WorldWideScience

Sample records for hydrated nafion membranes

  1. A Molecular Dynamic Simulation of Hydrated Proton Transfer in Perfluorosulfonate Ionomer Membranes (Nafion 117

    Directory of Open Access Journals (Sweden)

    Hong Sun

    2015-01-01

    Full Text Available A molecular dynamic model based on Lennard-Jones Potential, the interaction force between two particles, molecular diffusion, and radial distribution function (RDF is presented. The diffusion of the hydrated ion, triggered by both Grotthuss and vehicle mechanisms, is used to study the proton transfer in Nafion 117. The hydrated ion transfer mechanisms and the effects of the temperature, the water content in the membrane, and the electric field on the diffusion of the hydrated ion are analyzed. The molecular dynamic simulation results are in good agreement with those reported in the literature. The modeling results show that when the water content in Nafion 117 is low, H3O+ is the main transfer ion among the different hydrated ions. However, at higher water content, the hydrated ion in the form of H+(H2O2 is the main transfer ion. It is also found that the negatively charged sulfonic acid group as the fortified point facilitates the proton transfer in Nafion 117 better than the free water molecule. The diffusion of the hydrated ion can be improved by increasing the cell temperature, the water content in Nafion, and the electric field intensity.

  2. Electrochemical impedance spectroscopy of fully hydrated Nafion membranes at high and low hydrogen partial pressures

    International Nuclear Information System (INIS)

    Tsampas, M.N.; Brosda, S.; Vayenas, C.G.

    2011-01-01

    The proton transport mechanism in fully hydrated Nafion 117 membranes was examined via electrochemical impedance spectroscopy (EIS) and steady-state current–potential measurements both in a symmetric H 2 , Pt|Nafion|Pt, H 2 cell and in a H 2 , Pt|Nafion|Pt, air PEM fuel cell with hydrogen partial pressure values, P H 2 , varied between 0.5 kPa and 100 kPa. In agreement with recent studies it is found that for low P H 2 values the steady-state current–potential curves exhibit bistability and regions of positive slope. In these regions the Nyquist plots are found to exhibit negative real part impedance with a large imaginary component, while the Bode plots show a pronounced negative phase shift. These observations are consistent with the mechanism involving two parallel routes of proton conduction in fully hydrated Nafion membranes, one due to proton migration in the aqueous phase, the other due to proton transfer, probably involving tunneling, between adjacent sulfonate groups in narrow pores. The former mechanism dominates at high P H 2 values and the latter dominates in the low P H 2 region where the real part of the impedance is negative.

  3. Water absorption in neutralized Nafion membranes

    International Nuclear Information System (INIS)

    Rodmacq, B.; Roche, E.; Pineri, M.; Escoubez, M.; Duplessix, R.; Eisenberg, A.

    1979-01-01

    In this paper some results are reported about the interactions between water and Nafion neutralized with different cations. The energy of water absorption have been measured in the whole range of relative humidity pressures. Moessbauer spectra permit to get information about the change of environment of the iron atoms during the hydration. Small angle neutron and X ray scattering experiments have then been performed to define a possible phase segregation. From these results a model of clustering in the Nafion membranes is proposed. The neutralized Nafion samples have been obtained by soaking the acid samples in solutions containing the different salts

  4. The effect of membrane thickness on the conductivity of Nafion

    International Nuclear Information System (INIS)

    Tsampas, M.N.; Pikos, A.; Brosda, S.; Katsaounis, A.; Vayenas, C.G.

    2006-01-01

    The conductivity of fully hydrated Nafion 112, 1135, 115 and 117 membranes was measured via ac impedance spectroscopy and steady-state current-potential measurements both in symmetric H 2 , Pt|Nafion|Pt, H 2 and D 2 , Pt|Nafion|Pt, D 2 PEM cells and in H 2 , Pt|Nafion|Pt, air and D 2 , Pt|Nafion|Pt, air PEM fuel cells. In agreement with recent studies, it was found that the conductivity, σ, increases almost linearly with membrane thickness L and also depends exponentially on potential and almost linearly on P H 2 1/2 . These and other observations, including the strong isotope effect obtained upon switching between H 2 and D 2 at the anode, show that the conductivity of Nafion contains two components, one due to proton migration in the aqueous phase, the other due to proton tunneling between adjacent sulfonate groups in narrow pores. The observed near-linear increase of σ with L is consistent with the proton tunneling mechanism but can also be explained by the existence of skin layers with lower conductivity at the ionomer interfaces with the anode and cathode

  5. Correlation of Structural Differences between Nafion/Polyaniline and Nafion/Polypyrrole Composite Membranes and Observed Transport Properties

    International Nuclear Information System (INIS)

    Schwenzer, Birgit; Kim, Soowhan; Vijayakumar, M.; Yang, Zhenguo; Liu, Jun

    2011-01-01

    Polyaniline/Nafion and polypyrrole/Nafion composite membranes, prepared by chemical polymerization, are studied by infrared and nuclear magnetic resonance spectroscopy, and scanning electron microscopy. Differences in vanadium ion diffusion through the membranes and in the membranes area specific resistance are linked to analytical observations that polyaniline and polypyrrole interact differently with Nafion. Polypyrrole, a weakly basic polymer, binds less strongly to the sulfonic acid groups of the Nafion membrane, and thus the hydrophobic polymer aggregates in the center of the Nafion channel rather than on the hydrophilic side chains of Nafion that contain sulfonic acid groups. This results in a drastically elevated membrane resistance and an only slightly decreased vanadium ion permeation compared to a Nafion membrane. Polyaniline on the other hand is a strongly basic polymer, which forms along the sidewalls of the Nafion pores and on the membrane surface, binding tightly to the sulfonic acid groups of Nafion. This leads to a more effective reduction in vanadium ion transport across the polyaniline/Nafion membranes and the increase in membrane resistance is less severe. The performance of selected polypyrrole/Nafion composite membranes is tested in a static vanadium redox cell. Increased coulombic efficiency, compared to a cell employing Nafion, further confirms the reduced vanadium ion transport through the composite membranes.

  6. Nafion/Zeolite nanocomposite membrane for high temperature PEMFCS

    International Nuclear Information System (INIS)

    Chen, Z.

    2009-01-01

    'Full text': The Nafion/Acid Functionalized Zeolite Beta (NAFB) nanocomposite membrane has been successfully prepared by the in situ hydrothermal crystallization method. Acid Functionalized Zeolite Beta (AFB) nanocrystals less than 20 nm were formed and embedded into the Nafion matrix. The physical-chemical properties of all membranes were investigated regarding their tensile strength, water uptake and thermogravimetric analyzer (TGA). The proton conductivity commercial Nafion membrane and the NAFB composite membrane were measured with different relative humidity (RH) at 80 and 120 o C. Compared with the commercial Nafion membrane, the NAFB composite membrane has much higher proton conductivity at 120 o C and reduced RH. The NAFB composite membrane and commercial Nafion membranes were also studied in an H 2 /O 2 PEMFC over a wide range of RH values from 25 to 100% at temperatures of 80 and 120 o C. The NAFB composite membrane showed a pronounced improvement over commercial Nafion membranes when operated at 120 o C and reduced RH. The high performance of the NAFB composite membranes at low RH was attributed to improved water retention due to the presence of absorbed water species within the pores and on the surface of AFB. NAFB composite membranes have the potential for use with high temperature PEMFC. (author)

  7. Nafion-TiO{sub 2} hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs)

    Energy Technology Data Exchange (ETDEWEB)

    Sacca, A.; Carbone, A.; Passalacqua, E. [CNR-ITAE, Via Salita S. Lucia Sopra Contesse, 98126 Messina (Italy); D' Epifanio, A.; Licoccia, S.; Traversa, E. [Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Sala, E.; Traini, F.; Ornelas, R. [Nuvera Fuel Cells, Via Bistolfi 35, 20134 Milan (Italy)

    2005-12-01

    A nanocomposite re-cast Nafion hybrid membrane containing titanium oxide calcined at T=400{sup o}C as an inorganic filler was developed in order to work at medium temperature in polymer electrolyte fuel cells (PEFCs) maintaining a suitable membrane hydration under fuel cell operative critical conditions. Nanometre TiO{sub 2} powder was synthesized via a sol-gel procedure by a rapid hydrolysis of Ti(OiPr){sub 4}. The membrane was prepared by mixing a Nafion-dimethylacetammide (DMAc) dispersion with a 3wt% of TiO{sub 2} powder and casting the mixture by Doctor Blade technique. The resulting film was characterised in terms of water uptake and ion exchange capacity (IEC). The membrane was tested in a single cell from 80 to 130{sup o}C in humidified H{sub 2}/air. The obtained results were compared with the commercial Nafion115 and a home-made recast Nafion membrane. Power density values of 0.514 and 0.256Wcm{sup -2} at 0.56V were obtained at 110 and 130{sup o}C, respectively, for the composite Nafion-Titania membrane. Preliminary tests carried out using steam reforming (SR) synthetic fuel at about 110{sup o}C have highlighted the benefit of the inorganic filler introduction when PEFC operates at medium temperature and with processed hydrogen. (author)

  8. PBI/Nafion/SiO2 hybrid membrane for high-temperature low-humidity fuel cell applications

    International Nuclear Information System (INIS)

    Wang, Liang; Advani, Suresh G.; Prasad, Ajay K.

    2013-01-01

    A novel composite membrane for fuel cell applications was prepared by incorporating SiO 2 in PBI/Nafion resin by the sol–gel method. Polybenzimidazole (PBI) was blended with Nafion to improve the membrane stability. The presence of PBI also improves the dimensional stability of the composite membrane over a wide range of hydration conditions. Being highly hygroscopic, SiO 2 enhances water absorption and retention in the membrane which improves fuel cell performance under low relative humidity conditions. Scanning electron microscopy showed that the PBI and Nafion polymers can be blended uniformly. Energy dispersive X-ray spectroscopy confirmed the presence of SiO 2 in the composite membrane. Thermal gravimetric analysis confirmed the improved thermal stability of the SiO 2 /PBI/Nafion membrane. Tensile strength, water uptake and swelling of the composite membrane were also measured at 60 °C and compared with Nafion. The fuel cell performance of the novel SiO 2 /PBI/Nafion composite membrane at 120 °C and 35% relative humidity significantly improved over a pure Nafion membrane of the same thickness

  9. Nafion/Silicon Oxide Composite Membrane for High Temperature Proton Exchange Membrane Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nafion/Silicon oxide composite membranes were produced via in situ sol-gel reaction of tetraethylorthosilicate (TEOS) in Nafion membranes. The physicochemical properties of the membranes were studied by FT-IR, TG-DSC and tensile strength. The results show that the silicon oxide is compatible with the Nafion membrane and the thermo stability of Nafion/Silicon oxide composite membrane is higher than that of Nafion membrane. Furthermore, the tensile strength of Nafion/Silicon oxide composite membrane is similar to that of the Nafion membrane. The proton conductivity of Nafion/Silicon oxide composite membrane is higher than that of Nafion membrane. When the Nafion/Silicon oxide composite membrane was employed as an electrolyte in H2/O2 PEMFC, a higher current density value (1 000 mA/cm2 at 0.38 V) than that of the Nafion 1135 membrane (100 mA/cm2 at 0.04 V) was obtained at 110 ℃.

  10. Aqua-vanadyl ion interaction with Nafion® membranes

    Directory of Open Access Journals (Sweden)

    Vijayakumar eMurugesan

    2015-03-01

    Full Text Available Lack of comprehensive understanding about the interactions between Nafion membrane and battery electrolytes prevents the straightforward tailoring of optimal materials for redox flow battery applications. In this work, we analyzed the interaction between aqua-vanadyl cation and sulfonic sites within the pores of Nafion membranes using combined theoretical and experimental X-ray spectroscopic methods. Molecular level interactions namely solvent share and contact pair mechanisms are discussed based on Vanadium and Sulfur K-edge spectroscopic analysis.

  11. Nafion and modified-Nafion membranes for polymer electrolyte fuel

    Indian Academy of Sciences (India)

    Polymer electrolyte fuel cells (PEFCs) employ membrane electrolytes for proton transport during the cell reaction. The membrane forms a key component of the PEFC and its performance is controlled by several physical parameters, viz. water up-take, ion-exchange capacity, proton conductivity and humidity. The article ...

  12. Thermal stability of nafion membranes under mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Quintilii, M; Struis, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The feasibility of adequately modified fluoro-ionomer membranes (NAFION{sup R}) is demonstrated for the selective separation of methanol synthesis products from the raw reactor gas at temperatures around 200{sup o}C. For an economically relevant application of this concept on a technical scale the Nafion membranes should be thin ({approx_equal}10 {mu}m) and thermally stable over a long period of time (1-2 years). In cooperation with industry (Methanol Casale SA, Lugano (CH)), we test the thermal stability of Nafion hollow fibers and supported Nafion thin sheet membranes at temperatures between 160 and 200{sup o}C under mechanical stress by applying a gas pressure difference over the membrane surface ({Delta}P{<=} 40 bar). Tests with the hollow fibers revealed that Nafion has visco-elastic properties. Tests with 50 {mu}m thin Nafion sheets supported by a porous metal carrier at 200{sup o}C and {Delta}P=39 bar showed no mechanical defects over a period of 92 days. (author) 5 figs., 4 refs.

  13. Carbon nanotubes based nafion composite membranes for fuel cell applications

    CSIR Research Space (South Africa)

    Cele, NP

    2009-01-01

    Full Text Available Carbon nanotubes (CNTs) containing Nafion composite membranes were prepared via melt-blending at 250 °C. Using three different types of CNTs such as pure CNTs (pCNTs), oxidised CNTs (oCNTs) and amine functionalised CNTs (fCNTs); the effect of CNTs...

  14. Endurance of Nafion-composite membranes in PEFCs operating at ...

    Indian Academy of Sciences (India)

    PEFCs with composite membranes sustain the operating voltage better with ... support the long-term operational usage of the former in PEFCs. An 8-cell ... of PEFCs and result in system failure due to mas- ... well as proper water management at high temperatures .... data, it was established that Nafion composite mem-.

  15. Preparation and characterization of hybrid Nafion/silica and Nafion/silica/PTA membranes for redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Glibin, V.; Pupkevich, V.; Svirko, L.; Karamanev, D. [Western Ontario Univ., London, ON (Canada). Dept. of Biochemical and Chemical Engineering

    2008-07-01

    Redox flow batteries are both efficient and cost-effective. However, the long-term stability of most ion-exchange membranes is limited as a result of the high oxidation rates of ions with high redox potentials. A method of synthesizing multi-component Nafion-silica and Nafion-silica-PTA membranes was presented in this study, which also investigated the electrochemical and ion transport properties of the membranes. Membranes were cast from dimethylformamide (DMFA) solution. The iron ion diffusion kinetics of the Nafion-silica and Nafion-silica PTA membranes were studied by dialysis. Results of the investigation demonstrated that the introduction of silica and phosphotungstic acid (PTA) into the Nafion membrane composition resulted in a significant decrease of ion transfer through the membrane. The addition of PTA also increased membrane permeability to ferric ions. The low iron diffusion coefficient and high ionic conductivity of the Nafion-silica membrane makes it a promising material for use in redox flow batteries. 4 refs., 1 tab., 1 fig.

  16. Sorption and permeation of solutions of chloride salts, water and methanol in a Nafion membrane

    International Nuclear Information System (INIS)

    Villaluenga, J.P.G.; Barragan, V.M.; Seoane, B.; Ruiz-Bauza, C.

    2006-01-01

    The sorption of water-methanol mixtures containing a dissolved chloride salt in a Nafion 117 membrane, and their transport through the membrane under the driving force of a pressure gradient, have been studied. Both type of experiments was performed by using five different salts: lithium chloride, sodium chloride, cesium chloride, magnesium chloride and calcium chloride. It was observed that both the permeation flow through the membrane and the membrane swelling increase significantly with the methanol content of the solutions. These facts are attributed to the increase in wet membrane porosity, which brings about the increase of the mobility of solvents in the membrane, besides the increase of the mobility of the polymer pendant chains. In contrast, the influence of the type of electrolyte on the membrane porosity and permeability is not very important, with the exception of the CsCl solutions, which is probably due to the small hydration ability of the Cs + ion

  17. Zirconium oxide nanotube-Nafion composite as high performance membrane for all vanadium redox flow battery

    Science.gov (United States)

    Aziz, Md. Abdul; Shanmugam, Sangaraju

    2017-01-01

    A high-performance composite membrane for vanadium redox flow battery (VRB) consisting of ZrO2 nanotubes (ZrNT) and perfluorosulfonic acid (Nafion) was fabricated. The VRB operated with a composite (Nafion-ZrNT) membrane showed the improved ion-selectivity (ratio of proton conductivity to permeability), low self-discharge rate, high discharge capacity and high energy efficiency in comparison with a pristine commercial Nafion-117 membrane. The incorporation of zirconium oxide nanotubes in the Nafion matrix exhibits high proton conductivity (95.2 mS cm-1) and high oxidative stability (99.9%). The Nafion-ZrNT composite membrane exhibited low vanadium ion permeability (3.2 × 10-9 cm2 min-1) and superior ion selectivity (2.95 × 107 S min cm-3). The VRB constructed with a Nafion-ZrNT composite membrane has lower self-discharge rate maintaining an open-circuit voltage of 1.3 V for 330 h relative to a pristine Nafion membrane (29 h). The discharge capacity of Nafion-ZrNT membrane (987 mAh) was 3.5-times higher than Nafion-117 membrane (280 mAh) after 100 charge-discharge cycles. These superior properties resulted in higher coulombic and voltage efficiencies with Nafion-ZrNT membranes compared to VRB with Nafion-117 membrane at a 40 mA cm-2 current density.

  18. Mordenite/Nafion and analcime/Nafion composite membranes prepared by spray method for improved direct methanol fuel cell performance

    Science.gov (United States)

    Prapainainar, Paweena; Du, Zehui; Kongkachuichay, Paisan; Holmes, Stuart M.; Prapainainar, Chaiwat

    2017-11-01

    The aim of this work was to improve proton exchange membranes (PEMs) used in direct methanol fuel cells (DMFCs). A membrane with a high proton conductivity and low methanol permeability was required. Zeolite filler in Nafion (NF matrix) composite membranes were prepared using two types of zeolite, mordenite (MOR) and analcime (ANA). Spray method was used to prepare the composite membranes, and properties of the membranes were investigated: mechanical properties, solubility, water and methanol uptake, ion-exchange capacity (IEC), proton conductivity, methanol permeability, and DMFC performance. It was found that MOR filler showed higher performance than ANA. The MOR/Nafion composite membrane gave better properties than ANA/Nafion composite membrane, including a higher proton conductivity and a methanol permeability that was 2-3 times lower. The highest DMFC performance (10.75 mW cm-2) was obtained at 70 °C and with 2 M methanol, with a value 1.5 times higher than that of ANA/Nafion composite membrane and two times higher than that of commercial Nafion 117 (NF 117).

  19. Dimensionally stable Nafion-polyethylene composite membranes for direct methanol fuel cell applications

    NARCIS (Netherlands)

    Yildirim, M.H.; Stamatialis, Dimitrios; Wessling, Matthias

    2008-01-01

    Nafion ® impregnated Solupor ®, microporous UHMWPE film, (N-PE), Nafion ®117 (N117) and a membrane prepared using a DE2020 Nafion ® dispersion (DE2020) were characterized with respect to their swelling degree (SD), methanol cross-over, proton conductivity and DMFC performance at various methanol

  20. Nafion®/ODF-silica composite membranes for medium temperature proton exchange membrane fuel cells

    KAUST Repository

    Treekamol, Yaowapa; Schieda, Mauricio; Robitaille, Lucie; MacKinnon, Sean M.; Mokrini, Asmae; Shi, Zhiqing; Holdcroft, Steven; Schulte, Karl I.; Nunes, Suzana Pereira

    2014-01-01

    A series of composite membranes were prepared by dispersing fluorinated polyoxadiazole oligomer (ODF)-functionalized silica nanoparticles in a Nafion matrix. Both melt-extrusion and solvent casting processes were explored. Ion exchange capacity

  1. Characteristics of the Nafion (registered) - impregnated polycarbonate composite membranes for PEMFCs

    International Nuclear Information System (INIS)

    Kim, Ki-Hwan; Ahn, Sang-Yeoul; Oh, In-Hwan; Ha, Heung Yong; Hong, Seong-Ahn; Kim, Moon-Sun; Lee, Youngkwan; Lee, Yong-Chul

    2004-01-01

    In this work, polycarbonate composite membranes were prepared for proton exchange membrane fuel cells (PEMFCs). In the preparation of membranes, a small amount of poly(ethylene glycol) (PEG) was blended with polycarbonate (PC) solution and then cast to make membranes. PEG contained in the membrane was removed by the high solubility of supercritical CO 2 to afford porosity in the membrane. Then, porous PC membranes were soaked in Nafion (registered) solution to yield the PC/Nafion (registered) composite membranes. The PC composite membrane had lower ion conductivity but higher conductance than Nafion (registered)

  2. Synthesis and characterization of Nafion/TiO2 nanocomposite membrane for proton exchange membrane fuel cell.

    Science.gov (United States)

    Kim, Tae Young; Cho, Sung Yong

    2011-08-01

    In this study, the syntheses and characterizations of Nafion/TiO2 membranes for a proton exchange membrane fuel cell (PEMFC) were investigated. Porous TiO2 powders were synthesized using the sol-gel method; with Nafion/TiO2 nanocomposite membranes prepared using the casting method. An X-ray diffraction analysis demonstrated that the synthesized TiO2 had an anatase structure. The specific surface areas of the TiO2 and Nafion/TiO2 nanocomposite membrane were found to be 115.97 and 33.91 m2/g using a nitrogen adsorption analyzer. The energy dispersive spectra analysis indicated that the TiO2 particles were uniformly distributed in the nanocomposite membrane. The membrane electrode assembly prepared from the Nafion/TiO2 nanocomposite membrane gave the best PEMFC performance compared to the Nafion/P-25 and Nafion membranes.

  3. A novel low cost polyvinyl alcohol-Nafion-borosilicate membrane separator for microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, B.R. [Department of Civil Engineering, Indian Institute of Technology, Kharagpur, 721302 (India); Noori, Md.T. [Department of Agriculture and Food Engineering, Indian Institute of Technology, Kharagpur, 721302 (India); Ghangrekar, M.M., E-mail: ghangrekar@civil.iitkgp.ernet.in [Department of Civil Engineering, Indian Institute of Technology, Kharagpur, 721302 (India)

    2016-10-01

    Composite membranes were developed from PVA-borosilicate (MP) and PVA-Nafion-borosilicate (MPN) for application in microbial fuel cells (MFCs). The membranes were characterized in terms of water uptake, PBS uptake, oxygen diffusion and proton conductivity. Proton conductivity for MPN (0.07 Scm{sup −1}) was found to be higher as compared to that of MP (0.03 Scm{sup −1}). Oxygen diffusion coefficient for MPN was 1.47 fold lower than that for MP. As a result, MFC with PVA-Nafion-borosilicate membrane exhibited maximum power density of 6.8 Wm{sup −3}, which was 151% higher than the power produced by MFC having PVA-borosilicate membrane and it was comparable with MFC using Nafion 117 (7.1 Wm{sup −3}) membrane separator. This study demonstrates that borosilicate glass membrane incorporated with PVA-Nafion matrix can be a suitable alternative to costly polymeric membrane to increase power output of MFC. Using such membranes MFC can be fabricated at around 11 fold reduced cost as compared to Nafion 117. - Highlights: • Novel membranes using PVA and borosilicate composite were fabricated. • Proton diffusion for MPN was comparable with Nafion117. • MFC-PN produced power density comparable to MFC with Nafion 117 membrane. • MPN was fabricated at almost 11 times reduced cost than Nafion 117 membranes.

  4. Controlling fuel crossover and hydration in ultrathin proton exchange membrane-based fuel cells using Pt-nanosheet catalysts

    DEFF Research Database (Denmark)

    Wang, Rujie; Zhang, Wenjing (Angela); He, Gaohong

    2014-01-01

    and provided in situ hydration inside Nafion membranes to maintain their proton conductivity level. Furthermore, LDH nanosheets reinforced the Nafion membranes, with 181% improvement in tensile modulus and 166% improvement in yield strength. In a hydrogen fuel cell running with dry fuel, the membrane......An ultra-thin proton exchange membrane with Pt-nanosheet catalysts was designed for a self-humidifying fuel cell running on H2 and O2. In this design, an ultra-thin Nafion membrane was used to reduce ohmic resistance. Pt nanocatalysts were uniformly anchored on exfoliated, layered double hydroxide...

  5. Sulfonated graphene oxide/nafion composite membrane for vanadium redox flow battery.

    Science.gov (United States)

    Kim, Byung Guk; Han, Tae Hee; Cho, Chang Gi

    2014-12-01

    Nafion is the most frequently used as the membrane material due to its good proton conductivity, and excellent chemical and mechanical stabilities. But it is known to have poor barrier property due to its well-developed water channels. In order to overcome this drawback, graphene oxide (GO) derivatives were introduced for Nafion composite membranes. Sulfonated graphene oxide (sGO) was prepared from GO. Both sGO and GO were treated each with phenyl isocyanate and transformed into corresponding isGO and iGO in order to promote miscibility with Nafion. Then composite membranes were obtained, and the adaptability as a membrane for vanadium redox flow battery (VRFB) was investigated in terms of proton conductivity and vanadium permeability. Compared to a pristine Nafion, proton conductivities of both isGO/Nafion and iGO/Nafion membranes showed less temperature sensitivity. Both membranes also showed quite lower vanadium permeability at room temperature. Selectivity of the membrane was the highest for isGO/Nafion and the lowest for the pristine Nafion.

  6. Ion exchange and luminescence of Eu3+ in Nafion membranes

    International Nuclear Information System (INIS)

    Petushkov, A.A.; Shilov, S.M.; Pak, V.N.

    2006-01-01

    Dehydration of Nafion perfluorosulphonic membranes at 110 deg C results in a significant reduction of their void space volume, the accessibility of sulphonic groups and the total exchange capacity towards Eu 3+ cations. Nevertheless, the ion exchange sorption of Eu 3+ takes place in accordance with stoichiometric ratio [-SO 3 H]/[Eu 3+ ]=3. The membranes thermal pretreatment also affects noticeably the spectroscopic features of the fastened Eu 3+ ions, such as the relationship between the intensities of the hypersensitive 5 D 0 → 7 F 2 and magnetic dipolar 5 D 0 → 7 F 1 transitions, the excited state life time, as well as the luminescence quenching in the course of water adsorption

  7. Proton Conductivity of Nafion/Ex-Situ Sulfonic Acid-Modified Stöber Silica Nanocomposite Membranes As a Function of Temperature, Silica Particles Size and Surface Modification

    Science.gov (United States)

    Muriithi, Beatrice; Loy, Douglas A.

    2016-01-01

    The introduction of sulfonic acid modified silica in Nafion nanocomposite membranes is a good method of improving the Nafion performance at high temperature and low relative humidity. Sulfonic acid-modified silica is bifunctional, with silica phase expected to offer an improvement in membranes hydration while sulfonic groups enhance proton conductivity. However, as discussed in this paper, this may not always be the case. Proton conductivity enhancement of Nafion nanocomposite membranes is very dependent on silica particle size, sometimes depending on experimental conditions, and by surface modification. In this study, Sulfonated Preconcentrated Nafion Stober Silica composites (SPNSS) were prepared by modification of Stober silica particles with mercaptopropyltriethoxysilane, dispersing the particles into a preconcentrated solution of Nafion, then casting the membranes. The mercapto groups were oxidized to sulfonic acids by heating the membranes in 10 wt % hydrogen peroxide for 1 h. At 80 °C and 100% relative humidity, a 20%–30% enhancement of proton conductivity was only observed when sulfonic acid modified particle less than 50 nm in diameter were used. At 120 °C, and 100% humidity, proton conductivity increased by 22%–42% with sulfonated particles with small particles showing the greatest enhancement. At 120 °C and 50% humidity, the sulfonated particles are less efficient at keeping the membranes hydrated, and the composites underperform Nafion and silica-Nafion nanocomposite membranes. PMID:26828525

  8. Characterisation of a re-cast composite Nafion® 1100 series of proton exchange membranes incorporating inert inorganic oxide particles

    OpenAIRE

    Slade, S.; Smith, James; Campbell, S.; Ralph, T.; Ponce de Leon, C.; Walsh, F.

    2010-01-01

    A series of cation exchange membranes was produced by impregnating and coating both sides of a quartz web with a Nafion® solution (1100 EW, 10%wt in water). Inert filler particles (SiO2, ZrO2 or TiO2; 5–20%wt) were incorporated into the aqueous Nafion® solution to produce robust, composite membranes. Ion-exchange capacity/equivalent weight, water take-up, thickness change on hydration and ionic and electrical conductivity were measured in 1 mol dm−3 sulfuric acid at 298 K. The TiO2 filler sig...

  9. Modification of Nafion Membranes by IL-Cation Exchange: Chemical Surface, Electrical and Interfacial Study

    Directory of Open Access Journals (Sweden)

    V. Romero

    2012-01-01

    A study of time evolution of the impedance curves measured in the system “IL aqueous solution/Nafion-112 membrane/IL aqueous solution” was also performed. This study allows us monitoring the electrical changes associated to the IL-cation incorporation in both the membrane and the membrane/IL solution interface, and it provides supplementary information on the characteristic of the Nafion/DTA+ hybrid material. Moreover, the results also show the significant effect of water on the electrical resistance of the Nafion-112/IL-cation-modified membrane.

  10. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    International Nuclear Information System (INIS)

    Fox, E.

    2009-01-01

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals

  11. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E

    2009-05-15

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals.

  12. Solution casting Nafion/polytetrafluoroethylene membrane for vanadium redox flow battery application

    International Nuclear Information System (INIS)

    Teng, Xiangguo; Sun, Cui; Dai, Jicui; Liu, Haiping; Su, Jing; Li, Faqiang

    2013-01-01

    Highlights: ► Nafion/polytetrafluoroethylene (PTFE) blend membranes were prepared by solution casting method. ► The blend membranes were tested for vanadium redox flow battery (VRB) application. ► The blend membranes show lower vanadium ion permeability than that of recast Nafion membrane. ► In VRB single cell test, the blend membrane shows superior performances than that of pure recast Nafion. -- Abstract: Solution casting method was adopted using Nafion and polytetrafluoroethylene (PTFE) solution to prepare Nafion/PTFE blend membranes for vanadium redox flow battery application. The physicochemical properties of the membranes were characterized by using water uptake, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermal analysis (TA). The electrochemical properties of the membranes were examined by using electrochemical impedance spectroscopy (EIS) and single cell test. Despite the high miscibility of PTFE with Nafion, the addition of hydrophobic PTFE reduces the water uptake, ion exchange capacity (IEC) and conductivity of blend membranes. But PTFE can increase the crystallinity, thermal stability of Nafion/PTFE membranes and reduce the vanadium permeability. The blend membrane with PTFE (30 wt%, N 0.7 P 0.3 ) was chosen and investigated for VRB single cell test. The energy efficiency of this VRB with N 0.7 P 0.3 membrane was 85.1% at current density of 50 mA cm −2 , which was superior to that of recast Nafion (r-Nafion) membrane (80.5%). Self-discharge test shows that the decay of open circuit potential of N 0.7 P 0.3 membrane is much lower than that of r-Nafion membrane. More than 50 cycles charge–discharge test proved that the N 0.7 P 0.3 membrane possesses high stability in long time running. Chemical stabilities of the chosen N 0.7 P 0.3 membrane are further proved by soaking the membrane for 3 weeks in highly oxidative V(V) solution. All results suggest that the addition of PTFE is a simple and effective way to

  13. Low methanol permeable composite Nafion/silica/PWA membranes for low temperature direct methanol fuel cells

    International Nuclear Information System (INIS)

    Xu Weilin; Lu Tianhong; Liu Changpeng; Xing Wei

    2005-01-01

    Nafion/silica/phosphotungstic acid (PWA) composite membranes were studied for low temperature ( max = 70 mW/cm 2 ) than those of commercial Nafion without treatment (OCV = 0.68 V, P max = 62 mW/cm 2 ) at 80 deg. C

  14. Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport

    Directory of Open Access Journals (Sweden)

    Pavel V. Komarov

    2013-09-01

    Full Text Available Atomistic and first-principles molecular dynamics simulations are employed to investigate the structure formation in a hydrated Nafion membrane and the solvation and transport of protons in the water channel of the membrane. For the water/Nafion systems containing more than 4 million atoms, it is found that the observed microphase-segregated morphology can be classified as bicontinuous: both majority (hydrophobic and minority (hydrophilic subphases are 3D continuous and organized in an irregular ordered pattern, which is largely similar to that known for a bicontinuous double-diamond structure. The characteristic size of the connected hydrophilic channels is about 25–50 Å, depending on the water content. A thermodynamic decomposition of the potential of mean force and the calculated spectral densities of the hindered translational motions of cations reveal that ion association observed with decreasing temperature is largely an entropic effect related to the loss of low-frequency modes. Based on the results from the atomistic simulation of the morphology of Nafion, we developed a realistic model of ion-conducting hydrophilic channel within the Nafion membrane and studied it with quantum molecular dynamics. The extensive 120 ps-long density functional theory (DFT-based simulations of charge migration in the 1200-atom model of the nanochannel consisting of Nafion chains and water molecules allowed us to observe the bimodality of the van Hove autocorrelation function, which provides the direct evidence of the Grotthuss bond-exchange (hopping mechanism as a significant contributor to the proton conductivity.

  15. Electrospun Nafion®/Polyphenylsulfone Composite Membranes for Regenerative Hydrogen Bromine Fuel Cells

    Science.gov (United States)

    Park, Jun Woo; Wycisk, Ryszard; Pintauro, Peter N.; Yarlagadda, Venkata; Van Nguyen, Trung

    2016-01-01

    The regenerative H2/Br2-HBr fuel cell, utilizing an oxidant solution of Br2 in aqueous HBr, shows a number of benefits for grid-scale electricity storage. The membrane-electrode assembly, a key component of a fuel cell, contains a proton-conducting membrane, typically based on the perfluorosulfonic acid (PFSA) ionomer. Unfortunately, the high cost of PFSA membranes and their relatively high bromine crossover are serious drawbacks. Nanofiber composite membranes can overcome these limitations. In this work, composite membranes were prepared from electrospun dual-fiber mats containing Nafion® PFSA ionomer for facile proton transport and an uncharged polymer, polyphenylsulfone (PPSU), for mechanical reinforcement, and swelling control. After electrospinning, Nafion/PPSU mats were converted into composite membranes by softening the PPSU fibers, through exposure to chloroform vapor, thus filling the voids between ionomer nanofibers. It was demonstrated that the relative membrane selectivity, referenced to Nafion® 115, increased with increasing PPSU content, e.g., a selectivity of 11 at 25 vol% of Nafion fibers. H2-Br2 fuel cell power output with a 65 μm thick membrane containing 55 vol% Nafion fibers was somewhat better than that of a 150 μm Nafion® 115 reference, but its cost advantage due to a four-fold decrease in PFSA content and a lower bromine species crossover make it an attractive candidate for use in H2/Br2-HBr systems. PMID:28773268

  16. Chemical Surface, Thermal and Electrical Characterization of Nafion Membranes Doped with IL-Cations

    Directory of Open Access Journals (Sweden)

    María del Valle Martínez de Yuso

    2014-04-01

    Full Text Available Surface and bulk changes in a Nafion membrane as a result of IL-cation doping (1-butyl-3-methylimidazolium tetrafluoroborate or BMIM+BF4 and phenyltrimethylammonium chloride or TMPA+Cl− were studied by X-ray photoelectron spectroscopy (XPS, contact angle, differential scanning calorimetry (DSC and impedance spectroscopy (IS measurements performed with dry samples after 24 h in contact with the IL-cations BMIM+ and TMPA+. IL-cations were selected due to their similar molecular weight and molar volume but different shape, which could facilitate/obstruct the cation incorporation in the Nafion membrane structure by proton/cation exchange mechanism. The surface coverage of the Nafion membrane by the IL-cations was confirmed by XPS analysis and contact angle, while the results obtained by the other two techniques (DSC and IS seem to indicate differences in thermal and electrical behaviour depending on the doping-cation, being less resistive the Nafion/BMIM+ membrane. For that reason, determination of the ion transport number was obtained for this membrane by measuring the membrane or concentration potential with the samples in contact with HCl solutions at different concentrations. The comparison of these results with those obtained for the original Nafion membrane provides information on the effect of IL-cation BMIM+ on the transport of H+ across wet Nafion/BMIM+ doped membranes.

  17. Electrospun Nafion®/Polyphenylsulfone Composite Membranes for Regenerative Hydrogen Bromine Fuel Cells.

    Science.gov (United States)

    Park, Jun Woo; Wycisk, Ryszard; Pintauro, Peter N; Yarlagadda, Venkata; Van Nguyen, Trung

    2016-02-29

    The regenerative H₂/Br₂-HBr fuel cell, utilizing an oxidant solution of Br₂ in aqueous HBr, shows a number of benefits for grid-scale electricity storage. The membrane-electrode assembly, a key component of a fuel cell, contains a proton-conducting membrane, typically based on the perfluorosulfonic acid (PFSA) ionomer. Unfortunately, the high cost of PFSA membranes and their relatively high bromine crossover are serious drawbacks. Nanofiber composite membranes can overcome these limitations. In this work, composite membranes were prepared from electrospun dual-fiber mats containing Nafion ® PFSA ionomer for facile proton transport and an uncharged polymer, polyphenylsulfone (PPSU), for mechanical reinforcement, and swelling control. After electrospinning, Nafion/PPSU mats were converted into composite membranes by softening the PPSU fibers, through exposure to chloroform vapor, thus filling the voids between ionomer nanofibers. It was demonstrated that the relative membrane selectivity, referenced to Nafion ® 115, increased with increasing PPSU content, e.g., a selectivity of 11 at 25 vol% of Nafion fibers. H₂-Br₂ fuel cell power output with a 65 μm thick membrane containing 55 vol% Nafion fibers was somewhat better than that of a 150 μm Nafion ® 115 reference, but its cost advantage due to a four-fold decrease in PFSA content and a lower bromine species crossover make it an attractive candidate for use in H₂/Br₂-HBr systems.

  18. Electrospun Nafion®/Polyphenylsulfone Composite Membranes for Regenerative Hydrogen Bromine Fuel Cells

    Directory of Open Access Journals (Sweden)

    Jun Woo Park

    2016-02-01

    Full Text Available The regenerative H2/Br2-HBr fuel cell, utilizing an oxidant solution of Br2 in aqueous HBr, shows a number of benefits for grid-scale electricity storage. The membrane-electrode assembly, a key component of a fuel cell, contains a proton-conducting membrane, typically based on the perfluorosulfonic acid (PFSA ionomer. Unfortunately, the high cost of PFSA membranes and their relatively high bromine crossover are serious drawbacks. Nanofiber composite membranes can overcome these limitations. In this work, composite membranes were prepared from electrospun dual-fiber mats containing Nafion® PFSA ionomer for facile proton transport and an uncharged polymer, polyphenylsulfone (PPSU, for mechanical reinforcement, and swelling control. After electrospinning, Nafion/PPSU mats were converted into composite membranes by softening the PPSU fibers, through exposure to chloroform vapor, thus filling the voids between ionomer nanofibers. It was demonstrated that the relative membrane selectivity, referenced to Nafion® 115, increased with increasing PPSU content, e.g., a selectivity of 11 at 25 vol% of Nafion fibers. H2-Br2 fuel cell power output with a 65 μm thick membrane containing 55 vol% Nafion fibers was somewhat better than that of a 150 μm Nafion® 115 reference, but its cost advantage due to a four-fold decrease in PFSA content and a lower bromine species crossover make it an attractive candidate for use in H2/Br2-HBr systems.

  19. Comparative Experimental Study on Ionic Polymer Mental Composite based on Nafion and Aquivion Membrane as Actuators

    Science.gov (United States)

    Luo, B.; Chen, Z.

    2017-11-01

    Most ionic polymer mental composites employ Nafion as the polymer matrix, Aquivion can also manufactured as ionic polymer mental composite while research was little. This paper researched on two kinds of ionic polymer mental composite based on Aquivion and Nafion matrix with palladium electrode called Aquivion-IPMC and Nafion-IPMC. The samples were fabricated by the same preparation process. The current and deformation responses of the samples were measured at voltage to characterize the mechano-electrical properties. The experimental observations revealed that shorter flexible side chains in Aquivion-IPMC provide a larger force than Nafion-IPMC, while the displacement properties were similar in two different samples. The results also showed that Aquivion membrane can also replace Nafion to reproduce IPMC application in soft robots, MEMS, and so on.

  20. Nafion/silane nanocomposite membranes for high temperature polymer electrolyte membrane fuel cell.

    Science.gov (United States)

    Ghi, Lee Jin; Park, Na Ri; Kim, Moon Sung; Rhee, Hee Woo

    2011-07-01

    The polymer electrolyte membrane fuel cell (PEMFC) has been studied actively for both potable and stationary applications because it can offer high power density and be used only hydrogen and oxygen as environment-friendly fuels. Nafion which is widely used has mechanical and chemical stabilities as well as high conductivity. However, there is a drawback that it can be useless at high temperatures (> or = 90 degrees C) because proton conducting mechanism cannot work above 100 degrees C due to dehydration of membrane. Therefore, PEMFC should be operated for long-term at high temperatures continuously. In this study, we developed nanocomposite membrane using stable properties of Nafion and phosphonic acid groups which made proton conducting mechanism without water. 3-Aminopropyl triethoxysilane (APTES) was used to replace sulfonic acid groups of Nafion and then its aminopropyl group was chemically modified to phosphonic acid groups. The nanocomposite membrane showed very high conductivity (approximately 0.02 S/cm at 110 degrees C, <30% RH).

  1. Characterisation of a re-cast composite Nafion 1100 series of proton exchange membranes incorporating inert inorganic oxide particles

    International Nuclear Information System (INIS)

    Slade, S.M.; Smith, J.R.; Campbell, S.A.; Ralph, T.R.; Ponce de Leon, C.; Walsh, F.C.

    2010-01-01

    A series of cation exchange membranes was produced by impregnating and coating both sides of a quartz web with a Nafion solution (1100 EW, 10%wt in water). Inert filler particles (SiO 2 , ZrO 2 or TiO 2 ; 5-20%wt) were incorporated into the aqueous Nafion solution to produce robust, composite membranes. Ion-exchange capacity/equivalent weight, water take-up, thickness change on hydration and ionic and electrical conductivity were measured in 1 mol dm -3 sulfuric acid at 298 K. The TiO 2 filler significantly impacted on these properties, producing higher water take-up and increased conductivity. Such membranes may be beneficial for proton exchange membrane (PEM) fuel cell operation at low humidification. The PEM fuel cell performance of the composite membranes containing SiO 2 fillers was examined in a Ballard Mark 5E unit cell. While the use of composite membranes offers a cost reduction, the unit cell performance was reduced, in practice, due to drying of the ionomer at the cathode.

  2. Water vapor sorption thermodynamics of the Nafion ionomer membrane.

    Science.gov (United States)

    Wadsö, Lars; Jannasch, Patric

    2013-07-18

    The water interactions of polymer electrolyte membranes are of significant interest when these materials are used in, for example, fuel cells. We have therefore studied the sorption thermodynamics of Nafion with a sorption calorimeter that simultaneously measures the sorption isotherm and the mixing (sorption) enthalpy. This unique method is suitable for investigating the sorption thermodynamics of ionic polymers. The measurements were made at 25 °C on a series of samples dried at different temperatures from 25 to 120 °C. The sorption isotherms indicate that the samples dried at 120 °C lost about 0.8 more water molecules per sulfonic group during the drying than did the samples dried at 25 °C, and this result was verified gravimetrically. The mixing enthalpies showed several peaks or plateaus for the samples dried at 60-120 °C. This behavior was seen up to about 2 water molecules per sulfonic group. As these peaks were not directly related to any feature in the sorption isotherm, they probably have their origin in a secondary process, such as a reorganization of the polymer.

  3. Performance of direct methanol fuel cell with a palladium–silica nanofibre/Nafion composite membrane

    International Nuclear Information System (INIS)

    Thiam, H.S.; Daud, W.R.W.; Kamarudin, S.K.; Mohamad, A.B.; Kadhum, A.A.H.; Loh, K.S.; Majlan, E.H.

    2013-01-01

    Highlights: • This study introduces Pd–SiO 2 Carbon Nano Fibre as an additive to Nafion membrane. • It investigates the effects of membrane annealing temperature and casting solvent. • Results show that Pd–SiO 2 fibre/Nafion performs lower methanol permeability. • This could effectively reduces methanol crossover in direct methanol fuel cell. - Abstract: Palladium–silica nanofibres (Pd–SiO 2 fibre) were adopted as an additive to Nafion recast membranes in order to reduce methanol crossover and improve the cell performance. The performance of a membrane electrode assembly (MEA) with fabricated composite membrane was evaluated through a passive air-breathing single cell direct methanol fuel cell (DMFC). The limiting crossover current density was measured to determine the methanol permeation in the DMFC. The effects of membrane annealing temperature and casting solvent of composite membrane on the cell performance were investigated and are discussed here. Compared to recast Nafion with the same thickness (150 μm), the Pd–SiO 2 fibre/Nafion composite membrane exhibited higher performance and lower methanol permeability. A maximum power density of 10.4 mW cm −2 was obtained with a 2 M methanol feed, outperforming the much thicker commercial Nafion 117 with a power density of 7.95 mW cm −2 under the same operating conditions. The experimental results showed that the Pd–SiO 2 fibre as inorganic fillers for Nafion could effectively reduce methanol crossover and improve the membrane performance in DMFC applications

  4. Characteristics of PVdF copolymer/Nafion blend membrane for direct methanol fuel cell (DMFC)

    International Nuclear Information System (INIS)

    Cho, Ki-Yun; Eom, Ji-Yong; Jung, Ho-Young; Choi, Nam-Soon; Lee, Yong Min; Park, Jung-Ki; Choi, Jong-Ho; Park, Kyung-Won; Sung, Yung-Eun

    2004-01-01

    For direct methanol fuel cell, blends of vinylidene fluoride-hexafluoropropylene copolymer (P(VdF-co-HFP)) and Nafion were prepared the different equivalent weight of Nafion. The investigations of the blend morphology were performed by means of permeability test, uptake measurement, differential-scanning calorimetry (DSC), and scanning electron microscopy. In the blend membranes, many pores were created as the content of Nafion in blend increased. Then, the methanol uptake was sharply increased. But the methanol permeability was not sharply increased because the methanol permeation through blend membranes is diffusion-controlled process. The methanol permeability of N10 (low equivalent weight) series was similar to that of N11 series (high equivalent weight). The proton conductivity of N10 series was around one and a half times higher than that of N11 series. The cell performance of the blend was much enhanced when the equivalent weight of Nafion was 1000

  5. Recast Nafion{sup R}-based membranes for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrova, Penka; Friedrich, Kaspar A.; Stimming, Ulrich; Vogt, Brunhilde [Department of Physics, Technische Universitaet Muenchen, D-80333 Munich (Germany)

    2001-07-01

    Commercially available Nafion{sup R} membranes at present do not meet the requirements for direct methanol fuel cell (DMFC) applications, amongst others factors because of their high methanol permeability. With the aim of improving this undesirable characteristic, a modification procedure has been applied to recast Nafion-based membranes. Membranes, containing different additives, are assessed with regard to their conductivity and methanol permeation rate. The preparation of the samples involves the introduction of a small amount of a high boiling point solvent to the as-received Nafion solution and then shaping the membranes by a recasting procedure (drying at room temperature and heating up to 150{sup o}C). An enhancement of the conductivity of the thermally treated membranes in comparison to the commercial Nafion 117 is found. The thickness-normalised methanol permeation rate of the samples, containing inorganic additives (Aerosil and molybdophosphoric acid) decreases compared to the pure recast and as-received Nafion membranes. The observed results are discussed in terms of the membrane structure and preparation. (author)

  6. A Nafion-Ceria Composite Membrane Electrolyte for Reduced Methanol Crossover in Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Parthiban Velayutham

    2017-02-01

    Full Text Available An alternative Nafion composite membrane was prepared by incorporating various loadings of CeO2 nanoparticles into the Nafion matrix and evaluated its potential application in direct methanol fuel cells (DMFCs. The effects of CeO2 in the Nafion matrix were systematically studied in terms of surface morphology, thermal and mechanical stability, proton conductivity and methanol permeability. The composite membrane with optimum filler content (1 wt. % CeO2 exhibits a proton conductivity of 176 mS·cm−1 at 70 °C, which is about 30% higher than that of the unmodified membrane. Moreover, all the composite membranes possess a much lower methanol crossover compared to pristine Nafion membrane. In a single cell DMFC test, MEA fabricated with the optimized composite membrane delivered a peak power density of 120 mW·cm−2 at 70 °C, which is about two times higher in comparison with the pristine Nafion membrane under identical operating conditions.

  7. Conductance of Nafion 117 membranes as a function of temperature and water content

    Energy Technology Data Exchange (ETDEWEB)

    Cappadonia, Marcella; Wilhelm Erning, J; Saberi Niaki, Seyedeh M; Stimming, Ulrich [Institute of Energy Process Engineering IEV, Research Centre Juelich KFA, Juelich (Germany)

    1995-04-01

    The conductance of Nafion membranes was investigated by means of impedance spectroscopy as a function of temperature and of sample treatment. In addition to other treatments, the hot-pressing of Nafion membranes was also considered, because of its relevance for making membrane-electrode assemblies (MEA) for proton exchange membrane fuel cells (PEMFC). An Arrhenius-type analysis of the conductance shows two regimes, with a change in activation energy observed at transition temperatures between 225 and 260 K which depends on the water content

  8. PEMFC performance of MEAS based on Nafion{sup R} and sPSEBS hybrid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Carretero, F.J.; Compan, V. [Univ, Politecnica de Valencia, Valencia (Spain). Dept. Termodinamica Aplicada; Suarez, K.; Solorza, O. [Inst. Politecnico Nacional, Centro de Investigacion y de Estudios Avanzados, Mexico City (Mexico). Dept. de Quimica; Riande, E. [Inst. de Ciencia y Tecnologia de Polimeros, Madrid (Spain)

    2010-07-15

    Important scientific, technical and economic problems must be solved before widespread commercialization of polymer electrolyte membrane fuel cells (PEMFC). The main issues facing the development of commercial low temperature fuel cells are the synthesis of efficient solid electrolytes separating the anode from the cathode as well as the development of cheaper catalysts for fuel oxidation. This study involved the preparation of hybrid membranes based on Nafion 117 and sulfonated Calprene H6120 containing partially sulfonated inorganic fillers such as silica, SBA-15 and sepiolite. The feasibility of using the membranes as polyelectrolytes for low temperature fuel cells was then evaluated. The water uptake of Nafion hybrid membranes is 1/3 to 1/4 of that in composite membranes based on sulfonated Calprene H6120. The proton conductivity of Nafion 117 hybrid membranes-electrode assemblies is nearly 1/5 of the pristine Nafion membrane assembly. Sulfonated Calprene H6120 hybrid membranes typically have better proton conductivity than the Nafion 117 composites. The performance of fuel cells containing different MEAs was examined by measuring their polarization curves in different operating conditions. The kinetic parameters governing the voltage dependence on current density were also estimated. It was concluded that the superior performance of the fuel cells with MEAs of NAF-SEP, sPSEBS-SIL and sPSEBS-SBA is not due to the membranes themselves, but to the kinetic processes that occur at the electrodes, which in this study were less efficient for fuel cells with the Nafion MEA. 34 refs., 3 tabs., 9 figs.

  9. Optimisation of polypyrrole/Nafion composite membranes for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Zhu Jun; Sattler, Rita R.; Garsuch, Arnd; Yepez, Omar; Pickup, Peter G.

    2006-01-01

    Acidic and neutral Nafion[reg] 115 perfluorosulphonate membranes have been modified by in situ polymerization of pyrrole using Fe(III) and H 2 O 2 as oxidizing agents, in order to decrease methanol crossover in direct methanol fuel cells. Improved selectivities for proton over methanol transport and improved fuel cell performances were only obtained with membranes that were modified while in the acid form. Use of Fe(III) as the oxidizing agent can produce a large decrease in methanol crossover, but causes polypyrrole deposition on the surface of the membrane. This increases the resistance of the membrane, and leads to poor fuel cell performances due to poor bonding with the electrodes. Surface polypyrrole deposition can be minimized, and surface polypyrrole can be removed, by using H 2 O 2 . The use of Nafion in its tetrabutylammonium form leads to very low methanol permeabilities, and appears to offer potential for manipulating the location of polypyrrole within the Nafion structure

  10. Nafion®/ODF-silica composite membranes for medium temperature proton exchange membrane fuel cells

    KAUST Repository

    Treekamol, Yaowapa

    2014-01-01

    A series of composite membranes were prepared by dispersing fluorinated polyoxadiazole oligomer (ODF)-functionalized silica nanoparticles in a Nafion matrix. Both melt-extrusion and solvent casting processes were explored. Ion exchange capacity, conductivity, water uptake and dimensional stability, thermal stability and morphology were characterized. The inclusion of functionalized nanoparticles proved advantageous, mainly due to a physical crosslinking effect and better water retention, with functionalized nanoparticles performing better than the pristine silica particles. For the same filler loading, better nanoparticle dispersion was achieved for solvent-cast membranes, resulting in higher proton conductivity. Filler agglomeration, however,was more severe for solvent-castmembranes at loadings beyond 5wt.%. The composite membranes showed excellent thermal stability, allowing for operation in medium temperature PEM fuel cells. Fuel cell performance of the compositemembranesdecreaseswithdecreasing relativehumidity, but goodperformance values are still obtained at 34% RHand 90 °C,with the best results obtained for solvent castmembranes loaded with 10 wt.% ODF-functionalized silica. Hydrogen crossover of the composite membranes is higher than that forpureNafion membranes,possiblydue toporosityresulting fromsuboptimalparticle- matrixcompatibility. © 2013 Crown Copyright and Elsevier BV. All rights reserved.

  11. Composite Nafion 117-TMSP membrane for Fe-Cr redox flow battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Haryadi, E-mail: haryadi@polban.ac.id [Department of Chemical Engineering, PoliteknikNegeri Bandung Indonesia (Indonesia); Gunawan, Y. B.; Harjogi, D. [Department of Electronic Engineering, PoliteknikNegeri Bandung Indonesia (Indonesia); Mursid, S. P. [Department of Energy Engineering, PoliteknikNegeri Bandung. Jl. GegerkalongHilir, Ds, Ciwaruga, Bandung, West Java Indonesia (Indonesia)

    2016-04-19

    The modification of Nafion 117 - TMSP (trimethoxysylilprophanthiol) composite membrane has been conducted by in-situ sol-gel method followed by characterization of structural and properties of material using spectroscopic techniques. The performance of composite membrane has then been examined in the single stack module of Fe-Cr Redox Flow Battery. It was found that the introduction of silica from TMSP through sol-gel process within the Nafion 117 membrane produced composite membrane that has slightly higher proton conductivity values as compared to the pristine of Nafion 117 membrane observed by electrochemical impedance spectroscopy. The degree of swelling of water in the composite membrane demonstrated greatly reduced than a pristine Nafion 117 signifying low water cross over. The SEM-EDX measurements indicated that there was no phase separation occurred suggesting that silica nanoparticles are distributed homogeneously within the composite membrane. The composite membrane used as separator in the system of Fe-Cr Redox Flow Battery revealed no cross mixing (crossover) occurred between anolyte and catholyte in the system as observed from the total voltage measurements that closed to the theoretical value. The battery efficiency generally increased as the volume of the electrolytes enlarged.

  12. Micro-patterned Nafion membranes for direct methanol fuel cell applications

    NARCIS (Netherlands)

    Yildirim, M.H.; te Braake, J.; Aran, H.C.; Stamatialis, Dimitrios; Wessling, Matthias

    2010-01-01

    In this work, we report the direct methanol fuel cell (DMFC) performance of micro-patterned (μp) Nafion® 117 (N117) membranes prepared by hot embossing and compare them with that of normal N117 and heat and pressure treated (hp) N117 non-patterned (smooth) membranes. Our results suggest that the

  13. Nafion®/H-ZSM-5 composite membranes with superior performance for direct methanol fuel cells

    NARCIS (Netherlands)

    Yildirim, M.H.; Curos, Anna Roca; Motuzas, Julius; Motuzas, J.; Julbe, Anne; Stamatialis, Dimitrios; Wessling, Matthias

    2009-01-01

    Solution cast composite direct methanol fuel cell membranes (DEZ) based on DE2020 Nafion® dispersion and in-house prepared H-ZSM-5 zeolites with different Si/Al ratios were prepared and thoroughly characterized for direct methanol fuel cell (DMFC) applications. All composite membranes have indeed

  14. Composite Nafion 117-TMSP membrane for Fe-Cr redox flow battery applications

    International Nuclear Information System (INIS)

    Haryadi; Gunawan, Y. B.; Harjogi, D.; Mursid, S. P.

    2016-01-01

    The modification of Nafion 117 - TMSP (trimethoxysylilprophanthiol) composite membrane has been conducted by in-situ sol-gel method followed by characterization of structural and properties of material using spectroscopic techniques. The performance of composite membrane has then been examined in the single stack module of Fe-Cr Redox Flow Battery. It was found that the introduction of silica from TMSP through sol-gel process within the Nafion 117 membrane produced composite membrane that has slightly higher proton conductivity values as compared to the pristine of Nafion 117 membrane observed by electrochemical impedance spectroscopy. The degree of swelling of water in the composite membrane demonstrated greatly reduced than a pristine Nafion 117 signifying low water cross over. The SEM-EDX measurements indicated that there was no phase separation occurred suggesting that silica nanoparticles are distributed homogeneously within the composite membrane. The composite membrane used as separator in the system of Fe-Cr Redox Flow Battery revealed no cross mixing (crossover) occurred between anolyte and catholyte in the system as observed from the total voltage measurements that closed to the theoretical value. The battery efficiency generally increased as the volume of the electrolytes enlarged.

  15. Anhydrous proton conducting composite membranes containing Nafion and triazole modified POSS

    International Nuclear Information System (INIS)

    Lei, M.; Wang, Y.G.; Zhang, F.F.; Huang, C.; Xu, X.; Zhang, R.; Fan, D.Y.

    2014-01-01

    Development of membrane electrolytes having reasonable proton conductivity and mechanical strength under anhydrous conditions is of great importance for proton exchange membrane fuel cells operated at elevated temperature. With the introduction of triazole modified polyhedral oligomeric silsesquioxanes (Tz-POSS) into Nafion membrane, the formed composite electrolytes exhibit improved mechanical properties compared to pristine Nafion membrane due to the well distribution of Tz-POSS inside the membrane. The anhydrous proton conductivity of the formed composite membranes increases initially with the increase in temperature, reaching about 0.02 Scm −1 at 140 °C. With further increase in temperature to about 150 °C, the composite membrane reaches its glass transition point above which the proton conductivity decreases dramatically. The performance of assembled single cell from composite membrane is slightly dependent on humidification conditions at 95 °C, reaching 0.45 V at 600 mAcm −2 using hydrogen and oxygen as reaction gases

  16. Properties of the Nafion membrane impregnated with hydroxyl ammonium based ionic liquids

    International Nuclear Information System (INIS)

    Garaev, Valeriy; Pavlovica, Sanita; Vaivars, Guntars; Kleperis, Janis

    2012-01-01

    In this work, the Nafion 112 membrane impregnated with nine various hydroxyl ammonium based ionic liquids have been investigated. The used ionic liquids were combined from hydroxyl ammonium cations (2-hydroxyethylammonium/HEA, bis(2- hydroxyethyl)ammonium/BHEA, tris(2-hydroxyethyl)ammonium/THEA) and carboxylate anions (formate, acetate, lactate). The membranes are characterized by conductivity and thermal stability measurements. It was found, that almost all composites have 10 times higher ion conductivity than a pure Nafion 112 at 90 °C in ambient environment due to the higher thermal stability. The thermal stability of Nafion membrane was increased by all studied nine ionic liquids. In this work, only biodegradable ionic liquids were used for composite preparation.

  17. In-situ measurement of electroosmotic drag coefficient in Nafion membrane for the PEMFC.

    Science.gov (United States)

    Peng, Zhe; Morin, Arnaud; Huguet, Patrice; Schott, Pascal; Pauchet, Joël

    2011-11-10

    A new method based on hydrogen pump has been developed to measure the electroosmotic drag coefficient in representative PEMFC operating conditions. It allows eliminating the back-flow of water which leads to some errors in the calculation of this coefficient with previously reported electrochemical methods. Measurements have been performed on 50 μm thick Nafion membranes both extruded and recast. Contrary to what has been described in most of previous published works, the electroosmotic drag coefficient decreases as the membrane water content increases. The same trend is observed for temperatures between 25 and 80 °C. For the same membrane water content, the electroosmotic drag coefficient increases with temperature. In the same condition, there is no difference in drag coefficient for extruded Nafion N112 and recast Nafion NRE212. These results are discussed on the basis of the two commonly accepted proton transport mechanisms, namely, Grotthus and vehicular.

  18. Enhancement in Proton Conductivity and Thermal Stability in Nafion Membranes Induced by Incorporation of Sulfonated Carbon Nanotubes.

    Science.gov (United States)

    Yin, Chongshan; Li, Jingjing; Zhou, Yawei; Zhang, Haining; Fang, Pengfei; He, Chunqing

    2018-04-25

    Proton exchange membrane fuel cell (PEMFC) is one of the most promising green power sources, in which perfluorinated sulfonic acid ionomer-based membranes (e.g., Nafion) are widely used. However, the widespread application of PEMFCs is greatly limited by the sharp degradation in electrochemical properties of the proton exchange membranes under high temperature and low humidity conditions. In this work, the high-performance sulfonated carbon nanotubes/Nafion composite membranes (Su-CNTs/Nafion) for the PEMFCs were prepared and the mechanism of the microstructures on the macroscopic properties of membranes was intensively studied. Microstructure evolution in Nafion membranes during water uptake was investigated by positron annihilation lifetime spectroscopy, and results strongly showed that the Su-CNTs or CNTs in Nafion composite membranes significantly reinforced Nafion matrices, which influenced the development of ionic-water clusters in them. Proton conductivities in Su-CNTs/Nafion composite membranes were remarkably enhanced due to the mass formation of proton-conducting pathways (water channels) along the Su-CNTs. In particular, these pathways along Su-CNTs in Su-CNTs/Nafion membranes interconnected the isolated ionic-water clusters at low humidity and resulted in less tortuosity of the water channel network for proton transportation at high humidity. At a high temperature of 135 °C, Su-CNTs/Nafion membranes maintained high proton conductivity because the reinforcement of Su-CNTs on Nafion matrices reduced the evaporation of water molecules from membranes as well as the hydrophilic Su-CNTs were helpful for binding water molecules.

  19. Proton conductive montmorillonite-Nafion composite membranes for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Wu, Xiu-Wen; Wu, Nan; Shi, Chun-Qing; Zheng, Zhi-Yuan; Qi, Hong-Bin; Wang, Ya-Fang

    2016-01-01

    Highlights: • Composite membranes are prepared with different montmorillonites and nafion solution. • Proton conductivities of the composite membranes are between 36.0 mS/cm and 38.5 mS/cm. • Ethanol permeability is between 0.69 × 10"−"6 cm"2/s and 2.67 × 10"−"6 cm"2/s. • Water uptake is approximately 24.30 mass%. - Abstract: The preparation of Nafion membranes modified with montmorillonites is less studied, and most relative works mainly applied in direct methanol fuel cells, less in direct ethanol fuel cells. Organic/inorganic composite membranes are prepared with different montmorillonites (Ca-montmorillonite, Na-montmorillonite, K-montmorillonite, Mg-montmorillonite, and H-montmorillonite) and Nafion solution via casting method at 293 K in air, and with balance of their proton conductivity and ethanol permeability. The ethanol permeability and proton conductivity of the membranes are comparatively studied. The montmorillonites can well decrease the ethanol permeability of the membranes via inserted them in the membranes, while less decrease the proton conductivities of the membranes depending on the inserted amount and type of montmorillonites. The proton conductivities of the membranes are between 36.0 mS/cm and 38.5 mS/cm. The ethanol permeability of the membranes is between 0.69 × 10"−"6 cm"2/s and 2.67 × 10"−"6 cm"2/s.

  20. Radiation induced grafting of tetrafluoroethylene on Nafion Films for ion exchange membrane application

    Energy Technology Data Exchange (ETDEWEB)

    Geraldes, Adriana Napoleao; Silva, Dionisio Furtunato da; Ferreto, Helio Fernando Rodrigues; Souza, Camila Pinheiro; Parra, Duclerc Fernandes; Lugao, Ademar Benevolo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Grafting of TFE nanocomposites onto Nafion was studied for synthesis of ion exchange membranes. Radiation-induced grafting of TFE gas onto Nafion films was investigated after simultaneous irradiation using a {sup 60}Co source. The thermal degradation of polytetrafluoroethylene (PTFE) waste has been used for production of TFE. Nafion films were irradiated at 15 kGy dose at room temperature and chemical changes were monitored after contact with TFE gas for grafting. The modified films were evaluated by differential scanning calorimetry analysis (DSC), thermogravimetric analysis (TG), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Characterization by XRD suggests crystallinity changes after TFE grafting. The ion exchange capacity (IEC) of membranes was determined by acid-base titration and the values for modified films were achieved similar to Nafion pristine films. DSC measurements revealed a displacement in the endothermic peaks and it was probably associated with the TFE graft. The graft forces the Nafion polymer chains to re-organize themselves and form a more cross-linked structure within the clusters. (author)

  1. Radiation induced grafting of tetrafluoroethylene on Nafion Films for ion exchange membrane application

    International Nuclear Information System (INIS)

    Geraldes, Adriana Napoleao; Silva, Dionisio Furtunato da; Ferreto, Helio Fernando Rodrigues; Souza, Camila Pinheiro; Parra, Duclerc Fernandes; Lugao, Ademar Benevolo

    2011-01-01

    Grafting of TFE nanocomposites onto Nafion was studied for synthesis of ion exchange membranes. Radiation-induced grafting of TFE gas onto Nafion films was investigated after simultaneous irradiation using a 60 Co source. The thermal degradation of polytetrafluoroethylene (PTFE) waste has been used for production of TFE. Nafion films were irradiated at 15 kGy dose at room temperature and chemical changes were monitored after contact with TFE gas for grafting. The modified films were evaluated by differential scanning calorimetry analysis (DSC), thermogravimetric analysis (TG), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Characterization by XRD suggests crystallinity changes after TFE grafting. The ion exchange capacity (IEC) of membranes was determined by acid-base titration and the values for modified films were achieved similar to Nafion pristine films. DSC measurements revealed a displacement in the endothermic peaks and it was probably associated with the TFE graft. The graft forces the Nafion polymer chains to re-organize themselves and form a more cross-linked structure within the clusters. (author)

  2. Stereoselective behavior of Nafion® membranes towards (+)-.alpha.-pinene and (-)-.alpha.-pinene

    Czech Academy of Sciences Publication Activity Database

    Brožová, Libuše; Žitka, Jan; Sysel, P.; Hovorka, Š.; Randová, A.; Storch, Jan; Kačírková, Marie; Izák, Pavel

    2015-01-01

    Roč. 38, č. 9 (2015), s. 1617-1624 ISSN 0930-7516 R&D Projects: GA ČR(CZ) GAP106/12/0569 Institutional support: RVO:61389013 ; RVO:67985858 Keywords : enantiomers * Nafion® membrane * pinene Subject RIV: CD - Macromolecular Chemistry; CI - Industrial Chemistry, Chemical Engineering (UCHP-M) Impact factor: 2.385, year: 2015

  3. An in-situ nano-scale swelling-filling strategy to improve overall performance of Nafion membrane for direct methanol fuel cell application

    Science.gov (United States)

    Li, Jing; Fan, Kun; Cai, Weiwei; Ma, Liying; Xu, Guoxiao; Xu, Sen; Ma, Liang; Cheng, Hansong

    2016-11-01

    A novel in-situ nano-scale swelling-filling (SF) strategy is proposed to modify commercial Nafion membranes for performance enhancement of direct methanol fuel cells (DMFCs). A Nafion membrane was filled in-situ with proton conductive macromolecules (PCMs) in the swelling process of a Nafion membrane in a PCM solution. As a result, both proton conductivity and methanol-permeation resistivity of the SF-treated Naifion membrane was substantially improved with the selectivity nearly doubled compared to the original Nafion membrane. The mechanical strength of the optimal SF treated Nafion membrane was also enforced due to the strong interaction between the PCM fillers and the Nafion molecular chains. As a result, a DMFC equipped with the SF-treated membrane yielded a 33% higher maximum power density than that offered by the DMFC with the original Nafion membrane.

  4. Investigation of local environments in Nafion-SiO(2) composite membranes used in vanadium redox flow batteries.

    Science.gov (United States)

    Vijayakumar, M; Schwenzer, Birgit; Kim, Soowhan; Yang, Zhenguo; Thevuthasan, S; Liu, Jun; Graff, Gordon L; Hu, Jianzhi

    2012-04-01

    Proton conducting polymer composite membranes are of technological interest in many energy devices such as fuel cells and redox flow batteries. In particular, polymer composite membranes, such as SiO(2) incorporated Nafion membranes, are recently reported as highly promising for the use in redox flow batteries. However, there is conflicting reports regarding the performance of this type of Nafion-SiO(2) composite membrane in the redox flow cell. This paper presents results of the analysis of the Nafion-SiO(2) composite membrane used in a vanadium redox flow battery by nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier Transform Infra Red (FTIR) spectroscopy, and ultraviolet-visible spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface. On the other hand, the (19)F and (29)Si NMR measurement explores the nature of the interaction between the silica particles, Nafion side chains and diffused vanadium cations. The (29)Si NMR shows that the silica particles interact via hydrogen bonds with the sulfonic groups of Nafion and the diffused vanadium cations. Based on these spectroscopic studies, the chemical environment of the silica particles inside the Nafion membrane and their interaction with diffusing vanadium cations during flow cell operations are discussed. This study discusses the origin of performance degradation of the Nafion-SiO(2) composite membrane materials in vanadium redox flow batteries. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Effectively suppressing vanadium permeation in vanadium redox flow battery application with modified Nafion membrane with nacre-like nanoarchitectures

    Science.gov (United States)

    Zhang, Lesi; Ling, Ling; Xiao, Min; Han, Dongmei; Wang, Shuanjin; Meng, Yuezhong

    2017-06-01

    A novel self-assembled composite membrane, Nafion-[PDDA/ZrP]n with nacre-like nanostructures was successfully fabricated by a layer-by-layer (LbL) method and used as proton exchange membrane for vanadium redox flow battery applications. Poly(diallyldimethylammonium chloride) (PDDA) with positive charges and zirconium phosphate (ZrP) nanosheets with negative charges can form ultra-thin nacre-like nanostructure on the surface of Nafion membrane via the ionic crosslinking of tightly folded macromolecules. The lamellar structure of ZrP nanosheets and Donnan exclusion effect of PDDA can greatly decrease the vanadium ion permeability and improve the selectivity of proton conductivity. The fabricated Nafion-[PDDA/ZrP]4 membrane shows two orders of magnitude lower vanadium ion permeability (1.05 × 10-6 cm2 min-1) and 12 times higher ion selectivity than those of pristine Nafion membrane at room temperature. Consequently, the performance of vanadium redox flow batteries (VRFBs) assembled with Nafion-[PDDA/ZrP]3 membrane achieved a highly coulombic efficiency (CE) and energy efficiency (EE) together with a very slow self-discharge rate. When comparing with pristine Nafion VRFB, the CE and EE values of Nafion-[PDDA/ZrP]3 VRFB are 10% and 7% higher at 30 mA cm-2, respectively.

  6. Radiation deterioration of ion-exchange Nafion N117CS membranes

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Hiroki, Akihiro; Tamada, Masao; Isobe, Kanetsugu; Yamanishi, Toshihiko

    2010-01-01

    The cation-exchange Nafion N117 membranes swelling in electrolyte solution were irradiated with γ-rays or electron beams at various doses up to 1500 kGy in the temperature range from room temperature to 343 K to obtain detailed information on the effect of ion-exchange on the radiation deterioration in mechanical properties and ion-exchange capacity. Considerable deterioration in mechanical properties was observed when the Nafion membranes swelling in electrolyte solution were irradiated. A reason is the promotion of degradation with oxygen molecules produced by the irradiation of electrolyte solution. The concentration of electrolyte solution influenced strongly the radiation deterioration in mechanical properties. Keeping the concentration of metal ions to be negligible is important when electrolyzed highly radioactive solution in the light of the durability of polyperfluorosulfonic acid (PFSA) membrane. A sort of cation in electrolyte solution negligibly influenced radiation deterioration in mechanical properties. A sort of anion in electrolyte solution had negligible effect on radiation deterioration in mechanical properties and ion-exchange capacity. The discrepancy in the radiation deterioration in mechanical properties of Nafion membranes swelling in NaCl solution was observed between the specimens irradiated with γ-rays and electron beams. This discrepancy can be explained from the low diffusivity of oxygen from bulk into the membrane.

  7. Synthesis and Characterization of Nafion-SiO2 Composite Membranes as an Electrolyte for Medium Temperature and Low Relative Humidity

    Directory of Open Access Journals (Sweden)

    Mahreni Mahreni

    2011-12-01

    Full Text Available The weakness of the Nafion membrane as electrolyte of PEMFC associated with physical properties that is easy to shrink at temperatures above 80°C due to dehydration. Shrinkage will decrease the conductivity and membrane damage. Nafion-SiO2 composite membranes can improve membrane stability. The role of SiO2 in the Nafion clusters is as water absorbent cause the membrane remains wet at high temperatures and low humidity and conductivity remains high. The results showed the content of 2.8 wt% of SiO2 in the Nafion membrane, the conductivity of composite membrane is higher than the pure Nafion membrane that are 0.127 S cm-1 in dry conditions and 0.778 S cm-1 in wet conditions at room temperature. Compared with the pure Nafion membrane conductivity are 0.0661 S cm-1 and 0.448 S cm-1 respectively in dry and wet conditions.

  8. Proton conductive montmorillonite-Nafion composite membranes for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiu-Wen, E-mail: wuxw2008@163.com [School of Science, China University of Geosciences, Beijing 100083 (China); National Laboratory of Mineral Materials, China University of Geosciences, Beijing 100083 (China); Wu, Nan; Shi, Chun-Qing; Zheng, Zhi-Yuan; Qi, Hong-Bin; Wang, Ya-Fang [School of Science, China University of Geosciences, Beijing 100083 (China)

    2016-12-01

    Highlights: • Composite membranes are prepared with different montmorillonites and nafion solution. • Proton conductivities of the composite membranes are between 36.0 mS/cm and 38.5 mS/cm. • Ethanol permeability is between 0.69 × 10{sup −6} cm{sup 2}/s and 2.67 × 10{sup −6} cm{sup 2}/s. • Water uptake is approximately 24.30 mass%. - Abstract: The preparation of Nafion membranes modified with montmorillonites is less studied, and most relative works mainly applied in direct methanol fuel cells, less in direct ethanol fuel cells. Organic/inorganic composite membranes are prepared with different montmorillonites (Ca-montmorillonite, Na-montmorillonite, K-montmorillonite, Mg-montmorillonite, and H-montmorillonite) and Nafion solution via casting method at 293 K in air, and with balance of their proton conductivity and ethanol permeability. The ethanol permeability and proton conductivity of the membranes are comparatively studied. The montmorillonites can well decrease the ethanol permeability of the membranes via inserted them in the membranes, while less decrease the proton conductivities of the membranes depending on the inserted amount and type of montmorillonites. The proton conductivities of the membranes are between 36.0 mS/cm and 38.5 mS/cm. The ethanol permeability of the membranes is between 0.69 × 10{sup −6} cm{sup 2}/s and 2.67 × 10{sup −6} cm{sup 2}/s.

  9. Nafion/ZrSPP composite membrane for high temperature operation of PEMFCs

    International Nuclear Information System (INIS)

    Kim, Young-Taek; Song, Min-Kyu; Kim, Ki-Hyun; Park, Seung-Bae; Min, Sung-Kyu; Rhee, Hee-Woo

    2004-01-01

    Nafion/zirconium sulphophenyl phosphate (ZrSPP) composite membranes were prepared to maintain proton conductivity at elevated temperatures. ZrSPP was precipitated by the reaction of Zr 4+ ion and m-sulphophenyl phosphonic (SPP) acid with a stoichiometric ratio P/Zr = 2. The synthesis of ZrSPP was confirmed by phosphonate (P-O) stretching band, assigned at 900-1300 cm -1 in FTIR spectra. The sharp diffraction pattern at 2θ = 5 deg. indicated crystalline α-layered structure of ZrSPP. The proton conductivity of Nafion/ZrSPP (12.5 wt.%) composite membrane reached ca. 0.07 S/cm at 140 deg. C without extra humidification

  10. Proton conductive montmorillonite-Nafion composite membranes for direct ethanol fuel cells

    Science.gov (United States)

    Wu, Xiu-Wen; Wu, Nan; Shi, Chun-Qing; Zheng, Zhi-Yuan; Qi, Hong-Bin; Wang, Ya-Fang

    2016-12-01

    The preparation of Nafion membranes modified with montmorillonites is less studied, and most relative works mainly applied in direct methanol fuel cells, less in direct ethanol fuel cells. Organic/inorganic composite membranes are prepared with different montmorillonites (Ca-montmorillonite, Na-montmorillonite, K-montmorillonite, Mg-montmorillonite, and H-montmorillonite) and Nafion solution via casting method at 293 K in air, and with balance of their proton conductivity and ethanol permeability. The ethanol permeability and proton conductivity of the membranes are comparatively studied. The montmorillonites can well decrease the ethanol permeability of the membranes via inserted them in the membranes, while less decrease the proton conductivities of the membranes depending on the inserted amount and type of montmorillonites. The proton conductivities of the membranes are between 36.0 mS/cm and 38.5 mS/cm. The ethanol permeability of the membranes is between 0.69 × 10-6 cm2/s and 2.67 × 10-6 cm2/s.

  11. Effect of filler surface functionalization on the performance of Nafion/Titanium oxide composite membranes

    International Nuclear Information System (INIS)

    Bonis, Catia de; Cozzi, Dafne; Mecheri, Barbara; D'Epifanio, Alessandra; Rainer, Alberto; De Porcellinis, Diana; Licoccia, Silvia

    2014-01-01

    The phenylsulfonic functionalized nanometric titania (TiO 2 -PhSO 3 H) was synthesized to be used as filler in Nafion-based composite membranes for direct methanol fuel cell (DMFC) applications. The organic moieties were covalently bound on the surface of TiO 2 nanoparticles and the hybrid product was characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric and differential thermal analysis (TG/DTA), field emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD) analysis. TiO 2 -PhSO 3 H showed higher ion exchange capacity (IEC) and proton conductivity values with respect to those of TiO 2 . The incorporation of TiO 2 -PhSO 3 H in Nafion led to a mechanical reinforcement of the membranes and higher conductivity than that obtained with unfilled Nafion. The composite membrane containing 10 wt.% of TiO 2 -PhSO 3 H showed an increased crystallinity and the highest conductivity, reaching 0.11 S cm −1 at 140 °C. DMFC tests were carried out showing that the use of the organic-inorganic hybrid filler leads to a general improvement in the cell performance, in terms of higher current and power density and reduced methanol crossover

  12. Study on the Durability of Recast Nafion/Montmorillonite Composite Membranes in Low Humidification Conditions

    Directory of Open Access Journals (Sweden)

    A. Pozio

    2011-01-01

    Full Text Available Nafion composite membranes were formed from a recasting procedure previously reported by the authors. Montmorillonite (MMT was used as a filler in the recasting procedure, and dimethylformamide (DMF was used as the casting solvent. Fuel cell tests performed with the recast membrane showed that at low relative humidity (R.H. the conductivity of the MMT-containing membranes is 10% higher than that of the MMT-free samples. In order to investigate the durability of such composite perfluorosulfonate membranes, long-term fuel cell experiments have been carried out. Results evidenced a strong effect of low RH on the lifetime of commercial polymer membranes, but the addition of a small silicate amount to the polymeric membrane reduced strongly the membrane degradation.

  13. Solid polymer electrolyte water electrolyser based on Nafion-TiO{sub 2} composite membrane for high temperature operation

    Energy Technology Data Exchange (ETDEWEB)

    Baglio, V.; Antonucci, V.; Arico, A.S. [CNR-ITAE, Messina (Italy); Matteucci, F.; Martina, F.; Zama, I. [Tozzi Renewable Energy SpA, Mezzano (Italy); Ciccarella, G. [National Nanotechnology Laboratory (NNL) of INFM-CNR, Distretto Tecnologico ISUFI, Innovazione, Universita del Salento, Lecce (Italy); Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Queretaro Sanfandila (Mexico); Ornelas, R.

    2009-06-15

    A composite Nafion-TiO{sub 2} membrane was manufactured by a recast procedure, using an in-house prepared TiO{sub 2}. This membrane has shown promising properties for high temperature operation in an SPE electrolyser allowing to achieve higher performance with respect to a commercial Nafion 115 membrane. This effect is mainly due to the water retention properties of the TiO{sub 2} filler. A promising increase in electrical efficiency was recorded at low current densities for the composite membrane-based SPE electrolyser at high temperature compared to conventional membrane-based devices. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  14. Glucose oxidase as a biocatalytic enzyme-based bio-fuel cell using Nafion membrane limiting crossover

    International Nuclear Information System (INIS)

    Naidoo, S; Blottnitz, H; Naidoo, Q; Vaivars, G

    2013-01-01

    A novel combination for an Enzyme-based Biofuel cell included a Nafion membrane as an ion transporter that maintained a working cell charge and inhibited membrane degradation. The prototype cell chamber used oxygen (O 2 ) in the cathode cell and glucose in the anode. The Nafion membrane stability studied here was evidently in the region of 0% loss of conductivity as the charge was constant and increased after the addition of glucose. The prototype cell chamber used NaCl in the cathode cell and glucose oxidase (GOx) in the anodic chamber was successfully studied for membrane stability showed in this study no evidence of poisoning from membrane leakage in a controlled pH environment. There was no crossover at the anaerobic operating ambient temperatures and under physiological pH 5 – 7 conditions. In this research we have successfully used a Nafion membrane together with GOx and under controlled conditions produced respectable power densities

  15. Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells

    Science.gov (United States)

    Jiang, Gao-peng; Zhang, Jing; Qiao, Jin-li; Jiang, Yong-ming; Zarrin, Hadis; Chen, Zhongwei; Hong, Feng

    2015-01-01

    Novel nanocomposite membranes aimed for both proton-exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are presented in this work. The membranes are based on blending bacterial nanocellulose pulp and Nafion (abbreviated as BxNy, where x and y indicates the mass ratio of bacterial cellulose to Nafion). The structure and properties of BxNy membranes are characterized by FTIR, SEM, TG, DMA and EIS, along with water uptake, swelling behavior and methanol permeability tests. It is found that the BxNy composite membranes with reinforced concrete-like structure show excellent mechanical and thermal stability regardless of annealing. The water uptake plus area and volume swelling ratios are all decreased compared to Nafion membranes. The proton conductivities of pristine and annealed B1N9 are 0.071 and 0.056 S cm-1, respectively, at 30 °C and 100% humidity. Specifically, annealed B1N1 exhibited the lowest methanol permeability of 7.21 × 10-7 cm2 s-1. Through the selectivity analysis, pristine and annealed B1N7 are selected to assemble the MEAs. The performances of annealed B1N7 in PEMFC and DMFC show the maximum power densities of 106 and 3.2 mW cm-2, respectively, which are much higher than those of pristine B1N7 at 25 °C. The performances of the pristine and annealed B1N7 reach a level as high as 21.1 and 20.4 mW cm-2 at 80 °C in DMFC, respectively.

  16. Behavior of nafion membrane at elevated temperature and pressure

    Czech Academy of Sciences Publication Activity Database

    Paidar, M.; Mališ, J.; Bouzek, K.; Žitka, Jan

    2010-01-01

    Roč. 14, 1-3 (2010), s. 106-111 ISSN 1944-3994. [PERMEA 2009. Prague, 07.06.2009-11.06.2009] EU Projects: European Commission(XE) 212903 - WELTEMP Institutional research plan: CEZ:AV0Z40500505 Keywords : polymer electrolyte * perfluorosulfonic acid * membrane conductivity Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.752, year: 2010

  17. Positron annihilation lifetime study of Nafion/titanium dioxide nano-composite membranes

    Science.gov (United States)

    Lei, M.; Wang, Y. J.; Liang, C.; Huang, K.; Ye, C. X.; Wang, W. J.; Jin, S. F.; Zhang, R.; Fan, D. Y.; Yang, H. J.; Wang, Y. G.

    2014-01-01

    Positron annihilation lifetime (PAL) technique is applied for investigation of size and number density of free volumes in Nafion/TiO2-nanoparticles composite membrane. The proton transporting ability is correlated with the properties of free volume inside the membrane. It is revealed that composite membrane with 5 wt% of TiO2 nano-fillers exhibits good electrochemical performance under reduced humidity and it can be saturated with water at relative humidity of 50%, under which ionic clusters and proton transporting channels are formed, indicating that composite membranes with 5 wt% of TiO2 nano-fillers are effective electrolyte for fuel cells operated at reduced humidification levels. The results suggest that PAL can be a powerful tool for elucidating the relationship between microstructure and ion transport in polymer electrolyte membranes.

  18. Performance of a 1 kW Class Nafion-PTFE Composite Membrane Fuel Cell Stack

    Directory of Open Access Journals (Sweden)

    Pattabiraman Krishnamurthy

    2012-01-01

    Full Text Available Composite membranes have been prepared by impregnation of Nafion into the expanded polytetrafluoroethylene (EPTFE matrix. Nafion loading in the composite membranes was kept constant at 2 mg/cm2. The lower amount of electrolyte per unit area in the composite membranes offers cost advantages compared to conventional membrane of 50 μm thickness with an electrolyte loading of ~9 mg/cm2. Composite membranes (30 μm thickness were found to have higher thermal stability and mechanical strength compared to the conventional membranes (50 μm thickness. The performance of the membrane electrode assembly made with these composite membranes was comparable to that of the conventional membranes. Single cells fabricated from these MEAs were tested for their performance and durability before scaling them up for large area. The performance of a 20-cell stack of active area 330 cm2 fabricated using these membranes is reported.

  19. Toward Anhydrous Proton Conductivity Based on Imidazole Functionalized Mesoporous Silica/Nafion Composite Membranes

    International Nuclear Information System (INIS)

    Amiinu, Ibrahim Saana; Li, Wei; Wang, Guangjin; Tu, Zhengkai; Tang, Haolin; Pan, Mu; Zhang, Haining

    2015-01-01

    Highlights: • Imidazole-functionalized mesoporous silica/Nafion composite is formed. • Electrostatic interaction between ionic clusters leads to enhanced molecular rigidity and T g . • Charge transfer resistance decreases with increase in temperature up to 130 °C. • The composite membrane exhibited considerable stability over 70 h at 130 °C. - Abstract: Although Nafion is regarded as the most preferred electrolyte membrane and often used as a benchmark for comparative evaluation of other electrolyte membranes, its wide spread for commercial PEM fuel cells is limited by the poor electrochemical properties at elevated temperatures and low relative humidity conditions. Herein, sol–gel synthesized mesoporous silica functionalized with a protogenic molecule (imidazole) is introduced into the Nafion matrix via a colloid mediated process. The formation of a stable colloid enables homogeneous dispersion of the silica-imidazole nanoparticles without aggregation. Under non-humidified conditions, the amphoteric and self-dissociative character of the tethered imidazole within the matrix functions as a transporting medium to facilitate proton conductivity. The structural and chemical phases are characterized, and qualitatively evaluated by XRD, TEM, FT-IR, TGA, and DMA. The results show that the average proton conductivity of the composite membrane with the optimal amount of functionalized nanoparticles increases progressively to 1.06 × 10 −2 S cm −1 at 130 °C, corresponding to an activation energy of 6.95 kJ mol −1 under non-humidified conditions. The mechanism governing the dynamics of proton conductivity and structural limitations as a function of temperature is discussed

  20. Nafion-based nanocomposite membranes for fuel cells

    CSIR Research Space (South Africa)

    Cele, NP

    2008-11-01

    Full Text Available . Zhang, J. Wang and F. Sheu, Journal of Electroanalytical Chemistry, 577 (2005) 295 J. James, T.Z. McMaster, J.M. Newton, M.J. Miles, Polymer 41 (2000) 4223 M. Ludvigsson, J. Lindgren, J. Tegenfeldt, Electrochim. Acta (2000) 2267 Shoibal Banerjee..., Dennis E. Curtin Journal of Fluorine Chemistry 125 (2004) 1211–1216 1. 2. 3. 4. 5. CPO-0023 By incorporating multi walled carbon nanotubes onto proton exchange membranes (PEM), its thermal stability is increased, making PEM fuel cells ideal...

  1. Coulometric sodium chloride removal system with Nafion membrane for seawater sample treatment.

    Science.gov (United States)

    Grygolowicz-Pawlak, Ewa; Sohail, Manzar; Pawlak, Marcin; Neel, Bastien; Shvarev, Alexey; de Marco, Roland; Bakker, Eric

    2012-07-17

    Seawater analysis is one of the most challenging in the field of environmental monitoring, mainly due to disparate concentration levels between the analyte and the salt matrix causing interferences in a variety of analytical techniques. We propose here a miniature electrochemical sample pretreatment system for a rapid removal of NaCl utilizing the coaxial arrangement of an electrode and a tubular Nafion membrane. Upon electrolysis, chloride is deposited at the Ag electrode as AgCl and the sodium counterions are transported across the membrane. This cell was found to work efficiently at potentials higher than 400 mV in both stationary and flow injection mode. Substantial residual currents observed during electrolysis were found to be a result of NaCl back diffusion from the outer side of the membrane due to insufficient permselectivity of the Nafion membrane. It was demonstrated that the residual current can be significantly reduced by adjusting the concentration of the outer solution. On the basis of ion chromatography results, it was found that the designed cell used in flow injection electrolysis mode reduced the NaCl concentration from 0.6 M to 3 mM. This attempt is very important in view of nutrient analysis in seawater where NaCl is a major interfering agent. We demonstrate that the pretreatment of artificial seawater samples does not reduce the content of nitrite or nitrate ions upon electrolysis. A simple diffusion/extraction steady state model is proposed for the optimization of the electrolysis cell characteristics.

  2. Synthesis of the diazonium (perfluoroalkyl) benzenesulfonimide monomer from Nafion monomer for proton exchange membrane fuel cells

    Science.gov (United States)

    Mei, Hua; D'Andrea, Dan; Nguyen, Tuyet-Trinh; Nworie, Chima

    2014-02-01

    One diazonium (perfluoroalkyl) benzenesulfonimide monomer, perfluoro-3, 6-dioxa-4-methyl-7-octene benzenesulfonyl imide, has been synthesized from Nafion monomer for the first time. With trifluorovinyl ether and diazonium precursors, the partially-fluorinated diazonium PFSI monomer can be polymerized and will provide chemically bonding with carbon electrode in proton exchange membrane fuel cells. A systematic study of the synthesis and characterization of this diazonium PFSI monomer has been conducted by varying reaction conditions. The optimized synthesis method has been established in the lab.

  3. Self-Healing Proton-Exchange Membranes Composed of Nafion-Poly(vinyl alcohol) Complexes for Durable Direct Methanol Fuel Cells.

    Science.gov (United States)

    Li, Yixuan; Liang, Liang; Liu, Changpeng; Li, Yang; Xing, Wei; Sun, Junqi

    2018-04-30

    Proton-exchange membranes (PEMs) that can heal mechanical damage to restore original functions are important for the fabrication of durable and reliable direct methanol fuel cells (DMFCs). The fabrication of healable PEMs that exhibit satisfactory mechanical stability, enhanced proton conductivity, and suppressed methanol permeability via hydrogen-bonding complexation between Nafion and poly(vinyl alcohol) (PVA) followed by postmodification with 4-carboxybenzaldehyde (CBA) molecules is presented. Compared with pure Nafion, the CBA/Nafion-PVA membranes exhibit enhanced mechanical properties with an ultimate tensile strength of ≈20.3 MPa and strain of ≈380%. The CBA/Nafion-PVA membrane shows a proton conductivity of 0.11 S cm -1 at 80 °C, which is 1.2-fold higher than that of a Nafion membrane. The incorporated PVA gives the CBA/Nafion-PVA membranes excellent proton conductivity and methanol resistance. The resulting CBA/Nafion-PVA membranes are capable of healing mechanical damage of several tens of micrometers in size and restoring their original proton conductivity and methanol resistance under the working conditions of DMFCs. The healing property originates from the reversibility of hydrogen-bonding interactions between Nafion and CBA-modified PVA and the high chain mobility of Nafion and CBA-modified PVA. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Species transport mechanisms governing capacity loss in vanadium flow batteries: Comparing Nafion® and sulfonated Radel membranes

    International Nuclear Information System (INIS)

    Agar, Ertan; Knehr, K.W.; Chen, D.; Hickner, M.A.; Kumbur, E.C.

    2013-01-01

    Highlights: • Species transport mechanisms are investigated in Nafion ® and s-Radel for VRFBs. • Unlike diffusion in Nafion ® , crossover in s-Radel is dominated by convection. • In particular, electro-osmotic convection is the dominant mode in s-Radel. • Change in direction of convection causes a lower crossover in s-Radel. • Hydraulic and electrokinetic permeability are as important as vanadium permeability. -- Abstract: In this study, a 2-D, transient vanadium redox flow battery (VRFB) model was used to investigate and compare the ion transport mechanisms responsible for vanadium crossover in Nafion ® 117 and sulfonated Radel (s-Radel) membranes. Specifically, the model was used to distinguish the relative contribution of diffusion, migration, osmotic and electro-osmotic convection to the net vanadium crossover in Nafion ® and s-Radel. Model simulations indicate that diffusion is the dominant mode of vanadium transport in Nafion ® , whereas convection dominates the vanadium transport through s-Radel due to the lower vanadium permeability, and thus diffusivity of s-Radel. Among the convective transport modes, electro-osmotic convection (i.e., electro-osmotic drag) is found to govern the species crossover in s-Radel due to its higher fixed acid concentration and corresponding free ions in the membrane. Simulations also show that vanadium crossover in s-Radel changes direction during charge and discharge due to the change in the direction of electro-osmotic convection. This reversal in the direction of crossover during charge and discharge is found to result in significantly lower “net” crossover for s-Radel when compared to Nafion ® . Comparison of these two membranes also provides guidance for minimizing crossover in VRFB systems and underscores the importance of measuring the hydraulic and the electro-kinetic permeability of a membrane in addition to vanadium diffusion characteristics, when evaluating new membranes for VRFB applications

  5. Effect of Elevated Temperature Annealing on Nafion/SiO2 Composite Membranes for the All-Vanadium Redox Flow Battery

    Directory of Open Access Journals (Sweden)

    Sixiu Zeng

    2018-04-01

    Full Text Available Conducting Nafion/SiO2 composite membranes were successfully prepared using a simple electrostatic self-assembly method, followed by annealing at elevated temperatures of 240, 270, and 300 °C. Membrane performance was then investigated in vanadium redox flow batteries (VRB. These annealed composite membranes demonstrated lower vanadium permeability and a better selectivity coefficient than pure Nafion membranes. The annealing temperature of 270 °C created the highest proton conductivity in the Nafion/SiO2 composite membranes. The microstructures of these membranes were analyzed using transmission electron microscopy, small-angle X-ray scattering, and positron annihilation lifetime spectroscopy. This study revealed that exposure to high temperatures resulted in an increase in the free volumes of the composite membranes, resulting in improved mechanical and chemical behavior, with the single cell system containing composite membranes performing better than systems containing pure Nafion membranes.

  6. On the methanol permeability through pristine Nafion {sup registered} and Nafion/PVA membranes measured by different techniques. A comparison of methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Molla, S.; Compan, V. [Departmento de Termodinamica Aplicada, Escuela de Ingenieria Tecnica Industrial (ETSII), Universidad Politecnica de Valencia, 46022 Valencia (Spain); Instituto Tecnologico de la Energia (ITE), Av. Juan de la Cierva 24, 46980 Paterna, Valencia (Spain); Luis Lafuente, S. [Departmento de Quimica Organica, Universidad Jaume I, 12072 Castellon (Spain); Prats, J. [Departmento de Termodinamica Aplicada, Escuela de Ingenieria Tecnica Industrial (ETSII), Universidad Politecnica de Valencia, 46022 Valencia (Spain)

    2011-12-15

    Methanol crossover through polymer electrolyte membranes is a critical issue and causes an important reduction of performance in direct methanol fuel cells (DMFCs). Measuring the evolution of CO{sub 2} gas in the cathode is a common method to determine the methanol crossover under real operating conditions, although an easier and simpler method is preferable for the screening of membranes during their step of development. In this sense, this work has been focused on the ex situ characterization of the methanol permeability in novel nanofiber-reinforced composite Nafion/PVA membranes for DMFC application by means of three different experimental procedures: (a) potentiometric method, (b) gas chromatography technique, and (c) measuring the density. It was found that all these methods resulted in comparable results and it was observed that the incorporation of the PVA nanofiber phase within the Nafion {sup registered} matrix causes a remarkable reduction of the methanol permeability. The optimal choice of the most suitable technique depends on the accuracy expected for the methanol concentration, the availability of the required instrumental, and the complexity of the procedure. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Fuel cell membrane hydration and fluid metering

    Science.gov (United States)

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  8. Investigation of physical properties and cell performance of Nafion/TiO{sub 2} nanocomposite membranes for high temperature PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Amjadi, M.; Peighambardoust, S.J. [School of Chemical Engineering, Iran University of Science and Technology, Tehran (Iran); Rowshanzamir, S. [School of Chemical Engineering, Iran University of Science and Technology, Tehran (Iran); Fuel Cell Research Laboratory, Green Research Centre, Iran University of Science and Technology, Tehran (Iran); Hosseini, M.G. [Electrochemistry Research Laboratory, Physical Chemistry Department, Chemistry Faculty, Tabriz University, Tabriz (Iran); Eikani, M.H. [Department of Chemical Industries, Iranian Research Organization for Science and Technology (IROST), Tehran (Iran)

    2010-09-15

    Synthesis and characterization of Nafion/TiO{sub 2} membranes for proton exchange membrane fuel cell (PEMFC) operating at high temperatures were investigated in this study. Nafion/TiO{sub 2} nanocomposite membranes have been prepared by in-situ sol-gel and casting methods. In the sol-gel method, preformed Nafion membranes were soaked in tetrabutylortotitanate (TBT) and methanol solution. In order to compare synthesis methods, a Nafion/TiO{sub 2} composite membrane was fabricated with 3 wt.% of TiO{sub 2} particles by the solution casting method. The structures of membranes were investigated by Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray Analysis (EDXA). Also, water uptake and proton conductivity of modified membranes were measured. Furthermore, the membranes were tested in a real PEMFC. X-Ray spectra of the composite membranes indicate the presence of TiO{sub 2} in the modified membranes. In case of the same doping level, sol-gel method produces more uniform distribution of Ti particles in Nafion/TiO{sub 2} composite membrane than the ones produced by casting method. Water uptake of Nafion/TiO{sub 2} membrane with 3 wt.% of doping level was found to be 51% higher than that of the pure Nafion membrane. EIS measurements showed that the conductivity of modified membranes decreases with increasing the amount of doped TiO{sub 2}. Finally, the membrane electrode assembly (MEA) prepared from Nafion/Titania nanocomposite membrane shows the highest PEMFC performance in terms of voltage vs. current density (V-I) at high temperature (110 C) which is the main goal of this study. (author)

  9. Molecular simulations of hydrated proton exchange membranes. The structure

    Energy Technology Data Exchange (ETDEWEB)

    Marcharnd, Gabriel [Duisburg-Essen Univ., Essen (Germany). Lehrstuhl fuer Theoretische Chemie; Bordeaux Univ., Talence (France). Dept. of Chemistry; Bopp, Philippe A. [Bordeaux Univ., Talence (France). Dept. of Chemistry; Spohr, Eckhard [Duisburg-Essen Univ., Essen (Germany). Lehrstuhl fuer Theoretische Chemie

    2013-01-15

    The structure of two hydrated proton exchange membranes for fuel cells (PEMFC), Nafion {sup registered} (Dupont) and Hyflon {sup registered} (Solvay), is studied by all-atom molecular dynamics (MD) computer simulations. Since the characteristic times of these systems are long compared to the times for which they can be simulated, several different, but equivalent, initial configurations with a large degree of randomness are generated for different water contents and then equilibrated and simulated in parallel. A more constrained structure, analog to the newest model proposed in the literature based on scattering experiments, is investigated in the same way. One might speculate that a limited degree of entanglement of the polymer chains is a key feature of the structures showing the best agreement with experiment. Nevertheless, the overall conclusion remains that the scattering experiments cannot distinguish between the several, in our view equally plausible, structural models. We thus find that the characteristic features of experimental scattering curves are, after equilibration, fairly well reproduced by all systems prepared with our method. We thus study in more detail some structural details. We attempt to characterize the spatial and size distribution of the water rich domains, which is where the proton diffusion mostly takes place, using several clustering algorithms. (orig.)

  10. Permeability and Diffusion Coefficients of Single Methyl Lactate Enantiomers in Nafion® and Cellophane Membranes Measured in Diffusion Cell.

    Czech Academy of Sciences Publication Activity Database

    Hovorka, Š.; Randová, A.; Borbášová, T.; Sysel, P.; Vychodilová, Hana; Červenková Šťastná, Lucie; Brožová, Libuše; Žitka, Jan; Storch, Jan; Kačírková, Marie; Drašar, P.; Izák, Pavel

    2016-01-01

    Roč. 158, JAN 28 (2016), s. 322-332 ISSN 1383-5866 R&D Projects: GA ČR(CZ) GAP106/12/0569 Institutional support: RVO:67985858 ; RVO:61389013 Keywords : diffusion coefficient measurement * permeability * nafion * cellophane * chirality of polymer membrane Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016

  11. Matlab Source Code for Species Transport through Nafion Membranes in Direct Ethanol, Direct Methanol, and Direct Glucose Fuel Cells

    OpenAIRE

    JH, Summerfield; MW, Manley

    2016-01-01

    A simple simulation of chemical species movement is presented. The species traverse a Nafion membrane in a fuel cell. Three cells are examined: direct methanol, direct ethanol, and direct glucose. The species are tracked using excess proton concentration, electric field strength, and voltage. The Matlab computer code is provided.

  12. PEDOT:PSS self-assembled films to methanol crossover reduction in Nafion{sup ®} membranes

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Tiago P. [Universidade Federal de São Carlos, Sorocaba, SP (Brazil); Miyazaki, Celina M. [Universidade Estadual Paulista, POSMAT, SP (Brazil); Paganin, Valdecir A. [Universidade de São Paulo, IQSC, São Carlos, SP (Brazil); Ferreira, Marystela [Universidade Federal de São Carlos, Sorocaba, SP (Brazil); Saeki, Margarida J. [Universidade Estadual Paulista, Instituto de Biociências, Botucatu, SP (Brazil); Perez, Joelma [Universidade de São Paulo, IQSC, São Carlos, SP (Brazil); Riul, Antonio, E-mail: riul@ifi.unicamp.br [Universidade Estadual de Campinas, IFGW, Campinas (Brazil)

    2014-12-30

    Highlights: • PAH/PEDOT:PSS LbL films were regularly multilayered onto Nafion. • The LbL modified membranes were succesfully applied to reduce methanol crossover in Nafion. • PAH/PEDO:PSS films also decreased the proton conduction, reducing in 15% the DMFC performance. - Abstract: Alternative energy sources are on a global demand, with fuel cells as promising devices from mobile to stationary applications. Nafion{sup ®} is at the heart of many of these appliances, being mostly used due to its high proton conduction and good chemical stability at ambient temperature in proton exchange membranes (PEM). Therefore, methanol permeation throughout Nafion{sup ®} films reduces drastically the performance of direct methanol fuel cells (DMFC). We present here the deposition of layer-by-layer (LbL) nanostructured thin films of poly(allylamine hydrochloride) (PAH) and poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) onto commercial Nafion{sup ®} 212 membranes. It was observed a good adherence of the LbL films onto Nafion{sup ®} 212, with UV–vis results displaying a linear characteristic growth, indicative that the same amount of material was deposited at each deposition step during the layer-by-layer assembly. In addition, the LbL films also act as a good barrier to avoid methanol crossover, with an observed reduction in the methanol permeation from 5.5 × 10{sup −6} cm{sup 2} s{sup −1} to 3.2 × 10{sup −6} cm{sup 2} s{sup −1}, respectively to pristine Nafion{sup ®} 212 and a 5-bilayer PAH/PEDOT:PSS LbL film deposited on Nafion{sup ®}212. The measured power density in a DMFC set-up was not significantly changed (∼12 mW cm{sup −2}) due to the LbL films, since the PAH/PEDOT:PSS nanostructure is impeding water and ion transport, consequently affecting the proton conduction throughout the membrane.

  13. Synthesis and characterization of diverse Pt nanostructures in Nafion.

    Science.gov (United States)

    Ingle, N J C; Sode, A; Martens, I; Gyenge, E; Wilkinson, D P; Bizzotto, D

    2014-02-25

    With the aid of TEM characterization, we describe two distinct Pt nanostructures generated via the electroless reduction of Pt(NH3)4(NO2)2 within Nafion. Under one set of conditions, we produce bundles of Pt nanorods that are 2 nm in diameter and 10-20 nm long. These bundled Pt nanorods, uniformly distributed within 5 μm of the Nafion surface, are strikingly similar to the proposed hydrated nanomorphology of Nafion, and therefore strongly suggestive of Nafion templating. By altering the reaction environment (pH, reductant strength, and Nafion hydration), we can also generate nonregular polyhedron Pt nanoparticles that range in size from a few nanometers in diameter up to 20 nm. These Pt nanoparticles form a dense Pt layer within 100-200 nm from the Nafion surface and show a power-law dependence of particle size and distribution on the distance from the Nafion membrane surface. Control over the distribution and the type of Pt nanostructures in the surface region may provide a cost-effective, simple, and scaleable pathway for enhancing manufacturability, activity, stability, and utilization efficiency of Pt catalysts for electrochemical devices.

  14. Influence of aminosilane precursor concentration on physicochemical properties of composite Nafion membranes for vanadium redox flow battery applications

    Science.gov (United States)

    Kondratenko, Mikhail S.; Karpushkin, Evgeny A.; Gvozdik, Nataliya A.; Gallyamov, Marat O.; Stevenson, Keith J.; Sergeyev, Vladimir G.

    2017-02-01

    A series of composite proton-exchange membranes have been prepared via sol-gel modification of commercial Nafion membranes with [N-(2-aminoethyl)-3-aminopropyl]trimethoxysilane. The structure and physico-chemical properties (water uptake, ion-exchange capacity, vanadyl ion permeability, and proton conductivity) of the prepared composite membranes have been studied as a function of the precursor loading (degree of the membrane modification). If the amount of the precursor is below 0.4/1 M ratio of the amino groups of the precursor to the sulfonic groups of Nafion, the composite membranes exhibit decreased vanadium ion permeability while having relatively high proton conductivity. With respect to the use of a non-modified Nafion membrane, the performance of the composite membrane with an optimum precursor loading in a single-cell vanadium redox flow battery demonstrates enhanced energy efficiency in 20-80 mA cm-2 current density range. The maximum efficiency increase of 8% is observed at low current densities.

  15. Ionic cluster size distributions of swollen nafion/sulfated beta-cyclodextrin membranes characterized by nuclear magnetic resonance cryoporometry.

    Science.gov (United States)

    Jeon, Jae-Deok; Kwak, Seung-Yeop

    2007-08-16

    Nafion/sb-CD membranes were prepared by mixing 5 wt% Nafion solution with H+-form sulfated beta-cyclodextrin (sb-CD), and their water uptakes, ion exchange capacities (IECs), and ionic cluster size distributions were measured. Gravimetric and thermogravimetric measurements showed that the water uptake of the membranes increased with increases in their sb-CD content. The IECs of the membrane were measured with acid-base titration and found to increase with increases in the sb-CD content, reaching 0.96 mequiv/g for NC5 ("NCx" denotes a Nafion/sb-CD composite membrane containing x wt% of sb-CD). The cluster-correlation peaks and ionic cluster size distributions of the water-swollen membranes were determined using small-angle X-ray scattering (SAXS) and 1H nuclear magnetic resonance (NMR) cryoporometry, respectively. The SAXS experiments confirmed that increases in the sb-CD content of the membranes shifted the maximum SAXS peaks to lower angles, indicating an increase in the cluster correlation peak. NMR cryoporometry is based on the theory of the melting point depression, Delta Tm, of a liquid confined within a pore, which is dependent on the pore diameter. The melting point depression was determined by analyzing the variation of the NMR signal intensity with temperature. Our analysis of the intensity-temperature (IT) curves showed that the ionic cluster size distribution gradually became broader with increases in the membrane sb-CD content due to the increased water content, indicating an increase in the ionic cluster size. This result indicates that the presence of sb-CD with its many sulfonic acid sites in the Nafion membranes results in increases in the ionic cluster size as well as in the water uptake and the IEC. We conclude that NMR cryoporometry provides a method for determining the ionic cluster size on the nanometer scale in an aqueous environment, which cannot be obtained using other methods.

  16. Monitoring membrane hydration with 2-(dimethylamino)-6-acylnaphtalenes fluorescent probes

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2015-01-01

    of LAURDAN and PRODAN are exquisitely sensitive to cholesterol effects, allowing interpretations that correlate changes in membrane packing with membrane hydration. Different membrane model systems as well as innate biological membranes have been studied with this family of probes allowing interesting...... comparative studies. This chapter presents a short historical overview about these fluorescent reporters, discusses on different models proposed to explain their sensitivity to membrane hydration, and includes relevant examples from experiments performed in artificial and biological membranes....

  17. Ab Initio Study of Hydration and Proton Dissociation in Ionomer Membranes

    International Nuclear Information System (INIS)

    Idupulapati, Nagesh B.; Devanathan, Ramaswami; Dupuis, Michel

    2010-01-01

    We present a comparative study of proton dissociation in various functional acidic units that are promising candidates as building blocks for polymeric electrolyte membranes. Minimum energy structures for four acidic moieties with clusters of 1-6 water molecules were determined using density functional theory at the B3LYP/6-311G** level starting from chemically rational initial configurations. The perfluoro sulfonyl imide acid group (CF3CF2SO2NHSO2CF3) was observed to be the strongest acid, due to the substantial electron withdrawing effect of both fluorocarbon groups. The hydrophilic functional group (CH3OC6H3OCH3C6H4SO3H) of sulfonated polyetherether ketone (SPEEK) membrane was found to be the strongest base with the acidic proton dissociation requiring the addition of six water molecules and the hydrated proton being more tightly bound to the conjugate base. Even though both perfluoro sulfonyl imides and sulfonic acids (hydrophilic functional groups for sulfonyl imide and Nafion ionomers respectively) required only three water molecules to exhibit spontaneous proton dissociation, the largest possible solvent-separated hydronium ion was attained only for the sulfonyl imide moiety. These results provide a scientific basis for understanding the improved conductivity of perfluorinated sulfonyl imide-based membranes relative to that of the widely-used Nafion membrane.

  18. Preparation of Nafion 117™-SnO2 Composite Membranes using an Ion-Exchange Method

    DEFF Research Database (Denmark)

    Nørgaard, Casper Frydendal; Nielsen, Ulla Gro; Skou, Eivind Morten

    2012-01-01

    Nafion 117™-SnO2 composite membranes were prepared by in-situ particle formation using an ion-exchange method. SnO2 was incorporated into Nafion 117ä membranes by ion-exchange in solutions of SnCl2 ∙2 H2O in methanol, followed by oxidation to SnO2 in air. By adjustment of the concentration of SnCl2...... ∙ 2 H2O used in the ion-exchange step, compositions ranging from 2 to 8 wt% SnO2 with SnO2 homogeneously distributed as nanoparticles were obtained. The prepared nanocomposite membranes were characterized by powder XRD, 119Sn MAS NMR spectroscopy, electrochemical impedance spectroscopy, water uptake...

  19. Structural and Spectroscopic Characterization of A Nanosized Sulfated TiO2 Filler and of Nanocomposite Nafion Membranes

    Directory of Open Access Journals (Sweden)

    Valentina Allodi

    2016-03-01

    Full Text Available A large number of nano-sized oxides have been studied in the literature as fillers for polymeric membranes, such as Nafion®. Superacidic sulfated oxides have been proposed and characterized. Once incorporated into polymer matrices, their beneficial effect on peculiar membrane properties has been demonstrated. The alteration of physical-chemical properties of composite membranes has roots in the intermolecular interaction between the inorganic filler surface groups and the polymer chains. In the attempt to tackle this fundamental issue, here we discuss, by a multi-technique approach, the properties of a nanosized sulfated titania material as a candidate filler for Nafion membranes. The results of a systematic study carried out by synchrotron X-ray diffraction, transmission electron microscopy, thermogravimetry, Raman and infrared spectroscopies are presented and discussed to get novel insights about the structural features, molecular properties, and morphological characteristics of sulphated TiO2 nanopowders and composite Nafion membranes containing different amount of sulfated TiO2 nanoparticles (2%, 5%, 7% w/w.

  20. Characterization of the thermolysis products of Nafion membrane: A potential source of perfluorinated compounds in the environment

    Science.gov (United States)

    Feng, Mingbao; Qu, Ruijuan; Wei, Zhongbo; Wang, Liansheng; Sun, Ping; Wang, Zunyao

    2015-05-01

    The thermal decomposition of Nafion N117 membrane, a typical perfluorosulfonic acid membrane that is widely used in various chemical technologies, was investigated in this study. Structural identification of thermolysis products in water and methanol was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS). The fluoride release was studied using an ion-chromatography system, and the membrane thermal stability was characterized by thermogravimetric analysis. Notably, several types of perfluorinated compounds (PFCs) including perfluorocarboxylic acids were detected and identified. Based on these data, a thermolysis mechanism was proposed involving cleavage of both the polymer backbone and its side chains by attack of radical species. This is the first systematic report on the thermolysis products of Nafion by simulating its high-temperature operation and disposal process via incineration. The results of this study indicate that Nafion is a potential environmental source of PFCs, which have attracted growing interest and concern in recent years. Additionally, this study provides an analytical justification of the LC/ESI-MS/MS method for characterizing the degradation products of polymer electrolyte membranes. These identifications can substantially facilitate an understanding of their decomposition mechanisms and offer insight into the proper utilization and effective management on these membranes.

  1. Property Enhancement Effects of Side-Chain-Type Naphthalene-Based Sulfonated Poly(arylene ether ketone) on Nafion Composite Membranes for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Wang, Baolong; Hong, Lihua; Li, Yunfeng; Zhao, Liang; Zhao, Chengji; Na, Hui

    2017-09-20

    Nafion/SNPAEK-x composite membranes were prepared by blending raw Nafion and synthesized side-chain-type naphthalene-based sulfonated poly(arylene ether ketone) with a sulfonation degree of 1.35 (SNPAEK-1.35). The incorporation of SNPAEK-1.35 polymer with ion exchange capacity (IEC) of 2.01 mequiv·g -1 into a Nafion matrix has the property enhancement effects, such as increasing IECs, improving proton conductivity, enhancing mechanical properties, reducing methanol crossover, and improving single cell performance of Nafion. Morphology studies show that Nafion/SNPAEK-x composite membranes exhibit a well-defined microphase separation structure depending on the contents of SNPAEK-1.35 polymer. Among them, Nafion/SNPAEK-7.5% with a bicontinuous morphology exhibits the best comprehensive properties. For example, it shows the highest proton conductivities of 0.092 S cm -1 at 25 °C and 0.163 S cm -1 at 80 °C, which are higher than those of recast Nafion with 0.073 S cm -1 at 25 °C and 0.133 S cm -1 at 80 °C, respectively. Nafion/SNPAEK-5.0% and Nafion/SNPAEK-7.5% membranes display an open circuit voltage of 0.77 V and a maximum power density of 47 mW cm -2 at 80 °C, which are much higher than those of recast Nafion of 0.63 V and 24 mW cm -2 under the same conditions. Nafion/SNPAEK-5.0% membrane also has comparable tensile strength (12.7 MPa) to recast Nafion (13.7 MPa), and higher Young's modulus (330 MPa) than that of recast Nafion (240 MPa). By combining their high proton conductivities, comparable mechanical properties, and good single cell performance, Nafion/SNPAEK-x composite membranes have the potential to be polymer electrolyte materials for direct methanol fuel cell applications.

  2. Pure- and Mixed-Gas Transport Study of Nafion® and Its Fe3+-Substituted Derivative for Membrane-Based Natural Gas Applications

    KAUST Repository

    Mukaddam, Mohsin Ahmed

    2016-01-01

    The focus of this research project was to develop a fundamental understanding of the structure-gas transport property relationship in Nafion® to investigate its potential use as a gas separation membrane material for natural gas (NG) applications

  3. Oxygen permeation through Nafion 117 membrane and its impact on efficiency of polymer membrane ethanol fuel cell

    Science.gov (United States)

    Jablonski, Andrzej; Kulesza, Pawel J.; Lewera, Adam

    2011-05-01

    We investigate oxygen permeation through Nafion 117 membrane in a direct ethanol fuel cell and elucidate how it affects the fuel cell efficiency. An obvious symptom of oxygen permeation is the presence of significant amounts of acetaldehyde and acetic acid in the mixture leaving anode when no current was drawn from the fuel cell (i.e. under the open circuit conditions). This parasitic process severely lowers efficiency of the fuel cell because ethanol is found to be directly oxidized on the surface of catalyst by oxygen coming through membrane from cathode in the absence of electric current flowing in the external circuit. Three commonly used carbon-supported anode catalysts are investigated, Pt, Pt/Ru and Pt/Sn. Products of ethanol oxidation are determined qualitatively and quantitatively at open circuit as a function of temperature and pressure, and we aim at determining whether the oxygen permeation or the catalyst's activity limits the parasitic ethanol oxidation. Our results strongly imply the need to develop more selective membranes that would be less oxygen permeable.

  4. Electrokinetic transport of water and methanol in Nafion membranes as observed by NMR spectroscopy

    International Nuclear Information System (INIS)

    Hallberg, Fredrik; Vernersson, Thomas; Pettersson, Erik Thyboll; Dvinskikh, Sergey V.; Lindbergh, Goeran; Furo, Istvan

    2010-01-01

    Electrophoretic NMR (eNMR) and pulsed-field-gradient NMR (PFG-NMR) methods were used to study transport processes in situ and in a chemically resolved manner in the electrolyte of an experimental direct methanol fuel cell (DMFC) setup, constituted of several layers of Nafion 117. The measurements were conducted at room temperature for membranes fully swollen by methanol-water mixtures over a wide concentration interval. The experimental setup and the experimental protocol for the eNMR experiments are discussed in detail. The magnitude of the water and methanol self-diffusion coefficients show a good agreement with previously published data while the ratio of the two self-diffusion coefficients may indicate an imperfect mixing of the two solvent molecules. On the molecular level, the drag of water and methanol molecules by protons is roughly of the same magnitude, with the drag of methanol molecules increasing with increasing methanol content. The electro-osmotic drag defined on mass-flow basis increased for methanol from a low level with increasing methanol concentration while that of water remained roughly constant.

  5. Characterization of Nafion ionomer and its change due to X radiation; Caracterizacao do ionomero Nafion e sua modificacao por irradiacao de raios X

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Selma Helena de

    1996-07-01

    In this study, first the characterization of Nafion-117 membranes in the acid form (Nafion-H) and in the salt forms (Na{sup +}, K{sup +}, Rb{sup +} and Cs{sup +}) was performed. In another step, the X-ray effects on membranes (Nafion-H and Nafion-Na) were investigated. The samples were irradiated with X-ray, at 160 kGy/h, with 80-1280 kGy dosages. The characterization of samples (irradiated and unirradiated samples) was performed by X-ray diffractometry, vibrational spectroscopy (photoacoustic in infrared region and Raman scattering), electronic absorption spectroscopy (UV/Vis), electronic paramagnetic resonance spectroscopy (EPR) and thermal analysis (TG and DCS). The studies showed that the membranes submitted to high temperature or to hydration structural changes, as evidence by IR and UV/Vis spectra and DSC curves. This behavior can be assigned to the reorganization of the clusters, resulting in redistribution of the ions and reorientation of the polymers. UV/Vis spectra and DSC curves indicates that the conformational changes induced by temperature and hydration effect continue to occur slowly in the membrane due to relaxation of the polymer. TG analysis indicated that the thermal decomposition mechanism by Nafion-H is different from the mechanism by Nafion-Na. Nafion-H membranes degraded in at least three stages, while Nafion-Na membranes, which showed higher thermal stability than Nafion-H, degraded in only one stage. For irradiation dose higher than 320 kGy, the samples became brittle, which enhanced with increasing doses. This behavior indicates that the predominant effect was the chain scission. The results obtained by different technique showed that the main effects of X-rays on Nafion membranes are the following: decrease in the mechanical properties, peroxy radical production, formation of unsaturated species (C=C and C=O), scissions in the C-O and C-S bonds and SO{sub 2} production. The Nafion-Na membrane showed higher thermal stability and higher

  6. Toxicity Evaluation of Graphene Oxide and Titania Loaded Nafion Membranes in Zebrafish

    Directory of Open Access Journals (Sweden)

    Roberta Pecoraro

    2018-01-01

    Full Text Available The use of nanomaterials in several application fields has received in the last decades a great attention due to their peculiar properties, but also raised many doubts about possible toxicity when these materials are used for some specific applications, such as water purification. Indeed a careful investigation is needed in order to exclude possible harmful side effects related to the use of nanotechnology. Nanoparticles effects on the marine organisms may depend on their chemical composition, size, surface structure, solubility, shape and how the individual nanoparticles aggregate together. In order to make the most of their potential, without polluting the environment, many researchers are trying to trap them into some kind of matrix that keeps them active but avoids their dispersion in the environment. In this study we have tested nanocomposite membranes prepared using Nafion polymer combined with various fillers, such as anatase-type TiO2 nanoparticles and graphene oxide. The non-toxicity of these nanocomposites, already shown to be effective for water purification applications in our previous studies, was recognized by testing the effect of the different materials on zebrafish embryos. Zebrafish was considered an excellent model for ecotoxicological studies and for this motivation zebrafish embryos were exposed to different concentrations of free nanoparticles and to the nanocomposite membranes. As biomarkers of exposure, we evaluated the expression of heme-oxygenase 1 and inducible Nitric Oxide Synthases by immunohistochemistry and gene expression. Embryo toxicity test showed that nor sublethal effects neither mortality were caused by the different nanoparticles and nano-systems tested. Only zebrafish larvae exposed to free nanoparticles have shown a different response to antibodies anti-heme-oxygenase 1 and anti- inducible Nitric Oxide Synthases. The immunolocalization analysis in fact has highlighted an increase in the synthesis of these

  7. Phosphoric acid doped membranes based on Nafion®, PBI and their blends – Membrane preparation, characterization and steam electrolysis testing

    DEFF Research Database (Denmark)

    Aili, David; Hansen, Martin Kalmar; Pan, Chao

    2011-01-01

    Proton exchange membrane steam electrolysis at temperatures above 100 °C has several advantages from thermodynamic, kinetic and engineering points of view. A key material for this technology is the high temperature proton exchange membrane. In this work a novel procedure for preparation of Nafion......® and polybenzimidazole blend membranes was developed. Homogeneous binary membranes covering the whole composition range were prepared and characterized with respect to chemical and physiochemical properties such as water uptake, phosphoric acid doping, oxidative stability, mechanical strength and proton conductivity...

  8. Characterization of Nafion ionomer and its change due to X radiation

    International Nuclear Information System (INIS)

    Almeida, Selma Helena de

    1996-01-01

    In this study, first the characterization of Nafion-117 membranes in the acid form (Nafion-H) and in the salt forms (Na + , K + , Rb + and Cs + ) was performed. In another step, the X-ray effects on membranes (Nafion-H and Nafion-Na) were investigated. The samples were irradiated with X-ray, at 160 kGy/h, with 80-1280 kGy dosages. The characterization of samples (irradiated and unirradiated samples) was performed by X-ray diffractometry, vibrational spectroscopy (photoacoustic in infrared region and Raman scattering), electronic absorption spectroscopy (UV/Vis), electronic paramagnetic resonance spectroscopy (EPR) and thermal analysis (TG and DCS). The studies showed that the membranes submitted to high temperature or to hydration structural changes, as evidence by IR and UV/Vis spectra and DSC curves. This behavior can be assigned to the reorganization of the clusters, resulting in redistribution of the ions and reorientation of the polymers. UV/Vis spectra and DSC curves indicates that the conformational changes induced by temperature and hydration effect continue to occur slowly in the membrane due to relaxation of the polymer. TG analysis indicated that the thermal decomposition mechanism by Nafion-H is different from the mechanism by Nafion-Na. Nafion-H membranes degraded in at least three stages, while Nafion-Na membranes, which showed higher thermal stability than Nafion-H, degraded in only one stage. For irradiation dose higher than 320 kGy, the samples became brittle, which enhanced with increasing doses. This behavior indicates that the predominant effect was the chain scission. The results obtained by different technique showed that the main effects of X-rays on Nafion membranes are the following: decrease in the mechanical properties, peroxy radical production, formation of unsaturated species (C=C and C=O), scissions in the C-O and C-S bonds and SO 2 production. The Nafion-Na membrane showed higher thermal stability and higher resistance to X

  9. A study of chemical modifications of a Nafion membrane by incorporation of different room temperature ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Martinez de Yuso, M.V.; Rodriguez-Castellon, E. [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Malaga (Spain); Neves, L.A.; Coelhoso, I.M.; Crespo, J.G. [REQUIMTE/CQFB, Departamento de Quimica, Universidade Nova de Lisboa, Caparica (Portugal); Benavente, J. [Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga (Spain)

    2012-08-15

    Surface and bulk chemical changes in a Nafion membrane as a result of room temperature ionic liquids (RTILs) incorporation were determined by X-ray photoelectron spectroscopy (XPS) and elemental analysis, respectively. RTILs with different physicochemical properties were selected. Two imidazolium based RTIL-cations (1-octyl-3-methylimidazolium and 1-butyl-3-methylimidazolium) were used to detect the effect of cation size on membrane modification, while the effect of the RTIL hydrophilic/hydrophobic character was also considered by choosing different anions. Angle resolved XPS measurements (ARXPS) were carried out varying the angle of analysis between 15 and 75 to get elemental information on the Nafion/RTIL-modified membranes interactions for a deepness of around 10 nm. Moreover, changes in the RTIL-modified membranes associated to thermal effect were also considered by analyzing the samples after their heating at 120 C for 24 h. Agreement between both chemical techniques, bulk and destructive elemental analysis and surface and non-destructive XPS, were obtained. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Synthesis and electrochemical characterization of hybrid membrane Nafion-SiO2 for application as polymer electrolyte in PEM fuel cell

    International Nuclear Information System (INIS)

    Dresch, Mauro Andre

    2009-01-01

    In this work, the effect of sol-gel synthesis parameters on the preparation and polarization response of Nafion-SiO 2 hybrids as electrolytes for proton exchange membrane fuel cells (PEMFC) operating at high temperatures (130 degree C) was evaluated. The inorganic phase was incorporated in a Nafion matrix with the following purposes: to improve the Nafion water uptake at high temperatures (> 100 degree C); to increase the mechanical strength of Nafion and; to accelerate the electrode reactions. The hybrids were prepared by an in-situ incorporation of silica into commercial Nafion membranes using an acid-catalyzed sol-gel route. The effects of synthesis parameters, such as catalyst concentration, sol-gel solvent, temperature and time of both hydrolysis and condensation reactions, and silicon precursor concentration (Tetraethyl orthosilicate - TEOS), were evaluated as a function on the incorporation degree and polarization response. Nafion-SiO 2 hybrids were characterized by gravimetry, thermogravimetric analysis (TGA), scanning electron microscopy and X-ray dispersive energy (SEM-EDS), electrochemical impedance spectroscopy (EIS), and X-ray small angle scattering (SAXS). The hybrids were tested as electrolyte in single H 2 /O 2 fuel cells in the temperature range of 80 - 130 degree C and at 130 degree C and reduced relative humidity (75% and 50%). Summarily, the hybrid performance showed to be strongly dependent on the synthesis parameters, mainly, the type of alcohol and the TEOS concentration. (author)

  11. Analyte-triggered luminescence of Eu{sup 3+} ions encapsulated in Nafion membranes -preparation of hybrid materials from in membrane chemical reactions-

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Sánchez, Rocío, E-mail: raguilar@ifuap.buap.mx [Depto. Química Analítica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570 (Mexico); Zelocualtecatl-Montiel, Iván [Depto. Química Analítica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570 (Mexico); Gálvez-Vázquez, María de Jesús [Depto. Química Analítica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570 (Mexico); Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado postal J-48, Puebla 72570 (Mexico); Silva-González, Rutilo [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado postal J-48, Puebla 72570 (Mexico)

    2017-04-15

    The possibility to perform chemical reactions inside polymer materials opens a unique opportunity to control and prepare materials for diverse solid-state applications. Based on the affinity of Eu{sup 3+} ions for oxygen functionalities, in this work we report the luminescence enhancement of Eu{sup 3+} ions inserted in Nafion membranes (Naf/Eu{sup 3+}) by in-situ complexing to oxalate. The formation of a europium-oxalate type complex enhances Eu{sup 3+} luminescence emission, which could be exploited for the construction of devices for oxalate sensing and the fabrication of highly luminescent materials. Possible analytical applications of Naf/Eu{sup 3+} membranes were evaluated by fluorescence spectroscopy through the linear response with concentration. The complex formation was followed by infrared spectroscopy and SEM-EDS analysis. - Highlights: • Luminescence enhancement by complexation of Eu{sup 3+} ions to oxalate inside Nafion. • Performance of chemical reactions inside Nafion/polymer membranes. • An easy and novel method to prepare luminescent solid devices. • Possibility to develop luminescent sensors by analyte-triggered optical response.

  12. Uso de membranas de Nafion para a construção de sensores ópticos para medidas de pH Use of Nafion® membranes for the construction of optical sensors for pH measurements

    Directory of Open Access Journals (Sweden)

    Silvia Cristina Lopes Pinheiro

    2005-10-01

    Full Text Available The behaviour of Nafion® polymeric membranes containing acid-base dyes, bromothymol blue (BB and methyl violet (MV, were studied aiming at constructing an optical sensor for pH measurement. BB revealed to be inadequate for developing sensing phases due to the electrostatic repulsion between negative groups of their molecules and the negative charge of the sulfonate group of the Nafion®, which causes leaching of the dye from the membrane. On the other hand, MV showed to be suitable due to the presence of positive groups in its structure. The membrane prepared from a methanolic solution whose Nafion®/dye molar ratio was 20 presented the best analytical properties, changing its color from green to violet in the pH range from 0.6 to 3.0. The membrane can be prepared with good reproducibility, presenting durability of ca. 6 months and response time of 22 s, making possible its use for pH determination in flow analysis systems.

  13. Effect of sulfonated carbon nanofiber-supported Pt on performance of Nafion {sup registered} -based self-humidifying composite membrane for proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Hung, T.F. [Department of Chemistry and Center for Nanotechnology, Chung Yuan Christian University, 200 Chung Pei Rd., Chung-Li, 32023 (China); Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 (China); Liao, S.H.; Li, C.Y.; Chen-Yang, Y.W. [Department of Chemistry and Center for Nanotechnology, Chung Yuan Christian University, 200 Chung Pei Rd., Chung-Li, 32023 (China)

    2011-01-01

    In the present study, the Nafion {sup registered} -based self-humidifying composite membrane (N-SHCM) with sulfonated carbon nanofiber-supported Pt (s-Pt/CNF) catalyst, N-s-Pt/CNF, is successfully prepared using the solution-casting method. The scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) images of N-s-Pt/CNF indicate that s-Pt/CNF is well dispersed in the Nafion {sup registered} matrix due to the good compatibility between Nafion {sup registered} and s-Pt/CNF. Compared with those of the non-sulfonated Pt/CNF-containing N-SHCM, N-Pt/CNF, the properties of N-s-Pt/CNF, including electronic resistivity, ion-exchange capacity (IEC), water uptake, dimensional stability, and catalytic activity, significantly increase. The maximum power density of the proton exchange membrane fuel cell (PEMFC) fabricated with N-s-Pt/CNF operated at 50 C under dry H{sub 2}/O{sub 2} condition is about 921 mW cm{sup -2}, which is approximately 34% higher than that with N-Pt/CNF. (author)

  14. Modification of Nafion® Membrane via a Sol-Gel Route for Vanadium Redox Flow Energy Storage Battery Applications

    Directory of Open Access Journals (Sweden)

    Shu-Ling Huang

    2017-01-01

    Full Text Available Nafion 117(N-117/SiO2-SO3H modified membranes were prepared using the 3-Mercaptopropyltrimethoxysilane (MPTMS to react with H2O2 via in situ sol-gel route. Basic properties including water uptake, contact angle, ion exchange capacity (IEC, vanadium ion permeability, impedance, and conductivity were measured to investigate how they affect the charge-discharge characteristics of a cell. Furthermore, we also set a vanadium redox flow energy battery (VRFB single cell by the unmodified/modified N-117 membranes as a separated membrane to test its charge/discharge performance and compare the relations among the impedance and efficiency. The results show that the appropriate amount of SiO2-SO3H led into the N-117 membrane contributive to the improvement of proton conductivity and vanadium ion selectivity. The permeability was effectively decreased from original 3.13 × 10−6 cm2/min for unmodified N-117 to 0.13 × 10−6 cm2/min for modified membrane. The IEC was raised from original 0.99 mmol/g to 1.24 mmol/g. The modified membrane showed a good cell performance in the VRFB charge/discharge experiment, and the maximum coulombic efficiency was up to 94%, and energy efficiency was 82%. In comparison with unmodified N-117, the energy efficiency of modified membrane had increased more than around 10%.

  15. A combined theoretical-experimental study of interactions between vanadium ions and Nafion membrane in all-vanadium redox flow batteries

    Science.gov (United States)

    Intan, Nadia N.; Klyukin, Konstantin; Zimudzi, Tawanda J.; Hickner, Michael A.; Alexandrov, Vitaly

    2018-01-01

    Vanadium redox flow batteries (VRFBs) are a promising solution for large-scale energy storage, but a number of problems still impede the deployment of long-lifetime VRFBs. One important aspect of efficient operation of VRFBs is understanding interactions between vanadium species and the membrane. Herein, we investigate the interactions between all four vanadium cations and Nafion membrane by a combination of infrared (IR) spectroscopy and density-functional-theory (DFT)-based static and molecular dynamics simulations. It is observed that vanadium species primarily lead to changes in the IR spectrum of Nafion in the SO3- spectral region which is attributed to the interaction between vanadium species and the SO3- exchange sites. DFT calculations of vanadium -Nafion complexes in the gas phase show that it is thermodynamically favorable for all vanadium cations to bind to SO3- via a contact pair mechanism. Car-Parrinello molecular dynamics-based metadynamics simulations of cation-Nafion systems in aqueous solution suggest that V2+ and V3+ species coordinate spontaneously to SO3-, which is not the case for VO2+ and VO2+ . The interaction behavior of the uncycled membrane determined in this study is used to explain the experimentally observed changes in the vibrational spectra, and is discussed in light of previous results on device-cycled membranes.

  16. Nafion-TiO2 composite DMFC membranes: physico-chemical properties of the filler versus electrochemical performance

    International Nuclear Information System (INIS)

    Baglio, V.; Arico, A.S.; Di Blasi, A.; Antonucci, V.; Antonucci, P.L.; Licoccia, S.; Traversa, E.; Fiory, F. Serraino

    2005-01-01

    TiO 2 nanometric powders were prepared via a sol-gel procedure and calcined at various temperatures to obtain different surface and bulk properties. The calcined powders were used as fillers in composite Nafion membranes for application in high temperature direct methanol fuel cells (DMFCs). The powder physico-chemical properties were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and pH measurements. The observed characteristics were correlated to the DMFC electrochemical behaviour. Analysis of the high temperature conductivity and DMFC performance reveals a significant influence of the surface characteristics of the ceramic oxide, such as oxygen functional groups and surface area, on the membrane electrochemical behaviour. A maximum DMFC power density of 350 mW cm -2 was achieved under oxygen feed at 145 deg. C in a pressurized DMFC (2.5 bar, anode and cathode) equipped with TiO 2 nano-particles based composite membranes

  17. In situ nanostructure formation of (micro-hydroxo)bis(micro-carboxylato) diruthenium units in nafion membrane and its utilization for selective reduction of nitrosonium ion in aqueous medium.

    Science.gov (United States)

    Kumar, Annamalai Senthil; Tanase, Tomoaki; Iida, Masayasu

    2007-01-16

    Nanostructured molecular film containing the (micro-hydroxo)bis(micro-carboxylato) diruthenium(III) units, [RuIII2(micro-OH)(micro-CH3COO)2(HBpz3)2]+ ({RuIII2(micro-OH)}), was prepared by an in situ conversion of its micro-oxo precursor, [RuIII2(micro-O)(micro-CH3COO)2(HBpz3)2] ({RuIII2(micro-O)}), in a Nafion membrane matrix, where HBpz3 is hydrotris(1-pyrazolyl)borate. The conversion procedure results in fine nanoparticle aggregates of the {RuIII2(micro-OH)} units in the Nafion membrane (Nf-{RuIII2(micro-OH)}), where an average particle size (4.1 +/- 2.3 nm) is close to the Nafion's cluster dimension of approximately 4 nm. Chemically modified electrodes by using the Nafion molecular membrane films (Nf-{RuIII2(micro-OH)}-MMFEs) were further developed on ITO/glass and glassy carbon electrode (GCE) surfaces, and a selective reduction of nitrosonium ion (NO+), presumably through reaction of a {RuIIRuIII(micro-OH)} mixed-valence state with HNO2, was demonstrated without interference by molecular oxygen in an acidic aqueous solution. The Nf-{RuIII2(micro-OH)}-MMFEs are stable even in a physiological condition (pH 7), where the naked {RuIII2(-OH)} complex is readily transformed into its deprotonated {RuIII2(micro-O)} form, demonstrating an unusual stabilizing effects for the {RuIII2(micro-OH)} unit by the Nafion cluster environment.

  18. In-situ membrane hydration measurement of proton exchange membrane fuel cells

    Science.gov (United States)

    Lai, Yeh-Hung; Fly, Gerald W.; Clapham, Shawn

    2015-01-01

    Achieving proper membrane hydration control is one of the most critical aspects of PEM fuel cell development. This article describes the development and application of a novel 50 cm2 fuel cell device to study the in-situ membrane hydration by measuring the through-thickness membrane swelling via an array of linear variable differential transducers. Using this setup either as an air/air (dummy) cell or as a hydrogen/air (operating) cell, we performed a series of hydration and dehydration experiments by cycling the RH of the inlet gas streams at 80 °C. From the linear relationship between the under-the-land swelling and the over-the-channel water content, the mechanical constraint within the fuel cell assembly can suppress the membrane water uptake by 11%-18%. The results from the air/air humidity cycling test show that the membrane can equilibrate within 120 s for all RH conditions and that membrane can reach full hydration at a RH higher than 140% in spite of the use of a liquid water impermeable Carbel MP30Z microporous layer. This result confirms that the U.S. DOE's humidity cycling mechanical durability protocol induces sufficient humidity swings to maximize hygrothermal mechanical stresses. This study shows that the novel experimental technique can provide a robust and accurate means to study the in-situ hydration of thin membranes subject to a wide range of fuel cell conditions.

  19. Silver modified platinum surface/H{sup +} conducting Nafion membrane for cathodic reduction of nitrate ions

    Energy Technology Data Exchange (ETDEWEB)

    Hasnat, M.A., E-mail: mahtazim@yahoo.com [Department of Chemistry, Graduate School of Physical Sciences, Shahajalal University of Science and Technology, Sylhet 3114 (Bangladesh); School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang (Malaysia); Ahamad, N.; Nizam Uddin, S.M. [Department of Chemistry, Graduate School of Physical Sciences, Shahajalal University of Science and Technology, Sylhet 3114 (Bangladesh); Mohamed, Norita [School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang (Malaysia)

    2012-01-15

    Electrocatalytic reduction of NO{sub 3}{sup -} was performed at an Ag modified Pt electrodes supported on a H{sup +} conducting Nafion-117 polymer electrolyte. The cyclic voltammetric and electrolysis experiments showed that the reduction process was a two-electron transfer reaction. The conversion of nitrate to nitrite follows first order kinetics. Controlled potential electrolysis experiments revealed that the highest reduction rate (k{sub 1}; 95.1 Multiplication-Sign 10{sup -3} min{sup -1}) could be obtained at -1.3 V versus Ag/AgCl (std. KCl) reference electrode. Meanwhile, substantial nitrate removal (ca. 89%) could be attained by a flow system when the flow rate is as low as 0.1 ml min{sup -1}. The Ag particles on the Pt film were a in polycrystalline state having roughness value of 0.45 {mu}m, which was reduced to 0.30 {mu}m after 270 min of undergoing electrolysis.

  20. Pure- and Mixed-Gas Transport Study of Nafion® and Its Fe3+-Substituted Derivative for Membrane-Based Natural Gas Applications

    KAUST Repository

    Mukaddam, Mohsin A.

    2016-05-26

    The focus of this research project was to develop a fundamental understanding of the structure-gas transport property relationship in Nafion® to investigate its potential use as a gas separation membrane material for natural gas (NG) applications including carbon dioxide removal from NG, helium recovery, higher-hydrocarbon removal, and nitrogen separation from methane. Separation processes account for ~45% of all energy used in chemical plants and petroleum refineries. As the drive for energy savings and sustainability intensifies, more efficient separation technology becomes increasingly important. Saudi Arabia ranks among the world’s top 5 NG producers. Commercial hydrocarbon-based glassy polymers often lose their gas separation properties in the presence of condensable, highly sorbing NG components such as CO2, ethane, propane, n-butane, and C5+ hydrocarbons. This deterioration in gas separation performance results from penetrant-induced dilation and plasticization of the polymer matrix, leading to significant methane and higher hydrocarbon losses. Polymers that have intrinsically low affinity to high-solubility NG components may be less susceptible to plasticization and therefore offer better performance under actual field conditions. By virtue of their strong carbon-fluorine bonds and chemical inertness, perfluoropolymers exhibit very low affinity for hydrocarbon gases. Nafion®, the prototypical perfluoro-sulfonated ionomer, comprising hydrophilic sulfonate groups phase-separated from a hydrophobic perfluorocarbon matrix, has demonstrated interesting permeability and selectivity relationships for gas pairs relevant to NG applications. Gas transport properties of Nafion® indicated gas solubility behavior similar to rubbery polymers but with sieving properties more commonly observed in low free volume glassy polymers. Nafion® demonstrated very low solubility for CO2 and hydrocarbon gases; the trend-line slope of solubility versus penetrant condensability

  1. Formation of semi-IPN membrane composed of crosslinked SPS-[PVdF-co-HFP/Nafion] for application in DMFC: A fine tuning between crosslinker and initiator

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Piyush; Kundu, Patit Paban, E-mail: ppk923@yahoo.com

    2015-08-15

    The semi-interpenetrating (semi-IPN) membrane composed of crosslinked sulfonated polystyrene (SPS) within the host blend of PVdF-co-HFP (Polyvinylidenefluoride-co-hexafluoropropylene) and Nafion has already been tested as a promising polymer electrolyte membrane (PEM) in terms of improved water uptake, proton conductivity and electrical efficiency for application in the direct methanol fuel cell (DMFC). These desired results have generated further curiosity about a fine tuning between the contents of divinyl benzene (DVB) as a crosslinker and azobisisobutyronitrile (AIBN) as an initiator for the optimization of PEM characteristics. It has been observed that an increase in AIBN content leads to an acceptable degree of water uptake, swelling ratio and proton conductivity in PEM, while higher DVB content causes declined methanol crossover, leading to higher membrane selectivity. These two opposing effects are optimized in terms of proton conductivity, tensile strength and membrane selectivity for the membrane consisting of 0.4 wt% of AIBN and 1.2 wt% of DVB. Moreover, the maximum power density obtained for the membrane having optimum selectivity is 56 mW cm{sup −2}, when analyzed at 90 °C. These results indicate that one can achieve a high power density in comparison to Nafion by fine tuning the contents of initiator and cross-linker during the synthesis of the semi-IPN membrane. - Graphical abstract: Display Omitted - Highlights: • PEM composed of 0.4/1.2 wt% of AIBN/DVB produced best result. • Lower methanol crossover (1.02 × 10{sup −6} cm{sup 2} s{sup −1}) compare to Nafion-117. • Higher membrane selectivity i.e 3.05 × 10{sup 4} Ss cm{sup −3} was obtained. • A maximum power density of 56 mW cm{sup −2} was obtained at 90 °C.

  2. Formation of semi-IPN membrane composed of crosslinked SPS-[PVdF-co-HFP/Nafion] for application in DMFC: A fine tuning between crosslinker and initiator

    International Nuclear Information System (INIS)

    Kumar, Piyush; Kundu, Patit Paban

    2015-01-01

    The semi-interpenetrating (semi-IPN) membrane composed of crosslinked sulfonated polystyrene (SPS) within the host blend of PVdF-co-HFP (Polyvinylidenefluoride-co-hexafluoropropylene) and Nafion has already been tested as a promising polymer electrolyte membrane (PEM) in terms of improved water uptake, proton conductivity and electrical efficiency for application in the direct methanol fuel cell (DMFC). These desired results have generated further curiosity about a fine tuning between the contents of divinyl benzene (DVB) as a crosslinker and azobisisobutyronitrile (AIBN) as an initiator for the optimization of PEM characteristics. It has been observed that an increase in AIBN content leads to an acceptable degree of water uptake, swelling ratio and proton conductivity in PEM, while higher DVB content causes declined methanol crossover, leading to higher membrane selectivity. These two opposing effects are optimized in terms of proton conductivity, tensile strength and membrane selectivity for the membrane consisting of 0.4 wt% of AIBN and 1.2 wt% of DVB. Moreover, the maximum power density obtained for the membrane having optimum selectivity is 56 mW cm −2 , when analyzed at 90 °C. These results indicate that one can achieve a high power density in comparison to Nafion by fine tuning the contents of initiator and cross-linker during the synthesis of the semi-IPN membrane. - Graphical abstract: Display Omitted - Highlights: • PEM composed of 0.4/1.2 wt% of AIBN/DVB produced best result. • Lower methanol crossover (1.02 × 10 −6 cm 2 s −1 ) compare to Nafion-117. • Higher membrane selectivity i.e 3.05 × 10 4 Ss cm −3 was obtained. • A maximum power density of 56 mW cm −2 was obtained at 90 °C

  3. Study of the Nafion quantity effect in membrane and electrodes assemblies (MEAs) of 50 cm{sup 2} used in type proton exchange membrane (PEM) fuel cell operating with H{sub 2}/Air; Estudo do efeito da quantidade de Nafion em MEAs de 50 cm{sup 2} utilizadas em celula a combustivel tipo PEM operando com H{sub 2}/ar

    Energy Technology Data Exchange (ETDEWEB)

    Profeti, Demetrius; Colmati, Flavio; Carlindo, Adao A.J.; Paganin, Valdecir A.; Gonzalez, Ernesto R.; Ticianelli, Edson A. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Quimica]. E-mail: dprofeti@iqsc.usp.br

    2008-07-01

    The performance of a proton exchange membrane fuel cell (PEMFC) was investigated with the aim at characterizing the effects of the Nafion. content on the scale-up of the electrodes from 5 to 50 cm{sup 2}. It is observed that a diminution of the single cell performance occurred when the electrode area is increased from 5 to 50 cm{sup 2}. The tests carried out with different Nafion. contents, and fuel cell and humidifiers at the same temperature (T{sub cell}=T{sub H2}=T{sub air}=70 deg C) showed a slightly decrease of the fuel cell performance compared to the tests performed at different temperatures (T{sub cell}=70 deg C, T{sub H2}=85 deg C, T{sub air}=75 deg C). In the study of the variation on the Nafion. contents, the higher performance up to a current density of 0.8 A cm-2 is obtained with the 35.5 wt.% Nafion.. On the other hand, at higher current densities values, the performance of the fuel cells is very similar for the 31.0, 35.5 and 39.4 wt.% Nafion contents. (author)

  4. Optimum concentration gradient of the electrocatalyst, Nafion® and poly(tetrafluoroethylene) in a membrane-electrode-assembly for enhanced performance of direct methanol fuel cells.

    Science.gov (United States)

    Liu, Jing Hua; Jeon, Min Ku; Lee, Ki Rak; Woo, Seong Ihl

    2010-12-14

    A combinatorial library of membrane-electrode-assemblies (MEAs) which consisted of 27 different compositions was fabricated to optimize the multilayer structure of direct methanol fuel cells. Each spot consisted of three layers of ink and a gradient was generated by employing different concentrations of the three components (Pt catalyst, Nafion® and polytetrafluoroethylene (PTFE)) of each layer. For quick evaluation of the library, a high-throughput optical screening technique was employed for methanol electro-oxidation reaction (MOR) activity. The screening results revealed that gradient layers could lead to higher MOR activity than uniform layers. It was found that the MOR activity was higher when the concentrations of Pt catalyst and Nafion ionomer decreased downward from the top layer to the bottom layer. On the other hand, higher MOR activity was observed when PTFE concentration increased downward from the top to the bottom layer.

  5. Nernst-Planck modeling of multicomponent ion transport in a Nafion membrane at high current density

    NARCIS (Netherlands)

    Moshtari Khah, S.; Oppers, N.A.W.; de Groot, M.T.; Keurentjes, J.T.F.; Schouten, J.C.; van der Schaaf, J.

    A mathematical model of multicomponent ion transport through a cation-exchange membrane is developed based on the Nernst–Planck equation. A correlation for the non-linear potential gradient is derived from current density relation with fluxes. The boundary conditions are determined with the Donnan

  6. Modelling membrane hydration and water balance of a pem fuel cell

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh

    2015-01-01

    Polymer electrolyte membrane (PEM) fuel cells requires an appropriate hydration in order to ensure high efficiency and long durability. As water is essential for promoting proton conductivity in the membrane, it is important to control membrane water hydration to avoid flooding. In this study we...

  7. Application of PtSn/C catalysts and Nafion SiO2 membranes in direct ethanol fuel cell at high temperatures

    International Nuclear Information System (INIS)

    Dresch, Mauro Andre

    2014-01-01

    This work has as objective to evaluate anodes and electrolytes in direct ethanol fuel cells (DEFC) operating at high temperature (130 deg C). As anode materials, electrocatalysts based on Pt Sn/C were prepared by Modified Polyol Method with various Pt:Sn atomic ratios. Such methodology promotes self organized electrocatalysts production with narrow particle size distribution and high alloying degree. The electrocatalysts were characterized by XRD, and CO stripping. The results showed that these materials presented high alloying degree and Eonset CO oxidation at lower potential as commercial materials. As electrolyte, Nafion-SiO 2 hybrids were synthesized by sol-gel reaction, by the incorporation of oxide directly into the ionic aggregates of various kinds of Nafion membranes. The synthesis parameter, such sol-gel solvent, membrane thickness and silicon precursor concentration were studied in terms of silica incorporation degree and hybrid mechanical stability. Finally, the optimized anodes and electrolytes were evaluated in DEFC operating at 80 - 130 deg C temperature range. The results showed a significant improvement of the DEFC performance (122 mW cm -2 ), resulted from the acceleration of ethanol oxidation reaction rate due to anode material optimization and high temperature operation once the use of hybrids possibilities the increase of temperature without a significant conductivity loses. In this sense, the combination of optimized electrodes and electrolytes are a promising alternative for the development of these devices. (author)

  8. Biocompatibility assessment of porous chitosan-Nafion and chitosan-PTFE composites in vivo.

    Science.gov (United States)

    Liu, Bo-Ji; Ma, Li-Nan; Su, Juan; Jing, Wei-Wei; Wei, Min-Jie; Sha, Xian-Zheng

    2014-06-01

    Chitosan (CS) is widely used as a scaffold material in tissue engineering. The objective of this study was to test whether porous chitosan membrane (PCSM) coating for Nafion used in implantable sensor reduced fibrous capsule (FC) density and promoted superior vascularization compared with PCSM coating for polytetrafluoroethylene (PTFE). PCSM was fabricated with solvent casting/particulate leaching method using silica gel as porogen and characterized in vitro. Then, PCSM-Nafion and PCSM-PTFE composites were assembled with hydrated PCSM and implanted subcutaneously in rats. The histological analysis was performed in comparison with Nafion and PTFE. Implants were explanted 35, 65, and 100 days after the implantation. Histological assessments indicated that both composites achieved presumed effects of porous coatings on decreasing collagen deposition and promoting angiogenesis. PCSM-PTFE exerted higher collagen deposition by area ratio, both within and outside, compared with that of PCSM-Nafion. Angiogenesis within and outside the PCSM-Nafion both increased over time, but that of the PCSM-PTFE within decreased. Copyright © 2013 Wiley Periodicals, Inc.

  9. A novel catalyst layer structure based surface-patterned Nafion® membrane for high-performance direct methanol fuel cell

    DEFF Research Database (Denmark)

    Chen, Ming; Wang, Meng; Ding, Xianan

    2018-01-01

    .5% respectively, compared with the conventional catalyst layer. Performance improvement is attributed to the fact that the novel catalyst layer structure optimizes the electrolyte membrane/catalyst layer and gas diffusion layer/catalyst layer interfacial structure, which increases the electrochemical reaction......Conventional catalyst layer with a smooth surface exists the larger area of“catalytic dead zone” and reduces the utilization of catalyst. Based on this, a novel catalyst layer structure based surface-patterned Nafion® membrane was designed to achieve more efficient electrochemical reaction...... to prepare the novel catalyst layer, and the effect of pressure on the performance of MEA was investigated. The results suggested that the peak power density of DMFC with optimal novel catalyst layer structure increased by 28.84%, the charge transfer resistances of anode and cathode reduced by 28.8% and 26...

  10. Morphology Effect on Proton Dynamics in Nafion® 117 and Sulfonated Polyether Ether Ketone

    Science.gov (United States)

    Leong, Jun Xing; Diño, Wilson Agerico; Ahmad, Azizan; Daud, Wan Ramli Wan; Kasai, Hideaki

    2016-09-01

    We report results of our experimental and theoretical studies on the dynamics of proton conductivity in Nafion® 117 and self-fabricated sulfonated polyether ether ketone (SPEEK) membranes. Knowing that the presence of water molecules in the diffusion process results in a lower energy barrier, we determined the diffusion barriers and corresponding tunneling probabilities of Nafion® 117 and SPEEK system using a simple theoretical model that excludes the medium (water molecules) in the initial calculations. We then propose an equation that relates the membrane conductivity to the tunneling probability. We recover the effect of the medium by introducing a correction term into the proposed equation, which takes into account the effect of the proton diffusion distance and the hydration level. We have also experimentally verified that the proposed equation correctly explain the difference in conductivity between Nafion® 117 and SPEEK. We found that membranes that are to be operated in low hydration environments (high temperatures) need to be designed with short diffusion distances to enhance and maintain high conductivity.

  11. Preparation and characterization of Nafion - TiO{sub 2} composite electrolytes for application in proton exchange membrane fuel cells; Preparacao e caracterizacao de eletrolitos compositos Nafion - TiO{sub 2} para aplicacao em celulas a combustivel de membrana de troca protonica

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Bruno Ribeiro de

    2008-11-06

    The fabrication and characterization of Nafion - TiO{sub 2} composites, and the use of such electrolytes in PEM (Proton Exchange Membrane) fuel cell operating at high temperature (130 deg C) were studied. The operation of a PEM fuel cell at such high temperature is considered as an effective way to promote fast electrode reaction kinetics, high diffusional transport, and high tolerance to the carbon monoxide fuel contaminant. The polymer Nafion{sup R} is the most used electrolyte in PEM fuel cells due to its high proton conductivity. However, the proton transport in Nafion is dependent on the water content in the polymeric membrane. The need of absorbed water in the polymer structure limits the operation of the fuel cell to temperatures close to 100 deg C, above which Nafion exhibits a fast decrease of the ionic conductivity. In order to increase the performance of the electrolyte operating at high temperatures, Nafion-TiO{sub 2} composites have been prepared by casting. The addition of titania hygroscopic particles to the polymeric matrix aims at the enhancement of the humidification of the electrolyte at temperatures above 100 deg C. Three types of titania particles with different specific surface area and morphology have been investigated. Nafion-based composites with the addition of titania nanoparticles, in the 2.5-15 wt.% range, with nearly spherical shape and specific surface area up to approx. 115 m{sup 2}g{sup -1} were found to have higher glass transition temperature than the polymer. Such an increase improves the stability of the electrolyte during the fuel cell operation at high temperatures. The addition of titania-derived nanotubes results in a pronounced increase of the performance of PEM fuel cell operating at 130 deg C. In this composite, the high specific surface area and the tubular shape of the inorganic phase are responsible for the measured increase of both the absorption and retention of water of the composite electrolyte. Nonetheless, the

  12. Performance comparison of portable direct methanol fuel cell mini-stacks based on a low-cost fluorine-free polymer electrolyte and Nafion membrane

    International Nuclear Information System (INIS)

    Baglio, V.; Stassi, A.; Modica, E.; Antonucci, V.; Arico, A.S.; Caracino, P.; Ballabio, O.; Colombo, M.; Kopnin, E.

    2010-01-01

    A low-cost fluorine-free proton conducting polymer electrolyte was investigated for application in direct methanol fuel cell (DMFC) mini-stacks. The membrane consisted of a sulfonated polystyrene grafted onto a polyethylene backbone. DMFC operating conditions specifically addressing portable applications, i.e. passive mode, air breathing, high methanol concentration, room temperature, were selected. The device consisted of a passive DMFC monopolar three-cell stack. Two designs for flow-fields/current collectors based on open-flow or grid-like geometry were investigated. An optimization of the mini-stack structure was necessary to improve utilization of the fluorine-free membrane. Titanium-grid current collectors with proper mechanical stiffness allowed a significant increase of the performance by reducing contact resistance even in the case of significant swelling. A single cell maximum power density of about 18 mW cm -2 was achieved with the fluorine-free membrane at room temperature under passive mode. As a comparison, the performance obtained with Nafion 117 membrane and Ti grids was 31 mW cm -2 . Despite the lower performance, the fluorine-free membrane showed good characteristics for application in portable DMFCs especially with regard to the perspectives of significant cost reduction.

  13. Nafion titania nanotubes nanocomposite electrolytes for high-temperature direct methanol fuel cells

    CSIR Research Space (South Africa)

    Cele, NP

    2012-01-01

    Full Text Available electrolytes membranes. This promotes to study the Nafion/TNTs nanocomposite membranes behaviour with the aim to improve Nafion properties such as fuel permeability and thermal and mechanical stability. Nafion, whose primary structure consists of acid... membrane properties, further investigations were carried out. In this study, the effects of TiO2 nanotubes on Nafion properties such as water uptake, thermal stability, methanol (MeOH) permeability, and ion conductivity were investigated...

  14. Development of Nafion/tin oxide composite MEA for DMFC applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, F.; Mecheri, B.; D' Epifanio, A. [Department of Chemical Science and Technology, University of Rome ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Rome (Italy); Traversa, E. [Department of Chemical Science and Technology, University of Rome ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Rome (Italy); International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Licoccia, S.

    2010-10-15

    Nafion composite membranes containing either hydrated tin oxide (SnO{sub 2}. nH{sub 2}O) or sulphated tin oxide (S-SnO{sub 2}) at 5 and 10 wt.-% were prepared and characterised. The structural and electrochemical features of the samples were investigated using X-ray diffraction, electrochemical impedance spectroscopy, methanol crossover and direct methanol fuel cell (DMFC) tests. Highest conductivity values were obtained by using S-SnO{sub 2} as filler (0.094 S cm{sup -1} at T = 110 C and RH = 100%). The presence of the inorganic compound resulted in lower methanol crossover and improved DMFC performance with respect to a reference unfilled membrane. To improve the interface of the membrane electrode assembly (MEA), a layer of the composite electrolyte (i.e. the Nafion membrane containing 5 wt.-% S-SnO{sub 2}) was brushed on the electrodes, obtaining a DMFC operating at 110 C with a power density (PD) of 100 mW cm{sup -2} which corresponds to a PD improvement of 52% with respect to the unfilled Nafion membrane. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  15. Internal hydration H{sub 2}/O{sub 2} 100 cm{sup 2} polymer electrolyte membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Miachon, S [CEA, Dept. de Recherche Fondamentale sur la Matiere Condensee, SESAM/PCM, 38 - Grenoble (France); Aldebert, P [CEA, Dept. de Recherche Fondamentale sur la Matiere Condensee, SESAM/PCM, 38 - Grenoble (France)

    1995-07-01

    This work deals with a new arrangement of a polymer electrolyte membrane fuel cell (PEMFC) support which allows the operation of a 100 cm{sup 2} surface area fuel cell with cold and unhumidified gases. Hydrogen is not recycled. Both gases (pure hydrogen and oxygen) are heated and humidified internally, each one crossing a porous carbon block. This allows a simplified water management. Classical low platinum loading E-Tek{sup R} electrodes, hot-pressed on Nafion{sup R} 117 and 112 membranes, are used. Performances are then a little higher than those of comparable PEMFCs in the literature: 0.7 V at 0.7 A/cm{sup 2} for Nafion{sup R} 117, and 0.724 V at 1 A/cm{sup 2} for Nafion{sup R} 112, under 4/6 bar (absolute) of H{sub 2}/O{sub 2} at 100 C. The values of PEMFC resistance obtained in fitting the data were found to be R=0.254 (with Nafion{sup R} 117) and 0.108 {Omega} cm{sup 2} (with Nafion{sup R} 112). The membrane contribution to the cell resistance was then estimated to be R{sub m}=0.204 and 0.058 {Omega} cm{sup 2}, respectively (with Nafion{sup R} conductivity estimated at 0.103 S/cm at 100 C in working fuel cell conditions). This membrane is therefore the major contributor to the total cell resistance. (orig.)

  16. Mixed Membrane Matrices Based on Nafion/UiO-66/SO3H-UiO-66 Nano-MOFs: Revealing the Effect of Crystal Size, Sulfonation, and Filler Loading on the Mechanical and Conductivity Properties.

    Science.gov (United States)

    Donnadio, Anna; Narducci, Riccardo; Casciola, Mario; Marmottini, Fabio; D'Amato, Roberto; Jazestani, Mehdi; Chiniforoshan, Hossein; Costantino, Ferdinando

    2017-12-06

    Mixed membrane matrices (MMMs) made up with Nafion and nanocrystals of zirconium metal-organic framework (MOF) UiO-66 or the analogous sulfonated SO 3 H-UiO-66 were prepared by varying the filler loading and the size of the crystals. The combined effects of size and loading, together with the presence of sulfonic groups covalently linked to the MOFs, were studied with regard to the conductivity and mechanical properties of the obtained composite matrices. A large screening of membranes was preliminarily made and, on the most promising samples, an accurate conductivity study at different relative humidities and temperatures was also carried out. The results showed that membranes containing large crystals (200 nm average size) in low amounts (around 2%) displayed the best results in terms of proton conductivity values, reaching values by 30% higher than those of pure Nafion, while leaving the mechanical properties substantially unchanged. On the contrary, MMMs containing MOFs of small size (20 nm average size) did not show any conductivity improvements if compared to pure Nafion membranes. The effect of MOF sulfonation was negligible at low filler loading whereas it became important at loading values around 10%. Finally, membranes with a high filler loading (up to 60 wt %) of sulfonated UiO-66 showed a slight reduction of conductivity in comparison with membranes loaded at 20% of nonsulfonated ones.

  17. In-plane resolved in-situ measurements of the membrane resistance in PEFCs

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F N; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The conductivity of the membrane is a limiting factor for the efficiency and power density of PEFCs. Because this conductivity is strongly dependent on the membrane hydration, water management is an important aspect of PEFC optimisation. Single cell model experiments were made in order to determine the in-plane hydration of a Nafion{sup R} membrane under fuel cell conditions as function of the gas humidities. (author) 4 fig., 3 refs.

  18. Performance of Nafion-TiO2 hybrid membranes and PtSn/C electrocatalysts in PEM type fuel cells fed with ethanol and H2/CO at high temperature

    International Nuclear Information System (INIS)

    Isidoro, Roberta Alvarenga

    2010-01-01

    In this work, Nafion-TiO 2 hybrid electrolytes and PtSn/C electrocatalysts were synthesized for the application in direct ethanol fuel cell operating at high temperature (130 degree C). For this purpose, TiO 2 particles were incorporated in commercial Nafion membranes by an 'in situ' sol gel route. The resulting materials were characterized by gravimetric analysis, water uptake, DSC, XRD and EDX. Electrocatalysts based on carbon dispersed platinum-tin (PtSn/C), with different composition, were produced by alcohol-reduction method and were employed as anodic electrode. The electrocatalysts were characterized by XRD, EDX, XPS and transmission electronic spectroscopy. The electrochemical characterization was conducted by cyclic voltametry, carbon monoxide linear anodic voltammetry (CO stripping), and chronoamperometry. Membrane-electrodes assembly (MEAs) were formed with PtSn/C anodes, Pt/C cathodes and Nafion-TiO 2 hybrids. The performance of these MEA was evaluated in single-cell fed with H2/CO mixture or ethanol solution at the anode and oxygen at the cathode in the temperature range of 80-130 degree C. The analysis showed that the hybrid membranes improved the DEFC performance due to crossover suppression and that PtSn/C 70:30 electrocatalysts, prepared by an alcohol reduction process, showed better performance in ethanol oxidation. (author)

  19. Determination of membrane hydration numbers of alkali metal ions by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen; Junaid Mohamed Jafeen, Mohamed; Careem, M.A.

    2010-01-01

    , and a secondary (or outer) solvation shell, consisting of all other water molecules whose properties are still influenced significantly by the cation. Knowing the hydration number is important when considering, for instance, the transport of Na+ and K+ in biological cell membranes, since their different behavior...... may depend on the details of ion hydration. Although the solvation of alkali metal ions in aqueous solution has been discussed for many years, there is still no clear consensus. Part of the discrepancy is simply that different methods measure over different time scales, and therefore do...... not necessarily define the same hydration shell. This work presents a systematic study of one special variant of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS-). The technique...

  20. Influence of Nafion film on oxygen reduction reaction and hydrogen peroxide formation on Pt electrode for proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Ohma, Atsushi; Fushinobu, Kazuyoshi; Okazaki, Ken

    2010-01-01

    The influence of Nafion film on ORR kinetics and H 2 O 2 formation on a Pt electrode was investigated using RRDE in 0.1 M HClO 4 . It was found that the Nafion-coated Pt system showed lower apparent ORR activity and more H 2 O 2 production than the bare Pt electrode system. From the temperature sensitivity, it was revealed that the apparent activation energies of ORR in the Nafion-coated Pt system were lower than the bare Pt electrode system, and the H 2 O 2 formation was suppressed with the increase of the temperature. In order to analyze the results furthermore, other systems (0.1/1.0 M, HClO 4 /CF 3 SO 3 H) with the bare Pt electrodes were also examined as references. It was exhibited that the ORR kinetic current, the H 2 O 2 formation, and the apparent activation energies of 1.0 M CF 3 SO 3 H system were close to those of the Nafion-coated Pt system. We concluded that the orientation of anion species of Nafion and CF 3 SO 3 H to the Pt surface via water molecules, as well as a fluorocarbon polymer network of Nafion, might block O 2 adsorption, resulting in the smaller effective surface area of the Pt electrode for ORR, the smaller ORR kinetic current, and the more H 2 O 2 production.

  1. Hydration induced material transfer in membranes of osmotic pump tablets measured by synchrotron radiation based FTIR.

    Science.gov (United States)

    Wu, Li; Yin, Xianzhen; Guo, Zhen; Tong, Yajun; Feng, Jing; York, Peter; Xiao, Tiqiao; Chen, Min; Gu, Jingkai; Zhang, Jiwen

    2016-03-10

    Osmotic pump tablets are reliable oral controlled drug delivery systems based on their semipermeable membrane coating. This research used synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy and imaging to investigate the hydration induced material transfer in the membranes of osmotic pump tablets. SR-FTIR was applied to record and map the chemical information of a micro-region of the membranes, composed of cellulose acetate (CA, as the water insoluble matrix) and polyethylene glycol (PEG, as the soluble pore forming agent and plasticizing agent). The microstructure and chemical change of membranes hydrated for 0, 5, 10 and 30min were measured using SR-FTIR, combined with scanning electronic microscopy and atom force microscopy. The SR-FTIR microspectroscopy results indicated that there was a major change at the absorption range of 2700-3100cm(-1) in the membranes after different periods of hydration time. The absorption bands at 2870-2880cm(-1) and 2950-2960cm(-1) were assigned to represent CA and PEG, respectively. The chemical group signal distribution illustrated by the ratio of PEG to CA demonstrated that the trigger of drug release in the preliminary stage was due to the rapid transfer of PEG into liquid medium with a sharp decrease of PEG in the membranes. The SR-FTIR mapping results have demonstrated the hydration induced material transfer in the membranes of osmotic pump tablets and enabled reassessment of the drug release mechanism of membrane controlled osmotic pump systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Application of PtSn/C catalysts and Nafion SiO{sub 2} membranes in direct ethanol fuel cell at high temperatures; Aplicacao de catalisadores PtSn/C e membranas Nafion SiO{sub 2} em celulas a combustivel de etanol direto em elevadas temperaturas

    Energy Technology Data Exchange (ETDEWEB)

    Dresch, Mauro Andre

    2014-07-01

    This work has as objective to evaluate anodes and electrolytes in direct ethanol fuel cells (DEFC) operating at high temperature (130 deg C). As anode materials, electrocatalysts based on Pt Sn/C were prepared by Modified Polyol Method with various Pt:Sn atomic ratios. Such methodology promotes self organized electrocatalysts production with narrow particle size distribution and high alloying degree. The electrocatalysts were characterized by XRD, and CO stripping. The results showed that these materials presented high alloying degree and Eonset CO oxidation at lower potential as commercial materials. As electrolyte, Nafion-SiO{sub 2} hybrids were synthesized by sol-gel reaction, by the incorporation of oxide directly into the ionic aggregates of various kinds of Nafion membranes. The synthesis parameter, such sol-gel solvent, membrane thickness and silicon precursor concentration were studied in terms of silica incorporation degree and hybrid mechanical stability. Finally, the optimized anodes and electrolytes were evaluated in DEFC operating at 80 - 130 deg C temperature range. The results showed a significant improvement of the DEFC performance (122 mW cm{sup -2}), resulted from the acceleration of ethanol oxidation reaction rate due to anode material optimization and high temperature operation once the use of hybrids possibilities the increase of temperature without a significant conductivity loses. In this sense, the combination of optimized electrodes and electrolytes are a promising alternative for the development of these devices. (author)

  3. Gas Sorption, Diffusion, and Permeation in Nafion

    KAUST Repository

    Mukaddam, Mohsin Ahmed

    2015-12-22

    The gas permeability of dry Nafion films was determined at 2 atm and 35 °C for He, H2, N2, O2, CO2, CH4, C2H6, and C3H8. In addition, gas sorption isotherms were determined by gravimetric and barometric techniques as a function of pressure up to 20 atm. Nafion exhibited linear sorption uptake for low-solubility gases, following Henry’s law, and convex behavior for highly sorbing condensable gases, indicating rubber-like behavior at 35 °C. XRD results demonstrated that Nafion contains bimodal amorphous chain domains with average d-spacing values of 2.3 and 5.3 Å. Only helium and hydrogen showed relatively high gas permeability of 37 and 7 barrers, respectively; all other gases exhibited low permeability that decreased significantly as penetrant size increased. Dry Nafion was characterized by extraordinarily high selectivities: He/H2 = 5.2, He/CH4 = 445, He/C2H6 = 1275, He/C3H8 = 7400, CO2/CH4 = 28, CO2/C2H6 = 79, CO2/C3H8 = 460, H2/CH4 = 84, H2/C2H6 = 241, and H2/C3H8 = 1400. These high selectivities could make Nafion a potential candidate membrane material for dry feeds for helium recovery and carbon dioxide separation from natural gas and removal of higher hydrocarbons from hydrogen-containing refinery gases.

  4. A Novel Method for the Determination of Membrane Hydration Numbers of Cations in Conducting Polymers

    DEFF Research Database (Denmark)

    Jafeen, M.J.M.; Careem, M.A.; Skaarup, Steen

    2012-01-01

    Polypyrrole polymer films doped with the large, immobile dodecy lbenzene sulfonate anions operating in alkali halide aqueous electroly tes has beenused as a novel physico-chemical environment to develop a more direct way of obtaining reliable values for the hydration numbers of cations. Simultane......Polypyrrole polymer films doped with the large, immobile dodecy lbenzene sulfonate anions operating in alkali halide aqueous electroly tes has beenused as a novel physico-chemical environment to develop a more direct way of obtaining reliable values for the hydration numbers of cations....... The number of water moleculesentering the polymer during the initial part of the first reduction was found to be constant and independent of the concentration of the electrolyte below ∼1 M. This well-defined value can be considered as the primarymembrane hydration number of the cation involved...... in the reduction process. The goal was to investigate both the effects of cation size and of cation charge. The membrane hydration number values obtained by this simple and direct method for a number of cations are: The hydration number for all of these cations seems to follow the same simple relation....

  5. Structure and hydration of membranes embedded with voltage-sensing domains.

    Science.gov (United States)

    Krepkiy, Dmitriy; Mihailescu, Mihaela; Freites, J Alfredo; Schow, Eric V; Worcester, David L; Gawrisch, Klaus; Tobias, Douglas J; White, Stephen H; Swartz, Kenton J

    2009-11-26

    Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly charged S1-S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated ion channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations and cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings indicate that voltage sensors have evolved to interact with the lipid membrane while keeping energetic and structural perturbations to a minimum, and that water penetrates the membrane, to hydrate charged residues and shape the transmembrane electric field.

  6. Internal hydration of a metal-transporting ATPase is controlled by membrane lateral pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fahmy, Karim [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Fischermeier, E. [Technische Univ. Dresden (Germany); Pospisil, P. [A.S.C. R., Prague (Czech Republic). J. Heyrovsky Inst. Physical Chemistry; Solioz, M. [Bern Univ. (Switzerland); Sayed, A.; Hof, M.

    2017-07-01

    The active transport of ions across biological mem branes requires their hydration shell to interact with the interior of membrane proteins. However, the influence of the external lipid phase on internal dielectric dynamics is hard to access by experiment. Using the octahelical transmembrane architecture of the copper-transporting P{sub 1B}-type ATPase from Legionella pneumophila (LpCopA) as a model structure, we have established the site-specific labeling of internal cysteines with a polarity-sensitive fluorophore. This enabled dipolar relaxation studies in a solubilized form of the protein and in its lipid-embedded state in nano-discs (NDs). Time-dependent fluorescence shifts revealed the site-specific hydration and dipole mobility around the conserved ion-binding motif. The spatial distribution of both features is shaped significantly and independently of each other by membrane lateral pressure.

  7. Internal hydration of a metal-transporting ATPase is controlled by membrane lateral pressure

    International Nuclear Information System (INIS)

    Fahmy, Karim; Pospisil, P.; Sayed, A.; Hof, M.

    2017-01-01

    The active transport of ions across biological mem branes requires their hydration shell to interact with the interior of membrane proteins. However, the influence of the external lipid phase on internal dielectric dynamics is hard to access by experiment. Using the octahelical transmembrane architecture of the copper-transporting P_1_B-type ATPase from Legionella pneumophila (LpCopA) as a model structure, we have established the site-specific labeling of internal cysteines with a polarity-sensitive fluorophore. This enabled dipolar relaxation studies in a solubilized form of the protein and in its lipid-embedded state in nano-discs (NDs). Time-dependent fluorescence shifts revealed the site-specific hydration and dipole mobility around the conserved ion-binding motif. The spatial distribution of both features is shaped significantly and independently of each other by membrane lateral pressure.

  8. In situ quantification of the in-plane water content in the Nafion {sup registered} membrane of an operating polymer-electrolyte membrane fuel cell using {sup 1}H micro-magnetic resonance imaging experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingtao; Feindel, Kirk W.; Bergens, Steven H.; Wasylishen, Roderick E. [Department of Chemistry, University of Alberta, E3-24 Gunning/Lemieux Chemistry Center, Edmonton, Alberta (Canada)

    2010-11-01

    Spatial, quantitative, and temporal information regarding the water content distribution in the transverse-plane between the catalyst layers of an operating polymer-electrolyte membrane fuel cell (PEMFC) is essential to develop a fundamental understanding of water dynamics in these systems. We report {sup 1}H micro-magnetic resonance imaging (MRI) experiments that measure the number of water molecules per SO{sub 3}H group, {lambda}, within a Nafion {sup registered} -117 membrane between the catalyst stamps of a membrane-electrode assembly, MEA. The measurements were made both ex situ, and inside a PEMFC operating on hydrogen and oxygen. The observed {sup 1}H MRI T{sub 2} relaxation time of water in the PEM was measured for several known values of {lambda}. The signal intensity of the images was then corrected for T{sub 2} weighting to yield proton density-weighted images, thereby establishing a calibration curve that correlates the {sup 1}H MRI density-weighted signal with {lambda}. Subsequently, the calibration curve was used with proton density weighted (i.e., T{sub 2}-corrected) signal intensities of transverse-plane {sup 1}H MRI images of water in the PEM between the catalyst stamps of an operating PEMFC to determine {lambda} under various operational conditions. For example, the steady state, transverse-plane {lambda} was 9 {+-} 1 for a PEMFC operating at {proportional_to}26.4 mW cm{sup -2} ({proportional_to}20.0 mA, {proportional_to}0.661 V, 20 C, flow rates of the dry H{sub 2}(g) and O{sub 2}(g) were 5.0 and 2.5 mL min{sup -1}, respectively). (author)

  9. NMR and Electrochemical Investigation of the Transport Properties of Methanol and Water in Nafion and Clay-Nanocomposites Membranes for DMFCs

    Directory of Open Access Journals (Sweden)

    Vincenzo Baglio

    2012-06-01

    Full Text Available Water and methanol transport behavior, solvents adsorption and electrochemical properties of filler-free Nafion and nanocomposites based on two smectite clays, were investigated using impedance spectroscopy, DMFC tests and NMR methods, including spin-lattice relaxation and pulsed-gradient spin-echo (PGSE diffusion under variable temperature conditions. Synthetic (Laponite and natural (Swy-2 smectite clays, with different structural and physical parameters, were incorporated into the Nafion for the creation of exfoliated nanocomposites. Transport mechanism of water and methanol appears to be influenced from the dimensions of the dispersed platelike silicate layers as well as from their cation exchange capacity (CEC. The details of the NMR results and the effect of the methanol solution concentration are discussed. Clays particles, and in particular Swy-2, demonstrate to be a potential physical barrier for methanol cross-over, reducing the methanol diffusion with an evident blocking effect yet nevertheless ensuring a high water mobility up to 130 °C and for several hours, proving the exceptional water retention property of these materials and their possible use in the DMFCs applications. Electrochemical behavior is investigated by cell resistance and polarization measurements. From these analyses it is derived that the addition of clay materials to recast Nafion decreases the ohmic losses at high temperatures extending in this way the operating range of a direct methanol fuel cell.

  10. Propriedades físico-químicas relacionadas ao desenvolvimento de membranas de Nafion® para aplicações em células a combustível do tipo PEMFC Physicochemical properties related to the development of Nafion® membranes for application in fuel cells

    Directory of Open Access Journals (Sweden)

    Carlos E. Perles

    2008-01-01

    in this topic focuses on the development of polymer membranes whose target is to reduce its production costs. In this work we shall focus on physicochemical aspects related to development of polymeric membranes. A discussion on structural aspects of Nafion® will be carried, which will be related to the following physicochemical properties: electrosmotic flux, gaseous permeability, water transport through polimeric membrane, chemical and thermal stabilities. All the discussion was made using Nafion® as model of perfluorated polymers.

  11. Characterization of an anionic-exchange membranes for direct methanol alkaline fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Abuin, Graciela C. [Centro de Procesos Superficiales, Instituto Nacional de Tecnologia Industrial (INTI), Av. Gral. Paz 5445, B1650KNA, San Martin, Buenos Aires (Argentina); Nonjola, Patrick; Mathe, Mkhulu K. [Council for Scientific and Industrial Research (CSIR), Material Science and Manufacturing, PO Box 395, Brumeria, Pretoria 0001 (South Africa); Franceschini, Esteban A.; Izraelevitch, Federico H.; Corti, Horacio R. [Departamento de Fisica de la Materia Condensada, Comision Nacional de Energia Atomica (CNEA), Av. Gral. Paz 1499, B1650KNA, San Martin, Buenos Aires (Argentina)

    2010-06-15

    Ammonium quaternized polymers such as poly (arylene ether sulfones) are being developed and studied as candidates of ionomeric materials for application in alkaline fuel cells, due to their low cost and promising electrochemical properties. In this work, a quaternary ammonium polymer was synthesized by chloromethylation of a commercial polysulfone followed by amination process. Quaternized polysulfone membrane properties such us water and water-methanol uptake, electrical conductivity and Young's modulus were evaluated and compared to Nafion 117, commonly employed in direct methanol fuel cells. The anionic polysulfone membrane sorbs more water than Nafion all over the whole range of water activities, but it uptakes much less methanol as compared to Nafion. The specific conductivity of the fully hydrated polysulfone membrane equilibrated with KOH solutions at ambient temperature increases with the KOH concentration, reaching a maximum of 0.083 S cm{sup -1} for 2 M KOH, slightly less conductive than Nafion 117. The elastic modulus of the polysulfone membranes inmersed in water is similar to that reported for Nafion membranes under the same conditions. We concluded that quaternized polysulfone membrane are good candidates as electrolytes in alkaline direct methanol fuel cells. (author)

  12. Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes.

    Science.gov (United States)

    Tang, Jennifer; Alsop, Richard J; Schmalzl, Karin; Epand, Richard M; Rheinstädter, Maikel C

    2015-09-29

    NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains' electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.

  13. Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes

    Directory of Open Access Journals (Sweden)

    Jennifer Tang

    2015-09-01

    Full Text Available NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains’ electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.

  14. Characterization of proton exchange membrane materials for fuel cells by solid state nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Zueqian [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Solid-state nuclear magnetic resonance (NMR) has been used to explore the nanometer-scale structure of Nafion, the widely used fuel cell membrane, and its composites. We have shown that solid-state NMR can characterize chemical structure and composition, domain size and morphology, internuclear distances, molecular dynamics, etc. The newly-developed water channel model of Nafion has been confirmed, and important characteristic length-scales established. Nafion-based organic and inorganic composites with special properties have also been characterized and their structures elucidated. The morphology of Nafion varies with hydration level, and is reflected in the changes in surface-to-volume (S/V) ratio of the polymer obtained by small-angle X-ray scattering (SAXS). The S/V ratios of different Nafion models have been evaluated numerically. It has been found that only the water channel model gives the measured S/V ratios in the normal hydration range of a working fuel cell, while dispersed water molecules and polymer ribbons account for the structures at low and high hydration levels, respectively.

  15. Proton conducting semi-IPN based on Nafion and crosslinked poly(AMPS) for direct methanol fuel cell

    International Nuclear Information System (INIS)

    Cho, Ki-Yun; Jung, Ho-Young; Shin, Seung-Shik; Choi, Nam-Soon; Sung, Shi-Joon; Park, Jung-Ki; Choi, Jong-Ho; Park, Kyung-Won; Sung, Yung-Eun

    2004-01-01

    For direct methanol fuel cell, the proton conducting membrane based on semi-interpenetrating polymer networks (IPNs) of Nafion and crosslinked poly(AMPS) was prepared and characterized. The modification of Nafion with crosslinked poly(AMPS) such as hydrocarbon polymer changed the state of water in membranes. Without a significant increase of the membrane resistance, the semi-IPNs demonstrated a reduction of the methanol permeability, comparing to the native Nafion. And the maximum power density of AMPS60 increased as much as 22.2% compared with Nafion

  16. Diffusion and spectroscopy of water and lipids in fully hydrated dimyristoylphosphatidylcholine bilayer membranes

    International Nuclear Information System (INIS)

    Yang, J.; Martí, J.; Calero, C.

    2014-01-01

    Microscopic structure and dynamics of water and lipids in a fully hydrated dimyristoylphosphatidylcholine phospholipid lipid bilayer membrane in the liquid-crystalline phase have been analyzed with all-atom molecular dynamics simulations based on the recently parameterized CHARMM36 force field. The diffusive dynamics of the membrane lipids and of its hydration water, their reorientational motions as well as their corresponding spectral densities, related to the absorption of radiation, have been considered for the first time using the present force field. In addition, structural properties such as density and pressure profiles, a deuterium-order parameter, surface tension, and the extent of water penetration in the membrane have been analyzed. Molecular self-diffusion, reorientational motions, and spectral densities of atomic species reveal a variety of time scales playing a role in membrane dynamics. The mechanisms of lipid motion strongly depend on the time scale considered, from fast ballistic translation at the scale of picoseconds (effective diffusion coefficients of the order of 10 −5 cm 2 /s) to diffusive flow of a few lipids forming nanodomains at the scale of hundreds of nanoseconds (diffusion coefficients of the order of 10 −8 cm 2 /s). In the intermediate regime of sub-diffusion, collisions with nearest neighbors prevent the lipids to achieve full diffusion. Lipid reorientations along selected directions agree well with reported nuclear magnetic resonance data and indicate two different time scales, one about 1 ns and a second one in the range of 2–8 ns. We associated the two time scales of reorientational motions with angular distributions of selected vectors. Calculated spectral densities corresponding to lipid and water reveal an overall good qualitative agreement with Fourier transform infrared spectroscopy experiments. Our simulations indicate a blue-shift of the low frequency spectral bands of hydration water as a result of its interaction

  17. Diffusion and spectroscopy of water and lipids in fully hydrated dimyristoylphosphatidylcholine bilayer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Martí, J., E-mail: jordi.marti@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia-Barcelona Tech, B4-B5 Northern Campus, Jordi Girona 1-3, 08034 Barcelona, Catalonia (Spain); Calero, C. [Department of Physics and Nuclear Engineering, Technical University of Catalonia-Barcelona Tech, B4-B5 Northern Campus, Jordi Girona 1-3, 08034 Barcelona, Catalonia (Spain); Center for Polymer Studies, Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215 (United States)

    2014-03-14

    Microscopic structure and dynamics of water and lipids in a fully hydrated dimyristoylphosphatidylcholine phospholipid lipid bilayer membrane in the liquid-crystalline phase have been analyzed with all-atom molecular dynamics simulations based on the recently parameterized CHARMM36 force field. The diffusive dynamics of the membrane lipids and of its hydration water, their reorientational motions as well as their corresponding spectral densities, related to the absorption of radiation, have been considered for the first time using the present force field. In addition, structural properties such as density and pressure profiles, a deuterium-order parameter, surface tension, and the extent of water penetration in the membrane have been analyzed. Molecular self-diffusion, reorientational motions, and spectral densities of atomic species reveal a variety of time scales playing a role in membrane dynamics. The mechanisms of lipid motion strongly depend on the time scale considered, from fast ballistic translation at the scale of picoseconds (effective diffusion coefficients of the order of 10{sup −5} cm{sup 2}/s) to diffusive flow of a few lipids forming nanodomains at the scale of hundreds of nanoseconds (diffusion coefficients of the order of 10{sup −8} cm{sup 2}/s). In the intermediate regime of sub-diffusion, collisions with nearest neighbors prevent the lipids to achieve full diffusion. Lipid reorientations along selected directions agree well with reported nuclear magnetic resonance data and indicate two different time scales, one about 1 ns and a second one in the range of 2–8 ns. We associated the two time scales of reorientational motions with angular distributions of selected vectors. Calculated spectral densities corresponding to lipid and water reveal an overall good qualitative agreement with Fourier transform infrared spectroscopy experiments. Our simulations indicate a blue-shift of the low frequency spectral bands of hydration water as a result of

  18. Estimation of membrane hydration status for standby proton exchange membrane fuel cell systems by impedance measurement

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Rugholt, Mark; Nielsen, Morten Busk

    2014-01-01

    Fuel cells are getting growing interest in both backup systems and electric vehicles. Although these systems are characterized by long periods of inactivity, they must be able to start at any instant in the shortest time. However, the membrane of which PEMFCs are made tends to dry out when...

  19. Effect of Nafion ionometer content on proton conductivity in the catalyst layer of proton exchange fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ozalevlia, Cihan Cemil; Jian Xie; Xu, Fan [METU MS Mechanical Engineering (United States)], email: cihan.ozalevli@metu.edu.tr, email: jianxie@iupui.edu, email: fanxu@iupui.edu

    2011-07-01

    In the energy conversion sector, proton exchange fuel cells (PEFC's) are among the most promising technologies for the future. The Nafion ionometer is the most important part of the membrane electrode assembly (MEA) which is the core technology of the system. The Nafion ionometer is both a proton conductor and a binder for the catalyst layer in the technology. The aim of this study is to assess the effect of the Nafion content in the cathode catalyst layer on the proton conductivity of the MEA. Two MEAs with different Nafion content were prepared following the LANL process and the proton conductivity of the catalyst layer was measured. Results showed a much higher performance of the 28wt. % Nafion MEA than the 10wt. %. This study demonstrated that when the Nafion ionometer content decreases, the performance of the fuel cell decreases; further investigations should be undertaken with Nafion ionometer amounts of 15wt. % to 20wt. %.

  20. Structural Interpretation of the Large Slowdown of Water Dynamics at Stacked Phospholipid Membranes for Decreasing Hydration Level: All-Atom Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Carles Calero

    2016-04-01

    Full Text Available Hydration water determines the stability and function of phospholipid membranes as well as the interaction of membranes with other molecules. Experiments and simulations have shown that water dynamics slows down dramatically as the hydration decreases, suggesting that the interfacial water that dominates the average dynamics at low hydration is slower than water away from the membrane. Here, based on all-atom molecular dynamics simulations, we provide an interpretation of the slowdown of interfacial water in terms of the structure and dynamics of water–water and water–lipid hydrogen bonds (HBs. We calculate the rotational and translational slowdown of the dynamics of water confined in stacked phospholipid membranes at different levels of hydration, from completely hydrated to poorly hydrated membranes. For all hydrations, we analyze the distribution of HBs and find that water–lipids HBs last longer than water–water HBs and that at low hydration most of the water is in the interior of the membrane. We also show that water–water HBs become more persistent as the hydration is lowered. We attribute this effect (i to HBs between water molecules that form, in turn, persistent HBs with lipids; (ii to the hindering of the H-bonding switching between water molecules due to the lower water density at the interface; and (iii to the higher probability of water–lipid HBs as the hydration decreases. Our interpretation of the large dynamic slowdown in water under dehydration is potentially relevant in understanding membrane biophysics at different hydration levels.

  1. Water flow in carbon-based nanoporous membranes impacted by interactions between hydrated ions and aromatic rings.

    Science.gov (United States)

    Liu, Jian; Shi, Guosheng; Fang, Haiping

    2017-02-24

    Carbon-based nanoporous membranes, such as carbon nanotubes (CNTs), graphene/graphene oxide and graphyne, have shown great potential in water desalination and purification, gas and ion separation, biosensors, and lithium-based batteries, etc. A deep understanding of the interaction between hydrated ions in an aqueous solution and the graphitic surface in systems composed of water, ions and a graphitic surface is essential for applications with carbon-based nanoporous membrane platforms. In this review, we describe the recent progress of the interaction between hydrated ions and aromatic ring structures on the carbon-based surface and its applications in the water flow in a carbon nanotube. We expect that these works can be extended to the understanding of water flow in other nanoporous membranes, such as nanoporous graphene, graphyne and stacked sheets of graphene oxide.

  2. Nafion and modified-Nafion membranes for polymer electrolyte fuel ...

    Indian Academy of Sciences (India)

    Administrator

    geothermal energy, wind energy and fusion power tech- nology have attracted .... the power plants for Gemini space missions in the early. 1960s. But the cells .... samples and measuring water uptake as a function of time in the temperature ...

  3. Correlation between structure and conductivity in stretched Nafion

    Science.gov (United States)

    Allahyarov, Elshad; Taylor, Philip

    2008-03-01

    We have used coarse-grained simulation methods to investigate the effect of stretching-induced structure orientation on the proton conductivity of Nafion-like polyelectrolyte membranes. Recent experimental data on the morphology of ionomers describe Nafion as an aggregation of polymeric backbone chains forming elongated objects embedded in a continuous ionic medium. Uniaxial stretching of a recast Nafion film causes a preferential orientation of these objects in the direction of stretching. Our simulations of humid Nafion show that this has a strong effect on the proton conductivity, which is enhanced along the stretching direction, while the conductivity perpendicular to the stretched polymer backbone is strongly reduced. Stretching also causes the perfluorinated side chains to orient perpendicular to the stretching axis. The sulphonate multiplets shrink in diameter as the stretching is increased and show a spatially periodic ordering in their distribution. This in turn affects the distribution of contained water at low water contents. The water forms a continuous network with narrow bridges between small water clusters absorbed in head-group multiplets. We find the morphological changes in the stretched Nafion to be retained upon removal of the uniaxial stress.

  4. Incorporation of Hyperbranched Supramolecules into Nafion Ionic Domains via Impregnation and In-Situ Photopolymerization

    Directory of Open Access Journals (Sweden)

    Hiruto Kudo

    2011-11-01

    Full Text Available Nafion membranes were impregnated with photocurable supramolecules, viz., hyperbranched polyester having pendant functional carboxylic acid groups (HBPEAc-COOH by swelling in methanol and subsequently photocured in-situ after drying. Structure-property relationships of the HBPEAc-COOH impregnated Nafion membranes were analyzed on the basis of Fourier transform infrared (FTIR spectroscopy, solid-state nuclear magnetic resonance (SSNMR and dynamic mechanical analysis (DMA. FTIR and SSNMR investigations revealed that about 7 wt % of HBPEAc-COOH was actually incorporated into the ionic domains of Nafion. The FTIR study suggests possible complexation via inter-species hydrogen bonding between the carboxylic groups of HBPEAc-COOH and the sulfonate groups of Nafion. The α-relaxation peak corresponding to the glass transition temperature of the ionic domains of the neat Nafion-acid form was found to increase from ~100 to ~130 °C upon impregnation with enhanced modulus afforded by the cured polyester network within the ionic domains. The AC impedance fuel cell measurement of the impregnated membrane exhibited an increasing trend of proton conductivity with increasing temperature, which eventually surpassed that of neat Nafion above 100 °C. Of particular importance is that the present paper is the first to successfully incorporate polymer molecules/networks into the Nafion ionic domains by means of impregnation with hyperbranched supramolecules followed by in-situ photopolymerization.

  5. Femtoelectron-Based Terahertz Imaging of Hydration State in a Proton Exchange Membrane Fuel Cell

    Science.gov (United States)

    Buaphad, P.; Thamboon, P.; Kangrang, N.; Rhodes, M. W.; Thongbai, C.

    2015-08-01

    Imbalanced water management in a proton exchange membrane (PEM) fuel cell significantly reduces the cell performance and durability. Visualization of water distribution and transport can provide greater comprehension toward optimization of the PEM fuel cell. In this work, we are interested in water flooding issues that occurred in flow channels on cathode side of the PEM fuel cell. The sample cell was fabricated with addition of a transparent acrylic window allowing light access and observed the process of flooding formation (in situ) via a CCD camera. We then explore potential use of terahertz (THz) imaging, consisting of femtoelectron-based THz source and off-angle reflective-mode imaging, to identify water presence in the sample cell. We present simulations of two hydration states (water and nonwater area), which are in agreement with the THz image results. A line-scan plot is utilized for quantitative analysis and for defining spatial resolution of the image. Implementing metal mesh filtering can improve spatial resolution of our THz imaging system.

  6. Communication: Contrasting effects of glycerol and DMSO on lipid membrane surface hydration dynamics and forces

    Energy Technology Data Exchange (ETDEWEB)

    Schrader, Alex M. [Department of Chemical Engineering, University of California, Santa Barbara, California 93106 (United States); Cheng, Chi-Yuan [Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States); Israelachvili, Jacob N. [Department of Chemical Engineering, University of California, Santa Barbara, California 93106 (United States); Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States); Materials Department, University of California, Santa Barbara, California 93106 (United States); Han, Songi [Department of Chemical Engineering, University of California, Santa Barbara, California 93106 (United States); Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States)

    2016-07-28

    Glycerol and dimethyl sulfoxide (DMSO) are commonly used cryoprotectants in cellular systems, but due to the challenges of measuring the properties of surface-bound solvent, fundamental questions remain regarding the concentration, interactions, and conformation of these solutes at lipid membrane surfaces. We measured the surface water diffusivity at gel-phase dipalmitoylphosphatidylcholine (DPPC) bilayer surfaces in aqueous solutions containing ≤7.5 mol. % of DMSO or glycerol using Overhauser dynamic nuclear polarization. We found that glycerol similarly affects the diffusivity of water near the bilayer surface and that in the bulk solution (within 20%), while DMSO substantially increases the diffusivity of surface water relative to bulk water. We compare these measurements of water dynamics with those of equilibrium forces between DPPC bilayers in the same solvent mixtures. DMSO greatly decreases the range and magnitude of the repulsive forces between the bilayers, whereas glycerol increases it. We propose that the differences in hydrogen bonding capability of the two solutes leads DMSO to dehydrate the lipid head groups, while glycerol affects surface hydration only as much as it affects the bulk water properties. The results suggest that the mechanism of the two most common cryoprotectants must be fundamentally different: in the case of DMSO by decoupling the solvent from the lipid surface, and in the case of glycerol by altering the hydrogen bond structure and intermolecular cohesion of the global solvent, as manifested by increased solvent viscosity.

  7. Estimation of Membrane Hydration Status for Standby Proton Exchange Membrane Fuel Cell Systems by Impedance Measurement: First Results on Stack Characterization

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Kær, Søren Knudsen

    Fuel cells have started replacing traditional lead-acid battery banks in backup systems. Although these systems are characterized by long periods of standby, they must be able to start at any instant in the shortest time. In the case of low temperature proton exchange membrane fuel cell systems......, a precise estimation of hydration status of the fuel cell during standby is important for a fast and safe startup. In this article, the measurement of the complex impedance of the fuel cell is suggested as a method to estimate the membrane hydration status. A 56-cell fuel cell stack has been symmetrically...... fed with air whose temperature and relative humidity were controlled, and its complex impedance was measured at different frequencies and for different values of relative humidity. After showing that the experiment was repeatable, the fuel cell stack was characterized, a power regression model...

  8. Hydration dynamics of a lipid membrane: Hydrogen bond networks and lipid-lipid associations

    Science.gov (United States)

    Srivastava, Abhinav; Debnath, Ananya

    2018-03-01

    reveal that the slow relaxation rates of interfacial waters in the vicinity of lipids are originated from the chemical confinement of concerted hydrogen bond networks. The analysis suggests that the networks in the hydration layer of membranes dynamically facilitate the water mediated lipid-lipid associations which can provide insights on the thermodynamic stability of soft interfaces relevant to biological systems in the future.

  9. Laccase-based biocathodes: Comparison of chitosan and Nafion.

    Science.gov (United States)

    El Ichi-Ribault, S; Zebda, A; Laaroussi, A; Reverdy-Bruas, N; Chaussy, D; Belgacem, M N; Suherman, A L; Cinquin, P; Martin, D K

    2016-09-21

    Chitosan and Nafion(®) are both reported as interesting polymers to be integrated into the structure of 3D electrodes for biofuel cells. Their advantage is mainly related to their chemical properties, which have a positive impact on the stability of electrodes such as the laccase-based biocathode. For optimal function in implantable applications the biocathode requires coating with a biocompatible semi-permeable membrane that is designed to prevent the loss of enzyme activity and to protect the structure of the biocathode. Since such membranes are integrated into the electrodes ultimately implanted, they must be fully characterized to demonstrate that there is no interference with the performance of the electrode. In the present study, we demonstrate that chitosan provides superior stability compared with Nafion(®) and should be considered as an optimum solution to enhance the biocompatibility and the stability of 3D bioelectrodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Interfacial Water-Transport Effects in Proton-Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kienitz, Brian; Yamada, Haruhiko; Nonoyama, Nobuaki; Weber, Adam

    2009-11-19

    It is well known that the proton-exchange membrane is perhaps the most critical component of a polymer-electrolyte fuel cell. Typical membranes, such as Nafion(R), require hydration to conduct efficiently and are instrumental in cell water management. Recently, evidence has been shown that these membranes might have different interfacial morphology and transport properties than in the bulk. In this paper, experimental data combined with theoretical simulations will be presented that explore the existence and impact of interfacial resistance on water transport for Nafion(R) 21x membranes. A mass-transfer coefficient for the interfacial resistance is calculated from experimental data using different permeation cells. This coefficient is shown to depend exponentially on relative humidity or water activity. The interfacial resistance does not seem to exist for liquid/membrane or membrane/membrane interfaces. The effect of the interfacial resistance is to flatten the water-content profiles within the membrane during operation. Under typical operating conditions, the resistance is on par with the water-transport resistance of the bulk membrane. Thus, the interfacial resistance can be dominant especially in thin, dry membranes and can affect overall fuel-cell performance.

  11. Application of the nanocomposite membrane as electrolyte of proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Mahreni

    2010-01-01

    Hydrogen fuel cells proton exchange membrane fuel cell (PEMFC) is currently still in development and commercialization. Several barriers to the commercialization of these Nafion membrane as electrolyte is its very sensitive to humidity fluctuation. Nafion must be modified by making a composite Nafion-SiO 2 -HPA to increase electrolyte resistance against humidity fluctuations during the cell used. Research carried out by mixing Nafion solution with Tetra Ethoxy Ortho Silicate (TEOS) and conductive materials is phosphotungstic acid (PWA) by varying the ratio of Nafion, TEOS and PWA. The membrane is produced by heating a mixture of Nafion, TEOS and PWA by varying the evaporation temperature, time and annealing temperature to obtain the transparent membrane. The resulting membrane was analyzed its physical, chemical and electrochemical properties by applying the membrane as electrolyte of PEMFC at various humidity and temperature of operation. The results showed that at low temperatures (30-90 °C) and high humidity at 100 % RH, pure Nafion membrane is better than composite membrane (Nafion-SiO 2 -PWA), but at low humidity condition composite membrane is better than the pure Nafion membrane. It can be concluded that the composite membranes of (Nafion-SiO 2 -PWA) can be used as electrolyte of PEMFC operated at low humidity (40 % RH) and temperature between (30-90 °C). (author)

  12. Nafion as Cosurfactant: Solubilization of Nafion in Water in the Presence of Pluronics

    KAUST Repository

    Kelarakis, Antonios; Giannelis, Emmanuel P.

    2011-01-01

    destabilization induced by Nafion on one hand and the gelator nature of the Nafion on the other. Measurements using a quartz crystal microbalance (QCM-D) show that aqueous solutions of Pluronics (even at very low concentration) can dissolve the Nafion coating

  13. Mesoscale simulations of confined Nafion thin films

    Science.gov (United States)

    Vanya, P.; Sharman, J.; Elliott, J. A.

    2017-12-01

    The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains, with carbon and quartz as confining materials, for a wide range of operational water contents and film thicknesses. We found confinement-induced clustering of water perpendicular to the thin film. Hydrophobic carbon forms a water depletion zone near the film interface, whereas hydrophilic quartz results in a zone with excess water. There are, on average, oscillating water-rich and fluorocarbon-rich regions, in agreement with experimental results from neutron reflectometry. Water diffusivity shows increasing directional anisotropy of up to 30% with decreasing film thickness, depending on the hydrophilicity of the confining material. A percolation analysis revealed significant differences in water clustering and connectivity with the confining material. These findings indicate the fundamentally different nature of ionomer thin films, compared to membranes, and suggest explanations for increased ionic resistances observed in the catalyst layer.

  14. Investigation of interactions between water and ion exchanger perfluorinated membranes

    International Nuclear Information System (INIS)

    Ben Said, Chakir

    1983-01-01

    In this research thesis, the author, by using nuclear magnetic resonance (NMR), shows the privileged situation of the first absorbed water molecules which come and fix about cations and fill up the first hydration sphere. He reports the study of Nafion membranes provided by DuPont de Nemours: chemical definition (chemical structure, properties, and microstructure), interest of the use of NMR, results and discussion (influence of water content, of temperature, of thermal cycling), and other results obtained by using different techniques (electronic paramagnetic resonance or EPR, differential calorimetry and thermo-porometry, mechanical measurements) [fr

  15. Lithiated Nafion as polymer electrolyte for solid-state lithium sulfur batteries using carbon-sulfur composite cathode

    Science.gov (United States)

    Gao, Jing; Sun, Chunshui; Xu, Lei; Chen, Jian; Wang, Chong; Guo, Decai; Chen, Hao

    2018-04-01

    Due to flexible property and light weight, the lithiated Nafion membrane swollen with PC (PC-Li-Nafion) has been employed as both solid-state electrolyte and separator to fabricate solid-state Li-S cells. The electrochemical measurements of PC-Li-Nafion membrane show that its Li-ion transference number is 0.928, ionic conductivity of 2.1 × 10-4 S cm-1 can be achieved at 70 °C and its electrochemical window is 0 ∼ +4.1 V vs. Li+/Li. It is observed that the Li dendrites are suppressed by using PC-Li-Nafion membrane due to its single-ion conducting property. The amounts of Li-Nafion resin binder and conductive carbon in the cathode are optimized as 40% and 10% respectively to make a balance of ionic and electronic conductivities. A thin-layer Li-Nafion resin with a thickness of around 2 μm is fabricated between the cathode and PC-Li-Nafion membrane to improve the interfacial contact and further enhance the specific capacity of the cell. When measured at 70 °C, the Li-S cell delivers a reversible specific capacity of 1072.8 mAh g-1 (S) at 0.05 C and 895 mAh g-1 (S) at 1 C. The capacity retention at 1 C is 89% after 100 cycles. These results suggest that high-performance solid-state Li-S cells can be fabricated with the Li-Nafion polymer electrolyte.

  16. Properties and DEFC tests of nafion added functionalized titanate nanotubes prepared by extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Matos, B.R.; Goulart, C.A.; Isidoro, R.A.; Silva, J.S. da; Santiago, E.I.; Fonseca, F.C.; Tavares, A.C. [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2016-07-01

    Full text: Composite electrolyte membranes based on the incorporation of a second inorganic phase into ionomer matrices such as Nafion revealed to possess enhanced properties such as increased mechanical resistance and reduced permeability of solvents. It has been reported that surface functionalized titanate nanotubes (H2Ti3O7.nH2O) display a proton conductivity of ∼ 10-2 Scm-1, which is attractive for the use of such composites in direct ethanol fuel cells (DEFC). Herein, composite membranes based on the addition of sulfonic acid groups functionalized titanate nanotubes into Nafion matrix were prepared by grafting followed by extrusion. These membranes were characterized by infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), acid-base titration, proton conductivity measurements and DEFC tests. FTIR measurements confirmed both the grafting of the titanate nanotubes. BET measurements showed that the functionalized titanate nanotubes possess a high surface specific area. Acid-base titration evidenced that additional sulfonic acid groups are present in the composite membranes compared to the pristine ionomer. The conductivity measurements show that the increase in the titanate nanotube volume fraction into the ionomers has not resulted in a decrease of the proton conductivity. The results show that the addition of functionalized titanate nanotubes into Nafion polymer matrix resulted in an improvement of the electric transport properties, reduction of the fuel crossover and, consequently, a higher DEFC performance for the composites were observed with respect to the pristine Nafion. (author)

  17. Properties and DEFC tests of nafion added functionalized titanate nanotubes prepared by extrusion

    International Nuclear Information System (INIS)

    Matos, B.R.; Goulart, C.A.; Isidoro, R.A.; Silva, J.S. da; Santiago, E.I.; Fonseca, F.C.; Tavares, A.C.

    2016-01-01

    Full text: Composite electrolyte membranes based on the incorporation of a second inorganic phase into ionomer matrices such as Nafion revealed to possess enhanced properties such as increased mechanical resistance and reduced permeability of solvents. It has been reported that surface functionalized titanate nanotubes (H2Ti3O7.nH2O) display a proton conductivity of ∼ 10-2 Scm-1, which is attractive for the use of such composites in direct ethanol fuel cells (DEFC). Herein, composite membranes based on the addition of sulfonic acid groups functionalized titanate nanotubes into Nafion matrix were prepared by grafting followed by extrusion. These membranes were characterized by infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), acid-base titration, proton conductivity measurements and DEFC tests. FTIR measurements confirmed both the grafting of the titanate nanotubes. BET measurements showed that the functionalized titanate nanotubes possess a high surface specific area. Acid-base titration evidenced that additional sulfonic acid groups are present in the composite membranes compared to the pristine ionomer. The conductivity measurements show that the increase in the titanate nanotube volume fraction into the ionomers has not resulted in a decrease of the proton conductivity. The results show that the addition of functionalized titanate nanotubes into Nafion polymer matrix resulted in an improvement of the electric transport properties, reduction of the fuel crossover and, consequently, a higher DEFC performance for the composites were observed with respect to the pristine Nafion. (author)

  18. Nafion Titania Nanotubes Nanocomposite Electrolytes for High-Temperature Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Nonhlanhla Precious Cele

    2012-01-01

    Full Text Available Nafion-based nanocomposite membranes containing various amounts of titania nanotubes (TNTs as an inorganic filler have been prepared using melt-mixing method and have been investigated for proton exchange membrane applications. The one-dimensional TNTs have been prepared from potassium hydroxide using hydrothermal route and conventional heating. Nafion R1100 in a protonated form was used, and TNT contents were in a range of 0.5–2.0 wt%. The acid-treated composite membranes, at lowest inorganic additive content, exhibited improved properties in terms of thermal stability and methanol (MeOH permeability. The best performing nanocomposite was the membrane containing only 0.5 wt% TNTs showing ionic conductivity value of 7.2×10-2 S·cm-1 at 26°C and 100% of relative humidity.

  19. Nafion as Cosurfactant: Solubilization of Nafion in Water in the Presence of Pluronics

    KAUST Repository

    Kelarakis, Antonios

    2011-01-18

    Incorporation of Nafion to aqueous solutions of Pluronics adversely impacts micellization due to extensive Nafion/copolymer interactions. Light scattering and zeta potential measurements provide evidence for the formation of sizable and stable Nafion/copolymer complexes, in expense of the neat copolymer micelles. At high copolymer concentrations, the overall interaction diagram of Nafion/copolymer reflects the competitive action of the release of packing constraints due to micellar destabilization induced by Nafion on one hand and the gelator nature of the Nafion on the other. Measurements using a quartz crystal microbalance (QCM-D) show that aqueous solutions of Pluronics (even at very low concentration) can dissolve the Nafion coating on the crystal resonator, while typical low molecular weight ionic surfactants fail to induce similar effects. These studies demonstrate that complexation with this class of copolymers is a facile route to impart dispersibility to Nafion in aqueous environments that otherwise can be achieved through tedious and harsh treatments. © 2010 American Chemical Society.

  20. Localised electrochemical impedance measurements of a polymer electrolyte fuel cell using a reference electrode array to give cathode-specific measurements and examine membrane hydration dynamics

    Science.gov (United States)

    Engebretsen, Erik; Hinds, Gareth; Meyer, Quentin; Mason, Tom; Brightman, Edward; Castanheira, Luis; Shearing, Paul R.; Brett, Daniel J. L.

    2018-04-01

    Advances in bespoke diagnostic techniques for polymer electrolyte fuel cells continue to provide unique insight into the internal operation of these devices and lead to improved performance and durability. Localised measurements of current density have proven to be extremely useful in designing better fuel cells and identifying optimal operating strategies, with electrochemical impedance spectroscopy (EIS) now routinely used to deconvolute the various losses in fuel cells. Combining the two techniques provides another dimension of understanding, but until now each localised EIS has been based on 2-electrode measurements, composed of both the anode and cathode responses. This work shows that a reference electrode array can be used to give individual electrode-specific EIS responses, in this case the cathode is focused on to demonstrate the approach. In addition, membrane hydration dynamics are studied under current load steps from open circuit voltage. A three-stage process is identified associated with an initial rapid reduction in membrane resistance after 10 s of applying a current step, followed by a slower ramp to approximately steady state, which was achieved after ∼250 s. These results support previously published work that has looked at membrane swelling dynamics and reveal that membrane hydration/membrane resistance is highly heterogeneous.

  1. Dielectric spectroscopy as a sensor of membrane headgroup mobility and hydration

    DEFF Research Database (Denmark)

    Klösgen, B; Reichle, C; Kohlsmann, S

    1996-01-01

    Dielectric spectroscopy is based on the response of the permanent dipoles to a driving electric field. The phospholipid membrane systems of dimyristoylphosphatidylcholine and dioleoylphosphatidylcholine can be prepared as samples of multilamellar liposomes with a well known amount of interlamellar...... water. For optimal resolution in dielectric spectroscopy one has to design the experimental set-up so that the direction of the permanent headgroup dipole moment is mostly parallel to the field vector of the external radio frequency (rf) electric field in this layered system. A newly developed coaxial...... probe technique makes it possible to sweep the measuring frequency between 1 and 1000 MHz in the temperature range 286-323 K. The response yields both the dispersion (epsilon') and the absorption part (epsilon") of the complex dielectric permittivity, which are attributed to the rotational diffusions...

  2. Gas Sorption, Diffusion, and Permeation in Nafion

    KAUST Repository

    Mukaddam, Mohsin Ahmed; Litwiller, Eric; Pinnau, Ingo

    2015-01-01

    The gas permeability of dry Nafion films was determined at 2 atm and 35 °C for He, H2, N2, O2, CO2, CH4, C2H6, and C3H8. In addition, gas sorption isotherms were determined by gravimetric and barometric techniques as a function of pressure up to 20

  3. A three-scale model of basic mechanical properties of Nafion

    Czech Academy of Sciences Publication Activity Database

    Kafka, Vratislav; Vokoun, David

    2015-01-01

    Roč. 50, č. 6 (2015), s. 763-776 ISSN 0191-5665 R&D Projects: GA ČR(CZ) GAP108/10/1296; GA ČR(CZ) GA103/09/2101 Institutional support: RVO:68378297 ; RVO:68378271 Keywords : Nafion * mechanical properties * mesomechanics * material structure * hydration Subject RIV: JL - Material s Fatigue, Friction Mechanics; JJ - Other Material s (FZU-D) Impact factor: 0.729, year: 2015 http://link.springer.com/article/10.1007%2Fs11029-015-9466-y

  4. Proton exchange mechanism of synthesizing CdS quantum dots in nafion

    International Nuclear Information System (INIS)

    Nandakumar, P.; Vijayan, C.; Murti, Y.V.G.S.; Dhanalakshmi, K.; Sundararajan, G.

    1999-01-01

    Nanocrystals of CdS are synthesized in the proton exchange membrane nafion in different sizes in the range 1.6 to 6 nm. To understand the process leading to the formation of these quantum dots, we have probed the proton exchange by ac conductance measurements in the frequency range 100 Hz to 13 MHz. Nafion shows good electrical conductivity due to proton transport probably via the Grothus mechanism. Incorporation of cadmium ions by replacement of the hydrogen ions in the sulphonic acid group resulted in a large decrease in conductance indicating the reduction of the mobile carrier density. The conductivity plots all show strong frequency dependence with higher conductance towards the higher frequencies where a near-flat frequency response is seen. After the formation of CdS clusters, there is a partial recovery of conductance corresponding to the reinstatement of the protonic carriers on the side groups. The conductivity of the nafion films embedded with the semiconductor quantum dots exhibits a size-dependence with the highest conductivity obtained for the largest clusters. These findings lend clear experimental evidence for the model of synthesis of quantum dots in nafion by the exchange mechanism. (author)

  5. Sorption of Enantiomers and Alcohols into Nafion® and the Role of Air Humidity in the Experimental Data Evaluation

    Czech Academy of Sciences Publication Activity Database

    Randová, A.; Bartovská, L.; Hovorka, Š.; Kačírková, Marie; Vychodilová, Hana; Sedláková, Zuzana; Červenková Šťastná, Lucie; Brožová, Libuše; Žitka, Jan; Sysel, P.; Brus, Jiří; Drašar, P.; Izák, Pavel

    2015-01-01

    Roč. 144, APR 15 (2015), s. 232-239 ISSN 1383-5866 R&D Projects: GA ČR(CZ) GAP106/12/0569 Institutional support: RVO:67985858 ; RVO:61389013 Keywords : membranes * mass sorption * enantiomers * racemic mixtures * nafion Subject RIV: CI - Industrial Chemistry, Chemical Engineering; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 3.299, year: 2015

  6. Mass transport of direct methanol fuel cell species in sulfonated poly(ether ether ketone) membranes

    International Nuclear Information System (INIS)

    Silva, V.S.; Ruffmann, B.; Vetter, S.; Boaventura, M.; Mendes, A.M.; Madeira, L.M.; Nunes, S.P.

    2006-01-01

    Homogeneous membranes based on sulfonated poly(ether ether ketone) (sPEEK) with different sulfonation degrees (SD) were prepared and characterized. In order to perform a critical analysis of the SD effect on the polymer barrier and mass transport properties towards direct methanol fuel cell species, proton conductivity, water/methanol pervaporation and nitrogen/oxygen/carbon dioxide pressure rise method experiments are proposed. This procedure allows the evaluation of the individual permeability coefficients in hydrated sPEEK membranes with different sulfonation degrees. Nafion[reg] 112 was used as reference material. DMFC tests were also performed at 50 deg. C. It was observed that the proton conductivity and the permeability towards water, methanol, oxygen and carbon dioxide increase with the sPEEK sulfonation degree. In contrast, the SD seems to not affect the nitrogen permeability coefficient. In terms of selectivity, it was observed that the carbon dioxide/oxygen selectivity increases with the sPEEK SD. In contrast, the nitrogen/oxygen selectivity decreases. In terms of barrier properties for preventing the DMFC reactants loss, the polymer electrolyte membrane based on the sulfonated poly(ether ether ketone) with SD lower or equal to 71%, although having slightly lower proton conductivity, presented much better characteristics for fuel cell applications compared with the well known Nafion[reg] 112. In terms of the DMFC tests of the studied membranes at low temperature, the sPEEK membrane with SD = 71% showed to have similar performance, or even better, as that of Nafion[reg] 112. However, the highest DMFC overall efficiency was achieved using sPEEK membrane with SD = 52%

  7. Proton Transfer in Perfluorosulfonic Acid Fuel Cell Membranes with Differing Pendant Chains and Equivalent Weights.

    Science.gov (United States)

    Thomaz, Joseph E; Lawler, Christian M; Fayer, Michael D

    2017-05-04

    Proton transfer in the nanoscopic water channels of polyelectrolyte fuel cell membranes was studied using a photoacid, 8-hydroxypyrene-1,3,6-trisulfonic acid sodium salt (HPTS), in the channels. The local environment of the probe was determined using 8-methoxypyrene-1,3,6-trisulfonic acid sodium salt (MPTS), which is not a photoacid. Three fully hydrated membranes, Nafion (DuPont) and two 3M membranes, were studied to determine the impact of different pendant chains and equivalent weights on proton transfer. Fluorescence anisotropy and excited state population decay data that characterize the local environment of the fluorescent probes and proton transfer dynamics were measured. The MPTS lifetime and anisotropy results show that most of the fluorescent probes have a bulk-like water environment with a relatively small fraction interacting with the channel wall. Measurements of the HPTS protonated and deprotonated fluorescent bands' population decays provided information on the proton transport dynamics. The decay of the protonated band from ∼0.5 ns to tens of nanoseconds is in part determined by dissociation and recombination with the HPTS, providing information on the ability of protons to move in the channels. The dissociation and recombination is manifested as a power law component in the protonated band fluorescence decay. The results show that equivalent weight differences between two 3M membranes resulted in a small difference in proton transfer. However, differences in pendant chain structure did significantly influence the proton transfer ability, with the 3M membranes displaying more facile transfer than Nafion.

  8. Molecular Dynamics Simulation of a Membrane/Water Interface : The Ordering of Water and Its Relation to the Hydration Force

    NARCIS (Netherlands)

    Marrink, Siewert-Jan; Berkowitz, Max; Berendsen, Herman J.C.

    1993-01-01

    In order to obtain a better understanding of the origin of the hydration force, three molecular dynamic simulations of phospholipid/water multilamellar systems were performed. The simulated systems only differed in the amount of interbilayer water, ranging from the minimum to the maximum amount of

  9. Stable Nafion-functionalized graphene dispersions for transparent conducting films

    International Nuclear Information System (INIS)

    Liu Yangqiao; Gao Lian; Sun Jing; Wang Yan; Zhang Jing

    2009-01-01

    Nafion was used for the first time to aid in preparing stable graphene dispersions in mixed water/ethanol (1:1) solvents via the reduction of graphite oxide using hydrazine. The dispersion was characterized by ultraviolet-visible (UV-vis) spectra, transmission electron microscopy, zeta potential analysis, etc. It was found that for Nafion-to-graphene ratios higher than 5:1, graphene solutions with concentrations up to 1 mg ml -1 and stabilities of over three months were obtained. It was proposed that the Nafion adsorbed onto the graphene by the hydrophobic interaction of its fluoro-backbones with the graphene layer and imparted stability by an electrosteric mechanism. Furthermore, transparent and conductive films were prepared using these highly stable Nafion-stabilized graphene dispersions. The prepared Nafion-graphene films possess smooth and homogeneous surfaces and the sheet resistance was as low as 30 kΩ/sq for a transmittance of 80% at 550 nm, which was much lower than for other graphene films obtained by chemical reduction. X-ray photoelectron spectroscopy and Raman spectroscopy confirmed the p-doping of the graphene by Nafion. It was expected that this p-doping effect, as well as the high dispersing ability of Nafion for graphene and the connection of the sp 2 domains by residual Nafion combined to produce good properties of the Nafion-graphene films.

  10. pH tuning of Nafion for selective detection of tryptophan

    International Nuclear Information System (INIS)

    Frith, K.-A.; Limson, J.L.

    2009-01-01

    Selective and sensitive detection of the amino acid tryptophan is of importance in food processing, pharmaceutical formulations and in biological fluids. Electrochemical methods of detection of tryptophan are hampered by sluggish electron transfer kinetics and in complex matrices through overlapping peaks from interferents. This study examines the potential of the cation exchange membrane Nafion to enhance selectivity and sensitivity of this analyte through a seldom explored feature of this membrane: pH manipulation. A detailed examination of the effect of pH on the selectivity afforded by Nafion as a function of the analyte charge is presented. Selective detection of tryptophan and significant increases in sensitivity of its detection was observed in the presence of melatonin, dopamine and other interferents present in a pharmaceutical formulation through manipulation of the pH of the solution. At pH 3.0 at a Nafion-modified electrode, changes in the protonation of melatonin and tryptophan lowered the anodic potential of the analytes in a non-uniform manner increasing the peak resolution and permitting analyses with detection limits of 1.6 ± 0.1 nM and 1.6 ± 0.2 nM, respectively.

  11. Reprint of 'pH tuning of Nafion for selective detection of tryptophan'

    Energy Technology Data Exchange (ETDEWEB)

    Frith, K.-A. [Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, 6140 (South Africa); Limson, J.L., E-mail: j.limson@ru.ac.z [Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, 6140 (South Africa)

    2010-05-30

    Selective and sensitive detection of the amino acid tryptophan is of importance in food processing, pharmaceutical formulations and in biological fluids. Electrochemical methods of detection of tryptophan are hampered by sluggish electron transfer kinetics and in complex matrices through overlapping peaks from interferents. This study examines the potential of the cation exchange membrane Nafion to enhance selectivity and sensitivity of this analyte through a seldom explored feature of this membrane: pH manipulation. A detailed examination of the effect of pH on the selectivity afforded by Nafion as a function of the analyte charge is presented. Selective detection of tryptophan and significant increases in sensitivity of its detection was observed in the presence of melatonin, dopamine and other interferents present in a pharmaceutical formulation through manipulation of the pH of the solution. At pH 3.0 at a Nafion-modified electrode, changes in the protonation of melatonin and tryptophan lowered the anodic potential of the analytes in a non-uniform manner increasing the peak resolution and permitting analyses with detection limits of 1.6 +- 0.1 nM and 1.6 +- 0.2 nM, respectively.

  12. pH tuning of Nafion for selective detection of tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Frith, K.-A. [Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, 6140 (South Africa); Limson, J.L. [Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, 6140 (South Africa)], E-mail: j.limson@ru.ac.za

    2009-05-01

    Selective and sensitive detection of the amino acid tryptophan is of importance in food processing, pharmaceutical formulations and in biological fluids. Electrochemical methods of detection of tryptophan are hampered by sluggish electron transfer kinetics and in complex matrices through overlapping peaks from interferents. This study examines the potential of the cation exchange membrane Nafion to enhance selectivity and sensitivity of this analyte through a seldom explored feature of this membrane: pH manipulation. A detailed examination of the effect of pH on the selectivity afforded by Nafion as a function of the analyte charge is presented. Selective detection of tryptophan and significant increases in sensitivity of its detection was observed in the presence of melatonin, dopamine and other interferents present in a pharmaceutical formulation through manipulation of the pH of the solution. At pH 3.0 at a Nafion-modified electrode, changes in the protonation of melatonin and tryptophan lowered the anodic potential of the analytes in a non-uniform manner increasing the peak resolution and permitting analyses with detection limits of 1.6 {+-} 0.1 nM and 1.6 {+-} 0.2 nM, respectively.

  13. Reprint of 'pH tuning of Nafion for selective detection of tryptophan'

    International Nuclear Information System (INIS)

    Frith, K.-A.; Limson, J.L.

    2010-01-01

    Selective and sensitive detection of the amino acid tryptophan is of importance in food processing, pharmaceutical formulations and in biological fluids. Electrochemical methods of detection of tryptophan are hampered by sluggish electron transfer kinetics and in complex matrices through overlapping peaks from interferents. This study examines the potential of the cation exchange membrane Nafion to enhance selectivity and sensitivity of this analyte through a seldom explored feature of this membrane: pH manipulation. A detailed examination of the effect of pH on the selectivity afforded by Nafion as a function of the analyte charge is presented. Selective detection of tryptophan and significant increases in sensitivity of its detection was observed in the presence of melatonin, dopamine and other interferents present in a pharmaceutical formulation through manipulation of the pH of the solution. At pH 3.0 at a Nafion-modified electrode, changes in the protonation of melatonin and tryptophan lowered the anodic potential of the analytes in a non-uniform manner increasing the peak resolution and permitting analyses with detection limits of 1.6 ± 0.1 nM and 1.6 ± 0.2 nM, respectively.

  14. Proton conducting sulphonated fluorinated poly(styrene) crosslinked electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Soules, A.; Ameduri, B.; Boutevin, B.; David, G. [Institut Charles Gerhardt UMR CNRS 5253 Equipe, Ingenierie et Architectures Macromoleculaires,' ' Ecole Nationale Superieure de Chimie de Montpellier, 8 rue de l' Ecole Normale, 34296 Montpellier, Cedex 05 (France); Perrin, R. [CEA Le Ripault Departement des Materiaux, DMAT/SCMF/LSTP, BP16 - 37260 Monts (France); Gebel, G. [Structure et Proprietes des Architectures Moleculaires UMR 5819 (CEA-CNRS-UJF), INAC, SPrAM, CEA Grenoble, 17 Rue des Martyrs, 38054 Grenoble, Cedex 9 (France)

    2011-10-15

    Potential membranes for polymer electrolyte membrane fuel cell based on crosslinked sulphonated fluorinated polystyrenes (PS) were synthesised in two steps. First, azide-telechelic polystyrene was obtained by iodine transfer polymerisation of styrene in the presence of 1,6-diiodoperfluorohexane followed by azido chain-end functionalisation. Then azide-telechelic polystyrene was efficiently crosslinked with 1,10-diazido-1H,1H,2H,2H,9H,9H,10H,10H-perfluorodecane under UV irradiation. After 45 min only, almost completion of azide crosslinking could be achieved, resulting in crosslinked membranes with insoluble fractions higher than 95%. The sulphonation of the crosslinked membranes afforded ionic exchange capacities (IECs) ranging from 2.2 to 3.2 meq g{sup -1}. The hydration number was shown to be very high (from 30 to 75), depending on both the content of perfluorodecane and of sulphonic acid groups. The morphology of the membranes, assessed by small-angle X-ray scattering, was found to be a lamellar-type structure with two types of ionic domains. For the membrane that exhibited an IEC value of 2.2 meq.g{sup -1}, proton conductivity was in the same range as that of Nafion {sup registered} (120-135 mS.cm{sup -1}), whereas the membrane IEC value of 3.2 meq.g{sup -1} showed a proton conductivity higher than that of Nafion {sup registered} in liquid water from 25 to 80 C, though a high water uptake. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Alkali metal ion-proton exchange equilibria and water sorption studies on nafon 117 membrane and dowex 50 W exchange resins: effect of long storage or aging

    International Nuclear Information System (INIS)

    Ramkumar, Jayshree; Venkataramani, B.

    2004-09-01

    Alkali metal ion -H + exchanges on Nafion 117 membrane treated differently, Dowex 50 W x 4 and Dowex 50 W x 8 resins have been studied at a total ionic strength of 0.1 mol dm -3 . The water sorption isotherms of these exchangers in different ionic forms generated over the entire range of water activity, have been analysed by the D'Arcy and Watt equation (DWE). Water sorption studies have shown that the physical structure of the exchangers have changed due to long -storage or aging, resulting in poorer water sorption and even formation of pores in the case of Dowex 50 W x 8 resin. As a result, the counter ions in the exchangers are not hydrated and the water is present in a free form, albeit structured, in the resin phase. The selectivity sequence for the alkali metal ions with reference to the H + (Li + + + ) for the exchangers used in the present study is in accordance with that reported in the literature for the ionomers having sulphonic acid as the functional group. In view of the absence of hydration of the cations in the resin phase, the driving force for the selectivity of the cation, namely, the net gain in entropy, is expected to come from the loss of structured water during the exchange process. Pre treating the Nafion 117 membrane with boiling acid solution activates the clustered region of the membrane in the H + form, while pretreatment with boiling water expands the non-ionic domain (the region connecting the clusters). These modifications influence the state of water present in the Nafion 117 membrane and the ion exchange equilibria. As a result of long storage or aging, the ion exchangers lose their elasticity or swelling characteristics. The results obtained in the present study indicate that in aged materials, the ionogenic groups are existing as isolated ion -pairs rather than in a clustered morphology. (author)

  16. Cross-lined PEEK proton exchange membranes for fuel cell - Conference Poster

    CSIR Research Space (South Africa)

    Luo, H

    2009-07-01

    Full Text Available The low-cost cross-linked Polyetheretherketone (PEEK) proton exchange membranes were prepared via the simple route. The membranes exhibited similar electrochemical properties as compared with commercial Nafion. The membranes were highly proton...

  17. Estimation of Membrane Hydration Status for Standby Proton Exchange Membrane Fuel Cell Systems by Impedance Measurement: First Results on Variable Temperature Stack Characterization

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Kær, Søren Knudsen

    2013-01-01

    Fuel cells are getting growing interest in both backup systems and electric vehicles. Although these systems are characterized by periods of standby, they must be able to start at any instant in the shortest possible time. However, the membranes of which proton exchange membrane fuel cells are made...

  18. Enhanced actuation in functionalized carbon nanotube–Nafion composites

    KAUST Repository

    Lian, Huiqin; Qian, Weizhong; Estevez, Luis; Liu, Hailan; Liu, Yuexian; Jiang, Tao; Wang, Kuisheng; Guo, Wenli; Giannelis, Emmanuel P.

    2011-01-01

    The fabrication and electromechanical performance of functionalized carbon nanotube (FCNT)-Nafion composite actuators were studied. The CNTs were modified successfully with polyethylene glycol (PEG), as verified by thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy. Scanning electron microscopy (SEM) images show that the FCNTs are homogeneously dispersed in the Nafion matrix. The properties of FCNT-Nafion composites in terms of water uptake, ion exchange capacity, proton conductivity, dynamic mechanical properties, and actuation behavior were evaluated. The results show that the sample with 0.5 wt% FCNT exhibits the best overall behavior. Its storage modulus is 2.4 times higher than that of Nafion. In addition, the maximum generated strain and the blocking force for the same sample are 2 and 2.4 times higher compared to the neat Nafion actuator, respectively. © 2011 Elsevier B.V.

  19. Enhanced actuation in functionalized carbon nanotube–Nafion composites

    KAUST Repository

    Lian, Huiqin

    2011-08-01

    The fabrication and electromechanical performance of functionalized carbon nanotube (FCNT)-Nafion composite actuators were studied. The CNTs were modified successfully with polyethylene glycol (PEG), as verified by thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy. Scanning electron microscopy (SEM) images show that the FCNTs are homogeneously dispersed in the Nafion matrix. The properties of FCNT-Nafion composites in terms of water uptake, ion exchange capacity, proton conductivity, dynamic mechanical properties, and actuation behavior were evaluated. The results show that the sample with 0.5 wt% FCNT exhibits the best overall behavior. Its storage modulus is 2.4 times higher than that of Nafion. In addition, the maximum generated strain and the blocking force for the same sample are 2 and 2.4 times higher compared to the neat Nafion actuator, respectively. © 2011 Elsevier B.V.

  20. Design and performance of a Nafion dryer for continuous operation at CO2 and CH4 air monitoring sites

    Directory of Open Access Journals (Sweden)

    L. R. Welp

    2013-05-01

    Full Text Available In preparation for routine deployment in a network of greenhouse gas monitoring stations, we have designed and tested a simple method for drying ambient air to near or below 0.2% (2000 ppm mole fraction H2O using a Nafion dryer. The inlet system was designed for use with cavity ring-down spectrometer (CRDS analyzers such as the Picarro model G2301 that measure H2O in addition to their principal analytes, in this case CO2 and CH4. These analyzers report dry-gas mixing ratios without drying the sample by measuring H2O mixing ratio at the same frequency as the main analytes, and then correcting for the dilution and peak broadening effects of H2O on the mixing ratios of the other analytes measured in moist air. However, it is difficult to accurately validate the water vapor correction in the field. By substantially lowering the amount of H2O in the sample, uncertainties in the applied water vapor corrections can be reduced by an order of magnitude or more, thus eliminating the need to determine instrument-specific water vapor correction coefficients and to verify the stability over time. Our Nafion drying inlet system takes advantage of the extra capacity of the analyzer pump to redirect 30% of the dry gas exiting the Nafion to the outer shell side of the dryer and has no consumables. We tested the Nafion dryer against a cryotrap (−97 °C method for removing H2O and found that in wet-air tests, the Nafion reduces the CO2 dry-gas mixing ratios of the sample gas by as much as 0.1 ± 0.01 ppm due to leakage across the membrane. The effect on CH4 was smaller and varied within ± 0.2 ppb, with an approximate uncertainty of 0.1 ppb. The Nafion-induced CO2 bias is partially offset by sending the dry reference gases through the Nafion dryer as well. The residual bias due to the impact of moisture differences between sample and reference gas on the permeation through the Nafion was approximately −0.05 ppm for CO2 and varied within ± 0.2 ppb for CH4. The

  1. X-radiation damage of hydrated lecithin membranes detected by real-time X-ray diffraction using wiggler-enhanced synchrotron radiation as the ionizing radiation source

    International Nuclear Information System (INIS)

    Caffrey, M.; Cornell Univ., Ithaca, NY

    1984-01-01

    Radiation damage of hydrated lecithin membranes brought about by exposure to wiggler-derived synchrotron radiation at 8.3 keV (1.5 A) is reported. Considerable damage was observed with exposures under 1 h at an incident flux density of 3 x 10 10 photons s -1 mm -2 , corresponding to a cumulative radiation dose of <= 10 MRad. Damage was so dramatic as to be initially observed while making real-time X-ray diffraction measurements on the sample. The damaging effects of 8.3 keV X-rays on dispersions of dipalmitoyllecithin and lecithin derived from hen egg yolk are as follows: (1) marked changes were noted in the X-ray diffraction behaviour, indicating disruption of membrane stacking. (2) Chemical breakdown of lecithin was observed. (3) The X-ray beam visibly damaged the sample and changed the appearance of the lipid dispersion, when viewed under the light microscope. Considering the importance of X-ray diffraction as a structural probe and the anticipated use of synchrotron radiation in studies involving membranes, the problem of radiation damage must be duly recognized. Furthermore, since dipalmitoyllecithin, the major lipid used in the present study, is a relatively stable compound, it is not unreasonable to expect that X-ray damage may be a problem with other less stable biological and non-biological materials. These results serve to emphasize that whenever a high intensity X-ray source is used, radiation damage can be a problem and that the sensitivity of the sample must always be evaluated under the conditions of measurement. (orig.)

  2. Nafion–clay nanocomposite membranes: Morphology and properties

    KAUST Repository

    Herrera Alonso, Rafael; Estevez, Luis; Lian, Huiqin; Kelarakis, Antonios; Giannelis, Emmanuel P.

    2009-01-01

    A series of Nafion-clay nanocomposite membranes were synthesized and characterized. To minimize any adverse effects on ionic conductivity the clay nanoparticles were H+ exchanged prior to mixing with Nafion. Well-dispersed, mechanically robust, free-standing nanocomposite membranes were prepared by casting from a water suspension at 180 °C under pressure. SAXS profiles reveal a preferential orientation of Nafion aggregates parallel to the membrane surface, or normal plane. This preferred orientation is induced by the platy nature of the clay nanoparticles, which tend to align parallel to the surface of the membrane. The nanocomposite membranes show dramatically reduced methanol permeability, while maintaining high levels of proton conductivity. The hybrid films are much stiffer and can withstand much higher temperatures compared to pure Nafion. The superior thermomechanical, electrochemical and barrier properties of the nanocomposite membranes are of significant interest for direct methanol fuel cell applications. © 2009 Elsevier Ltd. All rights reserved.

  3. Nafion–clay nanocomposite membranes: Morphology and properties

    KAUST Repository

    Herrera Alonso, Rafael

    2009-05-01

    A series of Nafion-clay nanocomposite membranes were synthesized and characterized. To minimize any adverse effects on ionic conductivity the clay nanoparticles were H+ exchanged prior to mixing with Nafion. Well-dispersed, mechanically robust, free-standing nanocomposite membranes were prepared by casting from a water suspension at 180 °C under pressure. SAXS profiles reveal a preferential orientation of Nafion aggregates parallel to the membrane surface, or normal plane. This preferred orientation is induced by the platy nature of the clay nanoparticles, which tend to align parallel to the surface of the membrane. The nanocomposite membranes show dramatically reduced methanol permeability, while maintaining high levels of proton conductivity. The hybrid films are much stiffer and can withstand much higher temperatures compared to pure Nafion. The superior thermomechanical, electrochemical and barrier properties of the nanocomposite membranes are of significant interest for direct methanol fuel cell applications. © 2009 Elsevier Ltd. All rights reserved.

  4. Characterization of direct methanol fuel cell (DMFC) applications with H{sub 2}SO{sub 4} modified chitosan membrane

    Energy Technology Data Exchange (ETDEWEB)

    Osifo, Peter O.; Masala, Aluwani [Department of Chemical Engineering, Vaal University of Technology, Andries Potgieter Bolevald, P/Bag X021, Vanderbijlpark 1900, Gauteng (South Africa)

    2010-08-01

    Chitosan (Chs) flakes were prepared from chitin materials that were extracted from the exoskeleton of Cape rock lobsters in South Africa. The Chs flakes were prepared into membranes and the Chs membranes were modified by cross-linking with H{sub 2}SO{sub 4}. The cross-linked Chs membranes were characterized for the application in direct methanol fuel cells. The Chs membrane characteristics such as water uptake, thermal stability, proton resistance and methanol permeability were compared to that of high performance conventional Nafion 117 membranes. Under the temperature range studied 20-60 C, the membrane water uptake for Chs was found to be higher than that of Nafion. Thermal analysis revealed that Chs membranes could withstand temperature as high as 230 C whereas Nafion 117 membranes were stable to 320 C under nitrogen. Nafion 117 membranes were found to exhibit high proton resistance of 284 s cm{sup -1} than Chs membranes of 204 s cm{sup -1}. The proton fluxes across the membranes were 2.73 mol cm{sup -2} s{sup -1} for Chs- and 1.12 mol cm{sup -2} s{sup -1} Nafion membranes. Methanol (MeOH) permeability through Chs membrane was less, 1.4 x 10{sup -6} cm{sup 2} s{sup -1} for Chs membranes and 3.9 x 10{sup -6} cm{sup 2} s{sup -1} for Nafion 117 membranes at 20 C. Chs and Nafion membranes were fabricated into membrane electrode assemblies (MAE) and their performances measure in a free-breathing commercial single cell DMFC. The Nafion membranes showed a better performance as the power density determined for Nafion membranes of 0.0075 W cm{sup -2} was 2.7 times higher than in the case of Chs MEA. (author)

  5. Gas hydrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    , not all of them are white like snow. Some hydrates from the deep Gulf of Mexico are richly colored in shades of yellow, orange, or even red. The ice-like masses are beautiful, and contrast with the dull gray of deep sea muds. Hydrates from the Blake... volcanoes and associated gas hydrates: Marine Geology, v. 167, p. 29-42. Milkov, A.V. and R. Sassen, 2001a, Estimate of gas hydrate resource, northwestern Gulf of Mexico continental slope: Marine Geology, v. 179, pp. 71-83. Milkov, A.V., Sassen, R...

  6. Transport of Zn(OH)4(-2) ions across a polyolefin microporous membrane

    Science.gov (United States)

    Krejci, Ivan; Vanysek, Peter; Trojanek, Antonin

    1993-04-01

    Transport of ZN(OH)4(2-) ions through modified microporous polypropylene membranes (Celgard 3401, 350140) was studied using polarography and conductometry. Soluble Nafion as an ion exchange modifying agent was applied to the membrane by several techniques. The influence of Nafion and a surfactant on transport of zinc ions through the membrane was studied. A relationship between membrane impedance and the rate of Zn(OH)4(2-) transport was found. The found correlation between conductivity, ion permeability and Nafion coverage suggests a suitable technique of membrane preparation to obtain desired zinc ion barrier properties.

  7. Multifunctional Graphene/Platinum/Nafion Hybrids via Ice Templating

    KAUST Repository

    Estevez, Luis; Kelarakis, Antonios; Gong, Qianming; Da’ as, Eman H.; Giannelis, Emmanuel P.

    2011-01-01

    We report the synthesis of multifunctional hybrids in both films and bulk form, combining electrical and ionic conductivity with porosity and catalytic activity. The hybrids are synthesized by a two-step process: (a) ice templation of an aqueous suspension comprised of Nafion, graphite oxide, and chloroplatinic acid to form a microcellular porous network and (b) mild reduction in hydrazine or monosodium citrate which leads to graphene-supported Pt nanoparticles on a Nafion scaffold. © 2011 American Chemical Society.

  8. Multifunctional Graphene/Platinum/Nafion Hybrids via Ice Templating

    KAUST Repository

    Estevez, Luis

    2011-04-27

    We report the synthesis of multifunctional hybrids in both films and bulk form, combining electrical and ionic conductivity with porosity and catalytic activity. The hybrids are synthesized by a two-step process: (a) ice templation of an aqueous suspension comprised of Nafion, graphite oxide, and chloroplatinic acid to form a microcellular porous network and (b) mild reduction in hydrazine or monosodium citrate which leads to graphene-supported Pt nanoparticles on a Nafion scaffold. © 2011 American Chemical Society.

  9. Asymmetric bi-layer PFSA membranes as model systems for the study of water management in the PEMFC.

    Science.gov (United States)

    Peng, Z; Peng, A Z; Morin, A; Huguet, P; Lanteri, Y; Deabate, S

    2014-10-14

    New bi-layer PFSA membranes made of Nafion® NRE212 and Aquivion™ E79-05s with different equivalent weights are prepared with the aim of managing water repartition in the PEMFC. The membrane water transport properties, i.e. back-diffusion and electroosmosis, as well as the electrochemical performances, are compared to those of state-of-art materials. The actual water content (the inner water concentration profile across the membrane thickness) is measured under operation in the fuel cell by in situ Raman microspectroscopy. The orientation of the equivalent weight gradient with respect to the water external gradient and to the proton flow direction affects the membrane water content, the water transport ability and, thus, the fuel cell performances. Higher power outputs, related to lower ohmic losses, are observed when the membrane is assembled with the lower equivalent weight layer (Aquivion™) at the anode side. This orientation, corresponding to enhanced water transport by back-flow while electroosmosis remains unaffected, results in the higher hydration of the membrane and of the anode active layer during operation. Also, polarization data suggest a different water repartition in the fuel cell along the on-plane direction. Even if the interest in multi-layer PFSA membranes as perspective electrolytes for PEMFCs is not definitively attested, these materials appear to be excellent model systems to establish relationships between the membrane transport properties, the water distribution in the fuel cell and the electrochemical performances. Thanks to the micrometric resolution, in situ Raman microspectroscopy proves to be a unique tool to measure the actual hydration of the membrane at the surface swept by the hydrated feed gases during operation, so that it can be used as a local probe of the water concentration evolution along the gas distribution channels according to changing working conditions.

  10. Ultramicroelectrode studies of oxygen reduction in polyelectrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Abdou, M.S.; Beattie, P.; Basura, V. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    1997-12-31

    A study on the oxygen reduction reaction in a solid state electrochemical cell was presented. The oxygen reduction reaction is a rate limiting reaction in the operation of solid polymer electrolyte fuel cells which use H{sub 2} and O{sub 2}. Interest in the oxygen reduction reaction of platinum electrodes in contact with Nafion electrolytes stems from its role in fuel cell technology. The kinetics of the oxygen reduction reaction in different polyelectrolyte membranes, such as Nafion and non-Nafion membranes, were compared. The electrode kinetics and mass transport parameters of the oxygen reduction reaction in polyelectrolyte membranes were measured by ultramicroelectrode techniques. The major difference found between these two classes of membrane was the percentage of water, which is suggestive of superior electrochemical mass transport properties of the non-Nafion membranes. 2 refs. 1 fig.

  11. Synthesis and characterisation of alkaline anionic-exchange membranes for direct alcohol fuel cells

    CSIR Research Space (South Africa)

    Nonjola, P

    2007-12-01

    Full Text Available , but the most important being proton exchange membrane fuel cell (PEMFC), which uses an acidic membrane like Nafion (sulfonated fluorocarbon polymers) as an electrolyte. The use of polymer electrolytes represents an interesting path to pursue...

  12. Highly fluorinated comb-shaped copolymer as proton exchange membranes (PEMs): Fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Sik; Guiver, Michael D.; Ding, Jianfu [Institute for Chemical Process and Environmental Technology, National Research Council, 1200 Montreal Road, Ottawa, Ontario K1A 0R6 (Canada); Kim, Yu.Seung; Pivovar, Bryan S. [Materials Physics and Applications, Sensors and Electrochemical Devices Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2008-07-15

    The fuel cell performance (DMFC and H{sub 2}/air) of highly fluorinated comb-shaped copolymer is reported. The initial performance of membrane electrode assemblies (MEAs) fabricated from comb-shaped copolymer containing a side-chain weight fraction of 22% are compared with those derived from Nafion and sulfonated polysulfone (BPSH-35) under DMFC conditions. The low water uptake of comb copolymer enabled an increase in proton exchange site concentrations in the hydrated polymer, which is a desirable membrane property for DMFC application. The comb-shaped copolymer architecture induces phase separated morphology between the hydrophobic fluoroaromatic backbone and the polysulfonic acid side chains. The initial performance of the MEAs using BPSH-35 and Comb 22 copolymer were comparable and higher than that of the Nafion MEA at all methanol concentrations. For example, the power density of the MEA using Comb 22 copolymer at 350 mA cm{sup -2} and 0.5 M methanol was 145 mW cm{sup -2}, whereas the power densities of MEAs using BPSH-35 were 136 mW cm{sup -2}. The power density of the MEA using Comb 22 copolymer at 350 mA cm{sup -2} and 2.0 M methanol was 144.5 mW cm{sup -2}, whereas the power densities of MEAs using BPSH-35 were 143 mW cm{sup -2}. (author)

  13. Mathematical model of a PEMFC using a PBI membrane

    International Nuclear Information System (INIS)

    Cheddie, Denver; Munroe, Norman

    2006-01-01

    Proton exchange membrane fuel cells (PEMFC) operating with Nafion[reg] membranes have encountered numerous problems associated with water management and CO poisoning because of their low temperature of operation. Alternative high temperature membranes have been investigated, one such membrane being polybenzimidazole (PBI). This paper presents a one dimensional mathematical model, which predicts the polarization performance of a PEMFC using a PBI membrane. Peak power densities in the same order as Nafion[reg] are predicted. Results indicate that the greatest scope for improving PBI PEMFC performance is increasing the membrane conductivity and improving the catalyst performance as it interfaces with the PBI membrane

  14. Chloral Hydrate

    Science.gov (United States)

    ... if you are allergic to chloral hydrate, aspirin, tartrazine (a yellow dye in some processed foods and ... in, tightly closed, and out of reach of children. Store it at room temperature, away from excess ...

  15. Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Zhensheng; Bi, Cheng; Dai, Hua [PEMFC Key Materials and Technology Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Huamin; Li, Xianfeng [PEMFC Key Materials and Technology Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023 (China)

    2011-01-01

    Sulfonated poly(tetramethydiphenyl ether ether ketone) (SPEEK) with various degree of sulfonation is prepared and first used as ion exchange membrane for vanadium redox flow battery (VRB) application. The vanadium ion permeability of SPEEK40 membrane is one order of magnitude lower than that of Nafion 115 membrane. The low cost SPEEK membranes exhibit a better performance than Nafion at the same operating condition. VRB single cells with SPEEK membranes show very high energy efficiency (>84%), comparable to that of the Nafion, but at much higher columbic efficiency (>97%). In the self-discharge test, the duration of the cell with the SPEEK membrane is two times longer than that with Nafion 115. The membrane keeps a stable performance after 80-cycles charge-discharge test. (author)

  16. Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment

    International Nuclear Information System (INIS)

    Ferreira, Rui B.; Falcão, D.S.; Oliveira, V.B.; Pinto, A.M.F.R.

    2017-01-01

    Highlights: • EIS is employed to investigate the MEA design of a PEM fuel cell. • Effects of MPL, membrane thickness and GDL hydrophobic treatment are studied. • MPL increases cell output at low to medium currents but reduces it at high currents. • Better results are obtained when employing a thinner Nafion membrane. • GDL hydrophobic treatment improves the cell performance. - Abstract: In this study, electrochemical impedance spectroscopy (EIS) is employed to analyze the influence of microporous layer (MPL), membrane thickness and gas diffusion layer (GDL) hydrophobic treatment in the performance of a proton exchange membrane (PEM) fuel cell. Results show that adding a MPL increases cell performance at low to medium current densities. Because lower ohmic losses are observed when applying a MPL, such improvement is attributed to a better hydration state of the membrane. The MPL creates a pressure barrier for water produced at the cathode, forcing it to travel to the anode side, therefore increasing the water content in the membrane. However, at high currents, this same phenomenon seems to have intensified liquid water flooding in the anode gas channels, increasing mass transfer losses and reducing the cell performance. Decreasing membrane thickness results into considerably higher performances, due to a decrease in ohmic resistance. Moreover, at low air humidity operation, a rapid recovery from dehydration is observed when a thinner membrane is employed. The GDL hydrophobic treatment significantly improves the cell performance. Untreated GDLs appear to act as water-traps that not only hamper reactants transport to the reactive sites but also impede the proper humidification of the cell. From the different designs tested, the highest maximum power density is obtained from that containing a MPL, a thinner membrane and treated GDLs.

  17. Composite polymer membranes for proton exchange membrane fuel cells operating at elevated temperatures and reduced humidities

    Science.gov (United States)

    Zhang, Tao

    Proton Exchange Membrane Fuel Cells (PEMFCs) are the leading candidate in the fuel cell technology due to the high power density, solid electrolyte, and low operational temperature. However, PEMFCs operating in the normal temperature range (60-80°C) face problems including poor carbon monoxide tolerance and heat rejection. The poisoning effect can be significantly relieved by operating the fuel cell at elevated temperature, which also improves the heat rejection and electrochemical kinetics. Low relative humidity (RH) operation is also desirable to simplify the reactant humidification system. However, at elevated temperatures, reduced RH PEMFC performance is seriously impaired due to irreversible water loss from presently employed state-of-the-art polymer membrane, Nafion. This thesis focuses on developing polymer electrolyte membranes with high water retention ability for operation in elevated temperature (110-150°C), reduced humidity (˜50%RH) PEMFCs. One approach is to alter Nafion by adding inorganic particles such as TiO2, SiO2, Zr(HPO 4)2, etc. While the presence of these materials in Nafion has proven beneficial, a reduction or no improvement in the PEMFC performance of Nafion/TiO2 and Nafion/Zr(HPO4)2 membranes is observed with reduced particle sizes or increased particle loadings in Nafion. It is concluded that the PEMFC performance enhancement associated with addition of these inorganic particles was not due to the particle hydrophilicity. Rather, the particle, partially located in the hydrophobic region of the membrane, benefits the cell performance by altering the membrane structure. Water transport properties of some Nafion composite membranes were investigated by NMR methods including pulsed field gradient spin echo diffusion, spin-lattice relaxation, and spectral measurements. Compared to unmodified Nafion, composite membranes materials exhibit longer longitudinal relaxation time constant T1. In addition to the Nafion material, sulfonated styrene

  18. Water permeation through anion exchange membranes

    Science.gov (United States)

    Luo, Xiaoyan; Wright, Andrew; Weissbach, Thomas; Holdcroft, Steven

    2018-01-01

    An understanding of water permeation through solid polymer electrolyte (SPE) membranes is crucial to offset the unbalanced water activity within SPE fuel cells. We examine water permeation through an emerging class of anion exchange membranes, hexamethyl-p-terphenyl poly (dimethylbenzimidazolium) (HMT-PMBI), and compare it against series of membrane thickness for a commercial anion exchange membrane (AEM), Fumapem® FAA-3, and a series of proton exchange membranes, Nafion®. The HMT-PMBI membrane is found to possess higher water permeabilities than Fumapem® FAA-3 and comparable permeability than Nafion (H+). By measuring water permeation through membranes of different thicknesses, we are able to decouple, for the first time, internal and interfacial water permeation resistances through anion exchange membranes. Permeation resistances on liquid/membrane interface is found to be negligible compared to that for vapor/membrane for both series of AEMs. Correspondingly, the resistance of liquid water permeation is found to be one order of magnitude smaller compared to that of vapor water permeation. HMT-PMBI possesses larger effective internal water permeation coefficient than both Fumapem® FAA-3 and Nafion® membranes (60 and 18% larger, respectively). In contrast, the effective interfacial permeation coefficient of HMT-PMBI is found to be similar to Fumapem® (±5%) but smaller than Nafion®(H+) (by 14%).

  19. Effects of surface roughening of Nafion 117 on the mechanical and physicochemical properties of ionic polymer-metal composite (IPMC) actuators

    Science.gov (United States)

    Wang, Yanjie; Zhu, Zicai; Liu, Jiayu; Chang, Longfei; Chen, Hualing

    2016-08-01

    In this paper, the surface of a Nafion membrane was roughened by the sandblasting method, mainly considering the change of sandblasting time and powder size. The roughened surfaces were characterized in terms of their topography from the confocal laser scanning microscope (CLSM) and SEM. The key surface parameters, such as Sa (the arithmetical mean deviation of the specified surface profile), SSA (the surface area ratio before and after roughening) and the area measurement on the histogram from the CLSM images, were extracted and evaluated from the roughened membranes. Also, the detailed change in surface and interfacial electrodes were measured and discussed together with the surface resistance, equivalent modulus, capacitance and performances of IPMC actuators based on the roughened membranes. The results show that a suitable sandblasting condition, resulting in the decrease in the bending stiffness and the increase in the interface area closely related to the capacitance, can effectively increase the electromechanical responses of IPMCs. Although the surface roughening by sandblasting caused a considerable lowering of mechanical strength, it was very effective for enlarging the interfacial area between Nafion membrane and the electrode layers, and for forming a penetrated electrode structure, which facilitated improvement of the surface resistance and capacitance characteristics of IPMCs. In this work, a quantitative relationship was built between the topography of Nafion membrane surface and electromechanical performance of IPMCs by means of sandblasting.

  20. Analysis of proton exchange membrane fuel cell performance with alternate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wakizoe, Masanobu; Velev, O A; Srinivasan, S [Texas A and M Univ., College Station, TX (United States). Texas Engineering Experiment Station

    1995-02-01

    Renewed interest in proton exchange membrane fuel cell technology for space and terrestrial (particularly electric vehicles) was stimulated by the demonstration, in the mid 1980s, of high energy efficiencies and high power densities. One of the most vital components of the PEMFC is the proton conducting membrane. In this paper, an analysis is made of the performances of PEMFCs with Dupont`s Nafion, Dow`s experimental, and Asahi Chemical`s Aciplex-S membranes. Attempts were also made to draw correlations between the PEMFC performances with the three types of membranes and their physico-chemical characteristics. Practically identical levels of performances (energy efficiency, power density, and lifetime) were achieved in PEMFCs with the Dow and the Aciplex-S membranes and these performances were better than in the PEMFCs with the Nafion-115 membrane. The electrode kinetic parameters for oxygen reduction are better for the PEMFCs with the Aciplex-S and Nafion membranes than with the Dow membranes. The PEMFCs with the Aciplex-S and Dow membranes have nearly the same internal resistances which are considerably lower than for the PEMFC with the Nafion membrane. The desired membrane characteristics to obtain high levels of performance are low equivalent weight and high water content. (Author)

  1. In situ synthesis of nanocomposite membranes: comprehensive improvement strategy for direct methanol fuel cells.

    Science.gov (United States)

    Rao, Siyuan; Xiu, Ruijie; Si, Jiangju; Lu, Shanfu; Yang, Meng; Xiang, Yan

    2014-03-01

    In situ synthesis is a powerful approach to control nanoparticle formation and consequently confers extraordinary properties upon composite membranes relative to conventional doping methods. Herein, uniform nanoparticles of cesium hydrogen salts of phosphotungstic acid (CsPW) are controllably synthesized in situ in Nafion to form CsPW–Nafion nanocomposite membranes with both improved proton conductivity and methanol-crossover suppression. A 101.3% increase of maximum power density has been achieved relative to pristine Nafion in a direct methanol fuel cell (DMFC), indicating a potential pathway for large-scale fabrication of DMFC alternative membranes.

  2. Anhydrous proton exchange membrane of sulfonated poly(ether ether ketone) enabled by polydopamine-modified silica nanoparticles

    International Nuclear Information System (INIS)

    Wang, Jingtao; Bai, Huijuan; Zhang, Haoqin; Zhao, Liping; Chen, Huiling; Li, Yifan

    2015-01-01

    Highlights: • The concept of acid/base pairs was employed to design anhydrous PEMs. • Polydopamine-modified silica particles were uniformly dispersed in SPEEK membrane. • The membranes displayed enhancement in both stability and anhydrous proton conductivity. - Abstract: Novel anhydrous proton exchange membrane is (PEM) facilely prepared by embedding dopamine-modified silica nanoparticles (DSiOis 2 ) into sulfonated poly (ether ether ketone) (SPEEK) polymer matrix. DSiO 2 bearing -NH 2 /-NH- groups are synthesized inspired by the bioadhesion principle, which are uniformly dispersed within SPEEK membrane due to the good interfacial compatibility. The interfacial electrostatic attractions render unique rearrangement of the nanophase-separated structure and the chain packing of the resultant hybrid membranes. As a result, the thermal and mechanical stabilities as well as structural stability of the hybrid membranes are enhanced when compared to SPEEK control membrane. On the other hand, induced by the attractions, acid–base pairs are formed at the SPEEK/DSiOarewere 2 interface, where fast proton transfer via Grotthuss mechanism is expected. These features confer much higher proton conductivities on the DSiO 2 -filled membranes under both hydrated and anhydrous conditions, compared to those of the SPEEK control membrane and SiO 2 -filled membranes. Particularly, the hybrid membrane with 15 wt% DSiO 2 achieve the highest conductivities of 4.52achieveachieved × 10 −3 S cm −1 at 120 °C under anhydrous condition, which is much higher than the SPEEK control membrane and the commercial Nafion membrane (0.1iswas × 10 −3 S cm −1 ). The membrane with 9 wt% DSiO 2 show an open cell potential of 0.98showshowed V and an optimum power density of 111.7 mW cm −2 , indicative of its potential application in fuel cell under anhydrous condition

  3. A Nafion -based co-planar electrode amperometric sensor for ...

    Indian Academy of Sciences (India)

    Administrator

    The methanol detector could be operated both in a nitrogen stream and (in what is essential for practical applications) in an air atmosphere too, with estimated detection limits of 1⋅2 and .... adsorption/desorption are not clear but this is a common finding of the enormous Pt/Nafion. ® litera- ture. For example, Mitsushima et al.

  4. Tuning of Nafion® by HKUST-1 as coordination network to enhance proton conductivity for fuel cell applications

    International Nuclear Information System (INIS)

    Kim, Hee Jin; Talukdar, Krishan; Choi, Sang-June

    2016-01-01

    Metal-organic frameworks can be intentionally coordinated to achieve improved proton conductivity because they have highly ordered structures and modular nature that serve as a scaffold to anchor acidic groups and develop efficient proton transfer pathways for fuel cell application. Using the concept of a coordination network, the conductivity of Nafion ® was tuned by the incorporation of HKUST-1. It has Cu II –paddle wheel type nodes and 1,3,5-benzenetricarboxylate struts, feature accessible sites that provides an improved protonic channel depending on the water content. In spite of the fact that HKUST-1 is neutral, coordinated water molecules are contributed adequately acidic by Cu II to supply protons to enhance proton conductivity. Water molecules play a vital part in transfer of proton as conducting media and serve as triggers to change proton conductivity through reforming hydrogen bonding networks by water adsorption/desorption process. Increased ion exchange capacity and proton conductivity with lower water uptake of the H 3 PO 4 -doped material, and improved thermal stability (as confirmed by thermogravimetric analysis) were achieved. The structure of HKUST-1 was confirmed via field emission scanning electron microscopy and X-ray diffraction, while the porosity and adsorption desorption capacity were characterized by porosity analysis. Graphical abstract: The H 3 PO 4 -doped HKUST-1/Nafion® composite membrane is demonstrated to be a promising material based on its proton conductivity. HKUST-1 has an average particle diameter of around 15–20 µm. The proton conductivity, IEC values, and the thermal stability of the 2.5 wt% HKUST-1/Nafion® composite membrane suggest that HKUST-1 may be a promising candidate as a proton-conductive material in the polymer electrolyte fuel cell membrane due to its reasonable proton passageway, favorable surface area, lower water uptake with the higher IEC, and proton conductivity of the H 3 PO 4 -doped material and

  5. Radio-chemical applications of functionalized membranes

    International Nuclear Information System (INIS)

    Pandey, Ashok K.

    2011-01-01

    Functionalized polymer membranes have many potential applications as they are task specific. We have developed many functionalized membranes like polymer inclusion membranes, pore-filled membranes and nano-membranes. Radiotracers and other methods have been used to understand the diffusional-transport properties of the Nafion-117 membrane as well as home-made membranes. These membranes have been used to develop novel analytical and separation methods for toxic metal ions and radionuclides. In this talk, an overview of our work on functionalized membrane is presented. (author)

  6. Bipolar membranes in forward bias region for fuel cell reactors

    International Nuclear Information System (INIS)

    Lobyntseva, Elena; Kallio, Tanja; Kontturi, Kyoesti

    2006-01-01

    Three bipolar membranes, two home-made composed of commercial cation (DuPont) and anion (FuMA-Tech) exchange membranes (called Nafion/FT-FAA and Nafion/FT-FAS) and a commercial one, BP-1 from FuMA-Tech, were investigated in order to characterize their suitability to use in a H 2 /O 2 fuel cell intended to produce hydrogen peroxide on the cathode instead of water. The Nafion/FT-FAA and Nafion/FT-FAS membranes were prepared using a hot-pressing method. The optimal hot-pressing conditions were determined by measuring the ionic conductivity of the membranes. The latter was observed to depend on the relative humidity of the bipolar membrane. Of the studied bipolar membranes, Nafion/FT-FAA showed the best performance. The transport number of protons measured in a concentration cell was observed to depend on the direction of the proton diffusion flux through these membranes so that transport numbers of ca. unity were obtained when the cation exchange side faced the solution with higher proton concentration. In the opposite case, when the higher concentration faced anion exchange side, the transport number of proton was clearly lower, indicating the usefulness of the bipolar membranes for hydrogen peroxide production in the fuel cell

  7. Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Bing-Joe Hwang

    2012-03-01

    Full Text Available The relentless increase in the demand for useable power from energy-hungry economies continues to drive energy-material related research. Fuel cells, as a future potential power source that provide clean-at-the-point-of-use power offer many advantages such as high efficiency, high energy density, quiet operation, and environmental friendliness. Critical to the operation of the fuel cell is the proton exchange membrane (polymer electrolyte membrane responsible for internal proton transport from the anode to the cathode. PEMs have the following requirements: high protonic conductivity, low electronic conductivity, impermeability to fuel gas or liquid, good mechanical toughness in both the dry and hydrated states, and high oxidative and hydrolytic stability in the actual fuel cell environment. Water soluble polymers represent an immensely diverse class of polymers. In this comprehensive review the initial focus is on those members of this group that have attracted publication interest, principally: chitosan, poly (ethylene glycol, poly (vinyl alcohol, poly (vinylpyrrolidone, poly (2-acrylamido-2-methyl-1-propanesulfonic acid and poly (styrene sulfonic acid. The paper then considers in detail the relationship of structure to functionality in the context of polymer blends and polymer based networks together with the effects of membrane crosslinking on IPN and semi IPN architectures. This is followed by a review of pore-filling and other impregnation approaches. Throughout the paper detailed numerical results are given for comparison to today’s state-of-the-art Nafion® based materials.

  8. High temperature transport properties of polyphosphazene membranes for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiangyang Zhou; Chalkova, E. [Pennsylvania State University (United States). The Energy Institute; Weston, J.; Lvov, S.N. [Pennsylvania State University (United States). The Energy Institute; Pennsylvania State University (United States). Department of Energy and Geo-Environment Engineering; Hofmann, M.A.; Ambler, C.M.; Allcock, H.R. [Pennsylvania State University (United States). Department of Chemistry

    2003-06-30

    Experimental methods for studying the conductivity and methanol permeability of proton conductive polymers over a wide range of temperatures have been developed. The proton conductivity and methanol permeability of several polymer electrolyte membranes including sulfonated and phosphonated poly[(aryloxy)phosphazenes] was determined at temperatures up to 120 {sup o}C. Nafion 117 membranes were tested using the same methods in order to determine the reliability of the methods. Although the conductivities of the polyphosphazene membranes were either similar to or lower than that of the Nafion 117 membranes, they continue to hold promise for fuel cell applications. We observed similar activation energies of proton conduction for Nafion 117, and for sulfonated and phosphonated polyphosphazene membranes. However, the methanol permeability of a sulfonated membrane was about 8 times lower than that of the Nafion 117 membrane at room temperature although the values were comparable at 120 {sup o}C. The permeability of a phosphonated phosphazene derivative was about 40 times lower than that of the Nafion 117 membrane at room temperature and about 9 times lower at 120 {sup o}C. This is a significant improvement over the behavior of Nafion 117. (author)

  9. High temperature transport properties of polyphosphazene membranes for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Xiangyang; Weston, Jamie; Chalkova, Elena; Hofmann, Michael A.; Ambler, Catherine M.; Allcock, Harry R.; Lvov, Serguei N

    2003-06-30

    Experimental methods for studying the conductivity and methanol permeability of proton conductive polymers over a wide range of temperatures have been developed. The proton conductivity and methanol permeability of several polymer electrolyte membranes including sulfonated and phosphonated poly[(aryloxy)phosphazenes] was determined at temperatures up to 120 deg. C. Nafion 117 membranes were tested using the same methods in order to determine the reliability of the methods. Although the conductivities of the polyphosphazene membranes were either similar to or lower than that of the Nafion 117 membranes, they continue to hold promise for fuel cell applications. We observed similar activation energies of proton conduction for Nafion 117, and for sulfonated and phosphonated polyphosphazene membranes. However, the methanol permeability of a sulfonated membrane was about 8 times lower than that of the Nafion 117 membrane at room temperature although the values were comparable at 120 deg. C. The permeability of a phosphonated phosphazene derivative was about 40 times lower than that of the Nafion 117 membrane at room temperature and about 9 times lower at 120 deg. C. This is a significant improvement over the behavior of Nafion 117.

  10. High temperature transport properties of polyphosphazene membranes for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Zhou Xiangyang; Weston, Jamie; Chalkova, Elena; Hofmann, Michael A.; Ambler, Catherine M.; Allcock, Harry R.; Lvov, Serguei N.

    2003-01-01

    Experimental methods for studying the conductivity and methanol permeability of proton conductive polymers over a wide range of temperatures have been developed. The proton conductivity and methanol permeability of several polymer electrolyte membranes including sulfonated and phosphonated poly[(aryloxy)phosphazenes] was determined at temperatures up to 120 deg. C. Nafion 117 membranes were tested using the same methods in order to determine the reliability of the methods. Although the conductivities of the polyphosphazene membranes were either similar to or lower than that of the Nafion 117 membranes, they continue to hold promise for fuel cell applications. We observed similar activation energies of proton conduction for Nafion 117, and for sulfonated and phosphonated polyphosphazene membranes. However, the methanol permeability of a sulfonated membrane was about 8 times lower than that of the Nafion 117 membrane at room temperature although the values were comparable at 120 deg. C. The permeability of a phosphonated phosphazene derivative was about 40 times lower than that of the Nafion 117 membrane at room temperature and about 9 times lower at 120 deg. C. This is a significant improvement over the behavior of Nafion 117

  11. New ETFE-based membrane for direct methanol fuel cell

    International Nuclear Information System (INIS)

    Saarinen, V.; Kallio, T.; Paronen, M.; Tikkanen, P.; Rauhala, E.; Kontturi, K.

    2005-01-01

    The investigated membranes are based on 35-bar μ m thick commercial poly(ethylene-alt-tetrafluoroethylene) (ETFE) films. The films were made proton conductive by means of irradiation treatment followed by sulfonation. These membranes have exceptionally low water uptake and excellent dimensional stability. The new membranes are investigated widely in a laboratory-scale direct methanol fuel cell (DMFC). The temperature range used in the fuel cell tests was 30-85-bar o C and the measurement results were compared to those of the Nafion ( R)115 membrane. Also methanol permeability through the ETFE-based membrane was measured as a function of temperature, resulting in values less than 10% of the corresponding values for Nafion ( R)115, which was considerably thicker than the experimental membrane. Methanol crossover was reported to decrease when the thickness of the membrane increases, so the ETFE-based membrane compares favourably to Nafion ( R) membranes. The maximum power densities achieved with the experimental ETFE-based membrane were about 40-65% lower than the corresponding values of the Nafion ( R)115 membrane, because of the lower conductivity and noticeably higher IR-losses. Chemical and mechanical stability of the ETFE-based membrane appeared to be promising since it was tested over 2000-bar h in the DMFC without any performance loss

  12. Low-cost non-fluorinated membranes for fuel cells

    CSIR Research Space (South Africa)

    Luo, H

    2010-08-31

    Full Text Available the driver of the next growth wave of the world’s economy. A proton conductive membrane is the core of the polymer electrolyte membrane fuel cell (PEMFC). Presently, Nafion® membranes are widely used in PEMFC. However, the high cost, low operation temperature...

  13. [Skin hydration and hydrating products].

    Science.gov (United States)

    Duplan, H; Nocera, T

    2018-05-01

    One of the skin's principal functions is to protect the body against its environment by maintaining an effective epidermal barrier, not only against external factors, but also to prevent water loss from the body. Indeed, water homeostasis is vital for the normal physiological functioning of skin. Hydration levels affect not only visible microscopic parameters such as the suppleness and softness of skin, but also molecular parameters, enzyme activities and cellular signalling within the epidermis. The body is continually losing some of its water, but this phenomenon is limited and the optimal hydration gradient in skin is ensured via a set of sophisticated regulatory processes that rely on the functional and dynamic properties of the uppermost level of the skin consisting of the stratum corneum. The present article brings together data recently acquired in the fields of skin hydration and the characterisation of dehydrated or dry skin, whether through study of the regulatory processes involved or as a result of changes in the techniques used for in situ measurement, and thus in optimisation of management. Copyright © 2018. Published by Elsevier Masson SAS.

  14. Proton Conducting Polymer Membrane Comprised of 2-Acrylamido-2-Methylpropanesulfonic Acid

    National Research Council Canada - National Science Library

    Walker, Charles

    2002-01-01

    In order to identify a proton-conducting polymer membrane suitable for replacing Nafion 117 in direct methanol fuel cells, we prepared a cross-linked copolymer of hydrophilic 2-acrylamido-2-methylpropanesulfonic acid (AMPS...

  15. Demonstration on endurance of ion exchange membrane immersed in high-concentration tritiated water under the Broader Approach Activities

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Yasunori, E-mail: iwai.yasunori@jaea.go.jp; Sato, Katsumi; Kawamura, Yoshinori; Yamanishi, Toshihiko

    2013-10-15

    Highlights: • Endurance of Nafion ion exchange membrane immersed in 1.38 × 10{sup 12} Bq/kg of highly concentrated tritiated water was demonstrated. • Degradation of Nafion backbone structure by tritium beta was similar to that by gamma rays and electron beams at an equivalent dose. • Degradation directly by radiation was dominant at room temperature compared with that by reactions with radicals produced from water radiolysis. -- Abstract: The Nafion{sup ®} ion exchange membrane is a key material for electrolysis cells of the water detritiation system. Endurance of Nafion ion exchange membrane immersed in 1.38 × 10{sup 12} Bq/kg of highly concentrated tritiated water has been demonstrated at room temperature for up to 2 years under the Broader Approach Activities. The curves of percent elongation at break vs. dose and tensile strength vs. dose for the Nafion membranes immersed in tritiated water were well consistent with those for Nafion membranes irradiated to an equivalent dose with gamma rays and electron beams. This shows that the degradation of Nafion backbone structure by tritium beta is similar to that by gamma rays and electron beams. The results of ferric Fenton test indicated that the degradation directly by radiation was dominant at room temperature compared with that by reactions with radicals produced from water radiolysis. The curve of ion exchange capacity vs. dose for the Nafion membranes immersed in tritiated water was also well consistent with that for Nafion membranes irradiated to an equivalent dose with gamma rays and electron beams. These results showed irradiation tests with gamma rays and electron beams were alternative for predicting degradation of ion exchange membrane by tritium beta.

  16. High Temperature, Low Relative Humidity, Polymer-type Membranes Based on Disulfonated Poly(arylene ether) Block and Random Copolymers Optionally Incorporating Protonic Conducting Layered Water insoluble Zirconium Fillers

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, James E.; Baird, Donald G.

    2010-06-03

    hydrophobic segments. If, like in Nafion, connectivity is established between the hydrophilic domains in these multiblock copolymers, they will not need as much water, and hence will show much better protonic conductivity than the random copolymers (with similar degree of sulfonation, or IEC) at partially hydrated conditions. The goal of this research is to develop a material suitable for use as a polymer electrolyte membrane which by the year 2010 will meet all the performance requirements associated with fuel cell operation at high temperatures and low relative humidity, and will out-perform the present standard Nafion{reg_sign}. In particular, it is our objective to extend our previous research based on the use of thermally, oxidatively, and hydrolytically, ductile, high Tg ion containing polymers based on poly(arylene ethers) to the production of polymer electrolyte membranes which will meet all the performance requirements in addition to having an areal resistance of < 0.05 ohm-cm{sup 2} at a temperature of up to 120 C, relative humidity of 25 to 50%, and up to 2.5 atm total pressure. In many instances, our materials already out performs Nafion{reg_sign}, and it is expected that with some modification by either combining with conductive inorganic fillers and/or synthesizing as a block copolymer it will meet the performance criteria at high temperatures and low relative humidity. A key component in improving the performance of the membranes (and in particular proton conductivity) and meeting the cost requirements of $40/m{sup 2} is our development of a film casting process, which shows promise for generation of void free thin films of uniform thickness with controlled polymer alignment and configuration.

  17. Impedance Spectroscopic Investigation of Proton Conductivity in Nafion Using Transient Electrochemical Atomic Force Microscopy (AFM

    Directory of Open Access Journals (Sweden)

    Emil Roduner

    2012-06-01

    Full Text Available Spatially resolved impedance spectroscopy of a Nafion polyelectrolyte membrane is performed employing a conductive and Pt-coated tip of an atomic force microscope as a point-like contact and electrode. The experiment is conducted by perturbing the system by a rectangular voltage step and measuring the incurred current, followed by Fourier transformation and plotting the impedance against the frequency in a conventional Bode diagram. To test the potential and limitations of this novel method, we present a feasibility study using an identical hydrogen atmosphere at a well-defined relative humidity on both sides of the membrane. It is demonstrated that good quality impedance spectra are obtained in a frequency range of 0.2–1,000 Hz. The extracted polarization curves exhibit a maximum current which cannot be explained by typical diffusion effects. Simulation based on equivalent circuits requires a Nernst element for restricted diffusion in the membrane which suggests that this effect is based on the potential dependence of the electrolyte resistance in the high overpotential region.

  18. High resolution neutron imaging of water in the polymer electrolyte fuel cell membrane

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Makundan, Rangachary [Los Alamos National Laboratory; Spendelow, Jacob S [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Hussey, D S [NIST; Jacobson, D L [NIST; Arif, M [NIST

    2009-01-01

    Water transport in the ionomeric membrane, typically Nafion{reg_sign}, has profound influence on the performance of the polymer electrolyte fuel cell, in terms of internal resistance and overall water balance. In this work, high resolution neutron imaging of the Nafion{reg_sign} membrane is presented in order to measure water content and through-plane gradients in situ under disparate temperature and humidification conditions.

  19. Performance of a vanadium redox flow battery with a VANADion membrane

    International Nuclear Information System (INIS)

    Zhou, X.L.; Zhao, T.S.; An, L.; Zeng, Y.K.; Zhu, X.B.

    2016-01-01

    Highlights: • Performance of the VANADion membrane in flow batteries is evaluated. • The battery with present membrane shows good rate capability. • The battery with present membrane offers good capacity retention. • The high performance and low cost make the membrane promising in VRFBs. - Abstract: Conventional vanadium redox flow batteries (VRFBs) using Nafion 115 suffered from issues associated with high ohmic resistance and high capital cost. In this work, we report a commercial membrane (VANADion), consisting of a porous layer and a dense Nafion layer, as a promising alternative to Nafion 115. In the dual-layer structure, the porous layer (∼210 μm) can offer a high ionic conductivity and the dense Nafion layer (∼20 μm) can depress the convective flow of electrolyte through the membrane. By comparing with the conventional Nafion 115 in a VRFB, it is found that the change from the conventional Nafion 115 to the composite one results in an increase in the energy efficiency from 71.3% to 76.2% and an increase in the electrolyte utilization from 54.1% to 68.4% at a current density of as high as 240 mA cm"−"2. In addition, although two batteries show the comparable cycling performance at current densities ranging from 80 mA cm"−"2 to 240 mA cm"−"2, the composite membrane is estimated to be significantly cheaper than the conventional Nafion 115 due to the fact that the porous layer is rather cost-effective and the dense Nafion layer is rather thin. The impressive combination of desirable performance and low cost makes this composite membrane highly promising in the VRFB applications.

  20. Embedding of Hollow Polymer Microspheres with Hydrophilic Shell in Nafion Matrix as Proton and Water Micro-Reservoir

    Directory of Open Access Journals (Sweden)

    Zhaolin Liu

    2012-08-01

    Full Text Available Assimilating hydrophilic hollow polymer spheres (HPS into Nafion matrix by a loading of 0.5 wt % led to a restructured hydrophilic channel, composed of the pendant sulfonic acid groups (–SO3H and the imbedded hydrophilic hollow spheres. The tiny hydrophilic hollow chamber was critical to retaining moisture and facilitating proton transfer in the composite membranes. To obtain such a tiny cavity structure, the synthesis included selective generation of a hydrophilic polymer shell on silica microsphere template and the subsequent removal of the template by etching. The hydrophilic HPS (100–200 nm possessed two different spherical shells, the styrenic network with pendant sulfonic acid groups and with methacrylic acid groups, respectively. By behaving as microreservoirs of water, the hydrophilic HPS promoted the Grotthus mechanism and, hence, enhanced proton transport efficiency through the inter-sphere path. In addition, the HPS with the –SO3H borne shell played a more effective role than those with the –CO2H borne shell in augmenting proton transport, in particular under low humidity or at medium temperatures. Single H2-PEMFC test at 70 °C using dry H2/O2 further verified the impactful role of hydrophilic HPS in sustaining higher proton flux as compared to pristine Nafion membrane.

  1. Towards bio-silicon interfaces: Formation of an ultra-thin self-hydrated artificial membrane composed of dipalmitoylphosphatidylcholine (DPPC) and chitosan deposited in high vacuum from the gas-phase

    Energy Technology Data Exchange (ETDEWEB)

    Retamal, María J., E-mail: moretama@uc.cl; Cisternas, Marcelo A.; Seifert, Birger; Volkmann, Ulrich G. [Instituto de Física, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, 7820436 Santiago (Chile); Centro de Investigación en Nanotecnología y Materiales Avanzados (CIEN-UC), Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, 7820436 Santiago (Chile); Gutierrez-Maldonado, Sebastian E.; Perez-Acle, Tomas [Computational Biology Lab (DLab), Fundación Ciencia y Vida, Av. Zañartu 1482, Santiago (Chile); Centro Interdisciplinario de Neurociencias de Valparaiso (CINV), Universidad de Valparaiso, Pasaje Harrington 287, Valparaiso (Chile); Busch, Mark; Huber, Patrick [Institute of Materials Physics and Technology, Hamburg University of Technology (TUHH), D-21073 Hamburg-Harburg (Germany)

    2014-09-14

    The recent combination of nanoscale developments with biological molecules for biotechnological research has opened a wide field related to the area of biosensors. In the last years, device manufacturing for medical applications adapted the so-called bottom-up approach, from nanostructures to larger devices. Preparation and characterization of artificial biological membranes is a necessary step for the formation of nano-devices or sensors. In this paper, we describe the formation and characterization of a phospholipid bilayer (dipalmitoylphosphatidylcholine, DPPC) on a mattress of a polysaccharide (Chitosan) that keeps the membrane hydrated. The deposition of Chitosan (∼25 Å) and DPPC (∼60 Å) was performed from the gas phase in high vacuum onto a substrate of Si(100) covered with its native oxide layer. The layer thickness was controlled in situ using Very High Resolution Ellipsometry (VHRE). Raman spectroscopy studies show that neither Chitosan nor DPPC molecules decompose during evaporation. With VHRE and Atomic Force Microscopy we have been able to detect phase transitions in the membrane. The presence of the Chitosan interlayer as a water reservoir is essential for both DPPC bilayer formation and stability, favoring the appearance of phase transitions. Our experiments show that the proposed sample preparation from the gas phase is reproducible and provides a natural environment for the DPPC bilayer. In future work, different Chitosan thicknesses should be studied to achieve a complete and homogeneous interlayer.

  2. Towards bio-silicon interfaces: Formation of an ultra-thin self-hydrated artificial membrane composed of dipalmitoylphosphatidylcholine (DPPC) and chitosan deposited in high vacuum from the gas-phase

    Science.gov (United States)

    Retamal, María J.; Cisternas, Marcelo A.; Gutierrez-Maldonado, Sebastian E.; Perez-Acle, Tomas; Seifert, Birger; Busch, Mark; Huber, Patrick; Volkmann, Ulrich G.

    2014-09-01

    The recent combination of nanoscale developments with biological molecules for biotechnological research has opened a wide field related to the area of biosensors. In the last years, device manufacturing for medical applications adapted the so-called bottom-up approach, from nanostructures to larger devices. Preparation and characterization of artificial biological membranes is a necessary step for the formation of nano-devices or sensors. In this paper, we describe the formation and characterization of a phospholipid bilayer (dipalmitoylphosphatidylcholine, DPPC) on a mattress of a polysaccharide (Chitosan) that keeps the membrane hydrated. The deposition of Chitosan (˜25 Å) and DPPC (˜60 Å) was performed from the gas phase in high vacuum onto a substrate of Si(100) covered with its native oxide layer. The layer thickness was controlled in situ using Very High Resolution Ellipsometry (VHRE). Raman spectroscopy studies show that neither Chitosan nor DPPC molecules decompose during evaporation. With VHRE and Atomic Force Microscopy we have been able to detect phase transitions in the membrane. The presence of the Chitosan interlayer as a water reservoir is essential for both DPPC bilayer formation and stability, favoring the appearance of phase transitions. Our experiments show that the proposed sample preparation from the gas phase is reproducible and provides a natural environment for the DPPC bilayer. In future work, different Chitosan thicknesses should be studied to achieve a complete and homogeneous interlayer.

  3. Towards bio-silicon interfaces: Formation of an ultra-thin self-hydrated artificial membrane composed of dipalmitoylphosphatidylcholine (DPPC) and chitosan deposited in high vacuum from the gas-phase

    International Nuclear Information System (INIS)

    Retamal, María J.; Cisternas, Marcelo A.; Seifert, Birger; Volkmann, Ulrich G.; Gutierrez-Maldonado, Sebastian E.; Perez-Acle, Tomas; Busch, Mark; Huber, Patrick

    2014-01-01

    The recent combination of nanoscale developments with biological molecules for biotechnological research has opened a wide field related to the area of biosensors. In the last years, device manufacturing for medical applications adapted the so-called bottom-up approach, from nanostructures to larger devices. Preparation and characterization of artificial biological membranes is a necessary step for the formation of nano-devices or sensors. In this paper, we describe the formation and characterization of a phospholipid bilayer (dipalmitoylphosphatidylcholine, DPPC) on a mattress of a polysaccharide (Chitosan) that keeps the membrane hydrated. The deposition of Chitosan (∼25 Å) and DPPC (∼60 Å) was performed from the gas phase in high vacuum onto a substrate of Si(100) covered with its native oxide layer. The layer thickness was controlled in situ using Very High Resolution Ellipsometry (VHRE). Raman spectroscopy studies show that neither Chitosan nor DPPC molecules decompose during evaporation. With VHRE and Atomic Force Microscopy we have been able to detect phase transitions in the membrane. The presence of the Chitosan interlayer as a water reservoir is essential for both DPPC bilayer formation and stability, favoring the appearance of phase transitions. Our experiments show that the proposed sample preparation from the gas phase is reproducible and provides a natural environment for the DPPC bilayer. In future work, different Chitosan thicknesses should be studied to achieve a complete and homogeneous interlayer

  4. Pore-Size-Tuned Graphene Oxide Frameworks as Ion-Selective and Protective Layers on Hydrocarbon Membranes for Vanadium Redox-Flow Batteries.

    Science.gov (United States)

    Kim, Soohyun; Choi, Junghoon; Choi, Chanyong; Heo, Jiyun; Kim, Dae Woo; Lee, Jang Yong; Hong, Young Taik; Jung, Hee-Tae; Kim, Hee-Tak

    2018-05-07

    The laminated structure of graphene oxide (GO) membranes provides exceptional ion-separation properties due to the regular interlayer spacing ( d) between laminate layers. However, a larger effective pore size of the laminate immersed in water (∼11.1 Å) than the hydrated diameter of vanadium ions (>6.0 Å) prevents its use in vanadium redox-flow batteries (VRFB). In this work, we report an ion-selective graphene oxide framework (GOF) with a d tuned by cross-linking the GO nanosheets. Its effective pore size (∼5.9 Å) excludes vanadium ions by size but allows proton conduction. The GOF membrane is employed as a protective layer to address the poor chemical stability of sulfonated poly(arylene ether sulfone) (SPAES) membranes against VO 2 + in VRFB. By effectively blocking vanadium ions, the GOF/SPAES membrane exhibits vanadium-ion permeability 4.2 times lower and a durability 5 times longer than that of the pristine SPAES membrane. Moreover, the VRFB with the GOF/SPAES membrane achieves an energy efficiency of 89% at 80 mA cm -2 and a capacity retention of 88% even after 400 cycles, far exceeding results for Nafion 115 and demonstrating its practical applicability for VRFB.

  5. Proton conducting hydrocarbon membranes: Performance evaluation for room temperature direct methanol fuel cells

    International Nuclear Information System (INIS)

    Krivobokov, Ivan M.; Gribov, Evgeniy N.; Okunev, Alexey G.

    2011-01-01

    The methanol permeability, proton conductivity, water uptake and power densities of direct methanol fuel cells (DMFCs) at room temperature are reported for sulfonated hydrocarbon (sHC) and perfluorinated (PFSA) membranes from Fumatech, and compared to Nafion membranes. The sHC membranes exhibit lower proton conductivity (25-40 mS cm -1 vs. ∼95-40 mS cm -1 for Nafion) as well as lower methanol permeability (1.8-3.9 x 10 -7 cm 2 s -1 vs. 2.4-3.4 x 10 -6 cm 2 s -1 for Nafion). Water uptake was similar for all membranes (18-25 wt%), except for the PFSA membrane (14 wt%). Methanol uptake varied from 67 wt% for Nafion to 17 wt% for PFSA. The power density of Nafion in DMFCs at room temperature decreases with membrane thickness from 26 mW cm -2 for Nafion 117 to 12.5 mW cm -2 for Nafion 112. The maximum power density of the Fumatech membranes ranges from 4 to 13 mW cm -1 . Conventional transport parameters such as membrane selectivity fail to predict membrane performance in DMFCs. Reliable and easily interpretable results are obtained when the power density is plotted as a function of the transport factor (TF), which is the product of proton concentration in the swollen membrane and the methanol flux. At low TF values, cell performance is limited by low proton conductivity, whereas at high TF values it decreases due to methanol crossover. The highest maximum power density corresponds to intermediate values of TF.

  6. New membrane structures with proton conducting properties

    DEFF Research Database (Denmark)

    Nørgaard, Casper Frydendal

    if higher operating temperature is enabled. One approach to obtain improved membranes in the aspects of applicable operating temperature and methanol permeability, which has attracted considerable attention, is the formation of composites by distributing inorganic fillers into Nafion or alternative polymers...... temperature and high relative humidity can cause excessive swelling of the membranes, yielding insufficient mechanical properties and breakdown of membrane function. Moreover, in the case of the Direct Methanol Fuel Cell (DMFC), their significant methanol permeability causes loss of efficiency. Higher...

  7. Imade-imide cross-linked PEEK proton exchange membrane.

    CSIR Research Space (South Africa)

    Luo, H

    2009-08-01

    Full Text Available The proton exchange membrane is a key component of polymer electrolyte membrane fuel cell (PEMFC). It plays an important role, conducts protons and separates the fuel from oxidant in PEMFC. DuPont’s Nafion is a perfluorinated sulfonic acid polymer...

  8. Fabrication of a nanosize-Pt-embedded membrane electrode assembly to enhance the utilization of Pt in proton exchange membrane fuel cells.

    Science.gov (United States)

    Choe, Junseok; Kim, Doyoung; Shim, Jinyong; Lee, Inhae; Tak, Yongsug

    2011-08-01

    A procedure to locate the Pt nanostructure inside the hydrophilic channel of a Nafion membrane was developed in order to enhance Pt utilization in PEMFCs. Nanosize Pt-embedded MEA was constructed by Cu electroless plating and subsequent Pt electrodeposition inside the hydrophilic channels of the Nafion membrane. The metallic Pt nanostructure fabricated inside the membrane was employed as an oxygen reduction catalyst for a PEMFC and facilitated effective use of the hydrophilic channels inside the membrane. Compared to the conventional MEA, a Pt-embedded MEA with only 68% Pt loading showed better PEMFC performance.

  9. Tuning of Nafion{sup ®} by HKUST-1 as coordination network to enhance proton conductivity for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Jin, E-mail: zammanbo814@knu.ac.kr [Kyungpook National University, Research Institute of Advanced Energy Technology (Korea, Republic of); Talukdar, Krishan, E-mail: krishantu@yahoo.com; Choi, Sang-June, E-mail: sjchoi@knu.ac.kr [Kyungpook National University, Department of Environmental Engineering (Korea, Republic of)

    2016-02-15

    Metal-organic frameworks can be intentionally coordinated to achieve improved proton conductivity because they have highly ordered structures and modular nature that serve as a scaffold to anchor acidic groups and develop efficient proton transfer pathways for fuel cell application. Using the concept of a coordination network, the conductivity of Nafion{sup ®} was tuned by the incorporation of HKUST-1. It has Cu{sup II}–paddle wheel type nodes and 1,3,5-benzenetricarboxylate struts, feature accessible sites that provides an improved protonic channel depending on the water content. In spite of the fact that HKUST-1 is neutral, coordinated water molecules are contributed adequately acidic by Cu{sup II} to supply protons to enhance proton conductivity. Water molecules play a vital part in transfer of proton as conducting media and serve as triggers to change proton conductivity through reforming hydrogen bonding networks by water adsorption/desorption process. Increased ion exchange capacity and proton conductivity with lower water uptake of the H{sub 3}PO{sub 4}-doped material, and improved thermal stability (as confirmed by thermogravimetric analysis) were achieved. The structure of HKUST-1 was confirmed via field emission scanning electron microscopy and X-ray diffraction, while the porosity and adsorption desorption capacity were characterized by porosity analysis. Graphical abstract: The H{sub 3}PO{sub 4}-doped HKUST-1/Nafion® composite membrane is demonstrated to be a promising material based on its proton conductivity. HKUST-1 has an average particle diameter of around 15–20 µm. The proton conductivity, IEC values, and the thermal stability of the 2.5 wt% HKUST-1/Nafion® composite membrane suggest that HKUST-1 may be a promising candidate as a proton-conductive material in the polymer electrolyte fuel cell membrane due to its reasonable proton passageway, favorable surface area, lower water uptake with the higher IEC, and proton conductivity of the H

  10. Artificial Hydration and Nutrition

    Science.gov (United States)

    ... Crisis Situations Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans ... Your Health Resources Healthcare Management Artificial Hydration and Nutrition Artificial Hydration and Nutrition Share Print Patients who ...

  11. Polyarylenethioethersulfone Membranes for Fuel Cells (Postprint)

    Science.gov (United States)

    2010-01-01

    The Electrochemical SocietyProton exchange membrane fuel cells PEMFCs are an attrac- tive power source due to their energy efficiency and...standard in PEMFC technology.3,4 Nafion membranes have a polytetrafluoro- ethylene PTFE backbone, which provides thermal and chemical stability, and...diffusion layers to fabricate MEAs. Single-cell test (H- PEMFC ).— MEAs were positioned in a single-cell fixture with graphite blocks as current

  12. Membrane development for vanadium redox flow batteries.

    Science.gov (United States)

    Schwenzer, Birgit; Zhang, Jianlu; Kim, Soowhan; Li, Liyu; Liu, Jun; Yang, Zhenguo

    2011-10-17

    Large-scale energy storage has become the main bottleneck for increasing the percentage of renewable energy in our electricity grids. Redox flow batteries are considered to be among the best options for electricity storage in the megawatt range and large demonstration systems have already been installed. Although the full technological potential of these systems has not been reached yet, currently the main problem hindering more widespread commercialization is the high cost of redox flow batteries. Nafion, as the preferred membrane material, is responsible for about 11% of the overall cost of a 1 MW/8 MWh system. Therefore, in recent years two main membrane related research threads have emerged: 1) chemical and physical modification of Nafion membranes to optimize their properties with regard to vanadium redox flow battery (VRFB) application; and 2) replacement of the Nafion membranes with different, less expensive materials. This review summarizes the underlying basic scientific issues associated with membrane use in VRFBs and presents an overview of membrane-related research approaches aimed at improving the efficiency of VRFBs and making the technology cost-competitive. Promising research strategies and materials are identified and suggestions are provided on how materials issues could be overcome.

  13. Simple electrochemical sensor for caffeine based on carbon and Nafion-modified carbon electrodes.

    Science.gov (United States)

    Torres, A Carolina; Barsan, Madalina M; Brett, Christopher M A

    2014-04-15

    A simple, economic, highly sensitive and highly selective method for the detection of caffeine has been developed at bare and Nafion-modified glassy carbon electrodes (GCE). The electrochemical behaviour of caffeine was examined in electrolyte solutions of phosphate buffer saline, sodium perchlorate, and in choline chloride plus oxalic acid, using analytical determinations by fixed potential amperometry, phosphate buffer saline being the best. Modifications of the GCE surface with poly(3,4-ethylenedioxythiophene) (PEDOT), Nafion, and multi-walled carbon nanotubes were tested in order to evaluate possible sensor performance enhancements, Nafion giving the most satisfactory results. The effect of interfering compounds usually found in samples containing caffeine was examined at GCE without and with Nafion coating, to exclude interferences, and the sensors were successfully applied to determine the caffeine content in commercial beverages and drugs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Direct observation of deformation of nafion surfaces induced by methanol treatment by using atomic force microscopy

    International Nuclear Information System (INIS)

    Umemura, Kazuo; Kuroda, Reiko; Gao Yanfeng; Nagai, Masayuki; Maeda, Yuta

    2008-01-01

    We successfully characterized the effect of methanol treatment on the nanoscopic structures of a nafion film, which is widely used in direct methanol fuel cells (DMFCs). Atomic force microscopy (AFM) was used to repetitively image a particular region of a nafion sample before and after methanol solutions were dropped onto the nafion film and dried in air. When the surface was treated with 20% methanol for 5 min, many nanopores appeared on the surface. The number of nanopores increased when the sample was treated twice or thrice. By repetitive AFM imaging of a particular region of the same sample, we found that the shapes of the nanopores were deformed by the repeated methanol treatment, although the size of the nanopores had not significantly changed. The creation of the nanopores was affected by the concentration of methanol. Our results directly visualized the effects of methanol treatment on the surface structures of a nafion film at nanoscale levels for the first time

  15. Insights on the Study of Nafion Nanoscale Morphology by Transmission Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Sergey Yakovlev

    2013-12-01

    Full Text Available Nafion is one of the most common materials used for polyelectrolyte membranes and is the standard to which novel materials are compared. In spite of great interest in Nafion’s nanostructure, it is still a subject of controversy. While multiple research efforts have addressed Nafion’s morphology with Transmission Electron Microscopy, the results of these efforts have often been inconsistent and cannot satisfactorily describe the membrane structure. One of the reasons for differences in the reported results is the lack of sufficient control over the damage caused by electron beam irradiation. In this work, we describe some aspects of damage in the material that have a strong influence on the results. We show that irradiation causes mass loss and phase separation in the material and that the morphologies that have been observed are, in many cases, artifacts caused by damage. We study the effect of the sample temperature on damage and show that, while working at low temperature does not prevent damage and mass loss, it slows formation of damage-induced artifacts to the point where informative low-dose images of almost undamaged material may be collected. We find that charging of the sample has a substantial effect on the damage, and the importance of charge neutralization under irradiation is also seen by the large reduction of beam induced movement with the use of an objective aperture or a conductive support film. To help interpret the low-dose images, we can apply slightly higher exposures to etch away the hydrophobic phase with the electron beam and reveal the network formed by the hydrophilic phase. Energy loss spectroscopy shows evidence that fluorine removal governs the beam damage process.

  16. Tuning the Perfluorosulfonic Acid Membrane Morphology for Vanadium Redox-Flow Batteries.

    Science.gov (United States)

    Vijayakumar, M; Luo, Qingtao; Lloyd, Ralph; Nie, Zimin; Wei, Xiaoliang; Li, Bin; Sprenkle, Vincent; Londono, J-David; Unlu, Murat; Wang, Wei

    2016-12-21

    The microstructure of perfluorinated sulfonic acid proton-exchange membranes such as Nafion significantly affects their transport properties and performance in a vanadium redox-flow battery (VRB). In this work, Nafion membranes with various equivalent weights ranging from 1000 to 1500 are prepared and the morphology-property-performance relationship is investigated. NMR and small-angle X-ray scattering studies revealed their composition and morphology variances, which lead to major differences in key transport properties related to proton conduction and vanadium-ion permeation. Their performances are further characterized as VRB membranes. On the basis of this understanding, a new perfluorosulfonic acid membrane is designed with optimal pore geometry and thickness, leading to higher ion selectivity and lower cost compared with the widely used Nafion 115. Excellent VRB single-cell performance (89.3% energy efficiency at 50 mA·cm -2 ) was achieved along with a stable cyclical capacity over prolonged cycling.

  17. Tuning the Perfluorosulfonic Acid Membrane Morphology for Vanadium Redox-Flow Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, M.; Luo, Qingtao; Lloyd, Ralph B.; Nie, Zimin; Wei, Xiaoliang; Li, Bin; Sprenkle, Vincent L.; Londono, J-David; Unlu, Murat; Wang, Wei

    2016-12-23

    The microstructure of the perfluorinated sulfonic acid proton exchange membranes such as Nafion significantly affects their transport properties and performance in a vanadium redox flow battery (VRB). In this work, Nafion membranes with various equivalent weights (EW) ranging from 1000 to 1500 are prepared and the structure-property-performance relationship is investigated. Nuclear magnetic resonance (NMR) and small-angle X-ray scattering (SAXS) studies revealed their composition and morphology variances, which lead to major differences in key transport properties related to proton conduction and vanadium ion permeation. Their performances are further characterized as VRB membranes. Based on those understanding, a new perfluorosulfonic acid membrane is designed with optimal pore geometry and thickness, leading to higher ion selectivity and lower cost compared with the widely used Nafion® 115. Excellent VRB single-cell performance (89.3% energy efficiency at 50mA∙cm-2) was achieved along with a stable cyclical capacity over prolonged cycling.

  18. Radiolytic preparation of PFA-g-PVBSA membranes as a polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Fei Geng [Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Nansanhuan Road 99, Changshu, Jiangsu 215-500 (China); Hwang, Mi-Lim; Sohn, Joon-Yong; Nho, Young Chang [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Shin, Junhwa, E-mail: shinj@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)

    2012-03-01

    In this study, a polymer electrolyte membrane, PFA-g-PVBSA was prepared through the radiation-induced graft copolymerization of vinylbenzyl chloride (VBC) monomer onto a poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA) film and subsequent sulfonation processes. The IEC values and water uptakes of the prepared membranes increased when increasing the contents of the poly(vinylbenzyl sulfonic acid) (PVBSA) graft polymers in the membranes. Compared with Nafion 212, the degree of grafting (DOG) of membranes of 50% and 70% showed higher proton conductivity with significantly lower methanol permeability. The combination of these properties suggests that the prepared membranes are promising for future application in direct methanol fuel cells.

  19. Gas hydrate in nature

    Science.gov (United States)

    Ruppel, Carolyn D.

    2018-01-17

    Gas hydrate is a naturally occurring, ice-like substance that forms when water and gas combine under high pressure and at moderate temperatures. Methane is the most common gas present in gas hydrate, although other gases may also be included in hydrate structures, particularly in areas close to conventional oil and gas reservoirs. Gas hydrate is widespread in ocean-bottom sediments at water depths greater than 300–500 meters (m; 984–1,640 feet [ft]) and is also present in areas with permanently frozen ground (permafrost). Several countries are evaluating gas hydrate as a possible energy resource in deepwater or permafrost settings. Gas hydrate is also under investigation to determine how environmental change may affect these deposits.

  20. Influence of Silica/Sulfonated Polyether-Ether Ketone as Polymer Electrolyte Membrane for Hydrogen Fueled Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Sri Handayani

    2011-12-01

    Full Text Available The operation of non-humidified condition of proton exchange membrane fuel cell (PEMFC using composite sPEEK-silica membrane is reported. Sulfonated membrane of PEEK is known as hydrocarbon polyelectrolyte membrane for PEMFC and direct methanol fuel cell (DMFC. The state of the art of fuel cells is based on the perluorosulfonic acid membrane (Nafion. Nafion has been the most used in both PEMFC and DMFC due to good performance although in low humidified condition showed poor current density. Here we reported the effect of silica in hydrocarbon sPEEK membrane that contributes for a better water management system inside the cell, and showed 0.16 W/cm2 of power density which is 78% higher than that of non-silica modified [Keywords: composite membrane, polyether-ether ketone, silica, proton exchange membrane fuel cell].

  1. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  2. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  3. Selectivity of Direct Methanol Fuel Cell Membranes

    Directory of Open Access Journals (Sweden)

    Antonino S. Aricò

    2015-11-01

    Full Text Available Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK, new generation perfluorosulfonic acid (PFSA systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC. The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2. This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115.

  4. Selectivity of Direct Methanol Fuel Cell Membranes.

    Science.gov (United States)

    Aricò, Antonino S; Sebastian, David; Schuster, Michael; Bauer, Bernd; D'Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-11-24

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion(®) were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate-PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion(®) 115-based MEA (77 mW·cm(-2) vs. 64 mW·cm(-2)). This result was due to a lower methanol crossover (47 mA·cm(-2) equivalent current density for s-PEEK vs. 120 mA·cm(-2) for Nafion(®) 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm² for s-PEEK vs. 0.22 Ohm cm² for Nafion(®) 115).

  5. Novel crosslinked membranes based on sulfonated poly(ether ether ketone) for direct methanol fuel cells.

    Science.gov (United States)

    Zhu, Yuanqin; Zieren, Shelley; Manthiram, Arumugam

    2011-07-14

    Novel covalently crosslinked membranes based on sulfonated poly(ether ether ketone) and carboxylated polysulfone exhibit much lower methanol crossover and better performance in direct methanol fuel cells at 65 °C in 1 and 2 M methanol solutions compared to Nafion 115 membranes.

  6. Spectroscopic determination of anthraquinone in kraft pulping liquors using a membrane interface

    Science.gov (United States)

    X.S. Chai; X.T. Yang; Q.X. Hou; J.Y. Zhu; L.-G. Danielsson

    2003-01-01

    A spectroscopic technique for determining AQ in pulping liquor was developed to effectively separate AQ from dissolved lignin. This technique is based on a flow analysis system with a Nafion membrane interface. The AQ passed through the membrane is converted into its reduced form, AHQ, using sodium hydrosulfite. AHQ has distinguished absorption characteristics in the...

  7. Use of Novel Reinforced Cation Exchange Membranes for Microbial Fuel Cells

    International Nuclear Information System (INIS)

    Kamaraj, Sathish-Kumar; Romano, Sergio Mollá; Moreno, Vicente Compañ; Poggi-Varaldo, H.M.; Solorza-Feria, O.

    2015-01-01

    This work has been focused on the synthesis and characterization of different blended membranes SPEEK-35PVA (Water), SPEEK-35PVA (DMAc) prepared by casting and nanofiber-reinforced proton exchange membranes Nafion-PVA-15, Nafion-PVA-23 and SPEEK/PVA-PVB. The two first reinforced membranes were made up of Nafion® polymer deposited between polyvinyl alcohol (PVA) nanofibers. The last composite membrane is considered because the PVA is a hydrophilic polymer which forms homogeneous blends with SPEEK suitable to obtain high proton conductivity, while the hydrophobic PVB can produce blends in a phase separation morphology in which very low water uptake can be found. The synthesized membranes showed an outstanding stability, high proton conductivity, and enhanced mechanical and barrier properties. The membranes were characterized in single chamber microbial fuel cells (SCMFCs) using electrochemically enriched high sodic saline hybrid H-inocula (Geobacter metallireducen, Desulfurivibrio alkaliphilus, and Marinobacter adhaerens) as biocatalyst. The best performance was obtained with Nafion-PVA-15 membrane, which achieved a maximum power density of 1053 mW/m 3 at a cell voltage of 340 mV and displayed the lowest total internal resistance (Rint ≈ 522 Ω). This result is in agreement with the low oxygen permeability and the moderate conductivity found in this kind of membranes. These results are encouraging towards obtaining high concentrated sodic saline model wastewater exploiting MFCs

  8. Carbon nanotubes rooted montmorillonite (CNT-MM) reinforced nanocomposite membrane for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, Dhanagopal, E-mail: dmani_cat@yahoo.co.in [Department of Materials Engineering, Faculty of Engineering, University of Concepcion, Concepcion (Chile); Mangalaraja, Ramalinga Viswanathan, E-mail: mangal@udec.cl [Department of Materials Engineering, Faculty of Engineering, University of Concepcion, Concepcion (Chile); Avila, Ricardo E. [Personal Dosimetry Section, Chilean Nuclear Energy Commission, Cas. 188-D, Santiago (Chile); Siddheswaran, Rajendran [Department of Materials Engineering, Faculty of Engineering, University of Concepcion, Concepcion (Chile); Ananthakumar, Solaiappan [Materials and Minerals Division, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala (India)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Novel montmorillonite-CNT (MM-CNT) nanohybrid materials were produced by CVD. Black-Right-Pointing-Pointer Highly selective crystalline carbon nanotubes were grown over montmorillonite. Black-Right-Pointing-Pointer Fabricated Nafion-MM-CNT nanocomposite membrane by solution casting method. Black-Right-Pointing-Pointer Homogeneous dispersion of MM-CNT in the Nafion matrix was achieved. Black-Right-Pointing-Pointer Combined effect of montmorillonite and CNT improves the thermal stability of Nafion. - Abstract: Nafion based nanocomposite membranes containing montmorillonite-carbon nanotubes (a binary hybrid material) were produced to develop high performance polymer electrolyte fuel cells. Multi walled carbon nanotubes were grown over 20 and 25 wt% iron loaded montmorillonite catalysts by CVD using acetylene as the carbon precursor. Growth experiments were carried out at optimised conditions to obtain highly selective crystalline carbon nanotubes. X-ray diffraction spectra of the catalysts were recorded for the structural characterisation and definition of particle size. The carbon nanotubes obtained were examined by various physico chemical characterisation studies such as SEM, TEM, Raman spectroscopy and TG analyses to understand the morphology and crystallinity of the CNTs. The MM-CNT hybrid material with I{sub D}/I{sub G} ratio of Raman spectral band as 0.53 represents the high selectivity towards CNTs. Thus the hybrid material produced was considered as the best nanofiller to develop polymer nanocomposites. Nafion based nanocomposite membranes were prepared by adding MM-CNT as nanofiller by solution casting method. A better dispersion of MM-CNT into the Nafion matrix was observed and the addition of the MM-CNT improved the thermal stability of the Nafion membrane.

  9. Carbon nanotubes rooted montmorillonite (CNT-MM) reinforced nanocomposite membrane for PEM fuel cells

    International Nuclear Information System (INIS)

    Manikandan, Dhanagopal; Mangalaraja, Ramalinga Viswanathan; Avila, Ricardo E.; Siddheswaran, Rajendran; Ananthakumar, Solaiappan

    2012-01-01

    Highlights: ► Novel montmorillonite-CNT (MM-CNT) nanohybrid materials were produced by CVD. ► Highly selective crystalline carbon nanotubes were grown over montmorillonite. ► Fabricated Nafion-MM-CNT nanocomposite membrane by solution casting method. ► Homogeneous dispersion of MM-CNT in the Nafion matrix was achieved. ► Combined effect of montmorillonite and CNT improves the thermal stability of Nafion. - Abstract: Nafion based nanocomposite membranes containing montmorillonite-carbon nanotubes (a binary hybrid material) were produced to develop high performance polymer electrolyte fuel cells. Multi walled carbon nanotubes were grown over 20 and 25 wt% iron loaded montmorillonite catalysts by CVD using acetylene as the carbon precursor. Growth experiments were carried out at optimised conditions to obtain highly selective crystalline carbon nanotubes. X-ray diffraction spectra of the catalysts were recorded for the structural characterisation and definition of particle size. The carbon nanotubes obtained were examined by various physico chemical characterisation studies such as SEM, TEM, Raman spectroscopy and TG analyses to understand the morphology and crystallinity of the CNTs. The MM-CNT hybrid material with I D /I G ratio of Raman spectral band as 0.53 represents the high selectivity towards CNTs. Thus the hybrid material produced was considered as the best nanofiller to develop polymer nanocomposites. Nafion based nanocomposite membranes were prepared by adding MM-CNT as nanofiller by solution casting method. A better dispersion of MM-CNT into the Nafion matrix was observed and the addition of the MM-CNT improved the thermal stability of the Nafion membrane.

  10. Electrical Characterization and Hydrogen Peroxide Sensing Properties of Gold/Nafion:Polypyrrole/MWCNTs Electrochemical Devices

    Directory of Open Access Journals (Sweden)

    Gaetano Saitta

    2013-03-01

    Full Text Available Electrochemical devices using as substrates copier grade transparency sheets are developed by using ion conducting Nafion:polypyrrole mixtures, deposited between gold bottom electrodes and upper electrodes based on Multi Walled Carbon Nanotubes (MWCNTs. The electrical properties of the Nafion:polypyrrole blends and of the gold/Nafion:polypyrrole/MWCNTs devices are investigated under dry conditions and in deionized water by means of frequency dependent impedance measurements and time domain electrical characterization. According to current-voltage measurements carried out in deionized water, the steady state current forms cycles characterized by redox peaks, the intensity and position of which reversibly change in response to H2O2, with a lower detection limit in the micromolar range. The sensitivity that is obtained is comparable with that of other electrochemical sensors that however, unlike our devices, require supporting electrolytes.

  11. Hydration rate of obsidian.

    Science.gov (United States)

    Friedman, I; Long, W

    1976-01-30

    The hydration rates of 12 obsidian samples of different chemical compositions were measured at temperatures from 95 degrees to 245 degrees C. An expression relating hydration rate to temperature was derived for each sample. The SiO(2) content and refractive index are related to the hydration rate, as are the CaO, MgO, and original water contents. With this information it is possible to calculate the hydration rate of a sample from its silica content, refractive index, or chemical index and a knowledge of the effective temperature at which the hydration occurred. The effective hydration temperature can be either measured or approximated from weather records. Rates have been calculated by both methods, and the results show that weather records can give a good approximation to the true EHT, particularly in tropical and subtropical climates. If one determines the EHT by any of the methods suggested, and also measures or knows the rate of hydration of the particular obsidian used, it should be possible to carry out absolute dating to +/- 10 percent of the true age over periods as short as several years and as long as millions of years.

  12. Preparation and voltammetric characterization of electrodes coated with Langmuir-Schaefer ultrathin films of Nafion®

    Directory of Open Access Journals (Sweden)

    Bertoncello Paolo

    2003-01-01

    Full Text Available Ultrathin films of Nafion® perfluorinated polymer were deposited on indium-tin oxide electrodes (ITO by using Langmuir-Schaefer (LS technique, after optimization of the subphase composition conditions. Morphological characteristics of these coatings were obtained by Atomic Force Microscopy (AFM. Nafion® LS films showed a good uniformity and complete coverage of the electrode surface, however a different organization degree of the polymer layer was evidenced with respect to thin films deposited by spin-coating. ITO electrodes modified with Nafion® LS coatings preconcentrate by ion-exchange electroactive cations, such as Ru[(NH36]3+, dissolved in diluted solutions. The electroactive species is retained by the Nafion® LS coated ITO also after transfer of the modified electrode into pure supporting electrolyte. This allowed the use of the ruthenium complex as voltammetric probe to test diffusion phenomena within the Nafion® LS films. Apparent diffusion coefficients (Dapp of Ru[(NH36]3+ incorporated in Nafion® LS films were obtained by voltammetric measurements. Dapp values decrease slightly by increasing the amount of ruthenium complex incorporated in the ultrathin film. They are significantly lower than values typical for recasted Nafion® films, in agreement with the highly condensed nature of the Nafion® LS fims.

  13. Methane Hydrates: Chapter 8

    Science.gov (United States)

    Boswell, Ray; Yamamoto, Koji; Lee, Sung-Rock; Collett, Timothy S.; Kumar, Pushpendra; Dallimore, Scott

    2008-01-01

    Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be

  14. Performance enhancement of membrane electrode assemblies with plasma etched polymer electrolyte membrane in PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong-Hun; Yoon, Won-Sub [School of Advanced Materials Engineering, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702 (Korea); Bae, Jin Woo; Cho, Yoon-Hwan; Lim, Ju Wan; Ahn, Minjeh; Jho, Jae Young; Sung, Yung-Eun [World Class University (WCU) program of Chemical Convergence for Energy and Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), 599 Gwanak-Ro, Gwanak-gu, Seoul 151-744 (Korea); Kwon, Nak-Hyun [Fuel Cell Vehicle Team 3, Advanced Technology Center, Corporate Research and Development Division, Hyundai-Kia Motors, 104 Mabuk-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-912 (Korea)

    2010-10-15

    In this work, a surface modified Nafion 212 membrane was fabricated by plasma etching in order to enhance the performance of a membrane electrode assembly (MEA) in a polymer electrolyte membrane fuel cell. Single-cell performance of MEA at 0.7 V was increased by about 19% with membrane that was etched for 10 min compared to that with untreated Nafion 212 membrane. The MEA with membrane etched for 20 min exhibited a current density of 1700 mA cm{sup -2} at 0.35 V, which was 8% higher than that of MEA with untreated membrane (1580 mA cm{sup -2}). The performances of MEAs containing etched membranes were affected by complex factors such as the thickness and surface morphology of the membrane related to etching time. The structural changes and electrochemical properties of the MEAs with etched membranes were characterized by field emission scanning electron microscopy, Fourier transform-infrared spectrometry, electrochemical impedance spectroscopy, and cyclic voltammetry. (author)

  15. Performance enhancement of direct ethanol fuel cell using Nafion composites with high volume fraction of titania

    Science.gov (United States)

    Matos, B. R.; Isidoro, R. A.; Santiago, E. I.; Fonseca, F. C.

    2014-12-01

    The present study reports on the performance enhancement of direct ethanol fuel cell (DEFC) at 130 °C with Nafion-titania composite electrolytes prepared by sol-gel technique and containing high volume fractions of the ceramic phase. It is found that for high volume fractions of titania (>10 vol%) the ethanol uptake of composites is largely reduced while the proton conductivity at high-temperatures is weakly dependent on the titania content. Such tradeoff between alcohol uptake and conductivity resulted in a boost of DEFC performance at high temperatures using Nafion-titania composites with high fraction of the inorganic phase.

  16. Conductivity studies on commercially available proton-conducting membranes with different equivalent weight

    Energy Technology Data Exchange (ETDEWEB)

    Huslage, J; Buechi, F N; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Two perfluorosulfonic acid membranes, Nafion{sup R} 105 and Nafion{sup R} 115 with the same thickness but different equivalent weights (EW = 1000 g/eq. resp. 1100 g/eq.) were characterised by conductivity measurements at different water vapour activities in the temperature range of 25-70{sup o}C. The results demonstrate that a lower membrane equivalent weight opens the possibility to obtain the needed proton conductivity at lower water vapour activity. This is especially important for those fuel cell applications, in which the cell is operated without external humidification of the fuel gases. (author) 5 figs., 5 refs.

  17. Proton Conductivity of Proton Exchange Membrane Synergistically Promoted by Different Functionalized Metal-Organic Frameworks.

    Science.gov (United States)

    Rao, Zhuang; Tang, Beibei; Wu, Peiyi

    2017-07-12

    In this study, two functionalized metal-organic frameworks (MOFs), UiO-66-SO 3 H and UiO-66-NH 2 , were synthesized. Then, different composite proton exchange membranes (PEMs) were prepared by single doping and codoping of these two MOFs, respectively. It was found that codoping of these two MOFs with suitable sizes was more conducive to the proton conductivity enhancement of the composite PEM. A synergistic effect between these two MOFs led to the the formation of more consecutive hydration channels in the composite PEM. It further greatly promoted the proton conductivity of the composite PEM. The proton conductivity of the codoped PEM reached up to 0.256 S/cm under 90 °C, 95% RH, which was ∼1.17 times higher than that of the recast Nafion (0.118 S/cm). Besides, the methanol permeability of the codoped PEM was prominently decreased owing to the methanol trapping effect of the pores of these two MOFs. Meanwhile, the high water and thermal stabilities of these two MOFs were beneficial to the high proton conductivity stability of the codoped PEM under high humidity and high temperature. The proton conductivity of the codoped PEM was almost unchanged throughout 3000 min of testing under 90 °C, 95% RH. This work provides a valuable reference for designing different functionalized MOFs to synergistically promote the proton conductivities of PEMs.

  18. Immobilization of Nafion-ordered mesoporous carbon on a glassy carbon electrode: Application to the detection of epinephrine

    International Nuclear Information System (INIS)

    Zhou Ming; Guo Liping; Hou Ying; Peng Xiaojuan

    2008-01-01

    A stable suspension of ordered mesoporous carbon (OMC) was obtained by dispersing OMC in a solution of Nafion. By coating the suspension onto glassy carbon (GC) electrode, cyclic voltammetry was used to evaluate the electrochemical behaviors of Nafion-OMC-modified GC (Nafion-OMC/GC) electrode in 0.1 mmol L -1 hexaammineruthenium(III) chloride (Ru(NH 3 ) 6 Cl 3 )/0.1 mol L -1 KCl solution, where Nafion-OMC/GC electrode shows a faster electron transfer rate as compared with OMC/GC, Nafion/GC and GC electrodes. Due to the unique properties of Nafion-OMC, an obvious decrease in the overvoltage of the epinephrine (EP) oxidation (ca. 100 mV at pH 4.1 and 115 mV at pH 7.0) as well as a dramatic increase in the peak current (12 times at pH 4.1 and 6 times at pH 7.0) was observed at Nafion-OMC/GC electrode compared to that seen at GC electrode. By combining the advantages of OMC with those of Nafion, the anodic peak of EP and that of ascorbic acid (AA) were separated successfully (by ca. 144-270 mV) in the pH range of 2.0-10.0, which may make Nafion-OMC/GC electrode potential for selective determination of EP in the presence of AA at a broad pH range. As an EP sensor, the EP amperometric response at Nafion-OMC/GC electrode in pH 7.0 PBS is extremely stable, with 99% of the initial activity remaining (compared to 32% at GC surface) after 120 min stirring of 0.20 mmol L -1 EP. And Nafion-OMC/GC electrode can be used to readily detect the physiological concentration of EP at pH 7.0. These make Nafion-OMC/GC electrode potential candidates for stable and efficient electrochemical sensor for the detection of EP. The solubilization of OMC by Nafion may provide a route to more precise manipulation, and functionalization for the construction of OMC-based sensors, as well as allowing OMC to be introduced to biologically relevant systems

  19. Immobilization of Nafion-ordered mesoporous carbon on a glassy carbon electrode: Application to the detection of epinephrine

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Ming [Faculty of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun 130024 (China); Guo Liping [Faculty of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun 130024 (China)], E-mail: guolp078@nenu.edu.cn; Hou Ying; Peng Xiaojuan [Faculty of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun 130024 (China)

    2008-05-01

    A stable suspension of ordered mesoporous carbon (OMC) was obtained by dispersing OMC in a solution of Nafion. By coating the suspension onto glassy carbon (GC) electrode, cyclic voltammetry was used to evaluate the electrochemical behaviors of Nafion-OMC-modified GC (Nafion-OMC/GC) electrode in 0.1 mmol L{sup -1} hexaammineruthenium(III) chloride (Ru(NH{sub 3}){sub 6}Cl{sub 3})/0.1 mol L{sup -1} KCl solution, where Nafion-OMC/GC electrode shows a faster electron transfer rate as compared with OMC/GC, Nafion/GC and GC electrodes. Due to the unique properties of Nafion-OMC, an obvious decrease in the overvoltage of the epinephrine (EP) oxidation (ca. 100 mV at pH 4.1 and 115 mV at pH 7.0) as well as a dramatic increase in the peak current (12 times at pH 4.1 and 6 times at pH 7.0) was observed at Nafion-OMC/GC electrode compared to that seen at GC electrode. By combining the advantages of OMC with those of Nafion, the anodic peak of EP and that of ascorbic acid (AA) were separated successfully (by ca. 144-270 mV) in the pH range of 2.0-10.0, which may make Nafion-OMC/GC electrode potential for selective determination of EP in the presence of AA at a broad pH range. As an EP sensor, the EP amperometric response at Nafion-OMC/GC electrode in pH 7.0 PBS is extremely stable, with 99% of the initial activity remaining (compared to 32% at GC surface) after 120 min stirring of 0.20 mmol L{sup -1} EP. And Nafion-OMC/GC electrode can be used to readily detect the physiological concentration of EP at pH 7.0. These make Nafion-OMC/GC electrode potential candidates for stable and efficient electrochemical sensor for the detection of EP. The solubilization of OMC by Nafion may provide a route to more precise manipulation, and functionalization for the construction of OMC-based sensors, as well as allowing OMC to be introduced to biologically relevant systems.

  20. Proton-conductive nanochannel membrane for fuel-cell applications.

    Science.gov (United States)

    Oleksandrov, Sergiy; Lee, Jeong-Woo; Jang, Joo-Hee; Haam, Seungjoo; Chung, Chan-Hwa

    2009-02-01

    Novel design of proton conductive membrane for direct methanol fuel cells is based on proton conductivity of nanochannels, which is acquired due to the electric double layer overlap. Proton conductivity and methanol permeability of an array of nanochannels were studied. Anodic aluminum oxide with pore diameter of 20 nm was used as nanochannel matrix. Channel surfaces of an AAO template were functionalized with sulfonic groups to increase proton conductivity of nanochannels. This was done in two steps; at first -SH groups were attached to walls of nanochannels using (3-Mercaptopropyl)-trimethyloxysilane and then they were converted to -SO3H groups using hydrogen peroxide. Treatment steps were analyzed by Fourier Transform Infrared spectroscopy and X-ray Photoelectron Spectroscopy. Proton conductivity and methanol permeability were measured. The data show methanol permeability of membrane to be an order of magnitude lower, than that measured of Nafion. Ion conductivity of functionalized AAO membrane was measured by an impedance analyzer at frequencies ranging from 1 Hz to 100 kHz and voltage 50 mV to be 0.15 Scm(-1). Measured ion conductivity of Nafion membrane was 0.05 Scm(-1). Obtained data show better results in comparison with commonly used commercial available proton conductive membrane Nafion, thus making nanochannel membrane very promising for use in fuel cell applications.

  1. Introduction of gold nanoparticles into myoglobin-Nafion film for direct electrochemistry application.

    Science.gov (United States)

    Xie, Wenting; Kong, Linlin; Kan, Meixiu; Han, Dongmei; Wang, Xueji; Zhang, Hui-Min

    2010-10-01

    An effective myoglobin-Nafion film is prepared by introducing gold nanoparticles in through a simple procedure by ion-exchange combined with electrochemical reduction. Gold nanoparticles are highly dispersed in myoglobin-Nafion film with an average size of 2.3 +/- 0.2 nm. The electrochemical behavior of myoglobin entrapped in the film has been carefully investigated with cyclic voltammetry. The results show that the introduction of gold nanoparticles into myoglobin-Nafion film makes the direct electron transfer of myoglobin efficient. A pair of well-defined redox peaks for myoglobin heme Fe(II)/Fe(III) is observed with a formal potential of -0.150 V in 0.1 M phosphate buffer (pH 7.0). The electrochemical parameters of myoglobin in the composite film are further calculated with the results of the electron-transfer rate constant (k(s)) as 0.93 s(-1) and the charge transfer coefficient (alpha) as 0.69. The experimental results also demonstrate that the immobilized myoglobin retains its electrocatalytic activity for the reduction of hydrogen peroxide and the catalytic reduction peak of myoglobin appear in a linear relationship with H2O2 concentration in the range of 10.0-235.0 microM with correlation coefficient of 0.9970. Thus fabricated Au/Mb/Nafion electrode should give a new approach for developing redox protein or enzyme-based biosensors.

  2. Room temperature aerobic oxidation of amines by a nanocrystalline ruthenium oxide pyrochlore nafion composite catalyst.

    Science.gov (United States)

    Venkatesan, Shanmuganathan; Kumar, Annamalai Senthil; Lee, Jyh-Fu; Chan, Ting-Shan; Zen, Jyh-Myng

    2012-05-14

    The aerobic oxidation of primary amines to their respective nitriles has been carried out at room temperature using a highly reusable nanocrystalline ruthenium oxide pyrochlore Nafion composite catalyst (see figure). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The use of polybenzimidazole membranes in vanadium redox flow batteries leading to increased coulombic efficiency and cycling performance

    International Nuclear Information System (INIS)

    Zhou, X.L.; Zhao, T.S.; An, L.; Wei, L.; Zhang, C.

    2015-01-01

    An issue with conventional vanadium redox flow batteries (VRFB) with Nafion membranes is the crossover of vanadium ions, resulting in low coulombic efficiency and rapid decay in capacity. In this work, a VRFB with a polybenzimidazole (PBI) membrane is tested and compared with the Nafion system. Results show that the PBI-based VRFB exhibits a substantially higher coulombic efficiency of up to 99% at current densities ranging from 20 mA cm −2 to 80 mA cm −2 . More importantly, it is demonstrated that the PBI-based VRFB has a capacity decay rate of as low as 0.3% per cycle, which is four times lower than that of the Nafion system (1.3% per cycle). The improved coulombic efficiency and cycling performance are attributed to the low crossover of vanadium ions through the PBI membrane

  4. Development and fabrication of membrane electrode assembly for PEM fuel cell

    International Nuclear Information System (INIS)

    Anjum, M.A.R.; Arshad, M.; Hussain, S.; Saeed, M.M.

    2011-01-01

    The 10 cm x 10 cm active area membrane electrode assembly (MEA) has been fabricated by adopting two routes, i.e., catalyst-coated membrane (CCM) and catalyst-coated support (CCS). In CCM method, the catalyst is directly applied on the Nafion membrane while in CCS method, catalyst is applied on support (GDL). The catalyst layer was prepared by nano-sized platinum on carbon particle, the ionomer material of the membrane and a solvent that allows the catalyst to behave like ink. The catalyst slurry was applied on the membrane, hot-pressed the sandwich of GDL and catalyst-coated Nafion membrane to form a single unit which behaves as electrodes. The primary tests regarding the efficiency of indigenously-fabricated MEAs have been carried out successfully. The performance of MEA with respect to continuous operation for long hours from the standpoint of proper functioning was also checked. A maximum power of 13 watt was obtained. (author)

  5. Grafting of glycidyl methacrylate/styrene onto polyvinyldine fluoride membranes for proton exchange fuel cell

    International Nuclear Information System (INIS)

    Abdel-Hady, E.E.; El-Toony, M.M.; Abdel-Hamed, M.O.

    2013-01-01

    Simultaneous gamma irradiation was used effectively for grafting facilitation of glycidyl methacrylate (GMA) and styrene (Sty) onto polyvinylidine fluoride (PVDF). Grafting percent was 122 when monomers ratio are 30% Sty and 70% GMA at 20 KGy gamma irradiation dose. Characterization of the membrane was performed using FT-IR, ion exchange capacity (IEC), water uptake. Mechanical behavior such as tensile strength was studied while morphological structure of the membrane was carried out by scan electron microscope (SEM). The membrane with degree of grafting 122% showed higher IEC (1.2 m mol/cm) than those of Nafion membrane with corresponding proton conductivity of 5.7 × 10 −2 S/cm similar to it. Operating the fuel cell unit showed higher voltage of the prepared membranes than that of Nafion 211. The prepared membranes stability for 300 h work approved their applicability from the cost benefit point of view

  6. Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems.

    Science.gov (United States)

    Cheng, Chi-Yuan; Han, Songi

    2013-01-01

    Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.

  7. Ubiquinol-cytochrome c reductase (Complex III) electrochemistry at multi-walled carbon nanotubes/Nafion modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Pelster, Lindsey N.; Minteer, Shelley D.

    2012-01-01

    Highlights: ► The electron transport chain is important to the understanding of metabolism in the living cell. ► Ubiquinol-cytochrome c reductase is a membrane bound complex of the electron transport chain (Complex III). ► The paper details the first bioelectrochemical characterization of ubiquinol-cytochrome c reductase at an electrode. - Abstract: Electron transport chain complexes are critical to metabolism in living cells. Ubiquinol-cytochrome c reductase (Complex III) is responsible for carrying electrons from ubiquinol to cytochrome c, but the complex has not been evaluated electrochemically. This work details the bioelectrochemistry of ubiquinol-cytochrome c reductase of the electron transport chain of tuber mitochondria. The characterization of the electrochemistry of this enzyme is investigated in carboxylated multi-walled carbon nanotube/tetrabutyl ammonium bromide-modified Nafion ® modified glassy carbon electrodes by cyclic voltammetry. Increasing concentrations of cytochrome c result in a catalytic response from the active enzyme in the nanotube sandwich. The experiments show that the enzyme followed Michaelis–Menten kinetics with a K m for the immobilized enzyme of 2.97 (±0.11) × 10 −6 M and a V max of 6.31 (±0.82) × 10 −3 μmol min −1 at the electrode, but the K m and V max values decreased compared to the free enzyme in solution, which is expected for immobilized redox proteins. This is the first evidence of ubiquinol-cytochrome c reductase bioelectrocatalysis.

  8. Inverted polymer solar cells with Nafion® as the hole extraction layer: efficiency and lifetime studies

    International Nuclear Information System (INIS)

    Manceau, Matthieu; Berson, Solenn

    2014-01-01

    The use of Nafion ®  as the hole extraction layer in polymer solar cells is demonstrated in this work. Inverted devices were built on plastic foil with the following architecture: PET/ITO/ZnO/P3HT:PCBM/Nafion ® /Ag. The Nafion ®  was processed from a surfactant-free solution in alcoholic solvents on top of the active layer. Optimization of film thickness and annealing yielded fully functional devices with power conversion efficiency similar to others referenced, along with good operational stability. (paper)

  9. Inverted polymer solar cells with Nafion® as the hole extraction layer: efficiency and lifetime studies

    Science.gov (United States)

    Manceau, Matthieu; Berson, Solenn

    2014-01-01

    The use of Nafion® as the hole extraction layer in polymer solar cells is demonstrated in this work. Inverted devices were built on plastic foil with the following architecture: PET/ITO/ZnO/P3HT:PCBM/Nafion®/Ag. The Nafion® was processed from a surfactant-free solution in alcoholic solvents on top of the active layer. Optimization of film thickness and annealing yielded fully functional devices with power conversion efficiency similar to others referenced, along with good operational stability.

  10. Interaction between Nafion ionomer and noble metal catalyst for PEMFCs

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    The implement of polymer impregnation in electrode structure (catalyst layer) decreasing the noble metal catalyst loading by a factor of ten , , is one of the essential mile stones in the evolution of Proton Exchange Membrane Fuel Cells’ development among the application of catalyst support and e...

  11. Low methanol-permeable polyaniline/Nafion composite membrane for direct methanol fuel cells

    Czech Academy of Sciences Publication Activity Database

    Wang, C. H.; Chen, C. C.; Hsu, H. C.; Du, H. Y.; Chen, C. P.; Hwang, J. Y.; Chen, L. C.; Shih, H. C.; Stejskal, Jaroslav; Chen, K. H.

    2009-01-01

    Roč. 190, č. 2 (2009), s. 279-284 ISSN 0378-7753 R&D Projects: GA AV ČR IAA4050313 Institutional research plan: CEZ:AV0Z40500505 Keywords : DMFC * methanol crossover * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.792, year: 2009

  12. Effect of multiwalled carbon nanotube loading on the properties of Nafion(R) membranes

    CSIR Research Space (South Africa)

    Cele, NP

    2015-10-01

    Full Text Available The dispersion of carbon nanotubes is one of the problems in the application of polymer nanocomposites. In this study, the effect of chemical functionalization of the carbon nanotube surface on the dispersion of the tubes within a polymer...

  13. Sorption of single enantiomers and racemic mixture of (+/-)-.alpha.-pinene into Nafion membranes

    Czech Academy of Sciences Publication Activity Database

    Brožová, Libuše; Žitka, Jan; Sysel, P.; Hovorka, Š.; Randová, A.; Storch, Jan; Kačírková, Marie; Izák, Pavel

    2015-01-01

    Roč. 55, č. 11 (2015), s. 2967-2972 ISSN 1944-3994 R&D Projects: GA ČR(CZ) GAP106/12/0569 Institutional support: RVO:61389013 ; RVO:67985858 Keywords : sorption * racemic mixtures * pinene Subject RIV: CD - Macromolecular Chemistry; CI - Industrial Chemistry, Chemical Engineering (UCHP-M) Impact factor: 1.272, year: 2015 http://www.tandfonline.com/doi/abs/10.1080/19443994.2014.939496

  14. Reduction of methanol crossover by thin cracked metal barriers at the interface between membrane and electrode in direct methanol fuel cells

    Science.gov (United States)

    Kim, Sungjun; Jang, Segeun; Kim, Sang Moon; Ahn, Chi-Yeong; Hwang, Wonchan; Cho, Yong-Hun; Sung, Yung-Eun; Choi, Mansoo

    2017-09-01

    This work reports the successful reduction in methanol crossover by creating a thin cracked metal barrier at the interface between a Nafion® membrane and an electrode in direct methanol fuel cells (DMFCs). The cracks are generated by simple mechanical stretching of a metal deposited Nafion® membrane as a result of the elastic mismatch between the two attached surfaces. The cracked metal barriers with varying strains (∼0.5 and ∼1.0) are investigated and successfully incorporated into the DMFC. Remarkably, the membrane electrode assembly with the thin metal crack exhibits comparable ohmic resistance as well as reduction of methanol crossover, which enhanced the device performance.

  15. HYDRATE CORE DRILLING TESTS

    Energy Technology Data Exchange (ETDEWEB)

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate

  16. Improvement of interface property for membrane electrode assembly in fuel cell

    International Nuclear Information System (INIS)

    Fujii, K.; Sato, Y.; Kakigi, T.; Matsuura, A.; Mitani, N.; Muto, F.; Li Jingye; Miura, T.; Oshima, A.; Washio, M.

    2006-01-01

    Membrane electrode assembly (MEA) in polymer electrolyte fuel cells (PEFC) is consisted of proton exchange membrane (PEM), binder and Pt/C electrodes. In our previous work, partial-fluorinated sulfonic acid membranes were synthesized for PEMs using pre-EB grafting method. In the fuel cell (FC) operation, the dispersion of per-fluorinated sulfonic acid such as Nafion (DuPont de Nemours LTD.) was used for binder material. So, it is found that the trouble on conditions at three phase interface would occur at high temperature FC operation due to the differences of thermal properties. Thus, the control of interface property is important. In this study, in order to improve the interface properties, proton exchange membrane was synthesized from poly (tetrafluoroethylene-co-perfluoroalkylvinylether) (PFA), and then the obtained sulfonated PFA (s-PFA) was applied for binder material. PFA membranes were grafted in liquid styrene after EB irradiation under nitrogen atmosphere, and then sulfonated by chlorosulfonic acid solutions. The s-PFA membranes were milled to the powder in the mortar, and the average diameter was about 13 μm. S-PFA / Nafion blend dispersion was prepared by s-PFA mixed with Nafion dispersion with various ratios. MEAs were fabricated by using obtained binders, s-PFA membranes and Pt / C electrodes, followed by hot pressing at 110 degree C and at 8 MPa during 3 min. The properties of MEAs were measured by electrochemical analyses. In consequence, ion conductivities in MEA using obtained binders were about 1.3 times higher than those using Nafion dispersion. And, both power densities at 500 mA/cm 2 and maximum power densities were 1.1 times higher than those of Nafion dispersion. These are due to the improvement of the proton transfer at interface. (authors)

  17. Investigation on degradation mechanism of ion exchange membrane immersed in highly concentrated tritiated water under the Broader Approach Activities

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Yasunori, E-mail: iwai.yasunori@jaea.go.jp; Sato, Katsumi; Yamanishi, Toshihiko

    2014-10-15

    Highlights: • Endurance of Nafion ion exchange membrane immersed into 1.38 × 10{sup 12} Bq/kg of highly concentrated tritiated water has been demonstrated. • The formation of free hydrophobic free products by reactions between radicals on the membrane and oxygen caused the decrease in ionic conductivity. • From the {sup 19}F NMR spectrum, no distinctive degradation in the membrane structure by interaction with tritium was measured. - Abstract: The ion exchange membrane is a key material for electrolysis cells of the water detritiation system. Durability of ion exchange membrane has been demonstrated under the Broader Approach Activities. Long-term exposure of Nafion{sup ®} ion exchange membrane in 1.38 × 10{sup 12} Bq/kg of tritiated water was conducted at room temperature for up to 2 years. The ionic conductivity of Nafion{sup ®} membrane after immersed in tritiated water was changed. The change in color of membrane from colorless to yellowish was caused by reactions of radicals on the polymer and oxygen molecules in air. Infrared Fourier transform spectrum of a yellowish membrane revealed a small peak for bending vibration of C-H situated at 1437 cm{sup −1}, demonstrating the formation of hydrophobic functional group in the membrane. The hydrophilic network in Nafion{sup ®} membrane was partially obstructed by the hydrophobic free products. This caused the decrease in ionic conductivity. The peak for bending vibration was clearly eliminated in the spectrum of the membrane after treatment by acid for removal of free products. The high-resolution solid state {sup 19}F NMR spectrum of a membrane after immersed in tritiated water was similar to that of a membrane irradiated with gamma-rays. From the {sup 19}F NMR spectrum, no distinctive degradation in the membrane structure by interaction with tritium was measured.

  18. Investigation on degradation mechanism of ion exchange membrane immersed in highly concentrated tritiated water under the Broader Approach Activities

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Sato, Katsumi; Yamanishi, Toshihiko

    2014-01-01

    Highlights: • Endurance of Nafion ion exchange membrane immersed into 1.38 × 10 12 Bq/kg of highly concentrated tritiated water has been demonstrated. • The formation of free hydrophobic free products by reactions between radicals on the membrane and oxygen caused the decrease in ionic conductivity. • From the 19 F NMR spectrum, no distinctive degradation in the membrane structure by interaction with tritium was measured. - Abstract: The ion exchange membrane is a key material for electrolysis cells of the water detritiation system. Durability of ion exchange membrane has been demonstrated under the Broader Approach Activities. Long-term exposure of Nafion ® ion exchange membrane in 1.38 × 10 12 Bq/kg of tritiated water was conducted at room temperature for up to 2 years. The ionic conductivity of Nafion ® membrane after immersed in tritiated water was changed. The change in color of membrane from colorless to yellowish was caused by reactions of radicals on the polymer and oxygen molecules in air. Infrared Fourier transform spectrum of a yellowish membrane revealed a small peak for bending vibration of C-H situated at 1437 cm −1 , demonstrating the formation of hydrophobic functional group in the membrane. The hydrophilic network in Nafion ® membrane was partially obstructed by the hydrophobic free products. This caused the decrease in ionic conductivity. The peak for bending vibration was clearly eliminated in the spectrum of the membrane after treatment by acid for removal of free products. The high-resolution solid state 19 F NMR spectrum of a membrane after immersed in tritiated water was similar to that of a membrane irradiated with gamma-rays. From the 19 F NMR spectrum, no distinctive degradation in the membrane structure by interaction with tritium was measured

  19. Sulfonated Poly(Ether Ether Ketone)/Functionalized Carbon Nanotube Composite Membrane for Vanadium Redox Flow Battery Applications

    International Nuclear Information System (INIS)

    Jia, Chuankun; Cheng, Yuanhang; Ling, Xiao; Wei, Guanjie; Liu, Jianguo; Yan, Chuanwei

    2015-01-01

    A novel sulfonated poly(ether ether ketone) (SPEEK) membrane embedded with the short-carboxylic multi-walled carbon nanotube (we name it as SPEEK/SCCT membrane) for vanadium redox flow battery (VRB) has been prepared with low capacity loss, low cost and high energy efficiency. The mechanical strength, vanadium ions permeability and performance of the membrane in the VRB single cell were characterized. Results showed that the SPEEK/SCCT membrane possessed low permeability of vanadium ions, accompanied by higher mechanical strength than the Nafion 212 membrane. The VRB single cell with SPEEK/SCCT membrane showed 7% higher coulombic efficiency (CE), 6% higher energy efficiency (EE) but lower capacity loss in comparison with the one with Nafion 212. The good cell performance, low capacity loss and high vanadium ions barrier properties of the blend membrane is of significant interest for VRB applications

  20. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ayyaru, Sivasankaran; Dharmalingam, Sangeetha, E-mail: sangeetha@annauniv.edu

    2014-03-01

    Graphical abstract: - Highlights: • Sulfonated poly ether ether ketone (SPEEK) membrane in SCMFC used to determine the BOD. • The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm. • This sensing range was 62.5% higher than that of Nafion{sup ®}. • SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}. • Nafion{sup ®} shows high anodic internal resistance (67 Ω) than the SPEEK (39 Ω). - Abstract: The present study is focused on the development of single chamber microbial fuel cell (SCMFC) using sulfonated poly ether ether ketone (SPEEK) membrane to determine the biochemical oxygen demand (BOD) matter present in artificial wastewater (AW). The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm when using artificial wastewater. This sensing range was 62.5% higher than that of Nafion{sup ®}. The most serious problem in using MFC as a BOD sensor is the oxygen diffusion into the anode compartment, which consumes electrons in the anode compartment, thereby reducing the coulomb yield and reducing the electrical signal from the MFC. SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}, resulting in low internal resistance and substrate loss, thus improving the sensing range of BOD. The system was further improved by making a double membrane electrode assembly (MEA) with an increased electrode surface area which provide high surface area for electrically active bacteria.

  1. An Investigation of Chitosan-Grafted-Poly(vinyl alcohol as an Electrolyte Membrane

    Directory of Open Access Journals (Sweden)

    Panu Danwanichakul

    2013-01-01

    Full Text Available The membrane of chitosan-grafted-poly(vinyl alcohol/poly(vinyl alcohol (CS-g-PVA/PVA was investigated along with chitosan (CS, PVA, CS/PVA, and Nafion 117 membranes for transport properties of water and methanol, mechanical properties, and ionic conductivity. The ionic conductivity, σ, of the crosslinked CS-g-PVA/PVA membrane was about 4.37 mS cm−1 and the methanol permeability, PS, was 1.8×10−7 cm2s−1. These gave the selectivity, σ/PS, of 23.95 mS·s·cm−3 compared with 16.35 mS·s·cm−3 of Nafion 117 membrane. The conductivity of the crosslinked CS-g-PVA/PVA membrane was greater than others including Nafion 117 when the membranes were saturated with methanol solution of which concentration was greater than 20%. This fact and that the mechanical properties of the wet crosslinked CS-g-PVA/PVA membrane were comparable to those of other membranes made it a promising material to be used as an electrolyte membrane in a direct methanol fuel cell.

  2. Durability study and lifetime prediction of baseline proton exchange membrane fuel cell under severe operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Marrony, M.; Quenet, S.; Aslanides, A. [European Institute for Energy Research, Emmy-Noether Strasse 11, 76131 Karlsruhe (Germany); Barrera, R.; Ginocchio, S.; Montelatici, L. [Edison, Via Giorgio La Pira 2, 10028 Trofarello (Italy)

    2008-08-01

    Comparative studies of mechanical and electrochemical properties of Nafion{sup registered} - and sulfonated polyetheretherketone polymer-type membranes are carried out under severe fuel cell conditions required by industrials, within stationary and cycling electric load profiles. These membranes are proposed to be used in PEM between 70 and 90 C as fluorinated or non-fluorinated baseline membranes, respectively. Thus, though the performance of both membranes remains suitable, Nafion{sup registered} backbone brought better mechanical properties and higher electrochemical stabilities than sulfonated polyetheretherketone backbone. The performance stability and the mechanical strength of the membrane-electrode assembly were shown to be influenced by several intrinsic properties of the membrane (e.g., thermal pre-treatment, thickness) and external conditions (fuel cell operating temperature, relative humidity). Finally, a lifetime prediction for membranes under stationary conditions is proposed depending on the operation temperature. At equivalent thicknesses (i.e. 50 {mu}m), Nafion{sup registered} membranes were estimated able to operate into the 80-90 C range while sulfonated polyetheretherketone would be limited into the 70-80 C range. This approach brings baseline information about the capability of these types of polymer electrolyte membrane under fuel cell critical operations. Finally, it is revealed as a potential tool for the selection of the most promising advanced polymers for the ensuing research phase. (author)

  3. A surface acoustic wave humidity sensor with high sensitivity based on electrospun MWCNT/Nafion nanofiber films

    International Nuclear Information System (INIS)

    Lei Sheng; Chen Dajing; Chen Yuquan

    2011-01-01

    Humidity detection has been widely used in a variety of fields. A humidity sensor with high sensitivity is reported in this paper. A surface acoustic wave resonator (SAWR) with high resonance frequency was fabricated as a basic sensitive component. Various nanotechnologies were used to improve the sensor's performance. A multi-walled carbon nanotube/Nafion (MWCNT/Nafion) composite material was prepared as humidity-sensitive films, deposited on the surface of an SAWR by the electrospinning method. The electrospun MWCNT/Nafion nanofiber films showed a three-dimensional (3D) porous structure, which was profitable for improving the sensor's performance. The new nano-water-channel model of Nafion was also applied in the humidity sensing process. Compared to other research, the present sensor showed excellent sensitivity (above 400 kHz/% relative humidity (RH) in the range from 10% RH to 80% RH), good linearity (R 2 > 0.98) and a short response time (∼3 s-63%).

  4. Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes for vanadium redox flow battery applications

    Science.gov (United States)

    Zhang, Bengui; Zhang, Shouhai; Weng, Zhihuan; Wang, Guosheng; Zhang, Enlei; Yu, Ping; Chen, Xiaomeng; Wang, Xinwei

    2016-09-01

    Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes (QADMPEK) are prepared and investigated for vanadium redox flow batteries (VRFB) application. The bulky, rigid and highly hydrophobic adamantane segment incorporated into the backbone of membrane material makes QADMPEK membranes have low water uptake and swelling ratio, and the as-prepared membranes display significantly lower permeability of vanadium ions than that of Nafion117 membrane. As a consequence, the VRFB cell with QADMPEK-3 membrane shows higher coulombic efficiency (99.4%) and energy efficiency (84.0%) than those for Nafion117 membrane (95.2% and 80.5%, respectively) at the current density of 80 mA cm-2. Furthermore, at a much higher current density of 140 mA cm-2, QADMPEK membrane still exhibits better coulombic efficiency and energy efficiency than Nafion117 membrane (coulombic efficiency 99.2% vs 96.5% and energy efficiency 76.0% vs 74.0%). Moreover, QADMPEK membranes show high stability in in-situ VRFB cycle test and ex-situ oxidation stability test. These results indicate that QADMPEK membranes are good candidates for VRFB applications.

  5. Hydrogen from electrochemical reforming of C1–C3 alcohols using proton conducting membranes

    NARCIS (Netherlands)

    Sapountzi, F. M.; Tsampas, M. N.; Fredriksson, H. O. A.; Gracia, J. M.; Niemantsverdriet, J. W.

    2017-01-01

    This study investigates the production of hydrogen from the electrochemical reforming of short-chain alcohols (methanol, ethanol, iso-propanol) and their mixtures. High surface gas diffusion Pt/C electrodes were interfaced to a Nafion polymeric membrane. The assembly separated the two chambers of an

  6. Voltammetric determination of Cd{sup 2+} based on the bifunctionality of single-walled carbon nanotubes-Nafion film

    Energy Technology Data Exchange (ETDEWEB)

    Sun Dong [Department of Pharmacy, Wenzhou Medical College, Wenzhou 325000 (China) and Department of Chemistry, Huazhong University of Science and Technology, Wuhan 430074 (China)]. E-mail: sun_dong11@163.com; Xie Xiafeng [Department of Pharmacy, Wenzhou Medical College, Wenzhou 325000 (China); Cai Yuepiao [Department of Pharmacy, Wenzhou Medical College, Wenzhou 325000 (China); Zhang Huajie [Department of Pharmacy, Wenzhou Medical College, Wenzhou 325000 (China); Wu Kangbing [Department of Chemistry, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2007-01-02

    In the presence of Nafion, single-walled carbon nanotubes (SWNTs) were easily dispersed into ethanol, resulting in a homogeneous SWNTs/Nafion suspension. After evaporating ethanol, a SWNTs/Nafion film with bifunctionality was constructed onto glassy carbon electrode (GCE) surface. Attributing to the strong cation-exchange ability of Nafion and excellent properties of SWNTs, the SWNTs/Nafion film-coated GCE remarkably enhances the sensitivity of determination of Cd{sup 2+}. Based on this, an electrochemical method was developed for the determination of trace levels of Cd{sup 2+} by anodic stripping voltammetry (ASV). In pH 5.0 NaAc-HAc buffer, Cd{sup 2+} was firstly exchanged and adsorbed onto SWNTs/Nafion film surface, and then reduce at -1.10 V. During the positive potential sweep, reduced cadmium was oxidized, and a well-defined stripping peak appeared at -0.84 V, which can be used as analytical signal for Cd{sup 2+}. The linear range is found to be from 4.0 x 10{sup -8} to 4.0 x 10{sup -6} mol L{sup -1}, and the lowest detectable concentration is estimated to be 4.0 x 10{sup -9} mol L{sup -1}. Finally, this method was successfully employed to detect Cd{sup 2+} in water samples.

  7. Voltammetric determination of Cd2+ based on the bifunctionality of single-walled carbon nanotubes-Nafion film

    International Nuclear Information System (INIS)

    Sun Dong; Xie Xiafeng; Cai Yuepiao; Zhang Huajie; Wu Kangbing

    2007-01-01

    In the presence of Nafion, single-walled carbon nanotubes (SWNTs) were easily dispersed into ethanol, resulting in a homogeneous SWNTs/Nafion suspension. After evaporating ethanol, a SWNTs/Nafion film with bifunctionality was constructed onto glassy carbon electrode (GCE) surface. Attributing to the strong cation-exchange ability of Nafion and excellent properties of SWNTs, the SWNTs/Nafion film-coated GCE remarkably enhances the sensitivity of determination of Cd 2+ . Based on this, an electrochemical method was developed for the determination of trace levels of Cd 2+ by anodic stripping voltammetry (ASV). In pH 5.0 NaAc-HAc buffer, Cd 2+ was firstly exchanged and adsorbed onto SWNTs/Nafion film surface, and then reduce at -1.10 V. During the positive potential sweep, reduced cadmium was oxidized, and a well-defined stripping peak appeared at -0.84 V, which can be used as analytical signal for Cd 2+ . The linear range is found to be from 4.0 x 10 -8 to 4.0 x 10 -6 mol L -1 , and the lowest detectable concentration is estimated to be 4.0 x 10 -9 mol L -1 . Finally, this method was successfully employed to detect Cd 2+ in water samples

  8. Cs2.5H0.5PWO40/SiO2 as addition self-humidifying composite membrane for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Wang, L.; Yi, B.L.; Zhang, H.M.; Xing, D.M.

    2007-01-01

    In this paper, we first reported a novel self-humidifying composite membrane for the proton exchange membrane fuel cell (PEMFC). Cs 2.5 H 0.5 PWO 40 /SiO 2 catalyst particles were dispersed uniformly into the Nafion (registered) resin, and then Cs 2.5 H 0.5 PWO 40 -SiO 2 /Nafion composite membrane was prepared using solution-cast method. Compared with the H 3 PWO 40 (PTA) , the Cs 2.5 H 0.5 PWO 40 /SiO 2 was steady due to the substitute of H + with Cs + and the interaction between the Cs 2.5 H 0.5 PWO 40 and SiO 2 . And compared with the performance of the fuel cell with commercial Nafion (registered) NRE-212 membrane, the cell performance with the self-humidifying composite membrane was obviously improved under both humidified and dry conditions at 60 and 80 o C. The best performance under dry condition was obtained at 60 o C. The self-humidifying composite membrane could minimize membrane conductivity loss under dry conditions due to the presence of catalyst and hydrophilic Cs 2.5 H 0.5 PWO 40 /SiO 2 particles

  9. Voltammetric sensor for caffeine based on a glassy carbon electrode modified with Nafion and graphene oxide

    International Nuclear Information System (INIS)

    Zhao, F.; Wang, F.; Zhao, W.; Zhou, J.; Liu, Y.; Zou, L.; Ye, B.

    2011-01-01

    We report on a voltammetric sensor for caffeine that is based on a glassy carbon electrode modified with Nafion and graphene oxide (GO). It exhibits a good affinity for caffeine (resulting from the presence of Nafion), and excellent electrochemical response (resulting from the pressence of GO) for the oxidation of caffeine. The electrode enables the determination of caffeine in the range from 4.0 x 10 -7 to 8.0 x 10 -5 mol L -1 , with a detection limit of 2.0 x 10 -7 mol L -1 . The sensor displays good stability, reproducibility, and high sensitivity. It was successfully applied to the quantitative determination of caffeine in beverages. (author)

  10. Vanadium Redox Flow Batteries Using meta-Polybenzimidazole-Based Membranes of Different Thicknesses.

    Science.gov (United States)

    Noh, Chanho; Jung, Mina; Henkensmeier, Dirk; Nam, Suk Woo; Kwon, Yongchai

    2017-10-25

    15, 25, and 35 μm thick meta-polybenzimidazole (PBI) membranes are doped with H 2 SO 4 and tested in a vanadium redox flow battery (VRFB). Their performances are compared with those of Nafion membranes. Immersed in 2 M H 2 SO 4 , PBI absorbs about 2 mol of H 2 SO 4 per mole of repeat unit. This results in low conductivity and low voltage efficiency (VE). In ex-situ tests, meta-PBI shows a negligible crossover of V 3+ and V 4+ ions, much lower than that of Nafion. This is due to electrostatic repulsive forces between vanadium cations and positively charged protonated PBI backbones, and the molecular sieving effect of PBI's nanosized pores. It turns out that charge efficiency (CE) of VRFBs using meta-PBI-based membranes is unaffected by or slightly increases with decreasing membrane thickness. Thick meta-PBI membranes require about 100 mV larger potentials to achieve the same charging current as thin meta-PBI membranes. This additional potential may increase side reactions or enable more vanadium ions to overcome the electrostatic energy barrier and to enter the membrane. On this basis, H 2 SO 4 -doped meta-PBI membranes should be thin to achieve high VE and CE. The energy efficiency of 15 μm thick PBI reaches 92%, exceeding that of Nafion 212 and 117 (N212 and N117) at 40 mA cm -2 .

  11. Electrocatalytic reduction of nitrite on tetraruthenated metalloporphyrins/Nafion glassy carbon modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Calfuman, Karla [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile); Aguirre, Maria Jesus [Facultad de Quimica y Biologia, Departamento de Quimica de los Materiales, Universidad de Santiago de Chile, Santiago (Chile); Canete-Rosales, Paulina; Bollo, Soledad [Facultad de Ciencias Quimicas y Farmaceuticas, Departamento de Quimica Farmacologica y Toxicologica, Universidad de Chile, Santiago (Chile); Llusar, Rosa [Departamento de Quimica Fisica y Analitica, Universidad de Jaume I, Castellon (Spain); Isaacs, Mauricio, E-mail: misaacs@uchile.cl [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile)

    2011-10-01

    Highlights: > Preparation and characterization of modified electrodes with M(II) Tetraruthenated porphyrins onto a Nafion film. > The electrodes were characterized by SEM, TEM, AFM and SECM techniques. > The modified electrodes are active in the electrochemical reduction of nitrite at -660 mV vs Ag/AgCl. > GC/Nf/CoTRP modified electrode is more electrochemically active than their Ni and Zn analogues. - Abstract: This paper describes the electrochemical reduction of nitrite ion in neutral aqueous solution mediated by tetraruthenated metalloporphyrins (Co(II), Ni(II) and Zn(II)) electrostatically assembled onto a Nafion film previously adsorbed on glassy carbon or ITO electrodes. Scanning electron microscope (SEM-EDX) and transmission electron microscopy (TEM) results have shown that on ITO electrodes the macrocycles forms multiple layers with a disordered stacking orientation over the Nafion film occupying hydrophobic and hydrophilic sites in the polyelectrolyte. Atomic force microscopy (AFM) results demonstrated that the Nafion film is 35 nm thick and tetraruthenated metalloporphyrins layers 190 nm thick presenting a thin but compacted morphology. Scanning electrochemical microscopy (SECM) images shows that the Co(II) tetraruthenated porphyrins/Nf/GC modified electrode is more electrochemically active than their Ni and Zn analogues. These modified electrodes are able to reduce nitrite at -660 mV showing enhanced reduction current and a decrease in the required overpotential compared to bare glassy carbon electrode. Controlled potential electrolysis experiments verify the production of ammonia, hydrazine and hydroxylamine at potentials where reduction of solvent is plausible demonstrating some selectivity toward the nitrite ion. Rotating disc electrode voltammetry shows that the factor that governs the kinetics of nitrite reduction is the charge propagation in the film.

  12. High-performance Fuel Cell with Stretched Catalyst-Coated Membrane: One-step Formation of Cracked Electrode.

    Science.gov (United States)

    Kim, Sang Moon; Ahn, Chi-Yeong; Cho, Yong-Hun; Kim, Sungjun; Hwang, Wonchan; Jang, Segeun; Shin, Sungsoo; Lee, Gunhee; Sung, Yung-Eun; Choi, Mansoo

    2016-05-23

    We have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generated by stretching a catalyst-coated Nafion membrane. With the strain-stress property of the membrane that is unique in the aspect of plastic deformation, membrane electrolyte assembly (MEA) was successfully incorporated into the fuel cell. Cracked electrodes with the variation of strain were investigated and electrochemically evaluated. Remarkably, mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance.

  13. Effects of the operational conditions on the membrane and electrode properties of a polymer electrolyte fuel cell

    Directory of Open Access Journals (Sweden)

    Passos Raimundo R.

    2002-01-01

    Full Text Available The effects of the operational conditions on the membrane and electrode properties on a polymer electrolyte fuel cell (PEFC were investigated as a function of the cell and the gas humidifiers temperatures, the thickness of the membrane, the impregnation with phosphotungstic acid (PWA, and the variation of the Nafion and Teflon contents in the gas diffusion electrodes. An increase of the membrane resistance was observed when the PEFC is operated at temperatures equal or higher than those of the gas humidifiers, and this is more apparent for thicker electrolyte films. In the presence of PWA, the physicochemical properties of the membrane do not appreciably change with temperature. However, in this case, a lower humidification temperature affects the electrode performance. Changes on the Nafion loading in the electrodes do not lead to any significant effect in the electrode and membrane properties. For high Teflon contents there is a small lowering of the membrane conductivity.

  14. EFFECT OF TEFLON AND NAFION LOADING AT ANODE IN DIRECT FORMIC ACID FUEL CELL (DFAFC

    Directory of Open Access Journals (Sweden)

    M. S. MASDAR

    2016-08-01

    Full Text Available DFAFC has extensive hydrophilic nature and will cause problems in a limited mass transport in the anode side of electrode. Thus, the microporous layer (MPL of DFAFC needs a different in structure and morphology compared with that of PEMFC and DMFC because it will directly affect the performance. Therefore, in this study, the formulation of anode’s MPL has been investigated by varying the amount of Teflon and Nafion. Different loading of Teflon in MPL and Nafion in catalyst layer, i.e., 0 to 40% in weight, were used to fabricate the anode’s DFAFC. The characteristic of MPLs and anode (MPL with catalyst layer such as surface morphologies and resistivity, i.e., electrical impedance, have been analyzed using field emission scanning electron microscopy (FESEM and contact angle measurements as well as electrochemical impedance spectra (EIS. Meanwhile, the performance of fabricated anode was measured using cyclic voltammetry (CV technique with a half cell of DFAFC. From the result, it was obtained that the optimum content for both Teflon and Nafion on anode’s DFAFC was 20 wt% as shown in a highest electro-activity in electrode. The single cell DFAFC with optimum MEA formulation showed a good performance and hence, it is possible to apply the electricity power for electronic devices.

  15. On the origin of the hydration interaction of LIPID bilayers from molecular dynamics simulations

    International Nuclear Information System (INIS)

    Essmann, U.; Perera, L.; Berkowitz, M.L.

    1996-01-01

    To understand the nature of the hydration forces acting between biomembranes we performed computer simulations on DLPE/water and DPPC/water systems in liquid crystalline and gel phases. The simulations show that the influence of the membrane surface on water properties is detectable only over a short range and that the membrane surfaces are rough on the molecular scale. We find that the hydration force is due to (a) the removal of only one or two layers of solvating water from the membrane surface and (b) steric interactions. The detailed structure of the solvating water is responsible for the difference in the hydration force acting between DLPE membranes compared to DPPC membranes

  16. Historical methane hydrate project review

    Science.gov (United States)

    Collett, Timothy; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta

    2013-01-01

    In 1995, U.S. Geological Survey made the first systematic assessment of the volume of natural gas stored in the hydrate accumulations of the United States. That study, along with numerous other studies, has shown that the amount of gas stored as methane hydrates in the world greatly exceeds the volume of known conventional gas resources. However, gas hydrates represent both a scientific and technical challenge and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of gas hydrates in nature, (2) assessing the volume of natural gas stored within various gas hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural gas hydrates, and (5) analyzing the effects of methane hydrate on drilling safety.Methane hydrates are naturally occurring crystalline substances composed of water and gas, in which a solid water-­‐lattice holds gas molecules in a cage-­‐like structure. The gas and water becomes a solid under specific temperature and pressure conditions within the Earth, called the hydrate stability zone. Other factors that control the presence of methane hydrate in nature include the source of the gas included within the hydrates, the physical and chemical controls on the migration of gas with a sedimentary basin containing methane hydrates, the availability of the water also included in the hydrate structure, and the presence of a suitable host sediment or “reservoir”. The geologic controls on the occurrence of gas hydrates have become collectively known as the “methane hydrate petroleum system”, which has become the focus of numerous hydrate research programs.Recognizing the importance of methane hydrate research and the need for a coordinated

  17. Development of a Crosslinked Pore-filling Membrane with an Extremely Low Swelling Ratio and Methanol Crossover for Direct Methanol Fuel Cells

    International Nuclear Information System (INIS)

    Li, Yunxi; Hoorfar, Mina; Shen, Kuizhi; Fang, Jiyong; Yue, Xigui; Jiang, Zhenhua

    2017-01-01

    A poly (ether sulphone)-based pore-filling membrane was successfully fabricated and tested against a conventional Nafion-based membrane in direct methanol fuel cells. An amino-containing polymer with a low degree of sulphonation (DS) was synthesized and used as the supporting substrate. The porous substrate was prepared by introducing the porogenic agent (tetrafluoroborate) into the membrane casting solution. The effects of the content of the porogenic agent on the pore morphologies were evaluated using field emission scanning electron microscopy. Then, an epoxy resin was introduced into the porous electrolyte for the first time to minimize the swelling and methanol crossover that resulted from the high degree of sulphonation. In essence, solidification of the amino groups in the substrate results in 3D crosslinking of epoxy resins, which greatly suppresses the swelling and methanol crossover of the composite membranes with enhanced mechanical properties and enhances the thermal and oxidation stability compared to Nafion 117. The resulting composite membrane also shows high proton conductivity that is only slightly lower than that of Nafion 117. However, the selectivity between the proton conductivity and methanol permeability is higher for the composite membranes than that of Nafion 117. The composite membrane also shows a better performance in single cell tests with 10 M methanol.

  18. In-situ small/wide-angle neutron scattering studies of the cluster structure in polyelectrolyte membrane for fuel cells

    International Nuclear Information System (INIS)

    Nakano, Tomohiro; Kaneko, Michiyo; Otomo, Toshiya; Kamiyama, Takashi; Sugiyama, Masaaki; Fukunaga, Toshiharu; Kanno, Ryoji; Yamamoto, Satoru; Hyodo, Shiaki

    2007-01-01

    Proton conductivity of Nafion membrane is varied by humidity and it has been thought to be affected by the cluster structure of the membrane. We applied Small-Angle Scattering technique under humidity-controlled atmosphere with X-ray (SAXS) and neutron (SANS) to clarify the relationship between the cluster structure and molecular structure in two types of Nafion membrane, N115 and NE151F, which have different equivalent weight (EW). The proton conductivity of N115 is higher than that of NE151F. By these two measurements, three different sized periodic structures were observed in the Nafion membrane. Contrast variation method (D/H=60/40, 75/25, 80/20, 90/10) was also applied in SANS experiments and it was suggested that two of three peaks are originated from two different sizes of water clusters. A distinguishing peak at q=0.2[A -1 ], which shifts to lower q region by humidity increase, was reproduced by a simulation of Dissipative Particle Dynamics (DPD): the shifts of the peak was interpreted as the swelling of cluster structure. The size of the cluster calculated from the peak position is positively correlated with the proton conductivity. Finally, the effect of EW on the proton conductivity of Nafion membrane was briefly discussed from the point of its cluster structure. (author)

  19. New Polymer Electrolyte Membranes Based on Acid Doped PBI For Fuel Cells Operating above 100°C

    DEFF Research Database (Denmark)

    Li, Qingfeng

    2003-01-01

    The technical achievement and challenges for the PEMFC technology based on perfluorosulfonic acid (PFSA) polymer membranes (e.g. Nafion®) are briefly discussed. The newest development for alternative polymer electrolytes for operation above 100°C. As one of the successful approaches to high...... operational temperatures, the development and evaluation of acid doped PBI membranes are reviewed, covering polymer synthesis, membrane casting, acid doping, physiochemical characterization and fuel cell tests....

  20. Mechanical Stability of H3PO4-Doped PBI/Hydrophilic-Pretreated PTFE Membranes for High Temperature PEMFCs

    International Nuclear Information System (INIS)

    Park, Jaehyung; Wang, Liang; Advani, Suresh G.; Prasad, Ajay K.

    2014-01-01

    Graphical abstract: - Highlights: • PBI/PTFE membrane was prepared by porous PTFE with hydrophilic surface pretreatment. • The durability of the prepared PBI/PTFE membrane was compared with pure PBI, PBI with untreated PTFE, and PBI-Nafion with untreated PTFE membranes. • Accelerated durability tests and SEM showed improved durability based the PBI/PTFE membrane with pretreated PTFE. - Abstract: A novel polybenzimidazole (PBI)/poly(tetrafluoroethylene) (PTFE) composite membrane doped with phosphoric acid was fabricated for high temperature operation in a polymer electrolyte membrane (PEM) fuel cell. A hydrophilic surface pretreatment was applied to the porous PTFE matrix film to improve its interfacial adhesion to the PBI polymer, thereby avoiding the introduction of Nafion ionomer which is traditionally used as a coupling agent. The pretreated PTFE film was embedded within the composite membrane during solution-casting using 5wt% PBI/DMAc solution. The mechanical stability and durability of three types of MEAs assembled with PBI only, PBI with pretreated PTFE, and PBI-Nafion with untreated PTFE membranes were evaluated under an accelerated degradation testing protocol employing extreme temperature cycling. Degradation was characterized by recording polarization curves, hydrogen crossover, and proton resistance. Cross-sections of the membranes were examined before and after thermal cycling by scanning electron microscope. Energy-dispersive X-ray spectroscopy verified that the PBI is dispersed homogeneously in the porous PTFE matrix. Results show that the PBI composite membrane with pretreated PTFE has a lower degradation rate than the Nafion/PBI membrane with untreated PTFE. Thus, the hydrophilic pretreatment employed here greatly improved the mechanical stability of the composite membrane, which resulted in improved durability under an extreme thermal cycling regime

  1. Overview: Nucleation of clathrate hydrates.

    Science.gov (United States)

    Warrier, Pramod; Khan, M Naveed; Srivastava, Vishal; Maupin, C Mark; Koh, Carolyn A

    2016-12-07

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  2. Formation of submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Soloviev, V.; Ginsburg, G.D. (Reserch Institute of Geology and Mineral Resources of the Ocean ' ' VNII Okeangeologia' ' , St. Petersburg (Russian Federation))

    1994-03-01

    Submarine gas hydrates have been discoverd in the course of deep-sea drilling (DSDP and ODP) and bottom sampling in many offshore regions. This paper reports on expeditions carried out in the Black, Caspian and Okhotsk Seas. Gas hydrate accumulations were discovered and investigated in all these areas. The data and an analysis of the results of the deep-sea drilling programme suggest that the infiltration of gas-bearing fluids is a necessary condition for gas hydrate accumulation. This is confirmed by geological observations at three scale levels. Firstly, hydrates in cores are usually associated with comparatively coarse-grained, permeable sediments as well as voids and fractures. Secondly, hydrate accumulations are controlled by permeable geological structures, i.e. faults, diapirs, mud volcanos as well as layered sequences. Thirdly, in the worldwide scale, hydrate accumulations are characteristic of continental slopes and rises and intra-continental seas where submarine seepages also are widespread. Both biogenic and catagenic gas may occur, and the gas sources may be located at various distances from the accumulation. Gas hydrates presumably originate from water-dissolved gas. The possibility of a transition from dissolved gas into hydrate is confirmed by experimental data. Shallow gas hydrate accumulations associated with gas-bearing fluid plumes are the most convenient features for the study of submarine hydrate formation in general. These accumulations are known from the Black, Caspian and Okhotsk Seas, the Gulf of Mexico and off northern California. (au) (24 refs.)

  3. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  4. Hybrid ion-exchange membranes for fuel cells and separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Carretero, F.J.; Compan, V. [Departamento de Termodinamica Aplicada, ETSII, Universidad Politecnica de Valencia, 46020 Valencia (Spain); Riande, E. [Instituto de Ciencia y Tecnologia de Polimeros (CSIC), 28006 Madrid (Spain)

    2007-11-08

    This work reports the preparation and characterization of hybrid membranes cast from dispersions of inorganic fillers in sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene solutions. Silica gel, SBA-15 and sepiolite, all of them functionalized with phenylsulfonic acid groups, were used as fillers. For comparative purposes, the performance of composite membranes cast from dispersions of functionalized inorganic fillers in Nafion {sup registered} solutions was investigated. Inspection of the texture of the membranes by using SEM techniques shows that the fillers are better dispersed in sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene than in Nafion {sup registered}. The value of the water uptake for the membranes prepared from the former polyelectrolyte is in most cases at least three times that measured for hybrid Nafion {sup registered} membranes. The conductivity of the membranes was measured at 80 C by impedance spectroscopy obtaining values of 3.44, 6.90 and 3.54 S m{sup -1} for the hybrid membranes based on the triblock copolymer containing functionalized silica gel, SBA-15 and sepiolite fillers, respectively. These results compare very favourably with those obtained at 80 C for Nafion {sup registered} hybrid membranes containing silica gel, SBA-15 and sepiolite, all of them fuctionalized with phenylsulfonic acid groups, whose conductivities are, 2.84, 6.75 and 3.31 S m{sup -1}, respectively. Resistance measurements carried out under controlled humidity conditions show that the conductivity of sulfonated triblock copolymer membranes containing functionalized SBA-15 filler undergoes a rather sharp increase when they are conditioned under an atmosphere of 75%, or larger, relative humidity. (author)

  5. Dehydration behaviour of hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Dette, S.S.; Stelzer, T.; Jones, M.J.; Ulrich, J. [Martin-Luther-Universitaet Halle-Wittenberg, Zentrum fuer Ingenieurwissenschaften, Verfahrenstechnik/TVT, 06099 Halle (Germany)

    2010-07-15

    Immersing a crystalline solvate in a suitable anti-solvent can induce phase transformation to solvent-free solid phase. In certain cases the solvent-mediated phase transition results in the generation of hollow, tubular structures. Both the tube dimensions of sodium-2-keto-L-gulonate anhydrate (skga) and the dehydration kinetics of sodium-2-keto-L-gulonate monohydrate (skgm) can be modified by the antisolvent employed. An explanation for the variable dehydration behaviour of skgm in the antisolvents is presented here. Furthermore, other crystalline hydrates were dehydrated in dry methanol. Providing an operational window can be found, any hydrate material could possibly find use in the production of tubes (micro- or nanotubes for different applications). The experimental conditions selected (dry methanol as antisolvent, dehydration temperature at 25 C) for the dehydration did not lead to the anhydrate tube growth for all hydrates investigated. Based upon the results presented here a first hypothesis is presented to explain this effect. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. A Low-Cost and High-Performance Sulfonated Polyimide Proton-Conductive Membrane for Vanadium Redox Flow/Static Batteries.

    Science.gov (United States)

    Li, Jinchao; Yuan, Xiaodong; Liu, Suqin; He, Zhen; Zhou, Zhi; Li, Aikui

    2017-09-27

    A novel side-chain-type fluorinated sulfonated polyimide (s-FSPI) membrane is synthesized for vanadium redox batteries (VRBs) by high-temperature polycondensation and grafting reactions. The s-FSPI membrane has a vanadium ion permeability that is over an order of magnitude lower and has a proton selectivity that is 6.8 times higher compared to those of the Nafion 115 membrane. The s-FSPI membrane possesses superior chemical stability compared to most of the linear sulfonated aromatic polymer membranes reported for VRBs. Also, the vanadium redox flow/static batteries (VRFB/VRSB) assembled with the s-FSPI membranes exhibit stable battery performance over 100- and 300-time charge-discharge cycling tests, respectively, with significantly higher battery efficiencies and lower self-discharge rates than those with the Nafion 115 membranes. The excellent physicochemical properties and VRB performance of the s-FSPI membrane could be attributed to the specifically designed molecular structure with the hydrophobic trifluoromethyl groups and flexible sulfoalkyl pendants being introduced on the main chains of the membrane. Moreover, the cost of the s-FSPI membrane is only one-fourth that of the commercial Nafion 115 membrane. This work opens up new possibilities for fabricating high-performance proton-conductive membranes at low costs for VRBs.

  7. Transport parameters for the modelling of water transport in ionomer membranes for PEM-fuel cells

    International Nuclear Information System (INIS)

    Meier, Frank; Eigenberger, Gerhart

    2004-01-01

    The water transport number (drag coefficient) and the hydraulic permeability were measured for Nafion. The results show a significant increase of both parameters with increasing water content indicating that they are strongly influenced by the membrane microstructure. Based on these experimental studies a new model approach to describe water transport in the H 2 -PEFC membrane is presented. This approach considers water transport by electro-osmosis caused by the proton flux through the membrane and by osmosis caused by a gradient in the chemical potential of water. It is parametrized by the measured data for the water transport number and the hydraulic permeability of Nafion. First simulation results applying this approach to a one-dimensional model of the H 2 -PEFC show good agreement with experimental data. Therefore, the developed model can be used for a new insight into the dominating mechanisms of water transport in the membrane

  8. Proton and deuteron NMR study of PTFE ionomer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, G; Pak, Y S [Dept. of Materials Science, McMaster Univ., Hamilton, Ontario (Canada)

    1992-02-01

    Proton and deuteron NMR have been conducted to investigate the ionic motion in perfluorinated ionomer membranes from Dow Chemical (XUS) and DuPont (Nafion{sup R}). Two proton relaxation peaks were found in the XUS specimen absorbed with H{sub 2}O. The major (narrow) peak presented a spin-lattice relaxation time (T{sub 1}) of 107 ms while the minor (broader) one gave much longer T{sub 1}. While the former was attributed to the water molecules involved in restricted motion, the latter was expected to be associated with the protons located in the vicinity of the sulfonate groups. Similar to the previous results from the others, only a single peak was detected in Nafion{sup R} in {sup 1}H spectra, indicating that the protons in the different environments were engaging rapid exchange within NMR time scale. In contrast to the inverse proportion dependence of the linewidth on the water sorption in Nafion{sup R}, the major line of the XUS membrane exhibited insensitive linewidth dependence on the variation of H{sub 2}O concentration. The difference was attributed to the existence of narrow breaths of the pores in XUS sample, such that free water contribution to the enhancement of proton mobility was limited. The {sup 2}H spectra of Nafion{sup R} were found to possess a doublet, due to nuclear quadrupolar interaction. Dow (XUS) membrane treated in at 100% relative humidity (RH) D{sub 2}O presented a single peak with the linewidth insensitive to the amount of heavy water absorbed. An additional rise emerged on the ''shoulder'' of this single peak when treated at 33% RH. It is concluded that XUS membrane does not provide strong hydrogen bonding to eliminate the rapid motion average over the nuclear quadrupole interaction. (orig.).

  9. Gas hydrate cool storage system

    Science.gov (United States)

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  10. THERMODYNAMIC MODEL OF GAS HYDRATES

    OpenAIRE

    Недоступ, В. И.; Недоступ, О. В.

    2015-01-01

    The interest to gas hydrates grows last years. Therefore working out of reliable settlement-theoretical methods of definition of their properties is necessary. The thermodynamic model of gas hydrates in which the central place occupies a behaviour of guest molecule in cell is described. The equations of interaction of molecule hydrate formative gas with cell are received, and also an enthalpy and energy of output of molecule from a cell are determined. The equation for calculation of thermody...

  11. Acetylcholinesterase biosensor based on SnO2 nanoparticles-carboxylic graphene-nafion modified electrode for detection of pesticides.

    Science.gov (United States)

    Zhou, Qing; Yang, Long; Wang, Guangcan; Yang, Yun

    2013-11-15

    A sensitive amperometric acetylcholinesterase (AChE) biosensor, based on SnO2 nanoparticles (SnO2 NPs), carboxylic graphene (CGR) and nafion (NF) modified glassy carbon electrode (GCE) for the detection of methyl parathion and carbofuran has been developed. The nanocomposites of SnO2 NPs and CGR was synthesized and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), respectively. Chitosan (CS) was used to immobilize AChE on SnO2 NPs-CGR-NF/GCE and to improve electronic transmission between AChE and SnO2 NPs-CGR-NF/GCE. NF was used as the protective membrane for the AChE biosensor. The SnO2 NPs-CGR-NF nanocomposites with excellent conductivity, catalysis and biocompatibility offered an extremely hydrophilic surface for AChE adhesion. The AChE biosensor showed favorable affinity to acetylthiocholine chloride (ATCl) and could catalyze the hydrolysis of ATCl with an apparent Michaelis-Menten constant value of 131 μM. The biosensor detected methyl parathion in the linear range from 10(-13) to 10(-10)M and from 10(-10) to 10(-8)M. The biosensor detected carbofuran in the linear range from 10(-12) to 10(-10)M and from 10(-10) to 10(-8)M. The detection limits of methyl parathion and carbofuran were 5 × 10(-14)M and 5 × 10(-13)M, respectively. The biosensor exhibited low applied potential, high sensitivity and acceptable stability, thus providing a promising tool for analysis of pesticides. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Evaluation and Characterization of Membranes for HI/H2O/I2 Water Separation for the S-I Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Frederick F. Stewart

    2005-09-01

    In the Sulfur-Iodine (S-I) thermochemical cycle, iodine is added to the product of the Bunsen reaction to facilitate the separation of sulfuric acid (H2SO4) from hydriodic acid (HI). The amount of iodine can be as high as 83% of the overall mass load of the Bunsen product stream, which potentially introduces a large burden on the cycle’s efficiency. Removal of water from the HI and I2 mixture would substantially reduce the amount of required additional iodine. In this work, Nafion® membranes have been studied for their use as de-watering membranes. Specifically, two thicknesses of Nafion membranes have been found to be effective in this application. The thicker membrane, Nafion-117®, produces moderate fluxes of water with very high separation factors. On the other hand, the thinner membrane, Nafion-112®, yielded very large fluxes of water, however with smaller separation factors. All membranes were found to be durable and did not degrade in contact with the feed stream over periods of time up to three months.

  13. Water Uptake Profile In a Model Ion-Exchange Membrane: Conditions For Water-Rich Channels

    Science.gov (United States)

    2014-12-01

    these issues, more research is needed to improve their performance. Aqueous alkaline electrolytes such as potassium hydroxide (KOH) trace their begin...1.2 Water distribution Motivation Hydroxide ion transport through the membrane is fundamentally dependent on the amount and distribution of water...hydrophilic-to-hydrophobic ratio, for several reasons. First, this is the case for Nafion, the gold standard for PEM membranes; its unique pore structure

  14. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina; Yamauchi, Kazuo; Li, Zongjin; Zhang, Xixiang; Ma, Hongyan; Ge, Shenguang

    2017-01-01

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10

  15. Deposition of polymeric perfluored thin films in proton ionic membranes by plasma processes

    International Nuclear Information System (INIS)

    Polak, Peter Lubomir; Mousinho, Ana Paula; Ordonez, Nelson; Silva Zambom, Luis da; Mansano, Ronaldo Domingues

    2007-01-01

    In this work the surfaces of polymeric membranes based on Nafion (proton conducting material), used in proton exchange membranes fuel cells (PEMFC) had been modified by plasma deposition of perfluored polymers, in order to improve its functioning in systems of energy generation (fuel cells). The deposition increases the chemical resistance of the proton ionic polymers without losing the electrical properties. The processing of the membranes also reduces the permeability of the membranes to the alcohols (methanol and ethanol), thus preventing poisoning of the fuel cell. The processing of the membranes of Nafion was carried through in a system of plasma deposition using a mixture of CF 4 and H 2 gases. The plasma processing was made mainly to increase the chemical resistance and result in hydrophobic surfaces. The Fourier transformed infrared (FTIR) technique supplies a spectrum with information about the CF n bond formation. Through the Rutherford back scattering (RBS) technique it was possible to verify the deposition rate of the polymeric layer. The plasma process with composition of 60% of CF 4 and 40% of H 2 presented the best deposition rate. By the spectrum analysis for the optimized configuration, it was possible to verify that the film deposition occurred with a thickness of 90 nm, and fluorine concentration was nearly 30%. Voltammetry made possible to verify that the fluorination increases the membranes chemical resistance, improving the stability of Nafion, becoming an attractive process for construction of fuel cells

  16. Hydrate-CASM for modeling Methane Hydrate-Bearing Sediments

    Science.gov (United States)

    De La Fuente Ruiz, M.; Vaunat, J.; Marin Moreno, H.

    2017-12-01

    A clear understanding of the geomechanical behavior of methane hydrate-bearing sediments (MHBS) is crucial to assess the stability of the seafloor and submarine infrastructures to human and natural loading changes. Here we present the Hydrate-CASM, a new elastoplastic constitutive model to predict the geomechanical behavior of MHBS. Our model employs the critical state model CASM (Clay and Sand Model) because of its flexibility in describing the shape of the yield surface and its proven ability to predict the mechanical behavior of sands, the most commercially viable hydrate reservoirs. The model considers MHBS as a deformable elastoplastic continuum, and hydrate-related changes in the stress-strain behavior are predicted by a densification mechanism. The densification attributes the mechanical contribution of hydrate to; a reduction of the available void ratio; a decrease of the swelling line slope; and an increase of the volumetric yield stress. It is described by experimentally derived physical parameters except from the swelling slope coefficient that requires empirical calibration. The Hydrate-CASM is validated against published triaxial laboratory tests performed at different confinement stresses, hydrate saturations, and hydrate morphologies. During the validation, we focused on capturing the mechanical behavior of the host sediment and consider perturbations of the sediment's mechanical properties that could result from the sample preparation. Our model successfully captures the experimentally observed influence of hydrate saturation in the magnitude and trend of the stiffness, shear strength, and dilatancy of MHBS. Hence, we propose that hydrate-related densification changes might be a major factor controlling the geomechanical response of MHBS.

  17. Probing the temperature-dependent changes of the interfacial hydration and viscosity of Tween20 : cholesterol (1 : 1) niosome membrane using fisetin as a fluorescent molecular probe.

    Science.gov (United States)

    Mishra, Jhili; Swain, Jitendriya; Mishra, Ashok Kumar

    2018-05-16

    A detailed photophysical study of fisetin in a Tween20 : cholesterol (1 : 1) niosome membrane has been carried out. Fisetin is found to partition well into the Tween20 : cholesterol (1 : 1) niosome membrane at low temperature (Kp = 2.7 × 104 M-1 at 10 °C). Cetylpyridinium chloride quenching study confirms the location of fisetin molecules in the interfacial domain of Tween20 : cholesterol (1 : 1) niosome membrane. The emission from the prototropic forms of fisetin (neutral form, excited state anion, ground state anion and phototautomer form) is found to sensitively reflect the local heterogeneities in Tween20 : cholesterol (1 : 1) niosome membrane. The shift in anionic emission maximum with variation in temperature shows the sensitivity of fisetin towards water accessibility at the interfacial domain of Tween20 : cholesterol (1 : 1) niosome membrane. Zeta potential value confirms that there is no role of surface charge in the multiple prototropism of fisetin in Tween20 : cholesterol (1 : 1) niosome membrane. The microviscosity changes with temperature, as reflected in fluorescence anisotropy values of fisetin phototautomeric species FT*, give information about the temperature-induced changes in the motional resistance offered by the interfacial domain of the niosomal membrane to small molecules. A temperature-dependent fluorescence lifetime study confirms the distribution of FT* in the two different sites of niosomal interfacial domain, i.e. water-deficient inner site and water-accessible outer site. This heterogeneity in distribution of FT* is further confirmed through time-resolved fluorescence anisotropy decay resulting in two different rotational time constants (faster component of ∼1.04 ns originates from water-accessible outer site and slower component of ∼16.50 ns originates from water-deficient inner site). The interfacial location of fisetin in Tween20 : cholesterol (1 : 1) niosome membrane has

  18. Ductile flow of methane hydrate

    Science.gov (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  19. A nafion coated capacitive humidity sensor on a flexible PET substrate

    KAUST Repository

    Sapsanis, Christos

    2017-03-07

    This paper reports a simple and low-cost technique for fabricating low-power capacitive humidity sensors without the use of a cleanroom environment. A maskless laser engraving system was utilized to fabricate two different gold electrode structures, interdigitated electrodes and Hilbert\\'s fifth-order fractal. The capacitive structures were implemented on a flexible PET substrate. The usage of Nafion, a well-known polymer for its hydrophilic properties as a sensing film, was attempted on the PET and outperformed the current efforts in flexible substrates. Its humidity sensing properties were evaluated in an automated gas setup with a relative humidity (RH %) ranging from 15% to 95 %.

  20. A nafion coated capacitive humidity sensor on a flexible PET substrate

    KAUST Repository

    Sapsanis, Christos; Buttner, Ulrich; Omran, Hesham; Belmabkhout, Youssef; Shekhah, Osama; Eddaoudi, Mohamed; Salama, Khaled N.

    2017-01-01

    This paper reports a simple and low-cost technique for fabricating low-power capacitive humidity sensors without the use of a cleanroom environment. A maskless laser engraving system was utilized to fabricate two different gold electrode structures, interdigitated electrodes and Hilbert's fifth-order fractal. The capacitive structures were implemented on a flexible PET substrate. The usage of Nafion, a well-known polymer for its hydrophilic properties as a sensing film, was attempted on the PET and outperformed the current efforts in flexible substrates. Its humidity sensing properties were evaluated in an automated gas setup with a relative humidity (RH %) ranging from 15% to 95 %.

  1. Nafion/2,2'-bipyridyl-modified bismuth film electrode for anodic stripping voltammetry

    International Nuclear Information System (INIS)

    Torma, Ferenc; Kadar, Mihaly; Toth, Klara; Tatar, Eniko

    2008-01-01

    This paper describes the fabrication, characterisation and the application of a Nafion/2,2'-bipyridyl/bismuth composite film-coated glassy carbon electrode (NC(Bpy)BiFE) for the anodic stripping voltammetric determination of trace metal ions (Zn 2+ , Cd 2+ and Pb 2+ ). The NC(Bpy)BiFE electrode is prepared by first applying a 2.5 mm 3 drop of a coating solution containing 0.5 wt% Nafion and 0.1% (w/v) 2,2'-bipyridil (Bpy) onto the surface of a glassy carbon electrode, while the Bi film was plated in situ simultaneously with the target metal ions at -1.4 V. The main advantage of the polymer coated bismuth film electrode is that the sensitivity of the stripping responses is increased considerably due to the incorporation of the neutral chelating agent of 2,2'-bipyridyl (Bpy) in the Nafion film, while the Nafion coating improved the mechanical stability of the bismuth film and its resistance to the interference of surfactants. The key experimental parameters relevant to both the electrode fabrication and the voltammetric measurement were optimized on the basis of the stripping signals. With a 2 min deposition time in the presence of oxygen, linear calibration curves were obtained in a wide concentration range (about 2-0.001 μM) with detection limits of 8.6 nM (0.56 μg dm -3 ) for Zn 2+ , 1.1 nM (0.12 μg dm -3 ) for Cd 2+ and 0.37 nM (0.077 μg dm -3 ) for Pb 2+ . For nine successive preconcentration/determination/electrode renewal experiments the standard deviations were between 3 and 5% at 1.2 μM for zinc and 0.3-0.3 μM concentration level for lead and cadmium, respectively, and the method exhibited excellent selectivity in the presence of the excess of several potential interfering metal ions. The analytical utility of the stripping voltammetric method elaborated was tested in the assay of heavy metals in some real samples and the method was validated by ICP-MS technique

  2. Evaluation of sulfonated polysulfone/zirconium hydrogen phosphate composite membranes for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Ozden, Adnan; Ercelik, Mustafa; Devrim, Yilser; Colpan, C. Ozgur; Hamdullahpur, Feridun

    2017-01-01

    Highlights: •Very thin SPSf/ZrP composite membranes were prepared by solution casting method. •The viability of SPSf/ZrP membranes for DMFCs was investigated for the first time. •Superior proton conductivity over Nafion ® 115 was achieved between 45–80 °C. •Desired membrane characteristics, along with low manufacturing cost were achieved. •Single cell DMFC performance was improved up to 13%. -- Abstract: Direct methanol fuel cell (DMFC) technology has advanced perceivably, but technical challenges remain that must be overcome for further performance improvements. Thus, in this study, sulfonated polysulfone/zirconium hydrogen phosphate (SPSf/ZrP) composite membranes with various sulfonation degrees (20%, 35%, and 42%) and a constant concentration of ZrP (2.5%) were prepared to mitigate the technical challenges associated with the use of conventional Nafion ® membranes in DMFCs. The composite membranes were investigated through Scanning Electron Microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), Thermogravimetric Analysis (TGA), oxidative stability and water uptake measurements, and single cell testing. Comparison was also made with Nafion ® 115. Single cell tests were performed under various methanol concentrations and cell temperatures. Stability characteristics of the DMFCs under charging and discharging conditions were investigated via 1200 min short-term stability tests. The response characteristics of the DMFCs under dynamic conditions were determined at the start-up and shut-down stages. Composite membranes with sulfonation degrees of 35% and 42% were found to be highly promising due to their advanced characteristics with respect to proton conductivity, water uptake, thermal resistance, oxidative stability, and methanol suppression. For the whole range of parameters studied, the maximum power density obtained for SPSf/ZrP-42 (119 mW cm −2 ) was found to be 13% higher than that obtained for Nafion ® 115 (105 mW cm −2 ).

  3. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)

    2012-07-01

    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  4. Formation and dissociation of CO{sub 2} and CO{sub 2}-THF hydrates compared to CH{sub 4} and CH{sub 4}-THF hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Giavarini, C.; Maccioni, F.; Broggi, A. [Roma Univ. La Sapienza, Roma (Italy). Dept. of Chemical Engineering; Politi, M. [ENEL-RICERCHE, Brindisi (Italy)

    2008-07-01

    Carbon sequestration involves the removal of greenhouse gases from industrial or utility plant streams and their long term storage so that they cannot interact with the climate system. Different methods for selective carbon dioxide (CO{sub 2}) removal are in commercial use and are based on, gas absorption, membrane process, and cryogenic fractionation. In addition, disposal of captured CO{sub 2} in the ocean and in geological reservoirs has been proposed by researchers. Another challenge is to take advantage of the properties of CO{sub 2} hydrates for carbon sequestration since it could have a number of uses such as chemical production. As such, it is important to understand the hydrate decomposition kinetics during storage, transportation, and disposal. This paper presented a project that involved the separation of carbon dioxide from the flue gases of powers plants, in the form of hydrate. The project also involved the storage, use, and disposal of the hydrate. The purpose of the study was to evaluate the decomposition kinetics of CO{sub 2} hydrate containing different quantities of ice, at low pressures and temperatures between -3 and 0 degrees Celsius. In addition, in order to evaluate the tetrahydrofuran (THF) stabilization effect, the study examined the influence of THF on the formation and decomposition kinetics of mixed THF-methane (CH{sub 4}) and THF-CO{sub 2} hydrates. Preservation tests were conducted to determine the best pressure and temperature conditions for the mixed-hydrates conservation, with reference to the simple hydrates. The paper described the apparatus for the formation and dissociation tests which consisted of a jacketed stainless steel reactor, equipped with stirrer. The paper also described the hydrate formation procedure as well as hydrate characterization. Last, the paper discussed the hydrate dissociation tests that were conducted immediately after hydrate formation in the reactor. It was concluded that the hydrophilic and hydrophobic

  5. Calcium Aluminate Cement Hydration Model

    Directory of Open Access Journals (Sweden)

    Matusinović, T.

    2011-01-01

    Full Text Available Calcium aluminate cement (AC is a very versatile special cement used for specific applications. As the hydration of AC is highly temperature dependent, yielding structurally different hydration products that continuously alter material properties, a good knowledge of thermal properties at early stages of hydration is essential. The kinetics of AC hydration is a complex process and the use of single mechanisms models cannot describe the rate of hydration during the whole stage.This paper examines the influence of temperature (ϑ=5–20 °C and water-to-cement mass ratio (mH /mAC = 0.4; 0.5 and 1.0 on hydration of commercial iron-rich AC ISTRA 40 (producer: Istra Cement, Pula, Croatia, which is a part of CALUCEM group, Figs 1–3. The flow rate of heat generation of cement pastes as a result of the hydration reactions was measured with differential microcalorimeter. Chemically bonded water in the hydrated cement samples was determined by thermo-gravimetry.Far less heat is liberated when cement and water come in contact for the first time, Fig. 1, than in the case for portland cement (PC. Higher water-to-cement ratio increases the heat evolved at later ages (Fig. 3 due to higher quantity of water available for hydration. A significant effect of the water-to-cement ratio on the hydration rate and hydration degree showed the importance of water as being the limiting reactant that slows down the reaction early. A simplified stoichiometric model of early age AC hydration (eq. (8 based on reaction schemes of principal minerals, nominally CA, C12A7 and C4AF (Table 1, was employed. Hydration kinetics after the induction period (ϑ < 20 °C had been successfully described (Fig. 4 and Table 2 by a proposed model (eq. (23 which simultaneously comprised three main mechanisms: nucleation and growth, interaction at phase boundary, and mass transfer. In the proposed kinetic model the nucleation and growth is proportional to the amount of reacted minerals (eq

  6. Shifting Focus: From Hydration for Performance to Hydration for Health.

    Science.gov (United States)

    Perrier, Erica T

    2017-01-01

    Over the past 10 years, literature on hydration biomarkers has evolved considerably - from (de)hydration assessment towards a more global definition of biomarkers of hydration in daily life. This shift in thinking about hydration markers was largely driven by investigating the differences that existed between otherwise healthy individuals whose habitual, ad-libitum drinking habits differ, and by identifying physiological changes in low-volume drinkers who subsequently increase their water intake. Aside from obvious differences in urinary volume and concentration, a growing body of evidence is emerging that links differences in fluid intake with small, but biologically significant, differences in vasopressin (copeptin), glomerular filtration rate, and markers of metabolic dysfunction or disease. Taken together, these pieces of the puzzle begin to form a picture of how much water intake should be considered adequate for health, and represent a shifting focus from hydration for performance, toward hydration for health outcomes. This narrative review outlines the key areas of research in which the global hydration process - including water intake, urinary hydration markers, and vasopressin - has been associated with health outcomes, focusing on kidney and metabolic endpoints. It will also provide a commentary on how various hydration biomarkers may be used in hydration for health assessment. Finally, if adequate water intake can play a role in maintaining health, how might we tell if we are drinking enough? Urine output is easily measured, and can take into account differences in daily physical activity, climate, dietary solute load, and other factors that influence daily water needs. Today, targets have been proposed for urine osmolality, specific gravity, and color that may be used by researchers, clinicians, and individuals as simple indicators of optimal hydration. However, there remain a large number of incomplete or unanswered research questions regarding the

  7. An investigation of the structure–property relationships in ionic polymer polymer composites (IP2Cs) manufactured by polymerization in situ of PEDOT/PSS on Nafion®117

    International Nuclear Information System (INIS)

    Di Pasquale, G; Messina, F G; Pollicino, A; Puglisi, R; Graziani, S; Umana, E

    2014-01-01

    Ionic polymer polymer composites (IP 2 Cs) are all-organic electroactive polymers (EAPs) that show sensing and actuation capabilities when a deformation or a voltage is applied, respectively. They are fabricated starting from an ionic polymer coated on both sides with a conducting polymer as electrode element. In this work, poly(3,4-ethylendioxytiophene)–poly-(styrenesulfonate) (PEDOT/PSS) has been polymerized directly on Nafion ® 117 membrane and devices have been manufactured varying the polymerization time. Water and ethylene glycol (EG) have been used as solvents. The obtained IP 2 Cs have been characterized using thermal and mechanical analyses and electromechanically tested. The results have shown that in IP 2 Cs manufactured by polymerization in situ the PEDOT/PSS layer adheres very strongly on the Nafion ® 117 film, improving the possibility of rehydrating the devices after use. Moreover, taking into account that the different polymerization times influence the uniformity of the surface of the organic electrode and, consequently, both device stiffness and electrode conductivity, the structure–property relationships of the obtained devices have been investigated. The influence of the different solvents inside the devices has also been studied when IP 2 Cs have been used as actuators or sensors. Reported results show that it is possible to modulate the performances of IP 2 Cs by varying some manufacture parameters and the solvent. (paper)

  8. The temperature hydration kinetics

    Directory of Open Access Journals (Sweden)

    Mircea Oroian

    2017-07-01

    Full Text Available The aim of this study is to evaluate the hydration kinetics of lentil seeds (Lens culinaris in water at different temperatures (25, 32.5, 40, 55, 70 and 80 °C for assessing the adequacy of models for describing the absorption phenomena during soaking. The diffusion coefficient values were calculated using Fick’s model for spherical and hemispherical geometries and the values were in the range of 10−6 m2/s. The experimental data were fitted to Peleg, Sigmoidal, Weibull and Exponential models. The models adequacy was determined using regression coefficients (R2, root mean square error (RMSE and reduced chi-square (χ2. The Peleg model is the suitable one for predicting the experimental data. Temperature had a positive and significant effect on the water absorption capacities and absorption was an endothermic process.

  9. Electrochemistry and electrocatalysis of myoglobin immobilized in sulfonated graphene oxide and Nafion films.

    Science.gov (United States)

    Chen, Guiying; Sun, Hong; Hou, Shifeng

    2016-06-01

    In this study, sulfonated graphene oxide (SGO) was synthesized and characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). It was used to make Mb-SGO-Nafion composite films by coating myoglobin (Mb) on the glassy carbon electrodes (GCE). Positions of the Soret absorption bands suggested that Mb retained its native conformation in the films. Mb-SGO-Nafion film modified electrode showed a pair of well-defined and nearly reversible cyclic voltammetry peaks at around -0.39 V versus saturated calomel electrode (SCE) in pH 7.0 buffers, characteristic of heme Fe(III)/Fe(II) redox couples. Electrochemical parameters such as electron transfer rate constant (ks) and formal potential (E(o')) were estimated by fitting the data of square-wave voltammetry with nonlinear regression analysis. Experimental data demonstrated that the electron transfer between Mb and electrode was greatly facilitated and showed good electrocatalytic properties toward various substrates, such as H2O2 and NaNO2, with significant lowering of reduction overpotential. Copyright © 2016. Published by Elsevier Inc.

  10. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in graphene oxide–Nafion nanocomposite film

    International Nuclear Information System (INIS)

    Zhang Lili; Cheng Huhu; Zhang Huimin; Qu Liangti

    2012-01-01

    Direct electron transfer of horseradish peroxidase (HRP) immobilized in graphene oxide (GO)–Nafion nanocomposite film and its application as a new biosensor was investigated with electrochemical methods. Immobilized HRP shows a pair of well-defined redox waves and retains its bioelectrocatalytic activity for the reduction of H 2 O 2 and O 2 . As a new sensor with excellent electrocatalytic response to the reduction of H 2 O 2 and O 2 , calibrations with good linear relationships were obtained from 1.0 μmol L −1 to 1.0 mmol L −1 for H 2 O 2 and from 0.5 μmol L −1 to 18.6 μmol L −1 for O 2 with the detection limits of 4.0 × 10 −7 mol L −1 for H 2 O 2 and 1.0 × 10 −7 mol L −1 for O 2 at a signal-to-noise ratio of 3. Additionally, the responses showed Michaelis–Menten behavior with K m app values of 0.684 mmol L −1 for H 2 O 2 and 0.0160 mmol L −1 for O 2 . Moreover, the cathodic peak current of an HRP/GO/Nafion/GCE biosensor decreases by less than 5% after 4 weeks. These results reveal that GO can be conveniently incorporated into a polymer nanocomposite for fabrication of new GO-based biosensors.

  11. Voltammetric Determination of Guanine on the Electrode Modified by Gold Deposit and Nafion Film

    Directory of Open Access Journals (Sweden)

    L.G. Shaidarova

    2016-09-01

    Full Text Available Electrodeposited gold and Nafion-gold composite on the surface of glassy carbon electrodes (GCE have shown electrocatalytic activity during guanine oxidation. In comparison with the unmodified electrode, decreasing of the oxidation potential by 100 mV and increasing of the current of organic compound oxidation have been observed. When the Nafion (NF film is applied to the surface of the glassy carbon electrode with electrodeposited gold, a five-fold increase of guanine oxidation current has been achieved compared to its oxidation on the modified electrode without the NF film. Conditions have been found for electrodeposition of gold on the surface of the glassy carbon electrode, including that one covered with the NF film, as well as for registration of the maximum catalytic current on these electrodes. Linear dependence of the electrocatalytic response of the modified electrode from the guanine concentration has been observed in the range from 5·10–6 to 5·10–3 mol·L–1 (for Au GCE and from 5·10–7 to 5·10–3 mol·L–1 (for NF-Au GCE.

  12. Use of novel permeable membrane and air cathodes in acetate microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Pant, Deepak, E-mail: deepak.pant@vito.b [Separation and Conversion Technology, VITO - Flemish Institute for Technological Research, Boeretang 200, Mol 2400 (Belgium); Van Bogaert, Gilbert; De Smet, Mark; Diels, Ludo; Vanbroekhoven, Karolien [Separation and Conversion Technology, VITO - Flemish Institute for Technological Research, Boeretang 200, Mol 2400 (Belgium)

    2010-11-01

    In the existing microbial fuel cells (MFCs), the use of platinized electrodes and Nafion as proton exchange membrane (PEM) leads to high costs leading to a burden for wastewater treatment. In the present study, two different novel electrode materials are reported which can replace conventional platinized electrodes and can be used as very efficient oxygen reducing cathodes. Further, a novel membrane which can be used as an ion permeable membrane (Zirfon) can replace Nafion as the membrane of choice in MFCs. The above mentioned gas porous electrodes were first tested in an electrochemical half cell configuration for their ability to reduce oxygen and later in a full MFC set up. It was observed that these non-platinized air electrodes perform very well in the presence of acetate under MFC conditions (pH 7, room temperature) for oxygen reduction. Current densities of -0.43 mA cm{sup -2} for a non-platinized graphite electrode and -0.6 mA cm{sup -2} for a non-platinized activated charcoal electrode at -200 mV vs. Ag/AgCl of applied potential were obtained. The proposed ion permeable membrane, Zirfonwas tested for its oxygen mass transfer coefficient, K{sub 0} which was compared with Nafion. The K{sub 0} for Zirfon was calculated as 1.9 x 10{sup -3} cm s{sup -1}.

  13. Preparation of the proton exchange membranes for fuel cell under pre-irradiation induced grafting method

    International Nuclear Information System (INIS)

    Li Jingye; Muto, F.; Matsuura, A.; Kakiji, T.; Miura, T.; Oshima, A.; Washio, M.; Katsumura, Y.

    2006-01-01

    Proton exchange membranes (PEMs) were prepared via pre-irradiation induced grafting of styrene or styrene/divinylbenzene (S/DVB) into the crosslinked polytetrafluoroethylene (RX-PTFE) films with thickness around 10 m and then sulfonated by chlorosulfonic acid. The membrane electrode assembles (MEAs) based on these PEMs with ion exchange capacity (IEC) values around 2meq/g were prepared by hot-press with Nafion dispersion coated on the surfaces of the membranes and electrodes. And the MEA based on the Nafion 112 membrane was also prepared under same procedure as a comparison. The performances of the MEAs in single fuel cell were tested under different working temperatures and humidification conditions. The performance of the synthesized PEMs showed better results than that of Nafion 112 membrane under low humidification at 80 degree C. The electrochemical impedance spectra (EIS) were taken with the direct current density of 0.5A/cm 2 and the resulted curves in Nyqvist representation obeyed the half circle pattern. (authors)

  14. Low Permeable Hydrocarbon Polymer Electrolyte Membrane for Vanadium Redox Flow Battery.

    Science.gov (United States)

    Jung, Ho-Young; Moon, Geon-O; Jung, Seunghun; Kim, Hee Tak; Kim, Sang-Chai; Roh, Sung-Hee

    2017-04-01

    Polymer electrolyte membrane (PEM) confirms the life span of vanadium redox flow battery (VRFB). Products from Dupont, Nafion membrane, is mainly used for PEM in VRFB. However, permeation of vanadium ion occurs because of Nafion’s high permeability. Therefore, the efficiency of VRFB decreases and the prices becomes higher, which hinders VRFB’s commercialization. In order to solve this problem, poly(phenylene oxide) (PPO) is sulfonated for the preparation of low-priced hydrocarbon polymer electrolyte membrane. sPPO membrane is characterized by fundamental properties and VRFB cell test.

  15. Inorganic-based proton conductive composite membranes for elevated temperature and reduced relative humidity PEM fuel cells

    Science.gov (United States)

    Wang, Chunmei

    Proton exchange membrane (PEM) fuel cells are regarded as highly promising energy conversion systems for future transportation and stationary power generation and have been under intensive investigations for the last decade. Unfortunately, cutting edge PEM fuel cell design and components still do not allow economically commercial implementation of this technology. The main obstacles are high cost of proton conductive membranes, low-proton conductivity at low relative humidity (RH), and dehydration and degradation of polymer membranes at high temperatures. The objective of this study was to develop a systematic approach to design a high proton conductive composite membrane that can provide a conductivity of approximately 100 mS cm-1 under hot and dry conditions (120°C and 50% RH). The approach was based on fundamental and experimental studies of the proton conductivity of inorganic additives and composite membranes. We synthesized and investigated a variety of organic-inorganic Nafion-based composite membranes. In particular, we analyzed their fundamental properties, which included thermal stability, morphology, the interaction between inorganic network and Nafion clusters, and the effect of inorganic phase on the membrane conductivity. A wide range of inorganic materials was studied in advance in order to select the proton conductive inorganic additives for composite membranes. We developed a conductivity measurement method, with which the proton conductivity characteristics of solid acid materials, zirconium phosphates, sulfated zirconia (S-ZrO2), phosphosilicate gels, and Santa Barbara Amorphous silica (SBA-15) were discussed in detail. Composite membranes containing Nafion and different amounts of functionalized inorganic additives (sulfated inorganics such as S-ZrO2, SBA-15, Mobil Composition of Matter MCM-41, and S-SiO2, and phosphonated inorganic P-SiO2) were synthesized with different methods. We incorporated inorganic particles within Nafion clusters

  16. Alcohol cosurfactants in hydrate antiagglomeration.

    Science.gov (United States)

    York, J Dalton; Firoozabadi, Abbas

    2008-08-28

    Because of availability, as well as economical and environmental considerations, natural gas is projected to be the premium fuel of the 21st century. Natural gas production involves risk of the shut down of onshore and offshore operations because of blockage from hydrates formed from coproduced water and hydrate-forming species in natural gas. Industry practice has been usage of thermodynamic inhibitors such as alcohols often in significant amounts, which have undesirable environmental and safety impacts. Thermodynamic inhibitors affect bulk-phase properties and inhibit hydrate formation. An alternative is changing surface properties through usage of polymers and surfactants, effective at 0.5 to 3 weight % of coproduced water. One group of low dosage hydrate inhibitors (LDHI) are kinetic inhibitors, which affect nucleation rate and growth. A second group of LDHI are antiagglomerants, which prevent agglomeration of small hydrate crystallites. Despite great potential, work on hydrate antiagglomeration is very limited. This work centers on the effect of small amounts of alcohol cosurfactant in mixtures of two vastly different antiagglomerants. We use a model oil, water, and tetrahydrofuran as a hydrate-forming species. Results show that alcohol cosurfactants may help with antiagglomeration when traditional antiagglomerants alone are ineffective. Specifically, as low as 0.5 wt. % methanol cosurfactant used in this study is shown to be effective in antiagglomeration. Without the cosurfactant there will be agglomeration independent of the AA concentration. To our knowledge, this is the first report of alcohol cosurfactants in hydrate antiagglomerants. It is also shown that a rhamnolipid biosurfactant is effective down to only 0.5 wt. % in such mixtures, yet a quaternary ammonium chloride salt, i. e., quat, results in hydrate slurries down to 0.01 wt. %. However, biochemical surfactants are less toxic and biodegradable, and thus their use may prove beneficial even if at

  17. Improvement on performance and efficiency of direct methanol fuel cells using hydrocarbon-based membrane electrode assembly

    International Nuclear Information System (INIS)

    Kim, Joon-Hee; Yang, Min-Jee; Park, Jun-Young

    2014-01-01

    Highlights: • Faradaic efficiency and water transfer coefficient (WTC) of DMFC MEAs are calculated based on mass balance measurements. • Faradaic efficiency of the HC-based MEAs is generally improved over the Nafion-based MEAs. • Nafion-based MEAs show a WTC of 3, whereas the HC-based MEAs show a very low WTC of -2. • Low WTC of the HC-based MEAs indicates the back-diffusion of water from the cathode to the anode. • Performance of HC-based MEAs is improved as the fuel stoichiometry increases, maintaining high Faradaic efficiency. - Abstract: In order to improve the energy efficiency (fuel efficiency and electrical power) of direct methanol fuel cells (DMFCs), the hydrocarbon (HC) membrane-based membrane electrode assemblies (MEAs) are investigated under various operating conditions. The MEAs are then compared with the conventional Nafion-based MEA in terms of their efficiency and performance. The Faradaic efficiency and water transfer coefficient (WTC) are calculated based on mass balance measurements. The Faradaic efficiency of the HC-based MEAs is improved over the Nafion-based MEAs since methanol crossover decreased. The performance of HC-based MEAs shows strong dependency on the anode stoichiometry at high current densities probably because of the limited mass transport of fuel, which is not observed for the Nafion-based MEAs. The Nafion-based MEAs show a WTC of 3, whereas the HC-based MEAs show a very low WTC of −2, indicating the back-diffusion of water from the cathode to the anode. This may have limited mass transport by interrupting proton conduction at high current densities. The performance of HC-based MEAs at high current densities is improved as the fuel stoichiometry increases; High Faradaic efficiency is maintained by decreasing the cathode stoichiometry

  18. Hydrodeoxygenation of bio-derived phenols to hydrocarbons using RANEY Ni and Nafion/SiO2 catalysts.

    Science.gov (United States)

    Zhao, Chen; Kou, Yuan; Lemonidou, Angeliki A; Li, Xuebing; Lercher, Johannes A

    2010-01-21

    A simple, green, cost- and energy-efficient route for converting phenolic components in bio-oil to hydrocarbons and methanol has been developed, with nearly 100% yields. In the heterogeneous catalysts, RANEY Ni acts as the hydrogenation catalyst and Nafion/SiO(2) acts as the Brønsted solid acid for hydrolysis and dehydration.

  19. Square-wave stripping voltammetric determination of caffeic acid on electrochemically reduced graphene oxide-Nafion composite film.

    Science.gov (United States)

    Filik, Hayati; Çetintaş, Gamze; Avan, Asiye Aslıhan; Aydar, Sevda; Koç, Serkan Naci; Boz, İsmail

    2013-11-15

    An electrochemical sensor composed of Nafion-graphene nanocomposite film for the voltammetric determination of caffeic acid (CA) was studied. A Nafion graphene oxide-modified glassy carbon electrode was fabricated by a simple drop-casting method and then graphene oxide was electrochemically reduced over the glassy carbon electrode. The electrochemical analysis method was based on the adsorption of caffeic acid on Nafion/ER-GO/GCE and then the oxidation of CA during the stripping step. The resulting electrode showed an excellent electrocatalytical response to the oxidation of caffeic acid (CA). The electrochemistry of caffeic acid on Nafion/ER-GO modified glassy carbon electrodes (GCEs) were studied by cyclic voltammetry and square-wave adsorption stripping voltammetry (SW-AdSV). At optimized test conditions, the calibration curve for CA showed two linear segments: the first linear segment increased from 0.1 to 1.5 and second linear segment increased up to 10 µM. The detection limit was determined as 9.1×10(-8) mol L(-1) using SW-AdSV. Finally, the proposed method was successfully used to determine CA in white wine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Nafion®-catalyzed microwave-assisted Ritter reaction: An atom-economic solvent-free synthesis of amides

    Science.gov (United States)

    An atom-economic solvent-free synthesis of amides by the Ritter reaction of alcohols and nitriles under microwave irradiation is reported. This green protocol is catalyzed by solid supported Nafion®NR50 with improved efficiency and reduced waste production.

  1. Obsidian hydration dates glacial loading?

    Science.gov (United States)

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  2. High power generation and COD removal in a microbial fuel cell operated by a novel sulfonated PES/PES blend proton exchange membrane

    International Nuclear Information System (INIS)

    Zinadini, S.; Zinatizadeh, A.A.; Rahimi, M.; Vatanpour, V.; Rahimi, Z.

    2017-01-01

    In this paper, firstly sulfonated polyethersulfone (SPES) was synthesized from polyethersulfone (PES) with sulfonation by chlorosulfonic acid as a sulfonating agent dissolved in concentrated sulfuric acid. PES/SPES blend proton exchange membranes (PEMs) were prepared at four different compositions with the non-solvent induced phase separation technique as alternative materials to Nafion membrane for application in a microbial fuel cell (MFC). The prepared PEMs were characterized by FTIR spectroscopy, AFM, SEM, contact angle, water uptake and oxygen permeability. Performances of the fabricated PEMs and commercial Nafion 117 were evaluated in a dual chamber MFC for treating of wastewater and electricity generation. Maximum generated power and current of the fabricated membranes were 58.726 mWm −2  at current density of 317.111 mAm −2 , while it was 45.512 mWm −2  at 228.673 mAm −2 for Nafion 117 at the similar experimental condition. The observed properties of low biofouling, low oxygen permeability, high power generation, high COD removal and coulombic efficiency (CE) indicated that the SPES membrane has potential to improve significantly the productivity of MFCs. - Highlights: • Sulfonated PES (SPES) was synthesized by chlorosulfonic acid in concentrated H 2 SO 4 . • PES/SPES blend proton exchange membranes (PEMs) were prepared for use in MFC. • Performance of PEMs and commercial Nafion 117 were tested to treat of wastewater. • Maximum generated power and current of SPES membrane was higher than Nafion 117.

  3. Hydration process for calcium-aluminate cement within EVA emulsion by SPring-8 synchrotron radiation x-ray diffraction method

    International Nuclear Information System (INIS)

    Kotera, Masaru; Matsuda, Ikuyo; Miyashita, Keiko; Adachi, Nobuyuki; Tamura, Hisayuki

    2005-01-01

    Polymer-modified mortars which consist of a polymer emulsion and cement materials have been widely developed in the construction materials fields. Forming process of the polymer-modified cement membrane simultaneously involves evaporation of water within the polymer emulsion and hydration of cement. It is important for the polymer-modified cement paste that the hydrate crystal of cement is generating by the hydration during the setting process under existence of the polymer emulsion. In this study, hydration process for calcium-aluminate cement under existence of poly (ethylene-vinyl acetate) (EVA) emulsion (polymer-cement ratio=100%) was investigated by X-ray diffraction method using synchrotron radiation (SPring-8). The diffraction peaks of calcium aluminate (CA) disappeared after the hardening, on the other hand, the peaks of hydrate crystals of calcium-aluminate cement (C 2 AH 8 and C 3 AH 6 ) could be observed. This polymer-modified cement paste hydrated using the water within the polymer emulsion. The hydration of C 2 AH 8 from CA started at around 300 min, and then C 3 AH 6 hydrate crystal increased after 700 min at ambient temperature. This implies that the conversion from C 2 AH 8 to C 3 AH 6 occurred to be more stable phase. The setting temperature affected the reaction rate. In case of hydration at 35degC, the start time of the hydration for calcium-aluminate cement was quicker than that in the ambient temperature four or more times. (author)

  4. Development of a Nafion/MWCNT-SPCE-Based Portable Sensor for the Voltammetric Analysis of the Anti-Tuberculosis Drug Ethambutol

    Directory of Open Access Journals (Sweden)

    Rosa A. S. Couto

    2016-06-01

    Full Text Available Herein we describe the development, characterization and application of an electrochemical sensor based on the use of Nafion/MWCNT-modified screen-printed carbon electrodes (SPCEs for the voltammetric detection of the anti-tuberculosis (anti-TB drug ethambutol (ETB. The electrochemical behaviour of the drug at the surface of the developed Nafion/MWCNT-SPCEs was studied through cyclic voltammetry (CV and square wave voltammetry (SWV techniques. Electrochemical impedance spectroscopy (EIS and scanning electron microscopy (SEM were employed to characterize the modified surface of the electrodes. Results showed that, compared to both unmodified and MWCNTs-modified SPCEs, negatively charged Nafion/MWCNT-SPCEs remarkably enhanced the electrochemical sensitivity and selectivity for ETB due to the synergistic effect of the electrostatic interaction between cationic ETB molecules and negatively charged Nafion polymer and the inherent electrocatalytic properties of both MWCNTs and Nafion. Nafion/MWCNT-SPCEs provided excellent biocompatibility, good electrical conductivity, low electrochemical interferences and a high signal-to-noise ratio, providing excellent performance towards ETB quantification in microvolumes of human urine and human blood serum samples. The outcomes of this paper confirm that the Nafion/MWCNT-SPCE-based device could be a potential candidate for the development of a low-cost, yet reliable and efficient electrochemical portable sensor for the low-level detection of this antimycobacterial drug in biological samples.

  5. Preparation of yttrium hexacyanoferrate/carbon nanotube/Nafion nanocomposite film-modified electrode: Application to the electrocatalytic oxidation of L-cysteine

    International Nuclear Information System (INIS)

    Qu Lingbo; Yang Suling; Li Gang; Yang Ran; Li Jianjun; Yu Lanlan

    2011-01-01

    An yttrium hexacyanoferrate nanoparticle/multi-walled carbon nanotube/Nafion (YHCFNP/MWNT/Nafion)-modified glassy carbon electrode (GCE) was constructed. Several techniques, including infrared spectroscopy, energy dispersive spectrometry, scanning electron microscopy and electrochemistry, were performed to characterize the yttrium hexacyanoferrate nanoparticles. The electrochemical behavior of the YHCFNP/MWNT/Nafion-modified GCE in response to L-cysteine oxidation was studied. The response current of L-cysteine oxidation at the YHCFNP/MWNT/Nafion-modified GCE was obviously higher than that at the bare GCE or other modified GCE. The effects of pH, scan rate and interference on the response to L-cysteine oxidation were investigated. In addition, on the basis of these findings, a determination of L-cysteine at the YHCFNP/MWNT/Nafion-modified GCE was carried out. Under the optimum experimental conditions, the electrochemical response to L-cysteine at the YHCFNP/MWNT/Nafion-modified GCE was fast (within 4 s). Linear calibration plots were obtained over the range of 0.20-11.4 μmol L -1 with a low detection limit of 0.16 μmol L -1 . The YHCFNP/MWNT/Nafion-modified GCE exhibited several advantages, such as high stability and good resistance against interference by ascorbic acid and other oxidizable amino acids.

  6. Hydration water and microstructure in calcium silicate and aluminate hydrates

    International Nuclear Information System (INIS)

    Fratini, Emiliano; Ridi, Francesca; Chen, Sow-Hsin; Baglioni, Piero

    2006-01-01

    Understanding the state of the hydration water and the microstructure development in a cement paste is likely to be the key for the improvement of its ultimate strength and durability. In order to distinguish and characterize the reacted and unreacted water, the single-particle dynamics of water molecules in hydrated calcium silicates (C 3 S, C 2 S) and aluminates (C 3 A, C 4 AF) were studied by quasi-elastic neutron scattering, QENS. The time evolution of the immobile fraction represents the hydration kinetics and the mobile fraction follows a non-Debye relaxation. Less sophisticated, but more accessible and cheaper techniques, like differential scanning calorimetry, DSC, and near-infrared spectroscopy, NIR, were validated through QENS results and they allow one to easily and quantitatively follow the cement hydration kinetics and can be widely applied on a laboratory scale to understand the effect of additives (i.e., superplasticizers, cellulosic derivatives, etc) on the thermodynamics of the hydration process. DSC provides information on the free water index and on the activation energy involved in the hydration process while the NIR band at 7000 cm -1 monitors, at a molecular level, the increase of the surface-interacting water. We report as an example the effect of two classes of additives widely used in the cement industry: superplasticizers, SPs, and cellulose derivatives. SPs interact at the solid surface, leading to a consistent increment of the activation energy for the processes of nucleation and growth of the hydrated phases. In contrast, the cellulosic additives do not affect the nucleation and growth activation energy, but cause a significant increment in the water availability: in other words the hydration process is more efficient without any modification of the solid/liquid interaction, as also evidenced by the 1 H-NMR. Additional information is obtained by scanning electron microscopy (SEM), ultra small angle neutron scattering (USANS) and wide

  7. Hydration dependent dynamics in RNA

    International Nuclear Information System (INIS)

    Olsen, Greg L.; Bardaro, Michael F.; Echodu, Dorothy C.; Drobny, Gary P.; Varani, Gabriele

    2009-01-01

    The essential role played by local and collective motions in RNA function has led to a growing interest in the characterization of RNA dynamics. Recent investigations have revealed that even relatively simple RNAs experience complex motions over multiple time scales covering the entire ms-ps motional range. In this work, we use deuterium solid-state NMR to systematically investigate motions in HIV-1 TAR RNA as a function of hydration. We probe dynamics at three uridine residues in different structural environments ranging from helical to completely unrestrained. We observe distinct and substantial changes in 2 H solid-state relaxation times and lineshapes at each site as hydration levels increase. By comparing solid-state and solution state 13 C relaxation measurements, we establish that ns-μs motions that may be indicative of collective dynamics suddenly arise in the RNA as hydration reaches a critical point coincident with the onset of bulk hydration. Beyond that point, we observe smaller changes in relaxation rates and lineshapes in these highly hydrated solid samples, compared to the dramatic activation of motion occurring at moderate hydration

  8. Mechanism of gypsum hydration

    Directory of Open Access Journals (Sweden)

    Pacheco, G.

    1991-06-01

    Full Text Available There is an hypothesis that the mechanism o f gypsum hydration and dehydration is performed through two simultaneous phenomena. In this study we try to clear up this phenomenon using chlorides as accelerators or a mixture of ethanol-methanol as retarders to carry out the gypsum setting. Natural Mexican gypsum samples and a hemihydrate prepared in the laboratory are used. The following analytical techniques are used: MO, DRX, DTA, TG and DTG. In agreement with the obtained results, it can be concluded: that colloid formation depends on the action of accelerators or retarders and the crystals are a consequence of the quantity of hemihydrate formed.

    En el mecanismo de hidratación y deshidratación del yeso existe la hipótesis de que éste se efectúa por dos fenómenos simultáneos. Este estudio intenta esclarecer estos fenómenos, empleando: cloruros como aceleradores o mezcla etanol-metanol como retardadores para efectuar el fraguado del yeso. Se emplean muestras de yeso de origen natural mexicano y hemihydrate preparado en laboratorio; se utilizan técnicas analíticas: MO, DRX, DTA, TG y DTG. De acuerdo a los resultados obtenidos se puede deducir: que la formación del coloide depende de la acción de los agentes aceleradores o retardadores y que los cristales son consecuencia de la cantidad de hemihidrato formado.

  9. Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Xiaoteng Liu

    2013-12-01

    Full Text Available Reformate gas, a commonly employed fuel for polymer electrolyte membrane fuel cells (PEMFCs, contains carbon monoxide, which poisons Pt-containing anodes in such devices. A novel, low-cost mesoporous Si3N4 selective gas separation material was tested as a hydrogen clean-up membrane to remove CO from simulated feed gas to single-cell PEMFC, employing Nafion as the polymer electrolyte membrane. Polarization and power density measurements and gas chromatography showed a clear effect of separating the CO from the gas mixture; the performance and durability of the fuel cell was thereby significantly improved.

  10. Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells.

    Science.gov (United States)

    Liu, Xiaoteng; Christensen, Paul A; Kelly, Stephen M; Rocher, Vincent; Scott, Keith

    2013-12-05

    Reformate gas, a commonly employed fuel for polymer electrolyte membrane fuel cells (PEMFCs), contains carbon monoxide, which poisons Pt-containing anodes in such devices. A novel, low-cost mesoporous Si3N4 selective gas separation material was tested as a hydrogen clean-up membrane to remove CO from simulated feed gas to single-cell PEMFC, employing Nafion as the polymer electrolyte membrane. Polarization and power density measurements and gas chromatography showed a clear effect of separating the CO from the gas mixture; the performance and durability of the fuel cell was thereby significantly improved.

  11. Determination of As in tobacco by using electrochemical hydride generation at a Nafion® solid polymer electrolyte cell hyphenated with atomic fluorescence spectrometry

    Science.gov (United States)

    Yang, Qinghua; Gan, Wuer; Deng, Yun; Sun, Huihui

    2011-11-01

    In the present work, a novel solid polymer electrolyte hydride generation (SPE-HG) cell was developed. The home-made SPE-HG cell, mainly composed of three components (Nafion®117 membrane for separating and H + exchanging, a soft graphite felt cathode and a Ti mesh modified by Ir anode), was employed for detecting As by coupling to atomic fluorescence spectrometry (AFS). The H + generated by electrolysis of pure water in anode chamber transferred to cathode chamber through SPE, and immediately reacted with As 3 + to generate AsH 3. The relative mechanisms and operation conditions for hydride generation of As were investigated in detail. The developed cell employed water as an alternative of acid anolyte, with virtues of low-cost, more than 6 months lifetime and environment friendly compared with the conventional cell. Under the optimized conditions, the limit of determination of As 3 + for sample blank solution was 0.12 μg L - 1 , the RSD was 2.9% for 10 consecutive measurements of 5 μg L - 1 As 3 + standard solution. The accuracy of the method was verified by the determination of As in the reference Tea (GBW07605) and the developed method was successfully applied to determine trace amounts of As in tobacco samples with recovery from 97% to 103%.

  12. Production of hydrogen using composite membrane in PEM water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Santhi priya, E.L.; Mahender, C.; Mahesh, Naga; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad-500 085, A.P (India); Anjaneyulu, Y. [Director, TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2012-07-01

    Electrolysis of water is the best known technology till today to produce hydrogen. The only practical way to produce hydrogen using renewable energy sources is by proton exchange membrane (PEM) water electrolysis. The most commonly used PEM membrane is Nafion. Composite membrane of TiO2 is synthesized by casting method using Nafion 5wt% solution. RuO2 is used as anode and 10 wt% Pd on activated carbon is used as cathode in the water electrolyser system. The performance of this Composite membrane is studied by varying voltage range 1.8 to 2.6V with respect to hydrogen yield and at current density 0.1, 0.2, 0.3, 0.4, and 0.5(A cm-2). This Composite membrane has been tested using in-house fabricated single cell PEM water electrolysis cell with 10cm2 active area at temperatures ranging from 30,45,65 850c and at 1 atmosphere pressure.

  13. Sensing nitric oxide with a carbon nanofiber paste electrode modified with a CTAB and nafion composite

    International Nuclear Information System (INIS)

    Zheng, Dongyun; Liu, Xiaojun; Zhu, Shanying; Cao, Huimin; Chen, Yaguang; Hu, Shengshui

    2015-01-01

    We describe an electrochemical sensor for nitric oxide that was obtained by modifying the surface of a nanofiber carbon paste microelectrode with a film composed of hexadecyl trimethylammonium bromide and nafion. The modified microelectrode displays excellent catalytic activity in the electrochemical oxidation of nitric oxide. The mechanism was studied by scanning electron microscopy and cyclic voltammetry. Under optimal conditions, the oxidation peak current at a working voltage of 0.75 V (vs. SCE) is related to the concentration of nitric oxide in the 2 nM to 0.2 mM range, and the detection limit is as low as 2 nM (at an S/N ratio of 3). The sensor was successfully applied to the determination of nitric oxide released from mouse hepatocytes. (author)

  14. Characterization and electrochemical studies of Nafion/nano-TiO2 film modified electrodes

    International Nuclear Information System (INIS)

    Yuan Shuai; Hu Shengshui

    2004-01-01

    A nano-TiO 2 film from stable aqueous dispersion has been modified on a glassy carbon electrode (GCE), and was characterized by scanning electron microscopy (SEM) and surface-enhanced Raman spectroscopy (SERS). This nanostructured film exhibits an ability to improve the electron-transfer rate between electrode and dopamine (DA), and electrocatalyze the redox of DA. The electrocatalytical behavior of DA was examined by cyclic voltammetry (CV). Combined with Nafion, the bilayer-modified electrode (N/T/GCE) gives a sensitive voltammetric response of DA regardless of excess ascorbic acid (AA). Electrochemical impedance spectroscopy (EIS) at a fixed potential was performed at variously treated GCEs. The mechanism of the electrode reaction of DA at N/T/GCE and the equivalent circuits of different GCEs have been proposed

  15. Reconsideration on Hydration of Sodium Ion: From Micro-Hydration to Bulk Hydration

    Science.gov (United States)

    Yongquan, Zhou; Chunhui, Fang; Yan, Fang; Fayan, Zhu; Haiwen, Ge; Hongyan, Liu

    2017-12-01

    Micro hydration structures of the sodium ion, [Na(H2O) n ]+, n = 1-12, were probed by density functional theory (DFT) at B3LYP/aug-cc-pVDZ level in both gaseous and aqueous phase. The predicted equilibrium sodium-oxygen distance of 0.240 nm at the present level of theory. The four-, five- and six-coordinated cluster can transform from each other at the ambient condition. The analysis of the successive water binding energy and natural charge population (NBO) on Na+ clearly shows that the influence of Na+ on the surrounding water molecules goes beyond the first hydration shell with the hydration number of 6. The Car-Parrinello molecular dynamic simulation shows that only the first hydration sphere can be found, and the hydration number of Na+ is 5.2 and the hydration distance ( r Na-O) is 0.235 nm. All our simulations mentioned in the present paper show an excellent agreement with the diffraction result from X-ray scattering study.

  16. A Nanostructured Sensor Based on Gold Nanoparticles and Nafion for Determination of Uric Acid

    Directory of Open Access Journals (Sweden)

    Natalia Stozhko

    2018-03-01

    Full Text Available The paper discusses the mechanism of uric acid (UA electrooxidation occurring on the surface of gold nanoparticles. It has been shown that the electrode process is purely electrochemical, uncomplicated with catalytic stages. The nanoeffects observed as the reduction of overvoltage and increased current of UA oxidation have been described. These nanoeffects are determined by the size of particles and do not depend on the method of particle preparation (citrate and “green” synthesis. The findings of these studies have been used to select a modifier for carbon screen-printed electrode (CSPE. It has been stated that CSPE modified with gold nanoparticles (5 nm and 2.5% Nafion (Nf may serve as non-enzymatic sensor for UA determination. The combination of the properties of nanoparticles and Nafion as a molecular sieve at the selected pH 5 phosphate buffer solution has significantly improved the resolution of the sensor compared to unmodified CSPE. A nanostructured sensor has demonstrated good selectivity in determining UA in the presence of ascorbic acid. The detection limit of UA is 0.25 μM. A linear calibration curve has been obtained over a range of 0.5–600 μM. The 2.5%Nf/Au(5nm/CSPE has been successfully applied to determining UA in blood serum and milk samples. The accuracy and reliability of the obtained results have been confirmed by a good correlation with the enzymatic spectrophotometric analysis (R2 = 0.9938 and the “added−found” technique (recovery close to 100%.

  17. A high yield process for hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Giavarini, C.; Maccioni, F. [Univ. of Roma La Sapienza, Roma (Italy). Dept. of Chemical Engineering

    2008-07-01

    Due to the large quantities of natural gas stored in deep ocean hydrates, hydrate reservoirs are a substantial energy resource. Hydrates concentrate methane by as much as a factor of 164. As such, several natural gas transportation and storage systems using gas hydrates have been studied, and many of them are nearing practical use. In these systems, the hydrate is produced as a slurry by a spray process at approximately 7 megapascal (MPa), and then shaped into pellets. The use of a spray process, instead of a conventional stirred vessel is necessary in order to reach high hydrate concentrations in the hydrate-ice system. This paper presented a new procedure to produce a bulk of concentrated methane hydrate in a static traditional reactor at moderate pressure, controlling pressure and temperature in the interval between ice melting and the hydrate equilibrium curve. This paper discussed the experimental procedure which included formation of methane hydrate at approximately 5 MPa and 2 degrees Celsius in a reaction calorimeter at a volume of two liters. Results were also discussed. It was concluded that the procedure seemed suitable for the development of a gas hydrate storage and transport technology. It was found that the spray procedure took more time, but could be sped up and made continuous by using two vessels, one for hydrate formation and the other for hydrate concentration. The advantage was the production of a concentrated hydrate, using a simpler equipment and working at lower pressures respect to the spray process. 9 refs., 5 figs.

  18. Improvement in silicon-containing sulfonated polystyrene/acrylate membranes by blending and crosslinking

    International Nuclear Information System (INIS)

    Zhong Shuangling; Cui Xuejun; Dou Sen; Liu Wencong; Gao Yan; Hong Bo

    2010-01-01

    Silicon-containing sulfonated polystyrene/acrylate-poly(vinyl alcohol) (Si-sPS/A-PVA) and Si-sPS/A-PVA-phosphotungstic acid (Si-sPS/A-PVA-PWA) composite membranes were fabricated by solution blending and physical and chemical crosslinking methods to improve the properties of silicon-containing sulfonated polystyrene/acrylate (Si-sPS/A) membranes. FTIR spectra clearly show the existence of various interactions and a crosslinked silica network in composite membranes. The potential of the composites to act as proton exchange membranes in direct methanol fuel cells (DMFCs) was assessed by studying their thermal and hydrolytic stability, swelling, methanol diffusion coefficient, proton conductivity and selectivity. TGA measurements show that the composite membranes possess good thermal stability up to 190 o C, satisfying the requirement for fuel cell operation. Compared to the unmodified membrane, the composites exhibit less swelling and a superior methanol barrier. Most importantly, all of the composite membranes have significantly lower methanol diffusion coefficients and significantly higher selectivity than those of Nafion 117. The Si-sPS/A-20PVA-20PWA membrane is the best applicant for use in DMFCs because it exhibits an optimized selectivity value (5.93 x 10 5 Ss cm -3 ) that is approximately 7.8 times of that of the unmodified membrane and is 27.8 times higher than that of Nafion 117.

  19. Electrolytic membrane formation of fluoroalkyl polymer using a UV-radiation-based grafting technique and sulfonation

    Energy Technology Data Exchange (ETDEWEB)

    Shironita, Sayoko; Mizoguchi, Satoko; Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Niigata (Japan)

    2011-03-15

    A sulfonated fluoroalkyl graft polymer (FGP) membrane was prepared as a polymer electrolyte. First, the FGP membrane was grafted with styrene under UV irradiation. The grafted FGP was then sulfonated to functionalize it for proton conductivity. The grafting degree of the membrane increased with increasing grafting time during UV irradiation. The proton conductivity of the membrane increased with increasing grafting degree. The swelling ratio was independent of the grafting time, however, the water uptake increased with increasing grafting degree. Based on these results, it was found that the UV-initiated styrene grafting occurred along the membrane thickness direction. Moreover, the membrane was embedded within the glass fibers of the composite. This composite electrolytic membrane had 1.15 times the proton conductivity of a Nafion 117 membrane.

  20. Poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Mi-Lim; Choi, Jisun; Woo, Hyun-Su; Kumar, Vinod; Sohn, Joon-Yong; Shin, Junhwa, E-mail: shinj@kaeri.re.kr

    2014-02-15

    Highlights: • PEEK-g-PVBSA, a polymer electrolyte membrane was prepared by a radiation grafting technique. • Poly(ether ether ketone) (PEEK), an aromatic hydrocarbon polymer was used as a grafting backbone film. • The water uptake, proton conductivity, and methanol permeability of the membranes were evaluated. • PEEK-g-PVBSA membranes show considerably lower methanol permeability compared to a Nafion membrane. -- Abstract: In this study, an aromatic hydrocarbon based polymer electrolyte membrane, poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) (PEEK-g-PVBSA), has been prepared by the simultaneous irradiation grafting of vinylbenzyl chloride (VBC) monomer onto a PEEK film and subsequent sulfonation. Each chemical conversion was monitored by FT-IR and SEM–EDX instruments. The physicochemical properties including IEC, water uptake, proton conductivity, and methanol permeability of the prepared membranes were also investigated and found that the values of these properties increase with the increase of degree of grafting. It was observed that the IEC values of the prepared PEEK-g-PVBSA membranes with 32%, 58%, and 80% DOG values were 0.50, 1.05, and 1.22 meq/g while the water uptakes were 14%, 20%, and 21%, respectively. The proton conductivities (0.0272–0.0721 S/cm at 70 °C) were found to be somewhat lower than Nafion 212 (0.126 S/cm at 70 °C) at a relative humidity of 90%. However, the prepared membranes showed a considerably lower methanol permeability (0.61–1.92 × 10{sup −7} cm{sup 2}/s) compared to a Nafion 212 membrane (5.37 × 10{sup −7} cm{sup 2}/s)

  1. Modification of chitosan membranes with nanosilica particles as polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kusumastuti, Ella, E-mail: ella.kusuma@gmail.com; Siniwi, Widasari Trisna, E-mail: wsiniwi@gmail.com; Mahatmanti, F. Widhi; Jumaeri [Department of Chemistry, Faculty of Mathematics and Natural Sciences, State University of Semarang D6 Building 2" n" d floor, Sekaran Unnes Campus, Gunungpati, Semarang (Indonesia); Atmaja, Lukman; Widiastuti, Nurul [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Tenth November Institute of Technology Keputih ITS Campus, Sukolilo, Surabaya (Indonesia)

    2016-04-19

    Chitosan has been widely used as polymer matrix for Polymer Electrolyte Membrane (PEM) application replacing Nafion which has shortcomings in terms of high methanol permeability that degrades the performance of fuel cells. Chitosan membranes modification is performed by adding nanosilica to prevent methanol transport through the membrane. Nanosilica is synthesized by sol-gel method and the particle diameter is obtained by analysis using Breunner Emmet Teller (BET) that is 6.59 nm. Nanosilica is mixed with chitosan solution to obtain nanosilica-chitosan as polymer electrolyte membrane. The membranes are synthesized through phase inversion method with nanosilica composition including 0; 0.5; 1; 2; 3; 5; and 10% w/w of chitosan. Characterization of the membranes indicate that the results of water swelling, proton conductivity and methanol permeability of the membrane with 3% nanosilica respectively were 49.23%, 0.231 S/cm, and 5.43 x 10{sup −7} cm{sup 2}/s. Based on the results of membrane selectivity calculation, the optimum membrane is the composition of 3% nanosilica with value 5.91 x 105 S s cm{sup −3}. The results of functional groups analysis with FTIR showed that it was only physical interaction that occurred between chitosan and nanosilica since no significant changes found in peak around the wave number 1000-1250 cm{sup −-1}.

  2. Chemical degradation of proton conducting perflurosulfonic acid ionomer membranes studied by solid-state nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ghassemzadeh, L. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Institut fuer Physikalische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Marrony, M. [European Institute for Energy Research, Emmy-Noether-Strasse 11, D-76131 Karlsruhe (Germany); Barrera, R. [Edison, Via Giorgio La Pira, 2, I-10028 Trofarello (Italy); Kreuer, K.D.; Maier, J. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Mueller, K. [Institut fuer Physikalische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany)

    2009-01-15

    The degradation of two different types of perfluorinated polymer membranes, Nafion and Hyflon Ion, has been examined by solid-state {sup 19}F and {sup 13}C NMR spectroscopy. This spectroscopic technique is demonstrated to be a valuable tool for the study of the membrane structure and its alterations after in situ degradation in a fuel cell. The structural changes in different parts of the polymers are clearly distinguished, which provides unique insight into details of the degradation processes. The experimental NMR spectra prove that degradation mostly takes place within the polymer side chains, as reflected by the intensity losses of NMR signals associated with SO{sub 3}H, CF{sub 3}, OCF{sub 2} and CF groups. The integral degree of degradation is found to decrease with increasing membrane thickness while for a given thickness, Hyflon Ion appears to degrade less than Nafion. (author)

  3. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Lachowski, Eric E.

    1999-01-01

    and experimental data are presented showing that C(3)A can hydrate at lower humidities than either C3S or C2S. It is suggested that the initiation of hydration during exposure to water vapour is nucleation controlled. When C(3)A hydrates at low humidity, the characteristic hydration product is C(3)AH(6......Vapour phase hydration of purl cement clinker minerals at reduced relative humidities is described. This is relevant to modern high performance concrete that may self-desiccate during hydration and is also relevant to the quality of the cement during storage. Both the oretical considerations...

  4. Storage capacity of hydrogen in gas hydrates

    International Nuclear Information System (INIS)

    Tsuda, Takaaki; Ogata, Kyohei; Hashimoto, Shunsuke; Sugahara, Takeshi; Sato, Hiroshi; Ohgaki, Kazunari

    2010-01-01

    The storage capacity of H 2 in the THF, THT, and furan hydrates was studied by p-V-T measurements. We confirmed that the storage and release processes of H 2 in all hydrates could be performed reversibly by pressure swing without destroying of hydrate cages. H 2 absorption in both THT and furan hydrates is much faster than THF hydrate in spite of same unit-cell structure. On the other hand, the storage amounts of H 2 are coincident in the all additive hydrates and would reach at about 1.0 mass% asymptotically.

  5. Degradation and contamination of perfluorinated sulfonic acid membrane due to swelling-dehydration cycles

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Morgen, Per; Skou, Eivind Morten

    Formation of sulfonic anhydride S-O-S (from the condensation of sulfonic acids) was known one of the important degradation mechanisms [i] for Nafion membrane under hydrothermal aging condition, which is especially critical for hydrogen fuel cells. Similar mechanism would also have be desirable...... to the membrane degradation in direct methanol fuel cells (DMFCs), where liquid water has direct contact with the electrolyte. An ex-situ experiment was established with swelling-dehydration cycles on the membrane. However, formation of sulfonic anhydride was not detected during the entire treatment; instead...

  6. Species Uptake and Mass Transport in Membranes for Vanadium Redox Flow Batteries

    International Nuclear Information System (INIS)

    Elgammal, Ramez A.; Tang, Zhijiang; Sun, Che-Nan; Lawton, Jamie; Zawodzinski, Thomas A.

    2017-01-01

    In this contribution, we provide a synthesis of results to date describing uptake and mass transport of water, vanadium species and protons in Nafion membranes for use as separators in VRFBs. Resistance issues as well as species cross-over are important contributors to performance loss in VRFBs. After a brief discussion of our state-of-the-art cell performance, we consider the uptake and transport of various species through a number of membrane materials. We draw together numerous previous studies and augment them with new data to provide a summary of our present state of understanding of the experimental facts regarding membrane behavior.

  7. Electrically driven ion separations and nanofiltration through membranes coated with polyelectrolyte multilayers

    Science.gov (United States)

    White, Nicholas

    Polyelectrolyte multilayer (PEM) films deposited using the layer-by-layer (LBL) method are attractive for their simple deposition, tailorable nature, scalability, and charge or size-based selectivity for solutes. This dissertation explores ion separations in electrodialysis (ED) and solute removal through nanofiltration with PEMs deposited on polymer membranes. ED membranes typically exhibit modest selectivities between monovalent and divalent ions. In contrast, this work shows that K+/Mg 2+ ED selectivities reach values >1000 when using Nafion 115 cation-exchange membranes coated with multilayer poly(4-styrenesulfonate) (PSS)/protonated poly(allylamine) (PAH) films. For comparison, the corresponding K+ /Mg2+ selectivity of bare Nafion 115 is salt concentrations, the K+ transference number approaches unity and the K+/Mg2+ selectivity is >20,000, presumably because the applied current is below the limiting value for K+ and H+ transport is negligible at this high K+ concentration. The high selectivities of these membranes may enable electrodialysis applications such as purification of salts that contain divalent or trivalent ions. The high ED selectivities of (PAH/PSS)5PAH-coated Nafion membranes translate to separations with Li+/Co2+ and K +/La3+. Even with adsorption of only 3 polyelectrolyte layers, Nafion membranes exhibit a Li+/Co2+ selectivity >23. However, the resistance to monovalent-ion passage does not decrease significantly with fewer polyelectrolyte layers. At overlimiting currents, hydroxides from water splitting form insoluble metal hydroxides to foul the membrane. With 0.1 M source-phase salt concentrations, transference numbers for monovalent cations approach unity and selectivities are >5000 because the diffusion-limited K+ or Li+ currents exceed the applied current. However, ED selectivities gradually decline with time. Thus, future research should aim to increase membrane stability and limiting currents to fully exploit the remarkable selectivity

  8. Gas hydrates forming and decomposition conditions analysis

    Directory of Open Access Journals (Sweden)

    А. М. Павленко

    2017-07-01

    Full Text Available The concept of gas hydrates has been defined; their brief description has been given; factors that affect the formation and decomposition of the hydrates have been reported; their distribution, structure and thermodynamic conditions determining the gas hydrates formation disposition in gas pipelines have been considered. Advantages and disadvantages of the known methods for removing gas hydrate plugs in the pipeline have been analyzed, the necessity of their further studies has been proved. In addition to the negative impact on the process of gas extraction, the hydrates properties make it possible to outline the following possible fields of their industrial use: obtaining ultrahigh pressures in confined spaces at the hydrate decomposition; separating hydrocarbon mixtures by successive transfer of individual components through the hydrate given the mode; obtaining cold due to heat absorption at the hydrate decomposition; elimination of the open gas fountain by means of hydrate plugs in the bore hole of the gushing gasser; seawater desalination, based on the hydrate ability to only bind water molecules into the solid state; wastewater purification; gas storage in the hydrate state; dispersion of high temperature fog and clouds by means of hydrates; water-hydrates emulsion injection into the productive strata to raise the oil recovery factor; obtaining cold in the gas processing to cool the gas, etc.

  9. LINEAR AND NONLINEAR VISCOELASTIC CHARACTERIZATION OF PROTON EXCHANGE MEMBRANES AND STRESS MODELING FOR FUEL CELL APPLICATIONS

    OpenAIRE

    Patankar, Kshitish A

    2009-01-01

    In this dissertation, the effect of temperature and humidity on the viscoelastic and fracture properties of proton exchange membranes (PEM) used in fuel cell applications was studied. Understanding and accurately modeling the linear and nonlinear viscoelastic constitutive properties of a PEM are important for making hygrothermal stress predictions in the cyclic temperature and humidity environment of operating fuel cells. In this study, Nafion® NRE 211, Gore-Select® 57, and Ion Power® N111...

  10. Liquid and Gas Permeation Studies on the Structure and Properties of Polyamide Thin-Film Composite Membranes

    KAUST Repository

    Duan, Jintang

    2014-11-01

    This research was undertaken to improve the understanding of structure-property-performance relationships in crosslinked polyamide (PA) thin-film composite (TFC) membranes as characterized by liquid and gas permeation studies. The ultrathin PA selective layer formed by interfacial polymerization between meta-phenylene diamine and trimesoyl chloride was confirmed to contain dense polymer matrix regions and defective regions in both dry and hydrated states. The first part of this research studied the effect of non-selective convection through defective regions on water flux and solute flux in pressure-assisted forward osmosis (PAFO). Through systematic comparison with cellulose triacetate (CTA) and PEBAX-coated PA-TFC membranes, the existence of defects in pristine, hydrated PA-TFC membranes was verified, and their effects were quantified by experimental and modeling methods. In the membrane orientation of selective layer facing the draw solution, water flux increases of up to 10-fold were observed to result from application of low hydraulic pressure (1.25 bar). Convective water flux through the defects was low (< 1% of total water flux for PA-TFC membranes) and of little consequence in practical FO or reverse osmosis (RO) applications. However, it effectively mitigated the concentration polarization in PAFO and therefore greatly increased the diffusive flux through the dense regions. The second part of this research characterized the structures of the PA material and the PA selective layer by gas adsorption and gas permeation measurements. Gas adsorption isotherms (N2 at 77K, CO2 at 273K) confirmed the microporous nature of PA in comparison with dense CTA and polysulfone materials. Gas permeation through the commercial PA-TFC membranes tested occurred primarily in the defective regions, resulting in Knudsen gas selectivity for various gas pairs. Applying a Nafion coating layer effectively plugged the defects and allowed gas permeation through the dense PA regions

  11. Multi-property characterization chamber for geophysical-hydrological investigations of hydrate bearing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Yongkoo, E-mail: Yongkoo.Seol@netl.doe.gov; Choi, Jeong-Hoon; Dai, Sheng [National Energy Technology Laboratory, U.S. Department of Energy, Morgantown, West Virginia 26507 (United States)

    2014-08-01

    With the increase in the interest of producing natural gas from methane hydrates as well as potential risks of massive hydrate dissociation in the context of global warming, studies have recently shifted from pure hydrate crystals to hydrates in sediments. Such a research focus shift requires a series of innovative laboratory devices that are capable of investigating various properties of hydrate-bearing sediments (HBS). This study introduces a newly developed high pressure testing chamber, i.e., multi-property characterization chamber (MPCC), that allows simultaneous investigation of a series of fundamental properties of HBS, including small-strain stiffness (i.e., P- and S-waves), shear strength, large-strain deformation, stress-volume responses, and permeability. The peripheral coolant circulation system of the MPCC permits stable and accurate temperature control, while the core holder body, made of aluminum, enables X-ray computer tomography scanning to be easily employed for structural and morphological characterization of specimens. Samples of hydrate-bearing sediments are held within a rubber sleeve inside the chamber. The thick sleeve is more durable and versatile than thin membranes while also being much softer than oedometer-type chambers that are incapable of enabling flow tests. Bias introduced by the rubber sleeve during large deformation tests are also calibrated both theoretically and experimentally. This system provides insight into full characterization of hydrate-bearing sediments in the laboratory, as well as pressure core technology in the field.

  12. Hydration and Proton Conductivity of Ionomers: The Model Case of Sulfonated Aromatic Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Knauth, Philippe, E-mail: philippe.knauth@univ-amu.fr [Madirel (UMR 7246), CNRS, Aix Marseille Université, Marseille (France); Di Vona, Maria Luisa [Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Roma (Italy)

    2014-11-06

    The hydration of proton-conducting ionomers is described in terms of a simplified model, where only osmotic and elastic contributions to the Gibbs free energy of hydration are considered. Although only two physically meaningful parameters are used – the deformation parameter, inversely proportional to the elastic modulus of the ionomer, and the free volume parameter – simulated hydration isotherms are in good agreement with the experiment. The proton mobility u inside the electrolyte solution of the ionomer is calculated from the proton conductivity determined at various hydration numbers. Its variation with the proton concentration c reveals the percolation threshold of hydrated nanometric channels and the tortuosity of the membrane. Above the percolation threshold, a power law u ~ c{sup −3} is observed, in agreement with the “universal” law for 3-dimensional percolation. The proton conductivity σ shows at 100°C a maximum of 0.2 S/cm at a hydration number ~90. The σ = f(c) plot allows to predict, which hydration conditions are necessary for a desired area specific resistance.

  13. Hydration and proton conductivity of ionomers: the model case of Sulfonated Aromatic Polymers

    Directory of Open Access Journals (Sweden)

    Philippe eKnauth

    2014-11-01

    Full Text Available The hydration of proton-conducting ionomers is described in terms of a simplified model, where only osmotic and elastic contributions to the Gibbs free energy of hydration are considered. Although only two physically meaningful parameters are used - the deformation parameter, inversely proportional to the elastic modulus of the ionomer, and the free volume parameter – simulated hydration isotherms are in good agreement with the experiment. The proton mobility u inside the electrolyte solution of the ionomer is calculated from the proton conductivity determined at various hydration numbers. Its variation with the proton concentration c reveals the percolation threshold of hydrated nanometric channels and the tortuosity of the membrane. Above the percolation threshold, a power law u ~ c-3 is observed, in agreement with the universal law for 3-dimensional percolation. The proton conductivity  shows at 100°C a maximum of 0.2 S/cm at a hydration number ~90. The  = f(c plot allows to predict which hydration conditions are necessary for a desired area specific resistance.

  14. Multi-property characterization chamber for geophysical-hydrological investigations of hydrate bearing sediments

    International Nuclear Information System (INIS)

    Seol, Yongkoo; Choi, Jeong-Hoon; Dai, Sheng

    2014-01-01

    With the increase in the interest of producing natural gas from methane hydrates as well as potential risks of massive hydrate dissociation in the context of global warming, studies have recently shifted from pure hydrate crystals to hydrates in sediments. Such a research focus shift requires a series of innovative laboratory devices that are capable of investigating various properties of hydrate-bearing sediments (HBS). This study introduces a newly developed high pressure testing chamber, i.e., multi-property characterization chamber (MPCC), that allows simultaneous investigation of a series of fundamental properties of HBS, including small-strain stiffness (i.e., P- and S-waves), shear strength, large-strain deformation, stress-volume responses, and permeability. The peripheral coolant circulation system of the MPCC permits stable and accurate temperature control, while the core holder body, made of aluminum, enables X-ray computer tomography scanning to be easily employed for structural and morphological characterization of specimens. Samples of hydrate-bearing sediments are held within a rubber sleeve inside the chamber. The thick sleeve is more durable and versatile than thin membranes while also being much softer than oedometer-type chambers that are incapable of enabling flow tests. Bias introduced by the rubber sleeve during large deformation tests are also calibrated both theoretically and experimentally. This system provides insight into full characterization of hydrate-bearing sediments in the laboratory, as well as pressure core technology in the field

  15. Hydration number of alkali metal ions determined by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2008-01-01

    of all other water molecules whose properties are still influenced significantly by the cation. Knowing the hydration number is important when considering, for instance, the transport of Na+ and K+ in biological cell membranes, since their different behavior may depend on the details of ion hydration....... The solvation of alkali metal ions has been discussed for many years without a clear consensus. This work presents a systematic study of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS...... direct calculation of the number of M+ ions entering the film, and therefore the inserted M+ mass. The mass of the water molecules is calculated as a difference. The results yield the following primary hydration numbers: Li+: 5.5-5.6; Na+: 4.0-4.1; K+: 2.0-2.5; Rb+: 0.6-1.2; Cs+: ~0. The most important...

  16. Characterization and fuel cell performance analysis of polyvinylalcohol-mordenite mixed-matrix membranes for direct methanol fuel cell use

    Energy Technology Data Exchange (ETDEWEB)

    Uctug, Fehmi Goerkem, E-mail: gorkem.uctug@bahcesehir.edu.t [University of Manchester, School of Chemical Engineering and Analytical Science, M60 1QD (United Kingdom); Holmes, Stuart M. [University of Manchester, School of Chemical Engineering and Analytical Science, M60 1QD (United Kingdom)

    2011-10-01

    Highlights: > We investigated the availability of PVA-mordenite membranes for DMFC use. > We measured the methanol permeability of PVA-mordenite membranes via pervaporation. > We did the fuel cell testing of these membranes, which had not been done before. > We showed that PVA-mordenite membranes have poorer DMFC performance than Nafion. > Membrane performance can be improved by increasing the proton conductivity of PVA. - Abstract: Polyvinylalcohol-mordenite (PVA-MOR) mixed matrix membranes were synthesized for direct methanol fuel cell (DMFC) use. For the structural and the morphological characterization, Scanning Electron Microscopy and Thermal Gravimetric Analysis methods were used. Zeolite distribution within the polymer matrix was found to be homogeneous. An impedance spectroscope was used to measure the proton conductivity. In order to obtain information about methanol permeation characteristics, swelling tests and a series of pervaporation experiments were carried out. 60-40 wt% PVA-MOR membranes were found to give the optimum transport properties. Proton conductivity of these membranes was found to be slightly lower than that of Nafion117{sup TM} whereas their methanol permeability was at least two orders of magnitude lower than Nafion117{sup TM}. DMFC performance of the PVA-MOR membranes was also measured. The inferior DMFC performance of PVA-MOR membranes was linked to drying in the fuel cell medium and the consequent proton conductivity loss. Their performance was improved by adding a dilute solution of sulfuric acid into the feed methanol solution. Future studies on the improvement of the proton conductivity of PVA-MOR membranes, especially via sulfonation of the polymer matrix, can overcome the low-performance problem associated with insufficient proton conductivity.

  17. Characterization and fuel cell performance analysis of polyvinylalcohol-mordenite mixed-matrix membranes for direct methanol fuel cell use

    International Nuclear Information System (INIS)

    Uctug, Fehmi Goerkem; Holmes, Stuart M.

    2011-01-01

    Highlights: → We investigated the availability of PVA-mordenite membranes for DMFC use. → We measured the methanol permeability of PVA-mordenite membranes via pervaporation. → We did the fuel cell testing of these membranes, which had not been done before. → We showed that PVA-mordenite membranes have poorer DMFC performance than Nafion. → Membrane performance can be improved by increasing the proton conductivity of PVA. - Abstract: Polyvinylalcohol-mordenite (PVA-MOR) mixed matrix membranes were synthesized for direct methanol fuel cell (DMFC) use. For the structural and the morphological characterization, Scanning Electron Microscopy and Thermal Gravimetric Analysis methods were used. Zeolite distribution within the polymer matrix was found to be homogeneous. An impedance spectroscope was used to measure the proton conductivity. In order to obtain information about methanol permeation characteristics, swelling tests and a series of pervaporation experiments were carried out. 60-40 wt% PVA-MOR membranes were found to give the optimum transport properties. Proton conductivity of these membranes was found to be slightly lower than that of Nafion117 TM whereas their methanol permeability was at least two orders of magnitude lower than Nafion117 TM . DMFC performance of the PVA-MOR membranes was also measured. The inferior DMFC performance of PVA-MOR membranes was linked to drying in the fuel cell medium and the consequent proton conductivity loss. Their performance was improved by adding a dilute solution of sulfuric acid into the feed methanol solution. Future studies on the improvement of the proton conductivity of PVA-MOR membranes, especially via sulfonation of the polymer matrix, can overcome the low-performance problem associated with insufficient proton conductivity.

  18. Preparation of new proton exchange membranes using sulfonated poly(ether sulfone) modified by octylamine (SPESOS)

    International Nuclear Information System (INIS)

    Mabrouk, W.; Ogier, L.; Matoussi, F.; Sollogoub, C.; Vidal, S.; Dachraoui, M.; Fauvarque, J.F.

    2011-01-01

    Highlights: → New, simple and cheap way to synthesize a membrane. → The membranes combine good proton conductivities with good mechanical properties. → The membrane performances in a fuel cell are similar to the Nafion 117. - Abstract: Sulfonated poly(arylene ether sulfone) (SPES) has received considerable attention in membrane preparation for proton exchange membrane fuel cell (PEMFC). But such membranes are brittle and difficult to handle in operation. We investigated new membranes using SPES grafted with various degrees of octylamine. Five new materials made from sulfonated polyethersulfone sulfonamide (SPESOS) were synthetized with different grades of grafting. They were made from SPES, with initially an ionic exchange capacity (IEC) of 2.4 meq g -1 (1.3 H + per monomer unit). Pristine SPES with that IEC is water swelling and becomes soluble at 80 deg. C, its proton conductivity is in the range of 0.1 S cm -1 at room temperature in aqueous H 2 SO 4 1 M, similar to that of Nafion. After grafting with various amounts of octylamine, the material is water insoluble; membranes are less brittle and show sufficient ionic conductivity. Proton transport numbers were measured close to 1.

  19. Direct electron transfer and electrocatalysis of glucose oxidase immobilized on glassy carbon electrode modified with Nafion and mesoporous carbon FDU-15

    International Nuclear Information System (INIS)

    Wang Kunqi; Yang Hua; Zhu Lin; Ma Zhongsu; Xing Shenyang; Lv Qiang; Liao Jianhui; Liu Changpeng; Xing Wei

    2009-01-01

    In this paper, it was found that glucose oxidase (GOD) has been stably immobilized on glassy carbon electrode modified with mesoporous carbon FDU-15 (MC-FDU-15) and Nafion by simple technique. The sorption behavior of GOD immobilized on MC-FDU-15 matrix was characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis), FTIR, respectively, which demonstrated that MC-FDU-15 could facilitate the electron exchange between the active center of GOD and electrode. The direct electrochemistry and electrocatalysis behavior of GOD on the modified electrode were characterized by cyclic voltammogram (CV) which indicated that GOD immobilized on Nafion and MC-FDU-15 matrices display direct, reversible and surface-controlled redox reaction with an enhanced electron transfer rate constant of 4.095 s -1 in 0.1 M phosphate buffer solution (PBS) (pH 7.12). Furthermore, it was also discovered that, in the presence of O 2 , GOD immobilized on Nafion and MC-FDU-15 matrices could produce a linear response to glucose. Thus, Nafion/GOD-MC-FDU-15/GC electrode is hopeful to be used in glucose biosensor. In addition, GOD immobilized on MC-FDU-15 and Nafion matrices possesses an excellent bioelectrocatalytic activity for the reduction of O 2 . So, the Nafion/GOD-MC-FDU-15/GC electrode can be utilized as the cathode in biofuel cell.

  20. Bio-functionalization of electro-synthesized polypyrrole surface by heme enzyme using a mixture of Nafion and glutaraldehyde as synergetic immobilization matrix: Conformational characterization and electrocatalytic studies

    International Nuclear Information System (INIS)

    ElKaoutit, Mohammed; Naranjo-Rodriguez, Ignacio; Dominguez, Manuel; Hidalgo-Hidalgo-de-Cisneros, Jose Luis

    2011-01-01

    Use of a mixture of Nafion and glutaraldehyde as new immobilization matrix was described. The percentage of Nafion was optimized to prevent denaturation of horseradish peroxidase enzyme after its crosslinkage with glutaraldehyde on electro-synthesized polypyrrole surface. Topographic study by Atomic Force Microscopy (AFM) shows that the enzyme seems to have been introduced inside the ionic cluster of Nafion. The characterization of the resulting bio-interfaces by UV-vis and FT-IR shows that the intra-crosslinkage phenomena caused by the use of glutaraldehyde can be eliminated by the optimization of the concentration of Nafion additive. The secondary structure contents of native and immobilized enzyme were analyzed by a Gaussian curve fitting of the respective FT-IR spectra in the amide I region. Immobilized enzyme presented notable increasing percentages of globular and short helical structure compared with native enzyme. This indicates that immobilized enzyme was folded which is in accordance with AFM studies and supports the enzyme entrance inside ionic clutter of Nafion. Thanks to synergic effects of the polypyrrole conducting polymer and the perfluorosulfonic acid polymer Nafion, HRP enzyme was immobilized in its 'native' state, the resulting biosensor was able to sense peroxide without any chemical mediator and can be categorized as third generation.

  1. Bio-functionalization of electro-synthesized polypyrrole surface by heme enzyme using a mixture of Nafion and glutaraldehyde as synergetic immobilization matrix: Conformational characterization and electrocatalytic studies

    Energy Technology Data Exchange (ETDEWEB)

    ElKaoutit, Mohammed, E-mail: elkaoutit@uca.es [Departamento de Quimica Analitica, Facultad de Ciencias, Universidad de Cadiz, 11510 Puerto Real, Cadiz (Spain); Naranjo-Rodriguez, Ignacio [Departamento de Quimica Analitica, Facultad de Ciencias, Universidad de Cadiz, 11510 Puerto Real, Cadiz (Spain); Dominguez, Manuel [Departamento de Fisica de la Materia Condensada, Facultad de Ciencias, Universidad de Cadiz, 11510 Puerto Real, Cadiz (Spain); Hidalgo-Hidalgo-de-Cisneros, Jose Luis [Departamento de Quimica Analitica, Facultad de Ciencias, Universidad de Cadiz, 11510 Puerto Real, Cadiz (Spain)

    2011-10-01

    Use of a mixture of Nafion and glutaraldehyde as new immobilization matrix was described. The percentage of Nafion was optimized to prevent denaturation of horseradish peroxidase enzyme after its crosslinkage with glutaraldehyde on electro-synthesized polypyrrole surface. Topographic study by Atomic Force Microscopy (AFM) shows that the enzyme seems to have been introduced inside the ionic cluster of Nafion. The characterization of the resulting bio-interfaces by UV-vis and FT-IR shows that the intra-crosslinkage phenomena caused by the use of glutaraldehyde can be eliminated by the optimization of the concentration of Nafion additive. The secondary structure contents of native and immobilized enzyme were analyzed by a Gaussian curve fitting of the respective FT-IR spectra in the amide I region. Immobilized enzyme presented notable increasing percentages of globular and short helical structure compared with native enzyme. This indicates that immobilized enzyme was folded which is in accordance with AFM studies and supports the enzyme entrance inside ionic clutter of Nafion. Thanks to synergic effects of the polypyrrole conducting polymer and the perfluorosulfonic acid polymer Nafion, HRP enzyme was immobilized in its 'native' state, the resulting biosensor was able to sense peroxide without any chemical mediator and can be categorized as third generation.

  2. Methods to determine hydration states of minerals and cement hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Thorell, Alva; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2014-11-15

    This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate are presented. Some of the methods used were validated with the system Na{sub 2}SO{sub 4}–H{sub 2}O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions.

  3. Methods to determine hydration states of minerals and cement hydrates

    International Nuclear Information System (INIS)

    Baquerizo, Luis G.; Matschei, Thomas; Scrivener, Karen L.; Saeidpour, Mahsa; Thorell, Alva; Wadsö, Lars

    2014-01-01

    This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate are presented. Some of the methods used were validated with the system Na 2 SO 4 –H 2 O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions

  4. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina

    2017-05-13

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10 was conducted for tricalcium silicate (C3S) to interpret long-term hydration process and investigate the formation, structure and properties of C-S-H. Based on results from XRD, IR, SEM, NMR and so forth, loose and dense clusters of C-S-H with analogous C/S ratio were obtained along with the corresponding chemical formulae proposed as Ca5Si4O13∙6.2H2O. Crystalline structure inside C-S-H was observed by TEM, which was allocated at the foil-like proportion as well as the edge of wrinkles of the product. The long-term hydration process of C3S in dilute suspension could be sketchily described as migration of calcium hydroxide and in-situ growth of C-S-H with equilibrium silicon in aqueous solution relatively constant and calcium varied.

  5. Impacts of Hydrate Distribution on the Hydro-Thermo-Mechanical Properties of Hydrate-Bearing Sediments

    Science.gov (United States)

    Dai, S.; Seol, Y.

    2015-12-01

    In general, hydrate makes the sediments hydraulically less conductive, thermally more conductive, and mechanically stronger; yet the dependency of these physical properties on hydrate saturation varies with hydrate distribution and morphology. Hydrate distribution in sediments may cause the bulk physical properties of their host sediments varying several orders of magnitude even with the same amount of hydrate. In natural sediments, hydrate morphology is inherently governed by the burial depth and the grain size of the host sediments. Compare with patchy hydrate, uniformly distributed hydrate is more destructive to fluid flow, yet leads to higher gas and water permeability during hydrate dissociation due to the easiness of forming percolation paths. Water and hydrate have similar thermal conductivity values; the bulk thermal conductivity of hydrate-bearing sediments depends critically on gas-phase saturation. 60% of gas saturation may result in evident thermal conductivity drop and hinder further gas production. Sediments with patchy hydrate yield lower stiffness than that with cementing hydrate but higher stiffness than that with pore filling and loading bearing hydrate. Besides hydrate distribution, the stress state and loading history also play an important role in the mechanical behavior of hydrate-bearing sediments.

  6. Morphological and voltammetric characterization of different concentrations of spin coated Nafion-Ru(bpy)2+3 thin films

    International Nuclear Information System (INIS)

    Tuason, B S B; Tiong-Palisoc, S; Tiamzon-Natividad, M

    2015-01-01

    Different concentrations of Ru(bpy) 2+ 3 were successfully deposited on ITO coated glass substrates employing a simple method using a spin coater. The surface morphology was determined by scanning electron microscopy (SEM). The transport mechanism and the diffusion coefficient of the redox mediators within the films were characterized using cyclic voltammetry (CV). The concentrations were varied by dissolving different amounts of the redox mediator in methanol and 5% Nafion. SEM micrographs showed that the roughness of the surface increased with concentration of redox mediator. CV showed successful incorporation of Ru(bpy) 2+ 3 . The order of the magnitude of the diffusion coefficients confirmed that the redox mediators were immobilized within the Nafion thin film. The resulting amount of redox mediator immobilized can be manipulated by simply varying the concentration of the casting solution. (paper)

  7. A novel crosslinking strategy for preparing poly(vinyl alcohol)-based proton-conducting membranes with high sulfonation

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Chun-En [Nanoelectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106 (China); Lin, Chi-Wen [Department of Chemical Engineering, National Yunlin University of Science and Technology, Yunlin (China); Hwang, Bing-Joe [Nanoelectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106 (China); National Synchrotron Radiation Research Center, Hsinchu 300 (China)

    2010-04-15

    This study synthesizes poly(vinyl alcohol) (PVA)-based polymer electrolyte membranes by a two-step crosslinking process involving esterization and acetal ring formation reactions. This work also uses sulfosuccinic acid (SSA) as the first crosslinking agent to form an inter-crosslinked structure and a promoting sulfonating agent. Glutaraldehyde (GA) as the second crosslinking agent, reacts with the spare OH group of PVA and forms, not only a dense structure at the outer membrane surface, but also a hydrophobic protective layer. Compared with membranes prepared by a traditional one-step crosslinking process, membranes prepared by the two-step crosslinking process exhibit excellent dissolution resistance in water. The membranes become water-insoluble even at a molar ratio of SO{sub 3}H/PVA-OH as high as 0.45. Moreover, the synthesized membranes also exhibit high proton conductivities and high methanol permeability resistance. The current study measures highest proton conductivity of 5.3 x 10{sup -2} S cm{sup -1} at room temperature from one of the synthesized membranes, higher than that of the Nafion {sup registered} membrane. Methanol permeability of the synthesized membranes measures about 1 x 10{sup -7} cm{sup 2} S{sup -1}, about one order of magnitude lower than that of the Nafion {sup registered} membrane. (author)

  8. Novel sulfonated poly (ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications

    International Nuclear Information System (INIS)

    Liu, Shuai; Wang, Lihua; Ding, Yue; Liu, Biqian; Han, Xutong; Song, Yanlin

    2014-01-01

    Highlights: • SPEEK/PEI acid-base blend membranes are prepared for VRB applications. • The acid-base blend membranes have much lower vanadium ion permeability. • The energy efficiency of SPEEK/PEI maintain around 86.9% after 50 cycles. - Abstract: Novel acid-base blend membranes composed of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared for vanadium redox flow battery (VRB). The blend membranes were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electronic microscopy (SEM). The ion exchange capacity (IEC), proton conductivity, water uptake, vanadium ion permeability and mechanical properties were measured. As a result, the acid-base blend membranes exhibit higher water uptake, IEC and lower vanadium ion permeability compared to Nafion117 membranes and all these properties decrease with the increase of PEI. In VRB single cell test, the VRB with blend membranes shows lower charge capacity loss, higher coulombic efficiency (CE) and energy efficiency (EE) than Nafion117 membrane. Furthermore, the acid-base blend membranes present stable performance up to 50 cycles with no significant decline in CE and EE. All experimental results indicate that the SPEEK/PEI (S/P) acid-base blend membranes show promising prospects for VRB

  9. On the Electrooxidation and Amperometric Detection of NO Gas at the Pt/Nafion® Electrode

    Directory of Open Access Journals (Sweden)

    Jin-Cherng Yang

    2003-08-01

    Full Text Available The electrochemical oxidation of nitric oxide (NO gas at the Pt/Nafion® electrode has been studied at a concentration of 500 ppm. The electrooxidation of NO taking place over a wide potential range can be described by a transcendental equation, from which the half-wave potential of the reaction can be determined. For NO oxidation with appreciable overpotentials but negligible mass-transfer effects, the Tafel kinetics applies. The obtained charge transfer coefficient (a and the exchange current density (io are 0.77 and 14 mA/cm2, respectively. An amperometric NO gas sensor based on the Pt/Nafion® electrode has been fabricated and tested over the NO concentration range from 0 to 500 ppm. The Pt/Nafion® electrode was used as an anode at a fixed potential, preferably 1.15 V (vs. Ag/AgCl/sat. KCl, which assures current limitation by diffusion only. The sensitivity of the electrochemical sensor was found to be 1.86 mA/ppm/cm2. The potential interference by other gases, such as nitrogen dioxide (NO2 and carbon monoxide (CO, was also studied in the range 0-500 ppm. Both sensitivity for NO and selectivity of NO over NO2/CO show significant enhancement upon using a cyclic voltammetric (CV activation, or cleaning procedure.

  10. Voltammetric determination of In3+ based on the bifunctionality of a multi-walled carbon nanotubes-nafion modified electrode.

    Science.gov (United States)

    Li, Junhua; Zhang, Fuxing; Wang, Jianqiu; Xu, Zhifeng; Zeng, Rongying

    2009-05-01

    Due to the strong cation-exchange ability of Nafion and the excellent properties of multi-walled carbon nanotubes (MWCNTs), a highly sensitive and mercury-free method of determining trace levels of In(3+) has been established based on the bifunctionality of a MWCNTs/Nafion modified glassy carbon electrode (GCE). The MWCNTs/Nafion modified GCE detects In(3+) in a 0.01 M HAc-NaAc buffer solution at pH 5.0 using anodic stripping voltammetry (ASV). The experimental results suggest that a sensitive anodic stripping peak appears at -0.58 V on anodic stripping voltammograms, which can be used as an analytical signal for the determination of In(3+). A good linear relationship between the stripping peak currents and the In(3+) concentration is obtained, covering the concentration range from 5.0 x 10(-10) to 2.0 x 10(-7) M, with a correlation coefficient of 0.999; the detection limit is 1.0 x 10(-11) M. This proposed method has been applied to detect In(3+) as a new way.

  11. The characterization of dielectric properties of platinum-Nafion-poly(3,4-ethylenedioxythiophene) system

    Science.gov (United States)

    Kim, Hyo-Seok

    The generation of electrical energy by piezoelectric polymer when mechanically stressed has motivated the investigation of poly(vinylidenefluoride-trifluoro ethylene) (PVDF-TrFE) devices as implantable physiological power supplies. The fragility, specific weight, and rigidity of traditional piezoelectric ceramics used have limited their applicability, although the concept of using piezoelectric elements as mechanically actuated electric power generators for implanted organs has been exploited to some extent. In contrast, piezoelectric polymers are flexible, light, resistant to mechanical fatigue, and efficient as voltage generators. Thus, they can be considered as a source for generating, through mechanical deformation, the electric power needed to fuel implanted artificial organs or to trigger assisting devices such as cardiac pacemakers. This study demonstrates the feasibility of power generation devices that create current from mechanical deformation. One type of power generating device is PVDF-TrFE copolymer and, when built on the pacemaker's lead, can use the motion of the heart as its power source. The other type of device is a Pt-Nafion-PEDOT (PNP) composite device which is fabricated using Perfluorosulfonate ionomeric polymer (Nafion) and conductive polymer, Poly(3,4-ethylenedioxythiophene), by electrochemical synthesis. The device will enable passive location-specific stimulation, thus mimicking the contraction signal of the normal heart. It can generate its own power and may therefore make the battery-lifetime longer. In other applications of these materials is an ultrasound transducer and receiver. Ultrasound transducer/receivers using PNP composite and PVDF as a reference transducer/receiver were studied in order to detect and locate the depth of material (alloy metal, polymer gel) by a pulse-echo method. In a time of flight (TOF) measurement, a transmitter emits short packets of ultrasound waves toward the surface of object in tissue, where they are

  12. Electrogenerated chemiluminescence of a cationic cyclometalated iridium complex–Nafion modified electrode in neutral aqueous solution

    International Nuclear Information System (INIS)

    Dong, YongPing; Ni, ZiYue; Zhang, Jing; Tong, BiHai; Chu, XiangFeng

    2013-01-01

    Electrogenerated chemiluminescence (ECL) of a cationic cyclometalated iridium complex, [(pqcm) 2 Ir(bpy)](PF 6 ) (1, pqcmH=2-phenyl-quinoline-4-carboxylic acid methyl ester, bpy=2,2′-bipyridine), was investigated at a bare glassy carbon electrode in CH 3 CN solution and 4 ECL peaks were observed. Then, the ECL of the iridium complex was studied in neutral phosphate buffer solution (PBS) by immobilizing it on a glassy carbon electrode. Two closely located ECL peaks were obtained at 1.07 and 1.40 V when the potential was scanned from −3.00 V to 2.20 V, while only one broad ECL peak located around −2.0 V was obtained when the potential was scanned from 2.20 V to −3.00 V. In the presence of oxalate, one ECL peak located around 1.22 V could be obtained except the broad ECL peak located at −2.00 V. The ECL peak at positive potential range was enhanced more than one magnitude in the presence of Nafion and was nearly 5-times higher than that of Ru(bpy) 3 2+ –Nafion modified electrode, suggesting that the synthesized iridium complex has great application potential in ECL detection. The ECL spectra of iridium complex were identical to its photoluminescence spectrum, indicating the same metal-to-ligand charge transfer (MLCT) excited states. The mechanisms of ECL were proposed based on the experimental results. The present ECL sensor gave a linear response for the oxalate concentration from 1.0×10 −6 to 1.0×10 −4 mol L −1 with a detection limit (S/N=3) of 9.1×10 −7 mol L −1 . -- Graphical abstract: Electrochemiluminescence (ECL) of immobilized novel cationic cyclometalated iridium complex in neutral phosphate buffer solution is reported for the first time. The intensity of iridium complex ECL is 5-times higher than that of Ru(bpy) 3 2+ ECL. Highlights: ► Cationic cyclometalated iridium complex was modified on a bare electrode. ► Electrochemiluminescence (ECL) of the modified electrode was studied. ► The ECL intensity is higher than that of Ru

  13. Is Br2 hydration hydrophobic?

    Science.gov (United States)

    Alcaraz-Torres, A; Gamboa-Suárez, A; Bernal-Uruchurtu, M I

    2017-02-28

    The spectroscopic properties of bromine in aqueous systems suggest it can behave as either hydrophilic or hydrophobic solute. In small water clusters, the halogen bond and the hydrogen-halogen interaction are responsible for its specific way of binding. In water hydrates, it is efficiently hosted by two different cages forming the crystal structure and it has been frequently assumed that there is little or no interaction between the guest and the host. Bromine in liquid solution poses a challenging question due to its non-negligible solubility and the large blue shift measured in its absorption spectra. Using a refined semi-empirical force field, PM3-PIF, we performed a Born-Oppenheimer molecular dynamics study of bromine in liquid water. Here we present a detailed study in which we retrieved the most representative hydration structures in terms of the most frequent positions around bromine and the most common water orientations. Albeit being an approximate description of the total hydration phenomenon, it captures the contribution of the leading molecular interactions in form of the recurrent structures. Our findings confirm that the spectroscopic signature is mainly caused by the closest neighbors. The dynamics of the whole first hydration shell strongly suggests that the external molecules in that structure effectively isolate the bulk from the presence of bromine. The solvation structure fluctuates from a hydrophilic to a hydrophobic-like environment along the studied trajectory.

  14. Hydration modeling of calcium sulphates

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, H.J.H.; Al-Mattarneh, Hashem; Mustapha, Kamal N.; Nuruddin, Muhd Fadhil

    2008-01-01

    The CEMHYD3D model has been extended at the University of Twente in the last ten years [1,2]. At present the cement hydration model is extended for the use of gypsum. Although gypsum was present in the model already, the model was not suitable for high contents of gypsum and did not include the

  15. Durability of PEM Fuel Cell Membranes

    Science.gov (United States)

    Huang, Xinyu; Reifsnider, Ken

    Durability is still a critical limiting factor for the commercialization of polymer electrolyte membrane (PEM) fuel cells, a leading energy conversion technology for powering future hydrogen fueled automobiles, backup power systems (e.g., for base transceiver station of cellular networks), portable electronic devices, etc. Ionic conducting polymer (ionomer) electrolyte membranes are the critical enabling materials for the PEM fuel cells. They are also widely used as the central functional elements in hydrogen generation (e.g., electrolyzers), membrane cell for chlor-alkali production, etc. A perfluorosulfonic acid (PFSA) polymer with the trade name Nafion® developed by DuPont™ is the most widely used PEM in chlor-alkali cells and PEM fuel cells. Similar PFSA membranes have been developed by Dow Chemical, Asahi Glass, and lately Solvay Solexis. Frequently, such membranes serve the dual function of reactant separation and selective ionic conduction between two otherwise separate compartments. For some applications, the compromise of the "separation" function via the degradation and mechanical failure of the electrolyte membrane can be the life-limiting factor; this is particularly the case for PEM in hydrogen/oxygen fuel cells.

  16. Hybrid Nano composite Membranes for PEMFC Applications

    International Nuclear Information System (INIS)

    Niepceron, F.

    2008-03-01

    This work aims at validating a new concept of hybrid materials for the realization of proton exchange membranes, an essential constituent of PEM fuel cells. The originality of this nano-composite hybrid concept corresponds to a separation of the membrane's properties. We investigated the preparation of composite materials based on an inert, relatively low cost, polymer matrix (PVDF-HFP) providing the mechanical stability embedding inorganic fillers providing the necessary properties o f proton-conduction and water retention. The first step of this work consisted in the modification of fumed silica to obtain a proton-conducting filler. An ionic exchange capacity (CEI) equal to 3 meq/g was obtained by the original grafting of sodium poly(styrene-sulfonate) chains from the surface of particles. Nano-composite hybrid membranes PVDF-HFP/functionalized silica were accomplished by a film casting process. The coupling of the morphological and physicochemical analyses validated the percolation of the inorganic phase for 30 wt.% of particles. Beyond 40 % of loading, measured protonic conductivity is higher than the reference membrane Nafion 112. Finally, these membranes presented high performances, above 0.8 W/cm 2 , in single-cell fuel cell tests. A compromise is necessary according to the rate of loading between performances in fuel cell and mechanical properties of the membrane. 50 % appeared as best choice with, until 90 C, a remarkable thermal stability of the performances. (author)

  17. Rapid fabrication of microfluidic polymer electrolyte membrane fuel cell in PDMS by surface patterning of perfluorinated ion-exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yong-Ak; Han, Jongyoon [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Batista, Candy [Roxbury Community College, 1234 Columbus Ave., Roxbury Crossing, MA 02120 (United States); Sarpeshkar, Rahul [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2008-09-01

    In this paper we demonstrate a simple and rapid fabrication method for a microfluidic polymer electrolyte membrane (PEM) fuel cell using polydimethylsiloxane (PDMS), which has become the de facto standard material in BioMEMS. Instead of integrating a Nafion sheet film between two layers of a PDMS device in a traditional ''sandwich format,'' we pattern a perfluorinated ion-exchange resin such as a Nafion resin on a glass substrate using a reversibly bonded PDMS microchannel to generate an ion-selective membrane between the fuel-cell electrodes. After this patterning step, the assembly of the microfluidic fuel cell is accomplished by simple oxygen plasma bonding between the PDMS chip and the glass substrate. In an example implementation, the planar PEM microfluidic fuel cell generates an open circuit voltage of 600-800 mV and delivers a maximum current output of nearly 4 {mu}A. To enhance the power output of the fuel cell we utilize self-assembled colloidal arrays as a support matrix for the Nafion resin. Such arrays allow us to increase the thickness of the ion-selective membrane to 20 {mu}m and increase the current output by 166%. Our novel fabrication method enables rapid prototyping of microfluidic fuel cells to study various ion-exchange resins for the polymer electrolyte membrane. Our work will facilitate the development of miniature, implantable, on-chip power sources for biomedical applications. (author)

  18. Enhanced Proton Conductivity and Methanol Permeability Reduction via Sodium Alginate Electrolyte-Sulfonated Graphene Oxide Bio-membrane

    Science.gov (United States)

    Shaari, N.; Kamarudin, S. K.; Basri, S.; Shyuan, L. K.; Masdar, M. S.; Nordin, D.

    2018-03-01

    The high methanol crossover and high cost of Nafion® membrane are the major challenges for direct methanol fuel cell application. With the aim of solving these problems, a non-Nafion polymer electrolyte membrane with low methanol permeability and high proton conductivity based on the sodium alginate (SA) polymer as the matrix and sulfonated graphene oxide (SGO) as an inorganic filler (0.02-0.2 wt%) was prepared by a simple solution casting technique. The strong electrostatic attraction between -SO3H of SGO and the sodium alginate polymer increased the mechanical stability, optimized the water absorption and thus inhibited the methanol crossover in the membrane. The optimum properties and performances were presented by the SA/SGO membrane with a loading of 0.2 wt% SGO, which gave a proton conductivity of 13.2 × 10-3 Scm-1, and the methanol permeability was 1.535 × 10-7 cm2 s-1 at 25 °C, far below that of Nafion (25.1 × 10-7 cm2 s-1) at 25 °C. The mechanical properties of the sodium alginate polymer in terms of tensile strength and elongation at break were improved by the addition of SGO.

  19. Characterization and Modification of Electrospun Fiber Mats for Use in Composite Proton Exchange Membranes

    Science.gov (United States)

    Mannarino, Matthew Marchand

    conducting material or forms a continuous fuel-blocking film. The LbL component consists of a proton-conducting, methanolimpermeable poly(diallyl dimethyl ammonium chloride)/sulfonated poly(2,6-dimethyl 1,4-phenylene oxide) (PDAC/sPPO) thin film. The electrospun fiber component consists of PA 6(3)T fibers of average diameter between 400 and 800 nm, in a nonwoven matrix of 60-90% porosity depending on the temperature of thermal annealing utilized to improve the mechanical properties. This thesis demonstrates the versatility and flexibility of this fabrication technique, since any ion conducting LbL system may be sprayed onto any electrospun fiber mat, allowing for independent control of functionality and mechanical properties. The mechanical properties of the spray coated electrospun mats are shown to be superior to the LbL-only system, and possess intrinsically greater dimensional stability and lower mechanical hysteresis than Nafion under hydration cycling. The electrochemical selectivity of the composite LbL-electrospun membrane is found to be superior to Nafion, which makes them a viable alternative proton exchange membrane for fuel cell applications. The composite proton exchange membranes fabricated in this work were tested in an operational direct methanol fuel cell, with results showing the capability for higher open circuit voltages (OCV) and comparable cell resistances when compared to Nafion. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

  20. Sulfonated Holey Graphene Oxide (SHGO) Filled Sulfonated Poly(ether ether ketone) Membrane: The Role of Holes in the SHGO in Improving Its Performance as Proton Exchange Membrane for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Jiang, Zhong-Jie; Jiang, Zhongqing; Tian, Xiaoning; Luo, Lijuan; Liu, Meilin

    2017-06-14

    Sulfonated holey graphene oxides (SHGOs) have been synthesized by the etching of sulfonated graphene oxides with concentrated HNO 3 under the assistance of ultrasonication. These SHGOs could be used as fillers for the sulfonated aromatic poly(ether ether ketone) (SPEEK) membrane. The obtained SHGO-incorporated SPEEK membrane has a uniform and dense structure, exhibiting higher performance as proton exchange membranes (PEMs), for instance, higher proton conductivity, lower activation energy for proton conduction, and comparable methanol permeability, as compared to Nafion 112. The sulfonated graphitic structure of the SHGOs is believed to be one of the crucial factors resulting in the higher performance of the SPEEK/SHGO membrane, since it could increase the local density of the -SO 3 H groups in the membrane and induce a strong interfacial interaction between SHGO and the SPEEK matrix, which improve the proton conductivity and lower the swelling ratio of the membrane, respectively. Additionally, the proton conductivity of the membrane could be further enhanced by the presence of the holes in the graphitic planes of the SHGOs, since it provides an additional channel for transport of the protons. When used, direct methanol fuel cell with the SPEEK/SHGO membrane is found to exhibit much higher performance than that with Nafion 112, suggesting potential use of the SPEEK/SHGO membrane as the PEMs.

  1. Observed gas hydrate morphologies in marine sediment

    Energy Technology Data Exchange (ETDEWEB)

    Holland, M.; Schultheiss, P.; Roberts, J.; Druce, M. [Geotek Ltd., Daventry, Northamptonshire (United Kingdom)

    2008-07-01

    The morphology of gas hydrate in marine sediments determines the basic physical properties of the sediment-hydrate matrix and provides information regarding the formation of gas hydrate deposits, and the nature of the disruption that will occur on dissociation. Small-scale morphology is useful in estimating the concentrations of gas hydrate from geophysical data. It is also important for predicting their response to climate change or commercial production. Many remote techniques for gas hydrate detection and quantification depend on hydrate morphology. In this study, morphology of gas hydrate was examined in HYACINTH pressure cores from recent seagoing expeditions. Visual and infrared observations from non-pressurized cores were also used. The expeditions and pressure core analysis were described in detail. This paper described the difference between two types of gas hydrate morphologies, notably pore-filling and grain-displacing. Last, the paper addressed the impact of hydrate morphology. It was concluded that a detailed morphology of gas hydrate is an essential component for a full understanding of the past, present, and future of any gas hydrate environment. 14 refs., 4 figs.

  2. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K

    1996-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  3. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K.

    1995-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  4. Influence of fluorosurfactants on hydrate formation rates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.U.; Jeong, K.E.; Chae, H.J.; Jeong, S.Y. [Korea Reasearch Inst. of Chemical Technology, Alternative Chemicals/Fuel Research Center, Yuseong-Gu, Daejon (Korea, Republic of)

    2008-07-01

    Gas hydrates, or clathrates, are ice-like solids that forms when natural gas is in contact with liquid water or ice under high pressure and low temperature. There is significant interest in studying the storage and transportation of gas in the form of hydrates. However, a critical problem impacting the industrial application of gas hydrates for storage and transportation of natural gas is the slow formation rate of natural gas hydrate. Researchers have previously reported on the promotion effect of some additives on gas hydrate formation and hydrate gas content. Fluorosurfactants are significantly superior to nonfluorinated surfactants in wetting action, as well as stability in harsh environments, both thermal and chemical. This paper discussed an experimental investigation into the effects of fluorosurfactants with different ionic types on the formation of methane hydrate. The surfactants used were FSN-100 of DuPont Zonyl as non-ionic surfactant and FC-143 of DuPont as anionic surfactant. The paper discussed the experimental apparatus for methane hydrate formation. It also discussed hydrate formation kinetics and the series of hydrate formation experiments that were conducted in the presence of fluorosurfactants. Last, the paper explored the results of the study. It was concluded that anionic fluorosurfactant of FC-143 had a better promoting effect on methane hydrate formation compared with nonionic surfactant of FSN-100. 8 refs., 2 tabs., 2 figs.

  5. Pressure-dependent pure- and mixed-gas permeation properties of Nafion®

    KAUST Repository

    Mukaddam, Mohsin Ahmed

    2016-04-20

    The permeation properties of Nafion® at 35 °C are presented for pure gases H2, N2, O2, CH4, CO2, C2H6 and C3H8, as a function of pressure between 2 and 20 atm. The effect of pressure on permeability and selectivity is analyzed to understand two observed phenomena: compression and plasticization. In pure-gas experiments, at increasing feed pressure, compression of the polymer matrix reduced the permeability of low-sorbing penetrants H2, N2, O2, and CH4. In contrast, permeabilities of more soluble penetrants CO2 and C2H6 increased by 18% and 46% respectively, as plasticization effects overcame compression effects. Permeability of C3H8 decreased slightly with increasing pressure up to 4.6 atm as a result of compression, then increased by 3-fold at 9 atm as a result of plasticization associated with high C3H8 solubility. Binary CO2/CH4 (50:50) mixed-gas experiments at total feed pressures up to 36 atm quantified the effect of CO2 plasticization on separation performance. At 10 atm CO2 partial pressure, CH4 permeability increased by 23% relative to its pure-gas value of 0.078 Barrer, while CO2 permeability decreased by 28%. Consequently, CO2/CH4 selectivity decreased to 19, i.e., 42% below its pure-gas value of 32.

  6. Voltammetric Determination of Codeine on Glassy Carbon Electrode Modified with Nafion/MWCNTs

    Directory of Open Access Journals (Sweden)

    Robert Piech

    2015-01-01

    Full Text Available A glassy carbon electrode modified with a Nafion/MWCNTs composite is shown to enable the determination of codeine using differential pulse voltammetry in phosphate buffer of pH 3.0. At a preconcentration time of 15 s, the calibration graph is linear in the 0.5 µM (0.15 mg·L−1 to 15 µM (4.5 mg·L−1 concentration range with a correlation coefficient of 0.998. The detection limit at a preconcentration time of 120 s is as low as 4.5 μg·L−1. The repeatability of the method at a 0.6 μg·L−1 concentration level, expressed as the RSD, is 3.7% (for n=5. The method was successfully applied and validated by analyzing codeine in drug, human plasma, and urine samples.

  7. Proton-conducting ionic liquid-based proton exchange membrane fuel cell membranes: The key role of ionomer-ionic liquid interaction

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Mathieu; Cointeaux, Laure; Iojoiu, Cristina; Lepretre, Jean-Claude; Sanchez, Jean-Yves [LEPMI, UMR 5631, CNRS-INP-UJF, PHELMA-Campus, BP.75, 1130 rue de la Piscine, 38402 Saint-Martin-d' Heres Cedex (France); Molmeret, Yannick; El Kissi, Nadia [Laboratoire de Rheologie, UMR 5520 CNRS-INPG-UJF, ENSHMG, BP 53, 38041 Grenoble (France); Judeinstein, Patrick [Institut de Chimie Moleculaire et des Materiaux d' Orsay (UMR 8182), Batiment 410, Universite Paris-Sud 11, 91405 Orsay Cedex (France)

    2010-09-15

    The paper deals with the synthesis and characterisation of proton-conducting ionic liquids (PCILs) and their polymer electrolytes obtained by blending modified Nafion membranes with different concentrations of PCILs. The PCILs are obtained by the neutralization of triethylamine with different organic acids. The first part of the paper studies the influence of acidity and acid structure on PCIL thermal and electrochemical performance, while the second part examines membrane conductivity and reveals it to depend more on PCIL structure than on its intrinsic conductivity. At 130 C, conductivities exceeding 10 mS cm{sup -1} were obtained in fully anhydrous conditions. (author)

  8. Semi-fluorinated sulfonated polyimide membranes with enhanced proton selectivity and stability for vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Li, Jinchao; Liu, Suqin; He, Zhen; Zhou, Zhi

    2016-01-01

    A series of semi-fluorinated sulfonated polyimides (6F-SPIs) are designed and synthesized via a one-step high-temperature polycondensation reaction. The sulfonation degrees of 6F-SPIs are controlled through changing the ratio of sulfonated diamine to non-sulfonated diamine in the casting solution. The physico-chemical properties and single cell performance of 6F-SPI membranes are thoroughly evaluated and compared to a non-fluorinated SPI membrane (6H-SPI-50) and a Nafion 115 membrane. The results show that the designed 6F-SPI membrane with a 50% sulfonation degree (6F-SPI-50) possesses the highest proton selectivity (1.613 × 10 5 S min cm −3 ) among all tested membranes. Besides, the 6F-SPI-50 membrane exhibits a promising performance for vanadium redox flow batteries (VRFBs), showing higher coulombic efficiencies (96.90–99.20%) and energy efficiencies (88.25–64.80%) than the Nafion 115 membrane (with coulombic efficiencies of 90.60–96.70% and energy efficiencies of 81.04–60.10%) at the current densities ranging from 20 to 100 mA cm −2 . Moreover, the 6F-SPI-50 membrane shows excellent chemical stability in the VRFB system. This work paves the way for the development of a new class of 6F-SPI membranes for the VRFB application.

  9. Composite plasma polymerized sulfonated polystyrene membrane for PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Bhabesh Kumar; Khan, Aziz; Chutia, Joyanti, E-mail: jchutiaiasst@gmail.com

    2015-10-15

    Highlights: • Methyl methane sulfonate (MMS) is used as the sulfonating agent. • The proton conductivity of the membrane is found to be 0.141 S cm{sup −1}. • Power density of fuel cell with styrene/MMS membrane is 0.5 W cm{sup −2}. • The membrane exhibits thermal stability up to 140 °C. - Abstract: This work presents the introduction of an organic compound methyl methane sulfonate (MMS) for the first time in fabrication of polystyrene based proton exchange membrane (PEM) by plasma polymerization process. The membrane is fabricated by co-polymerizing styrene and MMS in capacitively coupled continuous RF plasma. The chemical composition of the plasma polymerized polymer membrane is investigated using Fourier Transform Infrared Spectroscopy which reveals the formation of composite structure of styrene and MMS. The surface morphology studied using AFM and SEM depicts the effect of higher partial pressure of MMS on surface topography of the membrane. The proton transport property of the membrane studied using electrochemical impedance spectroscopy shows the achievement of maximum proton conductivity of 0.141 S cm{sup −1} which is comparable to Nafion 117 membrane. Fuel cell performance test of the synthesized membrane shows a maximum power density of 500 mW cm{sup −2} and current density of 0.62 A cm{sup −2} at 0.6 V.

  10. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  11. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films

    Science.gov (United States)

    Gao, Wei; Singh, Neelam; Song, Li; Liu, Zheng; Reddy, Arava Leela Mohana; Ci, Lijie; Vajtai, Robert; Zhang, Qing; Wei, Bingqing; Ajayan, Pulickel M.

    2011-08-01

    Microscale supercapacitors provide an important complement to batteries in a variety of applications, including portable electronics. Although they can be manufactured using a number of printing and lithography techniques, continued improvements in cost, scalability and form factor are required to realize their full potential. Here, we demonstrate the scalable fabrication of a new type of all-carbon, monolithic supercapacitor by laser reduction and patterning of graphite oxide films. We pattern both in-plane and conventional electrodes consisting of reduced graphite oxide with micrometre resolution, between which graphite oxide serves as a solid electrolyte. The substantial amounts of trapped water in the graphite oxide makes it simultaneously a good ionic conductor and an electrical insulator, allowing it to serve as both an electrolyte and an electrode separator with ion transport characteristics similar to that observed for Nafion membranes. The resulting micro-supercapacitor devices show good cyclic stability, and energy storage capacities comparable to existing thin-film supercapacitors.

  12. Control and experimental characterization of a methanol reformer for a 350W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Jensen, Hans-Christian Becker

    suited for reformer systems, where high CO tolerance is required. This enables the use fuels based on e.g. liquid alcohols. This work presents the control strategies of a methanol refoermer for a 350W HTPEM FC system. The system examined is the Serenergy H3-350 Mobile Battery Charger, an integrated......High temperature polymer electrolyte membrane(HTPEM) fuel cells offer many advantages due to their increased operating tempera-tures compared to similar Nafion-based membrane tech-nologies, that rely on the conductive abilities of liquid water. The polybenzimidazole (PBI) membranes are especially...

  13. Electro-oxidation of methanol diffused through proton exchange membrane on Pt surface: crossover rate of methanol

    International Nuclear Information System (INIS)

    Jung, Inhwa; Kim, Doyeon; Yun, Yongsik; Chung, Suengyoung; Lee, Jaeyoung; Tak, Yongsug

    2004-01-01

    Methanol crossover rate through proton exchange membrane (Nafion 117) was investigated with a newly designed electrochemical stripping cell. Nanosize Pt electrode was prepared by the electroless deposition. Distinct electrocatalytic oxidation behaviors of methanol inside membrane were similar to the methanol oxidation in aqueous electrolyte, except adsorption/desorption of hydrogen. The amount of methanol diffused through membrane was calculated from the charge of methanol oxidation during repetitive cyclic voltammetry (CV) and methanol crossover rate was estimated to be 0.69 nmol/s

  14. Fire extinction utilizing carbon dioxide hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Hatakeyama, T.; Aida, E.; Yokomori, T.; Ohmura, R.; Ueda, T. [Keio Univ., Hiyoshi, Kohoku-ku, Yokohama (Japan)

    2008-07-01

    Clathrate hydrates formed with nonflammable gases may be suitable for use as fire extinguishing agents because dissociation of the hydrates results in the temperature decrease in the combustion field and the nonflammable gases released from the dissociated hydrates prevent the supply of the oxygen to the combustion field. This paper discussed experiments in which ordinary ice and dry ice were used to evaluate the performance of CO{sub 2} hydrate as a fire extinguishing agent. The paper described the apparatus and procedure for the preparation of CO{sub 2} hydrate crystals. A schematic of the reactor to form CO{sub 2} hydrate and a photograph of CO{sub 2} hydrate crystal formed in the study were also presented. Other illustrations, photographs, and tables that were presented included a schematic diagram of the experimental apparatus used for the flame extinction experiments; a photograph of CO{sub 2} hydrate powder; sequential video graphs of the flame extinction by the supply of CO{sub 2} hydrate crystals to the methanol pool flame and the relevant illustration; and heat of CO{sub 2} hydrate dissociation, water vaporization and sublimation of dry ice. It was concluded that the critical mass of the CO{sub 2} hydrate required to extinguish a flame was much less than that of ordinary ice, indicating the superiority of CO{sub 2} hydrate to the ice. In addition, the experiments also revealed that the size of the CO{sub 2} hydrate particles had a significant effect on the performance of flame extinction. 5 refs., 2 tabs., 7 figs.

  15. Influence of cholesterol and ceramide VI on the structure of multilamellar lipid membranes at water exchange

    International Nuclear Information System (INIS)

    Ryabova, N. Yu.; Kiselev, M. A.; Balagurov, A. M.

    2010-01-01

    The structural changes in the multilamellar lipid membranes of dipalmitoylphosphatidylcholine (DPPC)/cholesterol and DPPC/ceramide VI binary systems during hydration and dehydration have been studied by neutron diffraction. The effect of cholesterol and ceramide on the kinetics of water exchange in DPPC membranes is characterized. Compared to pure DPPC, membranes of binary systems swell faster during hydration (with a characteristic time of ∼30 min). Both compounds, ceramide VI and cholesterol, similarly affect the hydration of DPPC membranes, increasing the repeat distance due to the bilayer growth. However, in contrast to cholesterol, ceramide significantly reduces the thickness of the membrane water layer. The introduction of cholesterol into a DPPC membrane slows down the change in the parameters of the bilayer internal structure during dehydration. In the DPPC/ceramide VI/cholesterol ternary system (with a molar cholesterol concentration of 40%), cholesterol is partially released from the lamellar membrane structure into the crystalline phase.

  16. Self-Sensing Control of Nafion-Based Ionic Polymer-Metal Composite (IPMC Actuator in the Extremely Low Humidity Environment

    Directory of Open Access Journals (Sweden)

    Minoru Sasaki

    2013-10-01

    Full Text Available This paper presents feedforward, feedback and two-degree-of-freedom control applied to an Ionic Polymer-Metal Composite (IPMC actuator. It presents a high potential for development of miniature robots and biomedical devices and artificial muscles. We have reported in the last few years that dehydration treatment improves the electrical controllability of bending in Selemion CMV-based IPMCs. We tried to replicate this controllability in Nafion-based IPMC. We found that the displacement of a Nafion-based IPMC was proportional to the total charge imposed, just as in the Selemion-CMV case. This property is the basis of self-sensing controllers for Nafion-based IPMC bending behavior: we perform bending curvature experiments on Nafion-based IPMCs, obtaining the actuator's dynamics and transfer function. From these, we implemented self-sensing controllers using feedforward, feedback and two-degree-of-freedom techniques. All three controllers performed very well with the Nafion-based IPMC actuator.

  17. Surface-modified Y zeolite-filled chitosan membrane for direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong; Zheng, Bin; Zheng, Xiaohong; Wang, Jingtao; Yuan, Weikang; Jiang, Zhongyi [Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2007-11-15

    Hybrid membranes composed of chitosan (CS) as organic matrix and surface-modified Y zeolite as inorganic filler are prepared and their applicability for DMFC is demonstrated by methanol permeability, proton conductivity and swelling property. Y zeolite is modified using silane coupling agents, 3-aminopropyl-triethoxysilane (APTES) and 3-mercaptopropyl-trimethoxysilane (MPTMS), to improve the organic-inorganic interfacial morphology. The mercapto group on MPTMS-modified Y zeolite is further oxidized into sulfonic group. Then, the resultant surface-modified Y zeolites with either aminopropyl groups or sulfonicpropyl groups are mixed with chitosan in acetic acid solution and cast into membranes. The transitional phase generated between chitosan matrix and zeolite filler reduces or even eliminates the nonselective voids commonly exist at the interface. The hybrid membranes exhibit a significant reduction in methanol permeability compared with pure chitosan and Nafion117 membranes, and this reduction extent becomes more pronounced with the increase of methanol concentration. By introducing -SO{sub 3}H groups onto zeolite surface, the conductivity of hybrid membranes is increased up to 2.58 x 10{sup -2} S cm{sup -1}. In terms of the overall selectivity index ({beta} = {sigma}/P), the hybrid membrane is comparable with Nafion117 at low methanol concentration (2 mol L{sup -1}) and much better (three times) at high methanol concentration (12 mol L{sup -1}). (author)

  18. Smart coating process of proton-exchange membrane for polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Leu, Hoang-Jyh; Chiu, Kuo-Feng; Lin, Chiu-Yue

    2013-01-01

    Highlights: ► Using oxygen plasma and smart coating technique for membrane modification. ► Oxygen plasma treatment can increase the reaction area of the membrane. ► AFM, SEM, FT-IR, XPS, EIS spectra can prove the surface treatment process. ► Nafion membrane modification can reduce Rct and enhance current density. - Abstract: The interfaces of electrolyte|catalyst|electrode play an important role in the performance of proton-exchange membrane fuel cells (PEMFCs). Increasing the interface effective area and lowering the charge transfer resistance of the interface are significant issues to promote the cell performance. In this study, oxygen plasma treatment was used to increase the surface roughness of Nafion®117 membrane, and then a smart coating process was applied to fabricate the initial Pt/C catalyst layer, which served to reduce the charge transfer resistance of the interface. The morphology and surface characteristics of membranes have been qualified by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. These results show that the plasma treatments and smart coating processes were effective in reducing the interface charge transfer resistance. At optimal condition, the interface charge transfer resistance was 0.45 Ω/cm 2 which was 1–2 order less than the untreated ones

  19. Multilayered sulphonated polysulfone/silica composite membranes for fuel cell applications

    International Nuclear Information System (INIS)

    Padmavathi, Rajangam; Karthikumar, Rajendhiran; Sangeetha, Dharmalingam

    2012-01-01

    Highlights: ► Multilayered membranes were fabricated with SPSu. ► Aminated polysulfone and silica were used as the layers in order to prevent the crossover of methanol. ► The methanol permeability and selectivity ratio proved a strong influence on DMFC application. ► The suitability of the multilayered membranes was studied in the lab made set-ups of PEMFC and DMFC. - Abstract: Polymer electrolyte membranes used in proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) suffer from low dimensional stability. Hence multilayered membranes using sulfonated polysulfone (SPSu) and silica (SiO 2 ) were fabricated to alter such properties. The introduction of an SiO 2 layer between two layers of SPSu to form the multilayered composite membrane enhanced its dimensional stability, but slightly lowered its proton conductivity when compared to the conventional SPSu/SiO 2 composite membrane. Additionally, higher water absorption, lower methanol permeability and higher flame retardancy were also observed in this newly fabricated multilayered membrane. The performance evaluation of the 2 wt% SiO 2 loaded multilayered membrane in DMFC showed a maximum power density of 86.25 mW cm −2 , which was higher than that obtained for Nafion 117 membrane (52.8 mW cm −2 ) in the same single cell test assembly. Hence, due to the enhanced dimensional stability, reduced methanol permeability and higher maximum power density, the SPSu/SiO 2 /SPSu multilayered membrane can be a viable and a promising candidate for use as an electrolyte membrane in DMFC applications, when compared to Nafion.

  20. Structural and spectroscopic features of proton hydrates in the crystalline state. Solid-state DFT study on HCl and triflic acid hydrates

    Science.gov (United States)

    Vener, M. V.; Chernyshov, I. Yu.; Rykounov, A. A.; Filarowski, A.

    2018-01-01

    Crystalline HCl and CF3SO3H hydrates serve as excellent model systems for protonated water and perfluorosulphonic acid membranes, respectively. They contain characteristic H3O+, H5О+2, H7О+3 and H3O+(H2O)3 (the Eigen cation) structures. The properties of these cations in the crystalline hydrates of strong monobasic acids are studied by solid-state density function theory (DFT). Simultaneous consideration of the HCl and CF3SO3H hydrates reveals the impact of the size of a counter ion and the crystalline environment on the structure and infrared active bands of the simplest proton hydrates. The H7O+3 structure is very sensitive to the size of the counter ion and symmetry of the local environment. This makes it virtually impossible to identify the specific features of H7O+3 in molecular crystals. The H3O+ ion can be treated as the Eigen-like cation in the crystalline state. Structural, infrared and electron-density features of H5О+2 and the Eigen cation are virtually insensitive to the size of the counter ion and the symmetry of the local crystalline environment. These cations can be considered as the simplest stable proton hydrates in the condensed phase. Finally, the influence of the Grimme correction on the structure and harmonic frequencies of the molecular crystals with short (strong) intermolecular O-H···O bonds is discussed.

  1. The quintuple-shape memory effect in electrospun nanofiber membranes

    Science.gov (United States)

    Zhang, Fenghua; Zhang, Zhichun; Liu, Yanju; Lu, Haibao; Leng, Jinsong

    2013-08-01

    Shape memory fibrous membranes (SMFMs) are an emerging class of active polymers, which are capable of switching from a temporary shape to their permanent shape upon appropriate stimulation. Quintuple-shape memory membranes based on the thermoplastic polymer Nafion, with a stable fibrous structure, are achieved via electrospinning technology, and possess a broad transition temperature. The recovery of multiple temporary shapes of electrospun membranes can be triggered by heat in a single triple-, quadruple-, quintuple-shape memory cycle, respectively. The fiber morphology and nanometer size provide unprecedented design flexibility for the adjustable morphing effect. SMFMs enable complex deformations at need, having a wide potential application field including smart textiles, artificial intelligence robots, bio-medical engineering, aerospace technologies, etc in the future.

  2. Polymer-SnO2 composite membranes

    DEFF Research Database (Denmark)

    Nørgaard, Casper Frydendal; Skou, Eivind Morten

    . This work utilizes the latter approach and makes use of particles of tin dioxide (SnO2). Polymer-SnO2 composite membranes were successfully prepared using an ion-exchange method. SnO2 was incorporated into membranes by ion-exchange in solutions of SnCl2 ∙ 2 H2O in methanol, followed by oxidation to SnO2...... in air. The content of SnO2 proved controllable by adjusting the concentration of the ion-exchange solution. The prepared nanocomposite membranes were characterized by powder XRD, 119Sn MAS NMR, electrochemical impedance spectroscopy, water uptake and tensile stress-strain measurements. For Nafion 117...

  3. The quintuple-shape memory effect in electrospun nanofiber membranes

    International Nuclear Information System (INIS)

    Zhang, Fenghua; Zhang, Zhichun; Lu, Haibao; Leng, Jinsong; Liu, Yanju

    2013-01-01

    Shape memory fibrous membranes (SMFMs) are an emerging class of active polymers, which are capable of switching from a temporary shape to their permanent shape upon appropriate stimulation. Quintuple-shape memory membranes based on the thermoplastic polymer Nafion, with a stable fibrous structure, are achieved via electrospinning technology, and possess a broad transition temperature. The recovery of multiple temporary shapes of electrospun membranes can be triggered by heat in a single triple-, quadruple-, quintuple-shape memory cycle, respectively. The fiber morphology and nanometer size provide unprecedented design flexibility for the adjustable morphing effect. SMFMs enable complex deformations at need, having a wide potential application field including smart textiles, artificial intelligence robots, bio-medical engineering, aerospace technologies, etc in the future. (paper)

  4. Ionic liquids and their hosting by polymers for HT-PEMFC membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hana, M.; Martinez, M.; Cointeaux, L.; Lepretre, J.C. [LEPMI-ELSA, PHELMA, UMR 5631, CNRS, Grenoble INP, UJF, Saint-Martin-d' Heres (France); Molmeret, Y.; El Kissi, N. [Laboratoire de Rheologie, UMR 5520 CNRS-INPG-UJF, ENSHMG, Grenoble (France); Teles, J.; Judeinstein, P. [Institut de Chimie Moleculaire et des Materiaux d' Orsay, CNRS 8182, Orsay (France); Iojoiu, C.; Sanchez, J.Y.

    2010-10-15

    The paper deals with proton-conducting ionic liquids (PCILs) for use, in combination with functional polymers, in membranes operating in high temperature PEMFC. Monoammoniums derived from monoamines and half-neutralised diamines were investigated in the form of triflates. Promising results were obtained with the half-neutralised diamine-based PCIL, its conduction being governed by both Grotthuss-like and vehicular mechanisms, the respective contributions of which depend on temperature. In addition, their blending with Nafion results in a distinct reinforcement of the membrane. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  5. Double cross-linked polyetheretherketone proton exchange membrane for fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2012-04-01

    Full Text Available and separating the fuel from oxidant. A polyperfluorosulfonic acid ionomer Nafion? (developed by Dupont) is the mostly used proton exchange membrane in PEMFCs, because of its high proton conductivity and excellent chemical stability [3, 4]. However, the high...-Methyl-2-pyrrolidinone. After the solution was homogenized by stirring, the polymer solution was cast on a glass Petri dish. The solvent was then removed in a vacuum oven at 130 ?C. The membrane was peeled off from the Petri dish. Thereafter...

  6. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    1998-01-01

    This report deals with gas phase hydration of pure cement clinker minerals at reduced relative humidities. This is an important subject in relation to modern high performance concrete which may self-desiccate during hydration. In addition the subject has relevance to storage stability where...... prehydration may occur. In the report both theoretical considerations and experimental data are presented. It is suggested that the initiation of hydration during water vapour exposure is nucleation controlled....

  7. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  8. Surface-Initiated Atom Transfer Radical Polymerization from Electrospun Mats: An Alternative to Nafion

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Dimitrov, Ivaylo; Tynelius, Oskar

    2017-01-01

    , respectively. The membrane morphology is probedby scanning electron microscopy. A membrane with protonconductivity as high as 100 mS cm−1 is obtained. Long-termdurability study in direct methanol fuel cells is conducted forover 1500 h demonstrating the viability of this novel facileapproach....

  9. Physical Properties of Gas Hydrates: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Gabitto, Jorge [Prairie View A& M University; Tsouris, Costas [ORNL

    2010-01-01

    Methane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 1016?m3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.

  10. Accelerated hydration of high silica cements

    International Nuclear Information System (INIS)

    Walker, Colin; Yui, Mikazu

    2012-01-01

    Current Japanese designs for high level radioactive waste (HLW) repositories anticipate the use of both bentonite (buffer and backfill material) and cement based materials. Using hydrated Ordinary Portland Cement (OPC) as a grouting material is undesirable because the associated high pH buffer will have an undisputed detrimental effect on the performance of the bentonite buffer and backfill and of the host rock by changing its porosity. Instead, hydrated low pH cement (LopHC) grouting materials are being developed to provide a pH inferior or equal to 11 to reduce these detrimental effects. LopHC grouting materials use mixtures of superfine OPC (SOPC) clinker and silica fume (SF), and are referred as high silica cements (HSC). The focus of the present study was to identify the development of the unhydrated and hydrated mineral assemblage and the solution chemistry during the hydration of HSC. Since hydration experiments of cementitious materials are notably slow, a ball mill was used to accelerate hydration. This was done for two reasons. Firstly, to develop a method to rapidly hydrate cement based materials without the need for higher temperatures (which can alter the mineral assemblage), and secondly, to ensure that the end point of hydration was reached in a reasonable time frame and so to realize the final mineralogy and solution chemistry of hydrated HSC

  11. Microstructure of natural hydrate host sediments

    International Nuclear Information System (INIS)

    Jones, K.W.; Kerkar, P.B.; Mahajan, D.; Lindquist, W.B.; Feng, H.

    2007-01-01

    There is worldwide interest in the study of natural gas hydrate because of its potential impact on world energy resources, control on seafloor stability, significance as a drilling hazard and probable impact on climate as a reservoir of a major greenhouse gas. Gas hydrates can (a) be free floating in the sediment matrix (b) contact, but do not cement, existing sediment grains, or (c) actually cement and stiffen the bulk sediment. Seismic surveys, often used to prospect for hydrates over a large area, can provide knowledge of the location of large hydrate concentrations because the hydrates within the sediment pores modify seismic properties. The ability to image a sample at the grain scale and to determine the porosity, permeability and seismic profile is of great interest since these parameters can help in determining the location of hydrates with certainty. We report here on an investigation of the structure of methane hydrate sediments at the grain-size scale using the synchrotron radiation-based computed microtomography (CMT) technique. Work has started on the measurements of the changes occurring as tetrahydrofuran hydrate, a surrogate for methane hydrate, is formed in the sediment

  12. Alternate Fuel Cell Membranes for Energy Independence

    Energy Technology Data Exchange (ETDEWEB)

    Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

    2012-12-18

    The overall objective of this project was the development and evaluation of novel hydrocarbon fuel cell (FC) membranes that possess high temperature performance and long term chemical/mechanical durability in proton exchange membrane (PEM) fuel cells (FC). The major research theme was synthesis of aromatic hydrocarbon polymers of the poly(arylene ether sulfone) (PAES) type containing sulfonic acid groups tethered to the backbone via perfluorinated alkylene linkages and in some cases also directly attached to the phenylene groups along the backbone. Other research themes were the use of nitrogen-based heterocyclics instead of acid groups for proton conduction, which provides high temperature, low relative humidity membranes with high mechanical/thermal/chemical stability and pendant moieties that exhibit high proton conductivities in the absence of water, and synthesis of block copolymers consisting of a proton conducting block coupled to poly(perfluorinated propylene oxide) (PFPO) blocks. Accomplishments of the project were as follows: 1) establishment of a vertically integrated program of synthesis, characterization, and evaluation of FC membranes, 2) establishment of benchmark membrane performance data based on Nafion for comparison to experimental membrane performance, 3) development of a new perfluoroalkyl sulfonate monomer, N,N-diisopropylethylammonium 2,2-bis(p-hydroxyphenyl) pentafluoropropanesulfonate (HPPS), 4) synthesis of random and block copolymer membranes from HPPS, 5) synthesis of block copolymer membranes containing high-acid-concentration hydrophilic blocks consisting of HPPS and 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (sDCDPS), 6) development of synthetic routes to aromatic polymer backbones containing pendent 1H-1,2,3-triazole moieties, 7) development of coupling strategies to create phase-separated block copolymers between hydrophilic sulfonated prepolymers and commodity polymers such as PFPO, 8) establishment of basic

  13. Application of empirical hydration distribution functions around polar atoms for assessing hydration structures of proteins

    International Nuclear Information System (INIS)

    Matsuoka, Daisuke; Nakasako, Masayoshi

    2013-01-01

    Highlights: ► Empirical distribution functions of water molecules in protein hydration are made. ► The functions measure how hydrogen-bond geometry in hydration deviate from ideal. ► The functions assess experimentally identified hydration structures of protein. - Abstract: To quantitatively characterize hydrogen-bond geometry in local hydration structures of proteins, we constructed a set of empirical hydration distribution functions (EHDFs) around polar protein atoms in the main and side chains of 11 types of hydrophilic amino acids (D. Matsuoka, M. Nakasako, Journal of Physical Chemistry B 113 (2009) 11274). The functions are the ensemble average of possible hydration patterns around the polar atoms, and describe the anisotropic deviations from ideal hydrogen bond geometry. In addition, we defined probability distribution function of hydration water molecules (PDFH) over the hydrophilic surface of a protein as the sum of EHDFs of solvent accessible polar protein atoms. The functions envelop most of hydration sites identified in crystal structures of proteins (D. Matsuoka, M. Nakasako, Journal of Physical Chemistry B 114 (2010) 4652). Here we propose the application of EHDFs and PDFHs for assessing crystallographically identified hydration structures of proteins. First, hydration water molecules are classified with respect to the geometry in hydrogen bonds in referring EHDFs. Difference Fourier electron density map weighted by PDFH of protein is proposed to identify easily density peaks as candidates of hydration water molecules. A computer program implementing those ideas was developed and used for assessing hydration structures of proteins

  14. Waters of Hydration of Cupric Hydrates: A Comparison between Heating and Absorbance Methods

    Science.gov (United States)

    Barlag, Rebecca; Nyasulu, Frazier

    2011-01-01

    The empirical formulas of four cupric hydrates are determined by measuring the absorbance in aqueous solution. The Beer-Lambert Law is verified by constructing a calibration curve of absorbance versus known Cu[superscript 2+](aq) concentration. A solution of the unknown hydrate is prepared by using 0.2-0.3 g of hydrate, and water is added such…

  15. From polymer chemistry to membrane elaboration

    Energy Technology Data Exchange (ETDEWEB)

    Iojoiu, C. [ERAS-Labo, 222 RN 90, F-38330 St. Nazaire-les-Eymes (France); Chabert, F.; Marechal, M.; Guindet, J.; Sanchez, J.-Y. [LEPMI ENSEEG, Domaine Universitaire, BP 75, F-38402 St. Martin d' Heres Cedex (France); Kissi, N.El. [Laboratoire de Rheologie, ENSHMG, Domaine Universitaire, BP 95, F-38402 St. Martin d' Heres Cedex (France)

    2006-02-28

    The paper tries to make a critical inventory of Ionomers, free of fluorine or fluorine less, which can be used as alternatives to Nafion{sup R} in polymer electrolytes fuel cells, as Ionomer is indisputably one of the main bolts of these technologies. All the Ionomer families are discussed, with their main advantages and drawbacks, in particular in terms of their possible industrial scale-up. Special attention has been paid to the discussions about the choice of the ionic functions and that of polymeric backbones of the Ionomers, with regard to the required electrochemical properties and also to their thermomechanical behaviour. It has been emphasized that a global approach of the polymer electrolytes is essential to progress. This must involve (i) a control of the syntheses up to the pilot scale, (ii) thorough characterizations, (iii) attention to the membrane and the MEA assembly and (iv) durability investigations, including post-mortem characterizations. (author)

  16. Surface modification of a proton exchange membrane and hydrogen storage in a metal hydride for fuel cells

    Science.gov (United States)

    Andrews, Lisa

    Interest in fuel cell technology is rising as a result of the need for more affordable and available fuel sources. Proton exchange membrane fuel cells involve the catalysis of a fuel to release protons and electrons. It requires the use of a polymer electrolyte membrane to transfer protons through the cell, while the electrons pass through an external circuit, producing electricity. The surface modification of the polymer, NafionRTM, commonly researched as a proton exchange membrane, may improve efficiency of a fuel cell. Surface modification can change the chemistry of the surface of a polymer while maintaining bulk properties. Plasma modification techniques such as microwave discharge of an argon and oxygen gas mixture as well as vacuum-ultraviolet (VUV) photolysis may cause favorable chemical and physical changes on the surface of Nafion for improved fuel cell function. A possible increase in hydrophilicity as a result of microwave discharge experiments may increase proton conductivity. Grafting of acrylic acid from the surface of modified Nafion may decrease the permeation of methanol in a direct methanol fuel cell, a process which can decrease efficiency. Modification of the surface of Nafion samples were carried out using: 1) An indirect Ar/O2 gas mixture plasma investigating the reaction of oxygen radicals with the surface, 2) A direct Ar/O2 gas mixture plasma investigating the reaction of oxygen radicals and VUV radiation with the surface and, 3) VUV photolysis investigating exclusively the interaction of VUV radiation with the surface and any possible oxidation upon exposure to air. Acrylic acid was grafted from the VUV photolysed Nafion samples. All treated surfaces were analyzed using X-ray photoelectron spectroscopy (XPS). Fourier transform infrared spectroscopy (FTIR) was used to analyze the grafted Nafion samples. Scanning electron microscopy (SEM) and contact angle measurements were used to analyze experiments 2 and 3. Using hydrogen as fuel is a

  17. Hydration in soccer: a review

    Directory of Open Access Journals (Sweden)

    Monteiro Cristiano Ralo

    2003-01-01

    Full Text Available Hydration should be considered before, during and after the exercise. This review intends to approach the main points of hydration process in soccer. The replacement of fluids during exercise is proportional to some factors, such as: exercise intensity; climatic conditions; the athlete's acclimatization; the athlete's physical conditioning; physiologic individual characteristics and the player's biomechanics. Performance is improved when players ingest not only water but also carbohydrate. The rates that carbohydrate and water are absorbed by the organism are limited by the rates of gastric emptying and intestinal absorption. The composition of drinks offered to the players should be influenced by the relative importance of the need of supplying carbohydrates or water; it should be remembered that the depletion of carbohydrate can result in fatigue and decrease of performance, but it is not usually a life-threatening condition. The addition of carbohydrate in these drinks increases the concentrations of blood glucose, increases the use of external fuel through the increase of the glucose oxidation in the muscles and it spares muscle glycogen. So, the ingestion of carbohydrate before and during the exercise can delay the emergence of fatigue and increase the players' performance. Several tactics can be used to avoid dehydration, like hyperhydration before exercise and player's acclimatization. The ideal situation to restore the player's fluid losses is between the sessions of exercises. Since soccer is a sport with quite peculiar characteristics related to hydration, the players should be concerned and educated about the importance of fluid ingestion before, during and after the exercise.

  18. Sulfonated PEEK and fluorinated polymer based blends for fuel cell applications: Investigation of the effect of type and molecular weight of the fluorinated polymers on the membrane's properties

    Energy Technology Data Exchange (ETDEWEB)

    Inan, Tuelay Y.; Dogan, Hacer; Unveren, Elif E. [The Scientific and Technological Research Council of Turkey (TUBITAK), Marmara Research Center, Chemistry Institute, 41470 Gebze, Kocaeli (Turkey); Eker, Ersoy [Tuerk Demirdoekuem Fabrikalari A.S., 11300 Bozueyuek, Bilecik (Turkey)

    2010-11-15

    This work clearly demonstrates the effect of the type and molecular weight of the fluorinated polymer of SPEEK/Fluorinated polymer blends for low temperature (<80 C) Fuel Cell Applications. Comparisons with trademarks (e.g., Nafion {sup registered}) suggests that the membranes we have prepared in this study have good compatibility in all application respects. Membranes were prepared by solution casting method from four different fluorinated polymers; poly (vinylidene fluoride) with three different molecular weights (PVDF, M{sub w}: 180.000, M{sub w}: 275.000, M{sub w}: 530.000); Poli(vinylidene fluoride-co-Hexafluoro propylen) (PVDF-HFP M{sub n}:130.000) and sulfonated poly(ether ether ketone) (SPEEK) with sulfonation degree (SD) of 70. The sulfonation degree (SD) of SPEEK was determined by FTIR, {sup 1}H NMR and ion exchange capacity (IEC) measurements. Thermo-oxidative stability and proton conductivity of the membranes were determined by using thermal gravimetric analysis (TGA) and BT-512 BekkTech membrane test systems, respectively. Chemical degradation of SPEEK membranes was investigated via Fenton test. The morphology of the membranes were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Water uptake and proton conductivity values decreased with the addition of fluorinated polymers (PVDF, PVDF-HFP) as expected, but proton conductivity values were still comparable to that of Nafion 117 {sup registered} membrane. Addition of fluorinated polymers improved chemical degradation of the blend membranes in all ratios while addition of PVDF-HFP to the SPEEK70 caused phase separations in all ratios. Methanol permeability value of SPEEK70/PVDF(M{sub w} = 275.000) blend membrane (3.13E-07 (cm{sup 2}/s)) was much lower than Nafion 117 {sup registered} (1.21E-06 (cm{sup 2}/s)). PVDF addition to the SPEEK polymers caused increase in elongation of the membranes. Increase in the molecular weight of the PVDF did not show any effect on

  19. Gas Hydrates | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Preliminary Report - Cascadia Margin Gas Hydrates, Volume 204 Initial Report Mallik 2002 GSC Bulletin 585 : Scientific results from the Mallik 2002 gas hydrate production well program Offshore gas hydrate sample

  20. Simulation and Characterization of Methane Hydrate Formation

    Science.gov (United States)

    Dhakal, S.; Gupta, I.

    2017-12-01

    The ever rising global energy demand dictates human endeavor to explore and exploit new and innovative energy sources. As conventional oil and gas reserves deplete, we are constantly looking for newer sources for sustainable energy. Gas hydrates have long been discussed as the next big energy resource to the earth. Its global occurrence and vast quantity of natural gas stored is one of the main reasons for such interest in its study and exploration. Gas hydrates are solid crystalline substances with trapped molecules of gas inside cage-like crystals of water molecules. Gases such as methane, ethane, propane and carbon dioxide can form hydrates but in natural state, methane hydrates are the most common. Subsurface geological conditions with high pressure and low temperature favor the formation and stability of gas hydrates. While the occurrence and potential of gas hydrates as energy source has long been studied, there are still gaps in knowledge, especially in the quantitative research of gas hydrate formation and reservoir characterization. This study is focused on exploring and understanding the geological setting in which gas hydrates are formed and the subsequent changes in rock characteristics as they are deposited. It involves the numerical simulation of methane gas flow through fault to form hydrates. The models are representative of the subsurface geologic setting of Gulf of Mexico with a fault through layers of shale and sandstone. Hydrate formation simulated is of thermogenic origin. The simulations are conducted using TOUGH+HYDRATE, a numerical code developed at the Lawrence Berkley National Laboratory for modeling multiphase flow through porous medium. Simulation results predict that as the gas hydrates form in the pores of the model, the porosity, permeability and other rock properties are altered. Preliminary simulation results have shown that hydrates begin to form in the fault zone and gradually in the sandstone layers. The increase in hydrate

  1. Formation rate of natural gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Mork, Marit

    2002-07-01

    The rate of methane hydrate and natural gas hydrate formation was measured in a 9.5 litre stirred tank reactor of standard design. The experiments were performed to better understand the performance and scale-up of a reactor for continuous production of natural gas hydrates. The hydrate formation rate was measured at steady-state conditions at pressures between 70 and 90 bar and temperatures between 7 and 15 deg C. Between 44 and 56 % of the gas continuously supplied to the reactor was converted to hydrate. The experimental results show that the rate of hydrate formation is strongly influenced by gas injection rate and pressure. The effect of stirring rate is less significant and subcooling has no observable effect on the formation rate. Hydrate crystal concentration and gas composition do not influence the hydrate formation rate. Observations of produced hydrate crystals indicate that the crystals are elongated, about 5 micron in diameter and 10 micron long. Analysis of the results shows that the rate of hydrate formation is dominated by gas-liquid mass transfer. A mass transfer model, the bubble-to-crystal model, was developed for the hydrate formation rate in a continuous stirred tank reactor, given in terms of concentration driving force and an overall mass transfer coefficient. The driving force is the difference between the gas concentration at the gas-liquid interface and at the hydrate crystal surface. These concentrations correspond to the solubility of gas in water at experimental temperature and pressure and the solubility of gas at hydrate equilibrium temperature and experimental pressure, respectively. The overall mass transfer coefficient is expressed in terms of superficial gas velocity and impeller power consumption, parameters commonly used in study of stirred tank reactors. Experiments and modeling show that the stirred tank reactor has a considerable potential for increased production capacity. However, at higher hydrate production rates the

  2. Sulfonated poly(fluorenyl ether ketone nitrile) electrolyte membrane with high proton conductivity and low water uptake

    Energy Technology Data Exchange (ETDEWEB)

    Tian, S.H.; Wang, S.J.; Xiao, M.; Meng, Y.Z. [State Key Laboratory of Optoelectronic Materials and Technologies/Institute of Optoelectronic and Functional Composite Materials, Sun Yat-sen University, Guangzhou 510275 (China); Shu, D. [School of Chemistry and Environmental, South China Normal University, Guangzhou 510006 (China)

    2010-01-01

    High molecular weight sulfonated poly(fluorenyl ether ketone nitrile)s with different equivalent weight (EW) from 681 to 369 g mequiv.{sup -1} are synthesized by the nucleophilic substitution polycondensation of various amounts of sulfonated difluorobenzophenone (SDFBP) and 2,6-difluorobenzonitrile (DFBN) with bisphenol fluorene (BPF). The synthesized copolymers are characterized by {sup 1}H NMR, FT-IR, TGA, and DSC techniques. The membranes cast from the corresponding copolymers exhibit superior thermal stability, good oxidative stability and high proton conductivity, but low water uptake due to the strong nitrile dipole interchain interactions that combine to limit swelling. Among all the membranes, the membrane with EW of 441 g mequiv.{sup -1} shows optimum properties of both high proton conductivity of 41.9 mS cm{sup -1} and low water uptake of 42.6%. Accordingly, That membrane is fabricated into a membrane electrode assembly (MEA) and evaluated in a single proton exchange membrane fuel cell (PEMFC). The experimental results indicate its similar cell performance as that of Nafion {sup registered} 117 at 70 C, but much better cell performance at higher temperatures. At the potential of 0.6 V, the current density of fuel cell using the prepared membrane and Nafion {sup registered} 117 is 0.46 and 0.25 A cm{sup -2}, respectively. The highest current density of the former reaches as high as 1.25 A cm{sup -2}. (author)

  3. Membrane Materials and Technology for Xylene Isomers Separation and Isomerization via Pervaporation

    KAUST Repository

    Bilaus, Rakan

    2014-11-01

    P-xylene is one of the highly influential commodities in the petrochemical industry. It is used to make 90% of the world’s third largest plastic production, polyethylene terephthalate (PET). With a continuously increasing demand, the current technology’s high energy intensity has become a growing concern. Membrane separation technology is a potential low-energy alternative. Polymeric membranes were investigated in a pervaporation experiment to separate xylene isomers. Polymers of intrinsic microporosity (PIMs) as well as polyimides (PIM-PI), including thermally cross-linked PIM-1, PIM-6FDA-OH and thermally-rearranged PIM-6FDA-OH were investigated as potential candidates. Although they exhibited extremely high permeability to xylenes, selectivity towards p-xylene was poor. This was attributed to the polymers low chemical resistance which was apparent in their strong tendency to swell in xylenes. Consequently, a perfluoro-polymer, Teflon AF 2400, with a high chemical resistance was tested, which resulted in a slightly improved selectivity. A super acid sulfonated perfluoro-polymer (Nafion-H) was used as reactive membrane for xylenes isomerization. The membrane exhibited high catalytic activity, resulting in 19.5% p-xylene yield at 75ᵒC compared to 20% p-xylene yield at 450ᵒC in commercial fixed bed reactors. Nafion-H membrane outperforms the commercial technology with significant energy savings.

  4. Fatigue and creep to leak tests of proton exchange membranes using pressure-loaded blisters

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongqiang; Dillard, David A.; Case, Scott W. [Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0219 (United States); Ellis, Michael W. [Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0238 (United States); Lai, Yeh-Hung; Gittleman, Craig S.; Miller, Daniel P. [Fuel Cell Research Lab, GM R and D, General Motors Corporation, 10 Carriage Street, Honeoye Falls, NY 14472-0603 (United States)

    2009-12-01

    In this study, three commercially available proton exchange membranes (PEMs) are biaxially tested using pressure-loaded blisters to characterize their resistance to gas leakage under either static (creep) or cyclic fatigue loading. The pressurizing medium, air, is directly used for leak detection. These tests are believed to be more relevant to fuel cell applications than quasi-static uniaxial tensile-to-rupture tests because of the use of biaxial cyclic and sustained loading and the use of gas leakage as the failure criterion. They also have advantages over relative humidity cycling test, in which a bare PEM or catalyst coated membrane is clamped with gas diffusion media and flow field plates and subjected to cyclic changes in relative humidity, because of the flexibility in allowing controlled mechanical loading and accelerated testing. Nafion {sup registered} NRE-211 membranes are tested at three different temperatures and the time-temperature superposition principle is used to construct stress-lifetime master curve. Tested at 90 C, 2%RH extruded Ion Power {sup registered} N111-IP membranes have a longer lifetime than Gore trademark -Select {sup registered} 57 and Nafion {sup registered} NRE-211 membranes. (author)

  5. High-efficiency technology for lithium isotope separation using an ionic-liquid impregnated organic membrane

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi; Terai, Takayuki

    2011-01-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ( 6 Li) in tritium breeding materials. New lithium isotope separation technique using ionic-liquid impregnated organic membranes (Ionic-Liquid-i-OMs) have been developed. Lithium ions are able to move by electrodialysis through certain Ionic-Liquid-i-OMs between the cathode and the anode in lithium solutions. In this report, the effects of protection cover and membrane thickness on the durability of membrane and the efficiency of isotope separation were evaluated. In order to improve the durability of the Ionic-Liquid-i-OM, we developed highly-durable Ionic-Liquid-i-OM. Both surfaces of the Ionic-Liquid-i-OM were covered by a nafion 324 overcoat or a cation exchange membrane (SELEMION TM CMD) to prevent the outflow of the ionic liquid. It was observed that the durability of the Ionic-Liquid-i-OM was improved by a nafion 324 overcoat. On the other hand, the organic membrane selected was 1, 2 or 3 mm highly-porous Teflon film, in order to efficiently impregnate the ionic liquid. The 6 Li isotope separation factor by electrodialysis using highly-porous Teflon film of 3 mm thickness was larger than using that of 1 or 2 mm thickness.

  6. Chloral hydrate alters the organization of the ciliary basal apparatus and cell organelles in sea urchin embryos

    Science.gov (United States)

    Chakrabarti, A.; Schatten, H.; Mitchell, K. D.; Crosser, M.; Taylor, M.

    1998-01-01

    The mitotic inhibitor, chloral hydrate, induces ciliary loss in the early embryo phase of Lytechinus pictus. It causes a breakdown of cilia at the junction of the cilium and the basal body known as the basal plate. This leaves the plasma membrane temporarily unsealed. The basal apparatus accessory structures, consisting of the basal body, basal foot, basal foot cap, striated side arm, and striated rootlet, are either misaligned or disintegrated by treatment with chloral hydrate. Furthermore, microtubules which are associated with the basal apparatus are disassembled. Mitochondria accumulate at the base of cilia - underneath the plasma membrane - and show alterations in their structural organization. The accumulation of mitochondria is observed in 40% of all electron micrograph sections while 60% show the areas mostly devoid of mitochondria. The microvilli surrounding a cilium and striated rootlet remain intact in the presence of chloral hydrate. These results suggest that deciliation in early sea urchin embryos by chloral hydrate is caused by combined effects on the ciliary membrane and on microtubules in the cilia. Furthermore, it is suggested that chloral hydrate can serve as a tool to explore the cytoskeletal mechanisms that are involved in cilia motility in the developing sea urchin embryo.

  7. Skin Membrane Electrical Impedance Properties under the Influence of a Varying Water Gradient

    Science.gov (United States)

    Björklund, Sebastian; Ruzgas, Tautgirdas; Nowacka, Agnieszka; Dahi, Ihab; Topgaard, Daniel; Sparr, Emma; Engblom, Johan

    2013-01-01

    The stratum corneum (SC) is an effective permeability barrier. One strategy to increase drug delivery across skin is to increase the hydration. A detailed description of how hydration affects skin permeability requires characterization of both macroscopic and molecular properties and how they respond to hydration. We explore this issue by performing impedance experiments on excised skin membranes in the frequency range 1 Hz to 0.2 MHz under the influence of a varying gradient in water activity (aw). Hydration/dehydration induces reversible changes of membrane resistance and effective capacitance. On average, the membrane resistance is 14 times lower and the effective capacitance is 1.5 times higher when the outermost SC membrane is exposed to hydrating conditions (aw = 0.992), as compared to the case of more dehydrating conditions (aw = 0.826). Molecular insight into the hydration effects on the SC components is provided by natural-abundance 13C polarization transfer solid-state NMR and x-ray diffraction under similar hydration conditions. Hydration has a significant effect on the dynamics of the keratin filament terminals and increases the interchain spacing of the filaments. The SC lipids are organized into lamellar structures with ∼ 12.6 nm spacing and hexagonal hydrocarbon chain packing with mainly all-trans configuration of the acyl chains, irrespective of hydration state. Subtle changes in the dynamics of the lipids due to mobilization and incorporation of cholesterol and long-chain lipid species into the fluid lipid fraction is suggested to occur upon hydration, which can explain the changes of the impedance response. The results presented here provide information that is useful in explaining the effect of hydration on skin permeability. PMID:23790372

  8. Nafion® modified-screen printed gold electrodes and their carbon nanostructuration for electrochemical sensors applications.

    Science.gov (United States)

    García-González, Raquel; Fernández-Abedul, M Teresa; Costa-García, Agustín

    2013-03-30

    Screen printed electrodes are frequently used in electroanalytical applications because of their properties such as small size, low detection limit, fast response time, high reproducibility and disposable nature. On the other hand, since the discovery of carbon nanotubes there has been enormous interest in exploring and exploiting their properties, especially for their use in chemical (bio)sensors and nanoscale electronic devices. This paper reports the characterization of gold screen printed electrodes, modified with Nafion(®) and nanostructured with carbon nanotubes and carbon nanofibers dispersed on Nafion(®). The dispersing agent and the nanostructure have a marked effect on the analytical signal that, in turn depends on the intrinsic characteristics of the analyte. Several model analytes have been employed in this study. Anionic, cationic and neutral species such as methylene blue, dopamine, iron (III) sulfate, potassium ferrycianide and urea were considered. The importance for the development of nanostructured sensors relies on the fact that depending on these factors the situation may vary from a notorious enhancement of the signal to a blocking or even decrease. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Free energy of hydration of niobium oxide

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1996-01-01

    Some of the glasses being formulated by SRTC researchers contain niobium oxide. In this report, the free energy of hydration of the oxide is calculated from the free energies of formation of the oxide, the hydroxide, and water. This value can be used in calculations of the free energy of hydration of glasses containing niobium

  10. Investigations into surfactant/gas hydrate relationship

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Rudy; Zhang, Guochang; Dearman, Jennifer; Woods, Charles [Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762 (United States)

    2007-03-15

    Gas hydrates have unique physical properties portending useful industrial applications of gas storage, gas separation, or water desalination. When gas hydrates were found in the early 1990s to occur naturally and abundantly in seafloors, three other primary interests and concerns emerged: potential new energy source, climate threat from their greenhouse gases, and seafloor instabilities. This paper presents research showing how anionic synthetic surfactants helped develop an industrial gas hydrate storage process for natural gas and how naturally-occurring in-situ anionic biosurfactants influence the formation and placement of gas hydrates in ocean sediments. The catalytic effects, mechanisms, and surface specificities imparted by synthetic surfactants in the gas storage process and imparted by biosurfactants in porous media are discussed. The Bacillus subtilis bacterium that is indigenous to gas hydrate mounds in the Gulf of Mexico was cultured in the laboratory. Its biosurfactant was separated and found to catalyze gas hydrates in porous media. The experiments indicate that seafloor-biosurfactants can be produced rapidly in-situ to achieve threshold concentrations whereby hydrates are promoted. The biosurfactants accumulate and promote hydrate formation on specific mineral surfaces such as sodium montmorillonite. (author)

  11. 75 FR 9886 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2010-03-04

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Department of Energy, Office of Fossil Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... the Committee: The purpose of the Methane Hydrate Advisory Committee is to provide advice on potential...

  12. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  13. Multicomponent modelling of Portland cement hydration reactions

    NARCIS (Netherlands)

    Ukrainczyk, N.; Koenders, E.A.B.; Van Breugel, K.

    2012-01-01

    The prospect of cement and concrete technologies depends on more in depth understanding of cement hydration reactions. Hydration reaction models simulate the development of the microstructures that can finally be used to estimate the cement based material properties that influence performance and

  14. Polymer Electrolyte Membranes for Water Photo-Electrolysis

    Science.gov (United States)

    Aricò, Antonino S.; Girolamo, Mariarita; Siracusano, Stefania; Sebastian, David; Baglio, Vincenzo; Schuster, Michael

    2017-01-01

    Water-fed photo-electrolysis cells equipped with perfluorosulfonic acid (Nafion® 115) and quaternary ammonium-based (Fumatech® FAA3) ion exchange membranes as separator for hydrogen and oxygen evolution reactions were investigated. Protonic or anionic ionomer dispersions were deposited on the electrodes to extend the interface with the electrolyte. The photo-anode consisted of a large band-gap Ti-oxide semiconductor. The effect of membrane characteristics on the photo-electrochemical conversion of solar energy was investigated for photo-voltage-driven electrolysis cells. Photo-electrolysis cells were also studied for operation under electrical bias-assisted mode. The pH of the membrane/ionomer had a paramount effect on the photo-electrolytic conversion. The anionic membrane showed enhanced performance compared to the Nafion®-based cell when just TiO2 anatase was used as photo-anode. This was associated with better oxygen evolution kinetics in alkaline conditions compared to acidic environment. However, oxygen evolution kinetics in acidic conditions were significantly enhanced by using a Ti sub-oxide as surface promoter in order to facilitate the adsorption of OH species as precursors of oxygen evolution. However, the same surface promoter appeared to inhibit oxygen evolution in an alkaline environment probably as a consequence of the strong adsorption of OH species on the surface under such conditions. These results show that a proper combination of photo-anode and polymer electrolyte membrane is essential to maximize photo-electrolytic conversion. PMID:28468242

  15. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the

  16. Experimental Setup to Characterize Bentonite Hydration Processes

    International Nuclear Information System (INIS)

    Bru, A.; Casero, D.; Pastor, J. M.

    2001-01-01

    We present an experimental setup to follow-up the hydration process of a bentonite. Clay samples, of 2 cm x 12 cm x 12 cm, were made and introduced in a Hele-Shaw cell with two PMM windows and two steel frames. In hydration experiments, a fluid enters by an orifice in the frame, located both at the top and the bottom of the cell, to perform hydration in both senses. To get a uniform hydration we place a diffuser near the orifice. Volume influxes in hydration cells are registered in time. The evolution of the developed interface was recorded on a videotape. The video cameras was fixed to a holder so that the vertical direction in the monitor was the same as the direction of the larger extension of the cell. (Author) 6 refs

  17. Volume of hydration in terminal cancer patients.

    Science.gov (United States)

    Bruera, E; Belzile, M; Watanabe, S; Fainsinger, R L

    1996-03-01

    In this retrospective study we reviewed the volume and modality of hydration of consecutive series of terminal cancer patients in two different settings. In a palliative care unit 203/290 admitted patients received subcutaneous hydration for 12 +/- 8 days at a daily volume of 1015 +/- 135 ml/day. At the cancer center, 30 consecutive similar patients received intravenous hydration for 11.5 +/- 5 days (P > 0.2) but at a daily volume of 2080 +/- 720 ml/day (P palliative care unit patients required discontinuation of hydration because of complications. Hypodermoclysis was administered mainly as a continuous infusion, an overnight infusion, or in one to three 1-h boluses in 62 (31%), 98 (48%) and 43 (21%) patients, respectively. Our findings suggest that, in some settings, patients may be receiving excessive volumes of hydration by less comfortable routes such as the intravenous route. Increased education and research in this area are badly needed.

  18. Hydration shells exchange charge with their protein

    DEFF Research Database (Denmark)

    Abitan, Haim; Lindgård, Per-Anker; Nielsen, Bjørn Gilbert

    2010-01-01

    . In our experiments, the amplitude of an ultrasonic pressure wave is gradually increased (0–20 atm) while we simultaneously measure the Raman spectra from the hydrated protein (β-lactoglobulin and lysozyme). We detected two types of spectral changes: first, up to 70% increase in the intensity......Investigation of the interaction between a protein and its hydration shells is an experimental and theoretical challenge. Here, we used ultrasonic pressure waves in aqueous solutions of a protein to explore the conformational states of the protein and its interaction with its hydration shells...... the presence of an ultrasonic pressure, a protein and its hydration shells are in thermodynamic and charge equilibrium, i.e. a protein and its hydration shells exchange charges. The ultrasonic wave disrupts these equilibria which are regained within 30–45 min after the ultrasonic pressure is shut off....

  19. Impedance study of membrane dehydration and compression in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Le Canut, Jean-Marc; Latham, Ruth; Merida, Walter; Harrington, David A. [Institute for Integrated Energy Systems, University of Victoria, Victoria, British Columbia (Canada)

    2009-07-15

    Electrochemical impedance spectroscopy (EIS) is used to measure drying and rehydration in proton exchange membrane fuel cells running under load. The hysteresis between forward and backward acquisition of polarization curves is shown to be largely due to changes in the membrane resistance. Drying tests are carried out with hydrogen and simulated reformate (hydrogen and carbon dioxide), and quasi-periodic drying and rehydration conditions are studied. The membrane hydration state is clearly linked to the high-frequency arc in the impedance spectrum, which increases in size for dry conditions indicating an increase in membrane resistance. Changes in impedance spectra as external compression is applied to the cell assembly show that EIS can separate membrane and interfacial effects, and that changes in membrane resistance dominate. Reasons for the presence of a capacitance in parallel with the membrane resistance are discussed. (author)

  20. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil