver

    Institute of Scientific and Technical Information of China (English)

    Cong-Yang Li; Jun-Ze Liu; Li-Ping Wu; Bing Li; Li-Fen Chen

    2006-01-01

    AIM: To explore the effect of hypobaric hypoxia on mitochondrial energy metabolism in rat liver.METHODS: Adult male Wistar rats were exposed to a hypobaric chamber simulating 5000 m high altitude for 23 h every day for 0 (HO), 1 (H1), 5 (HS), 15 (H15) and 30 d (H30) respectively. Rats were sacrificed by decapitation and liver was removed. Liver mitochondria were isolated by differential centrifugation program. The size of adenine nucleotide pool (ATP, ADP, and AMP) in tissue and mitochondria was separated and measured by high performance liquid chromatography (HPLC). The adenine nucleotide transporter (ANT) activity was determined by isotopic technique. The ANT total protein level was determined by Western blot. RESULTS: Compared with HO group, intra-mitochondrial ATP content decreased in all hypoxia groups. However,the H5 group reached the lowest point (70.6%) (P< 0.01)when compared to the control group. Intra-mitochondrial ADP and AMP level showed similar change in all hypoxia groups and were significantly lower than that in HO group. In addition, extra-mitochondrial ATP and ADP content decreased significantly in all hypoxia groups.Furthermore, extra-mitochondrial AMP in groups H5, H15and H30 was significantly lower than that in HO group,whereas H1 group had no marked change compared to the control situation. The activity of ANT in hypoxia groups decreased significantly, which was the lowest in H5 group (55.7%) (P<0.01) when compared to HO group. ANT activity in H30 group was higher than in H15 group, but still lower than that in HO group. ANT protein level in H5, H15, H30 groups, compared with HO group decreased significantly, which in H5 group was the lowest, being 27.1% of that in HO group (P<0.01). ANT protein level in H30 group was higher than in H15 group,but still lower than in HO group.CONCLUSION: Hypobaric hypoxia decreases the mitochondrial ATP content in rat liver, while mitochondrial ATP level recovers during long-term hypoxia exposure.The lower

  15. Suppression of feline immunodeficiency virus infection in vivo by 9-(2-phosphonomethoxyethyl)adenine

    OpenAIRE

    Horzinek, M.C.; Egberink, H F; Borst, M.; Niphuis, H; Balzarini, J; Neu, H.; Schellekens, H.; De Clercq, H; Koolen, M.J.M.

    1990-01-01

    The acyclic purine nucleoside analogue 9-(2-phosphonomethoxyethyl)adenine [PMEA; formerly referred to as 9-(2-phosphonylmethoxyethyl)adenine] is a potent and selective inhibitor of human immunodeficiency virus replication in vitro and of Moloney murine sarcoma virus-induced tumor formation in mice. In the latter system PMEA has stronger antiretroviral potency and selectivity than 3'-azido-3'-thymidine (AZT). We have now investigated the effect of the drug in cats infected with the feline immu...

  16. The evolving role of the NAD+/nicotinamide metabolome in skin homeostasis, cellular bioenergetics, and aging.

    Science.gov (United States)

    Oblong, John E

    2014-11-01

    Human skin is exposed to daily environmental insults, particularly solar radiation, that triggers a range of molecular responses. These perturbations to the normal homeostatic state can lead to cellular dysfunction and, ultimately, impacts tissue integrity and accelerates skin aging (photoaging). One of the responses is increased oxidative stress which has been shown to disrupt cellular bioenergetics. This can be detected by depletion of the nucleotide energy metabolites NAD+ and ATP as both an acute transient decrease and, over time, a more permanent chronic reduction due in part to cumulative damage of mitochondria. NAD+ and its primary precursor nicotinamide have been known for some time to impact skin homeostasis based on linkages to dietary requirements, treatment of various inflammatory conditions, photoaging, and prevention of cancer. Cellular NAD+ pools are known to be lower in aged skin and treatment with nicotinamide is hypothesized to restore these levels, thereby mitigating cellular bioenergetics dysfunction. In dermal fibroblasts, nicotinamide is able to protect against oxidative stress to glycolysis, oxidative phosphorylation as well as increase mitochondrial efficiency via sirtuin-dependent selective mitophagy. Recent research has found that NAD+ cellular pools are more dynamic than previously thought, oscillating in tandem with free nicotinamide, and serves as a regulatory point and feedback loop in cellular metabolism regulation, maintenance of mitochondrial efficiency, and circadian rhythmicity. Since UV-induced oxidative stress in skin can disrupt these processes, continued molecular understanding of the role of NAD+ and nicotinamide in skin biology is important to identify interventions that would help maintain its normal homeostatic functions and efficient cellular bioenergetics.

  17. Phosphorylation of 3-deazaguanosine by nicotinamide riboside kinase in Chinese hamster ovary cells.

    Science.gov (United States)

    Saunders, P P; Tan, M T; Spindler, C D; Robins, R K

    1989-12-01

    The growth inhibitory activity of 3-deazaguanosine toward a mutant line (TGR-3) of Chinese hamster ovary cells deficient in hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8) was substantially reversed by the simultaneous addition of nicotinamide riboside. The activities of most other ribonucleoside analogues tested were unaffected. The formation of cellular 3-deazaGMP and 3-deazaGTP from the ribonucleoside analogue, as measured by high-pressure liquid chromatography, was inhibited by the presence of nicotinamide riboside. The inhibition was dependent on concentration of 3-deazaguanosine and could also be demonstrated by following the metabolism of 3-deazaguanosine, labeled with 14C in the ribose moiety, to [14C]3-deazaGTP. In the presence of 100 microM nicotinamide riboside formation of the labeled triphosphate derivative of 3-deazaguanosine was undetectable. A 3-deazaguanosine phosphorylating activity was separated from other cellular kinases by DEAE-cellulose chromatography. Contaminating purine nucleoside phosphorylase (EC 2.4.2.1) was subsequently removed by sucrose density gradient centrifugation. The resulting enzyme preparation demonstrated the greatest activities with nicotinamide riboside and 3-deazaguanosine and, in addition, could also phosphorylate tiazofurin and guanosine to lesser, but significant, degrees. These and other observations suggest that 3-deazaguanosine, and perhaps other agents such as tiazofurin, may, at least in part, be phosphorylated by a nicotinamide ribonucleoside kinase in these cells. If so, it is possible that the activity of this agent in other types of cells in vivo could be dependent upon the presence of this enzyme and that it could be influenced by cellular concentrations of the natural pyridine nucleoside.

  18. Intercalating quaternary nicotinamide-based poly(amido amine)s for gene delivery.

    Science.gov (United States)

    van der Aa, L J; Vader, P; Storm, G; Schiffelers, R M; Engbersen, J F J

    2014-12-10

    In the development of potent polymeric gene carriers for gene therapy, a good interaction between the polymer and the nucleotide is indispensable to form small and stable polyplexes. Polymers with relatively high cationic charge density are frequently used to provide these interactions, but high cationic charge is usually associated with severe cytotoxicity. In this study an alternative, nucleotide specific binding interaction based on intercalation was investigated to improve polymer/pDNA complex formation. For this purpose bioreducible poly(amido amine) copolymers (p(CBA-ABOL/Nic)) were synthesized with different degrees of intercalating quaternary nicotinamide (Nic) groups and amide-substituted derivatives in their side chains. The quaternary nicotinamide group was chosen as intercalating moiety because this group is part of the naturally occurring NAD+ coenzyme and is therefore expected to be non-toxic and non-carcinogenic. The presence of the quaternary nicotinamide moieties in the poly(amido amine) copolymers showed to effectively promote self-assembled polyplex formation already at low polymer/DNA ratios and results in decreased polyplex size and increased stability of the polyplexes. Furthermore, in contrast to the primary amine functionalized analogs the quaternary nicotinamide polymers showed to be non-hemolytic, indicating their compatibility with cell membranes. Polymers with 25% of Nic in the side chains induced GFP expressions of about 4-5 times that of linear PEI, which is comparable with p(CBA-ABOL), the parent PAA without Nic, but at a two- to fourfold lower required polymer dose. N-phenylation of the nicotinamide functionality even further reduces the required polymer dose to form stable polyplexes, which is a major improvement for these kinds of cationic polymers. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Lachowski, Eric E.;

    1999-01-01

    Vapour phase hydration of purl cement clinker minerals at reduced relative humidities is described. This is relevant to modern high performance concrete that may self-desiccate during hydration and is also relevant to the quality of the cement during storage. Both the oretical considerations...... and experimental data are presented showing that C(3)A can hydrate at lower humidities than either C3S or C2S. It is suggested that the initiation of hydration during exposure to water vapour is nucleation controlled. When C(3)A hydrates at low humidity, the characteristic hydration product is C(3)AH(6...

  20. Progress of Gas Hydrate Studies in China

    Institute of Scientific and Technical Information of China (English)

    樊栓狮; 汪集旸

    2006-01-01

    A brief overview is given on the gas hydrate-related research activities carried out by Chinese researchers in the past 15 years. The content involves: (1) Historical review. Introducing the gas hydrate research history in China; (2) Gas hydrate research groups in China. There are nearly 20 groups engaged in gas hydrate research now; (3) Present studies.Including fundamental studies, status of the exploration of natural gas hydrate resources in the South China Sea region, and development of hydrate-based new techniques; (4) Future development.

  1. Improved Growth and Stress Tolerance in the Arabidopsis oxt1 Mutant Triggered by Altered Adenine Metabolism

    Institute of Scientific and Technical Information of China (English)

    Suchada Sukrong; Kil-Young Yun; Patrizia Stadler; Charan Kumar; Tony Facciuolo; Barbara A.Moffatt; Deane L.Falcone

    2012-01-01

    Plants perceive and respond to environmental stresses with complex mechanisms that are often associated with the activation of antioxidant defenses.A genetic screen aimed at isolating oxidative stress-tolerant lines of Arabidopsis thaliana has identified oxt1,a line that exhibits improved tolerance to oxidative stress and elevated temperature but displays no apparent deleterious growth effects under non-stress conditions.Oxt1 harbors a mutation that arises from the altered expression of a gene encoding adenine phosphoribosyltransferase (APT1),an enzyme that converts adenine to adenosine monophosphate (AMP),indicating a link between purine metabolism,whole-plant growth responses,and stress acclimation.The oxt1 mutation results in decreased APT1 expression that leads to reduced enzymatic activity.Correspondingly,oxt1 plants possess elevated levels of adenine.Decreased APT enzyme activity directly correlates with stress resistance in transgenic lines that ectopically express APT1.The metabolic alteration in oxt1 plants also alters the expression of several antioxidant defense genes and the response of these genes to oxidative challenge.Finally,it is shown that manipulation of adenine levels can induce stress tolerance to wild-type plants.Collectively,these results show that alterations in cellular adenine levels can trigger stress tolerance and improve growth,leading to increases in plant biomass.The results also suggest that adenine might play a part in the signals that modulate responses to abiotic stress and plant growth.

  2. Determination of the base composition of deoxyribonucleic acid by measurement of the adenine/guanine ratio

    Science.gov (United States)

    Kirk, J. T. O.

    1967-01-01

    A method is described for determination of the base composition (as guanine+cytosine or adenine+thymine content) of DNA by accurate measurement of the adenine/guanine ratio. The DNA is hydrolysed with 0·03n-hydrochloric acid for 40min. to release the purines. The hydrolysate is subjected to ion-exchange chromatography on Zeo-Karb 225. Apurinic acids are eluted with 0·03n-hydrochloric acid and then guanine and adenine are eluted separately with 2n-hydrochloric acid. Guanine and adenine are each collected as a single fraction, and the amount of base in each case is determined by measuring the volume and the extinction at suitable wavelengths. For use in the calculations, millimolar extinction coefficients in 2n-hydrochloric acid of 12·09 for adenine at 262mμ, and 10·77 for guanine at 248mμ, were determined with authentic samples of bases. The method gives extremely reproducible results: from 12 determinations with calf thymus DNA the adenine/guanine molar ratio had a standard deviation of 0·011; this corresponds to a standard deviation in guanine+cytosine content of 0·2% guanine+cytosine. PMID:5626094

  3. Determination of the base composition of deoxyribonucleic acid by measurement of the adenine-granine ratio.

    Science.gov (United States)

    Kirk, J T

    1967-11-01

    A method is described for determination of the base composition (as guanine+cytosine or adenine+thymine content) of DNA by accurate measurement of the adenine/guanine ratio. The DNA is hydrolysed with 0.03n-hydrochloric acid for 40min. to release the purines. The hydrolysate is subjected to ion-exchange chromatography on Zeo-Karb 225. Apurinic acids are eluted with 0.03n-hydrochloric acid and then guanine and adenine are eluted separately with 2n-hydrochloric acid. Guanine and adenine are each collected as a single fraction, and the amount of base in each case is determined by measuring the volume and the extinction at suitable wavelengths. For use in the calculations, millimolar extinction coefficients in 2n-hydrochloric acid of 12.09 for adenine at 262mmu, and 10.77 for guanine at 248mmu, were determined with authentic samples of bases. The method gives extremely reproducible results: from 12 determinations with calf thymus DNA the adenine/guanine molar ratio had a standard deviation of 0.011; this corresponds to a standard deviation in guanine+cytosine content of 0.2% guanine+cytosine.

  4. Benchmark Thermochemistry for Biologically Relevant Adenine and Cytosine. A Combined Experimental and Theoretical Study.

    Science.gov (United States)

    Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Shoifet, Evgeni; Meurer, Florian; Verevkin, Sergey P; Schick, Christoph; Held, Christoph

    2015-09-17

    The thermochemical properties available in the literature for adenine and cytosine are in disarray. A new condensed phase standard (p° = 0.1 MPa) molar enthalpy of formation at T = 298.15 K was measured by using combustion calorimetry. New molar enthalpies of sublimation were derived from the temperature dependence of vapor pressure measured by transpiration and by the quarz-crystal microbalance technique. The heat capacities of crystalline adenine and cytosine were measured by temperature-modulated DSC. Thermodynamic data on adenine and cytosine available in the literature were collected, evaluated, and combined with our experimental results. Thus, the evaluated collection of data together with the new experimental results reported here has helped to resolve contradictions in the available enthalpies of formation. A set of reliable thermochemical data is recommended for adenine and cytosine for further thermochemical calculations. Quantum-chemical calculations of the gas phase molar enthalpies of formation of adenine and cytosine have been performed by using the G4 method and results were in excellent agreement with the recommended experimental data. The standard molar entropies of formation and the standard molar Gibbs functions of formation in crystal and gas state have been calculated. Experimental vapor-pressure data measured in this work were used to estimate pure-component PC-SAFT parameters. This allowed modeling solubility of adenine and cytosine in water over the temperature interval 278-310 K.

  5. Hydration of fly ash cement

    Energy Technology Data Exchange (ETDEWEB)

    Etsuo Sakai; Shigeyoshi Miyahara; Shigenari Ohsawa; Seung-Heun Lee; Masaki Daimon [Tokyo Institute of Technology, Tokyo (Japan). Department of Metallurgy and Ceramics Science, Graduate School of Science and Engineering

    2005-06-01

    It is necessary to establish the material design system for the utilization of large amounts of fly ash as blended cement instead of disposing of it as a waste. Cement blended with fly ash is also required as a countermeasure to reduce the amount of CO{sub 2} generation. In this study, the influences of the glass content and the basicity of glass phase on the hydration of fly ash cement were clarified and hydration over a long curing time was characterized. Two kinds of fly ash with different glass content, one with 38.2% and another with 76.6%, were used. The hydration ratio of fly ash was increased by increasing the glass content in fly ash in the specimens cured for 270 days. When the glass content of fly ash is low, the basicity of glass phase tends to decrease. Reactivity of fly ash is controlled by the basicity of the glass phase in fly ash during a period from 28 to 270 days. However, at an age of 360 days, the reaction ratios of fly ash show almost identical values with different glass contents. Fly ash also affected the hydration of cement clinker minerals in fly ash cement. While the hydration of alite was accelerated, that of belite was retarded at a late stage.

  6. Comparison of stromal hydration techniques for clear corneal cataract incisions: conventional hydration versus anterior stromal pocket hydration.

    Science.gov (United States)

    Mifflin, Mark D; Kinard, Krista; Neuffer, Marcus C

    2012-06-01

    Anterior stromal pocket hydration was compared with conventional hydration for preventing wound leak after 2.8 mm uniplanar clear corneal incisions (CCIs) in patients having routine cataract surgery. Conventional hydration involves hydration of the lateral walls of the main incision with visible whitening of the stroma. The anterior stromal pocket hydration technique involves creation of an additional supraincisional stromal pocket overlying the main incision, which is then hydrated instead of the main incision. Sixty-six eyes of 48 patients were included in the data analysis with 33 assigned to each study group. The anterior stromal pocket hydration technique was significantly better than conventional hydration in preventing wound leak due to direct pressure on the posterior lip of the incision. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. Gas hydrates forming and decomposition conditions analysis

    Directory of Open Access Journals (Sweden)

    А. М. Павленко

    2017-07-01

    Full Text Available The concept of gas hydrates has been defined; their brief description has been given; factors that affect the formation and decomposition of the hydrates have been reported; their distribution, structure and thermodynamic conditions determining the gas hydrates formation disposition in gas pipelines have been considered. Advantages and disadvantages of the known methods for removing gas hydrate plugs in the pipeline have been analyzed, the necessity of their further studies has been proved. In addition to the negative impact on the process of gas extraction, the hydrates properties make it possible to outline the following possible fields of their industrial use: obtaining ultrahigh pressures in confined spaces at the hydrate decomposition; separating hydrocarbon mixtures by successive transfer of individual components through the hydrate given the mode; obtaining cold due to heat absorption at the hydrate decomposition; elimination of the open gas fountain by means of hydrate plugs in the bore hole of the gushing gasser; seawater desalination, based on the hydrate ability to only bind water molecules into the solid state; wastewater purification; gas storage in the hydrate state; dispersion of high temperature fog and clouds by means of hydrates; water-hydrates emulsion injection into the productive strata to raise the oil recovery factor; obtaining cold in the gas processing to cool the gas, etc.

  8. Sequence-dependent folding landscapes of adenine riboswitch aptamers

    Science.gov (United States)

    Lin, Jong-Chin; Hyeon, Changbong; Thirumalai, D.

    Prediction of the functions of riboswitches requires a quantitative description of the folding landscape so that the barriers and time scales for the conformational change in the switching region in the aptamer can be estimated. Using a combination of all atom molecular dynamics and coarse-grained model simulations we studied the response of adenine (A) binding add and pbuE A-riboswitches to mechanical force. The two riboswitches contain a structurally similar three-way junction formed by three paired helices, P1, P2, and P3, but carry out different functions. Using pulling simulations, with structures generated in MD simulations, we show that after P1 rips the dominant unfolding pathway in add A-riboswitch is the rupture of P2 followed by unraveling of P3. In the pbuE A-riboswitch, after P1 unfolds P3 ruptures ahead of P2. The order of unfolding of the helices, which is in accord with single molecule pulling experiments, is determined by the relative stabilities of the individual helices. Our results show that the stability of isolated helices determines the order of assembly and response to force in these non-coding regions. We use the simulated free energy profile for pbuE A-riboswitch to estimate the time scale for allosteric switching, which shows that this riboswitch is under kinetic control lending additional support to the conclusion based on single molecule pulling experiments. A consequence of the stability hypothesis is that a single point mutation (U28C) in the P2 helix of the add A-riboswitch, which increases the stability of P2, would make the folding landscapes of the two riboswitches similar. This prediction can be tested in single molecule pulling experiments.

  9. Hydration of highly charged ions.

    Science.gov (United States)

    Hofer, Thomas S; Weiss, Alexander K H; Randolf, Bernhard R; Rode, Bernd M

    2011-08-01

    Based on a series of ab initio quantum mechanical charge field molecular dynamics (QMCF MD) simulations, the broad spectrum of structural and dynamical properties of hydrates of trivalent and tetravalent ions is presented, ranging from extreme inertness to immediate hydrolysis. Main group and transition metal ions representative for different parts of the periodic system are treated, as are 2 threefold negatively charged anions. The results show that simple predictions of the properties of the hydrates appear impossible and that an accurate quantum mechanical simulation in cooperation with sophisticated experimental investigations seems the only way to obtain conclusive results.

  10. Great Market Potential of Hydrazine Hydrate

    Institute of Scientific and Technical Information of China (English)

    Shi Yuying

    2007-01-01

    @@ Stable consumption growth worldwide Hydrazine hydrate is an organic chemical raw material with extensive applications. The world's capacity to produce hydrazine hydrate has reached more than 200 thousand t/atoday (based on 100% hydrazine content).

  11. Methods to determine hydration states of minerals and cement hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Thorell, Alva; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2014-11-15

    This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate are presented. Some of the methods used were validated with the system Na{sub 2}SO{sub 4}–H{sub 2}O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions.

  12. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina

    2017-05-13

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10 was conducted for tricalcium silicate (C3S) to interpret long-term hydration process and investigate the formation, structure and properties of C-S-H. Based on results from XRD, IR, SEM, NMR and so forth, loose and dense clusters of C-S-H with analogous C/S ratio were obtained along with the corresponding chemical formulae proposed as Ca5Si4O13∙6.2H2O. Crystalline structure inside C-S-H was observed by TEM, which was allocated at the foil-like proportion as well as the edge of wrinkles of the product. The long-term hydration process of C3S in dilute suspension could be sketchily described as migration of calcium hydroxide and in-situ growth of C-S-H with equilibrium silicon in aqueous solution relatively constant and calcium varied.

  13. Molecular Dynamics Modeling of Hydrated Calcium-Silicate-Hydrate (CSH) Cement Molecular Structure

    Science.gov (United States)

    2014-08-30

    properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown...public release; distribution is unlimited. Molecular Dynamics Modeling of Hydrated Calcium-Silicate- Hydrate (CSH) Cement Molecular Structure The views... Cement Molecular Structure Report Title Multi-scale modeling of complex material systems requires starting from fundamental building blocks to

  14. Nicotinamide polymeric nanoemulsified systems: a quality-by-design case study for a sustained antimicrobial activity

    Science.gov (United States)

    Zidan, Ahmed S; Ahmed, Osama AA; Aljaeid, Bader M

    2016-01-01

    Nicotinamide, the amide form of vitamin B3, was demonstrated to combat some of the antibiotic-resistant infections that are increasingly common around the world. The objective of this study was to thoroughly understand the formulation and process variabilities affecting the preparation of nicotinamide-loaded polymeric nanoemulsified particles. The quality target product profile and critical quality attributes of the proposed product were presented. Plackett–Burman screening design was employed to screen eight variables for their influences on the formulation’s critical characteristics. The formulations were prepared by an oil-in-water emulsification followed by solvent replacement. The prepared systems were characterized by entrapment capacity (EC), entrapment efficiency (EE), particle size, polydispersity index, zeta potential, transmission electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction, in vitro drug release, and their antibacterial activity against bacterial scrums. EC, EE, particle size, polydispersity index, zeta potential, and percentage release in 24 hours were found to be in the range of 33.5%–68.8%, 53.1%–67.1%, 43.3–243.3 nm, 0.08–0.28, 9.5–53.3 mV, and 5.8%–22.4%, respectively. One-way analysis of variance and Pareto charts revealed that the experimental loadings of 2-hydroxypropyl-β-cyclodextrin and Eudragit® S100 were the most significant for their effects on nicotinamide EC and EE. Moreover, the polymeric nanoemulsified particles demonstrated a sustained release profile for nicotinamide. The Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction demonstrated a significant interaction between the drug and 2-hydroxypropyl-β-cyclodextrin that might modulate the sustained release behavior. Furthermore, the formulations provided a sustained antibacterial activity that depended on nicotinamide-loading concentration

  15. Hydration and Thermal Expansion in Anatase Nanoparticles.

    Science.gov (United States)

    Zhu, He; Li, Qiang; Ren, Yang; Fan, Longlong; Chen, Jun; Deng, Jinxia; Xing, Xianran

    2016-08-01

    A tunable thermal expansion is reported in nanosized anatase by taking advantage of surface hydration. The coefficient of thermal expansion of 4 nm TiO2 along a-axis is negative with a hydrated surface and is positive without a hydrated surface. High-energy synchrotron X-ray pair distribution function analysis combined with ab initio calculations on the specific hydrated surface are carried out to reveal the local structure distortion that is responsible for the unusual negative thermal expansion.

  16. Hydration and Thermal Expansion in Anatase Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, He [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Li, Qiang [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Ren, Yang [Argonne National Laboratory, X-Ray Science Division, Argonne IL 60439 USA; Fan, Longlong [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Chen, Jun [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Deng, Jinxia [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Xing, Xianran [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China

    2016-06-06

    A tunable thermal expansion is reported in nanosized anatase by taking advantage of surface hydration. The coefficient of thermal expansion of 4 nm TiO2 along a-axis is negative with a hydrated surface and is positive without a hydrated surface. High-energy synchrotron X-ray pair distribution function analysis combined with ab initio calculations on the specific hydrated surface are carried out to reveal the local structure distortion that is responsible for the unusual negative thermal expansion.

  17. Scientific Opinion on the safety and efficacy of niacin (nicotinamide) as a feed additive for all animal species based on a dossier submitted by EUROPE-ASIA Import Export GmbH

    OpenAIRE

    EFSA Panel on Additives and Products or Substances used in Animal Feed

    2012-01-01

    The term ‘niacin’ is used as a generic description of nicotinic acid and nicotinamide with pyridine as the basic structure. Nicotinic acid and nicotinamide function mainly as precursors of the co-enzymes NAD and NADP. Thus, nicotinamide has physiologically critical roles in mitochondrial respiration and in the metabolism of carbohydrates, lipids, and amino acids. Oral administration routes of nicotinamide via feed or water for drinking are considered bioequivalent. Nicotinamide is sa...

  18. Scientific Opinion on the safety and efficacy of niacin (nicotinamide) as a feed additive for all animal species based on a dossier submitted by EUROPE-ASIA Import Export GmbH

    OpenAIRE

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP)

    2012-01-01

    The term ‘niacin’ is used as a generic description of nicotinic acid and nicotinamide with pyridine as the basic structure. Nicotinic acid and nicotinamide function mainly as precursors of the co-enzymes NAD and NADP. Thus, nicotinamide has physiologically critical roles in mitochondrial respiration and in the metabolism of carbohydrates, lipids, and amino acids. Oral administration routes of nicotinamide via feed or water for drinking are considered bioequivalent. Nicotinamide is sa...

  19. NICOTINAMIDE IN COMPLEX TREATMENT OF LARGE-PLAQUE PARAPSORIASIS AND EARLY STAGES OF MALIGNANT T-CELL SKIN LYMPHOMAS

    Directory of Open Access Journals (Sweden)

    I. V. Khamaganova

    2014-01-01

    Full Text Available Aim: To assess clinical efficacy of nicotinamide in 2 the treatment of patients with early stages of malignant T-cell skin lymphomas and large-plaque parapsoriasis. Materials and methods: 12 patients with erythematous stage of mycosis fungoides and 14 patients with large-plaque parapsoriasis were treated by nicotinamide 15 mg twice daily during 2 weeks. Treatment cycles were repeated 4–5 times per year; topical therapy was also administrated. Results: Nicotinamide demonstrated high therapeutic effect and good tolerability in patients with early stage of mycosis fungoides and large-plaque parapsoriasis. Stable remission was achieved in 1  woman with malignant T-cell lymphoma and 12  patients with large-plaque parapsoriasis; significant clinical improvement was shown in 8 and 12 patients, respectively. Conclusion: Thus, nicotinamide is recommended for comprehensive treatment of large-plaque parapsoriasis and early stages of mycosis fungoides.

  20. Terahertz sensing of corneal hydration.

    Science.gov (United States)

    Singh, Rahul S; Tewari, Priyamvada; Bourges, Jean Louis; Hubschman, Jean Pierre; Bennett, David B; Taylor, Zachary D; Lee, H; Brown, Elliott R; Grundfest, Warren S; Culjat, Martin O

    2010-01-01

    An indicator of ocular health is the hydrodyanmics of the cornea. Many corneal disorders deteriorate sight as they upset the normal hydrodynamics of the cornea. The mechanisms include the loss of endothelial pump function of corneal dystophies, swelling and immune response of corneal graft rejection, and inflammation and edema, which accompany trauma, burn, and irritation events. Due to high sensitivity to changes of water content in materials, a reflective terahertz (300 GHz and 3 THz) imaging system could be an ideal tool to measure the hydration level of the cornea. This paper presents the application of THz technology to visualize the hydration content across ex vivo porcine corneas. The corneas, with a thickness variation from 470 - 940 µm, were successfully imaged using a reflective pulsed THz imaging system, with a maximum SNR of 50 dB. To our knowledge, no prior studies have reported on the use of THz in measuring hydration in corneal tissues or other ocular tissues. These preliminary findings indicate that THz can be used to accurately sense hydration levels in the cornea using a pulsed, reflective THz imaging system.

  1. Physical properties of gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Kliner, J.T.R.; Grozic, J.L.H. [Calgary Univ., AB (Canada)

    2003-07-01

    Gas hydrates are naturally occurring, solid crystalline compounds (clathrates) that encapsulate gas molecules inside the lattices of hydrogen bonded water molecules within a specific temperature-pressure stability zone. Estimates of the total quantity of available methane gas in natural occurring hydrates are based on twice the energy content of known conventional fossil fuels reservoirs. Accurate and reliable in-situ quantification techniques are essential in determining the economic viability of this potential energy yield, which is dependent upon several factors such as sensitivity of the temperature-pressure stability zone, sediment type, porosity, permeability, concentration/abundance of free gas, spatial distribution in pore spaces, specific cage occupancy, and the influence of inhibitors. Various techniques like acoustic P and S waves, time domain reflectometry, and electrical resistance have been used to analyze the quantity and spatial distribution of the gas hydrate samples. These techniques were reviewed and the results obtained in the course of gas hydrate research were presented. 34 refs., 8 figs.

  2. Hydration kinetics of transgenic soybeans

    Directory of Open Access Journals (Sweden)

    Aline Francielle Fracasso

    2015-01-01

    Full Text Available The kinetic and experimental analyses of the hydration process of transgenic soybeans (BRS 225 RR are provided. The importance of the hydration process consists of the grain texture modifications which favor grinding and extraction of soybeans. The soaking isotherms were obtained for four different temperatures. Results showed that temperature affected transgenic soybeans´ hydration rate and time. Moisture content d.b. of the soybeans increased from 0.12 ± 0.01 kg kg-1 to 1.45 ± 0.19 kg kg-1 during 270 min. of process. Two models were used to fit the kinetic curves: an empirical model developed by Peleg (1988 and a phenomenological one, proposed by Omoto et al. (2009. The two models adequately represented the hydration kinetics. Peleg model was applied to the experimental data and the corresponding parameters were obtained and correlated to temperature. The model by Omoto et al. (2009 showed a better statistical fitting. Although Ks was affected by temperature (Ks = 0.38079 exp (-2289.3 T-1, the equilibrium concentration remained practically unchanged.

  3. Nicotinamide inhibits Propionibacterium acnes-induced IL-8 production in keratinocytes through the NF-kappaB and MAPK pathways.

    Science.gov (United States)

    Grange, Philippe A; Raingeaud, Joël; Calvez, Vincent; Dupin, Nicolas

    2009-11-01

    Propionibacterium acnes (P. acnes) has been implicated in the inflammatory phase of acne vulgaris. It has been shown to activate interleukin-8 (IL-8) secretion by interacting with Toll-like receptor 2 (TLR-2) on the surface of keratinocytes. Nicotinamide has been shown to be an effective treatment for skin inflammation in various conditions, including acne vulgaris. To investigate the molecular mechanisms underlying the anti-inflammatory properties of nicotinamide in keratinocytes stimulated by P. acnes. HaCaT cells and primary keratinocyte cell lines were stimulated by P. acnes in the presence of nicotinamide. IL-8 production was monitored by ELISA on the cell culture supernatant and by qRT-PCR on total RNA extract. A luciferase reporter system assay was used to assess nicotinamide activity with the IL-8 promoter in transfected keratinocytes. We used western blotting to analyze the effect of nicotinamide on activation of the NF-kappaB and MAPK pathways. Nicotinamide significantly decreased IL-8 production in a dose-dependent manner, decreasing both mRNA and protein levels for this chemokine in immortalized HaCaT cells and primary keratinocytes. P. acnes-induced IL-8 promoter activation seemed to be downregulated by nicotinamide, which inhibited IkappaB degradation and the phosphorylation of ERK and JNK MAP kinases. Our results indicate that nicotinamide inhibits IL-8 production through the NF-kappaB and MAPK pathways in an in vitro keratinocytes/P. acnes model of inflammation. Keratinocytes involved in the innate immune response may be a suitable target for treatment during the early phase of inflammation.

  4. Nicotinamide riboside and nicotinic acid riboside salvage in fungi and mammals. Quantitative basis for Urh1 and purine nucleoside phosphorylase function in NAD+ metabolism.

    Science.gov (United States)

    Belenky, Peter; Christensen, Kathryn C; Gazzaniga, Francesca; Pletnev, Alexandre A; Brenner, Charles

    2009-01-02

    NAD+ is a co-enzyme for hydride transfer enzymes and an essential substrate of ADP-ribose transfer enzymes and sirtuins, the type III protein lysine deacetylases related to yeast Sir2. Supplementation of yeast cells with nicotinamide riboside extends replicative lifespan and increases Sir2-dependent gene silencing by virtue of increasing net NAD+ synthesis. Nicotinamide riboside elevates NAD+ levels via the nicotinamide riboside kinase pathway and by a pathway initiated by splitting the nucleoside into a nicotinamide base followed by nicotinamide salvage. Genetic evidence has established that uridine hydrolase, purine nucleoside phosphorylase, and methylthioadenosine phosphorylase are required for Nrk-independent utilization of nicotinamide riboside in yeast. Here we show that mammalian purine nucleoside phosphorylase but not methylthioadenosine phosphorylase is responsible for mammalian nicotinamide riboside kinase-independent nicotinamide riboside utilization. We demonstrate that so-called uridine hydrolase is 100-fold more active as a nicotinamide riboside hydrolase than as a uridine hydrolase and that uridine hydrolase and mammalian purine nucleoside phosphorylase cleave nicotinic acid riboside, whereas the yeast phosphorylase has little activity on nicotinic acid riboside. Finally, we show that yeast nicotinic acid riboside utilization largely depends on uridine hydrolase and nicotinamide riboside kinase and that nicotinic acid riboside bioavailability is increased by ester modification.

  5. Effects of Nicotinamide on Mouse Skin Tumor Development and lts Mode of Action

    Institute of Scientific and Technical Information of China (English)

    KRISHNA P. GUPTA

    1999-01-01

    Nicotinamide (NA), a naturally occuring vitamin and a protease inhibitor, has been shown to be effective in treating some skin ailments. It inhibits cell proliferation and induces cell differentiation. This report shows the effects of NA on mouse skin tumor development and on the critical events involved in this process. NA reduced tumor growth, inhibited the 12-O-tetradecanoylphorbol- 13-acetate (TPA) induced ornithine decarboxylase activity, but induced the transglutaminase activity which was inhibited by TPA under different experimental conditions.The effects of NA on ornithine decarboxylase (ODC) and transglutaminase (TG) indicated that nicotinamide (NA) probably programmmed the cells for their death in the natural course of time, I.e. Programed cell death. This observation indicates that NA might be a better agent for the detailed study and for the better use in prevention of cancer alone or in combination with other drugs.

  6. Pharmacokinetics and tolerance of nicotinamide combined with radiation therapy in patients with glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Cartei, F. [Cattedra di Radioterapia, Pisa Univ. (Italy); Danesi, R. [Scuola Superiore di Studi Universitari e di Perfezionamento S. Anna (Italy); Ducci, F. [Cattedra di Radioterapia, Pisa Univ. (Italy); Fatigante, L. [Cattedra di Radioterapia, Pisa Univ. (Italy); Caciagli, P.G. [Ist. di Neurochirurgia, Pisa Univ. (Italy); Del Tacca, M. [Ist. di Farmacologia, Pisa Univ. (Italy); Laddaga, M. [Cattedra di Radioterapia, Pisa Univ. (Italy)

    1994-12-31

    The pharmacokinetic properties of nicotinamide and its tolerance were studied in seven patients affected by glioblastoma multiforme and treated with two fractions per day of radiation therapy. Nicotinamide was given orally at two daily doses of 4 g and then 2 g separated by a 6-h-interval. The treatment was well tolerated in almost all patients and had no effect on blood pressure, cardiac rhythm or body temperature. Pharmacokinetic analysis showed peak plasma levels (C{sub max}) above 100 mg/l 45 minutes after the administration of both doses. This was followed by a biexponential decay of plasma concentrations with a thermal half life of 9.4 h. Tumours were irradiated 1 hour after each drug dose to match with drug C{sub max} in plasma, and although it is too early to evaluate the tumour response, the drug levels achieved should be sufficient to improve radiation therapy. (orig.).

  7. Synthesis, spectroscopic characterisation, biological and DNA cleavage properties of complexes of nicotinamide

    Directory of Open Access Journals (Sweden)

    C. Surendra Dilip

    2016-09-01

    Full Text Available Transition metal complexes of nicotinamide with metal precursors such as Cr(III, Mn(II, Fe(III, Co(II, Ni(II, Cu(II and Cd(II, were synthesized and characterised by physico-chemical and spectroscopic techniques. Based on analytical, spectral and magnetic moments, all the complexes are identified as distorted octahedral in structure. All the complexes are of the ML14L22 type. The shifts of the ν (CN (azomethine and ν (CO (amide stretches have been monitored in order to find out the donor sites of the ligands. Antibacterial and antifungal activities of the complexes were studied and the complexes were screened against bacteria and fungi. The activity data show that the metal complexes are more potent than the parent nicotinamide.

  8. Melanoma and nonmelanoma skin cancer chemoprevention: A role for nicotinamide?

    Science.gov (United States)

    Minocha, Rashi; Damian, Diona L; Halliday, Gary M

    2017-07-05

    Ultraviolet radiation (UVR) causes DNA damage in melanocytes by producing photolesions such as cyclobutane pyrimidine dimers and 8-oxo-7-hydrodeoxyguanosine. The production of reactive oxygen species by UVR also induces inflammatory cytokines that, together with the inherent immunosuppressive properties of UVR, propagate carcinogenesis. Nicotinamide (Vitamin B3 ) enhances DNA repair, modulates the inflammatory environment produced by UVR, and reduces UV-induced immunosuppression. As nicotinamide reduces the incidence of actinic keratoses and nonmelanoma skin cancers in high-risk individuals and enhances repair of DNA damage in melanocytes, it is a promising agent for the chemoprevention of melanoma in high-risk populations. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Physical activity, hydration and health

    Directory of Open Access Journals (Sweden)

    Ascensión Marcos

    2014-06-01

    Full Text Available Since the beginning of mankind, man has sought ways to promote and preserve health as well as to prevent disease. Hydration, physical activity and exercise are key factors for enhancing human health. However, either a little dose of them or an excess can be harmful for health maintenance at any age. Water is an essential nutrient for human body and a major key to survival has been to prevent dehydration. However, there is still a general controversy regarding the necessary amount to drink water or other beverages to properly get an adequate level of hydration. In addition, up to now the tools used to measure hydration are controversial. To this end, there are several important groups of variables to take into account such as water balance, hydration biomarkers and total body water. A combination of methods will be the most preferred tool to find out any risk or situation of dehydration at any age range. On the other hand, physical activity and exercise are being demonstrated to promote health, avoiding or reducing health problems, vascular and inflammatory diseases and helping weight management. Therefore, physical activity is also being used as a pill within a therapy to promote health and reduce risk diseases, but as in the case of drugs, dose, intensity, frequency, duration and precautions have to be evaluated and taken into account in order to get the maximum effectiveness and success of a treatment. On the other hand, sedentariness is the opposite concept to physical activity that has been recently recognized as an important factor of lifestyle involved in the obesogenic environment and consequently in the risk of the non-communicable diseases. In view of the literature consulted and taking into account the expertise of the authors, in this review a Decalogue of global recommendations is included to achieve an adequate hydration and physical activity status to avoid overweight/obesity consequences.

  10. Evaluation of nicotinamide as an anti-inflammatory and anti-angiogenic agent in uveal melanoma cell lines

    Directory of Open Access Journals (Sweden)

    Evangelina Esposito

    Full Text Available ABSTRACT Purpose: To investigate the effect of nicotinamide on the secretion of pro-an giogenic and pro-inflammatory cytokines in uveal melanoma cell lines. Methods: Two human uveal melanoma cell lines (92.1 and OCM-1 were treated with nicotinamide (10 mmol/L or control media for 48 hours in culture. The su perna tant from each culture was used in sandwich enzyme-linked immuno sorbent assay-based angiogenesis and inflammation arrays to evaluate the effects of exogenously administered nicotinamide on the secretion of a total of 20 pro-an gio genic and pro-inflammatory proteins. Results: Seven pro-angiogenic cytokines were detected under control conditions for both uveal melanoma cell lines. Treatment with nicotinamide resulted in a significant decrease in secretion of the following pro-angiogenic cytokines: angiogenin, angiopoietin-2, epidermal growth factor, and vascular epithelial growth factor-A in the 92.1 cells; basic fibroblast growth factor in the OCM-1 cells; and placenta growth factor in both cell lines. Among the pro-inflammatory proteins, monocyte chemotactic protein-1 and interleukin-8 were expressed in both untreated cell lines and both were significantly reduced when treated with nicotinamide. Conclusions: Results from this in vitro model suggest that nicotinamide may have anti-inflammatory and anti-angiogenic properties, which may open the possibility of using it as a chemopreventive agent for uveal melanoma; however, further studies including animal models are warranted.

  11. INTERACTIVE EFFECTS OF SALINITY STRESS AND NICOTINAMIDE ON PHYSIOLOGICAL AND BIOCHEMICAL PARAMETERS ON FABA BEAN PLANT

    Directory of Open Access Journals (Sweden)

    Magdi T. Abdelhamid

    2013-09-01

    Full Text Available A possible survival strategy of plants under saline conditions is to use some compounds that could alleviate salt stress effect. One of these compounds is nicotinamide. The effect of exogenously application of nicotinamide with different concentrations (0, 200 and 400 mg/l on Vicia faba L. plant against different NaCl treatments (0, 50 and 100 mM NaCl was investigated at the wire house of the National Research Centre, Cairo, Egypt. Salinity stress reduced significantly plant height, dry weight of shoot, photosynthetic pigments, polysaccharides, total carbohydrates, total-N contents of shoot, seed yield, total carbohydrates & total crude protein of the yielded seeds compared with those of the control plants. In contrast, salinity induced marked increases in sucrose, total soluble sugars, total free amino acids, proline, lipid peroxidation product (MDA and some oxidative enzymes (polyphenol oxidase and peroxidase enzymes. Also, salinity stress increased Na+ contents with the decreases of other macro and micro elements contents (P, K+, Mg+, Ca2+, Fe2+, Mn2+, Zn2+ and Cu2+ of shoots and the yielded seeds of faba bean. Foliar spraying of nicotinamide alleviated the adverse effects of salinity stress through increased plant height, dry weight of shoot, photosynthetic pigments, polysaccharides, total carbohydrates, total-N contents of shoot and seed yield as well as, sucrose, total soluble sugars, total free amino acids and proline, compared with those of the corresponding salinity levels, while decreased lipid peroxidation product as MDA and the oxidative enzymes (polyphenol oxidase and peroxidase enzymes. Nicotinamide inhibited the uptake of Na+ and accelerated the accumulation of P, K+ , Mg+, Ca2+, Fe2+, Mn2+, Zn2+ and Cu2+ contents in the shoots of salt stressed plants and enhanced total carbohydrate and total crude protein percentage and solutes concentrations in seeds of salinity treated plants. 

  12. Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy consuming redox circuit

    OpenAIRE

    2015-01-01

    Cellular proteins rely on reversible redox reactions to establish and maintain biological structure and function. How redox catabolic (NAD+:NADH) and anabolic (NADP+:NADPH) processes integrate during metabolism to maintain cellular redox homeostasis however is unknown. The present work identifies a continuously cycling, mitochondrial membrane potential-dependent redox circuit between the pyruvate dehydrogenase complex (PDHC) and nicotinamide nucleotide transhydrogenase (NNT). PDHC is shown to...

  13. beta-1,2,3-Triazolyl-nucleosides as nicotinamide riboside mimics.

    Science.gov (United States)

    Amigues, E J; Armstrong, E; Dvorakova, M; Migaud, M E; Huang, M

    2009-03-01

    The synthesis of a series of pyridine- and piperidine-substituted 1,2,3-triazolides linked to a riboside moiety is described. The presence of a triazolide substituent on the pyridine moiety permitted the facile reduction of the latter under mild hydrogenation conditions. These analogues were modelled as to define their similarity to nicotinamide riboside and quantify their ability to bind NAD-dependent protein deacetylases.

  14. Binding of adenine to Stx2, the protein toxin from Escherichia coli O157:H7

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Marie E., E-mail: frasm@ucalgary.ca [Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary AB T2N 1N4 (Canada); Cherney, Maia M. [Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton AB T6G 2H7 (Canada); Marcato, Paola [Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB T6G 2H7 (Canada); Mulvey, George L.; Armstrong, Glen D. [Department of Microbiology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary AB T2N 4N1 (Canada); James, Michael N. G. [Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton AB T6G 2H7 (Canada); Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary AB T2N 1N4 (Canada)

    2006-07-01

    Crystals of Stx2 were grown in the presence of adenosine and adenine. In both cases, the resulting electron density showed only adenine bound at the active site of the A subunit, proving that the holotoxin is an active N-glycosidase. Stx2 is a protein toxin whose catalytic subunit acts as an N-glycosidase to depurinate a specific adenine base from 28S rRNA. In the holotoxin, the catalytic portion, A1, is linked to the rest of the A subunit, A2, and A2 interacts with the pentameric ring formed by the five B subunits. In order to test whether the holotoxin is active as an N-glycosidase, Stx2 was crystallized in the presence of adenosine and adenine. The crystals diffracted to ∼1.8 Å and showed clear electron density for adenine in the active site. Adenosine had been cleaved, proving that Stx2 is an active N-glycosidase. While the holotoxin is active against small substrates, it would be expected that the B subunits would interfere with the binding of the 28S rRNA.

  15. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats

    Directory of Open Access Journals (Sweden)

    Xue-ying Chang

    2017-01-01

    Full Text Available Background. This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d, 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS/p38 mitogen activated protein kinase (p38MAPK pathway was determined to explore the potential mechanism. Results. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA and creatinine levels, malonaldehyde (MDA content, and superoxide dismutase (SOD activity in serum and the increases of calcium and alkaline phosphatase (ALP activity in the aorta (P<0.05 and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Conclusions. Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.

  16. Electrochemical studies on the oxidation of guanine and adenine at cyclodextrin modified electrodes.

    Science.gov (United States)

    Abbaspour, Abdolkarim; Noori, Abolhassan

    2008-12-01

    An electrochemical sensor for guanine and adenine using cyclodextrin-modified poly(N-acetylaniline) (PNAANI) on a carbon paste electrode has been developed. The oxidation mechanism of guanine and adenine on the surface of the electrode was investigated by cyclic voltammetry. It was found that the electrode processes are irreversible, pH dependent, and involve several reaction products. The electron transfer process occurs in consecutive steps with the formation of a strongly adsorbed intermediate on the electrode surface. Also, a new method for estimating the apparent formation constants of guanine and adenine with the immobilized cyclodextrins, through the change of surface coverage of studied analytes has been reported. Both guanine and adenine showed linear concentrations in the range of 0.1-10 microM by using differential pulse voltammetry, with an experimental limit of detection down to 0.05 microM. Linear concentration ranges of 2-150 microM for guanine and 6-104 microM for adenine have been found when cyclic voltammetry was used for determination of both analytes.

  17. The essential role of stacking adenines in a two-base-pair RNA kissing complex.

    Science.gov (United States)

    Stephenson, William; Asare-Okai, Papa Nii; Chen, Alan A; Keller, Sean; Santiago, Rachel; Tenenbaum, Scott A; Garcia, Angel E; Fabris, Daniele; Li, Pan T X

    2013-04-17

    In minimal RNA kissing complexes formed between hairpins with cognate GACG tetraloops, the two tertiary GC pairs are likely stabilized by the stacking of 5'-unpaired adenines at each end of the short helix. To test this hypothesis, we mutated the flanking adenines to various nucleosides and examined their effects on the kissing interaction. Electrospray ionization mass spectrometry was used to detect kissing dimers in a multiequilibria mixture, whereas optical tweezers were applied to monitor the (un)folding trajectories of single RNA molecules. The experimental findings were rationalized by molecular dynamics simulations. Together, the results showed that the stacked adenines are indispensable for the tertiary interaction. By shielding the tertiary base pairs from solvent and reducing their fraying, the stacked adenines made terminal pairs act more like interior base pairs. The purine double-ring of adenine was essential for effective stacking, whereas additional functional groups modulated the stabilizing effects through varying hydrophobic and electrostatic forces. Furthermore, formation of the kissing complex was dominated by base pairing, whereas its dissociation was significantly influenced by the flanking bases. Together, these findings indicate that unpaired flanking nucleotides play essential roles in the formation of otherwise unstable two-base-pair RNA tertiary interactions.

  18. Docetaxel-nicotinamide complex-loaded nanostructured lipid carriers for transdermal delivery.

    Science.gov (United States)

    Fan, Xiucong; Chen, Jinjin; Shen, Qi

    2013-12-31

    Docetaxel (DTX) proved one of the most effective active pharmaceutical ingredients (APIs) for the treatment of cancers. However, in respect of its low solubility and high lipophilic property, nicotinamide (NCT) was chosen as the co-former to form the docetaxel-nicotinamide complex to handle the drawbacks. As was analyzed by Fourier Transform Infrared spectrometer, thermal analysis and saturated solubility, the complex proved stable. Then, docetaxel-nicotinamide complex nanostructured lipid carriers (DN-NLCs) were prepared by emulsion-evaporation at low temperature method. The average drug entrapment efficiency, particle size and drug loading of docetaxel-NLCs (D-NLCs) and DN-NLCs were 81.41-79.48%, 61.45-59.48nm and 1.60-1.63%, respectively. The physicochemical characteristics of nanoparticles were valued by transmission electron microscope and Powder X Ray Diffraction. The in vitro drug-release profile of nanoparticle formulations fitted the Weibull dynamic equation. The skin permeability test was performed by Vertical Franz-type diffusion cells. It demonstrated that DN-NLCs transported drugs more easily than D-NLCs. Confocal Laser Scanning Microscopy observation showed DN-NLCs permeated more effectively than D-NLCs. In vivo study demonstrated that DN-NLCs maintained most in the skin. These results suggest that the DN-NLCs can be a useful method to increase skin permeation of docetaxel.

  19. Synthesis and crystal structure of catena-bis(nicotinamide)aqua({mu}-phthalato)copper(II) hemihydrate

    Energy Technology Data Exchange (ETDEWEB)

    Sadikov, G. G., E-mail: sadgg@igic.ras.ru [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation); Koksharova, T. V. [Odessa National University (Ukraine); Antsyshkina, A. S. [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation); Gritsenko, I. S. [Odessa National University (Ukraine); Sergienko, V. S. [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation)

    2008-07-15

    The copper(II) phthalate complex with nicotinamide [CuL{sub 2}({mu}-Pht)(H{sub 2}O)] . 0.5H{sub 2}O(I) (where L is nicotinamide and Pht{sup 2-} is an anion of phthalic acid) is synthesized and investigated using IR spectroscopy and X-ray diffraction. The crystals of compound I are monoclinic, a = 13.368(2) A, b = 7.891(3) A, c = 20.480(2) A, {beta} = 108.69(2){sup o}, Z = 4, and space group P2{sub 1}/c. The structural units of crystal I are linear chains formed by bridging phthalate anions and crystallization water molecules. The copper atom is coordinated by two pyridine nitrogen atoms of two nicotinamide ligands (Cu-N, 2.001 and 2.045 A), two oxygen atoms of different phthalate anions (Cu-O, 1.964 and 2.235 A), and the oxygen atom of the H{sub 2} O molecule (Cu-O, 2.014 A). The coordination polyhedron of the copper atom is completed to an elongated (4 + 1 + 1) tetragonal bipyramid by the second (chelating) oxygen atom of the carboxyl group (Cu-O, 2.587 A), which is one of the anions of phthalic acid. The linear polymer molecules are joined into complex macromolecular dimers with the closest internal contacts of the specific type. The macromolecular dimers are the main supramolecular ensembles of the crystal structure.

  20. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K.

    1995-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  1. Handbook of gas hydrate properties and occurrence

    Energy Technology Data Exchange (ETDEWEB)

    Kuustraa, V.A.; Hammershaimb, E.C.

    1983-12-01

    This handbook provides data on the resource potential of naturally occurring hydrates, the properties that are needed to evaluate their recovery, and their production potential. The first two chapters give data on the naturally occurring hydrate potential by reviewing published resource estimates and the known and inferred occurrences. The third and fourth chapters review the physical and thermodynamic properties of hydrates, respectively. The thermodynamic properties of hydrates that are discussed include dissociation energies and a simplified method to calculate them; phase diagrams for simple and multi-component gases; the thermal conductivity; and the kinetics of hydrate dissociation. The final chapter evaluates the net energy balance of recovering hydrates and shows that a substantial positive energy balance can theoretically be achieved. The Appendices of the Handbook summarize physical and thermodynamic properties of gases, liquids and solids that can be used in designing and evaluating recovery processes of hydrates. 158 references, 67 figures, 47 tables.

  2. Separation of water through gas hydrate formation

    DEFF Research Database (Denmark)

    Boch Andersen, Torben; Thomsen, Kaj

    2009-01-01

    Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goa...... volumes and the needs for high pressure. The process could be interesting for concentration of heat sensitive, high value products......Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goal...... of the project was to formulate an alternative separation concept, which can replace the traditional water evaporation process in the sugar production. Work with the separation concept showed that gas hydrates can be used for water separation. The process is not suitable for sugar production because of large...

  3. Well log characterization of natural gas hydrates

    Science.gov (United States)

    Collett, Timothy S.; Lee, Myung W.

    2011-01-01

    In the last 25 years we have seen significant advancements in the use of downhole well logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From an early start of using wireline electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells drilled in Arctic permafrost environments to today where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. The most established and well known use of downhole log data in gas hydrate research is the use of electrical resistivity and acoustic velocity data (both compressional- and shear-wave data) to make estimates of gas hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. New downhole logging tools designed to make directionally oriented acoustic and propagation resistivity log measurements have provided the data needed to analyze the acoustic and electrical anisotropic properties of both highly inter-bedded and fracture dominated gas hydrate reservoirs. Advancements in nuclear-magnetic-resonance (NMR) logging and wireline formation testing have also allowed for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids (i.e., free-water along with clay and capillary bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms controlling the formation and occurrence of gas hydrate in nature along with data on gas hydrate reservoir properties (i.e., permeabilities) needed to accurately predict gas production rates for various gas hydrate

  4. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn

    2009-11-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate-saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate-bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  5. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, D.D.; Martin, A.I.; Yun, T.S.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate-saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate-bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces. Copyright 2009 by the American Geophysical Union.

  6. The effect of hydrate saturation on water retention curves in hydrate-bearing sediments

    Science.gov (United States)

    Mahabadi, Nariman; Zheng, Xianglei; Jang, Jaewon

    2016-05-01

    The experimental measurement of water retention curve in hydrate-bearing sediments is critically important to understand the behavior of hydrate dissociation and gas production. In this study, tetrahydrofuran (THF) is selected as hydrate former. The pore habit of THF hydrates is investigated by visual observation in a transparent micromodel. It is confirmed that THF hydrates are not wetting phase on the quartz surface of the micromodel and occupy either an entire pore or part of pore space resulting in change in pore size distribution. And the measurement of water retention curves in THF hydrate-bearing sediments with hydrate saturation ranging from Sh = 0 to Sh = 0.7 is conducted for excess water condition. The experimental results show that the gas entry pressure and the capillary pressure increase with increasing hydrate saturation. Based on the experimental results, fitting parameters for van Genuchten equation are suggested for different hydrate saturation conditions.

  7. Excited-state lifetime of adenine near the first electronic band origin.

    Science.gov (United States)

    Kang, Hyuk; Chang, Jinyoung; Lee, Sang Hak; Ahn, Tae Kyu; Kim, Nam Joon; Kim, Seong Keun

    2010-10-21

    The excited-state lifetime of supersonically cooled adenine was measured in the gas phase by femtosecond pump-probe transient ionization as a function of excitation energy between 36 100 and 37 500cm(-1). The excited-state lifetime of adenine is ∼2ps around the 0-0 band of the (1)L(b) ππ(∗) state (36 105cm(-1)). The lifetime drops to ∼1ps when adenine is excited to the (1)L(a) ππ(∗) state with the pump energy at 36 800cm(-1) and above. The excited-state lifetimes of (1)L(a) and (1)L(b) ππ(∗) states are differentiated in accordance with previous frequency-resolved and computational studies.

  8. QSAR analysis for ADA upon interaction with a series of adenine derivatives as inhibitors.

    Science.gov (United States)

    Moosavi-Movahedi, A A; Safarian, S; Hakimelahi, G H; Ataei, G; Ajloo, D; Panjehpour, S; Riahi, S; Mousavi, M F; Mardanyan, S; Soltani, N; Khalafi-Nezhad, A; Sharghi, H; Moghadamnia, H; Saboury, A A

    2004-01-01

    The kinetic parameters of adenosine deaminase such as Km and Ki were determined in the absence and presence of adenine derivatives (R1-R24) in sodium phosphate buffer (50 mM; pH 7.5) solution at 27 degrees C. These kinetic parameters were used for QSAR analysis. As such, we found some theoretical descriptors to which the binding affinity of adenosine deaminase (ADA) towards several adenine nucleosides as inhibitors is correlated. QSAR analysis has revealed that binding affinity of the adenine nucleosides upon interaction with ADA depends on the molecular volume, dipole moment of the molecule, electric charge around the N1 atom, and the highest of positive charge for the related molecules.

  9. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans.

    Science.gov (United States)

    Bieganowski, Pawel; Brenner, Charles

    2004-05-14

    NAD+ is essential for life in all organisms, both as a coenzyme for oxidoreductases and as a source of ADPribosyl groups used in various reactions, including those that retard aging in experimental systems. Nicotinic acid and nicotinamide were defined as the vitamin precursors of NAD+ in Elvehjem's classic discoveries of the 1930s. The accepted view of eukaryotic NAD+ biosynthesis, that all anabolism flows through nicotinic acid mononucleotide, was challenged experimentally and revealed that nicotinamide riboside is an unanticipated NAD+ precursor in yeast. Nicotinamide riboside kinases from yeast and humans essential for this pathway were identified and found to be highly specific for phosphorylation of nicotinamide riboside and the cancer drug tiazofurin. Nicotinamide riboside was discovered as a nutrient in milk, suggesting that nicotinamide riboside is a useful compound for elevation of NAD+ levels in humans.

  10. Efficacy of the acyclic nucleoside phosphonates (S)-9-(3-fluoro-2-phosphonylmethoxypropyl)adenine (FPMPA) and 9-(2-phosphonylmethoxyethyl)adenine (PMEA) against feline immunodeficiency virus.

    Science.gov (United States)

    Hartmann, K; Kuffer, M; Balzarini, J; Naesens, L; Goldberg, M; Erfle, V; Goebel, F D; De Clercq, E; Jindrich, J; Holy, A; Bischofberger, N; Kraft, W

    1998-02-01

    The acyclic nucleoside phosphonates (S)-9-(3-fluoro-2-phosphonylmethoxypropyl)adenine (FPMPA) and 9-(2-phosphonylmethoxyethyl)adenine (PMEA) were evaluated for their efficacy and side effects in a double-blind placebo-controlled trial using naturally occurring feline immunodeficiency virus (FIV)-infected cats. This natural retrovirus animal model is considered highly relevant for the pathogenesis and chemotherapy of HIV in humans. Both PMEA and FPMPA proved effective in ameliorating the clinical symptoms of FIV-infected cats, as measured by several clinical parameters including the incidence and severity of stomatitis, Karnofsky's score, immunologic parameters such as relative and absolute CD4+ lymphocyte counts, and virologic parameters including proviral DNA levels in peripheral blood mononuclear cells (PBMC) of drug-treated animals. In contrast with PMEA, FPMPA showed no hematologic side effects at a dose that was 2.5-fold higher than PMEA.

  11. Nicotinamide Riboside and Nicotinic Acid Riboside Salvage in Fungi and Mammals: QUANTITATIVE BASIS FOR Urh1 AND PURINE NUCLEOSIDE PHOSPHORYLASE FUNCTION IN NAD+METABOLISM*S⃞

    OpenAIRE

    Belenky, Peter; Christensen, Kathryn C.; Gazzaniga, Francesca; Pletnev, Alexandre A.; Brenner, Charles

    2009-01-01

    NAD+ is a co-enzyme for hydride transfer enzymes and an essential substrate of ADP-ribose transfer enzymes and sirtuins, the type III protein lysine deacetylases related to yeast Sir2. Supplementation of yeast cells with nicotinamide riboside extends replicative lifespan and increases Sir2-dependent gene silencing by virtue of increasing net NAD+ synthesis. Nicotinamide riboside elevates NAD+ levels via the nicotinamide riboside kinase pathway and by a pathway initiate...

  12. Synthesis of hydrated lutetium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Song Liu [South China Univ. of Technology, Dept. of Applied Chemistry, Guangdong (China); Rong-jun Ma [Changsha Research Institute of Minig and Metallurgy, Hunan (China)

    1997-09-01

    Crystalline lutetium carbonate was synthesized for the corresponding chloride using ammonium bicarbonate as precipitant. The chemical analyses suggest that the synthesized lutetium carbonate is a hydrated basic carbonate or oxycarbonate. The X-ray powder diffraction data are presented. The IR data for the compound show the presence of two different carbonate groups. There is no stable intermediate carbonate in the process of thermal decomposition of the lutetium carbonate. (au) 15 refs.

  13. Crystallite size distributions of marine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Klapp, S.A.; Bohrmann, G.; Abegg, F. [Bremen Univ., Bremen (Germany). Research Center of Ocean Margins; Hemes, S.; Klein, H.; Kuhs, W.F. [Gottingen Univ., Gottingen (Germany). Dept. of Crystallography

    2008-07-01

    Experimental studies were conducted to determine the crystallite size distributions of natural gas hydrate samples retrieved from the Gulf of Mexico, the Black Sea, and a hydrate ridge located near offshore Oregon. Synchrotron radiation technology was used to provide the high photon fluxes and high penetration depths needed to accurately analyze the bulk sediment samples. A new beam collimation diffraction technique was used to measure gas hydrate crystallite sizes. The analyses showed that gas hydrate crystals were globular in shape. Mean crystallite sizes ranged from 200 to 400 {mu}m for hydrate samples taken from the sea floor. Larger grain sizes in the hydrate ridge samples suggested differences in hydrate formation ages or processes. A comparison with laboratory-produced methane hydrate samples showed half a lognormal curve with a mean value of 40{mu}m. Results of the study showed that a cautious approach must be adopted when transposing crystallite-size sensitive physical data from laboratory-made gas hydrates to natural settings. It was concluded that crystallite size information may also be used to resolve the formation ages of gas hydrates when formation processes and conditions are constrained. 48 refs., 1 tab., 9 figs.

  14. IMPORTANCE OF HYDRATION IN SPORTS

    Directory of Open Access Journals (Sweden)

    Goran Vasić

    2008-08-01

    Full Text Available Importance of hydration is detrmined by importance of functions of water in the human organism: i.e. regulation of body temperature, transport, excretion of waste materials through urine, digestion of food which is facilititated by saliva and gastric juices, maintenance of flexibility of organs and tissues About 60 % body mass of an adult person (males: 61 %, females: 54 % is made up of water. Water content of a newly born baby reaches 77 %, and it is up to 50 % in adults. It is very important for sportsmen to provide adequate hydration during and after the time of bodily activities. A symptom of water shortage is thirst. However, thirst is a late response of an organism and it occurs when dehydration has already taken place. Minimum in take of fluids in humans should range between one-and-half to two liters. It has been known for a long time that there is no success in sport without proper hydration in a sportsman.

  15. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure

    DEFF Research Database (Denmark)

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth

    2014-01-01

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without ad...

  16. Synthesis of 9-[1-(1 -hydroxyethyl)-3-(phosphonomethoxy)propyl]adenine and prodrug as possible antiviral agents.

    Science.gov (United States)

    Ghosh, Ajit; El-Kattan, Yahya; Wu, Minwan; Lin, Tsu-Hsing; Vadlakonda, Satish; Kotian, Pravin L; Babu, Yarlagadda S; Chand, Pooran

    2005-01-01

    The appropriately protected C-1'-hydroxyethyl-3-hydroxypropyl-N9-adenine nucleoside was prepared from 1-pivaloyloxy-5-tert-butyldiphenylsilyloxy-3-pentanol and adenine through the Mitsunobu reaction. One of the terminal hydroxyls was converted to the phosphonomethoxy derivative and the prodrug.

  17. Study of Formation Mechanisms of Gas Hydrate

    Science.gov (United States)

    Yang, Jia-Sheng; Wu, Cheng-Yueh; Hsieh, Bieng-Zih

    2015-04-01

    Gas hydrates, which had been found in subsurface geological environments of deep-sea sediments and permafrost regions, are solid crystalline compounds of gas molecules and water. The estimated energy resources of hydrates are at least twice of that of the conventional fossil fuel in the world. Gas hydrates have a great opportunity to become a dominating future energy. In the past years, many laboratory experiments had been conducted to study chemical and thermodynamic characteristics of gas hydrates in order to investigate the formation and dissociation mechanisms of hydrates. However, it is difficult to observe the formation and dissociation of hydrates in a porous media from a physical experiment directly. The purpose of this study was to model the dynamic formation mechanisms of gas hydrate in porous media by reservoir simulation. Two models were designed for this study: 1) a closed-system static model with separated gas and water zones; this model was a hydrate equilibrium model to investigate the behavior of the formation of hydrates near the initial gas-water contact; and 2) an open-system dynamic model with a continuous bottom-up gas flow; this model simulated the behavior of gas migration and studied the formation of hydrates from flowed gas and static formation water in porous media. A phase behavior module was developed in this study for reservoir simulator to model the pressure-volume-temperature (PVT) behavior of hydrates. The thermodynamic equilibriums and chemical reactions were coupled with the phase behavior module to have functions modelling the formation and dissociation of hydrates from/to water and gas. The simulation models used in this study were validated from the code-comparison project proposed by the NETL. According to the modelling results of the closed-system static model, we found that predominated location for the formation of hydrates was below the gas-water contact (or at the top of water zone). The maximum hydrate saturation

  18. SEISMIC STUDIES OF MARINE GAS HYDRATES

    Institute of Scientific and Technical Information of China (English)

    SONG Haibin

    2003-01-01

    We give a brief introduction of developments of seismic methods in the studies of marine gas hydrates. Then we give an example of seismic data processing for BSRs in western Nankai accretionary prism, a typical gas hydrate distribution region. Seismic data processing is proved to be important to obtain better images of BSRs distribution. Studies of velocity structure of hydrated sediments are useful for better understanding the distribution of gas hydrates. Using full waveform inversion, we successfully derived high-resolution velocity model of a double BSR in eastern Nankai Trough area. Recent survey and research show that gas hydrates occur in the marine sediments of the South China Sea and East China Sea.But we would like to say seismic researches on gas hydrate in China are very preliminary.

  19. Development of Alaskan gas hydrate resources

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  20. Terahertz Time Domain Spectroscopy for Structure-II Gas Hydrates

    DEFF Research Database (Denmark)

    Takeya, Kei; Zhang, Caihong; Kawayama, Iwao

    2009-01-01

    For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has a charact...

  1. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    1998-01-01

    This report deals with gas phase hydration of pure cement clinker minerals at reduced relative humidities. This is an important subject in relation to modern high performance concrete which may self-desiccate during hydration. In addition the subject has relevance to storage stability where...... prehydration may occur. In the report both theoretical considerations and experimental data are presented. It is suggested that the initiation of hydration during water vapour exposure is nucleation controlled....

  2. Structural Analysis of a Stereochemical Modification of Flavin Adenine Dinucleotide in Alcohol Oxidase from Methylotrophic Yeasts

    NARCIS (Netherlands)

    Kellogg, Richard M.; Kruizinga, Wim; Bystrykh, Leonid V.; Dijkhuizen, Lubbert; Harder, Wim

    1992-01-01

    Alcohol oxidase (MOX), a major peroxisomal protein of methanol-utilizing yeasts, contains two different forms of flavin adenine dinucleotide, one of which is identical with natural FAD whereas the other (mFAD) is a stereochemical modification of the natural coenzyme. This modification occurs spontan

  3. Modification of flavin adenine dinucleotide in alcohol oxidase of the yeast Hansenula polymorpha

    NARCIS (Netherlands)

    Bystrykh, Leonid V.; Dijkhuizen, Lubbert; Harder, Willem

    1991-01-01

    Alcohol oxidase, a major peroxisomal protein of methanol-utilizing yeasts, may possess two different forms of flavin adenine dinucleotide, classical FAD and so-called modified FAD (mFAD). Conversion of FAD into mFAD was observed both in purified preparations of the enzyme and in cells grown in batch

  4. The effect of activated charcoal on adenine-induced chronic renal failure in rats.

    Science.gov (United States)

    Ali, Badreldin H; Alza'abi, Mohamed; Ramkumar, Aishwarya; Al-Lawati, Intisar; Waly, Mostafa I; Beegam, Sumaya; Nemmar, Abderrahim; Brand, Susanne; Schupp, Nicole

    2014-03-01

    Activated charcoal (AC) is a sorbent that has been shown to remove urinary toxins like urea and indoxyl sulfate. Here, the influence of AC on kidney function of rats with experimental chronic renal failure (CRF) is investigated. CRF was induced in rats by feeding adenine (0.75%) for four weeks. As an intervention, AC was added to the feed at concentrations of 10%, 15% or 20%. Adenine treatment impaired kidney function: it lowered creatinine clearance and increased plasma concentrations of creatinine, urea, neutrophil gelatinase-associated lipocalin and vanin-1. Furthermore, it raised plasma concentrations of the uremic toxins indoxyl sulfate, phosphate and uric acid. Renal morphology was severely damaged and histopathological markers of inflammation and fibrosis were especially increased. In renal homogenates, antioxidant indices, including superoxide dismutase and catalase activity, total antioxidant capacity and reduced glutathione were adversely affected. Most of these changes were significantly ameliorated by dietary administration of AC at a concentration of 20%, while effects induced by lower doses of dietary AC on adenine nephrotoxicity were not statistically significant. The results suggest that charcoal is a useful sorbent agent in dietary adenine-induced CRF in rats and that its usability as a nephroprotective agent in human kidney disease should be studied.

  5. Effect of atracylodes rhizome polysaccharide in rats with adenine-induced chronic renal failure.

    Science.gov (United States)

    Yang, C; Liu, C; Zhou, Q; Xie, Y C; Qiu, X M; Feng, X

    2015-01-01

    The aim of the study was to elucidate the therapeutic effects of Atracylodes rhizome polysaccharide on adenine-induced chronic renal failure in rats. Fifty male Sprague Dawley rats were selected and randomly divided in to 5 groups (n=10 rats per group): The normal control group, the chronic renal failure pathological control group, the dexamethasone treatment group and two Atracylodes rhizome polysaccharide treatment groups, treated with two different concentrations of the polysaccharide, the Atracylodes rhizome polysaccharide high group and the Atracylodes rhizome polysaccharide low group. All the rats, except those in the normal control group were fed adenine-enriched diets, containing 10 g adenine per kg food for 3 weeks. After being fed with adenine, the dexamethasone treatment group, Atracylodes rhizome polysaccharide high group and Atracylodes rhizome polysaccharide low group rats were administered the drug orally for 2 weeks. On day 35, the kidney coefficient of the rats and the serum levels of creatinine, blood urea nitrogen, total protein and hemalbumin were determined. Subsequent to experimentation on a model of chronic renal failure in rats, the preparation was proven to be able to reduce serum levels of creatinine, blood urea nitrogen and hemalbumin levels (Prenal function. Atracylodes rhizome polysaccharide had reversed the majority of the indices of chronic renal failure in rats.

  6. Kinetic analysis of Yersinia pestis DNA adenine methyltransferase activity using a hemimethylated molecular break light oligonucleotide.

    Directory of Open Access Journals (Sweden)

    Robert J Wood

    Full Text Available BACKGROUND: DNA adenine methylation plays an important role in several critical bacterial processes including mismatch repair, the timing of DNA replication and the transcriptional control of gene expression. The dependence of bacterial virulence on DNA adenine methyltransferase (Dam has led to the proposal that selective Dam inhibitors might function as broad spectrum antibiotics. METHODOLOGY/PRINCIPAL FINDINGS: Herein we report the expression and purification of Yersinia pestis Dam and the development of a continuous fluorescence based assay for DNA adenine methyltransferase activity that is suitable for determining the kinetic parameters of the enzyme and for high throughput screening against potential Dam inhibitors. The assay utilised a hemimethylated break light oligonucleotide substrate containing a GATC methylation site. When this substrate was fully methylated by Dam, it became a substrate for the restriction enzyme DpnI, resulting in separation of fluorophore (fluorescein and quencher (dabcyl and therefore an increase in fluorescence. The assays were monitored in real time using a fluorescence microplate reader in 96 well format and were used for the kinetic characterisation of Yersinia pestis Dam, its substrates and the known Dam inhibitor, S-adenosylhomocysteine. The assay has been validated for high throughput screening, giving a Z-factor of 0.71+/-0.07 indicating that it is a sensitive assay for the identification of inhibitors. CONCLUSIONS/SIGNIFICANCE: The assay is therefore suitable for high throughput screening for inhibitors of DNA adenine methyltransferases and the kinetic characterisation of the inhibition.

  7. Effect of AST-120 on Endothelial Dysfunction in Adenine-Induced Uremic Rats

    Directory of Open Access Journals (Sweden)

    Yuko Inami

    2014-01-01

    Full Text Available Aim. Chronic kidney disease (CKD represents endothelial dysfunction. Monocyte adhesion is recognized as the initial step of arteriosclerosis. Indoxyl sulfate (IS is considered to be a risk factor for arteriosclerosis in CKD. Oral adsorbent AST-120 retards deterioration of renal function, reducing accumulation of IS. In the present study, we determined the monocyte adhesion in the adenine-induced uremic rats in vivo and effects of AST-120 on the adhesion molecules. Methods. Twenty-four rats were divided into control, control+AST-120, adenine, and adenine+AST-120 groups. The number of monocytes adherent to the endothelium of thoracic aorta by imaging the entire endothelial surface and the mRNA expressions of adhesion and atherosclerosis-related molecules were examined on day 49. The mRNA expressions of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells were also examined. Results. Adenine increased the number of adherent monocytes, and AST-120 suppressed the increase. The monocyte adhesion was related to serum creatinine and IS in sera. Overexpression of VCAM-1 and TGF-β1 mRNA in the arterial walls was observed in uremic rats. IS induced increase of the ICAM-1 and VCAM-1 mRNA expressions in vitro. Conclusion. It appears that uremic condition introduces the monocyte adhesion to arterial wall and AST-120 might inhibit increasing of the monocyte adherence with CKD progression.

  8. Dietary phosphate restriction ameliorates endothelial dysfunction in adenine-induced kidney disease rats

    Science.gov (United States)

    Van, Tan Vu; Watari, Eriko; Taketani, Yutaka; Kitamura, Tomoyo; Shiota, Asuka; Tanaka, Terumi; Tanimura, Ayako; Harada, Nagakatsu; Nakaya, Yutaka; Yamamoto, Hironori; Miyamoto, Ken-ichi; Takeda, Eiji

    2012-01-01

    Hyperphosphatemia causes endothelial dysfunction as well as vascular calcification. Management of serum phosphate level by dietary phosphate restriction or phosphate binders is considered to be beneficial to prevent chronic kidney disease patients from cardiovascular disease, but it has been unclear whether keeping lower serum phosphate level can ameliorate endothelial dysfunction. In this study we investigated whether low-phosphate diet can ameliorate endothelial dysfunction in adenine-induced kidney disease rats, one of useful animal model of chronic kidney disease. Administration of 0.75% adenine-containing diet for 21 days induced renal failure with hyperphosphatemia, and impaired acetylcholine-dependent vasodilation of thoracic aortic ring in rats. Then adenine-induced kidney disease rats were treated with either control diet (1% phosphate) or low-phosphate diet (0.2% phosphate) for 16 days. Low-phosphate diet ameliorated not only hyperphosphatemia but also the impaired vasodilation of aorta. In addition, the activatory phosphorylation of endothelial nitric oxide synthase at serine 1177 and Akt at serine 473 in the aorta were inhibited by in adenine-induced kidney disease rats. The inhibited phosphorylations were improved by the low-phosphate diet treatment. Thus, dietary phosphate restriction can improve aortic endothelial dysfunction in chronic kidney disease with hyperphosphatemia by increase in the activatory phosphorylations of endothelial nitric oxide synthase and Akt. PMID:22798709

  9. SERS, XPS, and DFT Study of Adenine Adsorption on Silver and Gold Surfaces.

    Science.gov (United States)

    Pagliai, Marco; Caporali, Stefano; Muniz-Miranda, Maurizio; Pratesi, Giovanni; Schettino, Vincenzo

    2012-01-19

    The adsorption of adenine on silver and gold surfaces has been investigated combining density functional theory calculations with surface-enhanced Raman scattering and angle-resolved X-ray photoelectron spectroscopy measurements, obtaining useful insight into the orientation and interaction of the nucleobase with the metal surfaces.

  10. Probing electronic coupling between adenine bases in RNA strands from synchrotron radiation circular dichroism experiments

    DEFF Research Database (Denmark)

    Nielsen, Lisbeth Munksgård; Hoffmann, Søren Vrønning; Nielsen, Steen Brøndsted

    2012-01-01

    Circular dichroism spectra (176–330 nm) of RNA adenine oligomers, (rA)n (n = 1–10, 12, 15, and 20), reveal electronic coupling between two bases in short strands. The number of interacting bases in long strands is more and larger than that reported previously for the corresponding DNA strands....

  11. The effect of solvation on the radiation damage rate constants for adenine

    DEFF Research Database (Denmark)

    Milhøj, Birgitte Olai; Sauer, Stephan P. A.

    2016-01-01

    in calculations of Gibbs free energies and reaction rates for the reaction between the OH radical and the DNA nucleobase adenine using Density Functional Theory at the ωB97X-D/6-311++G(2df,2pd) level with the Eckart tunneling correction. The solvent, water, has been included through either the implicit...

  12. Structural Analysis of a Stereochemical Modification of Flavin Adenine Dinucleotide in Alcohol Oxidase from Methylotrophic Yeasts

    NARCIS (Netherlands)

    Kellogg, Richard M.; Kruizinga, Wim; Bystrykh, Leonid V.; Dijkhuizen, Lubbert; Harder, Wim

    1992-01-01

    Alcohol oxidase (MOX), a major peroxisomal protein of methanol-utilizing yeasts, contains two different forms of flavin adenine dinucleotide, one of which is identical with natural FAD whereas the other (mFAD) is a stereochemical modification of the natural coenzyme. This modification occurs spontan

  13. Prediction of Refrigerant Gas Hydrates Formation Conditions

    Institute of Scientific and Technical Information of China (English)

    Deqing Liang; Ruzhu Wang; Kaihua Guo; Shuanshi Fan

    2001-01-01

    A fugacity model was developed for prediction of mixed refrigerant gas hydrates formation conditions based on the molecule congregation and solution theories. In this model, g as hydrates were regarded as non-ideal solid solution composed of water groups and guest molecules, and the expressions of fugacity of guest molecules in hydrate phase was proposed accordingly. It has been shown that the developed model can indicate successfully the effect of guest-guest molecule interaction. The results showed that the model can describe better the characteristics of phase equilibrium of mixed refrigerant gas hydrates and predictions are in good agreement with experimental data.

  14. Desalination utilizing clathrate hydrates (LDRD final report).

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Blake Alexander; Bradshaw, Robert W.; Dedrick, Daniel E.; Cygan, Randall Timothy (Sandia National Laboratories, Albuquerque, NM); Greathouse, Jeffery A. (Sandia National Laboratories, Albuquerque, NM); Majzoub, Eric H. (University of Missouri, Columbia, MO)

    2008-01-01

    Advances are reported in several aspects of clathrate hydrate desalination fundamentals necessary to develop an economical means to produce municipal quantities of potable water from seawater or brackish feedstock. These aspects include the following, (1) advances in defining the most promising systems design based on new types of hydrate guest molecules, (2) selection of optimal multi-phase reactors and separation arrangements, and, (3) applicability of an inert heat exchange fluid to moderate hydrate growth, control the morphology of the solid hydrate material formed, and facilitate separation of hydrate solids from concentrated brine. The rate of R141b hydrate formation was determined and found to depend only on the degree of supercooling. The rate of R141b hydrate formation in the presence of a heat exchange fluid depended on the degree of supercooling according to the same rate equation as pure R141b with secondary dependence on salinity. Experiments demonstrated that a perfluorocarbon heat exchange fluid assisted separation of R141b hydrates from brine. Preliminary experiments using the guest species, difluoromethane, showed that hydrate formation rates were substantial at temperatures up to at least 12 C and demonstrated partial separation of water from brine. We present a detailed molecular picture of the structure and dynamics of R141b guest molecules within water cages, obtained from ab initio calculations, molecular dynamics simulations, and Raman spectroscopy. Density functional theory calculations were used to provide an energetic and molecular orbital description of R141b stability in both large and small cages in a structure II hydrate. Additionally, the hydrate of an isomer, 1,2-dichloro-1-fluoroethane, does not form at ambient conditions because of extensive overlap of electron density between guest and host. Classical molecular dynamics simulations and laboratory trials support the results for the isomer hydrate. Molecular dynamics simulations

  15. Alteration in substrate specificity of horse liver alcohol dehydrogenase by an acyclic nicotinamide analog of NAD(+).

    Science.gov (United States)

    Malver, Olaf; Sebastian, Mina J; Oppenheimer, Norman J

    2014-11-01

    A new, acyclic NAD-analog, acycloNAD(+) has been synthesized where the nicotinamide ribosyl moiety has been replaced by the nicotinamide (2-hydroxyethoxy)methyl moiety. The chemical properties of this analog are comparable to those of β-NAD(+) with a redox potential of -324mV and a 341nm λmax for the reduced form. Both yeast alcohol dehydrogenase (YADH) and horse liver alcohol dehydrogenase (HLADH) catalyze the reduction of acycloNAD(+) by primary alcohols. With HLADH 1-butanol has the highest Vmax at 49% that of β-NAD(+). The primary deuterium kinetic isotope effect is greater than 3 indicating a significant contribution to the rate limiting step from cleavage of the carbon-hydrogen bond. The stereochemistry of the hydride transfer in the oxidation of stereospecifically deuterium labeled n-butanol is identical to that for the reaction with β-NAD(+). In contrast to the activity toward primary alcohols there is no detectable reduction of acycloNAD(+) by secondary alcohols with HLADH although these alcohols serve as competitive inhibitors. The net effect is that acycloNAD(+) has converted horse liver ADH from a broad spectrum alcohol dehydrogenase, capable of utilizing either primary or secondary alcohols, into an exclusively primary alcohol dehydrogenase. This is the first example of an NAD analog that alters the substrate specificity of a dehydrogenase and, like site-directed mutagenesis of proteins, establishes that modifications of the coenzyme distance from the active site can be used to alter enzyme function and substrate specificity. These and other results, including the activity with α-NADH, clearly demonstrate the promiscuity of the binding interactions between dehydrogenases and the riboside phosphate of the nicotinamide moiety, thus greatly expanding the possibilities for the design of analogs and inhibitors of specific dehydrogenases. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Study of Tripterygium Associated with Nicotinamide in Treating Late-onset Autoimmune Diabetes Mellitus in Adults

    Institute of Scientific and Technical Information of China (English)

    刘江华; 段世芳; 刘志文; 刘宗汉; 曹仁贤; 文芳; 文格波

    2004-01-01

    Objective: To explore the effect of Tripterygium polyglycoside (TP) associated with nicotinamide on the islet cell function, immune parameters and lipoperoxide (LPO) in adult patients with late-onset autoimmune diabetes mellitus (LADA) Methods: Thirty-six cases of LADA were randomly divided into three groups: TP group (n= 12), treated with TP plus orally taken metformin; combined treatment group (n =12), treated with TP combined with nicotinamide and metformin, and control group (n = 12) treated with metformin alone. They were followed-up for 18 months. Results: (1) Compared with the control group after 9months of treatment, postprandial plasma glucose and LPO in combined treatment group were decreased (P <0.05), and the postprandial C-peptide was higher (P<0.05). At the 18th month, the value of postprandial C-peptide in the TP and combined treatment group was higher than that in the control group. The slL-2R level of both TP and combined treatment groups were lowered (P<0.01); (2) Islet cell antibody (ICA) positive of 5 cases in the TP group and 6 cases in the combined treatment group got converted to the negative respectively, while only one in the control group at the time (P<0.05) ; (3) The level of LPO in the combined treatment group was significantly lower than that in the TP group at the 18th month of treatment (P<0.05).Conclusion: TP combined with nicotinamide played a role in immunity regulation, decreasing the titer of islet cell antibody and slL-2R, which also reduced the production of LPO and had a tendency to improve islet cell function in early LADA patients.

  17. Waters of Hydration of Cupric Hydrates: A Comparison between Heating and Absorbance Methods

    Science.gov (United States)

    Barlag, Rebecca; Nyasulu, Frazier

    2011-01-01

    The empirical formulas of four cupric hydrates are determined by measuring the absorbance in aqueous solution. The Beer-Lambert Law is verified by constructing a calibration curve of absorbance versus known Cu[superscript 2+](aq) concentration. A solution of the unknown hydrate is prepared by using 0.2-0.3 g of hydrate, and water is added such…

  18. Insulin resistance and progression to type 1 diabetes in the European Nicotinamide Diabetes Intervention Trial (ENDIT)

    DEFF Research Database (Denmark)

    Bingley, Polly J; Mahon, Jeffrey L; Gale, Edwin A M

    2008-01-01

    . RESEARCH DESIGN AND METHODS: The retrospective cohort analysis included 213 family members participating in the European Nicotinamide Diabetes Intervention Trial. All were aged 25 years, with at least one islet antibody in addition to ICA >or=20 Juvenile Diabetes Foundation units. Median length of follow......-up was 4.21 years, and 105 individuals developed diabetes. Oral and intravenous glucose tolerance tests were performed at baseline; antibodies to GAD, IA-2, and insulin were determined by radioimmunoassay; and insulin resistance was estimated by homeostasis model assessment. Risk was assessed by Cox...

  19. trans-Tetraaquabis(nicotinamide-κNcadmium(II biphenyl-4,4′-disulfonate

    Directory of Open Access Journals (Sweden)

    Changlun Shao

    2008-02-01

    Full Text Available In the title compound, [Cd(C6H6N2O2(H2O4](C10H8O6S2, the CdII ion is located on a crystallographic inversion centre. An octahedral coordination geometry is defined by four water molecules in one plane, and two trans N-atom donors of the nicotinamide ligands. The biphenyl-4,4′-disulfonate anion also lies on a crystallographic inversion centre. In the crystal structure, the complex cations are connected to the counter-anions via N—H...O and O—H...O hydrogen bonds, forming a three-dimensional network.

  20. SAR and characterization of non-substrate isoindoline urea inhibitors of nicotinamide phosphoribosyltransferase (NAMPT)

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, Michael L.; Heyman, H. Robin; Clark, Richard F.; Sorensen, Bryan K.; Doherty, George A.; Hansen, T. Matthew; Frey, Robin R.; Sarris, Kathy A.; Aguirre, Ana L.; Shrestha, Anurupa; Tu, Noah; Woller, Kevin; Pliushchev, Marina A.; Sweis, Ramzi F.; Cheng, Min; Wilsbacher, Julie L.; Kovar, Peter J.; Guo, Jun; Cheng, Dong; Longenecker, Kenton L.; Raich, Diana; Korepanova, Alla V.; Soni, Nirupama B.; Algire, Mikkel A.; Richardson, Paul L.; Marin, Violeta L.; Badagnani, Ilaria; Vasudevan, Anil; Buchanan, F.Greg; Maag, David; Chiang, Gary G.; Tse, Chris; Michaelides, Michael R. (AbbVie)

    2017-08-01

    Herein we disclose SAR studies that led to a series of isoindoline ureas which we recently reported were first-in-class, non-substrate nicotinamide phosphoribosyltransferase (NAMPT) inhibitors. Modification of the isoindoline and/or the terminal functionality of screening hit 5 provided inhibitors such as 52 and 58 with nanomolar antiproliferative activity and preclinical pharmacokinetics properties which enabled potent antitumor activity when dosed orally in mouse xenograft models. X-ray crystal structures of two inhibitors bound in the NAMPT active-site are discussed.

  1. Hydration in soccer: a review

    Directory of Open Access Journals (Sweden)

    Monteiro Cristiano Ralo

    2003-01-01

    Full Text Available Hydration should be considered before, during and after the exercise. This review intends to approach the main points of hydration process in soccer. The replacement of fluids during exercise is proportional to some factors, such as: exercise intensity; climatic conditions; the athlete's acclimatization; the athlete's physical conditioning; physiologic individual characteristics and the player's biomechanics. Performance is improved when players ingest not only water but also carbohydrate. The rates that carbohydrate and water are absorbed by the organism are limited by the rates of gastric emptying and intestinal absorption. The composition of drinks offered to the players should be influenced by the relative importance of the need of supplying carbohydrates or water; it should be remembered that the depletion of carbohydrate can result in fatigue and decrease of performance, but it is not usually a life-threatening condition. The addition of carbohydrate in these drinks increases the concentrations of blood glucose, increases the use of external fuel through the increase of the glucose oxidation in the muscles and it spares muscle glycogen. So, the ingestion of carbohydrate before and during the exercise can delay the emergence of fatigue and increase the players' performance. Several tactics can be used to avoid dehydration, like hyperhydration before exercise and player's acclimatization. The ideal situation to restore the player's fluid losses is between the sessions of exercises. Since soccer is a sport with quite peculiar characteristics related to hydration, the players should be concerned and educated about the importance of fluid ingestion before, during and after the exercise.

  2. Hydration behaviour of polyhydroxylated fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Zavala, J G [Departamento de Ciencias Exactas y Tecnologicas, Centro Universitario de Los Lagos, Universidad de Guadalajara, Enrique Diaz de Leon S/N, 47460 Jalisco (Mexico); Barajas-Barraza, R E [Departamento de Matematicas y Fisica, Instituto Tecnologico y de Estudios Superiores de Occidente, Periferico Sur, Manuel Gomez MorIn No 8585, 45604 Jalisco (Mexico); Padilla-Osuna, I; Guirado-Lopez, R A, E-mail: jgrz@culagos.udg.mx, E-mail: ebarajas@iteso.mx, E-mail: ismael@ifisica.uaslp.mx, E-mail: guirado@ifisica.uaslp.mx [Instituto de Fisica ' Manuel Sandoval Vallarta' , Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi (Mexico)

    2011-10-28

    We have performed semi-empirical as well as density functional theory calculations in order to analyse the hydration properties of both bare C{sub 60} and highly hydroxylated C{sub 60}(OH){sub 26} fullerenes. In all of our calculations, a total of 42 and 98 water molecules are always surrounding our here-considered carbon nanostructures. We found different wetting properties as a function of the chemical composition and structure of the OH-molecular over-layer covering the fullerene surface. In the case of bare C{sub 60}, water adsorption reveals that the H{sub 2}O species are not uniformly arranged around the carbon network but rather forms water droplets of different sizes, clearly revealing the hydrophobic nature of the C{sub 60} structure. In contrast, in the polyhydroxylated C{sub 60}(OH){sub 26} fullerenes, the degree of wetting is strongly influenced by the precise location of the hydroxyl groups. We found that different adsorbed configurations for the OH-molecular coating can lead to the formation of partially hydrated or completely covered C{sub 60}(OH){sub 26} compounds, a result that could be used to synthesize fullerene materials with different degrees of wettability. By comparing the relative stability of our hydroxylated structures in both bare and hydrated conditions we obtain that the energy ordering of the C{sub 60}(OH){sub 26} isomers can change in the presence of water. The radial distribution function of our hydrated fullerenes reveals that water near these kinds of surfaces is densely packed. In fact, by counting the number of H{sub 2}O molecules which are adsorbed, by means of hydrogen bonds, to the surface of our more stable C{sub 60}(OH){sub 26} isomer, we found that it varies in the range of 5-10, in good agreement with experiments. Finally, by comparing the calculated optical absorption spectra of various C{sub 60}(OH){sub 26} structures in the presence and absence of water molecules, we note that only slight variations in the position and

  3. Protein dynamics: hydration and cavities

    Directory of Open Access Journals (Sweden)

    K. Heremans

    2005-08-01

    Full Text Available The temperature-pressure behavior of proteins seems to be unique among the biological macromolecules. Thermodynamic as well as kinetic data show the typical elliptical stability diagram. This may be extended by assuming that the unfolded state gives rise to volume and enthalpy-driven liquid-liquid transitions. A molecular interpretation follows from the temperature and the pressure dependence of the hydration and cavities. We suggest that positron annihilation spectroscopy can provide additional quantitative evidence for the contributions of cavities to the dynamics of proteins. Only mature amyloid fibrils that form from unfolded proteins are very resistant to pressure treatment.

  4. Formation rate of natural gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Mork, Marit

    2002-07-01

    The rate of methane hydrate and natural gas hydrate formation was measured in a 9.5 litre stirred tank reactor of standard design. The experiments were performed to better understand the performance and scale-up of a reactor for continuous production of natural gas hydrates. The hydrate formation rate was measured at steady-state conditions at pressures between 70 and 90 bar and temperatures between 7 and 15 deg C. Between 44 and 56 % of the gas continuously supplied to the reactor was converted to hydrate. The experimental results show that the rate of hydrate formation is strongly influenced by gas injection rate and pressure. The effect of stirring rate is less significant and subcooling has no observable effect on the formation rate. Hydrate crystal concentration and gas composition do not influence the hydrate formation rate. Observations of produced hydrate crystals indicate that the crystals are elongated, about 5 micron in diameter and 10 micron long. Analysis of the results shows that the rate of hydrate formation is dominated by gas-liquid mass transfer. A mass transfer model, the bubble-to-crystal model, was developed for the hydrate formation rate in a continuous stirred tank reactor, given in terms of concentration driving force and an overall mass transfer coefficient. The driving force is the difference between the gas concentration at the gas-liquid interface and at the hydrate crystal surface. These concentrations correspond to the solubility of gas in water at experimental temperature and pressure and the solubility of gas at hydrate equilibrium temperature and experimental pressure, respectively. The overall mass transfer coefficient is expressed in terms of superficial gas velocity and impeller power consumption, parameters commonly used in study of stirred tank reactors. Experiments and modeling show that the stirred tank reactor has a considerable potential for increased production capacity. However, at higher hydrate production rates the

  5. Nicotinamide attenuates aquaporin 3 overexpression induced by retinoic acid through inhibition of EGFR/ERK in cultured human skin keratinocytes.

    Science.gov (United States)

    Song, Xiuzu; Xu, Aie; Pan, Wei; Wallin, Brittany; Kivlin, Rebecca; Lu, Shan; Cao, Cong; Bi, Zhigang; Wan, Yinsheng

    2008-08-01

    The most common adverse effects that are related to all-trans retinoic acid (atRA) treatment are irritation and dryness of the skin. atRA therapy is reported to impair barrier function as achieved by trans-epidermal water loss (TEWL). Treatment with nicotinamide prior to initiation of atRA therapy provides additional barrier protection and thus reduces susceptibility of retinoic acid. Our previous studies showed that atRA upregulates aquaporin 3 (AQP3) in cultured human skin keratinocytes and fibroblasts. Others have demonstrated that in atopic dermatitis, overexpression of AQP3 is linked to elevated TEWL and that nicotinamide treatment reduces skin TEWL. In this study, we observed that while atRA upregulates AQP3 expression in cultured human skin keratinocytes (HaCaT cells), nicotinamide attenuates the effect of atRA in a concentration-dependent manner. atRA treatment induces EGFR and ERK activation. PD153035, an EGFR inhibitor, and U0126, an ERK inhibitor, inhibit atRA-induced upregulation of AQP3. Nicotinamide also inhibits atRA-induced activation of EGFR/ERK signal transduction and decreases water permeability by downregulating AQP3 expression. Collectively, our results indicate that the effect of atRA on AQP3 expression is at least partly mediated by EGFR/ERK signaling in cultured human skin keratinocytes. Nicotinamide attenuates atRA-induced AQP3 expression through inhibition of EGFR/ERK signal transduction and eventually decreases water permeability and water loss. Our study provides insights into the molecular mechanism through which nicotinamide reverses the side effects of dryness in human skin after treatment with atRA.

  6. Topical nicotinamide modulates cellular energy metabolism and provides broad-spectrum protection against ultraviolet radiation-induced immunosuppression in humans.

    Science.gov (United States)

    Sivapirabu, G; Yiasemides, E; Halliday, G M; Park, J; Damian, D L

    2009-12-01

    Ultraviolet (UV) radiation can profoundly suppress the cutaneous immune system, thus enhancing carcinogenesis. Agents that prevent UV-induced immunosuppression may thus reduce skin cancer. Nicotinamide (vitamin B3) prevents UV-induced immunosuppression and carcinogenesis in mice, and solar-simulated (ss) UV-induced immunosuppression in humans. Its effectiveness against different UV wavebands and mechanism of action is as yet unknown. To determine the effects and mechanisms of topical nicotinamide on UV-induced suppression of delayed type hypersensitivity (DTH) responses in humans. Healthy Mantoux-positive volunteers in four randomised, double-blinded studies were irradiated with solar-simulated (ss)UV (UVB + UVA) or narrowband UVB (300 nm) or UVA (385 nm). Topical nicotinamide (0.2% or 5%) or its vehicle were applied immediately after each irradiation. Mantoux testing was performed at irradiated sites and adjacent unirradiated control sites 48 h after the first irradiation and measured 72 h later. Immunosuppression was calculated as the difference in Mantoux-induced erythema and induration at test sites compared to control sites. Human keratinocyte cell cultures, with and without ssUV and nicotinamide, were used for quantitative real-time reverse transcriptase-polymerase chain reaction assessment of TP53 and enzymes that regulate oxidative phosphorylation. Nicotinamide cooperated with ssUV to increase enzymes involved in cellular energy metabolism and p53, and significantly protected against immunosuppression caused by UVB, longwave UVA and single and repeated ssUV exposures. Longwave UVA, which is poorly filtered by most sunscreens, was highly immune suppressive even at doses equivalent to 20 min of sun exposure. Nicotinamide, which protected against both UVB and UVA, is a promising agent for skin cancer prevention.

  7. Arxula adeninivorans recombinant adenine deaminase and its application in the production of food with low purine content.

    Science.gov (United States)

    Jankowska, D A; Faulwasser, K; Trautwein-Schult, A; Cordes, A; Hoferichter, P; Klein, C; Bode, R; Baronian, K; Kunze, G

    2013-11-01

    Construction of a transgenic Arxula adeninivorans strain that produces a high concentration of adenine deaminase and investigation into the application of the enzyme in the production of food with low purine content. The A. adeninivorans AADA gene, encoding adenine deaminase, was expressed in this yeast under the control of the strong inducible nitrite reductase promoter using the Xplor(®) 2 transformation/expression platform. The recombinant enzyme was biochemically characterized and was found to have a pH range of 5.5-7.5 and temperature range of 34-46 °C with medium thermostability. A beef broth was treated with the purified enzyme resulting in the concentration of adenine decreasing from 70.4 to 0.4 mg l(-1). It was shown that the production of adenine deaminase by A. adeninivorans can be increased and that the recombinant adenine deaminase can be used to lower the adenine content in the food. Adenine deaminase is one component of an enzymatic system that can reduce the production of uric acid from food constituents. This study gives details on the expression, characterization and application of the enzyme and thus provides evidence that supports the further development of the system. © 2013 The Society for Applied Microbiology.

  8. Watson-Crick Base Pairing, Electronic and Photophysical Properties of Triazole Modified Adenine Analogues: A Computational Study

    KAUST Repository

    Das, Shubhajit

    2015-09-17

    We employ first-principles Density Functional Theory (DFT) and time-dependent DFT (TDDFT) to elucidate structural, electronic and optical properties of a few recently reported triazole adenine nucleobase analogues. The results are compared against the findings obtained for both natural adenine nucleobase and available experimental data. The optical absorption of these adenine analogues are calculated both in gas-phase and in solvent (methanol) using Polarized Continuum Model (PCM). We find that all the analogues show a red-shifted absorption profile as compared to adenine. Our simulated emission spectra in solvent compare fairly well with experimentally observed results. We investigate base paring ability of these adenine analogues with thymine. The calculations on the intrinsic stability of these base pairs ascertain that all the adenine analogues form the hydrogen bonded Watson-Crick base pair with similar H-bonding energy as obtained for natural adenine-thymine base pair. In our study, we provide a microscopic origin of the low-energy absorption and emission peaks, observed experimentally.

  9. Differences in Electrostatic Potential Around DNA Fragments Containing Adenine and 8-oxo-Adenine. An Analysis Based on Regular Cylindrical Projection

    Energy Technology Data Exchange (ETDEWEB)

    Haranczyk, Maciej; Miller, John H; Gutowski, Maciej S

    2007-07-01

    Changes of electrostatic potential (EP) around the DNA molecule resulting from chemical modifications of nucleotides may play a role in enzymatic recognition of damaged sites. Effects of chemical modifications of nucleotides on the structure of DNA have been characterized through large scale density functional theory computations. Quantum mechanical structural optimizations of DNA fragments with three pairs of nucleotides and accompanying counteractions were performed with a B3LYP exchange-correlation functional and 6-31G** basis sets. The “intact” DNA fragment contained adenine in the middle layer, while the “damaged” fragment had the adenine replaced with 8-oxo-adenine. The electrostatic potential around these DNA fragments was projected on a cylindrical surface around the double helix. The two-dimensional maps of EP of the intact and damaged DNA fragments were analyzed to identify these modifications of EP that result from the occurrence of 8-oxo-adenine (8oA). It was found that distortions of a phosphate group neighboring 8oA and displacements of the accompanying countercation are clearly reflected in the EP maps. Helpful discussions Michel Dupuis are gratefully acknowledged. Authors wish to thank Marcel Swart for directing us to a compilation of van der Waals radii. This work was supported by the: (i) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G. and M.H.), (ii) the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG03-02ER63470 (JHM), (iii) Polish State Committee for Scientific Research (KBN) Grant DS/8221-4-0140-6 (MG), (iv) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic Computer Center in Gdansk (TASK) and at the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a national

  10. Dynamics of a photoexcited hydrated electron

    NARCIS (Netherlands)

    Pshenichnikov, M.S.; Baltuška, A.; Wiersma, D.A.; Kärtner, F.X.

    2004-01-01

    Combining photon-echo and frequency-resolved pump-probe techniques with extremely short laser pulses that consist of only few optical cycles, we investigate the dynamics of the equilibrated hydrated electron. The pure dephasing time of the hydrated electron deduced from the photon-echo measurements

  11. Gas hydrate inhibition of drilling fluid additives

    Energy Technology Data Exchange (ETDEWEB)

    Xiaolan, L.; Baojiang, S.; Shaoran, R. [China Univ. of Petroleum, Dongying (China). Inst. of Petroleum Engineering

    2008-07-01

    Gas hydrates that form during offshore well drilling can have adverse impacts on well operational safety. The hydrates typically form in the risers and the annulus between the casing and the drillstring, and can stop the circulation of drilling fluids. In this study, experiments were conducted to measure the effect of drilling fluid additives on hydrate inhibition. Polyalcohols, well-stability control agents, lubricating agents, and polymeric materials were investigated in a stirred tank reactor at temperatures ranging from -10 degree C to 60 degrees C. Pressure, temperature, and torque were used to detect onset points of hydrate formation and dissociation. The inhibitive effect of the additives on hydrate formation was quantified. Phase boundary shifts were measured in terms of temperature difference or sub-cooling gained when chemicals were added to pure water. Results showed that the multiple hydroxyl groups in polyalcohol chemicals significantly inhibited hydrate formation. Polymeric and polyacrylamide materials had only a small impact on hydrate formation, while sulfonated methyl tannins were found to increase hydrate formation. 6 refs., 1 tab., 4 figs.

  12. Hydration shells exchange charge with their protein

    DEFF Research Database (Denmark)

    Abitan, Haim; Lindgård, Per-Anker; Nielsen, Bjørn Gilbert;

    2010-01-01

    Investigation of the interaction between a protein and its hydration shells is an experimental and theoretical challenge. Here, we used ultrasonic pressure waves in aqueous solutions of a protein to explore the conformational states of the protein and its interaction with its hydration shells. In...

  13. A new geotechnical gas hydrates research laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grozic, J.L.H. [Calgary Univ., AB (Canada)

    2003-07-01

    Gas hydrates encapsulate natural gas molecules in a very compact form, as ice-like compounds composed of water molecules. Permafrost environments and offshore areas contain vast quantities of gas hydrates within soil and rock. This paper describes the role played by gas hydrates in submarine slope instability, their potential as a sustainable energy source, and their effects on global climate change. A new state-of-the-art laboratory located at the University of Calgary, which was developed to study the geomechanical behaviour of gas hydrate-sediment mixtures, was also presented. A specialized high pressure low temperature triaxial apparatus capable of performing a suite of tests on gas hydrate-sediment mixtures is housed in this laboratory. Extensive renovations were required in order to enable the use of methane gas to simulate natural hydrate formation conditions. The laboratory is specifically designed to examine the properties and behaviour of reconstituted gas hydrate-sediment mixtures and natural gas hydrate core samples. 26 refs., 9 figs.

  14. Investigations into surfactant/gas hydrate relationship

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Rudy; Zhang, Guochang; Dearman, Jennifer; Woods, Charles [Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762 (United States)

    2007-03-15

    Gas hydrates have unique physical properties portending useful industrial applications of gas storage, gas separation, or water desalination. When gas hydrates were found in the early 1990s to occur naturally and abundantly in seafloors, three other primary interests and concerns emerged: potential new energy source, climate threat from their greenhouse gases, and seafloor instabilities. This paper presents research showing how anionic synthetic surfactants helped develop an industrial gas hydrate storage process for natural gas and how naturally-occurring in-situ anionic biosurfactants influence the formation and placement of gas hydrates in ocean sediments. The catalytic effects, mechanisms, and surface specificities imparted by synthetic surfactants in the gas storage process and imparted by biosurfactants in porous media are discussed. The Bacillus subtilis bacterium that is indigenous to gas hydrate mounds in the Gulf of Mexico was cultured in the laboratory. Its biosurfactant was separated and found to catalyze gas hydrates in porous media. The experiments indicate that seafloor-biosurfactants can be produced rapidly in-situ to achieve threshold concentrations whereby hydrates are promoted. The biosurfactants accumulate and promote hydrate formation on specific mineral surfaces such as sodium montmorillonite. (author)

  15. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  16. More than skin deep? Potential nicotinamide treatment applications in chronic kidney transplant recipients

    Science.gov (United States)

    Bostom, Andrew G; Merhi, Basma; Walker, Joanna; Robinson-Bostom, Leslie

    2016-01-01

    Non-melanoma cutaneous carcinomas, or skin cancers, predominantly squamous cell carcinomas (SCCs), are the most common malignancies occurring in kidney transplant recipients (KTRs). Squamous cell carcinoma risk is dramatically elevated in KTRs, occurring at rates of up 45-250 times those reported in general populations. New non-melanoma skin cancers in KTRs with a prior non-melanoma skin cancer also develop at 3-times the rate reported in non-KTRs with the same clinical history. The unique aggressiveness of SCCs in KTRs increases patient morbidity, due to the high rate of new lesions requiring treatment, frequently surgical excision. Oral nicotinamide shows promise in the chemoprevention of the especially aggressive non-melanoma skin cancers which occur in KTRs. This benefit might be conferred via its inhibition of sirtuin enzymatic pathways. Nicotinamide’s concurrent hypophosphatemic effect may also partially ameliorate the disturbed calcium-phosphorus homeostasis in these patients-a putative risk factor for mortality, and graft failure. Conceivably, a phase 3 trial of nicotinamide for the prevention of non-melanoma skin cancers in KTRs, lasting at least 12-mo, could also incorporate imaging and laboratory measures which assess nicotinamide’s impact on subclinical cardiovascular and chronic kidney disease risk, and progression. PMID:28058215

  17. Analysis of Water Soluble Vitamins (Thiamine, Nicotinamide and Pyridoxine in Fortified Infant Food Products by Hplc

    Directory of Open Access Journals (Sweden)

    Narjis Naz

    2016-05-01

    Full Text Available The present study provides information about the levels of fortification of three water soluble vitamins i.e. thiamine (B1, nicotinamide (B3 and pyridoxine (B6 in a variety of foodstuffs include milk products and cereals for young children. Food fortification is key implement for improving health of the growing children. Twenty food samples were chosen for analysis because of their common utilization in the local area. The vitamin concentrations were determined by high performance liquid chromatography with C18 column with a gradient of mobile phase made of water and acetonitrile and a diode array detector set at 280 nm. The thiamine content investigated in the samples ranging from 268 µg/mL to 3 µg/ml, nicotinamide content was from 41 µg/ml to 1 µg/mL while the pyridoxine level was in between 412 µg/mL to 20 µg/mL. Detection and Quantification of compounds were attained by comparing their retention times with standard reference materials and on the basis the off peak area match against those of a standard. The method used, offer excellent linearity with r2 ≥ 0.994, detection limits, reproducibility, and analyte recovery.

  18. Porin OmpP2 of Haemophilus influenzae shows specificity for nicotinamide-derived nucleotide substrates.

    Science.gov (United States)

    Andersen, Christian; Maier, Elke; Kemmer, Gabrielle; Blass, Julia; Hilpert, Anna-Karina; Benz, Roland; Reidl, Joachim

    2003-07-04

    Haemophilus influenzae has an absolute requirement for NAD (factor V) because it lacks all biosynthetic enzymes necessary for de novo synthesis of that cofactor. Therefore, growth in vitro requires the presence of NAD itself, NMN, or nicotinamide riboside (NR). To address uptake abilities of these compounds, we investigated outer membrane proteins. By analyzing ompP2 knockout mutants, we found that NAD and NMN uptake was prevented, whereas NR uptake was not. Through investigation of the properties of purified OmpP2 in artificial lipid membrane systems, the substrate specificity of OmpP2 for NAD and NMN was determined, with KS values of approximately 8 and 4mm, respectively, in 0.1 m KCl, whereas no interaction was detected for the nucleoside NR and other purine or pyrimidine nucleotide or nucleoside species. Based on our analysis, we assume that an intrinsic binding site within OmpP2 exists that facilitates diffusion of these compounds across the outer membrane, recognizing carbonyl and exposed phosphate groups. Because OmpP2 was formerly described as a general diffusion porin, an additional property of acting as a facilitator for nicotinamide-based nucleotide transport may have evolved to support and optimize utilization of the essential cofactor sources NAD and NMN in H. influenzae.

  19. YCL047C/POF1 is a novel nicotinamide mononucleotide adenylyltransferase (NMNAT) in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kato, Michiko; Lin, Su-Ju

    2014-05-30

    NAD(+) is an essential metabolic cofactor involved in various cellular biochemical processes. Nicotinamide riboside (NR) is an endogenously produced key pyridine metabolite that plays important roles in the maintenance of NAD(+) pool. Using a NR-specific cell-based screen, we identified mutants that exhibit altered NR release phenotype. Yeast cells lacking the ORF YCL047C/POF1 release considerably more NR compared with wild type, suggesting that POF1 plays an important role in NR/NAD(+) metabolism. The amino acid sequence of Pof1 indicates that it is a putative nicotinamide mononucleotide adenylyltransferase (NMNAT). Unlike other yeast NMNATs, Pof1 exhibits NMN-specific adenylyltransferase activity. Deletion of POF1 significantly lowers NAD(+) levels and decreases the efficiency of NR utilization, resistance to oxidative stress, and NR-induced life span extension. We also show that NR is constantly produced by multiple nucleotidases and that the intracellular NR pools are likely to be compartmentalized, which contributes to the regulation of NAD(+) homeostasis. Our findings may contribute to the understanding of the molecular basis and regulation of NAD(+) metabolism in higher eukaryotes.

  20. Ulcer healing properties of different extracts of Origanum majorana in streptozotocin-nicotinamide induced diabetic rats

    Directory of Open Access Journals (Sweden)

    BP Pimple

    2012-08-01

    Full Text Available Objective: The aim of the present investigation was to evaluate the ulcer healing properties of different extracts of Origannum majorana, viz., hydrodistilled volatile oil (OMO, methanolic (OMM and aqueous extract (OMW in streptozotocin-nicotinamide induced diabetic rats. Methods: All the extracts were administered in different doses (100, 200 and 400 mg/kg, p.o. to investigate the ulcer healing potential. Streptozotocin (STZ; 65 mg/kg, i.p. along with nicotinamide (120 mg/kg, i.p. was used to induce non-insulin dependent diabetes mellitus in rats. Aspirin (200 mg/kg, i.p. was administered for initial 7 d to induce gastric ulcerations in the diabetic rats. Various biochemical markers of blood and tissue origin were estimated to compare the ulcer healing potential of these extracts. Results: The OMO and OMM exhibited dose dependent significant (P<0.01 ulcer healing property than the OMW. Additionally, the antidiabetic property of OMO and OMM was better than OMW. Conclusions: The OMO and OMM of Origanum majorana leaves can prove to be beneficial in the concomitant treatment of gastric ulcers and diabetes.

  1. Generation of 1:1 Carbamazepine:Nicotinamide cocrystals by spray drying.

    Science.gov (United States)

    Patil, Shashank P; Modi, Sameer R; Bansal, Arvind K

    2014-10-01

    The present study investigates the potential of spray drying as a technique for generation of pharmaceutical cocrystals. Carbamazepine-Nicotinamide cocrystal (CNC) was chosen as model cocrystal system for this study. Firstly, CNC was generated using liquid assisted grinding and used for generation of phase solubility diagram (PSD) and ternary phase diagram (TPD). Both PSD and TPD were carefully evaluated for phase behavior of CNC when equilibrated with solvent. The undersaturated region with respect to CNC, as depicted by TPD, was selected as target region to initiate cocrystallization experiments. Various points in this region, representative of different compositions of Carbamazepine, Nicotinamide and CNC, were selected and spray drying was carried out. The spray dried product was characterized for solid state properties and was compared with CNC generated by liquid assisted grinding. Spray drying successfully generated CNC of similar quality as those generated by liquid assisted grinding. Moreover, there was no significant impact of process variables on formation of CNC. Spray drying, owing to its simplicity and industrial scalability, can be a promising method for large scale cocrystal generation.

  2. Nicotinamide increases thyroid radiosensitivity by stimulating nitric oxide synthase expression and the generation of organic peroxides.

    Science.gov (United States)

    Agote Robertson, M; Finochietto, P; Gamba, C A; Dagrosa, M A; Viaggi, M E; Franco, M C; Poderoso, J J; Juvenal, G J; Pisarev, M A

    2006-01-01

    Differentiated thyroid cancer and hyperthyroidism are treated with radioiodine. However, when the radioisotope dose exceeds certain limits, the patient must be hospitalized to avoid contact with people that would otherwise be exposed to radiation. It would be desirable to obtain a similar therapeutic effect using lower radioiodine doses. Radiosensitizers can be utilized for this purpose. Nicotinamide (NA) increases thyroid radiosensitivity to 131I in both normal and goitrous glands. NA causes a significant increase in thyroid blood flow, which would increase tissue oxygenation and tissue damage via free radicals. Wistar rats were treated with either nicotinamide (NA), 131I or both. The expression of the three isoforms of nitric oxide synthase (NOS) in the thyroid (Western blot) and the activities of SOD, GPx, catalase and organic peroxides were determined. Treatment with NA or 131I increased the expression of eNOS and the generation of organic peroxides. When administered jointly, they showed a synergistic effect. No changes were observed in the other NOS isoforms or in the activities of catalase, glutathione peroxidase and superoxide dismutase. NA potentiates the effect of 131I by increasing eNOS, which would in turn stimulate NO production, increasing thyroid blood flow and tissue damage via organic peroxides.

  3. Albendazole Solubilization in Aqueous Solutions of Nicotinamide: Thermodynamics and Solute Solvent Interactions

    Directory of Open Access Journals (Sweden)

    Sushree Tripathy

    2013-12-01

    Full Text Available The present study deals with experiments so as to highlight the solute (drug albendazole – solvent ( water interactions and related thermodynamic modifications in presence of the hydrotropic agent nicotinamide at different temperatures T (= 298.15 to 313.15K. Density and conductivity values of albendazole have been determined in water in (0.2, 0.4, 0.6, 0.8, 1 and 2 mol dm-3 aqueous solutions of nicotinamide at temperatures T(= 298.15, 303.15, 308.15 and 313.15K, where as solubility was studied at 308.15. A concentration dependent solubility enhancement of albendazole was observed. The solubility data was treated to obtain the concentration dependent solubilization efficiency and the Gibbs free energy of transfer (∆G0tr of albendazole from pure water to the solvent systems. From the density values, the limiting partial molar volumes and expansibilities have been calculated. The limiting molar conductance (L0 and Arrhenius activation energy (Es values have been calculated from the generated conductance values. The thermo physical parameters were discussed in terms of solute solvent interactions.

  4. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the

  5. The influence of pH on the structure of adenine monolayers adsorbed at Au(110)/electrolyte interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bowfield, A.; Smith, C.I.; Mansley, C.P.; Weightman, P. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, L69 7ZE (United Kingdom)

    2010-08-15

    The pH of the solution is shown to significantly effect the reflection anisotropy spectroscopy (RAS) profiles of adenine adsorbed at Au(110)/electrolyte interfaces. At pH 12.8 the net adsorption is very weak due the formation of negative adenine ions in solution. The sensitivity of the RAS profiles to the pH of the solution is probably due to a change in the geometry of the adsorbed molecules caused by a disruption of the base stacking configuration that is adopted when adenine is adsorbed from solutions at pH 7.1. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  6. Compound Natural Gas Hydrate: A Natural System for Separation of Hydrate-Forming Gases

    Science.gov (United States)

    Max, M. D.; Osegovic, J. P.

    2007-12-01

    Natural processes that separate materials from a mixture may exert a major influence on the development of the atmospheres and surfaces of planets, moons, and other planetary bodies. Natural distillation and gravity separation, amongst others, are well known means of differentiating materials through liquid-gas partitioning. One of the least known attributes of clathrate (gas) hydrates is their potential effect on the evolution of planetary system oceans and atmospheres. Gas hydrates separate gases from mixtures of gases by concentrating preferred hydrate-forming materials (HFM) guests within the water-molecule cage structure of crystalline hydrate. Different HFMs have very different fields of stability. When multiple hydrate formers are present, a preference series based on their selective uptake exists. Compound hydrate, which is formed from two or more species of HFM, extract preferred HFM from a mixture in very different proportions to their relative percentages of the original mixture. These compound hydrates can have different formation and dissociation conditions depending on the evolution of the environment. That is, the phase boundary of the compound hydrate that is required for dissociation lies along a lower pressure - higher temperature course. Compound hydrates respond to variations in temperature, pressure, and HFM composition. On Earth, the primary naturally occurring hydrate of interest to global climate modeling is methane hydrate. Oceanic hydrate on Earth is the largest store of carbon in the biosphere that is immediately reactive to environmental change, and is capable of releasing large amounts of methane into the atmosphere over a short geological time span. Hydrate formation is essentially metastable and is very sensitive to environmental change and to gas flux. Where natural variations in temperature and pressure varies so that hydrate will form and dissociate in some cyclical manner, such as in oceans where sea level is capable of rising and

  7. Overview on Hydrate Coring, Handling and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

    2003-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

  8. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated

  9. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-07-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  10. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-06-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  11. Experimental Study of Natural Gas Storage in Hydrates

    Institute of Scientific and Technical Information of China (English)

    孙志高; 王如竹; 郭开华; 樊栓狮

    2004-01-01

    Hydrate formation rate plays an important role in the making of hydrates for natural gas storage. The effect of sodium dodecyl sulfate (SDS), alkyl polysaccharide glycoside (APG) and cyclopentane (CP) on natural gas hydrate formation rate, induction time and storage capacity was studied. Micellar surfactant solutions were found to increase hydrate formation rate in a quiescent system and improve hydrate formation rate and natural gas storage capacity. The process of hydrate formation includes two stages with surfactant presence. Hydrate forms quickly in the first stage, and then the formation rate is slowed down. Surfactants (SDS or APG) reduce the induction time of hydrate formation. The effect of an anionic surfactant (SDS) on gas storage in hydrates is more pronounced compared to a nonionic surfactant (APG). CP also reduces the induction time of hydrate formation, but can not improve the natural gas storage capacity in hydrates.

  12. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer's mouse models.

    Science.gov (United States)

    Gong, Bing; Pan, Yong; Vempati, Prashant; Zhao, Wei; Knable, Lindsay; Ho, Lap; Wang, Jun; Sastre, Magdalena; Ono, Kenjiro; Sauve, Anthony A; Pasinetti, Giulio M

    2013-06-01

    Nicotinamide adenine dinucleotide (NAD)(+), a coenzyme involved in redox activities in the mitochondrial electron transport chain, has been identified as a key regulator of the lifespan-extending effects, and the activation of NAD(+) expression has been linked with a decrease in beta-amyloid (Aβ) toxicity in Alzheimer's disease (AD). Nicotinamide riboside (NR) is a NAD(+) precursor, it promotes peroxisome proliferator-activated receptor-γ coactivator 1 (PGC)-1α expression in the brain. Evidence has shown that PGC-1α is a crucial regulator of Aβ generation because it affects β-secretase (BACE1) degradation. In this study we tested the hypothesis that NR treatment in an AD mouse model could attenuate Aβ toxicity through the activation of PGC-1α-mediated BACE1 degradation. Using the Tg2576 AD mouse model, using in vivo behavioral analyses, biochemistry assays, small hairpin RNA (shRNA) gene silencing and electrophysiological recording, we found (1) dietary treatment of Tg2576 mice with 250 mg/kg/day of NR for 3 months significantly attenuates cognitive deterioration in Tg2576 mice and coincides with an increase in the steady-state levels of NAD(+) in the cerebral cortex; (2) application of NR to hippocampal slices (10 μM) for 4 hours abolishes the deficits in long-term potentiation recorded in the CA1 region of Tg2576 mice; (3) NR treatment promotes PGC-1α expression in the brain coinciding with enhanced degradation of BACE1 and the reduction of Aβ production in Tg2576 mice. Further in vitro studies confirmed that BACE1 protein content is decreased by NR treatment in primary neuronal cultures derived from Tg2576 embryos, in which BACE1 degradation was prevented by PGC-1α-shRNA gene silencing; and (4) NR treatment and PGC-1α overexpression enhance BACE1 ubiquitination and proteasomal degradation. Our studies suggest that dietary treatment with NR might benefit AD cognitive function and synaptic plasticity, in part by promoting PGC-1α-mediated BACE1

  13. Methane Recovery from Hydrate-bearing Sediments

    Energy Technology Data Exchange (ETDEWEB)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with

  14. Gas Hydrate Storage of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  15. Induction of nucleoside phosphorylase in Enterobacter aerogenes and enzymatic synthesis of adenine arabinoside.

    Science.gov (United States)

    Wei, Xiao-Kun; Ding, Qing-Bao; Zhang, Lu; Guo, Yong-Li; Ou, Lin; Wang, Chang-Lu

    2008-07-01

    Nucleoside phosphorylases (NPases) were found to be induced in Enterobacter aerogenes DGO-04, and cytidine and cytidine 5'-monophosphate (CMP) were the best inducers. Five mmol/L to fifteen mmol/L cytidine or CMP could distinctly increase the activities of purine nucleoside phosphorylase (PNPase), uridine phosphorylase (UPase) and thymidine phosphorylase (TPase) when they were added into medium from 0 to 8 h. In the process of enzymatic synthesis of adenine arabinoside from adenine and uracil arabinoside with wet cells of Enterobacter aerogenes DGO-04 induced by cytidine or CMP, the reaction time could be shortened from 36 to 6 h. After enzymatic reaction the activity of NPase in the cells induced remained higher than that in the cells uninduced.

  16. Induction of nucleoside phosphorylase in Enterobacter aerogenes and enzymatic synthesis of adenine arabinoside

    Institute of Scientific and Technical Information of China (English)

    Xiao-kun WEI; Qing-bao DING; Lu ZHANG; Yong-li GUO; Lin OU; Chang-lu WANG

    2008-01-01

    Nucleoside phosphorylases (NPases) were found to be induced in Enterobacter aerogenes DGO-04, and cytidine and cytidine 5'-monophosphate (CMP) were the best inducers. Five mmol/L to fifteen mmol/L cytidine or CMP could distinctly increase the activities of purine nucleoside phosphorylase (PNPase), uridine phosphorylase (UPase) and thymidine phosphorylase (TPase) when they were added into medium from 0 to 8 h. In the process of enzymatic synthesis of adenine arabinoside from adenine and uracil arabinoside with wet cells ofEnterobacter aerogenes DCJO-04 induced by cytidine or CMP, the reaction time could be shortened from 36 to 6 h. After enzymatic reaction the activity of NPase in the cells induced remained higher than that in the cells uninduced.

  17. Mass fractionation of noble gases in synthetic methane hydrate: Implications for naturally occurring gas hydrate dissociation

    Science.gov (United States)

    Hunt, Andrew G.; Stern, Laura; Pohlman, John W.; Ruppel, Carolyn; Moscati, Richard J.; Landis, Gary P.

    2013-01-01

    As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings may presently be dissociating and releasing methane and other gases to the ocean-atmosphere system. A key challenge in assessing the impact of dissociating gas hydrates on global atmospheric methane is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sediments (some newly thawed), coal beds, and other sources. Carbon and deuterium stable isotopic fractionation during methane formation provides a first-order constraint on the processes (microbial or thermogenic) of methane generation. However, because gas hydrate formation and dissociation do not cause significant isotopic fractionation, a stable isotope-based hydrate-source determination is not possible. Here, we investigate patterns of mass-dependent noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.

  18. Hydration Properties of Ground Granulated Blast-Furnace Slag (GGBS Under Different Hydration Environments

    Directory of Open Access Journals (Sweden)

    Shuhua LIU

    2017-02-01

    Full Text Available The hydration properties of various cementitious materials containing Ground Granulated Blast-furnace Slag (GGBS, two alkali-activated slag cements (AAS-1 and AAS-2 in which sodium silicate and sodium hydroxide act as alkaline activators respectively, supersulfated cement (SSC and slag Portland cement(PSC, are compared with ordinary Portland cement (OPC to investigate the effect of activating environment on the hydration properties in this study by determining the compressive strength of the pastes, the hydration heat of binders within 96 hours, and the hydration products at age of 28 days. The results show that C-S-H gels are the main hydrated products for all cementitious systems containing GGBS. Ca(OH2 is the hydration products of OPC and PSC paste. However, ettringite and gypsum crystals instead of Ca(OH2 are detected in SSC paste. Additionally, tobermorite, a crystalline C-S-H, and calcite are hydrated products in AAS-1. Tobermorite, cowlesite and calcite are hydrated products of AAS-2 as well. Based on strength results, AAS-1 paste exhibits the highest compressive strength followed by POC, PSC, SSC in order at all testing ages and AAS-2 give the lowest compressive strength except for the early age at 3 days, which is higher than SSC but still lower than PSC. From hydration heat analysis, alkalinity in the reaction solution is a vital factor influencing the initial hydration rate and the initial hydration rate from higher to lower is AAS-2, AAS-1, OPC, PSC and SSC. Although AAS possesses a faster reaction rate in the initial hours, cumulative hydration heat of AAS is comparably lower than that of OPC, but higher than those of PSC and SSC in turn, which indicates that the hydration heat of clinkers is much higher than that of slag.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14934

  19. DNA Bases Thymine and Adenine in Bio-Organic Light Emitting Diodes

    Science.gov (United States)

    2014-11-24

    DNA Bases Thymine and Adenine in Bio-Organic Light Emitting Diodes Eliot F. Gomez1, Vishak Venkatraman1, James G. Grote2 & Andrew J. Steckl1...45433-7707 USA. We report on the use of nucleic acid bases (NBs) in organic light emitting diodes (OLEDs). NBs are small molecules that are the basic...polymer has been a frequent natural material integrated in electronic devices. DNA has been used in organic light - emitting diodes (OLEDs)4,5,7–14

  20. Coulombic amino group-metal bonding: adsorption of adenine on Cu110.

    Science.gov (United States)

    Preuss, M; Schmidt, W G; Bechstedt, F

    2005-06-17

    The interaction between molecular amino groups and metal surfaces is analyzed from first-principles calculations using the adsorption of adenine on Cu110 as a model case. The amino group nitrogens are found to adsorb on top of the surface copper atoms. However, the bonding clearly cannot be explained in terms of covalent interactions. Instead, we find it to be largely determined by mutual polarization and Coulomb interaction between substrate and adsorbate.

  1. Two Adenine Nucleotide Translocase Paralogues Involved in Cell Proliferation and Spermatogenesis in the Silkworm Bombyx mori

    OpenAIRE

    Ryohei Sugahara; Akiya Jouraku; Takayo Nakakura; Takahiro Kusakabe; Takenori Yamamoto; Yasuo Shinohara; Hideto Miyoshi; Takahiro Shiotsuki

    2015-01-01

    Mitochondrial adenine nucleotide translocase (ANT) specifically acts in ADP/ATP exchange through the mitochondrial inner membrane. This transporter protein thereby plays a significant role in energy metabolism in eukaryotic cells. Most mammals have four paralogous ANT genes (ANT1-4) and utilize these paralogues in different types of cells. The fourth paralogue of ANT (ANT4) is present only in mammals and reptiles and is exclusively expressed in testicular germ cells where it is required for m...

  2. Detection and Production of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand

  3. A computational study of adenine, uracil, and cytosine adsorption upon AlN and BN nano-cages

    Energy Technology Data Exchange (ETDEWEB)

    Baei, Mohammad T. [Department of Chemistry, Islamic Azad University, Azadshahr Branch, Azadshahr, Golestan (Iran, Islamic Republic of); Taghartapeh, Mohammad Ramezani [Young Researchers and Elite Club, Islamic Azad University, Gorgan Branch, Gorgan (Iran, Islamic Republic of); Lemeski, E. Tazikeh [Department of Chemistry, Islamic Azad University, Gorgan Branch, Gorgan (Iran, Islamic Republic of); Soltani, Alireza, E-mail: alireza.soltani46@yahoo.com [Young Researchers and Elite Club, Islamic Azad University, Gorgan Branch, Gorgan (Iran, Islamic Republic of)

    2014-07-01

    Density-functional theory calculations are used to investigate the interaction of Al{sub 12}N{sub 12} and B{sub 12}N{sub 12} clusters with the adenine (A), uracil (U), and cytosine (C) molecules. The current calculations demonstrate that these hybrid adsorbent materials are able to adsorb the adenine, uracil, and cytosine molecules through exothermic processes. Our theoretical results reveal improvement in the adsorption of adenine, uracil, and cytosine on Al{sub 12}N{sub 12} and B{sub 12}N{sub 12}. It is observed that B{sub 12}N{sub 12} is highly sensitive to adenine, uracil, and cytosine compared with Al{sub 12}N{sub 12} to serve as a biochemical sensor.

  4. Prospecting for marine gas hydrate resources

    Science.gov (United States)

    Boswell, Ray; Shipp, Craig; Reichel, Thomas; Shelander, Dianna; Saeki, Tetsuo; Frye, Matthew; Shedd, William; Collett, Timothy S.; McConnell, Daniel R.

    2016-01-01

    As gas hydrate energy assessment matures worldwide, emphasis has evolved away from confirmation of the mere presence of gas hydrate to the more complex issue of prospecting for those specific accumulations that are viable resource targets. Gas hydrate exploration now integrates the unique pressure and temperature preconditions for gas hydrate occurrence with those concepts and practices that are the basis for conventional oil and gas exploration. We have aimed to assimilate the lessons learned to date in global gas hydrate exploration to outline a generalized prospecting approach as follows: (1) use existing well and geophysical data to delineate the gas hydrate stability zone (GHSZ), (2) identify and evaluate potential direct indications of hydrate occurrence through evaluation of interval of elevated acoustic velocity and/or seismic events of prospective amplitude and polarity, (3) mitigate geologic risk via regional seismic and stratigraphic facies analysis as well as seismic mapping of amplitude distribution along prospective horizons, and (4) mitigate further prospect risk through assessment of the evidence of gas presence and migration into the GHSZ. Although a wide range of occurrence types might ultimately become viable energy supply options, this approach, which has been tested in only a small number of locations worldwide, has directed prospect evaluation toward those sand-hosted, high-saturation occurrences that were presently considered to have the greatest future commercial potential.

  5. Gas Hydrates Research Programs: An International Review

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2009-12-09

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  6. Gas hydrate dissociation structures in submarine slopes

    Energy Technology Data Exchange (ETDEWEB)

    Gidley, I.; Grozic, J.L.H. [Calgary Univ., AB (Canada). Dept. of Civil Engineering

    2008-07-01

    Studies have suggested that gas hydrates may play a role in submarine slope failures. However, the mechanics surrounding such failures are poorly understood. This paper discussed experimental tests conducted on a small-scale physical model of submarine soils with hydrate inclusions. The laboratory tests investigated the effects of slope angle and depth of burial of the hydrate on gas escape structures and slope stability. Laponite was used to model the soils due to its ability to swell and produce a clear, colorless thixotropic gel when dispersed in water. An R-11 refrigerant was used to form hydrate layers and nodules. The aim of the experiment was to investigate the path of the fluid escape structures and the development of a subsequent slip plane caused by the dissociation of the R-11 hydrates. Slope angles of 5, 10, and 15 degrees were examined. Slopes were examined using high-resolution, high-speed imaging techniques. Hydrate placement and slope inclinations were varied in order to obtain stability data. Results of the study showed that slope angle influenced the direction of travel of the escaping gas, and that the depth of burial affected sensitivity to slope angle. Theoretical models developed from the experimental data have accurately mapped deformations and stress states during testing. Further research is being conducted to investigate the influence of the size, shape, and placement of the hydrates. 30 refs., 15 figs.

  7. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    Science.gov (United States)

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-01-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process. PMID:26643504

  8. L-Arginine Intake Effect on Adenine Nucleotide Metabolism in Rat Parenchymal and Reproductive Tissues

    Directory of Open Access Journals (Sweden)

    G. Kocic

    2012-01-01

    Full Text Available L-arginine is conditionally essetcial amino acid, required for normal cell growth, protein synthesis, ammonia detoxification, tissue growth and general performance, proposed in the treatment of men sterility and prevention of male impotence. The aim of the present paper was to estimate the activity of the enzymes of adenine nucleotide metabolism: 5′-nucleotidase (5′-NU, adenosine deaminase (ADA, AMP deaminase, and xanthine oxidase (XO, during dietary intake of L-arginine for a period of four weeks of male Wistar rats. Adenosine concentration in tissues is maintained by the relative activities of the adenosine-producing enzyme, 5′-NU and the adenosine-degrading enzyme-ADA adenosine deaminase. Dietary L-arginine intake directed adenine nucleotide metabolism in liver, kidney, and testis tissue toward the activation of adenosine production, by increased 5′-NU activity and decreased ADA activity. Stimulation of adenosine accumulation could be of importance in mediating arginine antiatherosclerotic, vasoactive, immunomodulatory, and antioxidant effects. Assuming that the XO activity reflects the rate of purine catabolism in the cell, while the activity of AMP deaminase is of importance in ATP regeneration, reduced activity of XO, together with the increased AMP-deaminase activity, may suggest that adenine nucleotides are presumably directed to the ATP regenerating process during dietary L-arginine intake.

  9. Spectroscopic assessment of argon gas discharge induced radiolysis of aqueous adenine and thymine

    Energy Technology Data Exchange (ETDEWEB)

    Su Xi [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1138, Shushanhu Road 350, Hefei 230031 (China); Huang Qing, E-mail: huangq@ipp.ac.cn [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1138, Shushanhu Road 350, Hefei 230031 (China); Dang Bingrong [Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); Wang Xiangqin; Yu Zengliang [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1138, Shushanhu Road 350, Hefei 230031 (China)

    2011-12-15

    Ionizing radiation influences life profoundly for it can modify genetic materials. It is a long-standing task to investigate the interaction between energetic particles and DNA together with its components such as nucleotides, nucleosides and bases so as to predict and assess the potential biological effects. In this study, argon gas discharge was employed to produce energetic ions and electrons. The gas discharge caused the radiolysis of aqueous bases and the involved reactions were analyzed by means of spectroscopic tools including UV-vis absorption, fluorescence and Fourier transformation infrared (FTIR) spectroscopy, also assisted by liquid chromatography/mass spectrometry (LC/MS). It was found that the discharge resulted in the adenine-derived lesions such as 4,6-diamino-5-formamidopyrimidine, 8-OH-Ade and 2-OH-Ade in the radiolysis of aqueous adenine, as well as the thymine-derived lesions such as thymine glycol, 5-hydroxy-6-hydrothymine and/or 6-hydroxy-5-hydrothymine, 5-hydroxymethyluracil and 5-formyluracil in the radiolysis of aqueous thymine. The study of radio-sensitivity showed that adenine was more resistant to the discharge. The mechanisms of the involved reactions were studied in detail, confirming that the hydroxyl radical played a dominant role. - Highlights: > Effective new way to study radiolysis of bases via a home-made argon discharge apparatus. > Quantitative analysis of base radiolysis employing spectroscopic tools combined with HPLC/MS. > Discovery of different radiolysis effect compared with other forms of ionizing radiations.

  10. White spot syndrome virus VP12 interacts with adenine nucleotide translocase of Litopenaeus vannamei.

    Science.gov (United States)

    Ma, Fang-fang; Chou, Zhi-guang; Liu, Qing-hui; Guan, Guangkuo; Li, Chen; Huang, Jie

    2014-05-01

    White spot syndrome virus VP12 contains cell attachment motif RGD which is considered to be critical for host cell binding. Until now, the function of this protein remains undefined. In this study, we explored the interaction of VP12 with host cells. A new shrimp protein (adenine nucleotide translocase of Litopenaeus vannamei, LvANT) is selected by far-western overlay assay. Tissue distribution of adenine nucleotide translocase mRNA showed that it was commonly spread in all the tissues detected. Cellular localization of LvANT in shrimp hemocytes showed that it was primarily located in the cytoplasm of hemocytes and colocalized with mitochondria. ELISA and far-western blot assay confirmed that VP12 interacted with LvANT. In vivo neutralization assay showed that anti-LvANT antibody can significantly reduce the mortality of shrimp challenged by WSSV at 48h post-treatment. Our results collectively showed that VP12 is involved in host cell binding via interaction with adenine nucleotide translocase.

  11. Poly(amido amine)s as Gene Delivery Vectors: Effects of Quaternary Nicotinamide Moieties in the Side Chains

    NARCIS (Netherlands)

    Mateos Timoneda, Miguel A.; Lok, Martin C.; Hennink, Wim E.; Feijen, Jan; Engbersen, Johan F.J.

    2008-01-01

    To evaluate the effect of quaternary nicotinamide pendant groups on gene delivery properties, a series of poly(amido amine) (co)polymers were synthesized by Michael addition polymerization of N, N-cystaminebisacrylamide with variable ratios of 1-(4-aminobutyl)-3-carbamoylpyridinium (Nic-BuNH2), and

  12. Application Progress of Nicotinamide in Dermatology%烟酰胺在皮肤科的应用进展

    Institute of Scientific and Technical Information of China (English)

    余辉; 申国庆

    2014-01-01

    Nicotinamide is a common medicine of dermatology, which is mainly used in nicotinamide or niacin deficiency caused pellagra. In recent years, a number of laboratory experiments and clinical studies have shown that nicotinamide can be used more widely in dermatology, such as systemic use in pemphigus and topical use in acne, pigmentation reduction and protection against ultraviolet radiation-induced immunosuppression in humans. This article reviews the new application of nicotinamide.%烟酰胺是皮肤科的常用药,主要用作烟酰胺或烟酸缺乏引起的糙皮病等。近年来,一些试验研究及临床用药发现烟酰胺可用于更加广泛的适应证,例如系统用药治疗天疱疮,局部用于治疗痤疮,降低色素沉着以及调节皮肤光免疫反应等。本文综述了烟酰胺在皮肤科的应用新进展。

  13. Maternal intake of fat, riboflavin and nicotinamide and the risk of having offspring with congenital heart defects

    NARCIS (Netherlands)

    Smedts, H.P.M.; Rakhshandehroo, M.; Verkleij-Hagoort, A.C.; Vries, de J.H.M.; Ottenkamp, J.; Steegers, E.A.P.; Steegers-Theunissen, R.P.M.

    2008-01-01

    With the exception of studies on folic acid, little evidence is available concerning other nutrients in the pathogenesis of congenital heart defects (CHDs). Fatty acids play a central role in embryonic development, and the B-vitamins riboflavin and nicotinamide are co-enzymes in lipid metabolism. Ai

  14. Replicatively senescent human fibroblasts reveal a distinct intracellular metabolic profile with alterations in NAD+ and nicotinamide metabolism.

    Science.gov (United States)

    James, Emma L; Lane, James A E; Michalek, Ryan D; Karoly, Edward D; Parkinson, E Kenneth

    2016-12-07

    Cellular senescence occurs by proliferative exhaustion (PEsen) or following multiple cellular stresses but had not previously been subject to detailed metabolomic analysis. Therefore, we compared PEsen fibroblasts with proliferating and transiently growth arrested controls using a combination of different mass spectroscopy techniques. PEsen cells showed many specific alterations in both the NAD+ de novo and salvage pathways including striking accumulations of nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) in the amidated salvage pathway despite no increase in nicotinamide phosphoribosyl transferase or in the NR transport protein, CD73. Extracellular nicotinate was depleted and metabolites of the deamidated salvage pathway were reduced but intracellular NAD+ and nicotinamide were nevertheless maintained. However, sirtuin 1 was downregulated and so the accumulation of NMN and NR was best explained by reduced flux through the amidated arm of the NAD+ salvage pathway due to reduced sirtuin activity. PEsen cells also showed evidence of increased redox homeostasis and upregulated pathways used to generate energy and cellular membranes; these included nucleotide catabolism, membrane lipid breakdown and increased creatine metabolism. Thus PEsen cells upregulate several different pathways to sustain their survival which may serve as pharmacological targets for the elimination of senescent cells in age-related disease.

  15. Maternal intake of fat, riboflavin and nicotinamide and the risk of having offspring with congenital heart defects

    NARCIS (Netherlands)

    Smedts, H.P.M.; Rakhshandehroo, M.; Verkleij-Hagoort, A.C.; Vries, de J.H.M.; Ottenkamp, J.; Steegers, E.A.P.; Steegers-Theunissen, R.P.M.

    2008-01-01

    With the exception of studies on folic acid, little evidence is available concerning other nutrients in the pathogenesis of congenital heart defects (CHDs). Fatty acids play a central role in embryonic development, and the B-vitamins riboflavin and nicotinamide are co-enzymes in lipid metabolism.

  16. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by Maurer Technology, Noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition. We plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. We also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. We are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. We hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, our goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

  17. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-07-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release as much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  18. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-04-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  19. Design and synthesis of novel adenine fluorescence probe based on Eu(III) complexes with dtpa-bis(guanine) ligand.

    Science.gov (United States)

    Tian, Fengyun; Jiang, Xiaoqing; Dou, Xuekai; Wu, Qiong; Wang, Jun; Song, Youtao

    2017-02-24

    A novel adenine (Ad) fluorescence probe (Eu(III)-dtpa-bis(guanine)) was designed and synthesized by improving experimental method based on the Eu(III) complex and dtpa-bis(guanine) ligand. The dtpa-bis(guanine) ligand was first synthesized by the acylation action between dtpaa and guanine (Gu), and the corresponding Eu(III) complex was successfully prepared through heat-refluxing method with dtpa-bis(guanine) ligand. As a novel fluorescence probe, the Eu(III)-dtpa-bis(guanine) complex can detect adenine (Ad) with characteristics of strong targeting, high specificity and high recognition ability. The detection mechanism of the adenine (Ad) using this probe in buffer solution was studied by ultraviolet-visible (UV-vis) and fluorescence spectroscopy. When the Eu(III)-dtpa-bis(guanine) was introduced to the adenine (Ad) solution, the fluorescence emission intensity was significantly enhanced. However, adding other bases such as guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) with similar composition and structure to that of adenine (Ad) to the Eu(III)-dtpa-bis(guanine) solution, the fluorescence emission intensities are nearly invariable. Meanwhile, the interference of guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) on the detection of the adenine using Eu(III)-dtpa-bis(guanine) probe was also studied. It was found that presence of these bases does not affect the detection of adenine (Ad). A linear response of fluorescence emission intensities of Eu(III)-dtpa-bis(guanine) at 570nm as a function of adenine (Ad) concentration in the range of 0.00-5.00×10(-5)molL(-1) was observed. The detection limit is about 4.70×10(-7)molL(-1).

  20. Proton percolation on hydrated lysozyme powders

    OpenAIRE

    Careri, G; Giansanti, A; Rupley, John A.

    1986-01-01

    The framework of percolation theory is used to analyze the hydration dependence of the capacitance measured for protein samples of pH 3-10, at frequencies from 10 kHz to 4 MHz. For all samples there is a critical value of the hydration at which the capacitance sharply increases with increase in hydration level. The threshold hc = 0.15 g of water per g of protein is independent of pH below pH 9 and shows no solvent deuterium isotope effect. The fractional coverage of the surface at hc is in cl...

  1. Glass powder blended cement hydration modelling

    Science.gov (United States)

    Saeed, Huda

    The use of waste materials in construction is among the most attractive options to consume these materials without affecting the environment. Glass is among these types of potential waste materials. In this research, waste glass in powder form, i.e. glass powder (GP) is examined for potential use in enhancing the characteristics of concrete on the basis that it is a pozzolanic material. The experimental and the theoretical components of the work are carried out primarily to prove that glass powder belongs to the "family" of the pozzolanic materials. The chemical and physical properties of the hydrated activated glass powder and the hydrated glass powder cement on the microstructure level have been studied experimentally and theoretically. The work presented in this thesis consists of two main phases. The first phase contains experimental investigations of the reaction of glass powder with calcium hydroxide (CH) and water. In addition, it includes experiments that are aimed at determining the consumption of water and CH with time. The reactivity, degree of hydration, and nature of the pore solution of the glass powder-blended cement pastes and the effect of adding different ratios of glass powder on cement hydration is also investigated. The experiments proved that glass powder has a pozzolanic effect on cement hydration; hence it enhances the chemical and physical properties of cement paste. Based on the experimental test results, it is recommended to use a glass powder-to-cement ratio (GP/C) of 10% as an optimum ratio to achieve the best hydration and best properties of the paste. Two different chemical formulas for the produced GP C-S-H gel due to the pure GP and GP-CH pozzolanic reaction hydration are proposed. For the pure GP hydration, the produced GP C-S-H gel has a calcium-to-silica ratio (C/S) of 0.164, water-to-silica ratio (H/S) of 1.3 and sodium/silica ratio (N/S) of 0.18. However, for the GP-CH hydration, the produced GP C-S-H gel has a C/S ratio of 1

  2. Medium optimization for leaf numbers and shoot multiplication of lidah buaya (Aloe vera by BAP and adenine supplement

    Directory of Open Access Journals (Sweden)

    LAELA SARI

    2005-07-01

    Full Text Available Aloe vera of the Aloeaceae is originated from Canary Island (West Africa. This plant is commonly know in Indonesia and cultivated in large fields or in the house yard for many purposes, such as ornamental and medicine plant. The industries using it as the principle raw material has became more important due to the significant benefits of this plant. This study is purposed to obtain the medium optimization for leaf numbers and shoot multiplication of Aloe vera by BAP and adenine supplement. The shoot of Aloe vera was taken from green house of Biotechnology-LIPI. Shoots sterilized by clorox (sodium hypochlorite solution 35% and 20% for 30 and 15 min. until get aseptic shoot (in vitro plants. The shoot isolated from in vitro plant into MS (Murashige and Skoog medium in different concentration of BAP and adenine. The research used factorial Completely Randomized Design with two factors (BAP concentration: 0; 0.5; 1; 1.5; 2 mg/L and adenine concentration 0; 10; 20 mg/L with 5 replicates. The results obtained have showed that addition 20 mg/L adenine to MS raise the numbers of leaf. The shoot multiplication has been augmented by addition of BAP 1 mg/L and adenine 20 mg/L. The results showed that BAP has a positive role in increasing shoot multiplication rate and that adenine has a synergic effect when added together with BAP.

  3. Effect of Some Admixtures on the Hydration of Silica Fume and Hydrated Lime

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effects of sodium salt of naphthalene formaldehyde sulfonic acid and stearic acid on the hydration of silica fume and Ca(0H)2 have been investigated. The hydration was carried out at 60℃ and W/S ratio of 4 for various time intervals namely, 1, 3, 7 and 28 days and in the presence of 0.2% and 5% superplasticizer and stearic acid. The results of the hydration kinetics show that both admixtures accelerate the hydration reaction of silica fume and calcium hydroxide during the first 7 days. Whereas, after 28 days hydration there is no significant effect. Generally, most of free calcium hydroxide seems to be consumed after 28 days. In addition, the phase composition as well as the microstructure of the formed hydrates was examined by using X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) respectively.

  4. Effects of nicotinamide and carbogen on oxygenation in human tumor xenografts measured with luminescense based fiber-optic probes.

    Science.gov (United States)

    Bussink, J; Kaanders, J H; Strik, A M; van der Kogel, A J

    2000-10-01

    In head and neck cancer, addition of both carbogen breathing and nicotinamide to accelerated fractionated radiotherapy showed increased loco-regional control rates. An assay based on the measurement of changes in tumor pO(2) in response to oxygenation modification could be helpful for selecting patients for these new treatment approaches. The fiber-optic oxygen-sensing device, OxyLite, was used to measure changes in pO(2), at a single position in tumors, after treatment with nicotinamide and carbogen in three human xenograft tumor lines with different vascular architecture and hypoxic patterns. Pimonidazole was used as a marker of hypoxia and was analyzed with a digital image processing system. At the position of pO(2) measurement, half of the tumors showed a local increase in pO(2) after nicotinamide administration. Steep increases in pO(2) were measured in most tumors during carbogen breathing although the increase was less pronounced in tumor areas with a low pre-treatment pO(2). A trend towards a faster local response to carbogen breathing for nicotinamide pre-treated tumors was found in all three lines. There were significant differences in hypoxic fractions, based on pimonidazole binding, between the three tumor lines. There was no correlation between hypoxic marker binding and the response to carbogen breathing. Temporal changes in local pO(2) can be measured with the OxyLite. This system was used to quantitate the effects of oxygen modifying treatments. Rapid increases in pO(2) during carbogen breathing were observed in most tumor areas. The locally measured response to nicotinamide was smaller and more variable. Bio-reductive hypoxic cell marker binding in combination with OxyLite pO(2) determination gives spatial information about the distribution patterns of tumor hypoxia at the microscopic level together with the possibility to continuously measure changes in pO(2) in specific tumor areas.

  5. Analytical Method Validation and Determination of Pyridoxine, Nicotinamide, and Caffeine in Energy Drinks Using Thin Layer Chromatography-Densitometry

    Directory of Open Access Journals (Sweden)

    Florentinus Dika Octa Riswanto

    2015-03-01

    Full Text Available Food supplement which contains vitamins and stimulants such as caffeine were classified as energy drink. TLC-densitometry method was chosen to determine the pyridoxine, nicotinamide, and caffeine in the energy drink sample. TLC plates of silica gel 60 F254 was used as the stationary phase and methanol : ethyl acetate : ammonia 25% (134:77:10 was used as the mobile phase. The correlation coefficient for each pyridoxine, nicotinamide, and caffeine were 0.9982, 0.9997, and 0.9966, respectively. Detection and quantitation limits of from the three analytes were 4.05 and 13.51 µg/mL; 13.15 and 43.83 µg/mL; 5.43 and 18.11 µg/mL, respectively. The recovery of pyridoxine, nicotinamide, and caffeine were within the required limit range of 95-105%. The percent of RSD were below the limit value of 5.7% for caffeine and nicotinamide and 8% for pyridoxine. The content amount of pyridoxine in the sample 1 and 2 were 33.59 ± 0.981 and 30.29 ± 2.061 µg/mL, respectively. The content amount of nicotinamide in the sample 1 and 2 were 106.53 ± 3.521 and 98.20 ± 3.648 µg/mL, respectively. The content amount of caffeine in the sample 1 and 2 were 249.50 ± 5.080 and 252.80 ± 2.640 µg/mL, respectively. Robustness test results showed that the most optimal method conditions should be applied for the analysis.

  6. Effect of coenzyme Q10 alone and its combination with metformin on streptozotocin-nicotinamide-induced diabetic nephropathy in rats

    Directory of Open Access Journals (Sweden)

    Rajesh A Maheshwari

    2014-01-01

    Full Text Available Objectives: This study was aimed to investigate the therapeutic potential of coenzyme Q10 and its combination with metformin on streptozotocin (STZ-nicotinamide-induced diabetic nephropathy (DN. Materials and Methods: Type 2 diabetes in rats was induced with STZ-nicotinamide. The diabetic rats were treated with coenzyme Q10 (10 mg/kg, p.o. alone or coenzyme Q10 + metformin. Various parameters of renal function tests such as serum creatinine, urea, uric acid, and markers of oxidative stress such as renal malondialdehyde (MDA level, superoxide dismutase (SOD, and catalase (CAT activities were measured. Tumor necrosis factor-α (TNF-α, myeloperoxidase (MPO activity, transforming growth factor-β (TGF-β, and nitrite content were estimated in renal tissues. All treated animal were subjected to histopathological changes of kidney. Result: Diabetic rats showed a significant reduction in renal function, which was reflected with an increase in serum urea, serum creatinine, uric acid. In addition, STZ-nicotinamide caused renal tubular damage with a higher MDA level, depletion of SOD and CAT activity and glutathione (GSH level. Moreover, TNF-α, MPO activity, TGF-β, and nitrite content were significantly increased in diabetic rats, while treatment with coenzyme Q10 or metformin or their combination ameliorate STZ-nicotinamide induced renal damage due to improvement in renal function, oxidative stress, suppression of TNF-α, MPO activity, TGF-β and nitrite content along with histopathological changes. Conclusions: This finding suggests that the treatment with coenzyme Q10 or metformin showed significant renoprotective effect against STZ-nicotinamide-induced DN. However, concomitant administration of both showed a better renoprotective effect than coenzyme Q10 or metformin alone treatment.

  7. Characterization of new G protein-coupled adenine receptors in mouse and hamster.

    Science.gov (United States)

    Thimm, Dominik; Knospe, Melanie; Abdelrahman, Aliaa; Moutinho, Miguel; Alsdorf, Bernt B A; von Kügelgen, Ivar; Schiedel, Anke C; Müller, Christa E

    2013-09-01

    The nucleobase adenine has previously been reported to activate G protein-coupled receptors in rat and mouse. Adenine receptors (AdeR) thus constitute a new family of purine receptors, for which the designation "P0-receptors" has been suggested. We now describe the cloning and characterization of two new members of the AdeR family from mouse (MrgA10, termed mAde1R) and hamster (cAdeR). Both receptors were expressed in Sf9 insect cells, and radioligand binding studies were performed using [(3)H]adenine. Specific binding of the radioligand was detected in transfected, but not in untransfected cells, and K D values of 286 nM (mAde1R, B max 1.18 pmol/mg protein) and 301 nM (cAdeR, B max 17.7 pmol/mg protein), respectively, were determined. A series of adenine derivatives was investigated in competition binding assays. Minor structural modifications generally led to a reduction or loss of affinity, with one exception: 2-fluoroadenine was at least as potent as adenine itself at the cAdeR. Structure-activity relationships at all AdeR orthologs and subtypes investigated so far were similar, but not identical. For functional analyses, the cAdeR was homologously expressed in Chinese hamster ovary (CHO) cells, while the mAde1R was heterologously expressed in 1321N1 astrocytoma cells. Like the previously described AdeRs from rat (rAdeR) and mouse (mAde2R), the mAde1R (EC50 9.77 nM) and the cAdeR (EC50 51.6 nM) were coupled to inhibition of adenylate cyclase. In addition, the cAdeR from hamster expressed in CHO cells produced an increase in intracellular calcium concentrations (EC50 6.24 nM) and was found to be additionally coupled to Gq proteins.

  8. 聚硫堇/石墨烯复合材料修饰电极对NADH的电催化氧化研究%Grapheme functionalized with poly thionine for electrochemical determination of nicotinamide adenine dinucleotide

    Institute of Scientific and Technical Information of China (English)

    张天祎; 赵曼竹; 魏倾鹤; 齐斌

    2016-01-01

    采用循环伏安法将硫堇在石墨烯修饰的玻碳电极表面聚合,得到了一种新的聚硫堇/石墨烯修饰电极,此电极兼备了石墨烯和聚硫堇的特性.实验表明:该修饰电极能有效降低NADH的过电位;对NADH的检测范围为2.4×10-6~4.89×10-3 mol·L-1;检出限为6.826×10-7 mol·L-1;对尿酸和抗坏血酸的干扰有很好的消除作用;此电极稳定性、重现性较好,有很高的实际应用价值.

  9. Combined patch containing salicylic acid and nicotinamide: role of drug interaction.

    Science.gov (United States)

    Padula, Cristina; Ferretti, Chiara; Nicoli, Sara; Santi, Patrizia

    2010-12-01

    The aim of the present study was to formulate a combined patch containing salicylic (SA) acid and nicotinamide (NA), useful for the treatment of mild acne, and to verify their mutual effect on drug permeation and skin retention. The performance of the patch was tested in vitro in permeation experiments using pig ear skin as barrier. To better understand the data obtained from the film, permeation from solutions and isopropyl myristate/water partition coefficient were also determined. The results obtained in the present work suggest a mutual influence of NA and SA on their permeation across the skin from an innovative transdermal film. The partition coefficient obtained when the two molecules were simultaneously present was typically lower than the respective value obtained with NA and SA alone.

  10. The generation of myricetin-nicotinamide nanococrystals by top down and bottom up technologies

    Science.gov (United States)

    Liu, Mingyu; Hong, Chao; Li, Guowen; Ma, Ping; Xie, Yan

    2016-09-01

    Myricetin-nicotinamide (MYR-NIC) nanococrystal preparation methods were developed and optimized using both top down and bottom up approaches. The grinding (top down) method successfully achieved nanococrystals, but there were some micrometer range particles and aggregation. The key consideration of the grinding technology was to control the milling time to determine a balance between the particle size and distribution. In contrast, a modified bottom up approach based on a solution method in conjunction with sonochemistry resulted in a uniform MYR-NIC nanococrystal that was confirmed by powder x-ray diffraction, scanning electron microscopy, dynamic light scattering, and differential scanning calorimeter, and the particle dissolution rate and amount were significantly greater than that of MYR-NIC cocrystal. Notably, this was a simple method without the addition of any non-solvent. We anticipate our findings will provide some guidance for future nanococrystal preparation as well as its application in both chemical and pharmaceutical area.

  11. Cancer stem cell overexpression of nicotinamide N-methyltransferase enhances cellular radiation resistance

    DEFF Research Database (Denmark)

    D’Andrea, Filippo P.; Safwat, Akmal; Kassem, Moustapha;

    2011-01-01

    BackgroundCancer stem cells are thought to be a radioresistant population and may be the seeds for recurrence after radiotherapy. Using tumorigenic clones of retroviral immortalized human mesenchymal stem cell with small differences in their phenotype, we investigated possible genetic expression...... that could explain cancer stem cell radiation resistance. MethodsTumorigenic mesenchymal cancer stem cell clones BB3 and CE8 were irradiated at varying doses and assayed for clonogenic surviving fraction. Altered gene expression before and after 2Gy was assessed by Affymetric exon chip analysis and further...... found the genes involved in cancer, proliferation, DNA repair and cell death. ConclusionsThe higher radiation resistance in clone CE8 is likely due to NNMT overexpression. The higher levels of NNMT could affect the cellular damage resistance through depletion of the accessible amounts of nicotinamide...

  12. Hydrogen bonding and π-π stacking in nicotinamide/H2O mixtures

    Science.gov (United States)

    Zhai, Cuiping; Zhang, Ping; Peng, Peng; Hou, Bingbing; Li, Lina

    2017-09-01

    The interactions between nicotinamide (NA) and H2O were studied using UV-visible spectra (UV-Vis), cyclic voltammetry (CV), nuclear magnetic resonance (NMR), density functional theory (DFT) and atoms in molecules (AIM) analysis. According to the changes of the UV-Vis spectra and the oxidation and reduction potentials in cyclic voltammograms of NA in aqueous solution, it was found that hydrogen bonding occurred between NA and H2O molecules. Quantum chemistry calculations and AIM analysis further confirmed the existence of hydrogen bonding between H2O molecules and the amide group, the nitrogen atom, and hydrogen atoms on the pyridine ring of NA molecules. In addition, the NMR results demonstrated that the π-π stacking between NA pyridine rings could be formed at higher concentrations.

  13. Human nicotinamide N-methyltransferase gene: Molecular cloning, structural characterization and chromosomal localization

    Energy Technology Data Exchange (ETDEWEB)

    Aksoy, S.; Weinshilboum, R.M. [Mayo Medical School/Mayo Clinic/Mayo Foundation, Rochester, MN (United States); Brandriff, B.F. [Lawrence Livermore National Lab., CA (United States); Ward, A.; Little, P.F.R. [Imperial College of Science, Technology and Medicine, London (United Kingdom)

    1995-10-10

    Genomic DNA clones for nicotinamide N-methyltransferase (NNMT), an enzyme that catalyzes drug and xenobiotic metabolism, were isolated from a human chromosome 11-specific DNA library. Study of one of those clones, when combined with PCR-based experiments performed with human genomic DNA, made it possible to determine the structure of the human NNMT gene. The gene was approximately 16.5 kb in length and consisted of 3 exons and 2 introns. Transcription initiation for the NNMT gene occurred 105-109 nucleotides 5{prime}-upstream from the cDNA translation initiation codon on the basis of the results of both primer extension and 5{prime}-rapid amplification of cDNA ends. NNMT mapped to chromosome band 11q23.1 by fluorescence in situ hybridization.

  14. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: Constraints from ODP Leg 204

    Science.gov (United States)

    Trehu, A.M.; Long, P.E.; Torres, M.E.; Bohrmann, G.; Rack, F.R.; Collett, T.S.; Goldberg, D.S.; Milkov, A.V.; Riedel, M.; Schultheiss, P.; Bangs, N.L.; Barr, S.R.; Borowski, W.S.; Claypool, G.E.; Delwiche, M.E.; Dickens, G.R.; Gracia, E.; Guerin, G.; Holland, M.; Johnson, J.E.; Lee, Y.-J.; Liu, C.-S.; Su, X.; Teichert, B.; Tomaru, H.; Vanneste, M.; Watanabe, M. E.; Weinberger, J.L.

    2004-01-01

    Large uncertainties about the energy resource potential and role in global climate change of gas hydrates result from uncertainty about how much hydrate is contained in marine sediments. During Leg 204 of the Ocean Drilling Program (ODP) to the accretionary complex of the Cascadia subduction zone, we sampled the gas hydrate stability zone (GHSZ) from the seafloor to its base in contrasting geological settings defined by a 3D seismic survey. By integrating results from different methods, including several new techniques developed for Leg 204, we overcome the problem of spatial under-sampling inherent in robust methods traditionally used for estimating the hydrate content of cores and obtain a high-resolution, quantitative estimate of the total amount and spatial variability of gas hydrate in this structural system. We conclude that high gas hydrate content (30-40% of pore space or 20-26% of total volume) is restricted to the upper tens of meters below the seafloor near the summit of the structure, where vigorous fluid venting occurs. Elsewhere, the average gas hydrate content of the sediments in the gas hydrate stability zone is generally <2% of the pore space, although this estimate may increase by a factor of 2 when patchy zones of locally higher gas hydrate content are included in the calculation. These patchy zones are structurally and stratigraphically controlled, contain up to 20% hydrate in the pore space when averaged over zones ???10 m thick, and may occur in up to ???20% of the region imaged by 3D seismic data. This heterogeneous gas hydrate distribution is an important constraint on models of gas hydrate formation in marine sediments and the response of the sediments to tectonic and environmental change. ?? 2004 Published by Elsevier B.V.

  15. Experimental Investigation of Effect on Hydrate Formation in Spray Reactor

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhao

    2015-01-01

    Full Text Available The effects of reaction condition on hydrate formation were conducted in spray reactor. The temperature, pressure, and gas volume of reaction on hydrate formation were measured in pure water and SDS solutions at different temperature and pressure with a high-pressure experimental rig for hydrate formation. The experimental data and result reveal that additives could improve the hydrate formation rate and gas storage capacity. Temperature and pressure can restrict the hydrate formation. Lower temperature and higher pressure can promote hydrate formation, but they can increase production cost. So these factors should be considered synthetically. The investigation will promote the advance of gas storage technology in hydrates.

  16. Prolonged Pulmonary Exposure to Diesel Exhaust Particles Exacerbates Renal Oxidative Stress, Inflammation and DNA Damage in Mice with Adenine-Induced Chronic Renal Failure

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2016-05-01

    Full Text Available Background/Aims: Epidemiological evidence indicates that patients with chronic kidney diseases have increased susceptibility to adverse outcomes related to long-term exposure to particulate air pollution. However, mechanisms underlying these effects are not fully understood. Methods: Presently, we assessed the effect of prolonged exposure to diesel exhaust particles (DEP on chronic renal failure induced by adenine (0.25% w/w in feed for 4 weeks, which is known to involve inflammation and oxidative stress. DEP (0.5m/kg was intratracheally (i.t. instilled every 4th day for 4 weeks (7 i.t. instillation. Four days following the last exposure to either DEP or saline (control, various renal endpoints were measured. Results: While body weight was decreased, kidney weight increased in DEP+adenine versus saline+adenine or DEP. Water intake, urine volume, relative kidney weight were significantly increased in adenine+DEP versus DEP and adenine+saline versus saline. Plasma creatinine and urea increased and creatinine clearance decreased in adenine+DEP versus DEP and adenine+saline versus saline. Tumor necrosis factor α, lipid peroxidation and reactive oxygen species were significantly increased in adenine+DEP compared with either DEP or adenine+saline. The antioxidant calase was significantly decreased in adenine+DEP compared with either adenine+saline or DEP. Notably, renal DNA damage was significantly potentiated in adenine+DEP compared with either adenine+saline or DEP. Similarly, systolic blood pressure was increased in adenine+DEP versus adenine+saline or DEP, and in DEP versus saline. Histological evaluation revealed more collagen deposition, higher number of necrotic cell counts and dilated tubules, cast formation and collapsing glomeruli in adenine+DEP versus adenine+saline or DEP. Conclusion: Prolonged pulmonary exposure to diesel exhaust particles worsen renal oxidative stress, inflammation and DNA damage in mice with adenine-induced chronic

  17. A Hydrate Database: Vital to the Technical Community

    Directory of Open Access Journals (Sweden)

    D Sloan

    2007-06-01

    Full Text Available Natural gas hydrates may contain more energy than all the combined other fossil fuels, causing hydrates to be a potentially vital aspect of both energy and climate change. This article is an overview of the motivation, history, and future of hydrate data management using a CODATA vehicle to connect international hydrate databases. The basis is an introduction to the Gas Hydrate Markup Language (GHML to connect various hydrate databases. The accompanying four articles on laboratory hydrate data by Smith et al., on field hydrate data by L?wner et al., on hydrate modeling by Wang et al., and on construction of a Chinese gas hydrate system by Xiao et al. provide details of GHML in their respective areas.

  18. Cardioprotective Activity of Pongamia pinnata in Streptozotocin-Nicotinamide Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Sachin L. Badole

    2015-01-01

    Full Text Available Pongamia pinnata (L. Pierre has been used in traditional medicine for the treatment for diabetes and metabolic disorder. The aim of this study was to investigate the effect of petroleum ether extract of the stem bark of P. pinnata (known as PPSB-PEE on cardiomyopathy in diabetic rats. Diabetes was induced in overnight fasted Sprague-Dawley rats by using injection of streptozotocin (55 mg/kg, i.p.. Nicotinamide (100 mg/kg, i.p. was administered 20 min before administration of streptozotocin. Rats were divided into group I: nondiabetic, group II: diabetic control (tween 80, 2%; 10 mL/kg, p.o. as vehicle, and group III: PPSB-PEE (100 mg/kg, p.o.. The blood glucose level, ECG, hemodynamic parameters, cardiotoxic and antioxidant biomarkers, and histology of heart were carried out after 4 months after STZ with nicotinamide injection. PPSB-PEE treatment improved the electrocardiographic, hemodynamic changes; LV contractile function; biological markers; oxidative stress parameters; and histological changes in STZ induced diabetic rats. PPSB-PEE (100 mg/kg, p.o. decreased blood glucose level, improved electrocardiographic parameters (QRS, QT, and QTc intervals and hemodynamic parameters (SBP, DBP, EDP, max dP/dt, contractility index, and heart rate, controlled levels of cardiac biomarkers (CK-MB, LDH, and AST, and improved oxidative stress (SOD, MDA, and GSH in diabetic rats. PPSB-PEE is a promising remedy against cardiomyopathy in diabetic rats.

  19. Nicotinamide-functionalized multiwalled carbon nanotubes increase insulin production in pancreatic beta cells via MIF pathway.

    Science.gov (United States)

    Ilie, Ioana; Ilie, Razvan; Mocan, Teodora; Tabaran, Flaviu; Iancu, Cornel; Mocan, Lucian

    2013-01-01

    Recent data in the literature support the role of nicotinamide (NA) as a pharmacologic agent that stimulates pancreatic beta-cells to produce insulin in vitro. There are data showing that carbon nanotubes may be useful in initiating and maintaining cellular metabolic responses. This study shows that administration of multiwalled carbon nanotubes (MWCNTs) functionalized with nicotinamide (NA-MWCNTs) leads to significant insulin production compared with individual administration of NA, MWCNTs, and a control solution. Treatment of 1.4E7 cells for 30 minutes with NA-MWCNTs at concentrations ranging from 1 mg/L to 20 mg/L resulted in significantly increased insulin release (0.18 ± 0.026 ng/mL for 1 mg/L, 0.21 ± 0.024 ng/mL for 5 mg/L, and 0.27 ± 0.028 ng/mL for 20 mg/L). Thus, compared with cells treated with NA only (0.1 ± 0.01 ng/mL for 1 mg/L, 0.12 ± 0.017 ng/mL for 5 mg/L, and 0.17 ± 0.01 ng/mL for 20 mg/L) we observed a significant positive effect on insulin release in cells treated with NA-MWCNTs. The results were confirmed using flow cytometry, epifluorescence microscopy combined with immunochemistry staining, and enzyme-linked immunosorbent assay techniques. In addition, using immunofluorescence microscopy techniques, we were able to demonstrate that MWCNTs enhance insulin production via the macrophage migration inhibitory factor pathway. The application and potential of NA combined with MWCNTs as an antidiabetic agent may represent the beginning of a new chapter in the nanomediated treatment of diabetes mellitus.

  20. Antidiabetic activity of alcoholic root extract of Caesalpinia digyna in streptozotocin-nicotinamide induced diabetic rats

    Institute of Scientific and Technical Information of China (English)

    R Kumar; DK Patel; SK Prasad; K Sairam; S Hemalatha

    2012-01-01

    Objective: The present investigation deals with evaluation of antidiabetic (Type 2) activity of standardized alcoholic root extracts of Caesalpinia digyna in STZ-nicotinamide induced diabetic rats. Methods: Alcoholic root extract of Caesalpinia digyna (ACD), obtained from Soxhlet extractor was standardized by HPLC. Type 2 diabetes was induced by single intraperitoneal injection of nicotinamide (110 mg/kg) followed by streptozotocin (65 mg/kg). Diabetic rats ware administered ACD at doses of 250, 500, and 750 mg/kg (p.o.) and different parameters such as normoglycemic and oral glucose tolerance test were evaluated. The study also included estimations of blood plasma glucose, lipid profile, liver glycogen, body weight and anti-oxidant status in normal and diabetic rats. Results: Normoglycemic rats did not reduce the blood glucose level, whereas oral glucose tolerance test showed better tolerance of glucose in treated rats. The alcoholic extract showed a dose dependent reduction in fasting blood glucose level i.e. more pronounced at 750 mg/kg (P<0.05). ACD showed significant reduction in plasma lipid like triglycerides, total cholesterol and improvement in high density lipo-protein cholesterol (HDL-C) in treated groups. The decrease in lipid peroxides and increase in superoxide dismutase (SOD) and catalase (CAT) in liver clearly showed the antioxidant potential while rat hemi-diaphragm glucose uptake study revealed increases in peripheral glucose uptake of treated rats. Conclusions: Results showed that standardized alcoholic extract of C. digyna possessed significant antidiabetic activity which may be attributed to increase in glycogen storage, hypolipidemic and antioxidant activity thus, rationalizing its traditional use.

  1. Nicotinamide riboside, an unusual, non-typical, substrate of purified purine-nucleoside phosphorylases.

    Science.gov (United States)

    Wielgus-Kutrowska, B; Kulikowska, E; Wierzchowski, J; Bzowska, A; Shugar, D

    1997-01-15

    Nicotinamide 1-beta-D-riboside (Nir), the cationic, reducible moiety of the coenzyme NAD+, has been confirmed as an unusual substrate for purified purine-nucleoside phosphorylase (PNP) from a mammalian source (calf spleen). It is also a substrate of the enzyme from Escherichia coli. The Km values at pH 7, 1.48 mM and 0.62 mM, respectively, were 1-2 orders of magnitude higher than for the natural substrate inosine, but the Vmax values were comparable, 96% and 35% that for Ino. The pseudo first-order rate constants, Vmax/Km, were 1.1% and 2.5% for the calf spleen and E. coli enzymes. The aglycon, nicotinamide, was neither a substrate nor an inhibitor of PNP. Nir was a weak inhibitor of inosine phosphorolysis catalyzed by both enzymes, with Ki values close to the Km for its phosphorolysis, consistent with simple competitive inhibition; this was further confirmed by Dixon plots. Phosphorolysis of the fluorescent positively charged substrate 7-methylguanosine was also inhibited in a competitive manner by both Ino and Nir. Phosphorolysis of Nir by both enzymes was inhibited competitively by several specific inhibitors of calf spleen and E. coli PNP, with Ki values similar to those for inhibition of other natural substrates. The pH dependence of the kinetic constants for the phosphorolysis of Nir and of a variety of other substrates, was extensively investigated, particularly in the alkaline pH range, where Nir exhibited abnormally high substrate activity relative to the reduced reaction rates of both enzymes towards other anionic or neutral substrates. The overall results are discussed in relation to present concepts regarding binding and phosphorolysis of substrates by PNP based on crystallographic data of enzyme-inhibitor complexes, and current studies on enzymatic and nonenzymatic mechanisms of the cleavage of the Nir glycosidic bond.

  2. Waste nitrogen metabolism and excretion in zebrafish embryos: effects of light, ammonia, and nicotinamide.

    Science.gov (United States)

    Bucking, Carol; Lemoine, Christophe M R; Walsh, Patrick J

    2013-08-01

    Bony fish primarily excrete ammonia as adults however the persistence of urea cycle genes may reflect a beneficial role for urea production during embryonic stages in protecting the embryo from toxic effects of ammonia produced from a highly nitrogenous yolk. This study aimed to examine the dynamic scope for changes in rates of urea synthesis and excretion in one such species (zebrafish, Danio rerio) by manipulating the intrinsic developmental rate (by alteration of light:dark cycles), as well as by direct chemical manipulation via ammonia injection (to potentially activate urea production) and nicotinamide exposure (to potentially inhibit urea production). Continuous dark exposure delayed development in embryos as evidenced by delayed appearance of hallmark anatomical features (heartbeat, eye pigmentation, body pigmentation, lateral line, fin buds) at 30 and 48 hr post-fertilization, as well by a lower hatching rate compared to embryos reared in continuous light. Both ammonia and urea excretion were similarly effected and were generally higher in embryos continuously exposed to light. Ammonia injection resulted in significant increases (up to fourfold) of urea N excretion and no changes to ammonia excretion rates along with modest increases in yolk ammonia content during 2-6 hr post-injection. Nicotinamide (an inhibitor of urea synthesis in mammals) reduced the ammonia-induced increase in urea excretion and led to retention of ammonia in the yolk and body of the embryo. Our results indicate that there is a relatively rapid and large scope for increases in urea production/excretion rates in developing embryos. Potential mechanisms for these increases are discussed.

  3. Vibrational dynamics of hydration water in amylose

    CERN Document Server

    Cavatorta, F; Albanese, G; Angelini, N

    2002-01-01

    We present a study of the dynamical properties of hydration water associated with amylose helices, based on low-temperature vibrational spectra collected using the TOSCA inelastic spectrometer at ISIS. The structural constraints of the polysaccharidic chains favour the formation of a high-density structure for water, which has been suggested by Imberty and Perez on the basis of conformational analysis. According to this model, hydration water can only enter the pores formed by six adjacent helices and completely fills the pores at a hydration level of about 0.27-g water/g dry amylose. Our measurements show that the dynamical behaviour of hydration water is similar to that observed in high-density amorphous ice. (orig.)

  4. ConocoPhillips Gas Hydrate Production Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoderbek, David; Farrell, Helen; Howard, James; Raterman, Kevin; Silpngarmlert, Suntichai; Martin, Kenneth; Smith, Bruce; Klein, Perry

    2013-06-30

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  5. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Thomas Williams; Bjorn Paulsson; Alexander Goertz

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a drilling hazard by the oil and gas industry for years. Drilling engineers working in Russia, Canada and the USA have documented numerous problems, including drilling kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates as a potential energy source agree that the resource potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained from physical samples taken from actual hydrate-bearing rocks. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The project team drilled and continuously cored the Hot Ice No. 1 well on Anadarko-leased acreage beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and used for determining physical characteristics of hydrates and surrounding rock. After the well was logged, a 3D vertical seismic profile (VSP) was recorded to calibrate the shallow geologic section with seismic data and to investigate techniques to better resolve lateral subsurface variations of potential hydrate-bearing strata. Paulsson Geophysical Services, Inc. deployed their 80 level 3C clamped borehole seismic receiver array in the wellbore to record samples every 25 ft. Seismic vibrators were successively positioned at 1185 different surface positions in a circular pattern around the wellbore. This technique generated a 3D image of the subsurface. Correlations were

  6. Hydration states of AFm cement phases

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  7. Polyethylene oxide hydration in grafted layers

    Science.gov (United States)

    Dormidontova, Elena; Wang, Zilu

    Hydration of water soluble polymers is one of the key-factors defining their conformation and properties, similar to biopolymers. Polyethylene oxide (PEO) is one of the most important biomedical-applications polymers and is known for its reverse temperature solubility due to hydrogen bonding with water. As in many practical applications PEO chains are grafted to surfaces, e.g. of nanoparticles or planar surfaces, it is important to understand PEO hydration in such grafted layers. Using atomistic molecular dynamic simulations we investigate the details of molecular conformation and hydration of PEO end-grafted to gold surfaces. We analyze polymer and water density distribution as a function of distance from the surface for different grafting densities. Based on a detailed analysis of hydrogen bonding between polymer and water in grafted PEO layers, we will discuss the extent of PEO hydration and its implication for polymer conformation, mobility and layer properties. This research is supported by NSF (DMR-1410928).

  8. Formulating formation mechanism of natural gas hydrates.

    Science.gov (United States)

    Palodkar, Avinash V; Jana, Amiya K

    2017-07-25

    A large amount of energy, perhaps twice the total amount of all other hydrocarbon reserves combined, is trapped within gas hydrate deposits. Despite emerging as a potential energy source for the world over the next several hundred years and one of the key factors in causing future climate change, gas hydrate is poorly known in terms of its formation mechanism. To address this issue, a mathematical formulation is proposed in the form of a model to represent the physical insight into the process of hydrate growth that occurs on the surface and in the irregular nanometer-sized pores of the distributed porous particles. To evaluate the versatility of this rigorous model, the experimental data is used for methane (CH4) and carbon dioxide (CO2) hydrates grown in different porous media with a wide range of considerations.

  9. Hydrate Control for Gas Storage Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  10. Quantifying hydrate formation and kinetic inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, E.D.; Subramanian, S.; Matthews, P.N.; Lederhos, J.P.; Khokhar, A.A. [Colorado School of Mines, Golden, CO (United States). Center for Hydrate Research

    1998-08-01

    In the Prausnitz tradition, molecular and macroscopic evidence of hydrate formation and kinetic inhibition is presented. On the microscopic level, the first Raman spectra are presented for the formation of both uninhibited and inhibited methane hydrates with time. This method has the potential to provide a microscopic-based kinetics model. Three macroscopic aspects of natural gas hydrate kinetic inhibition are also reported: (1) The effect of hydrate dissociation residual structures was measured, which has application in decreasing the time required for subsequent formation. (2) The performance of a kinetic inhibitor (poly(N-vinylcaprolactam) or PVCap) was measured and correlated as a function of PVCap molecular weight and concentrations of PVCap, methanol, and salt in the aqueous phase. (3) Long-duration test results indicated that the use of PVCap can prevent pipeline blockage for a time exceeding the aqueous phase residence time in some gas pipelines.

  11. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  12. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2004-11-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained

  13. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained

  14. Experimental Dissociation of Methane Hydrates Through Depressurization

    Science.gov (United States)

    Borgfeldt, T.; Flemings, P. B.; Meyer, D.; You, K.

    2015-12-01

    We dissociated methane hydrates by stepwise depressurization. The initial hydrates were formed by injecting gas into a cylindrical sample of brine-saturated, coarse-grained sand at hydrate-stable conditions with the intention of reaching three-phase equilibrium. The sample was initially at 1°C with a pore pressure of 1775 psi and a salinity of 7 wt. % NaBr. The depressurization setup consisted of one pump filled with tap water attached to the confining fluid port and a second pump attached to the inlet port where the methane was injected. Depressurization was conducted over sixteen hours at a constant temperature of 1°C. The pore pressure was stepwise reduced from 1775 psi to atmospheric pressure by pulling known volumes of gas from the sample. After each extraction, we recorded the instantaneous and equilibrium pore pressure. 0.503 moles of methane were removed from the sample. The pore pressure decreased smoothly and nonlinearly with the cumulative gas withdrawn from the sample. We interpret that hydrate began to dissociate immediately with depressurization, and it continued to dissociate when the pressure decreased below the three-phase pressure for 1°C and 0 wt. % salinity. Two breaks in slope in the pressure vs. mass extracted data are bounded by smooth, nonlinear curves with differing slopes on either side. We attribute the breaks to dissociation of three zones of hydrate concentration. We created a box model to simulate the experimental behavior. For a 10% initial gas saturation (estimated from the hydrate formation experiment and based on mass conservation), an initial hydrate saturation of 55% is required to match the total methane extracted from the sample. Future experiments will be conducted over a longer timespan while monitoring hydrate dissociation with CT imaging throughout the process.

  15. Hydration of polyethylene glycol-grafted liposomes.

    OpenAIRE

    Tirosh, O; Barenholz, Y.; Katzhendler, J; Priev, A

    1998-01-01

    This study aimed to characterize the effect of polyethylene glycol of 2000 molecular weight (PEG2000) attached to a dialkylphosphatidic acid (dihexadecylphosphatidyl (DHP)-PEG2000) on the hydration and thermodynamic stability of lipid assemblies. Differential scanning calorimetry, densitometry, and ultrasound velocity and absorption measurements were used for thermodynamic and hydrational characterization. Using a differential scanning calorimetry technique we showed that each molecule of PEG...

  16. Exploitation of subsea gas hydrate reservoirs

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2016-04-01

    Natural gas hydrates are considered to be a potential energy resource in the future. They occur in permafrost areas as well as in subsea sediments and are stable at high pressure and low temperature conditions. According to estimations the amount of carbon bonded in natural gas hydrates worldwide is two times larger than in all known conventional fossil fuels. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e.g. depressurization and/or injection of carbon dioxide) is numerically studied in the frame of the German research project »SUGAR«. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into a numerical model. The physics of the process leads to strong non-linear couplings between hydraulic fluid flow, hydrate dissociation and formation, hydraulic properties of the sediment, partial pressures and seawater solution of components and the thermal budget of the system described by the heat equation. This paper is intended to provide an overview of the recent development regarding the production of natural gas from subsea gas hydrate reservoirs. It aims at giving a broad insight into natural gas hydrates and covering relevant aspects of the exploitation process. It is focused on the thermodynamic principles and technological approaches for the exploitation. The effects occurring during natural gas production within hydrate filled sediment layers are identified and discussed by means of numerical simulation results. The behaviour of relevant process parameters such as pressure, temperature and phase saturations is described and compared for different strategies. The simulations are complemented by calculations for different safety relevant problems.

  17. Preservation of methane hydrate at 1 atm

    Science.gov (United States)

    Stern, L.A.; Circone, S.; Kirby, S.H.; Durham, W.B.

    2001-01-01

    A "pressure-release" method that enables reproducible bulk preservation of pure, porous, methane hydrate at conditions 50 to 75 K above its equilibrium T (193 K) at 1 atm is refined. The amount of hydrate preserved by this method appears to be greatly in excess of that reported in the previous citations, and is likely the result of a mechanism different from ice shielding.

  18. Surfactant effects on SF6 hydrate formation.

    Science.gov (United States)

    Lee, Bo Ram; Lee, Ju Dong; Lee, Hyun Ju; Ryu, Young Bok; Lee, Man Sig; Kim, Young Seok; Englezos, Peter; Kim, Myung Hyun; Kim, Yang Do

    2009-03-01

    Sulfur hexafluoride (SF(6)) has been widely used in a variety of industrial processes, but it is one of the most potent greenhouse gases. For this reason, it is necessary to separate or collect it from waste gas streams. One separation method is through hydrate crystal formation. In this study, SF(6) hydrate was formed in aqueous surfactant solutions of 0.00, 0.01, 0.05, 0.15 and 0.20 wt% to investigate the effects of surfactants on the hydrate formation rates. Three surfactants, Tween 20 (Tween), sodium dodecyl sulfate (SDS) and linear alkyl benzene sulfonate (LABS), were tested in a semi-batch stirred vessel at the constant temperature and pressures of 276.2 K and 0.78 MPa, respectively. All surfactants showed kinetic promoter behavior for SF(6) hydrate formation. It was also found that SF(6) hydrate formation proceeded in two stages with the second stage being the most rapid. In situ Raman spectroscopy analysis revealed that the increased gas consumption rate with the addition of surfactant was possibly due to the increased gas filling rate in the hydrate cavity.

  19. In Situ Raman Analyses of Natural Gas and Gas Hydrates at Hydrate Ridge, Oregon

    Science.gov (United States)

    Peltzer, E. T.; White, S. N.; Dunk, R. M.; Brewer, P. G.; Sherman, A. D.; Schmidt, K.; Hester, K. C.; Sloan, E. D.

    2004-12-01

    During a July 2004 cruise to Hydrate Ridge, Oregon, MBARI's sea-going laser Raman spectrometer was used to obtain in situ Raman spectra of natural gas hydrates and natural gas venting from the seafloor. This was the first in situ analysis of gas hydrates on the seafloor. The hydrate spectra were compared to laboratory analyses performed at the Center for Hydrate Research, Colorado School of Mines. The natural gas spectra were compared to MBARI gas chromatography (GC) analyses of gas samples collected at the same site. DORISS (Deep Ocean Raman In Situ Spectrometer) is a laboratory model laser Raman spectrometer from Kaiser Optical Systems, Inc modified at MBARI for deployment in the deep ocean. It has been successfully deployed to depths as great as 3600 m. Different sampling optics provide flexibility in adapting the instrument to a particular target of interest. An immersion optic was used to analyze natural gas venting from the seafloor at South Hydrate Ridge ( ˜780 m depth). An open-bottomed cube was placed over the vent to collect the gas. The immersion optic penetrated the side of the cube as did a small heater used to dissociate any hydrate formed during sample collection. To analyze solid hydrates at both South and North Hydrate Ridge ( ˜590 m depth), chunks of hydrate were excavated from the seafloor and collected in a glass cylinder with a mesh top. A stand-off optic was used to analyze the hydrate inside the cylinder. Due to the partial opacity of the hydrate and the small focal volume of the sampling optic, a precision underwater positioner (PUP) was used to focus the laser spot onto the hydrate. PUP is a stand-alone system with three degrees-of-freedom, capable of moving the DORISS probe head with a precision of 0.1 mm. In situ Raman analyses of the gas indicate that it is primarily methane. This is verified by GC analyses of samples collected from the same site. Other minor constituents (such as CO2 and higher hydrocarbons) are present but may be in

  20. Using magnetic resonance imaging to monitor CH4 hydrate formation and spontaneous conversion of CH4 hydrate to CO2 hydrate in porous media.

    Science.gov (United States)

    Baldwin, Bernard A; Stevens, Jim; Howard, James J; Graue, Arne; Kvamme, Bjorn; Aspenes, Erick; Ersland, Geir; Husebø, Jarle; Zornes, David R

    2009-06-01

    Magnetic resonance imaging was used to monitor and quantify methane hydrate formation and exchange in porous media. Conversion of methane hydrate to carbon dioxide hydrate, when exposed to liquid carbon dioxide at 8.27 MPa and approximately 4 degrees C, was experimentally demonstrated with MRI data and verified by mass balance calculations of consumed volumes of gases and liquids. No detectable dissociation of the hydrate was measured during the exchange process.

  1. Controls on Gas Hydrate Formation and Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Miriam Kastner; Ian MacDonald

    2006-03-03

    The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both

  2. Solid state tungsten oxide hydrate/tin oxide hydrate electrochromic device prepared by electrochemical reactions

    Science.gov (United States)

    Nishiyama, Kentaro; Matsuo, Ryo; Sasano, Junji; Yokoyama, Seiji; Izaki, Masanobu

    2017-03-01

    The solid state electrochromic device composed of tungsten oxide hydrate (WO3(H2O)0.33) and tin oxide hydrate (Sn(O,OH)) has been constructed by anodic deposition of WO3(H2O)0.33 and Sn(O,OH) layers and showed the color change from clear to blue by applying voltage through an Au electrode.

  3. Kinetic studies of gas hydrate formation with low-dosage hydrate inhibitors

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Pipeline blockage by gas hydrates is a serious problem in the petroleum industry.Low-dosage inhibitors have been developed for its cost-effective and environmentally acceptable characteristics.In a 1.072-L reactor with methane,ethane and propane gas mixture under the pressure of about 8.5 MPa at 4 °C,hydrate formation was investigated with low-dosage hydrate inhibitors PVP and GHI1,the change of the compressibility factor and gas composition in the gas phase was analyzed,the gas contents in hydrates were compared with PVP and GHI1 added,and the inhibition mechanism of GHI1 was discussed.The results show that PVP and GHI1 could effectively inhibit the growth of gas hydrates but not nucleation.Under the experimental condition with PVP added,methane and ethane occupied the small cavities of the hydrate crystal unit and the ability of ethane entering into hydrate cavities was weaker than that of methane.GHI1 could effectively inhibit molecules which could more readily form hydrates.The ether and hydroxy group of diethylene glycol monobutyl ether have the responsibility for stronger inhibition ability of GHI1 than PVP.

  4. Dynamic simulation and metabolome analysis of long-term erythrocyte storage in adenine-guanosine solution.

    Directory of Open Access Journals (Sweden)

    Taiko Nishino

    Full Text Available Although intraerythrocytic ATP and 2,3-bisphophoglycerate (2,3-BPG are known as direct indicators of the viability of preserved red blood cells and the efficiency of post-transfusion oxygen delivery, no current blood storage method in practical use has succeeded in maintaining both these metabolites at high levels for long periods. In this study, we constructed a mathematical kinetic model of comprehensive metabolism in red blood cells stored in a recently developed blood storage solution containing adenine and guanosine, which can maintain both ATP and 2,3-BPG. The predicted dynamics of metabolic intermediates in glycolysis, the pentose phosphate pathway, and purine salvage pathway were consistent with time-series metabolome data measured with capillary electrophoresis time-of-flight mass spectrometry over 5 weeks of storage. From the analysis of the simulation model, the metabolic roles and fates of the 2 major additives were illustrated: (1 adenine could enlarge the adenylate pool, which maintains constant ATP levels throughout the storage period and leads to production of metabolic waste, including hypoxanthine; (2 adenine also induces the consumption of ribose phosphates, which results in 2,3-BPG reduction, while (3 guanosine is converted to ribose phosphates, which can boost the activity of upper glycolysis and result in the efficient production of ATP and 2,3-BPG. This is the first attempt to clarify the underlying metabolic mechanism for maintaining levels of both ATP and 2,3-BPG in stored red blood cells with in silico analysis, as well as to analyze the trade-off and the interlock phenomena between the benefits and possible side effects of the storage-solution additives.

  5. Fragmentation of the adenine and guanine molecules induced by electron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Minaev, B. F., E-mail: bfmin@rambler.ru, E-mail: boris@theochem.kth.se [Bohdan Khmelnitsky National University, 18031 Cherkasy (Ukraine); Tomsk State University, 634050 Tomsk (Russian Federation); Shafranyosh, M. I.; Svida, Yu. Yu; Sukhoviya, M. I.; Shafranyosh, I. I. [Uzhgorod National University, 88000 Uzhgorod (Ukraine); Baryshnikov, G. V.; Minaeva, V. A. [Bohdan Khmelnitsky National University, 18031 Cherkasy (Ukraine)

    2014-05-07

    Secondary electron emission is the most important stage in the mechanism of radiation damage to DNA biopolymers induced by primary ionizing radiation. These secondary electrons ejected by the primary electron impacts can produce further ionizations, initiating an avalanche effect, leading to genome damage through the energy transfer from the primary objects to sensitive biomolecular targets, such as nitrogenous bases, saccharides, and other DNA and peptide components. In this work, the formation of positive and negative ions of purine bases of nucleic acids (adenine and guanine molecules) under the impact of slow electrons (from 0.1 till 200 eV) is studied by the crossed electron and molecular beams technique. The method used makes it possible to measure the molecular beam intensity and determine the total cross-sections for the formation of positive and negative ions of the studied molecules, their energy dependences, and absolute values. It is found that the maximum cross section for formation of the adenine and guanine positive ions is reached at about 90 eV energy of the electron beam and their absolute values are equal to 2.8 × 10{sup −15} and 3.2 × 10{sup −15} cm{sup 2}, respectively. The total cross section for formation of the negative ions is 6.1 × 10{sup −18} and 7.6 × 10{sup −18} cm{sup 2} at the energy of 1.1 eV for adenine and guanine, respectively. The absolute cross-section values for the molecular ions are measured and the cross-sections of dissociative ionization are determined. Quantum chemical calculations are performed for the studied molecules, ions and fragments for interpretation of the crossed beams experiments.

  6. In vitro propagation of Calla lily: adenine sulphate and 6-benzilaminopurine

    Directory of Open Access Journals (Sweden)

    Márcia De Nazaré Oliveira Ribeiro

    2014-09-01

    Full Text Available Calla lily [Zantedeschia aethiopica (L. Spreng.] belonging to the Araceae family is appreciated as cut flower and in com­position of gardens. However, the conventional propagation of this plants shows a poor productive. Thus, tissue culture besides allowing fast clonal propagation also provides healthy and uniforms plants. The aim was study the influence of the differents concentrations of 6-benzilaminopurine (BAP and adenine sulphate (AS on in vitro multiplication of Calla lily. The explants were maintained in MS medium added with BAP (0.0, 8.9, 17.8 and 26.7 μM and adenine sulphate (0, 54, 108 and 162 μM. The plants were transferred to growth room and maintained at 25±1ºC and photoperiod of 16 hours for 60 days, under luminous intensity of 35 μmol m-2 s-1, for a period of 60 days. The experimental design was entirely randomized with four repetitions of three seedlings each, resulting in twelve plants per treatment, each tube with one plant. The statistics analysis showed interactive effects for quantify of BAP and AS for leaves number and fresh mass of the aerial parts. The highest number of leaves (4.8 and fresh mass of aerial parts (0.73 g was obtained with 26.7 μM of BAP combined with 108 μM of AS, highest number of shoots (2.6 was obtained with 22,19 μM of BAP and highest lengh of sprouts (5.0 cm was observed in the absence of BAP. The addition of BAP increased the number of shoots per explant. The use of adenine sulphate in combination with BAP had a positive effect for the accumulation of fresh weight and number of leaves in vitro culture.

  7. Experimental characterization of production behavior accompanying the hydrate reformation in methane hydrate bearing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, T.; Kang, J.M.; Nguyen, H.T. [Seoul National Univ., Seoul (Korea, Republic of); Park, C. [Kangwon National Univ., (Korea, Republic of); Lee, J. [Korea Inst., of Geoscience and Mineral Resources (Korea, Republic of)

    2010-07-01

    This study investigated the production behaviour associated with gas hydrate reformation in methane hydrate-bearing sediment by hot-brine injection. A range of different temperature and brine injection rates were used to analyze the pressure and temperature distribution, the gas production behaviour and the movement of the dissociation front. The study showed that hydrate reformation reduces the production rate considerably at an early time. However, gas production increases during the dissociation, near the outlet because the dissociated methane around the inlet is consumed in reforming the hydrate and increases the hydrate saturation around the outlet. Higher temperature also increases the gas production rate and the speed of the dissociation front. 12 refs., 2 tabs., 4 figs.

  8. The effect of pi-stacking, h-bonding, and electrostatic interactions on the ionization energies of nucleic acid bases: adenine-adenine, thymine-thymine and adenine-thymine dimers

    Energy Technology Data Exchange (ETDEWEB)

    Bravaya, Ksenia B.; Kostko, Oleg; Ahmed, Musahid; Krylov, Anna I.

    2009-09-02

    A combined theoretical and experimental study of the ionized dimers of thymine and adenine, TT, AA, and AT, is presented. Adiabatic and vertical ionization energies(IEs) for monomers and dimers as well as thresholds for the appearance of the protonated species are reported and analyzed. Non-covalent interactions stronglyaffect the observed IEs. The magnitude and the nature of the effect is different for different isomers of the dimers. The computations reveal that for TT, the largestchanges in vertical IEs (0.4 eV) occur in asymmetric h-bonded and symmetric pi- stacked isomers, whereas in the lowest-energy symmetric h-bonded dimer the shiftin IEs is much smaller (0.1 eV). The origin of the shift and the character of the ionized states is different in asymmetric h-bonded and symmetric stacked isomers. Inthe former, the initial hole is localized on one of the fragments, and the shift is due to the electrostatic stabilization of the positive charge of the ionized fragment by thedipole moment of the neutral fragment. In the latter, the hole is delocalized, and the change in IE is proportional to the overlap of the fragments' MOs. The shifts in AAare much smaller due to a less effcient overlap and a smaller dipole moment. The ionization of the h-bonded dimers results in barrierless (or nearly barrierless) protontransfer, whereas the pi-stacked dimers relax to structures with the hole stabilized by the delocalization or electrostatic interactions.

  9. Synthesis and Characterization of Oligodeoxyribonucleotides Modified with 2'-Amino-α-l-LNA Adenine Monomers

    DEFF Research Database (Denmark)

    Andersen, Nicolai K; Anderson, Brooke A; Wengel, Jesper

    2013-01-01

    The development of conformationally restricted nucleotide building blocks continues to attract considerable interest because of their successful use within antisense, antigene, and other gene-targeting strategies. Locked nucleic acid (LNA) and its diastereomer α-l-LNA are two interesting examples...... (ONs) modified with 2'-amino-α-l-LNA adenine monomers W-Z. The synthesis of the target phosphoramidites 1-4 is initiated from pentafuranose 5, which upon Vorbrüggen glycosylation, O2'-deacylation, O2'-activation and C2'-azide introduction yields nucleoside 8. A one-pot tandem Staudinger...

  10. A novel missense adenine nucleotide translocator-1 gene mutation in a Greek adPEO family.

    Science.gov (United States)

    Napoli, L; Bordoni, A; Zeviani, M; Hadjigeorgiou, G M; Sciacco, M; Tiranti, V; Terentiou, A; Moggio, M; Papadimitriou, A; Scarlato, G; Comi, G P

    2001-12-26

    Autosomal dominant progressive external ophthalmoplegia (adPEO) is caused by mutations in at least three different genes: ANT1 (chromosome 4q34-35), TWINKLE, and POLG. The ANT1 gene encodes the adenine nucleotide translocator-1 (ANT1). We identified a heterozygous T293C mutation of the ANT1 gene in a Greek family with adPEO. The resulting leucine to proline substitution likely modifies the secondary structure of the ANT1 protein. ANT1 gene mutations may account for adPEO in families with different ethnic backgrounds.

  11. Adenine arabinoside inhibition of adenovirus replication enhanced by an adenosine deaminase inhibitor.

    Science.gov (United States)

    Wigand, R

    1979-01-01

    The inhibition of adenovirus multiplication by adenine arabinoside was determined by yield reduction in one-step multiplication cycle. Inhibition was greatly enhanced by an adenosine deaminase inhibitor (2-deoxycoformycin) in concentrations down to 10 ng/ml. Adenovirus types from four subgroups showed similar results. However, the enhancing effect of adenosine deaminase inhibitor was great in HeLa cells, moderate in human fibroblasts, and negligible in Vero cells. This difference could be explained by different concentrations of adenosine deaminase found in cell homogenates.

  12. Gas-phase spectroscopy of protonated adenine, adenosine 5′-monophosphate and monohydrated ions

    DEFF Research Database (Denmark)

    Pedersen, S.O.; Støchkel, K.; Byskov, C.S.

    2013-01-01

    Microsolvation of chromophore ions commonly has large effects on their electronic structure and as a result on their optical absorption spectra. Here spectroscopy of protonated adenine (AdeH+) and its complex with one water molecule isolated in vacuo was done using a home-built mass spectrometer...... in combination with a tuneable pulsed laser system. Experiments also included the protonated adenosine 5′-monophosphate nucleotide (AMPH+). In the case of bare AdeH+ ions, one-photon absorption leads to four dominant fragment ions corresponding to ammonium and ions formed after loss of either NH3, HCN, or NH2CN...

  13. Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C.; Robertson, D.E.; Ahmad, M. [Univ. of Pennsylvania, Philadelphia, PA (United States)] [and others

    1995-08-18

    The Arabidopsis thaliana HY4 gene encodes CRY1, a 75-kilodalton flavoprotein mediating blue light-dependent regulation of seedling development. CRY1 is demonstrated here to noncovalently bind stoichiometric amounts of flavin adenine dinucleotide (FAD). The redox properties of FAD bound by CRY1 include an unexpected stability of the neutral radical flavosemiquinone (FADH{center_dot}). The absorption properties of this flavosemiquinone provide a likely explanation for the additional sensitivity exhibited by CRY1-mediated responses in the green region of the visible spectrum. Despite the sequence homology to microbial DNA photolyases, CRY1 was found to have no detectable photolyase activity. 27 refs., 4 figs.

  14. Authigenic gypsum found in gas hydrate-associated sediments from Hydrate Ridge, the eastern North Pacific

    Institute of Scientific and Technical Information of China (English)

    WANG; Jiasheng; Erwin; Suess; Dirk; Rickert

    2004-01-01

    Characteristic gypsum micro-sphere and granular mass were discovered by binocular microscope in the gas hydrate-associated sediments at cores SO143-221 and SO143/TVG40-2A respectively on Hydrate Ridge of Cascadia margin, the eastern North Pacific. XRD patterns and EPA analyses show both micro-sphere and granular mass of the crystals have the typical peaks and the typical main chemical compositions of gypsum, although their weight percents are slightly less than the others in the non-gas hydrate-associated marine regions. SEM pictures show that the gypsum crystals have clear crystal boundaries, planes, edges and cleavages of gypsum in form either of single crystal or of twin crystals. In view of the fact that there are meanwhile gas hydrate-associated authigenic carbonates and SO42(-rich pore water in the same sediment cores, it could be inferred reasonably that the gypsums formed also authigenically in the gas hydrate-associated environment too, most probably at the interface between the downward advecting sulfate-rich seawater and the below gas hydrate, which spilled calcium during its formation on Hydrate Ridge. The two distinct forms of crystal intergrowth, which are the granular mass of series single gypsum crystals at core SO143/TVG40-2A and the microsphere of gypsum crystals accompanied with detrital components at core SO143-221 respectively, indicate that they precipitated most likely in different interstitial water dynamic environments. So, the distinct authigenic gypsums found in gas hydrate-associated sediments on Hydrate Ridge could also be believed as one of the parameters which could be used to indicate the presence of gas hydrate in an unknown marine sediment cores.

  15. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent

    Science.gov (United States)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2015-01-01

    The vanadyl(IV) adenine complex; [VO(Adn)2]ṡSO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes.

  16. Comparative study between transcriptionally- and translationally-acting adenine riboswitches reveals key differences in riboswitch regulatory mechanisms.

    Directory of Open Access Journals (Sweden)

    Jean-François Lemay

    2011-01-01

    Full Text Available Many bacterial mRNAs are regulated at the transcriptional or translational level by ligand-binding elements called riboswitches. Although they both bind adenine, the adenine riboswitches of Bacillus subtilis and Vibrio vulnificus differ by controlling transcription and translation, respectively. Here, we demonstrate that, beyond the obvious difference in transcriptional and translational modulation, both adenine riboswitches exhibit different ligand binding properties and appear to operate under different regulation regimes (kinetic versus thermodynamic. While the B. subtilis pbuE riboswitch fully depends on co-transcriptional binding of adenine to function, the V. vulnificus add riboswitch can bind to adenine after transcription is completed and still perform translation regulation. Further investigation demonstrates that the rate of transcription is critical for the B. subtilis pbuE riboswitch to perform efficiently, which is in agreement with a co-transcriptional regulation. Our results suggest that the nature of gene regulation control, that is transcription or translation, may have a high importance in riboswitch regulatory mechanisms.

  17. Simultaneous Determination of Adenine and Guanine Using Cadmium Selenide Quantum Dots-Graphene Oxide Nanocomposite Modified Electrode.

    Science.gov (United States)

    Kalaivani, Arumugam; Narayanan, Sangilimuthu Sriman

    2015-06-01

    A novel electrochemical sensor was fabricated by immobilizing Cadmium Selenide Quantum Dots (CdSe QDs)-Graphene Oxide (GO) nanocomposite on a paraffin wax impregnated graphite electrode (PIGE) and was used for the simultaneous determination of adenine and guanine. The CdSe QDs-GO nanocomposite was prepared by ultrasonication and was characterized with spectroscopic and microscopic techniques. The nanocomposite modified electrode was characterized by cyclic voltammetry (CV). The modified electrode showed excellent electrocatalytic activity towards the oxidative determination of adenine and guanine with a good peak separation of 0.31 V. This may be due to the high surface area and fast electron transfer kinetics of the nanocomposite. The modified electrode exhibited wide linear ranges from 0.167 μM to 245 μM for Guanine and 0.083 μM to 291 μM for Adenine with detection limits of 0.055 μM Guanine and 0.028 μM of Adenine (S/N = 3) respectively. Further, the modified electrode was used for the quantitative determination of adenine and guanine in herring sperm DNA with satisfactory results. The modified electrode showed acceptable selectivity, reproducibility and stability under optimal conditions.

  18. CeO{sub 2} nanoparticles decorated multi-walled carbon nanotubes for electrochemical determination of guanine and adenine

    Energy Technology Data Exchange (ETDEWEB)

    Wei Yan [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China); Department of Chemistry, Wannan Medical College, Wuhu 241002 (China); Huang Qinan [Department of Chemistry, Wannan Medical College, Wuhu 241002 (China); Li Maoguo [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China); Huang Xingjiu [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Fang Bin, E-mail: binfang_47@yahoo.com.cn [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China); Wang Lun, E-mail: wanglun@mail.ahnu.edu.cn [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China)

    2011-10-01

    Sub-10 nm CeO{sub 2} nanoparticles decorated multi-walled carbon nanotubes has been constructed for electrochemial determination of guanine and adenine. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to characterize the nanoparticles CeO{sub 2}/MWCNTs. Electrochemical impedance spectroscopy (EIS) was used to characterize the electrode modifying process. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to study the electrocatalytic activity toward the electrochemical oxidation of guanine and adenine. The detection limit (S/N = 3) for adenine and guanine was found to be 20 and 10 nM, respectively. The obtained sensitivity toward guanine and adenine was 1.26 and 1.13 {mu}A/{mu}M in the linear concentration range 5-50 {mu}M and 5-35 {mu}M, respectively. These results demonstrate that the carbon nanotubes could provide huge locations and facilitate the adsorptive accumulation of the guanine and adenine, and the CeO{sub 2} nanoparticles are promising substrates for the development of high-performance electrocatalysts for biosensing.

  19. The effect of hydro alcoholic extract of Juglans regia leaves in streptozotocin-nicotinamide induced diabetic rats.

    Science.gov (United States)

    Mohammadi, Jamshid; Delaviz, Hamdollah; Malekzadeh, Jan Mohammad; Roozbehi, Amrollah

    2012-04-01

    Phytotherapy has been achieved to maintain glycemic control in patients with diabetes mellitus. The present study was conducted to evaluate the antihyperglycemic properties of the Juglans regia leaf extract in streptozotocin-nicotinamide induced diabetic rats. Nicotinamide was injected intraperitonealy (i.p.) 15 min before the injection of Streptozotocin (i.p.). One week after induction of diabetes, oral treatment started with extract of Juglans regia and Metformin and continued for 4 weeks. Fasting blood sugar, body weight, serum lipids and insulin level were measured in different groups. A significant reduction of glucose, HbA1c, total cholesterol and serum triglycerides were detected after 4 weeks in rats treated with Juglans regia leaves compared to the control groups. Thus, Juglans regia extract treatment showed potential hypoglycemic and hypolipidemic effects in type 2 diabetic rats.

  20. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom

  1. Experimental Determination of Refractive Index of Gas Hydrates

    DEFF Research Database (Denmark)

    Bylov, Martin; Rasmussen, Peter

    1997-01-01

    The refractive indexes of methane hydrate and natural gas hydrate have been experimentally determined. The refractive indexes were determined in an indirect manner making use of the fact that two non-absorbing materials will have the same refractive index if they cannot be distinguished visually....... For methane hydrate (structure I) the refractive index was found to be 1.346 and for natural gas hydrate (structure II) it was found to be 1.350. The measurements further suggest that the gas hydrate growth rate increases if the water has formed hydrates before. The induction time, on the other hand, seems...

  2. Complex admixtures of clathrate hydrates in a water desalination method

    Science.gov (United States)

    Simmons, Blake A.; Bradshaw, Robert W.; Dedrick, Daniel E.; Anderson, David W.

    2009-07-14

    Disclosed is a method that achieves water desalination by utilizing and optimizing clathrate hydrate phenomena. Clathrate hydrates are crystalline compounds of gas and water that desalinate water by excluding salt molecules during crystallization. Contacting a hydrate forming gaseous species with water will spontaneously form hydrates at specific temperatures and pressures through the extraction of water molecules from the bulk phase followed by crystallite nucleation. Subsequent dissociation of pure hydrates yields fresh water and, if operated correctly, allows the hydrate-forming gas to be efficiently recycled into the process stream.

  3. First-principles elasticity of monocarboaluminate hydrates

    KAUST Repository

    Moon, J.

    2014-07-01

    The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.

  4. Interfacial phenomena in gas hydrate systems.

    Science.gov (United States)

    Aman, Zachary M; Koh, Carolyn A

    2016-03-21

    Gas hydrates are crystalline inclusion compounds, where molecular cages of water trap lighter species under specific thermodynamic conditions. Hydrates play an essential role in global energy systems, as both a hinderance when formed in traditional fuel production and a substantial resource when formed by nature. In both traditional and unconventional fuel production, hydrates share interfaces with a tremendous diversity of materials, including hydrocarbons, aqueous solutions, and inorganic solids. This article presents a state-of-the-art understanding of hydrate interfacial thermodynamics and growth kinetics, and the physiochemical controls that may be exerted on both. Specific attention is paid to the molecular structure and interactions of water, guest molecules, and hetero-molecules (e.g., surfactants) near the interface. Gas hydrate nucleation and growth mechanics are also presented, based on studies using a combination of molecular modeling, vibrational spectroscopy, and X-ray and neutron diffraction. The fundamental physical and chemical knowledge and methods presented in this review may be of value in probing parallel systems of crystal growth in solid inclusion compounds, crystal growth modifiers, emulsion stabilization, and reactive particle flow in solid slurries.

  5. Combination of hydrotropic nicotinamide with nanoparticles for enhancing tacrolimus percutaneous delivery

    Directory of Open Access Journals (Sweden)

    Pan W

    2016-08-01

    Full Text Available Wenhui Pan, Mengyao Qin, Guoguang Zhang, Yueming Long, Wenyi Ruan, Jingtong Pan, Zushuai Wu, Tao Wan, Chuanbin Wu, Yuehong Xu Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China Abstract: Tacrolimus (FK506, an effective immunosuppressant for treating inflammatory skin diseases, hardly penetrates into and through the skin owing to its high hydrophobicity and molecular weight. The aim of this study was to develop a hybrid system based on nicotinamide (NIC and nanoparticles (NPs encapsulating FK506, such as FK506–NPs–NIC, for facilitating percutaneous delivery, which exploited virtues of both NIC and NPs to obtain the synergetic effect. Solubility and percutaneous permeation studies were carried out. The results showed that NIC could increase the solubility and permeability of FK506 and that 20% (w/v NIC presented higher FK506 permeability and was thus chosen as the hydrotropic solution to solubilize FK506 and prepare FK506–NPs–NIC. Hyaluronic acid (HA was chemically conjugated with cholesterol (Chol to obtain amphiphilic conjugate of HA–Chol, which self-assembled NPs in 20% NIC solution containing FK506. The particle size, zeta potential, and morphology of NPs were characterized. The encapsulation efficiency and in vitro percutaneous permeation of NPs were evaluated in the presence and absence of NIC. The results demonstrated that hydrotropic solubilizing FK506 was readily encapsulated into NPs with a higher encapsulation efficiency of 79.2%±4.2%, and the combination of NPs with NIC exhibited a significantly synergistic effect on FK506 deposition within the skin (2.39±0.53 µg/cm2 and penetration through the skin (13.38±2.26 µg/cm2. The effect of the combination of NPs with NIC on drug permeation was further visualized by confocal laser scanning microscope through in vivo permeation studies, and the results confirmed that NPs–NIC synergistically enhanced

  6. Nicotinamide-functionalized multiwalled carbon nanotubes increase insulin production in pancreatic beta cells via MIF pathway

    Directory of Open Access Journals (Sweden)

    Ilie I

    2013-08-01

    Full Text Available Ioana Ilie,1 Razvan Ilie,2 Teodora Mocan,3 Flaviu Tabaran,4 Cornel Iancu,4 Lucian Mocan4 1Department of Endocrinology, 2Department of Microbiology, 3Department of Physiology, 4Third Surgery Clinic, Department of Nanomedicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania Abstract: Recent data in the literature support the role of nicotinamide (NA as a pharmacologic agent that stimulates pancreatic beta-cells to produce insulin in vitro. There are data showing that carbon nanotubes may be useful in initiating and maintaining cellular metabolic responses. This study shows that administration of multiwalled carbon nanotubes (MWCNTs functionalized with nicotinamide (NA-MWCNTs leads to significant insulin production compared with individual administration of NA, MWCNTs, and a control solution. Treatment of 1.4E7 cells for 30 minutes with NA-MWCNTs at concentrations ranging from 1 mg/L to 20 mg/L resulted in significantly increased insulin release (0.18 ± 0.026 ng/mL for 1 mg/L, 0.21 ± 0.024 ng/mL for 5 mg/L, and 0.27 ± 0.028 ng/mL for 20 mg/L. Thus, compared with cells treated with NA only (0.1 ± 0.01 ng/mL for 1 mg/L, 0.12 ± 0.017 ng/mL for 5 mg/L, and 0.17 ± 0.01 ng/mL for 20 mg/L we observed a significant positive effect on insulin release in cells treated with NA-MWCNTs. The results were confirmed using flow cytometry, epifluorescence microscopy combined with immunochemistry staining, and enzyme-linked immunosorbent assay techniques. In addition, using immunofluorescence microscopy techniques, we were able to demonstrate that MWCNTs enhance insulin production via the macrophage migration inhibitory factor pathway. The application and potential of NA combined with MWCNTs as an antidiabetic agent may represent the beginning of a new chapter in the nanomediated treatment of diabetes mellitus. Keywords: carbon nanotubes, NA, insulin-producing cells, insulin, macrophage migration inhibitory factor, diabetes mellitus

  7. Myrciaria cauliflora extract improves diabetic nephropathy via suppression of oxidative stress and inflammation in streptozotocin-nicotinamide mice

    OpenAIRE

    Jeng-Dong Hsu; Chia-Chun Wu; Chi-Nan Hung; Chau-Jong Wang; Hui-Pei Huang

    2016-01-01

    Myrciaria cauliflora is a functional food rich in anthocyanins, possessing antioxidative and anti-inflammatory properties. Our previous results demonstrated M. cauliflora extract (MCE) had beneficial effects in diabetic nephropathy (DN) and via the inhibition of Ras/PI3K/Akt and kidney fibrosis-related proteins. The purpose of this study was to assess the benefit of MCE in diabetes associated with kidney inflammation and glycemic regulation in streptozotocin–nicotinamide (STZ/NA)-induced diab...

  8. Influence of Sodium Lauryl Sulfate and Tween 80 on Carbamazepine–Nicotinamide Cocrystal Solubility and Dissolution Behaviour

    OpenAIRE

    Ke Wang; Ning Qiao; Mingzhong Li

    2013-01-01

    The influence of the surfactants of sodium lauryl sulfate (SLS) and Tween 80 on carbamazepine–nicotinamide (CBZ–NIC) cocrystal solubility and dissolution behaviour has been studied in this work. The solubility of the CBZ–NIC cocrystal was determined by measuring the eutectic concentrations of the drug and the coformer. Evolution of the intrinsic dissolution rate (IDR) of the CBZ–NIC cocrystal was monitored by the UV imaging dissolution system during dissolution. Experimental results indicated...

  9. Perfusion changes in the RIF-1 tumour and normal tissues after carbogen and nicotinamide, individually and combined.

    Science.gov (United States)

    Honess, D. J.; Bleehen, N. M.

    1995-01-01

    The strategy of combining carbogen breathing and nicotinamide to overcome chronic and acute hypoxia respectively is being evaluated clinically. The effects of both agents individually and in combination on relative perfusion of 400-700 mm3 RIF-1 tumours and normal tissues were measured by 86Rb extraction. Carbogen breathing alone for 6 min increased relative tumour perfusion by 50-70% compared with control at flow rates of 50 to 200 ml min-1, but the effect was lost at 300 ml min-1. All flow rates also produced similar increases in relative perfusion of lung, of between 36% and 58%, and smaller increases in skin, of between 20% and 34%. The minimum breathing time at 150 ml min-1 to produce a significant increase in relative tumour perfusion was 4.5 min, and the effect was maintained up to 9 min. Nicotinamide alone at 1000 mg kg-1 60 min before assay did not alter relative tumour perfusion. Comparing the combination of nicotinamide with 6 min carbogen breathing at 150 ml min-1 with carbogen breathing alone showed no difference in relative tumour perfusion; increases were of 36% and 42% respectively. Nicotinamide-induced alterations in microcirculation associated with reduction of acute hypoxia have therefore not been detected by 86Rb extraction. The perfusion-enhancing effect of carbogen in this tumour is probably an important component of its radiosensitising ability, in addition to its known ability to increase the oxygen-carrying capacity of the blood, and should be taken into consideration in clinical studies. PMID:7779707

  10. Stability evaluation of hydrate-bearing sediments during thermally-driven hydrate dissociation

    Science.gov (United States)

    Kwon, T.; Cho, G.; Santamarina, J.; Kim, H.; Lee, J.

    2009-12-01

    Hydrate-bearing sediments may destabilize spontaneously as part of geological processes, unavoidably during petroleum drilling/production operations, or intentionally as part of gas extraction from the hydrate itself. In all cases, high pore fluid pressure generation is anticipated during hydrate dissociation. This study examined how thermal changes destabilize gas hydrate-bearing sediments. First, an analytical formulation was derived for predicting fluid pressure evolution in hydrate-bearing sediments subjected to thermal stimulation without mass transfer. The formulation captures the self-preservation behavior, calculates the hydrate and free gas quantities during dissociation, considering effective stress-controlled sediment compressibility and gas solubility in aqueous phase. Pore fluid pressure generation is proportional to the initial hydrate fraction and the sediment bulk stiffness; is inversely proportional to the initial gas fraction and gas solubility; and is limited by changes in effective stress that cause the failure of the sediment. Second, the analytical formulation for hydrate dissociation was incorporated as a user-defined function into a verified finite difference code (FLAC2D). The underlying physical processes of hydrate-bearing sediments, including hydrate dissociation, self-preservation, pore pressure evolution, gas dissolution, and sediment volume expansion, were coupled with the thermal conduction, pore fluid flow, and mechanical response of sediments. We conducted the simulations for a duration of 20 years, assuming a constant-temperature wellbore transferred heat to the surrounding hydrate-bearing sediments, resulting in dissociation of methane hydrate in the well vicinity. The model predicted dissociation-induced excess pore fluid pressures which resulted in a large volume expansion and plastic deformation of the sediments. Furthermore, when the critical stress was reached, localized shear failure of the sediment around the borehole was

  11. L-glutamine supplementation prevents the development of experimental diabetic cardiomyopathy in streptozotocin-nicotinamide induced diabetic rats.

    Directory of Open Access Journals (Sweden)

    Sachin L Badole

    Full Text Available The objective of the present investigation was to evaluate the effect of L-glutamine on cardiac myopathy in streptozotocin-nicotinamide induced diabetic rats. Diabetes was induced in overnight fasted Sprague Dawely rats by using intraperitonial injection of streptozotocin (55 mg/kg. Nicotinamide (100 mg/kg, i.p. was administered 20 min before administration of streptozotocin. Experimental rats were divided into Group I: non-diabetic control (distilled water; 10 ml/kg, p.o., II: diabetic control (distilled water, 10 ml/kg, p.o., III: L-glutamine (500 mg/kg, p.o. and IV: L-glutamine (1000 mg/kg, p.o.. All groups were diabetic except group I. The plasma glucose level, body weight, electrocardiographic abnormalities, hemodynamic changes and left ventricular contractile function, biological markers of cardiotoxicity, antioxidant markers were determined after 4 months after STZ with nicotinamide injection. Histopathological changes of heart tissue were carried out by using H and E stain. L-glutamine treatment improved the electrocardiographic, hemodynamic changes; LV contractile function; biological markers; oxidative stress parameters and histological changes in STZ induced diabetic rats. Results from the present investigation demonstrated that L-glutamine has seemed a cardioprotective activity.

  12. Synthesis, characterization, crystal structure and antimicrobial studies of a novel Cu(II) complex based on itaconic acid and nicotinamide

    Science.gov (United States)

    Tella, Adedibu C.; Owalude, Samson O.; Ajibade, Peter A.; Simon, Nzikahyel; Olatunji, Sunday J.; Abdelbaky, Mohammed S. M.; Garcia-Granda, Santiago

    2016-12-01

    A novel complex was synthesized from Cu(II), nicotinamide and itaconic acid and is formulated as [Cu(C5H4O4)2(C6H6N2O)2(H2O)2·2(H2O)] (1). The compound was characterized by elemental analysis, FTIR spectroscopy, UV-Vis and single crystal X-ray diffraction. The complex crystallizes in the triclinic P-1 space group, with a = 7.5111(2) Å, b = 9.8529(3) Å, c = 10.5118(4) Å, α = 116.244(3)°, β = 90.291(3)°, γ = 103.335(3)°, V = 673.81(4) Å3, Z = 1.The octahedral geometry around the copper(II) ion is of the form CuN2O4 consisting of two molecules of nicotinamide acting as monodentate ligand through the nitrogen atoms, two molecules itaconate ligand and two coordinated water molecules each coordinating through the oxygen atoms. The structure of 1 showed infinite chains build up linking the molecules together via strong Osbnd H⋯O and Nsbnd H⋯O intermolecular hydrogen bonds generating a two dimensional network sheet along c axis. The antimicrobial study of the synthesized complex 1 was investigated and showed higher antibacterial activity against all the organisms comparing with Copper(II) nicotinamide 2 and Copper(II) itaconate 3.

  13. Antidiabetic activity of alcoholic leaves extract ofAlangium lamarckii Thwaites on streptozotocin-nicotinamide induced type 2 diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Rajesh Kumar; Dinesh Kumar Pate; Satyendra Kuldip Prasad; Kirshnamurthy Sairam; Siva Hemalatha

    2011-01-01

    Objective:To investigate antidiabetic potential of alcoholic leaves extract ofAlangium lamarckii (A. lamarckii) on streptozotocin-nicotinamide induced type2 diabetic rats.Methods: Oral glucose tolerance test was done by inducing hyperglycemic state via administration of glucose in water (2 g/kg). Single dose of alcoholic leaves extract ofA. lamarckii(250and500 mg/kg,p.o.) were administered to normoglycemic, hyperglycemic rats. Type 2 diabetes was induced by single intraperitoneal injection of nicotinamide (110 mg/kg) followed by streptozotocin (65 mg/kg). The study also included estimations of blood plasma glucose, lipid profile, liver glycogen, body weight and antioxidant status in normal and diabetic rats.Results: Admistration of alcoholic extract ofA. lamarckii at two dosage250 and500 mg/kg,p.o. did not showed any significant change in blood glucose level of normoglycemic rats (P>0.05), whereas, oral glucose tolerance test depicted reduction in blood glucose level (P<0.05). The streptozotocin-nicotinamide induced diabetic rats, significantly decreased the blood plasma glucose level (P<0.001) comparable to glibenclamide (10 mg/kg), restored the lipid profile and showed improvement in liver glycogen, body weight and antioxidant status in diabetic rats.Conclusions: Present finding demonstrated the significant antidiabetic activity of alcoholic leaves extract ofA. lamarckii.

  14. A case of vesicular cutaneous lupus erythematosus in a Border collie successfully treated with topical tacrolimus and nicotinamide-tetracycline.

    Science.gov (United States)

    Lehner, Georg M; Linek, Monika

    2013-12-01

    Canine vesicular cutaneous lupus erythematosus (VCLE) is an autoimmune skin disease of the Shetland sheepdog and rough collie, which manifests as an erosive dermatitis of sparsely haired skin of the ventrum and concave pinnae. Reported treatment consists of immunosuppression with glucocorticoids alone or in combination with azathioprine, but successful treatment is unpredictable. To report on the treatment of VCLE in a Border collie dog with topical 0.1% tacrolimus and nicotinamide in combination with tetracycline. An 8-year-old male neutered Border collie was presented with multiple coalescing erosions on the ventral abdomen, groin and axillae and ulceration on the oral commissures. Clinical presentation, routine diagnostics, histology and immunohistochemistry were consistent with VCLE. Remission was achieved with topical 0.1% tacrolimus and combination therapy of nicotinamide and tetracycline. This dog responded well to treatment with topical 0.1% tacrolimus, nicotinamide-tetracycline and sun avoidance. Complete remission was achieved after 2.5 months, and the dog was lesion free during a 1 year follow-up period. © 2013 ESVD and ACVD.

  15. Adenine-functionalized Spongy Graphene for Green and High-Performance Supercapacitors

    Science.gov (United States)

    El-Gendy, Dalia M.; Ghany, Nabil A. Abdel; El Sherbini, E. E. Foad; Allam, Nageh K.

    2017-02-01

    A simple method is demonstrated to prepare spongy adenine-functionalized graphene (SFG) as interconnected, porous 3-dimensional (3D) network crinkly sheets. Such 3D network structure provides better contact at the electrode/electrolyte interface and facilitates the charge transfer kinetics. The fabricated SFG was characterized by X-ray diffraction (XRD), FTIR, scanning electron microscopy (FESEM), Raman spectroscopy, thermogravimetric analysis (TGA), UV‑vis absorption spectroscopy, and transmission electron microscopy (TEM). The synthesized materials have been evaluated as supercapacitor materials in 0.5 M H2SO4 using cyclic voltammetry (CV) at different potential scan rates, and galvanostatic charge/discharge tests at different current densities. The SFG electrodes showed a maximum specific capacitance of 333 F/g at scan rate of 1 mV/s and exhibited excellent cycling retention of 102% after 1000 cycles at 200 mV/s. The energy density was 64.42 Wh/kg with a power density of 599.8 W/kg at 1.0 A/g. Those figures of merit are much higher than those reported for graphene-based materials tested under similar conditions. The observed high performance can be related to the synergistic effects of the spongy structure and the adenine functionalization.

  16. DNA adenine methylation of sams1 gene in symbiont-bearing Amoeba proteus.

    Science.gov (United States)

    Jeon, Taeck J

    2008-10-01

    The expression of amoeba sams genes is switched from sams1 to sams2 when amoebae are infected with Legionella jeonii. To elucidate the mechanism for the inactivation of host sams1 gene by endosymbiotic bacteria, methylation states of the sams1 gene of D and xD amoebae was compared in this study. The sams1 gene of amoebae was methylated at an internal adenine residue of GATC site in symbiont-bearing xD amoebae but not in symbiont-free D amoebae, suggesting that the modification might have caused the inactivation of sams1 in xD amoebae. The sams1 gene of xD amoebae was inactivated at the transcriptional level. Analysis of DNA showed that adenine residues in L. jeonii sams were also methylated, implying that L. jeonii bacteria belong to a Dam methylase-positive strain. In addition, both SAM and Met appeared to act as negative regulators for the expression of sams1 whereas the expression of sams2 was not affected in amoebae.

  17. Flavin adenine dinucleotide content of quinone reductase 2: analysis and optimization for structure-function studies.

    Science.gov (United States)

    Leung, Kevin Ka Ki; Litchfield, David W; Shilton, Brian H

    2012-01-01

    Quinone reductase 2 (NQO2) is a broadly expressed enzyme implicated in responses to a number of compounds, including protein kinase inhibitors, resveratrol, and antimalarial drugs. NQO2 includes a flavin adenine dinucleotide (FAD) cofactor, but X-ray crystallographic analysis of human NQO2 expressed in Escherichia coli showed that electron density for the isoalloxazine ring of FAD was weak and there was no electron density for the adenine mononucleotide moiety. Reversed-phase high-performance liquid chromatography (HPLC) of the NQO2 preparation indicated that FAD was not present and only 38% of the protomers contained flavin mononucleotide (FMN), explaining the weak electron density for FAD in the crystallographic analysis. A method for purifying NQO2 and reconstituting with FAD such that the final content approaches 100% occupancy with FAD is presented here. The enzyme prepared in this manner has a high specific activity, and there is strong electron density for the FAD cofactor in the crystal structure. Analysis of NQO2 crystal structures present in the Protein Data Bank indicates that many may have sub-stoichiometric cofactor content and/or contain FMN rather than FAD. This method of purification and reconstitution will help to optimize structural and functional studies of NQO2 and possibly other flavoproteins.

  18. Role of Hydrogen Bonding in the Formation of Adenine Chains on Cu(110 Surfaces

    Directory of Open Access Journals (Sweden)

    Lanxia Cheng

    2016-12-01

    Full Text Available Understanding the adsorption properties of DNA bases on metal surfaces is fundamental for the rational control of surface functionalization leading to the realisation of biocompatible devices for biosensing applications, such as monitoring of particular parameters within bio-organic environments and drug delivery. In this study, the effects of deposition rate and substrate temperature on the adsorption behavior of adenine on Cu(110 surfaces have been investigated using scanning tunneling microscopy (STM and density functional theory (DFT modeling, with a focus on the characterization of the morphology of the adsorbed layers. STM results revealed the formation of one-dimensional linear chains and ladder-like chains parallel to the [110] direction, when dosing at a low deposition rate at room temperature, followed by annealing to 490 K. Two mirror related, well-ordered chiral domains oriented at ±55° with respect to the [110] direction are formed upon deposition on a substrate kept at 490 K. The molecular structures observed via STM are rationalized and qualitatively described on the basis of the DFT modeling. The observation of a variety of ad-layer structures influenced by deposition rate and substrate temperature indicates that dynamic processes and hydrogen bonding play an important role in the self-assembly of adenine on the Cu(110 surface.

  19. Biofabrication of chitosan-silver composite SERS substrates enabling quantification of adenine by a spectroscopic shift

    Energy Technology Data Exchange (ETDEWEB)

    Luo, X L; Bentley, W E [Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, MD 20742 (United States); Buckhout-White, S; Rubloff, G W, E-mail: rubloff@umd.edu [Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742 (United States)

    2011-09-15

    Surface-enhanced Raman scattering (SERS) has grown dramatically as an analytical tool for the sensitive and selective detection of molecules adsorbed on nano-roughened noble metal structures. Quantification with SERS based on signal intensity remains challenging due to the complicated fabrication process to obtain well-dispersed nanoparticles and well-ordered substrates. We report a new biofabrication strategy of SERS substrates that enable quantification through a newly discovered spectroscopic shift resulting from the chitosan-analyte interactions in solution. We demonstrate this phenomenon by the quantification of adenine, which is an essential part of the nucleic acid structure and a key component in pathways which generate signal molecules for bacterial communications. The SERS substrates were fabricated simply by sequential electrodeposition of chitosan on patterned gold electrodes and electroplating of a silver nitrate solution through the chitosan scaffold to form a chitosan-silver nanoparticle composite. Active SERS signals of adenine solutions were obtained in real time from the chitosan-silver composite substrates with a significant concentration-dependent spectroscopic shift. The Lorentzian curve fitting of the dominant peaks suggests the presence of two separate peaks with a concentration-dependent area percentage of the separated peaks. The chitosan-mediated composite SERS substrates can be easily biofabricated on predefined electrodes within microfluidic channels for real-time detection in microsystems.

  20. Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design

    Science.gov (United States)

    Foller Larsen, Anders; Dumat, Blaise; Wranne, Moa S.; Lawson, Christopher P.; Preus, Søren; Bood, Mattias; Gradén, Henrik; Marcus Wilhelmsson, L.; Grøtli, Morten

    2015-07-01

    Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (ɛΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs.