WorldWideScience

Sample records for hydrated nacls particles

  1. Crystallographic characterization of cement pastes hydrated with NaCl; Caracterizacao cristalografica de pastas de cimento hidratadas com NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Carina Gabriela de Melo e; Martinelli, Antonio Eduardo; Melo, Dulce Maria Araujo; Melo, Marcus Antonio de Freitas; Melo, Vitor Rodrigo de Melo e [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2012-07-01

    One of the major current challenges faced by oil companies is the exploration of pre salt basins. Salt layers deposited upon the evaporation of ocean water and continental separation are mainly formed by NaCl and isolate immense oil reservoirs. The mechanical stability and zonal isolation of oil wells that run through salt layers must be fulfilled by cement sheaths saturated with NaCl to assure chemical compatibility between cement and salt layer. The present study aimed at evaluating the effect of NaCl addition on the hydration of oil well cement slurries as well as identifying the nature of crystalline phases present in the hardened cement. To that end, cement slurries containing NaCl were mixed, hardened and characterized by X-ray diffraction. The results revealed that the presence of NaCl affects the formation of hydration products by the presence of Friedel's salt. The intensity of the corresponding peaks increase as the contents of NaCl in the slurry increase. High concentrations of NaCl in Portland slurries increase the setting time of cement and the presence of Friedel's salt decreases the strength of the hardened cement. (author)

  2. Phase equilibria of hydrogen sulfide and carbon dioxide simple hydrates in the presence of methanol, (methanol + NaCl) and (ethylene glycol + NaCl) aqueous solutions

    International Nuclear Information System (INIS)

    Mohammadi, Amir H.; Richon, Dominique

    2012-01-01

    Highlights: → Dissociation conditions of H 2 S or CO 2 hydrate + inhibitor aqueous solution are reported. → Methanol, methanol + NaCl and EG + NaCl aqueous solutions are considered as inhibitors. → Comparisons are made between our experimental data and the corresponding literature data. - Abstract: This work aims at reporting the dissociation pressures of hydrogen sulfide and carbon dioxide simple hydrates in the presence of methanol, (methanol + NaCl) and (ethylene glycol + NaCl) aqueous solutions at different temperatures and various concentrations of inhibitor in aqueous solution. The equilibrium results were generated using an isochoric pressure-search method. These values are compared with some selected experimental data from the literature on the dissociation conditions of hydrogen sulfide and carbon dioxide simple hydrates in the presence of pure water to show the inhibition effects of the above mentioned aqueous solutions. Comparisons are finally made between our experimental values and the corresponding literature data. Some disagreements among the literature data and our data are found.

  3. Heterogeneous Ice Nucleation Ability of NaCl and Sea Salt Aerosol Particles at Cirrus Temperatures

    Science.gov (United States)

    Wagner, Robert; Kaufmann, Julia; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Ullrich, Romy; Leisner, Thomas

    2018-03-01

    In situ measurements of the composition of heterogeneous cirrus ice cloud residuals have indicated a substantial contribution of sea salt in sampling regions above the ocean. We have investigated the heterogeneous ice nucleation ability of sodium chloride (NaCl) and sea salt aerosol (SSA) particles at cirrus cloud temperatures between 235 and 200 K in the Aerosol Interaction and Dynamics in the Atmosphere aerosol and cloud chamber. Effloresced NaCl particles were found to act as ice nucleating particles in the deposition nucleation mode at temperatures below about 225 K, with freezing onsets in terms of the ice saturation ratio, Sice, between 1.28 and 1.40. Above 225 K, the crystalline NaCl particles deliquesced and nucleated ice homogeneously. The heterogeneous ice nucleation efficiency was rather similar for the two crystalline forms of NaCl (anhydrous NaCl and NaCl dihydrate). Mixed-phase (solid/liquid) SSA particles were found to act as ice nucleating particles in the immersion freezing mode at temperatures below about 220 K, with freezing onsets in terms of Sice between 1.24 and 1.42. Above 220 K, the SSA particles fully deliquesced and nucleated ice homogeneously. Ice nucleation active surface site densities of the SSA particles were found to be in the range between 1.0 · 1010 and 1.0 · 1011 m-2 at T < 220 K. These values are of the same order of magnitude as ice nucleation active surface site densities recently determined for desert dust, suggesting a potential contribution of SSA particles to low-temperature heterogeneous ice nucleation in the atmosphere.

  4. Phase equilibrium condition of marine carbon dioxide hydrate

    International Nuclear Information System (INIS)

    Sun, Shi-Cai; Liu, Chang-Ling; Ye, Yu-Guang

    2013-01-01

    Highlights: ► CO 2 hydrate phase equilibrium was studied in simulated marine sediments. ► CO 2 hydrate equilibrium temperature in NaCl and submarine pore water was depressed. ► Coarse-grained silica sand does not affect CO 2 hydrate phase equilibrium. ► The relationship between equilibrium temperature and freezing point was discussed. - Abstract: The phase equilibrium of ocean carbon dioxide hydrate should be understood for ocean storage of carbon dioxide. In this paper, the isochoric multi-step heating dissociation method was employed to investigate the phase equilibrium of carbon dioxide hydrate in a variety of systems (NaCl solution, submarine pore water, silica sand + NaCl solution mixture). The experimental results show that the depression in the phase equilibrium temperature of carbon dioxide hydrate in NaCl solution is caused mainly by Cl − ion. The relationship between the equilibrium temperature and freezing point in NaCl solution was discussed. The phase equilibrium temperature of carbon dioxide hydrate in submarine pore water is shifted by −1.1 K to lower temperature region than that in pure water. However, the phase equilibrium temperature of carbon dioxide hydrate in mixture samples of coarsed-grained silica sand and NaCl solution is in agreement with that in NaCl solution with corresponding concentrations. The relationship between the equilibrium temperature and freezing point in mixture samples was also discussed.

  5. Hygroscopic properties of internally mixed particles composed of NaCl and water-soluble organic acids.

    Science.gov (United States)

    Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei; Laskin, Alexander

    2014-02-18

    Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water-soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy, atomic force microscopy, and X-ray elemental microanalysis. Hygroscopic properties of internally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of sodium malonate and sodium glutarate salts resulted by HCl evaporation from dehydrating particles.

  6. Experimental validation of kinetic inhibitor strength on natural gas hydrate nucleation

    DEFF Research Database (Denmark)

    Daraboina, Nagu; Pachitsas, Stylianos; von Solms, Nicolas

    2015-01-01

    The kinetics of natural gas hydrate formation in the presence of dissolved salts (NaCl) and crude oil ( a middle east crude with density 851.5 kg/m3 were investigated by using a standard rocking cell (RC-5) apparatus. The hydrate nucleation temperature was reduced in the presence of NaCl and oil...... management in oil and gas facilities. (C) 2014 Elsevier Ltd. All rights reserved....

  7. Hydration Phase Diagram of Clay Particles from Molecular Simulations.

    Science.gov (United States)

    Honorio, Tulio; Brochard, Laurent; Vandamme, Matthieu

    2017-11-07

    Adsorption plays a fundamental role in the behavior of clays. Because of the confinement between solid clay layers on the nanoscale, adsorbed water is structured in layers, which can occupy a specific volume. The transition between these states is intimately related to key features of clay thermo-hydro-mechanical behavior. In this article, we consider the hydration states of clays as phases and the transition between these states as phase changes. The thermodynamic formulation supporting this idea is presented. Then, the results from grand canonical Monte Carlo simulations of sodium montmorillonite are used to derive hydration phase diagrams. The stability analysis presented here explains the coexistence of different hydration states at clay particle scale and improves our understanding of the irreversibilities of clay thermo-hydro-mechanical behavior. Our results provide insights into the mechanics of the elementary constituents of clays, which is crucial for a better understanding of the macroscopic behavior of clay-rich rocks and soils.

  8. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  9. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  10. Study on Characteristic of Self-preservation Effect of CO2 Hydrate according to Temperature, Particle Diameter and Shape

    International Nuclear Information System (INIS)

    Kim, Yeon-Soo; Kang, Seong-Pil; Park, So-Jin

    2013-01-01

    Gas hydrate studies are attracting attention of many researchers as an innovative, economic and environmentally friendly technology when it is applied to CO 2 capture, transport, and storage. In this study, we investigated whether CO 2 hydrate shows the self-preservation effect or not, that is the key property for developing a novel CO 2 transport/storage method. Especially the degree of self-preservation effect for CO 2 hydrate was studied according to the particle size of CO 2 hydrate samples. We prepared three kinds of CO 2 hydrate samples varying their particle diameter as millimeter, micron and nano size and measured their change of weight at -15 - -30 .deg. C under atmospheric pressure during 3 weeks. According to our experimental result, the lower temperature, larger particle size, and compact structure for higher density are the better conditions for obtaining self-preservation effect

  11. Recovery of cobalt-rare earth alloy particles by hydration-disintegration in a magnetic field

    International Nuclear Information System (INIS)

    McFarland, C.M.; Lerman, T.B.; Rockwood, A.C.

    1975-01-01

    A process for recovering magnetic alloy particles from a reaction product cake. The cake is placed in a reactor where it is contacted with a flowing water vapor-carrying gas which reacts with its calcium content to disintegrate the cake and produce a hydrated powder comprised substantially of calcium hydroxide and the alloy particles. A magnetic zone is generated into a cross-section of the reactor substantially encircling the inside wall thereof. The zone is generated by at least two poles of opposite polarity running the length of the zone. The hydrated powder is fluidized to dissociate and pass the calcium hydroxide out of the reactor. Finer-sized alloy particles carried by the fluidizing gas into the magnetic zone are subjected to the magnetic field where the poles are rotated or reversed at a rate which reverses the positions of the particles sufficiently to release adherent calcium hydroxide leaving the finer-sized alloy particles substantially within the magnetic zone. (auth)

  12. Particle size distribution of rice flour affecting the starch enzymatic hydrolysis and hydration properties.

    Science.gov (United States)

    de la Hera, Esther; Gomez, Manuel; Rosell, Cristina M

    2013-10-15

    Rice flour is becoming very attractive as raw material, but there is lack of information about the influence of particle size on its functional properties and starch digestibility. This study evaluates the degree of dependence of the rice flour functional properties, mainly derived from starch behavior, with the particle size distribution. Hydration properties of flours and gels and starch enzymatic hydrolysis of individual fractions were assessed. Particle size heterogeneity on rice flour significantly affected functional properties and starch features, at room temperature and also after gelatinization; and the extent of that effect was grain type dependent. Particle size heterogeneity on rice flour induces different pattern in starch enzymatic hydrolysis, with the long grain having slower hydrolysis as indicated the rate constant (k). No correlation between starch digestibility and hydration properties or the protein content was observed. It seems that in intact granules interactions with other grain components must be taken into account. Overall, particle size fractionation of rice flour might be advisable for selecting specific physico-chemical properties. Copyright © 2013. Published by Elsevier Ltd.

  13. Systematic UHV-AFM experiments on Na nano-particles and nano-structures in NaCl

    OpenAIRE

    Sugonyako, A.V.; Turkin, A.A.; Gaynutdinov, R.; Vainshtein, D.I.; Hartog, H.W. den; Bukharaev, A.A.

    2005-01-01

    Results of systematic AFM (atomic force microscopy) experiments on heavily and moderatly irradiated NaCl samples are presented. The sodium nanoparticles and structures of nanoparticles are poduced in sodium chloride during irradiation. The AFM images of the nanoparticles have been obtained in ultra high vacuum (UHV) in the non-contact mode with an Omicron UHV AFM/STM system. The sizes and arrangements of the observed particles depend on the irradiation conditions. The melting behaviour of the...

  14. Non-spherical particle formation induced by repulsive hydration forces during spray drying

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Yong Jae; Lee, Jin-Woo; Chang, Hankwon; Jang, Hee-Dong, E-mail: hdjang@kigam.re.kr; Cho, Kuk, E-mail: kukcho@pusan.ac.kr [Korea Institute of Geoscience and Mineral Resources (Korea, Republic of)

    2013-09-15

    Non-spherical particles were produced during a spray-drying process, but the exact mechanism of their formation was unknown. The non-spherical particles form when the strength of the colloidal droplets is exceeded by external stress stemming from drag in the velocity gradient. Here, we show that repulsive hydration forces reduce the mechanical strength of the droplets; this is critical to the formation of non-spherical particles. Toroidal or ellipsoidal particles were prepared from low-concentration hydrophilic SiO{sub 2}, TiO{sub 2}, and CuO colloidal solutions, but not from hydrophobic ZnO colloidal solutions. The surface properties of the solid particulates are crucial for the morphology of particles formed during spray drying.

  15. Non-spherical particle formation induced by repulsive hydration forces during spray drying

    International Nuclear Information System (INIS)

    Suh, Yong Jae; Lee, Jin-Woo; Chang, Hankwon; Jang, Hee-Dong; Cho, Kuk

    2013-01-01

    Non-spherical particles were produced during a spray-drying process, but the exact mechanism of their formation was unknown. The non-spherical particles form when the strength of the colloidal droplets is exceeded by external stress stemming from drag in the velocity gradient. Here, we show that repulsive hydration forces reduce the mechanical strength of the droplets; this is critical to the formation of non-spherical particles. Toroidal or ellipsoidal particles were prepared from low-concentration hydrophilic SiO 2 , TiO 2 , and CuO colloidal solutions, but not from hydrophobic ZnO colloidal solutions. The surface properties of the solid particulates are crucial for the morphology of particles formed during spray drying

  16. Towards understanding the role of amines in the SO2 hydration and the contribution of the hydrated product to new particle formation in the Earth's atmosphere.

    Science.gov (United States)

    Lv, Guochun; Nadykto, Alexey B; Sun, Xiaomin; Zhang, Chenxi; Xu, Yisheng

    2018-08-01

    By theoretical calculations, the gas-phase SO 2 hydration reaction assisted by methylamine (MA) and dimethylamine (DMA) was investigated, and the potential contribution of the hydrated product to new particle formation (NPF) also was evaluated. The results show that the energy barrier for aliphatic amines (MA and DMA) assisted SO 2 hydration reaction is lower than the corresponding that of water and ammonia assisted SO 2 hydration. In these hydration reactions, nearly barrierless reaction (only a barrier of 0.1 kcal mol -1 ) can be found in the case of SO 2  + 2H 2 O + DMA. These lead us to conclude that the SO 2 hydration reaction assisted by MA and DMA is energetically facile. The temporal evolution for hydrated products (CH 3 NH 3 + -HSO 3 - -H 2 O or (CH 3 ) 2 NH 2 + -HSO 3 - -H 2 O) in molecular dynamics simulations indicates that these complexes can self-aggregate into bigger clusters and can absorb water and amine molecules, which means that these hydrated products formed by the hydration reaction may serve as a condensation nucleus to initiate the NPF. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Luminescence of BaCl2:Eu2+ particles dispersed in the NaCl host excited by synchrotron radiation

    International Nuclear Information System (INIS)

    Pushak, A.S.; Savchyn, P.V.; Vistovskyy, V.V.; Demkiv, T.M.; Dacyuk, J.R.; Myagkota, S.V.; Voloshinovskii, A.S.

    2013-01-01

    BaCl 2 :Eu 2+ microcrystals embedded in the NaCl host have been obtained in the NaCl–BaCl 2 (1 mol%)–EuCl 3 (0.02 mol%) crystalline system. The influence of the annealing conditions on the formation of such particles has been studied. In particular, long-term annealing (at 200 °S during 100 h) promotes the microcrystals formation in the NaCl–BaCl 2 –Eu crystalline system. The subsequent heat treatment (annealed at 600 °S during 72 h and quenched to room temperature) is shown to lead to the destruction of the majority of these particles. The luminescent-kinetic properties of BaCl 2 :Eu 2+ microcrystals have been studied upon the ultra-violet excitation by the synchrotron radiation. The X-ray excited luminescence has been measured in order to estimate the distribution of europium ions between microcrystals and the NaCl host. The excitation mechanisms of Eu 2+ ions in the NaCl–BaCl 2 –Eu crystalline system are discussed. - Highlights: ► The formation of BaCl 2 :Eu 2+ microcrystals of 1–100 μm size embedded in the NaCl host is revealed. ► Annealing at 600 °C leads to the destruction of significant number of embedded microcrystals. ► The luminescent parameters of microcrystals is similar to ones of single crystal analogs.

  18. Polyethylene glycol drilling fluid for drilling in marine gas hydrates-bearing sediments: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, G.; Liu, T.; Ning, F.; Tu, Y.; Zhang, L.; Yu, Y.; Kuang, L. [China University of Geosciences, Faculty of Engineering, Wuhan (China)

    2011-07-01

    Shale inhibition, low-temperature performance, the ability to prevent calcium and magnesium-ion pollution, and hydrate inhibition of polyethylene glycol drilling fluid were each tested with conventional drilling-fluid test equipment and an experimental gas-hydrate integrated simulation system developed by our laboratory. The results of these tests show that drilling fluid with a formulation of artificial seawater, 3% bentonite, 0.3% Na{sub 2}CO{sub 3}, 10% polyethylene glycol, 20% NaCl, 4% SMP-2, 1% LV-PAC, 0.5% NaOH and 1% PVP K-90 performs well in shale swelling and gas hydrate inhibition. It also shows satisfactory rheological properties and lubrication at temperature ranges from -8 {sup o}C to 15 {sup o}C. The PVP K-90, a kinetic hydrate inhibitor, can effectively inhibit gas hydrate aggregations at a dose of 1 wt%. This finding demonstrates that a drilling fluid with a high addition of NaCl and a low addition of PVP K-90 is suitable for drilling in natural marine gas-hydrate-bearing sediments. (authors)

  19. Polyethylene Glycol Drilling Fluid for Drilling in Marine Gas Hydrates-Bearing Sediments: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Lixin Kuang

    2011-01-01

    Full Text Available Shale inhibition, low-temperature performance, the ability to prevent calcium and magnesium-ion pollution, and hydrate inhibition of polyethylene glycol drilling fluid were each tested with conventional drilling-fluid test equipment and an experimental gas-hydrate integrated simulation system developed by our laboratory. The results of these tests show that drilling fluid with a formulation of artificial seawater, 3% bentonite, 0.3% Na2CO3, 10% polyethylene glycol, 20% NaCl, 4% SMP-2, 1% LV-PAC, 0.5% NaOH and 1% PVP K-90 performs well in shale swelling and gas hydrate inhibition. It also shows satisfactory rheological properties and lubrication at temperature ranges from −8 °C to 15 °C. The PVP K-90, a kinetic hydrate inhibitor, can effectively inhibit gas hydrate aggregations at a dose of 1 wt%. This finding demonstrates that a drilling fluid with a high addition of NaCl and a low addition of PVP K-90 is suitable for drilling in natural marine gas-hydrate-bearing sediments.

  20. Propagating particle density fluctuations in molten NaCl

    International Nuclear Information System (INIS)

    Demmel, F.; Hosokawa, S.; Pilgrim, W.-C.; Lorenzen, M.

    2004-01-01

    In this paper we present the observation of acoustic modes in the spectra of molten NaCl measured over a large momentum transfer range using synchrotron radiation. A surprisingly large positive dispersion was deduced with a mode velocity exceeding the adiabatic value by nearly 70%. The large effect seems to be describable as a viscoelastic reaction of the liquid. Additionally, the derived dispersion resembles the Q-ω relation of the acoustic modes in liquid sodium. As an explanation for the large positive dispersion we propose that the density fluctuations in molten NaCl can be interpreted as a decoupled motion of the lighter and smaller cations on a nearly resting anionic background. These molten alkali halide measurements are the first experimental evidences for the so-called fast sound in a binary ionic liquid

  1. Low-field NMR determination of water distribution in meat batters with NaCl and polyphosphate addition.

    Science.gov (United States)

    Shao, Jun-Hua; Deng, Ya-Min; Jia, Na; Li, Ru-Ren; Cao, Jin-Xuan; Liu, Deng-Yong; Li, Jian-Rong

    2016-06-01

    The objective was to elucidate the influence of NaCl and polyphosphates in the stage of protein swelling on the water-holding capacity (WHC) of meat batter. The meat batters were formulated with salt in different ways by adding established amounts of only NaCl, only polyphosphates, jointly adding NaCl and polyphosphates, and a control without any salt. An increase (pwater retention was found when a combination of NaCl and polyphosphates was used. A high textural parameter was observed in the two treatments with NaCl, but not in the group with only polyphosphate. For the polyphosphate group, T22 was lower (pwater, particularly with polyphosphate, but polyphosphate could not be an equal substitute for NaCl given its resulting lowest textural properties and poor microstructure. By presenting different hydration states in the protein swelling stage, the meat batter qualities were differentiated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Manufacture of Methane Hydrate using Carbon Nano Tubes

    International Nuclear Information System (INIS)

    Park, Sung Seek

    2010-02-01

    Methane hydrate is formed by physical binding between water molecule and gas such as methane, ethane, propane, or carbon dioxide, etc., which is captured in the cavities of water molecule under the specific temperature and pressure. More than 99% of naturally produced methane hydrate consists of methane, and is widely dispersed in the continental slope and continental Shelf of the Pacific and the Atlantic, the Antarctica etc. The reserve of fossil fuel is 500 billion carbon ton and the reserve of methane is 360 million carbon ton. The reserve of gas hydrate is more than 1 trillion carbon ton, which is twice the fossil fuel. Therefore, natural gas hydrate as a kind of gas hydrate is expected to replace fossil fuel as new energy source of 21st century. Also 1 m 3 hydrate of pure methane can be decomposed to the maximum of 216 m 3 methane at standard condition. If these characteristics of hydrate are reversely utilized, natural gas is fixed into water in the form of hydrate solid. Therefore, the hydrate is considered to be a great way to transport and store natural gas in large quantity. Especially the transportation cost is known to be 18∼25% less than the liquefied transportation. However, when natural gas hydrate is artificially formed, its reaction time may be too long and the gas consumption in water becomes relatively low, because the reaction rate between water and gas is low. Therefore, for the practical purpose in the application, the present investigation focuses on the rapid production of hydrates and increases gas consumption by adding MWCNT and NaCl into pure water. The results show that the equilibrium pressure in seawater is more higher than that in pure water, and methane hydrate could be formed rapidly during pressurization if the subcooling is maintained at 9K or above in seawater and 8K or above in pure water, respectively. Also, amount of consumed gas volume in pure water is more higher that in seawater at the same experimental conditions

  3. Synergistic kinetic inhibition of natural gas hydrate formation

    DEFF Research Database (Denmark)

    Daraboina, Nagu; Malmos, Christine; von Solms, Nicolas

    2013-01-01

    Rocking cells were used to investigate the natural gas hydrate formation and decomposition in the presence of kinetic inhibitor, Luvicap. In addition, the influence of poly ethylene oxide (PEO) and NaCl on the performance of Luvicap was investigated using temperature ramping and isothermal...

  4. Suspension hydration of tricalcium silicate at constant pH. I. Variation of particle size and tricalcium silicate content

    NARCIS (Netherlands)

    McCurdy, K.G.; Stein, H.N.

    1973-01-01

    Calcium and silicate ion concentrations during suspension hydration of C3S indicate that at pH 11.5 an equilibrium is established between one of the hydrates and the solution during about 80 minutes. The concentrations found in this period are indipendent of the particle size of the C3S and (within

  5. Exposure to buffer solution alters tendon hydration and mechanics.

    Science.gov (United States)

    Safa, Babak N; Meadows, Kyle D; Szczesny, Spencer E; Elliott, Dawn M

    2017-08-16

    A buffer solution is often used to maintain tissue hydration during mechanical testing. The most commonly used buffer solution is a physiological concentration of phosphate buffered saline (PBS); however, PBS increases the tissue's water content and decreases its tensile stiffness. In addition, solutes from the buffer can diffuse into the tissue and interact with its structure and mechanics. These bathing solution effects can confound the outcome and interpretation of mechanical tests. Potential bathing solution artifacts, including solute diffusion, and their effect on mechanical properties, are not well understood. The objective of this study was to measure the effects of long-term exposure of rat tail tendon fascicles to several concentrations (0.9-25%) of NaCl, sucrose, polyethylene glycol (PEG), and SPEG (NaCl+PEG) solutions on water content, solute diffusion, and mechanical properties. We found that with an increase in solute concentration the apparent water content decreased for all solution types. Solutes diffused into the tissue for NaCl and sucrose, however, no solute diffusion was observed for PEG or SPEG. The mechanical properties changed for both NaCl solutions, in particular after long-term (8h) incubation the modulus and equilibrium stress decreased compared to short-term (15min) for 25% NaCl, and the cross sectional area increased for 0.9% NaCl. However, the mechanical properties were unchanged for both PEG and SPEG except for minor alterations in stress relaxation parameters. This study shows that NaCl and sucrose buffer solutions are not suitable for long-term mechanical tests. We therefore propose using PEG or SPEG as alternative buffer solutions that after long-term incubation can maintain tissue hydration without solute diffusion and produce a consistent mechanical response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Suspension hydration of C3S [tricalcium silicate] at constant pH. II. Effect of previously formed hydrates and of additives

    NARCIS (Netherlands)

    McCurdy, K.G.; Stein, H.N.

    1973-01-01

    A retardation shown by the hydration of C3S at pH=11.5 can be prevented if before the addition of C3S there are present hydrate particles in the aqueous medium. These hydrate particles probably have the composition CSHn. This indicates a hydrate CSHn, precipitated from solution, as the retarding

  7. Influence of pozzolana on C4AF hydratio n and the effects of chloride and sulfate io ns on the hydrates formed

    Directory of Open Access Journals (Sweden)

    RIMVYDAS KAMINSKAS

    2011-09-01

    Full Text Available This study investigated the influence of natural pozzolana additive on the hydration of C4AF (aluminoferrite and the effects of chloride and sulfate ions on the hydrates formed. In the samples, 25% (by weight of the C4AF was replaced with pozzolana. The mixture was then hardened for 28 days in water, soaked in a saturated NaCl solution for 3 months, and then soaked in a 5% Na2SO4 solution for 3 months at 20°C. It is estimated that under normal conditions, pozzolana additive accelerates the formation of CO32-–AFm (monocarboaluminate and gibbsite, however, impede the formation of cubic aluminum hydrates. Also, part of the amorphous SiO2 penetrates into the structure of hydrates of C4AF and initiates the formation of hydrated alumino-silicate (gismondine. Monocarboaluminate affected by NaCl becomes unstable and takes part in reactions producing Ca2Al(OH6Cl·2H2O (hydrocalumite-M. After samples were transferred from a saturated NaCl solution to a 5% Na2SO4 solution, hydrocalumite-M was the source of aluminates for the formation of ettringite. In samples with pozzolana additive, the hydrated alumino-silicate and gibbsite compounds that were formed remained stable in an environment containing chloride and sulfate ions and retarded the corrosion reaction of C4AF hydrates.

  8. Rheological properties of hydrate suspensions in asphaltenic crude oils; Proprietes rheologiques de suspensions d'hydrate dans des bruts asphalteniques

    Energy Technology Data Exchange (ETDEWEB)

    Marques de Toledo Camargo, R.

    2001-03-01

    The development of offshore oil exploitation under increasing water depths has forced oil companies to increase their understanding of gas hydrate formation and transportation in multiphase flow lines in which a liquid hydrocarbon phase is present. This work deals with the flow behaviour of hydrate suspensions in which a liquid hydrocarbon is the continuous phase. Three different liquid hydrocarbons are used: an asphaltenic crude oil, a condensate completely free of asphaltenes and a mixture between the asphaltenic oil and heptane. The rheological characterisation of hydrate suspensions is the main tool employed. Two original experimental devices are used: a PVT cell adapted to operate as a Couette type rheometer and a semi-industrial flow loop. Hydrate suspensions using the asphaltenic oil showed shear-thinning behaviour and thixotropy. This behaviour is typically found in flocculated systems, in which the particles attract each other forming flocs of aggregated particles at low shear rates. The suspensions using the condensate showed Newtonian behaviour. Their relative viscosities were high, which suggests that an aggregation process between hydrate particles takes. place during hydrate formation. Finally, hydrate suspensions using the mixture asphaltenic oil-heptane showed shear-thinning behaviour, thixotropy and high relative viscosity. From these results it can be inferred that, after the achievement of the hydrate formation process, the attractive forces between hydrate particles are weak. making unlikely pipeline obstruction by an aggregation process. Nevertheless, during the hydrate formation, these attractive forces can be sufficiently high. It seems that the hydrate surface wettability is an important parameter in this phenomena. (author)

  9. Anti-Agglomerator of Tetra-n-Butyl Ammonium Bromide Hydrate and Its Effect on Hydrate-Based CO2 Capture

    Directory of Open Access Journals (Sweden)

    Rong Li

    2018-02-01

    Full Text Available Tetra-n-butyl ammonium bromide (TBAB was widely used in the research fields of cold storage and CO2 hydrate separation due to its high phase change latent heat and thermodynamic promotion for hydrate formation. Agglomeration always occurred in the process of TBAB hydrate generation, which led to the blockage in the pipeline and the separation apparatus. In this work, we screened out a kind of anti-agglomerant that can effectively solve the problem of TBAB hydrate agglomeration. The anti-agglomerant (AA is composed of 90% cocamidopropyl dimethylamine and 10% glycerol, which can keep TBAB hydrate of 19.3–29.0 wt. % in a stable state of slurry over 72 h. The microscopic observation of the morphology of the TBAB hydrate particles showed that the addition of AA can greatly reduce the size of the TBAB hydrate particles. CO2 gas separation experiments found that the addition of AA led to great improvement on gas storage capacity, CO2 split fraction and separation factor, due to the increasing of contact area between gas phase and hydrate particles. The CO2 split fraction and separation factor with AA addition reached up to 70.3% and 42.8%, respectively.

  10. Distinguishing between hydrated, partially hydrated or unhydrated clinker in hardened concrete using microscopy

    NARCIS (Netherlands)

    Valcke, S.L.A.; Rooij, M.R. de; Visser, J.H.M.; Nijland, T.G.

    2010-01-01

    Hydration of clinker particles is since long a topic of interest in both designing and optimizing cement composition and its quantity used in concrete. The interest for carefully observing and also quantifying the type or stage of clinker hydration in hardened cement paste is twofold. Firstly, the

  11. Coordinates Analyses of Hydrated Interplanetary Dust Particles: Samples of Primitive Solar System Bodies

    Science.gov (United States)

    Keller, L. P.; Snead, C.; McKeegan, K. D.

    2016-01-01

    Interplanetary dust particles (IDPs) collected in the stratosphere fall into two major groups: an anhydrous group termed the "chondritic-porous (CP) IDPs and a hydrated group, the "chondritic-smooth (CS) IDPs, although rare IDPs with mineralogies intermediate between these two groups are known [1]. The CP-IDPs are widely believed to be derived from cometary sources [e.g. 2]. The hydrated CS-IDPs show mineralogical similarities to heavily aqueously altered carbonaceous chondrites (e.g. CI chondrites), but only a few have been directly linked to carbonaceous meteorite parent bodies [e.g. 3, 4]. Most CS-IDPs show distinct chemical [5] and oxygen isotopic composition differences [6-8] from primitive carbonaceous chondrites. Here, we report on our coordinated analyses of a suite of carbon-rich CS-IDPs focusing on their bulk compositions, mineralogy, mineral chemistry, and isotopic compositions.

  12. On the densification and hydration of CaCO3 particles by Q-switched laser pulses in water

    Science.gov (United States)

    Lin, Peng-Wen; Wu, Chao-Hsien; Zheng, Yuyuan; Chen, Shuei-Yuan; Shen, Pouyan

    2013-09-01

    Calcite powders subjected to Q-switched laser pulses in water were characterized by X-ray/electron diffraction and optical spectroscopy to have a significant internal compressive stress (up to ca. 1.5 GPa) with accompanied transformation into defective calcite II and hydrates. The defective calcite II particles were (0 1 0), (0 0 1), (0 1¯ 1), (0 1 3) and (0 1¯ 3) faceted with 2×(0 2 0)II commensurate superstructure and tended to hydrate epitaxially as monohydrocalcite co-existing with ikaite (CaCO3·6H2O) with extensive cleavages and amorphous calcium carbonate with porous structure. The colloidal suspension containing the densified calcite polymorphs and hydrates showed two UV-visible absorptions corresponding to a minimum band gap of ca. 5 and 3 eV, respectively.

  13. Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions.

    Science.gov (United States)

    Jiang, Hao; Haji-Akbari, Amir; Debenedetti, Pablo G; Panagiotopoulos, Athanassios Z

    2018-01-28

    We used molecular dynamics simulations and the path sampling technique known as forward flux sampling to study homogeneous nucleation of NaCl crystals from supersaturated aqueous solutions at 298 K and 1 bar. Nucleation rates were obtained for a range of salt concentrations for the Joung-Cheatham NaCl force field combined with the Extended Simple Point Charge (SPC/E) water model. The calculated nucleation rates are significantly lower than the available experimental measurements. The estimates for the nucleation rates in this work do not rely on classical nucleation theory, but the pathways observed in the simulations suggest that the nucleation process is better described by classical nucleation theory than an alternative interpretation based on Ostwald's step rule, in contrast to some prior simulations of related models. In addition to the size of NaCl nucleus, we find that the crystallinity of a nascent cluster plays an important role in the nucleation process. Nuclei with high crystallinity were found to have higher growth probability and longer lifetimes, possibly because they are less exposed to hydration water.

  14. Small angle neutron scattering from hydrated cement pastes

    International Nuclear Information System (INIS)

    Sabine, T.M.; Bertram, W.K.; Aldridge, L.P.

    1996-01-01

    Small angle neutron scattering (SANS) was used to study the microstructure of hydrating cement made with, and without silica fume. Some significant differences were found between the SANS spectra of pastes made from OPC (ordinary Portland cement) and DSP (made with silica fume and superplasticiser). The SANS spectra are interpreted in terms of scattering from simple particles. Particle growth was monitored during hydration and it was found that the growth correlated with the heat of hydration of the cement

  15. Experimental observations on the competing effect of tetrahydrofuran and an electrolyte and the strength of hydrate inhibition among metal halides in mixed CO{sub 2} hydrate equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Sabil, Khalik M., E-mail: khalik_msabil@petronas.com.m [Delft University of Technology, Laboratory of Process Equipment, Mechanical, Maritime and Materials Engineering, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Universiti Teknologi PETRONAS, Chemical Engineering Programme, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Roman, Vicente R.; Witkamp, Geert-Jan [Delft University of Technology, Laboratory of Process Equipment, Mechanical, Maritime and Materials Engineering, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Peters, Cor J., E-mail: C.J.Peters@tudelft.n [Delft University of Technology, Laboratory of Process Equipment, Mechanical, Maritime and Materials Engineering, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Petroleum Institute, Chemical Engineering Program, Bu Hasa Building, Room 2207A, P.O. Box 2533, Abu Dhabi (United Arab Emirates)

    2010-03-15

    In the present work, experimental data on the equilibrium conditions of mixed CO{sub 2} and THF hydrates in aqueous electrolyte solutions are reported. Seven different electrolytes (metal halides) were used in this work namely sodium chloride (NaCl), calcium chloride (CaCl{sub 2}), magnesium chloride (MgCl{sub 2}), potassium bromide (KBr), sodium fluoride (NaF), potassium chloride (KCl), and sodium bromide (NaBr). All equilibrium data were measured by using Cailletet apparatus. Throughout this work, the overall concentration of CO{sub 2} and THF were kept constant at (0.04 and 0.05) mol fraction, respectively, while the concentration of electrolytes were varied. The experimental temperature ranged from (275 to 305) K and pressure up 7.10 MPa had been applied. From the experimental results, it is concluded that THF, which is soluble in water is able to suppress the salt inhibiting effect in the range studied. In all quaternary systems studied, a four-phase hydrate equilibrium line was observed where hydrate (H), liquid water (L{sub W}), liquid organic (L{sub V}), and vapour (V) exist simultaneously at specific pressure and temperature. The formation of this four-phase equilibrium line is mainly due to a liquid-liquid phase split of (water + THF) mixture when pressurized with CO{sub 2} and the split is enhanced by the salting-out effect of the electrolytes in the quaternary system. The strength of hydrate inhibition effect among the electrolytes was compared. The results shows the hydrate inhibiting effect of the metal halides is increasing in the order NaF < KBr < NaCl < NaBr < CaCl{sub 2} < MgCl{sub 2}. Among the cations studied, the strength of hydrate inhibition increases in the following order: K{sup +} < Na{sup +} < Ca{sup 2+} < Mg{sup 2+}. Meanwhile, the strength of hydrate inhibition among the halogen anion studied decreases in the following order: Br{sup -} > Cl{sup -} > F{sup -}. Based on the results, it is suggested that the probability of formation and

  16. Effects of chlorides on the hydration of 12CaO{center_dot}7Al2O3 solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Sango, H.; Miyakawa, T.; Yasue, T.; Arai, Y. [Nihon Univ., Tokyo (Japan). Faculty of Science and Engineering

    1995-01-01

    The purpose of this paper was to compare the hydration rate of C12A7ss and to study the effects of chlorides on the hydration products and the hydration rate of C12A7ss. In this paper, `C12A7ss` is a general term for C11A7{center_dot}Ca(OH)2, 11CaO{center_dot}7Al2O3{center_dot}CaF2 and 11CaO{center_dot}7Al2O3{center_dot}CaCl2. The hydration process and the hydration rate of 12CaO{center_dot}7Al2O3 solution (C12A7ss) with and without various chlorides (CaCl2, MgCl2, NaCl, NH4Cl and AlCl3) has been determined at 25{degree}C. Various C12A7ss were prepared in burning method. When C12A7ss with various chlorides are hydrated, 3CaO{center_dot} Al2O3{center_dot}CaCl2{center_dot}10H2O(Friedel`s salt) is formed as the primary hydrate. The hydration rate of C12A7ss is decreased by the coexistence of CaCl2, MgCl2, NaCl or NH4Cl except AlCl3. As a result, the setting time of C12A7ss is extended and the unhydrate exists for a long time comparatively. 14 refs., 7 figs., 1 tab.

  17. Morphology studies on gas hydrates interacting with silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, J.; Servio, P. [McGill Univ., Montreal, PQ (Canada). Dept. of Chemical Engineering

    2008-07-01

    Clathrate hydrates or gas hydrates are non-stoichiometric, crystalline compounds that form when small molecules come in contact with water at certain temperatures and pressures. Natural gas hydrates are found in the ocean bottom and in permafrost regions. It is thought that the amount of energy stored in natural hydrates is at least twice that of all other fossil fuels combined. In addition, trapping carbon dioxide as a hydrate in the bottom of the ocean has been suggested as an alternative means of reducing atmospheric carbon dioxide levels. Naturally occurring clathrates are found in close interaction with fine grained particles of very small mean pore diameters. Even though an increasing amount of hydrate equilibrium data for small diameter porous media has become available, the morphological behavior of hydrates subject to such conditions is yet to be explored. This paper presented a study that visually examined hydrate formation and decomposition of gas hydrates while interacting with fine grains of silica gel. The study showed still frames from high-resolution video recordings for hydrate formation and decomposition. The paper discussed the experiment including the apparatus as well as the results of hydrate formation and hydrate dissociation. This study enabled for the first time to observe clathrate morphology while hydrates interacted closely with fine grain particles with small mean pore diameters. 9 refs., 8 figs.

  18. Hygroscopic analysis of individual Beijing haze aerosol particles by environmental scanning electron microscopy

    Science.gov (United States)

    Bai, Zhangpeng; Ji, Yuan; Pi, Yiqun; Yang, Kaixiang; Wang, Li; Zhang, Yinqi; Zhai, Yadi; Yan, Zhengguang; Han, Xiaodong

    2018-01-01

    Investigating the hygroscopic behavior of haze aerosol particles is essential for understanding their physicochemical properties and their impacts on regional weather and visibility. An environmental scanning electron microscope equipped with a home-made transmission-scattering electron imaging setup and an energy dispersive spectrometer was used for in-situ observations of pure water-soluble (WS) salts and Beijing haze particles. This imaging setup showed obvious advantages for improving the resolution and acquiring internal information of mixed particles in hydrated environments. We measured the deliquescence relative humidity of pure NaCl, NH4NO3, and (NH4)2SO4 by deliquescence-crystallization processes with an accuracy of up to 0.3% RH. The mixed haze particles showed hygroscopic activation like water uptake and morphological changes when they included WS components such as nitrates, sulfates, halides, ammoniums, and alkali metal salts. In addition, the hygroscopic behavior provides complementary information for analyzing possible phases in mixed haze particles.

  19. Phase behavior of methane hydrate in silica sand

    International Nuclear Information System (INIS)

    Sun, Shi-Cai; Liu, Chang-Ling; Ye, Yu-Guang; Liu, Yu-Feng

    2014-01-01

    Highlights: • Hydrate p-T trace in coarse-grained sediment is consistent with that in bulk water. • Fine-grained sediment affects hydrate equilibrium for the depressed water activity. • Hydrate equilibrium in sediment is related to the pore size distribution. • The application of hydrate equilibrium in sediment depends on the actual condition. -- Abstract: Two kinds of silica sand powder with different particle size were used to investigate the phase behavior of methane hydrate bearing sediment. In coarse-grained silica sand, the measured temperature and pressure range was (281.1 to 284.2) K and (5.9 to 7.8) MPa, respectively. In fine-grained silica sand, the measured temperature and pressure range was (281.5 to 289.5) K and (7.3 to 16.0) MPa, respectively. The results show that the effect of coarse-grained silica sand on methane hydrate phase equilibrium can be ignored; however, the effect of fine-grained silica sand on methane hydrate phase equilibrium is significant, which is attributed to the depression of water activity caused by the hydrophilicity and negatively charged characteristic of silica particle as well as the pore capillary pressure. Besides, the analysis of experimental results using the Gibbs–Thomson equation shows that methane hydrate phase equilibrium is related to the pore size distribution of silica sand. Consequently, for the correct application of phase equilibrium data of hydrate bearing sediment, the geological condition and engineering requirement should be taken into consideration in gas production, resource evaluation, etc

  20. Chemical alteration of calcium silicate hydrates in saline groundwater. Mechanism of sorption of Na on C-S-H and effect of NaCl on leaching of Ca from C-S-H

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari

    2004-01-01

    In the concept for TRU waste disposal in Japan, cement is a potential waste packaging and backfilling material and is expected to provide chemical containment. In the presence of some reactive ions in a saline groundwater, the chemical properties of cement materials should be affected. In this study, the mechanism of sorption of sodium (Na) on C-S-H and the effect of sodium chloride (NaCl) concentration on dissolution of Calcium Silicate Hydrate (C-S-H) are discussed by measuring the sorption isotherm of sodium onto C-S-H gel (Ca/Si = 0.65-1.2). Based on the experimental results, it is showed that sodium sorbs by substitution for Ca in C-S-H phases and leaching of Ca from C-S-H is enhanced in NaCl solution ( -1 mol dm -3 ). The results of sorption experiments are reasonably well modelled by the ion-exchange model assuming some calcium sites with different ion-exchange log K values. It is also suggested that the dissolution of C-S-H can be modelled reasonably well by considering the effect of ionic strength on activity coefficients of aqueous species for high Ca/Si ratio of C-S-H, and the effect of exchange of sodium with calcium of C-S-H on leaching of Ca becomes obvious for lower Ca/Si ratio of C-S-H. (author)

  1. Salting out of methane by sodium chloride: A scaled particle theory study.

    Science.gov (United States)

    Graziano, Giuseppe

    2008-08-28

    The salting out of methane by adding NaCl to water at 25 degrees C and 1 atm is investigated by calculating the work of cavity creation by means of scaled particle theory and the methane-solvent energy of attraction. The latter quantity changes to little extent on passing from pure water to an aqueous 4M NaCl solution, whereas the magnitude of the work of cavity creation increases significantly, accounting for the salting out effect. There is quantitative agreement between the experimental values of the hydration Gibbs energy and the calculated ones. The behavior of the work of cavity creation is due to the increase in the volume packing density of NaCl solutions, since the average effective molecular diameter does not change, being always 2.80 A. The same approach allows the rationalization of the difference in methane salting out along the alkali chloride series. These results indicate that, fixed the aqueous solution density, the solubility of nonpolar species is mainly determined by the effective diameter of solvent molecules and the corresponding volume packing density. There is no need to take into account the H-bond rearrangement because it is characterized by an almost complete enthalpy-entropy compensation.

  2. Hydraulic and Mechanical Effects from Gas Hydrate Conversion and Secondary Gas Hydrate Formation during Injection of CO2 into CH4-Hydrate-Bearing Sediments

    Science.gov (United States)

    Bigalke, N.; Deusner, C.; Kossel, E.; Schicks, J. M.; Spangenberg, E.; Priegnitz, M.; Heeschen, K. U.; Abendroth, S.; Thaler, J.; Haeckel, M.

    2014-12-01

    The injection of CO2 into CH4-hydrate-bearing sediments has the potential to drive natural gas production and simultaneously sequester CO2 by hydrate conversion. The process aims at maintaining the in situ hydrate saturation and structure and causing limited impact on soil hydraulic properties and geomechanical stability. However, to increase hydrate conversion yields and rates it must potentially be assisted by thermal stimulation or depressurization. Further, secondary formation of CO2-rich hydrates from pore water and injected CO2 enhances hydrate conversion and CH4 production yields [1]. Technical stimulation and secondary hydrate formation add significant complexity to the bulk conversion process resulting in spatial and temporal effects on hydraulic and geomechanical properties that cannot be predicted by current reservoir simulation codes. In a combined experimental and numerical approach, it is our objective to elucidate both hydraulic and mechanical effects of CO2 injection and CH4-CO2-hydrate conversion in CH4-hydrate bearing soils. For the experimental approach we used various high-pressure flow-through systems equipped with different online and in situ monitoring tools (e.g. Raman microscopy, MRI and ERT). One particular focus was the design of triaxial cell experimental systems, which enable us to study sample behavior even during large deformations and particle flow. We present results from various flow-through high-pressure experimental studies on different scales, which indicate that hydraulic and geomechanical properties of hydrate-bearing sediments are drastically altered during and after injection of CO2. We discuss the results in light of the competing processes of hydrate dissociation, hydrate conversion and secondary hydrate formation. Our results will also contribute to the understanding of effects of temperature and pressure changes leading to dissociation of gas hydrates in ocean and permafrost systems. [1] Deusner C, Bigalke N, Kossel E

  3. Dissociation behavior of methane gas hydrate in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, C.; Yu-gang, Y.; Chang-ling, L. [Ministry of Land and Resources, Quindao (China). Qingdao Inst. of Marine Geology; Qing-guo, M. [Qingdao Univ. College of Chemical Engineering and Environment, Shandong, Qingdao (China)

    2008-07-01

    Gas hydrates are ice-like compounds that form by natural gas and water and are considered to be a new energy resource. In order to make good use of this resource, it is important to know the hydrate dissociation process. This paper discussed an investigation of methane hydrate dissociation through a simulation experiment. The paper discussed the gas hydrates dissociation experiment including the apparatus and experiment equipment, including methane gas supply; reaction cell; temperature controller; pressure maintainer; and gas flow meter. The paper also presented the method and material including iso-volumetric dissociation and normal pressure dissociation. Last, results and discussion of the results were presented. A comparison of five different particle sizes did not reveal any obvious effects that were related to the porous media, mostly likely because the particle size was too large. 15 refs., 2 tabs., 4 figs.

  4. Experimental determination of the H2O + 15 wt% NaCl and H2O + 25 wt% NaCl liquidi to 1.4 GPa

    Science.gov (United States)

    Valenti, P.; Schmidt, C.

    2009-12-01

    The binary H2O+NaCl is one of the most important model systems for chloridic fluids in many geologic environments such as the Earth’s crust, upper mantle, and subducting slabs, and is also applicable to extraterrestrial icy planetary bodies (e.g., Manning 2004, Zolensky et al., 1999). The knowledge on phase equilibria and PVTx properties of this system is still fragmentary at high pressures, e.g., very little has been reported on liquidi at compositions Daniel 2008). In this study, we investigated the liquidus of 15 and 25 wt% NaCl solutions at pressures up to 1.4 GPa. The experiments were performed using a hydrothermal diamond-anvil cell (Bassett et al. 1993) modified for Raman spectroscopy and accurate temperature measurements. A quartz chip, halite, and water were loaded into the sample chamber, which also contained a small trapped air bubble (10 vol%) when it was sealed. The actual salinity was then determined from measurement of the vapor-saturated liquidus temperature. The sample chamber was then compressed until the bubble disappeared. After freezing, phase transitions occurring with increasing temperature were observed optically, and the pressure was determined from the frequency shift of the 464 cm-1 Raman line of quartz (Schmidt and Ziemann 2000). The sample chamber was then compressed further, and the experiment was repeated at various bulk densities until a pressure of ~1.4 GPa was attained. At some conditions, Raman spectra were acquired for identification of the phase assemblage. The solution always crystallized to a single phase upon cooling above ~0.15 GPa at 25 wt% NaCl and above ~1 GPa at 15 wt% NaCl. Raman spectra in the OH stretching region indicate that this phase contains or is a NaCl hydrate other than hydrohalite, probably in solid solution with ice. Melting of this phase produced liquid and hydrohalite and/or ice VI. Ice VI was the last solid that dissolved upon heating, between 1100 MPa, 3 °C and 1370 MPa, 17 °C for 15 wt% NaCl and at

  5. Fire extinction utilizing carbon dioxide hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Hatakeyama, T.; Aida, E.; Yokomori, T.; Ohmura, R.; Ueda, T. [Keio Univ., Hiyoshi, Kohoku-ku, Yokohama (Japan)

    2008-07-01

    Clathrate hydrates formed with nonflammable gases may be suitable for use as fire extinguishing agents because dissociation of the hydrates results in the temperature decrease in the combustion field and the nonflammable gases released from the dissociated hydrates prevent the supply of the oxygen to the combustion field. This paper discussed experiments in which ordinary ice and dry ice were used to evaluate the performance of CO{sub 2} hydrate as a fire extinguishing agent. The paper described the apparatus and procedure for the preparation of CO{sub 2} hydrate crystals. A schematic of the reactor to form CO{sub 2} hydrate and a photograph of CO{sub 2} hydrate crystal formed in the study were also presented. Other illustrations, photographs, and tables that were presented included a schematic diagram of the experimental apparatus used for the flame extinction experiments; a photograph of CO{sub 2} hydrate powder; sequential video graphs of the flame extinction by the supply of CO{sub 2} hydrate crystals to the methanol pool flame and the relevant illustration; and heat of CO{sub 2} hydrate dissociation, water vaporization and sublimation of dry ice. It was concluded that the critical mass of the CO{sub 2} hydrate required to extinguish a flame was much less than that of ordinary ice, indicating the superiority of CO{sub 2} hydrate to the ice. In addition, the experiments also revealed that the size of the CO{sub 2} hydrate particles had a significant effect on the performance of flame extinction. 5 refs., 2 tabs., 7 figs.

  6. FY1995 molecular control technology for mining of methane-gas-hydrate; 1995 nendo methane hydrate no bunshi seigyo mining

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The objectives of the investigation are as follows: 1) developing a method to control formation/dissociation of methane-gas-hydrate, 2) developing a technology to displace methane gas by CO{sub 2} in methane-gas-hydrate deposit, 3) developing a technology to produce methane gas from the deposit efficiently. The final purpose of the project is to create new mining industry that solves both the problems of energy and global environment. 1) Clustering of water molecules is found to play the key role in the methane gas hydrate formation. 2) Equilibrium properties and kinetics of gas hydrates formation and dissociation in bulk-scale gas-hydrate are clarified in the practical environmental conditions. 3) Particle size of hydrate deposit influences the formation and dissociation of bulk-scale gas-hydrate crystal. 4) Mass transfer between gas and liquid phase in turbulent bubbly flow is a function of bubble diameter. The mass transfer depends on interfacial dynamics. (NEDO)

  7. Study on small-strain behaviours of methane hydrate sandy sediments using discrete element method

    Energy Technology Data Exchange (ETDEWEB)

    Yu Yanxin; Cheng Yipik [Department of Civil, Environmental and Geomatic Engineering, University College London (UCL), Gower Street, London, WC1E 6BT (United Kingdom); Xu Xiaomin; Soga, Kenichi [Geotechnical and Environmental Research Group, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)

    2013-06-18

    Methane hydrate bearing soil has attracted increasing interest as a potential energy resource where methane gas can be extracted from dissociating hydrate-bearing sediments. Seismic testing techniques have been applied extensively and in various ways, to detect the presence of hydrates, due to the fact that hydrates increase the stiffness of hydrate-bearing sediments. With the recognition of the limitations of laboratory and field tests, wave propagation modelling using Discrete Element Method (DEM) was conducted in this study in order to provide some particle-scale insights on the hydrate-bearing sandy sediment models with pore-filling and cementation hydrate distributions. The relationship between shear wave velocity and hydrate saturation was established by both DEM simulations and analytical solutions. Obvious differences were observed in the dependence of wave velocity on hydrate saturation for these two cases. From the shear wave velocity measurement and particle-scale analysis, it was found that the small-strain mechanical properties of hydrate-bearing sandy sediments are governed by both the hydrate distribution patterns and hydrate saturation.

  8. Visible laser induced positive ion emissions from NaCl nanoparticles prepared by droplet rapid drying

    International Nuclear Information System (INIS)

    Sun, Mao-Xu; Guo, Deng-Zhu; Xing, Ying-Jie; Zhang, Geng-Min

    2012-01-01

    Highlights: ► NaCl nanoparticles were firstly prepared by heat induced explosion on silicon wafer. ► We found that laser induced ion emissions from NaCl nanoparticles are more prominent. ► We found that water adsorption can efficiently enhance laser induced ion emissions. ► The ultra-photothermal effect in NaCl nanoparticles was observed and explained. - Abstract: A novel convenient way for the formation of sodium chloride (NaCl) nanoparticles on silicon wafer is proposed by using a droplet rapid drying method. The laser induced positive ion emissions from NaCl nanoparticles with and without water treatment is demonstrated by using a laser desorption/ionization time-of-flight mass spectrometer, with laser intensity well below the plasma formation threshold. It is found that the positive ion emissions from NaCl nanoparticles are obviously higher than that from microsize NaCl particles under soft 532 nm laser irradiations, and water adsorption can efficiently enhance the ion emissions from NaCl nanoparticles. The initial kinetic energies of the emitted ions are estimated as 16–17 eV. The synergy of the ultra-thermal effect in nanomaterials, the defect-mediated multiphoton processes, and the existence of intermediate states in NaCl-water interfaces are suggested as the mechanisms.

  9. Hydration water and microstructure in calcium silicate and aluminate hydrates

    International Nuclear Information System (INIS)

    Fratini, Emiliano; Ridi, Francesca; Chen, Sow-Hsin; Baglioni, Piero

    2006-01-01

    Understanding the state of the hydration water and the microstructure development in a cement paste is likely to be the key for the improvement of its ultimate strength and durability. In order to distinguish and characterize the reacted and unreacted water, the single-particle dynamics of water molecules in hydrated calcium silicates (C 3 S, C 2 S) and aluminates (C 3 A, C 4 AF) were studied by quasi-elastic neutron scattering, QENS. The time evolution of the immobile fraction represents the hydration kinetics and the mobile fraction follows a non-Debye relaxation. Less sophisticated, but more accessible and cheaper techniques, like differential scanning calorimetry, DSC, and near-infrared spectroscopy, NIR, were validated through QENS results and they allow one to easily and quantitatively follow the cement hydration kinetics and can be widely applied on a laboratory scale to understand the effect of additives (i.e., superplasticizers, cellulosic derivatives, etc) on the thermodynamics of the hydration process. DSC provides information on the free water index and on the activation energy involved in the hydration process while the NIR band at 7000 cm -1 monitors, at a molecular level, the increase of the surface-interacting water. We report as an example the effect of two classes of additives widely used in the cement industry: superplasticizers, SPs, and cellulose derivatives. SPs interact at the solid surface, leading to a consistent increment of the activation energy for the processes of nucleation and growth of the hydrated phases. In contrast, the cellulosic additives do not affect the nucleation and growth activation energy, but cause a significant increment in the water availability: in other words the hydration process is more efficient without any modification of the solid/liquid interaction, as also evidenced by the 1 H-NMR. Additional information is obtained by scanning electron microscopy (SEM), ultra small angle neutron scattering (USANS) and wide

  10. NATURAL GAS HYDRATES STORAGE PROJECT PHASE II. CONCEPTUAL DESIGN AND ECONOMIC STUDY

    Energy Technology Data Exchange (ETDEWEB)

    R.E. Rogers

    1999-09-27

    DOE Contract DE-AC26-97FT33203 studied feasibility of utilizing the natural-gas storage property of gas hydrates, so abundantly demonstrated in nature, as an economical industrial process to allow expanded use of the clean-burning fuel in power plants. The laboratory work achieved breakthroughs: (1) Gas hydrates were found to form orders of magnitude faster in an unstirred system with surfactant-water micellar solutions. (2) Hydrate particles were found to self-pack by adsorption on cold metal surfaces from the micellar solutions. (3) Interstitial micellar-water of the packed particles were found to continue forming hydrates. (4) Aluminum surfaces were found to most actively collect the hydrate particles. These laboratory developments were the bases of a conceptual design for a large-scale process where simplification enhances economy. In the design, hydrates form, store, and decompose in the same tank in which gas is pressurized to 550 psi above unstirred micellar solution, chilled by a brine circulating through a bank of aluminum tubing in the tank employing gas-fired refrigeration. Hydrates form on aluminum plates suspended in the chilled micellar solution. A low-grade heat source, such as 110 F water of a power plant, circulates through the tubing bank to release stored gas. The design allows a formation/storage/decomposition cycle in a 24-hour period of 2,254,000 scf of natural gas; the capability of multiple cycles is an advantage of the process. The development costs and the user costs of storing natural gas in a scaled hydrate process were estimated to be competitive with conventional storage means if multiple cycles of hydrate storage were used. If more than 54 cycles/year were used, hydrate development costs per Mscf would be better than development costs of depleted reservoir storage; above 125 cycles/year, hydrate user costs would be lower than user costs of depleted reservoir storage.

  11. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  12. Desorption of radioactive cesium by seawater from the suspended particles in river water.

    Science.gov (United States)

    Onodera, Masaki; Kirishima, Akira; Nagao, Seiya; Takamiya, Kouichi; Ohtsuki, Tsutomu; Akiyama, Daisuke; Sato, Nobuaki

    2017-10-01

    In 2011, the accident at the Fukushima-Daiichi nuclear power plant dispersed radioactive cesium throughout the environment, contaminating the land, rivers, and sea. Suspended particles containing clay minerals are the transportation medium for radioactive cesium from rivers to the ocean because cesium is strongly adsorbed between the layers of clay minerals, forming inner sphere complexes. In this study, the adsorption and desorption behaviors of radioactive cesium from suspended clay particles in river water have been investigated. The radioactive cesium adsorption and desorption experiments were performed with two kinds of suspended particulate using a batch method with 137 Cs tracers. In the cesium adsorption treatment performed before the desorption experiments, simulated river water having a total cesium concentration ([ 133+137 Cs + ] total ) of 1.3 nM (10 -9  mol/L) was used. The desorption experiments were mainly conducted at a solid-to-liquid ratio of 0.17 g/L. The desorption agents were natural seawater collected at 10 km north of the Fukushima-Daiichi nuclear power plant, artificial seawater, solutions of NaCl, KCl, NH 4 Cl, and 133 CsCl, and ultrapure water. The desorption behavior, which depends on the preloaded cesium concentration in the suspended particles, was also investigated. Based on the cesium desorption experiments using suspended particles, which contained about 1000 ng/g loaded cesium, the order of cesium desorption ratios for each desorption agent was determined as 1 M NaCl (80%) > 470 mM NaCl (65%) > 1 M KCl (30%) ≈ seawater (natural seawater and Daigo artificial seawater) > 1 M NH 4 Cl (20%) > 1 M 133 CsCl (15%) ≫ ultrapure water (2%). Moreover, an interesting result was obtained: The desorption ratio in the 470 mM NaCl solution was much higher than that in seawater, even though the Na + concentrations were identical. These results indicate that the cesium desorption mechanism is not a simple ion exchange reaction

  13. Observation of ice sheet formation on methane and ethane gas hydrates using a scanning confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, J.; Shimomura, N.; Ebinuma, T.; Narita, H. [National Inst. of Advanced Industrial Science and Technology, Toyohira, Sapporo (Japan). Methane Hydrate Research Lab.

    2008-07-01

    Interest in gas hydrates has increased in recent years due to the discovery of large deposits under the ocean floor and in permafrost regions. Natural gas hydrates, including methane, is expected to become a new energy source and a medium for energy storage and transportation. Gas hydrates consist of an open network of water molecules that are hydrogen-bonded in a similar manner to ice. Gas molecules are interstitially engaged under high pressures and low temperatures. Although the dissociation temperature of methane hydrate under atmospheric pressure is about 193 K, studies have shown that methane hydrate can be stored at atmospheric pressure and 267 K for 2 years. Because of this phenomenon, known as self-preservation, transportation and storage of methane hydrate can occur at temperature conditions milder than those for liquefied methane gas at atmospheric pressure. This study examined the surface changes of methane and ethane hydrates during dissociation using an optical microscope and confocal scanning microscope (CSM). This paper reported on the results when the atmospheric gas pressure was decreased. Ice sheets formed on the surfaces of methane and ethane gas hydrates due to depressurizing dissociation of methane and ethane hydrates when the methane and ethane gas pressures were decreased at designated temperatures. The dissociation of methane gas hydrate below below 237 K resulted in the generation of small ice particles on the hydrate surface. A transparent ice sheet formed on the hydrate surface above 242 K. The thickness of the ice sheet on the methane hydrate surface showed the maximum of ca. 30 {mu}m at 253 K. In the case of ethane hydrates, ice particles and ice sheets formed below 262 and 267 respectively. Since the ice particles and ice sheets were formed by water molecules generated during the gas hydrate dissociation, the mechanism of ice sheet formation depends on the dissociation rate of hydrate, ice particle sintering rate, and water molecule

  14. Different Mechanism Effect between Gas-Solid and Liquid-Solid Interface on the Three-Phase Coexistence Hydrate System Dissociation in Seawater: A Molecular Dynamics Simulation Study

    Directory of Open Access Journals (Sweden)

    Zhixue Sun

    2017-12-01

    Full Text Available Almost 98% of methane hydrate is stored in the seawater environment, the study of microscopic mechanism for methane hydrate dissociation on the sea floor is of great significance to the development of hydrate production, involving a three-phase coexistence system of seawater (3.5% NaCl + hydrate + methane gas. The molecular dynamics method is used to simulate the hydrate dissociation process. The dissociation of hydrate system depends on diffusion of methane molecules from partially open cages and a layer by layer breakdown of the closed cages. The presence of liquid or gas phases adjacent to the hydrate has an effect on the rate of hydrate dissociation. At the beginning of dissociation process, hydrate layers that are in contact with liquid phase dissociated faster than layers adjacent to the gas phase. As the dissociation continues, the thickness of water film near the hydrate-liquid interface became larger than the hydrate-gas interface giving more resistance to the hydrate dissociation. Dissociation rate of hydrate layers adjacent to gas phase gradually exceeds the dissociation rate of layers adjacent to the liquid phase. The difficulty of methane diffusion in the hydrate-liquid side also brings about change in dissociation rate.

  15. AFM of metallic nano-particles and nano-structures in heavily irradiated NaCl

    NARCIS (Netherlands)

    Gaynutdinov, R; Vainshtein, DI; Hak, SJ; Tolstikhina, A; Den Hartog, HW

    2003-01-01

    AFM investigations are reported for heavily, electron irradiated NaCl crystals in ultra high vacuum (UHV) in the non-contact mode-with an UHV AFM/STM Omicron system. To avoid chemical reactions between the radiolytic Na and oxygen and water, the irradiated samples were cleaved and prepared for the

  16. Dissolution mechanisms of CO2 hydrate droplets in deep seawaters

    International Nuclear Information System (INIS)

    Gabitto, Jorge; Tsouris, Costas

    2006-01-01

    Carbon dioxide dissolution at intermediate ocean depths was studied using physical and mass transfer models. Particle density and hydrate layer thickness were determined using existing field data. Pseudo-homogeneous and heterogeneous mass transfer models were proposed to study the dissolution process. Pseudo-homogeneous models do not seem to represent the dissolution process well. Although heterogeneous models interpret the physical behavior better, unresolved issues related to hydrate dissolution still remain. For example, solid hydrate forms on one side of the hydrate film while it dissolves on the other. Dissolution is a complex process that comprises at least two sequential steps. The global process is controlled by mass transfer inside the hydrate layer or by a dissolution reaction at the hydrate-water interface

  17. Study on gas hydrate as a new energy resource in the 21th century

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Byeong-Jae; Kwak Young-Hoon; Kim, Won-Sik [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Natural gas hydrate, a special type of clathrate hydrates, is a metastable solid compound which mainly consists of methane and water, and generally called as gas hydrate. It is stable in the specific low-temperature/high-pressure conditions. Gas hydrates play an important role as major reservoir of methane on the earth. On the other hand, the formation and dissociation of gas hydrates could cause the plugging in pipeline, gas kick during production, atmospheric pollution and geohazard. To understand the formation and dissociation of the gas hydrate, the experimental equilibrium conditions of methane hydrate were measured in pure water, 3 wt.% NaCl and MgCl{sub 2} solutions. The equilibrium conditions of propane hydrates were also measured in pure water. The relationship between methane hydrate formation time and overpressure was also analyzed through the laboratory work. The geophysical surveys using air-gun system and multibeam echo sounder were implemented to develop exploration techniques and to evaluate the gas hydrate potential in the East Sea, Korea. General indicators of submarine gas hydrates on seismic data is commonly inferred from the BSR developed parallel to the see floor, amplitude blanking at the upper part of the BSR, and phase reversal and decrease of the interval velocity at BSR. The field data were processed using Geobit 2.9.5 developed by KIGAM to detect the gas hydrate indicators. The accurate velocity analysis was performed by XVA (X-window based Velocity Analysis). Processing results show that the strong reflector occurred parallel to the sea floor were shown at about 1800 ms two way travel time. The interval velocity decrease at this strong reflector and at the reflection phase reversal corresponding to the reflection at the sea floor. Gas hydrate stability field in the study area was determined using the data of measured hydrate equilibrium condition, hydrothermal gradient and geothermal gradient. The depth of BSR detected in the seismic

  18. Washout ratio of NaCl particles by raindrops, snowflakes and fog particles obtained using the large artificial climate experiment chamber at ACEF in IES

    International Nuclear Information System (INIS)

    Kawabata, Hitoshi; Kondo, Kunio; Hasegawa, Hidenao; Akata, Naofumi; Chikuchi, Yuki; Hisamatsu, Shun'ichi; Inaba, Jiro; Komagata, Yuuetsu

    2007-01-01

    Scavenging of NaCl particles by rainfall, snowfall and fog was examined in a large artificial climate experiment chamber in which the meteorological elements were controlled. The scavenging coefficient of Na by rainfall and snowfall were obtained using Na concentrations in air and precipitation. The washout ratio of Na by fog was also measured using Na concentrations in air and fog water. The scavenging coefficients by snowfall were found to be larger than those by rainfall, and showed that the removal efficiency of the former was higher than that of the latter. The coefficients by both rainfall and snowfall increased linearly with precipitation intensity. When the average diameters of fog droplets were the same, the washout ratio of Na by fog increased with fog liquid water content. On the other hand, when liquid water contents were the same, the washout ratio decreased with increasing average diameter of fog droplets. The washout ratio of Na by fog exponentially increased with the total surface area of fog droplets. (author)

  19. Ice nucleation activity of diesel soot particles at cirrus relevant temperature conditions: Effects of hydration, secondary organics coating, soot morphology, and coagulation

    Science.gov (United States)

    Kulkarni, Gourihar; China, Swarup; Liu, Shang; Nandasiri, Manjula; Sharma, Noopur; Wilson, Jacqueline; Aiken, Allison C.; Chand, Duli; Laskin, Alexander; Mazzoleni, Claudio; Pekour, Mikhail; Shilling, John; Shutthanandan, Vaithiyalingam; Zelenyuk, Alla; Zaveri, Rahul A.

    2016-04-01

    Ice formation by diesel soot particles was investigated at temperatures ranging from -40 to -50°C. Size-selected soot particles were physically and chemically aged in an environmental chamber, and their ice nucleating properties were determined using a continuous flow diffusion type ice nucleation chamber. Bare (freshly formed), hydrated, and compacted soot particles, as well as α-pinene secondary organic aerosol (SOA)-coated soot particles at high relative humidity conditions, showed ice formation activity at subsaturation conditions with respect to water but below the homogeneous freezing threshold conditions. However, SOA-coated soot particles at dry conditions were observed to freeze at homogeneous freezing threshold conditions. Overall, our results suggest that heterogeneous ice nucleation activity of freshly emitted diesel soot particles are sensitive to some of the aging processes that soot can undergo in the atmosphere.

  20. Systematic UHV-AFM experiments on Na nano-particles and nano-structures in NaCl

    NARCIS (Netherlands)

    Sugonyako, A.V.; Turkin, A.A.; Gaynutdinov, R.; Vainshtein, D.I.; Hartog, H.W. den; Bukharaev, A.A.

    2005-01-01

    Results of systematic AFM (atomic force microscopy) experiments on heavily and moderatly irradiated NaCl samples are presented. The sodium nanoparticles and structures of nanoparticles are poduced in sodium chloride during irradiation. The AFM images of the nanoparticles have been obtained in ultra

  1. Experimental observations on the competing effect of tetrahydrofuran and an electrolyte and the strength of hydrate inhibition among metal halides in mixed CO2 hydrate equilibria

    International Nuclear Information System (INIS)

    Sabil, Khalik M.; Roman, Vicente R.; Witkamp, Geert-Jan; Peters, Cor J.

    2010-01-01

    In the present work, experimental data on the equilibrium conditions of mixed CO 2 and THF hydrates in aqueous electrolyte solutions are reported. Seven different electrolytes (metal halides) were used in this work namely sodium chloride (NaCl), calcium chloride (CaCl 2 ), magnesium chloride (MgCl 2 ), potassium bromide (KBr), sodium fluoride (NaF), potassium chloride (KCl), and sodium bromide (NaBr). All equilibrium data were measured by using Cailletet apparatus. Throughout this work, the overall concentration of CO 2 and THF were kept constant at (0.04 and 0.05) mol fraction, respectively, while the concentration of electrolytes were varied. The experimental temperature ranged from (275 to 305) K and pressure up 7.10 MPa had been applied. From the experimental results, it is concluded that THF, which is soluble in water is able to suppress the salt inhibiting effect in the range studied. In all quaternary systems studied, a four-phase hydrate equilibrium line was observed where hydrate (H), liquid water (L W ), liquid organic (L V ), and vapour (V) exist simultaneously at specific pressure and temperature. The formation of this four-phase equilibrium line is mainly due to a liquid-liquid phase split of (water + THF) mixture when pressurized with CO 2 and the split is enhanced by the salting-out effect of the electrolytes in the quaternary system. The strength of hydrate inhibition effect among the electrolytes was compared. The results shows the hydrate inhibiting effect of the metal halides is increasing in the order NaF 2 2 . Among the cations studied, the strength of hydrate inhibition increases in the following order: K + + 2+ 2+ . Meanwhile, the strength of hydrate inhibition among the halogen anion studied decreases in the following order: Br - > Cl - > F - . Based on the results, it is suggested that the probability of formation and the strength of ionic-hydrogen bond between an ion and water molecule and the effects of this bond on the ambient water

  2. In situ AFM study on barite (0 0 1) surface dissolution in NaCl solutions at 30 °C

    International Nuclear Information System (INIS)

    Kuwahara, Yoshihiro; Makio, Masato

    2014-01-01

    solutions with lower and higher NaCl concentrations, respectively. The triangular etch pit and deep etch pit growth rates also increased with the NaCl solution concentration. Combining the step and face retreat rates in NaCl solutions estimated in this AFM study as well as the data on the effect of water temperature on the retreat rates reported in our earlier study, we produced two new findings. One finding is that the retreat rates increase by approximately two-fold when the NaCl solution concentration increases by one order of magnitude, and the other finding is that the retreat rate increase due to a one order of magnitude increase in the NaCl concentration corresponds to an increase of approximately 8 °C in water temperature. This correlation may help to understand and evaluate increasing dissolution kinetics induced by the different mechanisms where barite dissolution is promoted by the catalytic effect of Na + and Cl − ions (through an increase in the NaCl solution concentration) or by an increase in the hydration of Ba 2+ and SO 4 2− (through an increase in water temperature)

  3. Effect of temperature and ionic strength on volumetric and acoustic properties of solutions of urea alkyl derivatives in aqueous NaCl

    International Nuclear Information System (INIS)

    Krakowiak, Joanna; Wawer, Jarosław

    2015-01-01

    Highlights: • Urea and its alkyl derivatives in aqueous NaCl solutions were studied. • The density and the speed of sound were measured for presented systems. • The strongest impact of NaCl on obtained quantities is noticed for apparent molar compression. • Bigger hydrophobic character of the solute results in bigger changes of calculated quantities with concentration. • The geometry of the solute is a crucial condition for hydrophobic hydration to happen. - Abstract: The present work was undertaken to study volumetric and acoustic properties for diluted solutions of tetramethylurea in pure water and for urea, n-propylurea, n-butylurea and tetramethylurea in 0.5 or 1 mol · dm −3 aqueous solutions of sodium chloride. This paper presents measured values of densities and sound velocities at T = (288.15, 298.15 and 308.15) K. From these data the apparent molar volumes, V Φ , adiabatic compressibilities, κ S , and apparent molar adiabatic compressions, K S,Φ , were obtained. The values of apparent molar volumes for infinite dilution and limited apparent adiabatic compressions were calculated from extrapolation of the concentration dependence. Further, the corresponding transfer data as well as hydration number of urea and its derivatives in the studied systems were estimated. The obtained parameters are discussed in terms of various solute-solvent and solute-cosolute interactions

  4. In situ monitoring of the hydration process of K-PS geopolymer cement with ESEM

    International Nuclear Information System (INIS)

    Sun Wei; Zhang Yunsheng; Lin Wei; Liu Zhiyong

    2004-01-01

    Environmental scanning electron microscope (ESEM) was used to in situ quantitatively study the hydration process of K-PS geopolymer cement under an 80% RH environment. An energy dispersion X-ray analysis (EDXA) was also employed to distinguish the chemical composition of hydration product. The ESEM micrographs showed that metakaolin particles pack loosely at 10 min after mixing, resulting in the existence of many large voids. As hydration proceeds, a lot of gels were seen and gradually precipitated on the surfaces of these particles. At later stage, these particles were wrapped by thick gel layers and their interspaces were almost completely filled. The corresponding EDXA results illustrated that the molar ratios of K/Al increase while Si/Al decrease with the development of hydration. As a result, the molar ratios of K/Al and Si/Al of hydration products at an age of 4 h amounted to 0.99 and 1.49, respectively, which were close to the theoretical values (K/Al=1.0, Si/Al=1.0 for K-PS geopolymer cement paste). In addition, well-developed crystals could not been found at any ages; instead, spongelike amorphous gels were always been observed

  5. NMR Spectroscopy of the Hydrated Layer of Composite Particles Based on Nanosized Al2O3 and Vitreous Humor

    Science.gov (United States)

    Turov, V. V.; Gerashchenko, I. I.; Markina, A. I.

    2013-11-01

    The hydrated layer of composite particles prepared using Al2O3 and cattle vitreous humor was investigated using NMR spectroscopy. It was found that water bound to Al2O3 nanoparticles was present in the form of clusters with different degrees of association and energies of interaction with the surface. Water bound to the surface of the Al2O3/vitreous humor composite became more uniform upon immobilization of vitreous humor components on the surface of the Al2O3. With this, the clusters of adsorbed water had characteristics that were close to those found in air and weakly polar CHCl3 media. Addition of polar CH3CN led to the formation of very small water clusters. PMR spectra of the surface of the Al2O3/vitreous humor composite in the presence of trifluoroacetic acid differentiated four types of hydrated structures that differed in the degree of water association.

  6. Modifying Cement Hydration with NS@PCE Core-Shell Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yue Gu

    2017-01-01

    Full Text Available It is generally accepted that fine particles could accelerate cement hydration process, or, more specifically, this accelerating effect can be attributed to additional surface area introduced by fine particles. In addition to this view, the surface state of fine particles is also an important factor, especially for nanoparticles. In the previous study, a series of nano-SiO2-polycarboxylate superplasticizer core-shell nanoparticles (NS@PCE were synthesized, which have a similar particle size distribution but different surface properties. In this study, the impact of NS@PCE on cement hydration was investigated by heat flow calorimetry, mechanical property measurement, XRD, and SEM. Results show that, among a series of NS@PCE, NS@PCE-2 with a moderate shell-core ratio appeared to be more effective in accelerating cement hydration. As dosage increases, the efficiency of NS@PCE-2 would reach a plateau which is quantified by various characteristic values. Compressive strength results indicate that strength has a linear correlation with cumulative heat release. A hypothesis was proposed to explain the modification effect of NS@PCE, which highlights a balance between initial dispersion and pozzolanic reactivity. This paper provides a new understanding for the surface modification of supplementary cementitious materials and their application and also sheds a new light on nano-SiO2 for optimizing cement-based materials.

  7. A study of the methane hydrate formation by in situ turbidimetry

    Energy Technology Data Exchange (ETDEWEB)

    Herri, J M

    1996-02-02

    The study of the Particle Size Distribution (PSD) during the processes of crystallization is a subject of considerable interest, notably in the offshore exploitation of liquid fuels where the gas hydrate crystallization can plug production, treatment and transport facilities. The classical remedy to this problem is mainly thermodynamic additives such as alcohols or salts, but a new way of research is the use of dispersant additives which avoid crystals formation. In this paper, we show an original apparatus that is able to measure in situ the polychromatic UV-Visible turbidity spectrum in a pressurised reactor. We apply this technology to the calculation of the PSD during the crystallization of methane hydrate particles in a stirred semi-batch tank reactor. We discuss the mathematics treatment of the turbidity spectrum in order to determine the PSD and especially the method of matrix inversion with constraint. Moreover, we give a method to calculate theoretically the refractive index of the hydrate particles and we validate it experimentally with the methane hydrate particles. We apply this technology to the study of the crystallization of methane hydrate from pure liquid water and methane gas into the range of temperature [0-2 deg. C], into the range of pressure [30-100 bars] and into the range of stirring rate [0-600 rpm]. We produce a set of experiments concerning these parameters. Then we realize a model of the crystallization taking into account the processes of nucleation, of growth, of agglomeration and flotation. We compare this model with the experimental results concerning the complex influence of stirring rate at 1 deg. C and 30 bars. Then, we investigate the influence of additives such as Fontainebleau Sand, Potassium Chloride and a surfactant such as Poly-Vinyl-Pyrrolydone. (authors). 133 refs., 210 figs., 54 tabs.

  8. Changes in the solid state of anhydrous and hydrated forms of sodium naproxen under different grinding and environmental conditions: Evidence of the formation of new hydrated forms.

    Science.gov (United States)

    Censi, Roberta; Rascioni, Riccardo; Di Martino, Piera

    2015-05-01

    The aim of the present work was to investigate the solid state change of the anhydrous and hydrate solid forms of sodium naproxen under different grinding and environmental conditions. Grinding was carried out manually in a mortar under the following conditions: at room temperature under air atmosphere (Method A), in the presence of liquid nitrogen under air atmosphere (Method B), at room temperature under nitrogen atmosphere (Method C), and in the presence of liquid nitrogen under nitrogen atmosphere (Method D). Among the hydrates, the following forms were used: a dihydrate form (DSN) obtained by exposing the anhydrous form at 55% RH; a dihydrate form (CSN) obtained by crystallizing sodium naproxen from water; the tetrahydrate form (TSN) obtained by exposing the anhydrous form at 75% RH. The metastable monohydrate form (MSN), previously described in the literature, was not used because of its high physical instability. The chemical stability during grinding was firstly assessed and proven by HPLC. Modification of the particle size and shape, and changes in the solid state under different grinding methods were evaluated by scanning electron microscopy, and X-ray powder diffractometry and thermogravimetry, respectively. The study demonstrated the strong influence of starting form, grinding and environmental conditions on particle size, shape and solid state of recovered sodium naproxen forms. In particular, it was demonstrated that in the absence of liquid nitrogen (Methods A and C), either at air or at nitrogen atmosphere, the monohydrate form (MSN) was obtained from any hydrates, meaning that these grinding conditions favored the dehydration of superior hydrates. The grinding process carried out in the presence of liquid nitrogen (Method B) led to further hydration of the starting materials: new hydrate forms were identified as one pentahydrate form and one hexahydrate form. The hydration was caused by the condensation of the atmospheric water on sodium naproxen

  9. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.; Chae, S. R.; Benmore, C. J.; Wenk, H. R.; Monteiro, P. J. M.

    2010-01-01

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  10. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.

    2010-05-11

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  11. On the intermolecular vibrational coupling, hydrogen bonding, and librational freedom of water in the hydration shell of mono- and bivalent anions.

    Science.gov (United States)

    Ahmed, Mohammed; Namboodiri, V; Singh, Ajay K; Mondal, Jahur A

    2014-10-28

    The hydration energy of an ion largely resides within the first few layers of water molecules in its hydration shell. Hence, it is important to understand the transformation of water properties, such as hydrogen-bonding, intermolecular vibrational coupling, and librational freedom in the hydration shell of ions. We investigated these properties in the hydration shell of mono- (Cl(-) and I(-)) and bivalent (SO4(2-) and CO3(2-)) anions by using Raman multivariate curve resolution (Raman-MCR) spectroscopy in the OH stretch, HOH bend, and [bend+librational] combination bands of water. Raman-MCR of aqueous Na-salt (NaCl, NaI, Na2SO4, and Na2CO3) solutions provides ion-correlated spectra (IC-spectrum) which predominantly bear the vibrational characteristics of water in the hydration shell of respective anions. Comparison of these IC-spectra with the Raman spectrum of bulk water in different spectral regions reveals that the water is vibrationally decoupled with its neighbors in the hydration shell. Hydrogen-bond strength and librational freedom also vary with the nature of anion: hydrogen-bond strength, for example, decreases as CO3(2-) > SO4(2-) > bulk water ≈ Cl(-) > I(-); and the librational freedom increases as CO3(2-) ≈ SO4(2-) water water in the hydration shell of anions.

  12. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions

    International Nuclear Information System (INIS)

    Wang, Yimin; Bowman, Joel M.; Kamarchik, Eugene

    2016-01-01

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na + H 2 O, F − H 2 O, and Cl − H 2 O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H 2 O potentials are permutationally invariant fits to roughly 20 000 coupled cluster CCSD(T) energies (awCVTZ basis for Na + and aVTZ basis for Cl − and F − ), over a large range of distances and H 2 O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.

  13. Direct Visualization of the Hydration Layer on Alumina Nanoparticles with the Fluid Cell STEM in situ.

    Science.gov (United States)

    Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; Akinc, Mufit; Prozorov, Tanya

    2015-05-21

    Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions. We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. Our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles.

  14. Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route

    International Nuclear Information System (INIS)

    Jha, Nidhi; Mondal, D.P.; Dutta Majumdar, J.; Badkul, Anshul; Jha, A.K.; Khare, A.K.

    2013-01-01

    Highlights: ► NaCl crystals has been used as space holder. ► Variation of NaCl:Ti ratio varies porosity (65–80%). ► NaCl is cubic but the cells are spherical. ► Two types of pores: micro and macro pores are obtained. ► Foams are suitable for bones scaffolds and engineering applications. - Abstract: Open cell Titanium-foam (Ti-foam) with varying porosities (65–80%) was prepared using sodium chloride (NaCl) particles as space holder through powder metallurgy route. In order to ensure sufficient handling strength in cold compacted pallets, 2 wt.% polyvinyl alcohol (PVA) solutions (5 wt.% PVA in water) was mixed with the mixture of Ti and NaCl powders prior to cold compaction. After sintering, NaCl salt was removed by dissolving it in hot water. Detailed Energy dispersive X-ray (EDX) analysis and X-ray diffraction studies of the prepared Ti-foams were conducted to examine any physical and chemical changes in the phase constituents. The micro-architectural characteristics, density vis-a-vis porosity, and compressive deformation behavior of the synthesized foams were evaluated to examine their suitability as biomaterial and engineering applications

  15. Reconsideration on Hydration of Sodium Ion: From Micro-Hydration to Bulk Hydration

    Science.gov (United States)

    Yongquan, Zhou; Chunhui, Fang; Yan, Fang; Fayan, Zhu; Haiwen, Ge; Hongyan, Liu

    2017-12-01

    Micro hydration structures of the sodium ion, [Na(H2O) n ]+, n = 1-12, were probed by density functional theory (DFT) at B3LYP/aug-cc-pVDZ level in both gaseous and aqueous phase. The predicted equilibrium sodium-oxygen distance of 0.240 nm at the present level of theory. The four-, five- and six-coordinated cluster can transform from each other at the ambient condition. The analysis of the successive water binding energy and natural charge population (NBO) on Na+ clearly shows that the influence of Na+ on the surrounding water molecules goes beyond the first hydration shell with the hydration number of 6. The Car-Parrinello molecular dynamic simulation shows that only the first hydration sphere can be found, and the hydration number of Na+ is 5.2 and the hydration distance ( r Na-O) is 0.235 nm. All our simulations mentioned in the present paper show an excellent agreement with the diffraction result from X-ray scattering study.

  16. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yimin, E-mail: yimin.wang@emory.edu; Bowman, Joel M., E-mail: jmbowma@emory.edu [Department of Chemistry, Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States); Kamarchik, Eugene, E-mail: eugene.kamarchik@gmail.com [Quantum Pomegranate, LLC, 2604 Kings Lake Court NE, Atlanta, Georgia 30345 (United States)

    2016-03-21

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na{sup +}H{sub 2}O, F{sup −}H{sub 2}O, and Cl{sup −}H{sub 2}O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H{sub 2}O potentials are permutationally invariant fits to roughly 20 000 coupled cluster CCSD(T) energies (awCVTZ basis for Na{sup +} and aVTZ basis for Cl{sup −} and F{sup −}), over a large range of distances and H{sub 2}O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.

  17. AFM of metallic nano-particles and nano-structures in heavily irradiated NaCl

    OpenAIRE

    Gaynutdinov, R; Vainshtein, DI; Hak, SJ; Tolstikhina, A; Den Hartog, HW

    2003-01-01

    AFM investigations are reported for heavily, electron irradiated NaCl crystals in ultra high vacuum (UHV) in the non-contact mode-with an UHV AFM/STM Omicron system. To avoid chemical reactions between the radiolytic Na and oxygen and water, the irradiated samples were cleaved and prepared for the experiments in UHV At the surface of freshly cleaved samples, we have observed sodium nano-precipitates with shapes, which depend on the irradiation dose and the volume fraction of the radiolytic Na...

  18. Mitigating the effects of system resolution on computer simulation of Portland cement hydration

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, Jos

    2008-01-01

    CEMHYD3D is an advanced, three-dimensional computer model for simulating the hydration processes of cement, in which the microstructure of the hydrating cement paste is represented by digitized particles in a cubic domain. However, the system resolution (which is determined by the voxel size) has a

  19. Methane Hydrate Formation and Dissociation in the Presence of Silica Sand and Bentonite Clay

    Directory of Open Access Journals (Sweden)

    Kumar Saw V.

    2015-11-01

    Full Text Available The formation and dissociation of methane hydrates in a porous media containing silica sand of different sizes and bentonite clay were studied in the presence of synthetic seawater with 3.55 wt% salinity. The phase equilibrium of methane hydrate under different experimental conditions was investigated. The effects of the particle size of silica sand as well as a mixture of bentonite clay and silica sand on methane hydrate formation and its dissociation were studied. The kinetics of hydrate formation was studied under different subcooling conditions to observe its effects on the induction time of hydrate formation. The amount of methane gas encapsulated in hydrate was computed using a real gas equation. The Clausius-Clapeyron equation is used to estimate the enthalpy of hydrate dissociation with measured phase equilibrium data.

  20. Diffusion of calcium in pure and doped NaCl; Diffusion du calcium dans NaCl pur et dope

    Energy Technology Data Exchange (ETDEWEB)

    Slifkin, L; Brebec, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    We have determined, by diffusion experiments of Ca in pure and doped NaCl, the activation energy for the calcium jumps and the binding energy between calcium ion and vacancy. (authors) [French] Nous avons determine, par des mesures de diffusion du Ca dans NaCl pur et NaCl dope avec CaCl{sub 2}, l'energie d'activation relative aux sauts du calcium et l'energie de liaison lacune-calcium. (auteurs)

  1. The analysis of magnesium oxide hydration in three-phase reaction system

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaojia; Guo, Lin; Chen, Chen; Liu, Quan; Li, Tie; Zhu, Yimin, E-mail: ntp@dlmu.edu.cn

    2014-05-01

    In order to investigate the magnesium oxide hydration process in gas–liquid–solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid–solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phase system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH){sub 2} precipitation, Mg(OH){sub 2} peeling off from MgO particle and leaving behind fresh MgO surface. - Graphical abstract: There was existence of a peeling-off process in the gas–liquid–solid (three-phase) MgO hydration system. - Highlights: • Magnesium oxide hydration in gas–liquid–solid system was investigated. • The experimental data in three-phase system could be fitted well by two models. • The morphology analysis suggested that there was existence of a peel-off process.

  2. Preparation of submicron-sized spherical particles of gold using laser-induced melting in liquids and low-toxic stabilizing reagent

    International Nuclear Information System (INIS)

    Tsuji, T.; Higashi, Y.; Tsuji, M.; Ishikawa, Y.; Koshizaki, N.

    2015-01-01

    Highlights: • Submicron-sized spherical particles of gold were prepared using laser irradiation for the source gold nanoparticles stabilized by NaCl. • The source gold nanoparticles agglomeration was controlled both by the NaCl concentration of and by laser irradiation. • The formation process and the laser-fluence dependence of the particle size of gold nanoparticles in NaCl solutions differs from those in citrate solutions. • We revealed that properties of ligands are significantly important to prepare submicron-sized spherical particles and to control their size. - Abstract: Laser-induced melting in liquids (LIML) was applied to prepare spherical submicron-sized particles of gold (AuSMPs) from gold nanoparticles (AuNPs) stabilized using NaCl. Because undesirable byproducts, which might be generated when organic reagents such as citrate are used as the stabilizing reagent, are not generated from NaCl by laser irradiation, AuSMPs fabricated from AuNPs stabilized by NaCl will be low toxic. The AuSMPs were obtained by laser irradiation of the source AuNPs in NaCl solutions stabilized by NaCl at the proper concentration. Similar to the preparation of AuSMPs from AuNPs stabilized by citrate, the agglomeration of the source AuNPs, which is necessary to obtain AuSMPs, was controlled both by the NaCl concentration and by laser irradiation. However, the formation process and the laser-fluence dependence of the particle size of AuSMPs differed for various NaCl solutions and citrate solutions

  3. Hydrate-CASM for modeling Methane Hydrate-Bearing Sediments

    Science.gov (United States)

    De La Fuente Ruiz, M.; Vaunat, J.; Marin Moreno, H.

    2017-12-01

    A clear understanding of the geomechanical behavior of methane hydrate-bearing sediments (MHBS) is crucial to assess the stability of the seafloor and submarine infrastructures to human and natural loading changes. Here we present the Hydrate-CASM, a new elastoplastic constitutive model to predict the geomechanical behavior of MHBS. Our model employs the critical state model CASM (Clay and Sand Model) because of its flexibility in describing the shape of the yield surface and its proven ability to predict the mechanical behavior of sands, the most commercially viable hydrate reservoirs. The model considers MHBS as a deformable elastoplastic continuum, and hydrate-related changes in the stress-strain behavior are predicted by a densification mechanism. The densification attributes the mechanical contribution of hydrate to; a reduction of the available void ratio; a decrease of the swelling line slope; and an increase of the volumetric yield stress. It is described by experimentally derived physical parameters except from the swelling slope coefficient that requires empirical calibration. The Hydrate-CASM is validated against published triaxial laboratory tests performed at different confinement stresses, hydrate saturations, and hydrate morphologies. During the validation, we focused on capturing the mechanical behavior of the host sediment and consider perturbations of the sediment's mechanical properties that could result from the sample preparation. Our model successfully captures the experimentally observed influence of hydrate saturation in the magnitude and trend of the stiffness, shear strength, and dilatancy of MHBS. Hence, we propose that hydrate-related densification changes might be a major factor controlling the geomechanical response of MHBS.

  4. Multicavity SCRF calculation of ion hydration energies

    International Nuclear Information System (INIS)

    Diercksen, B.H.F.; Karelson, M.; Tamm, T.

    1994-01-01

    The hydration energies of the proton, hydroxyl ion, and several inorganic ions were calculated using the multicavity self-consistent reaction field (MCa SCRF) method developed for the quantum-mechanical modeling of rotationally or flexible systems in dielectric media. The ionic complexes H 3 O + (H2O) 4 , OH - (H2O) 4 , NH + 4 (H2O) 4 , and Hal - (H2O) 4 , where Hal = F, Cl, or Br, have been studied. Each complex was divided between five spheres, corresponding to the central ion and four water molecules in their first coordination sphere, respectively. Each cavity was surrounded by a polarizable medium with the dielectric permittivity of water at room temperature (80). The ionic hydration energies of ions were divided into specific and nonspecific parts. After accounting for the cavity-formation energy using scaled particle theory, good agreement between the total calculated and experimental hydration energies was obtained for all ions studied

  5. Molecular analysis of petroleum derived compounds that adsorb onto gas hydrate surfaces

    International Nuclear Information System (INIS)

    Borgund, Anna E.; Hoiland, Sylvi; Barth, Tanja; Fotland, Per; Askvik, Kjell M.

    2009-01-01

    Field observations have shown that some streams of water, gas and crude oil do not form gas hydrate plugs during petroleum production even when operating within thermodynamic conditions for hydrate formation. Also, when studied under controlled laboratory conditions, some oils are found to form hydrate dispersed systems whereas others form plugs. Oils with low tendency to form hydrate plugs are believed to contain natural hydrate plug inhibiting components (NICs) that adsorb onto the hydrate surface, making them less water-wet and preventing the particles from agglomerating into large hydrate clusters. The molecular structure of the NICs is currently unknown. In this work, hydrate adsorbing components were extracted from crude oils using freon hydrates as an extraction phase. The fractions were found to be enriched in polar material, and more polar material is associated with hydrates generated in biodegraded crude oils than in non-biodegraded oils. Various fractionation schemes and analytical techniques have been applied in the search for molecular characterisation. The average molecular weights were found to be approximately 500 g/mole. GC-MS chromatograms show a large UCM (Unresolved Complex Mixture). Thus, GC-MS has a limited potential for identification of compounds. A commercial biosurfactant was used as a model compound in the search for similar structures in the extracts. The results from analysis of the hydrate adsorbing components suggest that the type and structure are more important for hydrate morphology than the amount of material adsorbed.

  6. MORPHOLOGY OF METHANE HYDRATE HOST SEDIMENTS

    International Nuclear Information System (INIS)

    JONES, K.W.; FENG, H.; TOMOV, S.; WINTER, W.J.; EATON, M.; MAHAJAN, D.

    2004-01-01

    Results from simulated experiments in several laboratories show that host sediments influence hydrate formation in accord with known heterogeneity of host sediments at sites of gas hydrate occurrence (1). For example, in Mackenzie Delta, NWT Canada (Mallik 2L-38 well), coarser-grained units (pore-filling model) are found whereas in the Gulf of Mexico, the found hydrate samples do not appear to be lithologically controlled. We have initiated a systematic study of sediments, initially focusing on samples from various depths at a specific site, to establish a correlation with hydrate occurrence (or variations thereof) to establish differences in their microstructure, porosity, and other associated properties. The synchrotron computed microtomography (CMT) set-up at the X-27A tomography beam line at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory was used as a tool to study sediments from Blake Ridge at three sub bottom depths of 0.2, 50, and 667 meters. Results from the tomographic analysis of the deepest sample (667 m) are presented here to illustrate how tomography can be used to obtain new insights into the structures of methane hydrate host sediments. The investigation shows the internal grain/pore space resolution in the microstructure and a 3-D visualization of the connecting pathways obtained following data segmentation into pore space and grains within the sediment sample. The analysis gives the sample porosity, specific surface area, mean particle size, and tortuosity, as well. An earlier report on the experimental program has been given by Mahajan et al. (2)

  7. Penetration of Combustion Aerosol Particles Through Filters of NIOSH-Certified Filtering Facepiece Respirators (FFRs).

    Science.gov (United States)

    Gao, Shuang; Kim, Jinyong; Yermakov, Michael; Elmashae, Yousef; He, Xinjian; Reponen, Tiina; Grinshpun, Sergey A

    2015-01-01

    Filtering facepiece respirators (FFRs) are commonly worn by first responders, first receivers, and other exposed groups to protect against exposure to airborne particles, including those originated by combustion. Most of these FFRs are NIOSH-certified (e.g., N95-type) based on the performance testing of their filters against charge-equilibrated aerosol challenges, e.g., NaCl. However, it has not been examined if the filtration data obtained with the NaCl-challenged FFR filters adequately represent the protection against real aerosol hazards such as combustion particles. A filter sample of N95 FFR mounted on a specially designed holder was challenged with NaCl particles and three combustion aerosols generated in a test chamber by burning wood, paper, and plastic. The concentrations upstream (Cup) and downstream (Cdown) of the filter were measured with a TSI P-Trak condensation particle counter and a Grimm Nanocheck particle spectrometer. Penetration was determined as (Cdown/Cup) ×100%. Four test conditions were chosen to represent inhalation flows of 15, 30, 55, and 85 L/min. Results showed that the penetration values of combustion particles were significantly higher than those of the "model" NaCl particles (p combustion particles. Aerosol type, inhalation flow rate and particle size were significant (p combustion particles through R95 and P95 FFR filters (were tested in addition to N95) were not significantly higher than that obtained with NaCl particles. The findings were attributed to several effects, including the degradation of an N95 filter due to hydrophobic organic components generated into the air by combustion. Their interaction with fibers is anticipated to be similar to those involving "oily" particles. The findings of this study suggest that the efficiency of N95 respirator filters obtained with the NaCl aerosol challenge may not accurately predict (and rather overestimate) the filter efficiency against combustion particles.

  8. Kinetin Reversal of NaCl Effects

    Science.gov (United States)

    Katz, Adriana; Dehan, Klara; Itai, Chanan

    1978-01-01

    Leaf discs of Nicotiana rustica L. were floated on NaCl in the presence of kinetin or abscisic acid. On the 5th day 14CO2 fixation, [3H]leucine incorporation, stomatal conductance, and chlorophyll content were determined. Kinetin either partially or completely reversed the inhibitory effects of NaCl while ABA had no effect. PMID:16660618

  9. Reactions of SO 2 on hydrated cement particle system for atmospheric pollution reduction: A DRIFTS and XANES study

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Girish; Wu, Qiyuan; Moon, Juhyuk; Orlov, Alexander

    2017-07-01

    An investigation of the adsorptive property of hydrated cement particle system for sulfur dioxide (SO2) removal was conducted. In situ and ex situ experiments using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and X-ray Absorption Near Edge Spectroscopy (XANES) characterization techniques were employed to identify surface species formed during the exposure to SO2. Oxidation of SO2 to sulfate and sulfite species observed during these experiments indicated dominant reaction pathways for SO2 reaction with concrete constituents, such as calcium hydroxide, which were also moderated by adsorption on porous surfaces of crushed aggregates. The impact of variable composition of concrete on its adsorption capacity and reaction mechanisms was also proposed in this work.

  10. Combined Effects of Boron and NaCl on Wheat Seedlings

    Directory of Open Access Journals (Sweden)

    ZHEN Mei-nan

    2015-08-01

    Full Text Available To investigate the combined effects of boron(Band NaCl on the growth of wheat, a pot experiment was conducted using wheat (Triticum aestivum Linn.seedlings. Boron concentrations of culture medium were set as 0, 50 mg·kg-1 and 100 mg·kg-1, and NaCl concentrations were 0, 1 g·kg-1 and 2 g·kg-1. The results showed that both boron and NaCl could significantly inhibit wheat growth. At 50 mg B·kg-1, NaCl aggravated growth inhibition caused by boron. At 100 mg B·kg-1, however, NaCl alleviated the inhibition caused by boron. The combined stress of boron and NaCl significantly increased the root to shoot ratio of wheat. NaCl inhibited the uptake of boron by wheat. It suggests that under severe boron stress, NaCl is able to alleviate boron toxicity in wheat by increasing root to shoot ratio and reducing boron uptake.

  11. Electron scattering in graphene with adsorbed NaCl nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Drabińska, Aneta, E-mail: Aneta.Drabinska@fuw.edu.pl; Kaźmierczak, Piotr; Bożek, Rafał; Karpierz, Ewelina; Wysmołek, Andrzej; Kamińska, Maria [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland); Wołoś, Agnieszka [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland); Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Pasternak, Iwona; Strupiński, Włodek [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland); Krajewska, Aleksandra [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland); Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland)

    2015-01-07

    In this work, the results of contactless magnetoconductance and Raman spectroscopy measurements performed for a graphene sample after its immersion in NaCl solution were presented. The properties of the immersed sample were compared with those of a non-immersed reference sample. Atomic force microscopy and electron spin resonance experiments confirmed the deposition of NaCl nanoparticles on the graphene surface. A weak localization signal observed using contactless magnetoconductance showed the reduction of the coherence length after NaCl treatment of graphene. Temperature dependence of the coherence length indicated a change from ballistic to diffusive regime in electron transport after NaCl treatment. The main inelastic scattering process was of the electron-electron type but the major reason for the reduction of the coherence length at low temperatures was additional, temperature independent, inelastic scattering. We associate it with spin flip scattering, caused by NaCl nanoparticles present on the graphene surface. Raman spectroscopy showed an increase in the D and D′ bands intensities for graphene after its immersion in NaCl solution. An analysis of the D, D′, and G bands intensities proved that this additional scattering is related to the decoration of vacancies and grain boundaries with NaCl nanoparticles, as well as generation of new on-site defects as a result of the decoration of the graphene surface with NaCl nanoparticles. The observed energy shifts of 2D and G bands indicated that NaCl deposition on the graphene surface did not change carrier concentration, but reduced compressive biaxial strain in the graphene layer.

  12. Electron scattering in graphene with adsorbed NaCl nanoparticles

    International Nuclear Information System (INIS)

    Drabińska, Aneta; Kaźmierczak, Piotr; Bożek, Rafał; Karpierz, Ewelina; Wysmołek, Andrzej; Kamińska, Maria; Wołoś, Agnieszka; Pasternak, Iwona; Strupiński, Włodek; Krajewska, Aleksandra

    2015-01-01

    In this work, the results of contactless magnetoconductance and Raman spectroscopy measurements performed for a graphene sample after its immersion in NaCl solution were presented. The properties of the immersed sample were compared with those of a non-immersed reference sample. Atomic force microscopy and electron spin resonance experiments confirmed the deposition of NaCl nanoparticles on the graphene surface. A weak localization signal observed using contactless magnetoconductance showed the reduction of the coherence length after NaCl treatment of graphene. Temperature dependence of the coherence length indicated a change from ballistic to diffusive regime in electron transport after NaCl treatment. The main inelastic scattering process was of the electron-electron type but the major reason for the reduction of the coherence length at low temperatures was additional, temperature independent, inelastic scattering. We associate it with spin flip scattering, caused by NaCl nanoparticles present on the graphene surface. Raman spectroscopy showed an increase in the D and D′ bands intensities for graphene after its immersion in NaCl solution. An analysis of the D, D′, and G bands intensities proved that this additional scattering is related to the decoration of vacancies and grain boundaries with NaCl nanoparticles, as well as generation of new on-site defects as a result of the decoration of the graphene surface with NaCl nanoparticles. The observed energy shifts of 2D and G bands indicated that NaCl deposition on the graphene surface did not change carrier concentration, but reduced compressive biaxial strain in the graphene layer

  13. Secretory NaCl and volume flow in renal tubules.

    Science.gov (United States)

    Beyenbach, K W

    1986-05-01

    This review attempts to give a retrospective survey of the available evidence concerning the secretion of NaCl and fluid in renal tubules of the vertebrate kidney. In the absence of glomerular filtration, epithelial secretory mechanisms, which to this date have not been elucidated, are responsible for the renal excretion of NaCl and water in aglomerular fish. However, proximal tubules isolated from glomerular fish kidneys of the flounder, killifish, and the shark also have the capacity to secrete NaCl and fluid. In shark proximal tubules, fluid secretion appears to be driven via secondary active transport of Cl. In another marine vertebrate, the sea snake, secretion of Na (presumably NaCl) and fluid is observed in freshwater-adapted and water-loaded animals. Proximal tubules of mammals can be made to secrete NaCl in vitro together with secretion of aryl acids. An epithelial cell line derived from dog kidney exhibits secondary active secretion of Cl when stimulated with catecholamines. Tubular secretion of NaCl and fluid may serve a variety of renal functions, all of which are considered here. The occurrence of NaCl and fluid secretion in glomerular proximal tubules of teleosts, elasmobranchs, and reptiles and in mammalian renal tissue cultures suggests that the genetic potential for NaCl secretion is present in every vertebrate kidney.

  14. The potential for methane hydrate formation in deep repositories of spent nuclear fuel in granitic rocks

    International Nuclear Information System (INIS)

    Tohidi, Bahman; Chapoy, Antonin; Smellie, John; Puigdomenech, Ignasi

    2010-12-01

    The main aim of this work was to establish whether the pertaining pressure and temperature conditions and dissolved gas concentration in groundwater is conducive to gas hydrate formation using a modelling approach. The hydrate stability pressure-temperature zone of dissolved methane in the presence of salt has been obtained through calculations which show that a decrease in the system pressure and/or an increase in salt concentration favours hydrate formation, as both factors reduce equilibrium gas solubility in the aqueous phase. This behaviour is unlike that of the system including a gas phase, where the water phase is always saturated with methane, and hence the methane solubility in water is not a limiting factor. The main conclusion is that hydrate formation is not possible at the reported methane concentrations and water salinities for the Forsmark and Laxemar sites in Sweden and Olkiluoto in Finland. At the highest salinities and methane concentrations encountered, namely ∼0.00073 mole fraction methane and ∼10 mass % NaCl at a depth of 1,000 m in Olkiluoto, Finland, hydrates could form if the system temperatures and pressures are below 2.5 deg C and 60 bar, respectively, i.e. values that are much lower than those prevailing at that depth (∼20 deg C and ∼100 bar, respectively). Furthermore, the calculated results provide the necessary data to estimate the effect of increase in dissolved methane concentration on potential hydrate formation, as well as two phase flow. The available depth dependency of methane concentration at the sites studied in Sweden and Finland was used in another study to estimate the diffusive flow of methane in the rock volumes. These diffusion rates, which are highest at Olkiluoto, indicate that even if the conditions were to become favourable to methane hydrate formation, then it would take several millions of years before a thin layer of hydrates could be formed, a condition which is outside the required period of satisfactory

  15. The potential for methane hydrate formation in deep repositories of spent nuclear fuel in granitic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Tohidi, Bahman; Chapoy, Antonin (Hydrafact Ltd, Inst. of Petroleum Engineering, Heriot-Watt Univ., Edinburgh (United Kingdom)); Smellie, John (Conterra AB, Uppsala (Sweden)); Puigdomenech, Ignasi (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2010-12-15

    The main aim of this work was to establish whether the pertaining pressure and temperature conditions and dissolved gas concentration in groundwater is conducive to gas hydrate formation using a modelling approach. The hydrate stability pressure-temperature zone of dissolved methane in the presence of salt has been obtained through calculations which show that a decrease in the system pressure and/or an increase in salt concentration favours hydrate formation, as both factors reduce equilibrium gas solubility in the aqueous phase. This behaviour is unlike that of the system including a gas phase, where the water phase is always saturated with methane, and hence the methane solubility in water is not a limiting factor. The main conclusion is that hydrate formation is not possible at the reported methane concentrations and water salinities for the Forsmark and Laxemar sites in Sweden and Olkiluoto in Finland. At the highest salinities and methane concentrations encountered, namely approx0.00073 mole fraction methane and approx10 mass % NaCl at a depth of 1,000 m in Olkiluoto, Finland, hydrates could form if the system temperatures and pressures are below 2.5 deg C and 60 bar, respectively, i.e. values that are much lower than those prevailing at that depth (approx20 deg C and approx100 bar, respectively). Furthermore, the calculated results provide the necessary data to estimate the effect of increase in dissolved methane concentration on potential hydrate formation, as well as two phase flow. The available depth dependency of methane concentration at the sites studied in Sweden and Finland was used in another study to estimate the diffusive flow of methane in the rock volumes. These diffusion rates, which are highest at Olkiluoto, indicate that even if the conditions were to become favourable to methane hydrate formation, then it would take several millions of years before a thin layer of hydrates could be formed, a condition which is outside the required period of

  16. Can hydrate dissolution experiments predict the fate of a natural hydrate system?

    Energy Technology Data Exchange (ETDEWEB)

    Hester, K.C.; Peltzer, E.T.; Dunk, R.M.; Walz, P.M.; Brewer, P.G. [Monterey Bay Aquarium Research Inst., Moss Landing, CA (United States); Dendy Sloan, E. [Colorado School of Mines, Golden, CO (United States). Center for Hydrate Research

    2008-07-01

    Gas hydrates are naturally occurring compounds found in permafrost regions and in oceans. In the natural environment, sufficient temperature and pressure conditions for hydrate formation exist over a significant portion of the ocean. However, in addition to pressure and temperature, the chemical potential of the gas in the hydrate must be equal to the surrounding waters. If the concentration of the gas in surrounding water is under-saturated with respect to the gas in the hydrate, the hydrate will dissolve to drive the system towards chemical equilibrium. This paper presented a dissolution study of exposed hydrate from outcrops at Barkley Canyon, located off Vancouver Island, British Columbia. A previous field experiment on synthetic methane hydrate samples had demonstrated that mass transfer controlled dissolution in under-saturated seawater. However, seafloor hydrate outcrops have been shown to have significant longevity compared to expected dissolution rates based upon convective boundary layer diffusion calculations. An in-situ dissolution experiment was performed on two distinct natural hydrate fabrics in order to help resolve this apparent disconnect between the dissolution rates of synthetic and natural hydrate. The paper presented a map of Barkley Canyon and discussed the field measurements and methods for the study. Exposed outcrops of gas hydrates were cored using a specially constructed stainless steel coring device and a hydraulic ram was located inside the corer. Hydrate samples were cored directly using the a manipulator arm and then injected into a sampling cell. The hydrate was then added to an open mesh exposure container, which allowed for exposure to ambient benthic currents with minimal disturbance. As well, in order to observe the slow dissolution of the hydrate in seawater at Barkley Canyon, time-lapse photography was employed. Last, the paper presented the results of the hydrate fabric porosities and hydrate dissolution rates. It was

  17. Direct measurements of 3d structure, chemistry and mass density during the induction period of C3s hydration

    International Nuclear Information System (INIS)

    Hu, Qinang; Aboustait, Mohammed; Kim, Taehwan; Ley, M. Tyler; Bullard, Jeffrey W.; Scherer, George; Hanan, Jay C.; Rose, Volker; Winarski, Robert; Gelb, Jeffrey

    2016-01-01

    The reasons for the start and end of the induction period of cement hydration remain a topic of controversy. One long-standing hypothesis is that a thin metastable hydrate forming on the surface of cement grains significantly reduces the particle dissolution rate; the eventual disappearance of this layer re-establishes higher dissolution rates at the beginning of the acceleration period. However, the importance, or even the existence, of this metastable layer has been questioned because it cannot be directly detected in most experiments. In this work, a combined analysis using nano-tomography and nano-X-ray fluorescence makes the direct imaging of early hydration products possible. These novel X-ray imaging techniques provide quantitative measurements of 3D structure, chemical composition, and mass density of the hydration products during the induction period. This work does not observe a low density product on the surface of the particle, but does provide insights into the formation of etch pits and the subsequent hydration products that fill them.

  18. Explosive phenomena in heavily irradiated NaCl

    NARCIS (Netherlands)

    denHartog, HW; Vainshtein, DI; Matthews, GE; Williams, RT

    1997-01-01

    In heavily irradiated NaCl crystals explosive phenomena can be initiated during irradiation or afterwards when samples are heated to temperatures between 100 and 250 degrees C. During irradiation of NaCl Na and Cl-2 precipitates and void structures are produced along with the accumulation of stored

  19. Gas hydrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    , not all of them are white like snow. Some hydrates from the deep Gulf of Mexico are richly colored in shades of yellow, orange, or even red. The ice-like masses are beautiful, and contrast with the dull gray of deep sea muds. Hydrates from the Blake... volcanoes and associated gas hydrates: Marine Geology, v. 167, p. 29-42. Milkov, A.V. and R. Sassen, 2001a, Estimate of gas hydrate resource, northwestern Gulf of Mexico continental slope: Marine Geology, v. 179, pp. 71-83. Milkov, A.V., Sassen, R...

  20. Shifting Focus: From Hydration for Performance to Hydration for Health.

    Science.gov (United States)

    Perrier, Erica T

    2017-01-01

    Over the past 10 years, literature on hydration biomarkers has evolved considerably - from (de)hydration assessment towards a more global definition of biomarkers of hydration in daily life. This shift in thinking about hydration markers was largely driven by investigating the differences that existed between otherwise healthy individuals whose habitual, ad-libitum drinking habits differ, and by identifying physiological changes in low-volume drinkers who subsequently increase their water intake. Aside from obvious differences in urinary volume and concentration, a growing body of evidence is emerging that links differences in fluid intake with small, but biologically significant, differences in vasopressin (copeptin), glomerular filtration rate, and markers of metabolic dysfunction or disease. Taken together, these pieces of the puzzle begin to form a picture of how much water intake should be considered adequate for health, and represent a shifting focus from hydration for performance, toward hydration for health outcomes. This narrative review outlines the key areas of research in which the global hydration process - including water intake, urinary hydration markers, and vasopressin - has been associated with health outcomes, focusing on kidney and metabolic endpoints. It will also provide a commentary on how various hydration biomarkers may be used in hydration for health assessment. Finally, if adequate water intake can play a role in maintaining health, how might we tell if we are drinking enough? Urine output is easily measured, and can take into account differences in daily physical activity, climate, dietary solute load, and other factors that influence daily water needs. Today, targets have been proposed for urine osmolality, specific gravity, and color that may be used by researchers, clinicians, and individuals as simple indicators of optimal hydration. However, there remain a large number of incomplete or unanswered research questions regarding the

  1. Impacts of Hydrate Distribution on the Hydro-Thermo-Mechanical Properties of Hydrate-Bearing Sediments

    Science.gov (United States)

    Dai, S.; Seol, Y.

    2015-12-01

    In general, hydrate makes the sediments hydraulically less conductive, thermally more conductive, and mechanically stronger; yet the dependency of these physical properties on hydrate saturation varies with hydrate distribution and morphology. Hydrate distribution in sediments may cause the bulk physical properties of their host sediments varying several orders of magnitude even with the same amount of hydrate. In natural sediments, hydrate morphology is inherently governed by the burial depth and the grain size of the host sediments. Compare with patchy hydrate, uniformly distributed hydrate is more destructive to fluid flow, yet leads to higher gas and water permeability during hydrate dissociation due to the easiness of forming percolation paths. Water and hydrate have similar thermal conductivity values; the bulk thermal conductivity of hydrate-bearing sediments depends critically on gas-phase saturation. 60% of gas saturation may result in evident thermal conductivity drop and hinder further gas production. Sediments with patchy hydrate yield lower stiffness than that with cementing hydrate but higher stiffness than that with pore filling and loading bearing hydrate. Besides hydrate distribution, the stress state and loading history also play an important role in the mechanical behavior of hydrate-bearing sediments.

  2. Hygroscopic Behavior of Multicomponent Aerosols Involving NaCl and Dicarboxylic Acids.

    Science.gov (United States)

    Peng, Chao; Jing, Bo; Guo, Yu-Cong; Zhang, Yun-Hong; Ge, Mao-Fa

    2016-02-25

    Atmospheric aerosols are usually complex mixtures of inorganic and organic compounds. The hygroscopicity of mixed particles is closely related to their chemical composition and interactions between components, which is still poorly understood. In this study, the hygroscopic properties of submicron particles composed of NaCl and dicarboxylic acids including oxalic acid (OA), malonic acid (MA), and succinic acid (SA) with various mass ratios are investigated with a hygroscopicity tandem differential mobility analyzer (HTDMA) system. Both the Zdanovskii-Stokes-Robinson (ZSR) method and extended aerosol inorganics model (E-AIM) are applied to predict the water uptake behaviors of sodium chloride/dicarboxylic acid mixtures. For NaCl/OA mixed particles, the measured growth factors were significantly lower than predictions from the model methods, indicating a change in particle composition caused by chloride depletion. The hygroscopic growth of NaCl/MA particles was well described by E-AIM, and that of NaCl/SA particles was dependent upon mixing ratio. Compared with model predictions, it was determined that water uptake of the NaCl/OA mixture could be enhanced and could be closer to the predictions by addition of levoglucosan or malonic acid, which retained water even at low relative humidity (RH), leading to inhibition of HCl evaporation during dehydration. These results demonstrate that the coexisting hygroscopic species have a strong influence on the phase state of particles, thus affecting chemical interactions between inorganic and organic compounds as well as the overall hygroscopicity of mixed particles.

  3. Hydration patterns and salting effects in sodium chloride solution.

    Science.gov (United States)

    Li, Weifeng; Mu, Yuguang

    2011-10-07

    The salting effects of 2M sodium chloride electrolyte are studied based on a series of model solutes with properties ranging from hydrophobic to hydrophilic. Generally, hydrophobic solutes will be salted out and hydrophilic solutes will be salted in by NaCl solution. The solvation free energy changes are highly correlated with Kirkwood-Buff integrals. The underlying mechanism resorts to the preferential binding of ions and water to solutes. Our results demonstrate that the salting effect not only depends on the salt's position in Hofmeister series, but also on the solutes' specifics. Taking the hydration free energies of solutes and ions as independent variables, a schematic diagram of salting effects is suggested. The resolved multifaceted salting effects rely on the sensitive balance of the tripartite interaction among solutes, ions, and water. © 2011 American Institute of Physics

  4. Limitation of biocompatibility of hydrated nanocrystalline hydroxyapatite

    Science.gov (United States)

    Minaychev, V. V.; Teleshev, A. T.; Gorshenev, V. N.; Yakovleva, M. A.; Fomichev, V. A.; Pankratov, A. S.; Menshikh, K. A.; Fadeev, R. S.; Fadeeva, I. S.; Senotov, A. S.; Kobyakova, M. I.; Yurasova, Yu B.; Akatov, V. S.

    2018-04-01

    Nanostructured hydroxyapatite (HA) in the form of hydrated paste is considered to be a promising material for a minor-invasive surgical curing of bone tissue injure. However questions about adhesion of cells on this material and its biocompatibility still remain. In this study biocompatibility of paste-formed nanosized HA (nano-HA) by in vitro methods is investigated. Nano-HA (particles sized about 20 nm) was synthesized under conditions of mechano-acoustic activation of an aqueous reaction mixture of ammonium hydrophosphate and calcium nitrate. It was ascertained that nanocrystalline paste was not cytotoxic although limitation of adhesion, spreading and growth of the cells on its surface was revealed. The results obtained point on the need of modification of hydrated nano-HA in the aims of increasing its biocompatibility and osteoplastic potential.

  5. Effect of compositions in nanostructured lipid carriers (NLC on skin hydration and occlusion

    Directory of Open Access Journals (Sweden)

    Loo CH

    2012-12-01

    Full Text Available CH Loo,1,2 M Basri,2 R Ismail,1 HLN Lau,1 BA Tejo,2 MS Kanthimathi,3 HA Hassan,1 YM Choo11Malaysian Palm Oil Board, Bandar Baru Bangi, 2Department of Chemistry, Universiti Putra Malaysia, Serdang, 3Department of Molecular Medicine, University of Malaya, Kuala Lumpur, MalaysiaPurpose: To study the effects of varying lipid concentrations, lipid and oil ratio, and the addition of propylene glycol and lecithin on the long-term physical stability of nanostructured lipid nanocarriers (NLC, skin hydration, and transepidermal water loss.Methods: The various NLC formulations (A1–A5 were prepared and their particle size, zeta potential, viscosity, and stability were analyzed. The formulations were applied on the forearms of the 20 female volunteers (one forearm of each volunteer was left untreated as a control. The subjects stayed for 30 minutes in a conditioned room with their forearms uncovered to let the skin adapt to the temperature (22°C ± 2°C and humidity (50% ± 2% of the room. Skin hydration and skin occlusion were recorded at day one (before treatment and day seven (after treatment. Three measurements for skin hydration and skin occlusion were performed in each testing area.Results: NLC formulations with the highest lipid concentration, highest solid lipid concentration, and additional propylene glycol (formulations A1, A2, and A5 showed higher physical stability than other formulations. The addition of propylene glycol into an NLC system helped to reduce the particle size of the NLC and enhanced its long-term physical stability. All the NLC formulations were found to significantly increase skin hydration compared to the untreated controls within 7 days. All NLC formulations exhibited occlusive properties as they reduced the transepidermal water loss within 7 days. This effect was more pronounced with the addition of propylene glycol or lecithin into an NLC formulation, whereby at least 60% reduction in transepidermal water loss was observed

  6. The Effects of NaCl Concentration and Confining Pressure on Mechanical and Acoustic Behaviors of Brine-Saturated Sandstone

    Directory of Open Access Journals (Sweden)

    Yan-Hua Huang

    2018-02-01

    Full Text Available To better understand the mechanical behavior of rock with brine saturation, conventional triaxial experiments were carried out on sandstone for a range of confining pressures (0–60 MPa and NaCl concentrations (0–30%. As the confining pressure and NaCl concentration increased, the triaxial compressive strength, crack damage threshold, Young’s modulus, cohesion, and internal friction angle all increased. Real-time ultrasonic wave and acoustic emission (AE techniques were used to obtain the relationship between acoustic behavior and stress level during the whole triaxial compression process. During the whole deformation process, the evolution of P-wave velocity and accumulated AE count could be divided into four phases. The microstructural characteristics of brine-saturated sandstone, before and after loading, indicated that the strength enhancement mechanism may be attributed to an increase in inter-particle friction resulting from salt crystallisation around the points of contact. The angle of friction increased by more than 86% at maximum NaCl concentration compared to that for distilled water. The NaCl deposition in the pore space resulted in nonlinear strength increases for the brine-saturated sandstone specimens with increasing salinity. The present study is expected to improve the knowledge of the strength and failure mechanisms of sedimentary rock in deep saline aquifers.

  7. Hydration of swelling clays: multi-scale sequence of hydration and determination of macroscopic energies from microscopic properties; Hydratation des argiles gonflantes: sequence d'hydratation multi-echelle determination des energies macroscopiques a partir des proprietes microscopiques

    Energy Technology Data Exchange (ETDEWEB)

    Salles, F

    2006-10-15

    smectites: it is responsible for the structure of porosity in a dry state and of the evolution of the pore sizes as a function of the RH and it modifies the hydration sequence by its mobility inside the interlayer space. The distinction between various types of water in the smectite structure is also achieved by thermo-poro-metry at different RH: water bound to the cations and surfaces, water structured by porosity and free water. This distinction is important to understand the behaviour of smectite and in particular the diffusion properties in clayey materials. The importance of the cation nature is also highlighted by the energetic model. Electrostatic calculations using the PACHA formalism (Electronegativities Equalization method) show that, for the small cations, the hydration energy of the layers is predominant. To obtain these results, we determine the surface enthalpies for the dry state, which show a coherent evolution as a function of the cation partial charge with the increase of pore sizes and thus with particle sizes. Then, using a theoretical model, we calculated swelling energies, surface hydration energies and cation hydration energies. The behaviour of mixed purified clay displays a behaviour closer to that of a calcic clay for the experiments carried out, in contradiction with the fact that the Na cation is the most abundant. This observation implies results on the clay properties, different from that expected for hydration properties, swelling and interlayer cation mobility within the framework of the radioactive waste. (author)

  8. The impact of zirconium oxide radiopacifier on the early hydration behaviour of white Portland cement

    International Nuclear Information System (INIS)

    Coleman, Nichola J.; Li, Qiu

    2013-01-01

    Zirconium oxide has been identified as a candidate radiopacifying agent for use in Portland cement-based biomaterials. During this study, the impact of 20 wt.% zirconium oxide on the hydration and setting reactions of white Portland cement (WPC) was monitored by powder X-ray diffraction (XRD), 29 Si and 27 Al magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR), transmission electron microscopy (TEM) and Vicat apparatus. The presence of 20 wt.% zirconium oxide particles in the size-range of 0.2 to 5 μm was found to reduce the initial and final setting times of WPC from 172 to 147 min and 213 to 191 min, respectively. Zirconium oxide did not formally participate in the chemical reactions of the hydrating cement; however, the surface of the zirconium oxide particles presented heterogeneous nucleation sites for the precipitation and growth of the early C-S-H gel products which accelerated the initial setting reactions. The presence of zirconium oxide was found to have little impact on the development of the calcium (sulpho)aluminate hydrate phases. - Highlights: ► This is the first study of Portland cement-based biomaterials by 27 Al and 29 Si NMR. ► 20 wt.% ZrO 2 radiopacifier accelerates the early cement hydration reactions. ► Extent of hydration after 6 h is increased from 5.7% to 15% in the presence of ZrO 2 . ► Initial and final setting times are reduced by 25 and 22 min, respectively. ► ZrO 2 provides nucleation sites for the precipitation of early hydration products.

  9. NaCl salinity affects lateral root development in Plantago maritima

    NARCIS (Netherlands)

    Rubinigg, M; Wenisch, J; Elzenga, JTM; Stulen, [No Value

    2004-01-01

    Root growth and morphology were assessed weekly in hydroponically-grown seedlings of the halophyte Plantago maritima L. during exposure to 0, 50, 100 and 200 mM NaCl for 21 d. Relative growth rate was reduced by 25% at 200 mM NaCl. The lower NaCl treatments did not affect relative growth rates.

  10. Radiation induced color center and colloid formation in synthetic NaCl and natural rock salt

    International Nuclear Information System (INIS)

    Levy, P.W.; Swyler, K.J.; Klaffky, R.W.

    1979-01-01

    F-center and colloid particle formation has been studied in synthetic NaCl and natural rock salt crystals with apparatus for making optical absorption measurements during irradiation. F-center and colloid formation are functions of temperature, dose, dose rate, strain applied prior to irradiation and numerous other factors. Many of the observed properties are in accord with the Jain-Lidiard theory for radiation induced F-center and colloid growth above room temperature

  11. Measurement and modeling of CO2 solubility in NaCl brine and CO2–saturated NaCl brine density

    DEFF Research Database (Denmark)

    Yan, Wei; Huang, Shengli; Stenby, Erling Halfdan

    2011-01-01

    over climate change and energy security. This work is an experimental and modeling study of two fundamental properties in high pressure CO2–NaCl brine equilibrium, i.e., CO2 solubility in NaCl brine and CO2–saturated NaCl brine density. A literature review of the available data was presented first...

  12. HYDRATION PROCESS AND MECHANICAL PROPERTIES OF CEMENT PASTE WITH RECYCLED CONCRETE POWDER AND SILICA SAND POWDER

    Directory of Open Access Journals (Sweden)

    Jaroslav Topič

    2017-11-01

    Full Text Available Recycled concrete powder (RCP mostly consisting of cement paste could be reused as partial cement replacement. The aim of this paper is to compare hydration and mechanical properties of RCP and two types of silica sand powder (SSP. Comparison of those materials combined with cement can highlight the binder properties of recycled concrete powder. Using of two types of SSP also show an influence of their fines on hydration process and mechanical properties. Particle size analysis and calorimetric measurement were carried out and mechanical properties such as bulk density, dynamic Young’s modulus and compression strength were examine. Calorimetric measurement proves the presence of exposed non-hydrated particles in RCP that can react again. However lower density of old cement paste in RCP overweight the mentioned potential of RCP and mechanical properties are decreasing compared with reference cement paste and cement paste SSP.

  13. NaCl responsive taste cells in the mouse fungiform taste buds.

    Science.gov (United States)

    Yoshida, R; Horio, N; Murata, Y; Yasumatsu, K; Shigemura, N; Ninomiya, Y

    2009-03-17

    Previous studies have demonstrated that rodents' chorda tympani (CT) nerve fibers responding to NaCl can be classified according to their sensitivities to the epithelial sodium channel (ENaC) blocker amiloride into two groups: amiloride-sensitive (AS) and -insensitive (AI). The AS fibers were shown to respond specifically to NaCl, whereas AI fibers broadly respond to various electrolytes, including NaCl. These data suggest that salt taste transduction in taste cells may be composed of at least two different systems; AS and AI ones. To further address this issue, we investigated the responses to NaCl, KCl and HCl and the amiloride sensitivity of mouse fungiform papilla taste bud cells which are innervated by the CT nerve. Comparable with the CT data, the results indicated that 56 NaCl-responsive cells tested were classified into two groups; 25 cells ( approximately 44%) narrowly responded to NaCl and their NaCl response were inhibited by amiloride (AS cells), whereas the remaining 31 cells ( approximately 56%) responded not only to NaCl, but to KCl and/or HCl and showed no amiloride inhibition of NaCl responses (AI cells). Amiloride applied to the basolateral side of taste cells had no effect on NaCl responses in the AS and AI cells. Single cell reverse transcription-polymerase chain reaction (RT-PCR) experiments indicated that ENaC subunit mRNA was expressed in a subset of AS cells. These findings suggest that the mouse fungiform taste bud is composed of AS and AI cells that can transmit taste information differently to their corresponding types of CT fibers, and apical ENaCs may be involved in the NaCl responses of AS cells.

  14. IRSL characteristics of NaCl and KCl relative to dosimeter

    International Nuclear Information System (INIS)

    Tanir, Guenes; Hicabi Boeluekdemir, M.; Catli, Serap; Tel, Eyyuep

    2007-01-01

    The aim of this work is to determine and compare the dosimetric properties of NaCl and KCl samples using infrared-stimulated luminescence (IRSL) technique. For a material to be used as dosimeter, both the IRSL temperature dependence and the radiation dose response have critical importance. In this work the IRSL characteristics from NaCl and KCl samples were experimentally investigated as a function of temperature and laboratory radiation doses. Dosimetric properties of NaCl and KCl samples were found significantly different. The IRSL signals displayed by NaCl were found to be more stable, reliable and agreeable than those of KCl

  15. Naphthenic acids hydrates of gases: influence of the water/oil interface on the dispersing properties of an acidic crude oil; Acides naphteniques hydrates de gaz de l'interface eau/huile sur les proprietes dispersantes d'un brut acide

    Energy Technology Data Exchange (ETDEWEB)

    Arla, D.

    2006-01-15

    Nowadays, the development of offshore oil production under increasing water depths (high pressures and low temperatures) has led oil companies to focus on gas hydrates risks. Hydrates are crystals containing gas and water molecules which can plug offshore pipelines. It has been shown that some asphaltenic crude oils stabilize water-in-oil emulsions (W/O) during several months and exhibit very good anti-agglomerant properties avoiding hydrate plugs formation. In this work, we have studied the 'anti-hydrate' properties of a West African acidic crude oil called crude AH. This oil contains naphthenic acids, RCOOH hydrocarbons which are sensitive to both the pH and the salinity of the water phase.The emulsifying properties of the crude AH have firstly been explored. It has been shown that heavy resins and asphaltenes are the main compounds of the crude AH responsible for the long term stability of the W/O emulsions whereas the napthenates RCOO{sup -} lead to less stable W/O emulsions. Dealing with hydrates, the crude AH exhibits moderate anti-agglomerant properties due to the presence of heavy resins and asphaltenes. However, the naphthenates RCOO{sup -} drastically increase the formation of hydrate plugs. Moreover, it has been pointed out that hydrate particles agglomeration accelerates the kinetics of hydrate formation and enhances the water/oil separation. In order to explain these behaviours, a mechanism of agglomeration by 'sticking' between a hydrate particle and a water droplet has been proposed. Finally, we have developed a model which describes the physico-chemical equilibria of the naphthenic acids in the binary system water/crude AH, in order to transpose the results obtained in the laboratory to the real oil field conditions. (author)

  16. Direct measurement of methane hydrate composition along the hydrate equilibrium boundary

    Science.gov (United States)

    Circone, S.; Kirby, S.H.; Stern, L.A.

    2005-01-01

    The composition of methane hydrate, namely nW for CH 4??nWH2O, was directly measured along the hydrate equilibrium boundary under conditions of excess methane gas. Pressure and temperature conditions ranged from 1.9 to 9.7 MPa and 263 to 285 K. Within experimental error, there is no change in hydrate composition with increasing pressure along the equilibrium boundary, but nW may show a slight systematic decrease away from this boundary. A hydrate stoichiometry of n W = 5.81-6.10 H2O describes the entire range of measured values, with an average composition of CH4??5.99(??0.07) H2O along the equilibrium boundary. These results, consistent with previously measured values, are discussed with respect to the widely ranging values obtained by thermodynamic analysis. The relatively constant composition of methane hydrate over the geologically relevant pressure and temperature range investigated suggests that in situ methane hydrate compositions may be estimated with some confidence. ?? 2005 American Chemical Society.

  17. Gas hydrate in nature

    Science.gov (United States)

    Ruppel, Carolyn D.

    2018-01-17

    Gas hydrate is a naturally occurring, ice-like substance that forms when water and gas combine under high pressure and at moderate temperatures. Methane is the most common gas present in gas hydrate, although other gases may also be included in hydrate structures, particularly in areas close to conventional oil and gas reservoirs. Gas hydrate is widespread in ocean-bottom sediments at water depths greater than 300–500 meters (m; 984–1,640 feet [ft]) and is also present in areas with permanently frozen ground (permafrost). Several countries are evaluating gas hydrate as a possible energy resource in deepwater or permafrost settings. Gas hydrate is also under investigation to determine how environmental change may affect these deposits.

  18. Recombinant albumin monolayers on latex particles.

    Science.gov (United States)

    Sofińska, Kamila; Adamczyk, Zbigniew; Kujda, Marta; Nattich-Rak, Małgorzata

    2014-01-14

    The adsorption of recombinant human serum albumin (rHSA) on negatively charged polystyrene latex micro-particles was studied at pH 3.5 and the NaCl concentration range of 10(-3) to 0.15 M. The electrophoretic mobility of latex monotonically increased with the albumin concentration in the suspension. The coverage of adsorbed albumin was quantitatively determined using the depletion method, where the residual protein concentration was determined by electrokinetic measurements and AFM imaging. It was shown that albumin adsorption was irreversible. Its maximum coverage on latex varied between 0.7 mg m(-2) for 10(-3) M NaCl to 1.3 mg m(-2) for 0.15 M NaCl. The latter value matches the maximum coverage previously determined for human serum albumin on mica using the streaming potential method. The increase in the maximum coverage was interpreted in terms of reduced electrostatic repulsion among adsorbed molecules. These facts confirm that albumin adsorption at pH 3.5 is governed by electrostatic interactions and proceeds analogously to colloid particle deposition. The stability of albumin monolayers was measured in additional experiments where changes in the latex electrophoretic mobility and the concentration of free albumin in solutions were monitored over prolonged time periods. Based on these experimental data, a robust procedure of preparing albumin monolayers on latex particles of well-controlled coverage and molecule distribution was proposed.

  19. Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts*

    Science.gov (United States)

    Guo, Rong-fang; Yuan, Gao-feng; Wang, Qiao-mei

    2013-01-01

    To understand the regulation mechanism of NaCl on glucosinolate metabolism in broccoli sprouts, the germination rate, fresh weight, contents of glucosinolates and sulforaphane, as well as myrosinase activity of broccoli sprouts germinated under 0, 20, 40, 60, 80, and 100 mmol/L of NaCl were investigated in our experiment. The results showed that glucoerucin, glucobrassicin, and 4-hydroxy glucobrassicin in 7-d-old broccoli sprouts were significantly enhanced and the activity of myrosinase was inhibited by 100 mmol/L of NaCl. However, the total glucosinolate content in 7-d-old broccoli sprouts was markedly decreased although the fresh weight was significantly increased after treatment with NaCl at relatively low concentrations (20, 40, and 60 mmol/L). NaCl treatment at the concentration of 60 mmol/L for 5 d maintained higher biomass and comparatively higher content of glucosinolates in sprouts of broccoli with decreased myrosinase activity. A relatively high level of NaCl treatment (100 mmol/L) significantly increased the content of sulforaphane in 7-d-old broccoli sprouts compared with the control. These results indicate that broccoli sprouts grown under a suitable concentration of NaCl could be desirable for human nutrition. PMID:23365011

  20. Radiation damage studies on synthetic NaCl crystals and natural rock salt for waste disposal applications

    International Nuclear Information System (INIS)

    Klaffky, R.W.; Swyler, K.J.; Levy, P.W.

    1979-01-01

    Radiation damage studies are being made on synthetic NaCl and natural rock salt crystals from various localities, including potential repository sites. Measurements are being made with equipment for recording the radiation induced F-center and colloid particle absorption bands during irradiation with 1.5 MeV electrons at various temperatures. A technique has been developed to resolve the overlapping F-center and colloid bands. The resulting spectra and curves of absorption vs. dose provide information on colloid particle size and concentration, activation energies for processes occurring during colloid formation, and additional data suggesting that both strain and radiation induced dislocations contribute to the colloid formation process

  1. Elevated sodium chloride concentrations enhance the bystander effects induced by low dose alpha-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Han Wei; Zhu Lingyan; Jiang Erkang; Wang Jun; Chen Shaopeng; Bao Linzhi; Zhao Ye; Xu An; Yu Zengliang [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wu Lijun [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)], E-mail: ljw@ipp.ac.cn

    2007-11-01

    Previous studies have shown that high NaCl can be genotoxic, either alone or combined with irradiation. However, little is known about the relationship between environmental NaCl at elevated conditions and radiation-induced bystander effects (RIBE). RIBE, which has been considered as non-targeted bystander responses, has been demonstrated to occur widely in various cell lines. In the present study, RIBE under the elevated NaCl culture condition was assessed in AG 1522 cells by both the induction of {gamma}-H2AX, a reliable marker of DNA double-strand break (DSB) for the early process (<1 h post irradiation), and the generation of micronuclei (MN), a sensitive marker for relative long process of RIBE. Our results showed that in the absence of irradiation, NaCl at elevated concentration such as 8.0, 9.0 and 10.0 g/L did not significantly increase the frequency of {gamma}-H2AX foci-positive cells and the number of foci per positive cell comparing with that NaCl at a normal concentration (6.8 g/L). However, with 0.2 cGy {alpha}-particle irradiation, the induced fraction of {gamma}-H2AX foci-positive cells and the number of induced {gamma}-H2AX foci per positive cell were significantly increased in both irradiated and adjacent non-irradiated regions. Similarly, the induction of MN by 0.2 cGy {alpha}-particle irradiation also increased with the elevated NaCl concentrations. With N{sup G}-methyl-L-arginine, an inhibitor of nitric oxide synthase, the induced fraction of foci-positive cells was effectively inhibited both in 0.2 cGy {alpha}-particle irradiated and adjacent non-irradiated regions under either normal or elevated NaCl conditions. These results suggested that the cultures with elevated NaCl medium magnified the damage effects induced by the low dose {alpha}-particle irradiation and nitric oxide generated by irradiation was also very important in this process.

  2. Hydration of swelling clays: multi-scale sequence of hydration and determination of macroscopic energies from microscopic properties

    International Nuclear Information System (INIS)

    Salles, F.

    2006-10-01

    smectites: it is responsible for the structure of porosity in a dry state and of the evolution of the pore sizes as a function of the RH and it modifies the hydration sequence by its mobility inside the interlayer space. The distinction between various types of water in the smectite structure is also achieved by thermo-poro-metry at different RH: water bound to the cations and surfaces, water structured by porosity and free water. This distinction is important to understand the behaviour of smectite and in particular the diffusion properties in clayey materials. The importance of the cation nature is also highlighted by the energetic model. Electrostatic calculations using the PACHA formalism (Electronegativities Equalization method) show that, for the small cations, the hydration energy of the layers is predominant. To obtain these results, we determine the surface enthalpies for the dry state, which show a coherent evolution as a function of the cation partial charge with the increase of pore sizes and thus with particle sizes. Then, using a theoretical model, we calculated swelling energies, surface hydration energies and cation hydration energies. The behaviour of mixed purified clay displays a behaviour closer to that of a calcic clay for the experiments carried out, in contradiction with the fact that the Na cation is the most abundant. This observation implies results on the clay properties, different from that expected for hydration properties, swelling and interlayer cation mobility within the framework of the radioactive waste. (author)

  3. A Molecular Dynamic Simulation of Hydrated Proton Transfer in Perfluorosulfonate Ionomer Membranes (Nafion 117

    Directory of Open Access Journals (Sweden)

    Hong Sun

    2015-01-01

    Full Text Available A molecular dynamic model based on Lennard-Jones Potential, the interaction force between two particles, molecular diffusion, and radial distribution function (RDF is presented. The diffusion of the hydrated ion, triggered by both Grotthuss and vehicle mechanisms, is used to study the proton transfer in Nafion 117. The hydrated ion transfer mechanisms and the effects of the temperature, the water content in the membrane, and the electric field on the diffusion of the hydrated ion are analyzed. The molecular dynamic simulation results are in good agreement with those reported in the literature. The modeling results show that when the water content in Nafion 117 is low, H3O+ is the main transfer ion among the different hydrated ions. However, at higher water content, the hydrated ion in the form of H+(H2O2 is the main transfer ion. It is also found that the negatively charged sulfonic acid group as the fortified point facilitates the proton transfer in Nafion 117 better than the free water molecule. The diffusion of the hydrated ion can be improved by increasing the cell temperature, the water content in Nafion, and the electric field intensity.

  4. Moessbauer and calorimetric studies of portland cement hydration in the presence of black gram pulse

    International Nuclear Information System (INIS)

    Rai, Sarita; Kurian, Sajith; Dwivedi, V. N.; Das, S. S.; Singh, N. B.; Gajbhiye, N. S.

    2009-01-01

    Effect of different concentrations of naturally occurring admixture in the form of fine powder of black gram pulse (BGP) on the hydration of Portland cement was studied by isothermal calorimetry and 57 Fe Moessbauer spectroscopy. The spectra were recorded for anhydrous cement and the hydration products at room temperature and 77 K. In the presence of BGP, the spectra showed superparamagnetic doublets at room temperature and the sextet at 77 K, due to the presence of fine particles of iron containing component. Moessbauer studies of hydration products confirmed the formation of nanosize hydration products containing Fe 3+ . The isomer shift (δ) and the quadrupole splitting (ΔE Q ) values of C 4 AF in the cement confirmed iron in an octahedral and tetrahedral environment with +3 oxidation state. The high value of quadrupole splitting showed the high asymmetry of the electron environment around the iron atom. The overall mechanism of the hydration of cement in presence of BGP is discussed.

  5. [Skin hydration and hydrating products].

    Science.gov (United States)

    Duplan, H; Nocera, T

    2018-05-01

    One of the skin's principal functions is to protect the body against its environment by maintaining an effective epidermal barrier, not only against external factors, but also to prevent water loss from the body. Indeed, water homeostasis is vital for the normal physiological functioning of skin. Hydration levels affect not only visible microscopic parameters such as the suppleness and softness of skin, but also molecular parameters, enzyme activities and cellular signalling within the epidermis. The body is continually losing some of its water, but this phenomenon is limited and the optimal hydration gradient in skin is ensured via a set of sophisticated regulatory processes that rely on the functional and dynamic properties of the uppermost level of the skin consisting of the stratum corneum. The present article brings together data recently acquired in the fields of skin hydration and the characterisation of dehydrated or dry skin, whether through study of the regulatory processes involved or as a result of changes in the techniques used for in situ measurement, and thus in optimisation of management. Copyright © 2018. Published by Elsevier Masson SAS.

  6. Hydration Properties of Ground Granulated Blast-Furnace Slag (GGBS Under Different Hydration Environments

    Directory of Open Access Journals (Sweden)

    Shuhua LIU

    2017-02-01

    Full Text Available The hydration properties of various cementitious materials containing Ground Granulated Blast-furnace Slag (GGBS, two alkali-activated slag cements (AAS-1 and AAS-2 in which sodium silicate and sodium hydroxide act as alkaline activators respectively, supersulfated cement (SSC and slag Portland cement(PSC, are compared with ordinary Portland cement (OPC to investigate the effect of activating environment on the hydration properties in this study by determining the compressive strength of the pastes, the hydration heat of binders within 96 hours, and the hydration products at age of 28 days. The results show that C-S-H gels are the main hydrated products for all cementitious systems containing GGBS. Ca(OH2 is the hydration products of OPC and PSC paste. However, ettringite and gypsum crystals instead of Ca(OH2 are detected in SSC paste. Additionally, tobermorite, a crystalline C-S-H, and calcite are hydrated products in AAS-1. Tobermorite, cowlesite and calcite are hydrated products of AAS-2 as well. Based on strength results, AAS-1 paste exhibits the highest compressive strength followed by POC, PSC, SSC in order at all testing ages and AAS-2 give the lowest compressive strength except for the early age at 3 days, which is higher than SSC but still lower than PSC. From hydration heat analysis, alkalinity in the reaction solution is a vital factor influencing the initial hydration rate and the initial hydration rate from higher to lower is AAS-2, AAS-1, OPC, PSC and SSC. Although AAS possesses a faster reaction rate in the initial hours, cumulative hydration heat of AAS is comparably lower than that of OPC, but higher than those of PSC and SSC in turn, which indicates that the hydration heat of clinkers is much higher than that of slag.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14934

  7. The influence of ion hydration on nucleation and growth of LiF crystals in aqueous solution.

    Science.gov (United States)

    Lanaro, G; Patey, G N

    2018-01-14

    Molecular dynamics (MD) simulations are employed to investigate crystal nucleation and growth in oversaturated aqueous LiF solutions. Results obtained for a range of temperatures provide evidence that the rate of crystal growth is determined by a substantial energy barrier (∼49 kJ mol -1 ) related to the loss of water from the ion hydration shells. Employing direct MD simulations, we do not observe spontaneous nucleation of LiF crystals at 300 K, but nucleation is easily observable in NVT simulations at 500 K. This contrasts with the NaCl case, where crystal nucleation is directly observed in similar simulations at 300 K. Based on these observations, together with a detailed analysis of ion clustering in metastable LiF solutions, we argue that the ion dehydration barrier also plays a key role in crystal nucleation. The hydration of the relatively small Li + and F - ions strongly influences the probability of forming large, crystal-like ion clusters, which are a necessary precursor to nucleation. This important factor is not accounted for in classical nucleation theory.

  8. Nonlinear fluid dynamics of nanoscale hydration water layer

    Science.gov (United States)

    Jhe, Wonho; Kim, Bongsu; Kim, Qhwan; An, Sangmin

    In nature, the hydration water layer (HWL) ubiquitously exists in ambient conditions or aqueous solutions, where water molecules are tightly bound to ions or hydrophilic surfaces. It plays an important role in various mechanisms such as biological processes, abiotic materials, colloidal interaction, and friction. The HWL, for example, can be easily formed between biomaterials since most biomaterials are covered by hydrophilic molecules such as lipid bilayers, and this HWL is expected to be significant to biological and physiological functions. Here (1) we present the general stress tensor of the hydration water layer. The hydration stress tensor provided the platform form for holistic understanding of the dynamic behaviors of the confined HWL including tapping and shear dynamics which are until now individually studied. And, (2) through fast shear velocity ( 1mm/s) experiments, the elastic turbulence caused by elastic property of the HWL is indirectly observed. Our results may contribute to a deeper study of systems where the HWL plays an important role such as biomolecules, colloidal particles, and the MEMS. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(MSIP) (2016R1A3B1908660).

  9. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina; Yamauchi, Kazuo; Li, Zongjin; Zhang, Xixiang; Ma, Hongyan; Ge, Shenguang

    2017-01-01

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10

  10. Polishing large NaCl windows on a continuous polisher

    International Nuclear Information System (INIS)

    Williamson, R.

    1979-01-01

    The Helios and Antares CO 2 fusion laser systems incorporate numerous large sodium chloride windows. These must be refinished periodically, making necessary a consistent and predictable polishing capability. A continuous polisher (or annular lap) which might at Kirtland's Developmental Optical Facility. Large NaCl windows had not been polished on this type of machine. The machine has proven itself capable of producing lambda/16 figures at 633 nm (HeNe) with extremely smooth surfaces on glass. Since then, we have been working exclusively on NaCl optics. Due to different polishing parameters between NaCl and glass, and the slight solubility of the pitch in the slurry, this phase presents new problems. The work on glass will be reviewed. Results on NaCl to date will be reported. The potential of this type of machine relative to prisms, thin and irregularly shaped optics will be discussed

  11. Historical methane hydrate project review

    Science.gov (United States)

    Collett, Timothy; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta

    2013-01-01

    In 1995, U.S. Geological Survey made the first systematic assessment of the volume of natural gas stored in the hydrate accumulations of the United States. That study, along with numerous other studies, has shown that the amount of gas stored as methane hydrates in the world greatly exceeds the volume of known conventional gas resources. However, gas hydrates represent both a scientific and technical challenge and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of gas hydrates in nature, (2) assessing the volume of natural gas stored within various gas hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural gas hydrates, and (5) analyzing the effects of methane hydrate on drilling safety.Methane hydrates are naturally occurring crystalline substances composed of water and gas, in which a solid water-­‐lattice holds gas molecules in a cage-­‐like structure. The gas and water becomes a solid under specific temperature and pressure conditions within the Earth, called the hydrate stability zone. Other factors that control the presence of methane hydrate in nature include the source of the gas included within the hydrates, the physical and chemical controls on the migration of gas with a sedimentary basin containing methane hydrates, the availability of the water also included in the hydrate structure, and the presence of a suitable host sediment or “reservoir”. The geologic controls on the occurrence of gas hydrates have become collectively known as the “methane hydrate petroleum system”, which has become the focus of numerous hydrate research programs.Recognizing the importance of methane hydrate research and the need for a coordinated

  12. Manipulating Single Microdroplets of NaCl Solutions

    DEFF Research Database (Denmark)

    Utoft, Anders; Kinoshita, Koji; Bitterfield, Deborah

    2018-01-01

    fraction of S = 1.9, the saturation concentration of NaCl in aqueous solution as measured with nanograms of material (5.5 ± 0.1 M), the diffusion coefficient for water in octanol, D = (1.96 ± 0.10) × 10−6 cm2/s, and the effect of the solvent’s activity on dissolution kinetics. It is further shown...... growth are affected by changing the bathing medium from octanol to decane. A much slower loss of water-solvent and concomitant slower up-concentration of the NaCl solute resulted in a lower tendency to nucleate and slower crystal growth because much less excess material was available at the onset...... of nucleation in the decane system as compared to the octanol system. Thus, the crystal structure is reported to be dendritic for NaCl solution microdroplets dissolving rapidly and nucleating violently in octanol, while they are formed as single cubic crystals in a gentler way for solution-dissolution in decane...

  13. Effects of substituting D2O for H2O on SANS measurements of hydrating cement

    International Nuclear Information System (INIS)

    Sabine, T.M.; Prior, M.J.

    2002-01-01

    Full text: Small angle neutron scattering (SANS) measurements of cement have been found useful in the investigation of the shape and growth of particles formed during hydration. Calorimetric measurements of hydrating cement samples have shown that the substitution of D 2 O for H 2 O has the effect of slowing the hydration process. In order to throw some light on this phenomenon, we have measured SANS profiles from cement samples hydrating in H 2 O and D 2 O. This involved obtaining SANS profiles at half-hourly intervals during the initial stage of hydration. The only instruments capable of this at present are located at the Hahn-Meitner Institute in Berlin and at the Nuclear Physics Institute at Rez near Prague. Initial experiments carried out on the V12a UltraSANS diffractometer at The Hahn-Meitner Institute were only partially successful owing to excessive multiple scattering in the D 2 O samples. Subsequent measurements were therefore carried out on the similar instrument at Rez near Prague which operates at a shorter neutron wavelength. Results from these measurements show profound differences in the evolution of cements hydrating in D 2 O and those hydrating in H 2 O

  14. Strength Estimation for Hydrate-Bearing Sediments From Direct Shear Tests of Hydrate-Bearing Sand and Silt

    Science.gov (United States)

    Liu, Zhichao; Dai, Sheng; Ning, Fulong; Peng, Li; Wei, Houzhen; Wei, Changfu

    2018-01-01

    Safe and economic methane gas production, as well as the replacement of methane while sequestering carbon in natural hydrate deposits, requires enhanced geomechanical understanding of the strength and volume responses of hydrate-bearing sediments during shear. This study employs a custom-made apparatus to investigate the mechanical and volumetric behaviors of carbon dioxide hydrate-bearing sediments subjected to direct shear. The results show that both peak and residual strengths increase with increased hydrate saturation and vertical stress. Hydrate contributes mainly the cohesion and dilatancy constraint to the peak strength of hydrate-bearing sediments. The postpeak strength reduction is more evident and brittle in specimens with higher hydrate saturation and under lower stress. Significant strength reduction after shear failure is expected in silty sediments with high hydrate saturation Sh ≥ 0.65. Hydrate contribution to the residual strength is mainly by increasing cohesion at low hydrate saturation and friction at high hydrate saturation. Stress state and hydrate saturation are dominating both the stiffness and the strength of hydrate-bearing sediments; thus, a wave velocity-based peak strength prediction model is proposed and validated, which allows for precise estimation of the shear strength of hydrate-bearing sediments through acoustic logging data. This method is advantageous to geomechanical simulators, particularly when the experimental strength data of natural samples are not available.

  15. Magnetic resonance study of hydration of Na-β''-alumina. Magnetic impurity effects

    International Nuclear Information System (INIS)

    Gobato, Y.G.; Souto, S.P.A.; Gonzalez, J.P.D.; Souza, D.P.F. de; Dept. de Engenharia de Materiais)

    1989-01-01

    The various factors that can affect the hydration of polycristalline Na-β''-alumina were investigated, using magnetic resonance methods. When absorved, water molecules diffuses very fast into the conduction layers. The activation energy for the diffusion motion was found to be 0.16 eV (15.4 KJ/mol) for a pure sample, with 150 - 250 μm particle diameter, with 18.5% of water in relation to the dry sample. A striking result was that the water absorption in a pure sample was twice than in a iron doped sample (500 ppm) hydrated in identical conditions. (author) [pt

  16. Gas hydrate concentration and characteristics within Hydrate Ridge inferred from multicomponent seismic reflection data

    Science.gov (United States)

    Kumar, Dhananjay; Sen, Mrinal K.; Bangs, Nathan L.

    2007-12-01

    A seismic experiment composed of streamer and ocean bottom seismometer (OBS) surveys was conducted in the summer of 2002 at southern Hydrate Ridge, offshore Oregon, to map the gas hydrate distribution within the hydrate stability zone. Gas hydrate concentrations within the reservoir can be estimated with P wave velocity (Vp); however, we can further constrain gas hydrate concentrations using S wave velocity (Vs), and use Vs through its relationship to Vp (Vp/Vs) to reveal additional details such as gas hydrate form within the matrix (i.e., hydrate cements the grains, becomes part of the matrix frame or floats in pore space). Both Vp and Vs can be derived simultaneously by inverting multicomponent seismic data. In this study, we use OBS data to estimate seismic velocities where both gas hydrate and free gas are present in the shallow sediments. Once Vp and Vs are estimated, they are simultaneously matched with modeled velocities to estimate the gas hydrate concentration. We model Vp using an equation based on a modification of Wood's equation that incorporates an appropriate rock physics model and Vs using an empirical relation. The gas hydrate concentration is estimated to be up to 7% of the rock volume, or 12% of the pore space. However, Vp and Vs do not always fit the model simultaneously. Vp can vary substantially more than Vs. Thus we conclude that a model, in which higher concentrations of hydrate do not affect shear stiffness, is more appropriate. Results suggest gas hydrates form within the pore space of the sediments and become part of the rock framework in our survey area.

  17. Atomistic simulations of cation hydration in sodium and calcium montmorillonite nanopores

    Science.gov (United States)

    Yang, Guomin; Neretnieks, Ivars; Holmboe, Michael

    2017-08-01

    During the last four decades, numerous studies have been directed to the swelling smectite-rich clays in the context of high-level radioactive waste applications and waste-liners for contaminated sites. The swelling properties of clay mineral particles arise due to hydration of the interlayer cations and the diffuse double layers formed near the negatively charged montmorillonite (MMT) surfaces. To accurately study the cation hydration in the interlayer nanopores of MMT, solvent-solute and solvent-clay surface interactions (i.e., the solvation effects and the shape effects) on the atomic level should be taken into account, in contrast to many recent electric double layer based methodologies using continuum models. Therefore, in this research we employed fully atomistic simulations using classical molecular dynamics (MD) simulations, the software package GROMACS along with the CLAYFF forcefield and the SPC/E water model. We present the ion distributions and the deformation of the hydrated coordination structures, i.e., the hydration shells of Na+ and Ca2+ in the interlayer, respectively, for MMT in the first-layer, the second-layer, the third-layer, the fourth-layer, and the fifth-layer (1W, 2W, 3W, 4W, and 5W) hydrate states. Our MD simulations show that Na+ in Na-MMT nanopores have an affinity to the ditrigonal cavities of the clay layers and form transient inner-sphere complexes at about 3.8 Å from clay midplane at water contents less than the 5W hydration state. However, these phenomena are not observed in Ca-MMT regardless of swelling states. For Na-MMT, each Na+ is coordinated to four water molecules and one oxygen atom of the clay basal-plane in the first hydration shell at the 1W hydration state, and with five to six water molecules in the first hydration shell within a radius of 3.1 Å at all higher water contents. In Ca-MMT, however each Ca2+ is coordinated to approximately seven water molecules in the first hydration shell at the 1W hydration state and

  18. Preservation of carbon dioxide clathrate hydrate in the presence of trehalose under freezer conditions.

    Science.gov (United States)

    Nagashima, Hironori D; Takeya, Satoshi; Uchida, Tsutomu; Ohmura, Ryo

    2016-01-19

    To investigate the preservation of CO2 clathrate hydrate in the presence of sugar for the novel frozen dessert, mass fractions of CO2 clathrate hydrate in CO2 clathrate hydrate samples coexisting with trehalose were intermittently measured. The samples were prepared from trehalose aqueous solution with trehalose mass fractions of 0.05 and 0.10 at 3.0 MPa and 276.2 K. The samples having particle sizes of 1.0 mm and 5.6-8.0 mm were stored at 243.2 K and 253.2 K for three weeks under atmospheric pressure. The mass fractions of CO2 clathrate hydrate in the samples were 0.87-0.97 before the preservation, and CO2 clathrate hydrate still remained 0.56-0.76 in the mass fractions for 5.6-8.0 mm samples and 0.37-0.55 for 1.0 mm samples after the preservation. The preservation in the trehalose system was better than in the sucrose system and comparable to that in the pure CO2 clathrate hydrate system. This comparison indicates that trehalose is a more suitable sugar for the novel frozen carbonated dessert using CO2 clathrate hydrate than sucrose in terms of CO2 concentration in the dessert. It is inferred that existence of aqueous solution in the samples is a significant factor of the preservation of CO2 clathrate hydrate in the presence of sugar.

  19. Utilizing NaCl to increase the porosity of electrospun materials

    International Nuclear Information System (INIS)

    Wright, L.D.; Andric, T.; Freeman, J.W.

    2011-01-01

    Electrospinning has emerged as a popular method for creating scaffolding materials used in tissue engineering applications to repair or replace damaged tissues. To become a viable scaffold material, however, pore sizes in electrospun materials must be increased to improve cell infiltration. Deposition of NaCl crystals during electrospinning was utilized to help overcome this obstacle. The NaCl crystals are released above the rotating collection mandrel and become incorporated into the poly(L-lactide) electrospun material. The NaCl then leaches out of the electrospun material creating larger pores: average pore diameter of 48.7 μm for PLLA-NaCl electrospinning versus 5.5 μm for PLLA alone electrospinning. Electrospun PLLA scaffolds with NaCl pores have a lower elastic modulus (8.05 MPa) and yield stress (349 kPa) and a higher yield strain (0.04) compared to their traditional counterparts (40.36 MPa, 676 kPa, and 0.0188). Decreased elastic modulus and yield stress would be beneficial to tissue engineering of elastic tissues including skin. The presence of NaCl pores did not significantly affect the cellular proliferation of MC3T3 cells but did allow for cell infiltration into the electrospun material. Therefore, the creation of large pores through NaCl leaching can significantly improve the performance of electrospun materials for tissue engineering applications by improving cellular infiltration.

  20. Adsorption of small NaCl clusters on surfaces of silicon nanostructures

    International Nuclear Information System (INIS)

    Amsler, Maximilian; Alireza Ghasemi, S; Goedecker, Stefan; Neelov, Alexey; Genovese, Luigi

    2009-01-01

    We have studied possible adsorption geometries of neutral NaCl clusters on the disordered surface of a large silicon model tip used in non-contact atomic force microscopy. The minima hopping method was used to determine low energy model tip configurations as well as ground state geometries of isolated NaCl clusters. The combined system was treated with density functional theory. Alkali halides have proven to be strong structure seekers and tend to form highly stable ground state configurations whenever possible. The favored adsorption geometry for four Na and four Cl atoms was found to be an adsorption of four NaCl dimers due to the formation of Cl-Si bonds. However, for larger NaCl clusters, the increasing energy required to dissociate the cluster into NaCl dimers suggests that adsorption of whole clusters in their isolated ground state configuration is preferred.

  1. Application of empirical hydration distribution functions around polar atoms for assessing hydration structures of proteins

    International Nuclear Information System (INIS)

    Matsuoka, Daisuke; Nakasako, Masayoshi

    2013-01-01

    Highlights: ► Empirical distribution functions of water molecules in protein hydration are made. ► The functions measure how hydrogen-bond geometry in hydration deviate from ideal. ► The functions assess experimentally identified hydration structures of protein. - Abstract: To quantitatively characterize hydrogen-bond geometry in local hydration structures of proteins, we constructed a set of empirical hydration distribution functions (EHDFs) around polar protein atoms in the main and side chains of 11 types of hydrophilic amino acids (D. Matsuoka, M. Nakasako, Journal of Physical Chemistry B 113 (2009) 11274). The functions are the ensemble average of possible hydration patterns around the polar atoms, and describe the anisotropic deviations from ideal hydrogen bond geometry. In addition, we defined probability distribution function of hydration water molecules (PDFH) over the hydrophilic surface of a protein as the sum of EHDFs of solvent accessible polar protein atoms. The functions envelop most of hydration sites identified in crystal structures of proteins (D. Matsuoka, M. Nakasako, Journal of Physical Chemistry B 114 (2010) 4652). Here we propose the application of EHDFs and PDFHs for assessing crystallographically identified hydration structures of proteins. First, hydration water molecules are classified with respect to the geometry in hydrogen bonds in referring EHDFs. Difference Fourier electron density map weighted by PDFH of protein is proposed to identify easily density peaks as candidates of hydration water molecules. A computer program implementing those ideas was developed and used for assessing hydration structures of proteins

  2. Effect of compositions in nanostructured lipid carriers (NLC) on skin hydration and occlusion.

    Science.gov (United States)

    Loo, Ch; Basri, M; Ismail, R; Lau, Hln; Tejo, Ba; Kanthimathi, Ms; Hassan, Ha; Choo, Ym

    2013-01-01

    To study the effects of varying lipid concentrations, lipid and oil ratio, and the addition of propylene glycol and lecithin on the long-term physical stability of nanostructured lipid nanocarriers (NLC), skin hydration, and transepidermal water loss. The various NLC formulations (A1-A5) were prepared and their particle size, zeta potential, viscosity, and stability were analyzed. The formulations were applied on the forearms of the 20 female volunteers (one forearm of each volunteer was left untreated as a control). The subjects stayed for 30 minutes in a conditioned room with their forearms uncovered to let the skin adapt to the temperature (22°C ± 2°C) and humidity (50% ± 2%) of the room. Skin hydration and skin occlusion were recorded at day one (before treatment) and day seven (after treatment). Three measurements for skin hydration and skin occlusion were performed in each testing area. NLC formulations with the highest lipid concentration, highest solid lipid concentration, and additional propylene glycol (formulations A1, A2, and A5) showed higher physical stability than other formulations. The addition of propylene glycol into an NLC system helped to reduce the particle size of the NLC and enhanced its long-term physical stability. All the NLC formulations were found to significantly increase skin hydration compared to the untreated controls within 7 days. All NLC formulations exhibited occlusive properties as they reduced the transepidermal water loss within 7 days. This effect was more pronounced with the addition of propylene glycol or lecithin into an NLC formulation, whereby at least 60% reduction in transepidermal water loss was observed. NLCs with high lipid content, solid lipid content, phospholipid, and lecithin are a highly effective cosmetic delivery system for cosmetic topical applications that are designed to boost skin hydration.

  3. In Situ Raman Analyses of Natural Gas and Gas Hydrates at Hydrate Ridge, Oregon

    Science.gov (United States)

    Peltzer, E. T.; White, S. N.; Dunk, R. M.; Brewer, P. G.; Sherman, A. D.; Schmidt, K.; Hester, K. C.; Sloan, E. D.

    2004-12-01

    During a July 2004 cruise to Hydrate Ridge, Oregon, MBARI's sea-going laser Raman spectrometer was used to obtain in situ Raman spectra of natural gas hydrates and natural gas venting from the seafloor. This was the first in situ analysis of gas hydrates on the seafloor. The hydrate spectra were compared to laboratory analyses performed at the Center for Hydrate Research, Colorado School of Mines. The natural gas spectra were compared to MBARI gas chromatography (GC) analyses of gas samples collected at the same site. DORISS (Deep Ocean Raman In Situ Spectrometer) is a laboratory model laser Raman spectrometer from Kaiser Optical Systems, Inc modified at MBARI for deployment in the deep ocean. It has been successfully deployed to depths as great as 3600 m. Different sampling optics provide flexibility in adapting the instrument to a particular target of interest. An immersion optic was used to analyze natural gas venting from the seafloor at South Hydrate Ridge ( ˜780 m depth). An open-bottomed cube was placed over the vent to collect the gas. The immersion optic penetrated the side of the cube as did a small heater used to dissociate any hydrate formed during sample collection. To analyze solid hydrates at both South and North Hydrate Ridge ( ˜590 m depth), chunks of hydrate were excavated from the seafloor and collected in a glass cylinder with a mesh top. A stand-off optic was used to analyze the hydrate inside the cylinder. Due to the partial opacity of the hydrate and the small focal volume of the sampling optic, a precision underwater positioner (PUP) was used to focus the laser spot onto the hydrate. PUP is a stand-alone system with three degrees-of-freedom, capable of moving the DORISS probe head with a precision of 0.1 mm. In situ Raman analyses of the gas indicate that it is primarily methane. This is verified by GC analyses of samples collected from the same site. Other minor constituents (such as CO2 and higher hydrocarbons) are present but may be in

  4. Ductile flow of methane hydrate

    Science.gov (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  5. Novel nanotechnology for efficient production of binary clathrate hydrates of hydrogen and other compounds

    Energy Technology Data Exchange (ETDEWEB)

    Di Profio, P.; Arca, S.; Germani, R.; Savelli, G. [Perugia Univ., Perugia (Italy). Dept. of Chemistry, Center of Excellence on Innovative Nanostructured Materials

    2008-07-01

    The development of a hydrogen-based economy depends on finding ways to store hydrogen, but current hydrogen storage methods have significant disadvantages. One main challenge in storing sufficient amounts of hydrogen (up to 4 weight per cent) into a clathrate matrix is that of a kinetic origin, in that the mass transfer of hydrogen gas into clathrate structures is significantly limited by the macroscopic scale of the gas-liquid or gas-ice interfaces involved. This paper discussed the possibility of storing hydrogen in clathrate hydrates. It presented a newly developed method for preparing binary hydrogen hydrates that is based on the formation of amphiphile-aided nanoemulsions. Nanotechnology is used to reduce the size of hydrate particles to a few nanometers, thereby minimizing the kinetic hindrance to hydrate formation. This process has potential for increasing the amount of hydrogen stored, as it has provided ca. 1 weight per cent of hydrogen. Two new co-formers were also successfully tested, namely cyclopentane and tetrahydrothiophene. 23 refs., 10 figs.

  6. Hydration rate of obsidian.

    Science.gov (United States)

    Friedman, I; Long, W

    1976-01-30

    The hydration rates of 12 obsidian samples of different chemical compositions were measured at temperatures from 95 degrees to 245 degrees C. An expression relating hydration rate to temperature was derived for each sample. The SiO(2) content and refractive index are related to the hydration rate, as are the CaO, MgO, and original water contents. With this information it is possible to calculate the hydration rate of a sample from its silica content, refractive index, or chemical index and a knowledge of the effective temperature at which the hydration occurred. The effective hydration temperature can be either measured or approximated from weather records. Rates have been calculated by both methods, and the results show that weather records can give a good approximation to the true EHT, particularly in tropical and subtropical climates. If one determines the EHT by any of the methods suggested, and also measures or knows the rate of hydration of the particular obsidian used, it should be possible to carry out absolute dating to +/- 10 percent of the true age over periods as short as several years and as long as millions of years.

  7. Elevated sodium chloride concentrations enhance the bystander effects induced by low dose alpha-particle irradiation

    International Nuclear Information System (INIS)

    Han Wei; Zhu Lingyan; Jiang Erkang; Wang Jun; Chen Shaopeng; Bao Linzhi; Zhao Ye; Xu An; Yu Zengliang; Wu Lijun

    2007-01-01

    Previous studies have shown that high NaCl can be genotoxic, either alone or combined with irradiation. However, little is known about the relationship between environmental NaCl at elevated conditions and radiation-induced bystander effects (RIBE). RIBE, which has been considered as non-targeted bystander responses, has been demonstrated to occur widely in various cell lines. In the present study, RIBE under the elevated NaCl culture condition was assessed in AG 1522 cells by both the induction of γ-H2AX, a reliable marker of DNA double-strand break (DSB) for the early process ( G -methyl-L-arginine, an inhibitor of nitric oxide synthase, the induced fraction of foci-positive cells was effectively inhibited both in 0.2 cGy α-particle irradiated and adjacent non-irradiated regions under either normal or elevated NaCl conditions. These results suggested that the cultures with elevated NaCl medium magnified the damage effects induced by the low dose α-particle irradiation and nitric oxide generated by irradiation was also very important in this process

  8. Overview: Nucleation of clathrate hydrates.

    Science.gov (United States)

    Warrier, Pramod; Khan, M Naveed; Srivastava, Vishal; Maupin, C Mark; Koh, Carolyn A

    2016-12-07

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  9. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  10. Exogenous origin of hydration on asteroid (16) Psyche: the role of hydrated asteroid families

    Science.gov (United States)

    Avdellidou, C.; Delbo', M.; Fienga, A.

    2018-04-01

    Asteroid (16) Psyche, which for a long time was the largest M-type with no detection of hydration features in its spectrum, was recently discovered to have a weak 3-μm band and thus it was eventually added to the group of hydrated asteroids. Its relatively high density, in combination with the high radar albedo, led researchers to classify the asteroid as a metallic object. It is believed that it is possibly a core of a differentiated body, a remnant of `hit-and-run' collisions. The detection of hydration is, in principle, inconsistent with a pure metallic origin for this body. Here, we consider the scenario in which the hydration on its surface is exogenous and was delivered by hydrated impactors. We show that impacting asteroids that belong to families whose members have the 3-μm band can deliver hydrated material to Psyche. We developed a collisional model with which we test all dark carbonaceous asteroid families, which contain hydrated members. We find that the major source of hydrated impactors is the family of Themis, with a total implanted mass on Psyche of the order of ˜1014 kg. However, the hydrated fraction could be only a few per cent of the implanted mass, as the water content in carbonaceous chondrite meteorites, the best analogue for the Themis asteroid family, is typically a few per cent of their mass.

  11. Hydrothermal Formation Of Hemi-hydrate Calcium Sulfate Whiskers In The Presence Of Additives

    International Nuclear Information System (INIS)

    Luo, K. B.; Li, C. M.; Li, H. P.; Ning, P.; Xiang, L.

    2010-01-01

    The influence of addictives on the hydrothermal formation of hemi-hydrate calcium sulfate (CaSO 4 ·0.5H 2 O) whiskers were discussed in this paper, using CaCl 2 and Na 2 SO 4 as the reactants. The presence of NaCl, CaCl 2 or Na 2 SO 4 increased the concentrations of Ca 2+ and SO 4 2- , leading to the formation of CaSO 4 ·0.5H 2 O whiskers with aspect ratio lower than 50. The one dimensional growth of CaSO 4 ·0.5H 2 O whiskers was enhanced in water with no additives owing to the low super-saturation, leading to the formation of uniform whiskers with a length of 200-2000 μm and an aspect ratio higher than 100.

  12. Methane Hydrates: Chapter 8

    Science.gov (United States)

    Boswell, Ray; Yamamoto, Koji; Lee, Sung-Rock; Collett, Timothy S.; Kumar, Pushpendra; Dallimore, Scott

    2008-01-01

    Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be

  13. In-situ gas hydrate hydrate saturation estimated from various well logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Lee, M.W.; Collett, T.S.

    2011-01-01

    In 2006, the U.S. Geological Survey (USGS) completed detailed analysis and interpretation of available 2-D and 3-D seismic data and proposed a viable method for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area of northern Alaska. To validate the predictions of the USGS and to acquire critical reservoir data needed to develop a long-term production testing program, a well was drilled at the Mount Elbert prospect in February, 2007. Numerous well log data and cores were acquired to estimate in-situ gas hydrate saturations and reservoir properties.Gas hydrate saturations were estimated from various well logs such as nuclear magnetic resonance (NMR), P- and S-wave velocity, and electrical resistivity logs along with pore-water salinity. Gas hydrate saturations from the NMR log agree well with those estimated from P- and S-wave velocity data. Because of the low salinity of the connate water and the low formation temperature, the resistivity of connate water is comparable to that of shale. Therefore, the effect of clay should be accounted for to accurately estimate gas hydrate saturations from the resistivity data. Two highly gas hydrate-saturated intervals are identified - an upper ???43 ft zone with an average gas hydrate saturation of 54% and a lower ???53 ft zone with an average gas hydrate saturation of 50%; both zones reach a maximum of about 75% saturation. ?? 2009.

  14. Rheological study of an hydrate slurry as secondary two-phase refrigerant. Experimental results and modelling; Etude rheologique d'une suspension d'hydrates en tant que fluide frigoporteur diphasique: resultats experimentaux et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Darbouret, M.

    2005-12-15

    Secondary two-phase fluids are suspensions of solid crystals. Thanks to the melting latent heat, they present a great interest for cold transportation. Moreover, they are a mean of reducing the amount of classical refrigerant. In the refrigeration field, ice slurries are already used. The goal is now to extend this technology to other temperature ranges suitable for other applications like freezing or air-conditioning. For an air-conditioning application, a TBAB (Tetra-Butyl-Ammonium Bromide) aqueous solution is studied. Under atmospheric pressure and for positive temperatures, this solution crystallizes into ice-like compounds named 'hydrates'. First, the physical properties of the aqueous solution and its crystallisation conditions were studied. Two different types of hydrates can appear. The goal of the experimental set-up is to study the rheological behaviour of two-phase fluids. Slurries are made in brushed-surface heat exchanger and pumped into pipes where flow rates and pressure drops are measured. The rheological behaviour of TBAB hydrates slurries can be described using a Bingham fluid model. We highlight that the two rheological parameters, which are the apparent viscosity and the yield shear stress, depend on the volume fraction of crystal of course, but also on the hydrate type, and on the initial concentration of the solution. The yield shear stress is interpreted as the consequence of the Van der Waals inter-particle interaction forces. Finally, possible stratification effects are modelled with a finite difference method. The principle is to calculate particle concentration and velocity profiles following the flow of the slurry. Calculations are validated with experimental velocity profiles published by P. Reghem (2002). This model underlines the influence of the particle distribution in the pipe on pressure drops. (author)

  15. Kinetics and mechanism of transitions involving the lamellar, cubic, inverted hexagonal, and fluid isotropic phases of hydrated monoacylglycerides monitored by time-resolved X-ray diffraction

    International Nuclear Information System (INIS)

    Caffrey, M.

    1987-01-01

    A study of the dynamics and mechanism of the various thermotropic phase transitions undergone by the hydrated monoacylglycerides monoolein and monoelaidin, in the temperature range of 20-120 0 C and from 0 to 5 M NaCl, has been undertaken. Measurements were made by using time-resolved X-ray diffraction at the Cornell High-Energy Synchrotron Source. The lamellar chain order/disorder, lamellar/cubic (body centered, space group No.8), cubic (body centered, No.8)/cubic (primitive No.4), cubic (body centered, No.12)/cubic (primitive, No.4), cubic (primitive, No.4)/fluid isotropic, cubic (body centered, No.12)/inverted hexagonal, cubic (primitive, No.4)/inverted hexagonal, and hexagonal/fluid isotropic transitions were examined under active heating and passive cooling by using a jump in temperature to effect phase transformation. All of the transitions with the exception of the cubic (body centered, No.8)/cubic (primitive, No.4) and the cubic (body centered, No.12)/cubic (primitive, No.4) cooling transitions were found (1) to be repeatable, (2) to be reversible, and (3) to have an upper bound on the transit time (time required to complete the transition) of ≤ 3s. In addition to the time-resolved measurements, data were obtained on the stability of the various phases in the temperature range of 20-120 0 C and from 0 to 5 M NaCl. In the case of fully hydrated monoolein, high salt strongly favors the hexagonal over the cubic (body centered, No.8) phase and slightly elevates the hexagonal/fluid isotropic transition temperature. With fully hydrated monoelaidin, the hexagonal phase which is not observed in the absence of salt becomes the dominant phase at high salt concentration

  16. NaCl samples for optical luminescence dosimetry

    International Nuclear Information System (INIS)

    Catli, S.

    2005-01-01

    Optically stimulated luminescence (OSL) have been used broadly for luminescence dosimetry and dating. In many cases, it has been pointed out that the decay of the OSL do not generally behave according to a simple exponential function. In this study the Infra-red stimulated luminescence (IRSL) intensity from NaCl samples were experimentally measured. The decay curves for this sample were fitted to some functions and it is in good agreement with the function y = α + b exp(-cx). The IRSL decay curves from NaCl using different β-doses have been obtained and investigated their dose response

  17. Study of formation and stability conditions of gas hydrates in drilling fluids; Etude des conditions de formation et de stabilite des hydrates de gaz dans les fluides de forage

    Energy Technology Data Exchange (ETDEWEB)

    Kharrat, M.

    2004-10-15

    Drilling fluids are complex media, in which solid particles are in suspension in a water-in-oil emulsion. The formation of gas hydrates in these fluids during off shore drilling operations has been suspected to be the cause of serious accidents. The purpose of this thesis is the study of the formation conditions as well as the stability of gas hydrates in complex fluids containing water-in-oil emulsions. The technique of high-pressure differential scanning calorimetry was used to characterise the conditions of hydrates formation and dissociation. Special attention has first been given to the validation of thermodynamic measurements in homogeneous solutions, in the pressure range 4 to 12 Mpa; the results were found to be in good agreement with literature data, as well as with modelling results. The method was then applied to water-in-oil emulsion, used as a model for real drilling fluids. It was proven that thermodynamics of hydrate stability are not significantly influenced by the state of dispersion of the water phase. On the other hand, the kinetics of formation and the amount of hydrates formed are highly increased by the dispersion. Applying the technique to real drilling fluids confirmed the results obtained in emulsions. Results interpretation allowed giving a representation of the process of hydrate formation in emulsion. Empirical modelling was developed to compute the stability limits of methane hydrate in the presence of various inhibitors, at pressures ranging from ambient to 70 MPa. Isobaric phase diagrams were constructed, that allow predicting the inhibiting efficiency of sodium chloride and calcium chloride at constant pressure, from 0,25 to 70 MPa. (author)

  18. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina

    2017-05-13

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10 was conducted for tricalcium silicate (C3S) to interpret long-term hydration process and investigate the formation, structure and properties of C-S-H. Based on results from XRD, IR, SEM, NMR and so forth, loose and dense clusters of C-S-H with analogous C/S ratio were obtained along with the corresponding chemical formulae proposed as Ca5Si4O13∙6.2H2O. Crystalline structure inside C-S-H was observed by TEM, which was allocated at the foil-like proportion as well as the edge of wrinkles of the product. The long-term hydration process of C3S in dilute suspension could be sketchily described as migration of calcium hydroxide and in-situ growth of C-S-H with equilibrium silicon in aqueous solution relatively constant and calcium varied.

  19. Formation of submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Soloviev, V.; Ginsburg, G.D. (Reserch Institute of Geology and Mineral Resources of the Ocean ' ' VNII Okeangeologia' ' , St. Petersburg (Russian Federation))

    1994-03-01

    Submarine gas hydrates have been discoverd in the course of deep-sea drilling (DSDP and ODP) and bottom sampling in many offshore regions. This paper reports on expeditions carried out in the Black, Caspian and Okhotsk Seas. Gas hydrate accumulations were discovered and investigated in all these areas. The data and an analysis of the results of the deep-sea drilling programme suggest that the infiltration of gas-bearing fluids is a necessary condition for gas hydrate accumulation. This is confirmed by geological observations at three scale levels. Firstly, hydrates in cores are usually associated with comparatively coarse-grained, permeable sediments as well as voids and fractures. Secondly, hydrate accumulations are controlled by permeable geological structures, i.e. faults, diapirs, mud volcanos as well as layered sequences. Thirdly, in the worldwide scale, hydrate accumulations are characteristic of continental slopes and rises and intra-continental seas where submarine seepages also are widespread. Both biogenic and catagenic gas may occur, and the gas sources may be located at various distances from the accumulation. Gas hydrates presumably originate from water-dissolved gas. The possibility of a transition from dissolved gas into hydrate is confirmed by experimental data. Shallow gas hydrate accumulations associated with gas-bearing fluid plumes are the most convenient features for the study of submarine hydrate formation in general. These accumulations are known from the Black, Caspian and Okhotsk Seas, the Gulf of Mexico and off northern California. (au) (24 refs.)

  20. Development of Magnesium Silicate Hydrate cement system for nuclear waste encapsulation

    International Nuclear Information System (INIS)

    Zhang, T.; Vandeperre, L.J.; Cheeseman, C.R.

    2012-01-01

    A novel low pH cement system for encapsulating nuclear industry wastes containing aluminium has been developed using blends of MgO and silica fume (SF). Identification of the hydrated phases in MgO/silica fume samples showed that brucite formed in early stages of hydration and then reacted with the silica fume to produce a magnesium silicate hydrate (M-S-H) gel phase. When all brucite reacts with silica fume a cement system with an equilibrium pH just below 10 was achieved. Selected mixes have been characterized for hydration reactions, setting time and strength development. Mortar samples with w/s ratios of 0.5 and 50% by weight of sand added achieved compressive strengths in excess of 95 MPa after 28 days. The addition of MgCO 3 buffered the early pH and the addition of fine sand particles eliminated shrinkage cracking. The interaction of the optimised mortar with Al metal has been investigated. Al metal strips were firmly bound into the MgO:SF:sand samples and no H 2 gas detected, and this indicates that the novel systems developed in this work have potential for encapsulating certain types of problematic legacy wastes from the nuclear industry. (authors)

  1. Characterization of un-hydrated and hydrated BioAggregate™ and MTA Angelus™.

    Science.gov (United States)

    Camilleri, J; Sorrentino, F; Damidot, D

    2015-04-01

    BioAggregate™ is a novel material introduced for use as a root-end filling material. It is tricalcium silicate-based, free of aluminium and uses tantalum oxide as radiopacifier. BioAggregate contains additives to enhance the material performance. The purpose of this research was to characterize the un-hydrated and hydrated forms of BioAggregate using a combination of techniques, verify whether the additives if present affect the properties of the set material and compare these properties to those of MTA Angelus™. Un-hydrated and hydrated BioAggregate and MTA Angelus were assessed. Un-hydrated cement was tested for chemical composition, specific surface area, mineralogy and kinetics of hydration. The set material was investigated for mineralogy, microstructure and bioactivity. Scanning electron microscopy, X-ray energy dispersive spectroscopic analysis, X-ray fluorescence spectroscopy, X-ray diffraction and isothermal calorimetry were employed. The specific surface area was investigated using a gas adsorption method with nitrogen as the probe. BioAggregate was composed of tricalcium silicate, tantalum oxide, calcium phosphate and silicon dioxide and was free of aluminium. On hydration, the tricalcium silicate produced calcium silicate hydrate and calcium hydroxide. The former was deposited around the cement grains, while the latter reacted with the silicon dioxide to form additional calcium silicate hydrate. This resulted in reduction of calcium hydroxide in the aged cement. MTA Angelus reacted in a similar fashion; however, since it contained no additives, the calcium hydroxide was still present in the aged cement. Bioactivity was demonstrated by deposition of hydroxyapatite. BioAggregate exhibited a high specific surface area. Nevertheless, the reactivity determined by isothermal calorimetry appeared to be slow compared to MTA Angelus. The tantalum oxide as opposed to bismuth oxide was inert, and tantalum was not leached in solution. BioAggregate exhibited

  2. The impact of zirconium oxide radiopacifier on the early hydration behaviour of white Portland cement.

    Science.gov (United States)

    Coleman, Nichola J; Li, Qiu

    2013-01-01

    Zirconium oxide has been identified as a candidate radiopacifying agent for use in Portland cement-based biomaterials. During this study, the impact of 20 wt.% zirconium oxide on the hydration and setting reactions of white Portland cement (WPC) was monitored by powder X-ray diffraction (XRD), (29)Si and (27)Al magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR), transmission electron microscopy (TEM) and Vicat apparatus. The presence of 20 wt.% zirconium oxide particles in the size-range of 0.2 to 5 μm was found to reduce the initial and final setting times of WPC from 172 to 147 min and 213 to 191 min, respectively. Zirconium oxide did not formally participate in the chemical reactions of the hydrating cement; however, the surface of the zirconium oxide particles presented heterogeneous nucleation sites for the precipitation and growth of the early C-S-H gel products which accelerated the initial setting reactions. The presence of zirconium oxide was found to have little impact on the development of the calcium (sulpho)aluminate hydrate phases. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Methods to determine hydration states of minerals and cement hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Thorell, Alva; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2014-11-15

    This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate are presented. Some of the methods used were validated with the system Na{sub 2}SO{sub 4}–H{sub 2}O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions.

  4. Methods to determine hydration states of minerals and cement hydrates

    International Nuclear Information System (INIS)

    Baquerizo, Luis G.; Matschei, Thomas; Scrivener, Karen L.; Saeidpour, Mahsa; Thorell, Alva; Wadsö, Lars

    2014-01-01

    This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate are presented. Some of the methods used were validated with the system Na 2 SO 4 –H 2 O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions

  5. Enthalpy of dissociation and hydration number of methane hydrate from the Clapeyron equation

    International Nuclear Information System (INIS)

    Anderson, Graydon K.

    2004-01-01

    The enthalpies of the reactions in which methane hydrate is dissociated to methane vapor and either (1) water, or (2) ice are determined by a new analysis using the Clapeyron equation. The difference in enthalpies of the two reactions is used to infer the hydration number at the quadruple point where hydrate, ice, liquid water, and methane vapor coexist. By appropriate corrections, the hydration number at points removed from the quadruple point is also determined. The most important feature of the new analysis is the direct use of the Clapeyron equation. The method avoids the use of certain simplifying assumptions that have compromised the accuracy of previous analyses in which the Clausius-Clapeyron equation was used. The analysis takes into account the finite volumes of all phases, the non-ideality of the vapor phase, and the solubility of methane in water. The results show that the enthalpy of dissociation and hydration number are constant within experimental error over the entire (hydrate, liquid, vapor) coexistence region. The results are more accurate than but entirely consistent with almost all previous studies

  6. Hydrates on tap: scientists say natural gas hydrates may be tough nut to crack

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.

    2001-12-01

    Gas hydrates are methane molecules trapped in cages of water molecules, yielding a substance with a slushy, sherbet-like consistency. Drilling for hydrates is similar to conventional oil and gas drilling, however, the secret to economic production still remains hidden. Hydrates exist in abundance in such places as deep ocean floor and below ground in some polar regions. The real challenge lies in producing gas from this resource, inasmuch as there is no existing technology for production of gas specifically from methane hydrates. This paper describes an international research program, involving a five-country partnership to spud the first of three wells into the permafrost of the Mackenzie River Delta in the Northwest Territories. The project, worth about $15 million, has brought together public funding and expertise from Japan, Germany, India as well as the Canadian and US Geological Surveys and the US Dept. of Energy in an effort to gain information on the production response of gas hydrates. The operator of the project is Japan Petroleum Exploration Company of Canada, a subsidiary of Japan National Oil Corporation. Since Japan is poor in domestic hydrocarbon resources, but is surrounded by deep water that contains potential for gas hydrates, Japan has a great deal riding on the success of this project. Germany and the United States are also very much interested. Current thinking is that gas is in contact with the hydrates and that it should be possible to develop a free gas reservoir as if it were a conventional deposit. As the free gas is drawn off, the pressure is reduced on the hydrates in contact with it , the hydrates dissociate from the gas and replenish the conventional reservoir. So far this is still only a theory, but it appears to be a sensible approach to hydrate production. 1 photo.

  7. Waters of Hydration of Cupric Hydrates: A Comparison between Heating and Absorbance Methods

    Science.gov (United States)

    Barlag, Rebecca; Nyasulu, Frazier

    2011-01-01

    The empirical formulas of four cupric hydrates are determined by measuring the absorbance in aqueous solution. The Beer-Lambert Law is verified by constructing a calibration curve of absorbance versus known Cu[superscript 2+](aq) concentration. A solution of the unknown hydrate is prepared by using 0.2-0.3 g of hydrate, and water is added such…

  8. Methane hydrate dissociation using inverted five-spot water flooding method in cubic hydrate simulator

    International Nuclear Information System (INIS)

    Li, Gang; Li, Xiao-Sen; Li, Bo; Wang, Yi

    2014-01-01

    The combination forms of the hydrate dissociation methods in different well systems are divided into 6 main patterns. Dissociation processes of methane hydrate in porous media using the inverted five-spot water flooding method (Pattern 4) are investigated by the experimental observation and numerical simulation. In situ methane hydrate is synthesized in the Cubic Hydrate Simulator (CHS), a 5.832-L cubic reactor. A center vertical well is used as the hot water injection well, while the four vertical wells at the corner are the gas and water production wells. The gas production begins simultaneously with the hot water injection, while after approximately 20 min of compression, the water begins to be produced. One of the common characteristics of the inverted five-spot water flooding method is that both the gas and water production rates decrease with the reduction of the hydrate dissociation rate. The evaluation of the energy efficiency ratio might indicate the inverted five-spot water flooding as a promising gas producing method from the hydrate reservoir. - Highlights: • A three-dimensional 5.8-L cubic pressure vessel is developed. • Gas production of hydrate using inverted five-spot flooding method is studied. • Water/gas production rate and energy efficiency ratio are evaluated. • Temperature distributions of numerical simulation and experiment agree well. • Hydrate dissociation process is a moving boundary problem in this study

  9. The influence of reactivation by hydration of spent SO{sub 2} sorbents on their impact fragmentation in fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Montagnaro, F.; Salatino, P.; Santoro, L.; Scala, F. [University of Naples Federico II, Naples (Italy)

    2010-09-01

    The relationship between calcination/sulphation and attrition/fragmentation of calcium-based SO{sub 2} sorbents in fluidized bed (FB) combustors has long been recognized, but only recently did attrition by impact receive due consideration. There is limited available information in the literature on the propensity of exhausted calcium-based sorbents to undergo high-velocity impact fragmentation after they have been reactivated by steam or water hydration. The present study addresses the relationship between hydration-induced reactivation of spent Ca-based sorbents and attrition by impact loading. The sorbent used in this work (a high-calcium Italian limestone) was pre-processed (sulphation at 850{sup o}C in a lab-scale FB, water hydration for 3 h at 25{sup o}C in a thermostatic bath, steam hydration for 3 h at 250 degrees C in a tubular reactor, dehydration at 850{sup o}C in the FB) and subjected to impact tests in a purposely designed impact test rig, operated with particle impact velocities ranging from 4 to 45 m s{sup -1}. The particle size distribution of the debris was worked out to define a fragmentation index and a probability density function of the size of generated fragments. The effect of hydration/reactivation of spent sorbent on propensity to undergo impact fragmentation was assessed, and results are discussed in the light of a mechanistic framework. It was observed that the prevailing particle breakage pattern was splitting/chipping for water-reactivated samples, disintegration for steam-reactivated samples. Characterization of sorbent microstructure by porosimetry and microscopic investigation on the reactivated samples highlighted a clear relationship between the extent of fragmentation and the cumulative specific volume of mesopores.

  10. Evaluation of aging and hydration in natural volcanic glass: magnetic property variations during artificial aging and hydration experiments

    Science.gov (United States)

    Bowles, J. A.; Patiman, A.

    2017-12-01

    The recorded geomagnetic field intensity is a function of magnetic mineralogy, grain size, and mineral concentration as well as material stability in nature and during laboratory experiments. Fresh, unhydrated, volcanic glasses are recognized as a nearly ideal natural material for use in paleointensity experiments because they contain the requisite single domain to pseudo-single-domain magnetic particles. Although alteration of magnetic mineralogy can be monitored during the experiments, it is unclear how mineralogy and hence magnetization might change with age as the metastable glass structure relaxes and/or the glass becomes hydrated. Bulk magnetic properties as a function of age show no clear trend, even over hundreds of millions of years. This may be due to the fact that even in fresh, unhydrated glass, there are small-scale differences in magnetic properties due to variation cooling rate or composition variations. Therefore, in order to better understand how magnetic mineralogy evolves with time and hydration, we conducted artificial aging and hydration experiments on fresh, unhydrated rhyolitic (South Deadman Creek, California, 650-yr) and basaltic (Axial Seamount, 2011) end-member glasses. Here, we present the results of artificial aging and hydration experiments. Elevated temperatures accelerate the glass relaxation process in a way that relaxation time decreases with increasing temperature. Aged samples are dry-annealed at 200, 300 and 400 °C for up to 240 days. A second set of samples are hydrated under pressure at 300°C and 450°C. In all cases, isothermal remanent magnetization (IRM) acquisition is monitored to assess changes in the coercivity spectrum and saturation IRM. Preliminary aging results show that in basaltic and rhyolitic glass there is one main peak coercivity at 150 mT and 35 mT, respectively. An increasing sIRM and decreasing peak coercivity trend is observed in basaltic glass whereas no trend is shown in the rhyolitic glass in both

  11. Novel binder-free forming of Al2O3 ceramics by microwave-assisted hydration reaction

    International Nuclear Information System (INIS)

    Shirai, Takashi; Yasuoka, Masaki; Watari, Koji

    2008-01-01

    A novel binder-free forming of ceramics via microwave irradiation is developed. The irradiation of microwave to an alumina green body enhances the hydration reaction strongly between water and particle surfaces, creating surface aluminum trihydroxides structure adjacent to particles that bind them together tightly. This process makes it possible to manufacture mechanically strong green bodies with excellent shape retention ability without the use of organic binders

  12. Formation rate of natural gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Mork, Marit

    2002-07-01

    The rate of methane hydrate and natural gas hydrate formation was measured in a 9.5 litre stirred tank reactor of standard design. The experiments were performed to better understand the performance and scale-up of a reactor for continuous production of natural gas hydrates. The hydrate formation rate was measured at steady-state conditions at pressures between 70 and 90 bar and temperatures between 7 and 15 deg C. Between 44 and 56 % of the gas continuously supplied to the reactor was converted to hydrate. The experimental results show that the rate of hydrate formation is strongly influenced by gas injection rate and pressure. The effect of stirring rate is less significant and subcooling has no observable effect on the formation rate. Hydrate crystal concentration and gas composition do not influence the hydrate formation rate. Observations of produced hydrate crystals indicate that the crystals are elongated, about 5 micron in diameter and 10 micron long. Analysis of the results shows that the rate of hydrate formation is dominated by gas-liquid mass transfer. A mass transfer model, the bubble-to-crystal model, was developed for the hydrate formation rate in a continuous stirred tank reactor, given in terms of concentration driving force and an overall mass transfer coefficient. The driving force is the difference between the gas concentration at the gas-liquid interface and at the hydrate crystal surface. These concentrations correspond to the solubility of gas in water at experimental temperature and pressure and the solubility of gas at hydrate equilibrium temperature and experimental pressure, respectively. The overall mass transfer coefficient is expressed in terms of superficial gas velocity and impeller power consumption, parameters commonly used in study of stirred tank reactors. Experiments and modeling show that the stirred tank reactor has a considerable potential for increased production capacity. However, at higher hydrate production rates the

  13. Comparison of Freezing and Hydrate Formation Methods in Removing Chloride and Bromide Ions from Brine

    Directory of Open Access Journals (Sweden)

    Marzieh Fattahi

    2018-01-01

    Full Text Available The growing population and enhanced industrial activities coupled with limitations on freshwater availability have led to efforts to desalinate salt water from the seas. Membrane and thermal technologies are the two commonly used for this purpose. In this study, the direct freezing and hydrate formation techniques were used for salt water desalination. Materials and Methods: Distilled water, sodium chloride, and sodium bromide were used as raw materials in the experiments. The experimental setup included a stationary reactor with two coaxial cylinders, in which ice crystals were deposited outside the cool inner cylinder to increase the salt concentration in the residual brine. An electrical conductivity instrument was used to measure sal removal. Results: Salt removal was shown to decrease with increasing salt concentration in the direct freeze method. A different trend was, however, observed in the hydrate formation method; salt removal was negligible at low concentrations in this method but increased at high concentrations before a constant value was reached. Overall, the hydrate formation recorded a higher salt removal efficiency than the other method. To investigate the effect of anion size on salt removal efficiency, experiments were carried out using NaCl and NaBr, which have the same cation but different anion sizes. Result showed that removal efficiency increased with increasing anion size. Conclusion: It was found that increasing ion radius leads to the lower likelihood of ion presence in the crystal lattice, thereby reducing salt removal efficiency. On the other hand, low concentrations of salt serve as site for the generation of cores, which naturally serve as removal accelerators.

  14. A New Approach to Modeling Densities and Equilibria of Ice and Gas Hydrate Phases

    Science.gov (United States)

    Zyvoloski, G.; Lucia, A.; Lewis, K. C.

    2011-12-01

    , and NaCl in permafrost conditions are presented to illustrate the predictive capabilities of the multi-scale GHC equation. In particular, we show that the GHC equation correctly predicts 1) The density of 1h ice and methane hydrate to within 1%. 2) The melting curve for hexagonal ice. 3) The hydrate-gas phase co-existence curve. 4) Various phase equilibrium involving ice and hydrate phases. We also show that the GHC equation approach can be readily incorporated into subsurface flow simulation programs like FEHM to predict the behavior of permafrost and other reservoirs where ice and/or hydrates are present. Many geometric illustrations are used to elucidate key concepts. References A. Lucia, A Multi-Scale Gibbs Helmholtz Constrained Cubic Equation of State. J. Thermodynamics: Special Issue on Advances in Gas Hydrate Thermodynamics and Transport Properties. Available on-line [doi:10.1155/2010/238365]. A. Lucia, B.M. Bonk, A. Roy and R.R. Waterman, A Multi-Scale Framework for Multi-Phase Equilibrium Flash. Comput. Chem. Engng. In press.

  15. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)

    2012-07-01

    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  16. Indian continental margin gas hydrate prospects : results of the Indian National Gas Hydrate Program (NGHP) expedition 01

    Energy Technology Data Exchange (ETDEWEB)

    Collett, T [United States Geological Survey, Denver, CO (United States); Riedel, M. [McGill Univ., Montreal, PQ (Canada). Dept. of Earth and Planetary Sciences; Cochran, J.R. [Columbia Univ., Palisades, NY (United States). Lamont Doherty Earth Observatory; Boswell, R. [United States Dept. of Energy, Morgantown, WV (United States). National Energy Technology Lab; Kumar, P. [Pushpendra Kumar Oil and Natural Gas Corp. Ltd., Mumbai (India). Inst. of Engineering and Ocean Technology; Sathe, A.V. [Oil and Natural Gas Corp. Ltd., Uttaranchal (India). KDM Inst. of Petroleum Exploration

    2008-07-01

    The geologic occurrence of gas hydrate deposits along the continental margins of India were investigated in the first expedition of the Indian National Gas Hydrate Program (NGHP). The objective was to determine the regional context and characteristics of the gas hydrate deposits through scientific ocean drilling, logging, and analytical activities. A research drill ship was the platform for the drilling operation. The geological and geophysical studies revealed 2 geologically distinct areas with inferred gas hydrate occurrences, notably the passive continental margins of the Indian Peninsula and along the Andaman convergent margin. The NGHP Expedition 01 focused on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these 2 diverse settings. The study established the presence of gas hydrates in Krishna-Godavari, Mahanadi and Andaman basins. Site 10 in the Krishna-Godavari Basin was discovered to be the one of the richest gas hydrate accumulations yet documented, while site 17 in the Andaman Sea had the thickest and deepest gas hydrate stability zone yet known. The existence of a fully-developed gas hydrate system in the Mahanadi Basin was also discovered. Most of the gas hydrate occurrences discovered during this expedition appeared to contain mostly methane which was generated by microbial processes. However, there was also evidence of a thermal origin for a portion of the gas within the hydrates of the Mahanadi Basin and the Andaman offshore area. Gas hydrate in the Krishna-Godavari Basin appeared to be closely associated with large scale structural features, in which the flux of gas through local fracture systems, generated by the regional stress regime, controlled the occurrence of gas hydrate. 3 refs., 1 tab., 2 figs.

  17. Growth mode transition of tetrahydrofuran clathrate hydrates in the guest/host concentration boundary layer.

    Science.gov (United States)

    Sabase, Yuichiro; Nagashima, Kazushige

    2009-11-19

    Clathrate hydrates are known to form a thin film along a guest/host boundary. We present here the first report of tetrahydrofuran (THF) clathrate hydrate formation in a THF/water concentration boundary layer. We found that the THF-water system also forms a hydrate film separating the guest/host phases. The lateral growth rate of the film increases as supercooling increases. The thickness of the film at the growth tip decreases as supercooling and the lateral growth rate increase. These tendencies are consistent with reports of experiments for other hydrates and predictions of heat-transfer models. After film formation and slight melting, two types of growth modes are observed, depending on temperature T. At T = 3.0 degrees C, the film slowly thickens. The thickening rate is much lower than the lateral growth rate, as reported for other hydrates. At T agglomerate of small polycrystalline hydrates forms in each phase. Grain boundaries in the film and pore spaces in the agglomerate act as paths for permeation of each liquid. Timing when continuous nucleation starts is dominantly controlled by the time of initiation of liquid permeation through the film. Digital particle image velocimetry analysis of the agglomerate shows that it expands not by growth at the advancing front but rather by continuous nucleation in the interior. Expansion rates of the agglomerate tend to be higher for the cases of multipermeation paths in the film and the thinner film. We suppose that the growth mode transition to continuous nucleation is caused by the memory effect due to slight melting of the hydrate film.

  18. The rates measurement of methane hydrate formation and dissociation using micro-drilling system application for gas hydrate exploration

    Energy Technology Data Exchange (ETDEWEB)

    Bin Dou [Engineering Faculty, China Univ. of Geosciences, Wuhan (China)]|[Inst. of Petroleum Engineering, Technology Univ. of Clausthal (Germany); Reinicke, K.M. [Inst. of Petroleum Engineering, Technology Univ. of Clausthal (Germany); Guosheng Jiang; Xiang Wu; Fulong Ning [Engineering Faculty, China Univ. of Geosciences, Wuhan (China)

    2006-07-01

    When drilling through gas hydrate bearing formations, the energy supplied by virtue of the drilling process may lead to a destabilization of the hydrates surrounding the wellbore. Therefore, as the number of oil and gas fields being development in deepwater and onshore arctic environments increases, greater emphasis should be placed on quantifying the risks, gas hydrates pose to drilling operations. The qualification of these risks requires a comprehensive understanding of gas hydrate-formation and dissociation as a result of drilling induced processes. To develop the required understanding of gas hydrat formation and dissociation, the authors conducted laboratory experiments by using a micro-drilling system, to study the dissociation rates of methane hydrates contained in a tank reactor. The test facility used is a development of China University of Geosciences. The rates of methane hydrate formation and dissociation in the tank reactor were measured at steady-state conditions at pressures ranging from 0.1 to 25 MPa and temperatures ranging from -5 to 20 C. The experimental results show that the rate of hydrate formation is strongly influenced by the fluid system used to form the hydrates, pressure and temperature, with the influence of the temperature on methane hydrate dissociation being stronger than that of the pressure. Drilling speed, drilling fluids and hydrate dissociation inhibitors were also shown to influence hydrate dissociation rate. The derived results have been used to predict hydrate drilling stability for several drilling fluid systems.

  19. Proteins associated with adaptation of cultured tobacco cells to NaCl

    International Nuclear Information System (INIS)

    Singh, N.K.; Handa, A.K.; Hasegawa, P.M.; Bressan, R.A.

    1985-01-01

    Cultured tobacco cells (Nicotiana tabacum L. cv Wisconsin 38) adapted to grow in medium containing high levels of NaCl or polyethylene glycol (PEG) produce several new or enhanced polypeptide bands on sodium dodecyl sulfate-polyarylamide gel electrophoresis. The intensities of some of the polypeptide bands increase with increasing levels of NaCl adaptation, while the intensities of other polypeptide bands are reduced. Synthesis of 26-kilodalton polypeptide(s) occurs at two different periods during culture growth of NaCl adapted cells. Unadapted cells also incorporate 35 S into a 26-kilodalton polypeptide during the later stage of culture growth beginning at midlog phase. The 26-kilodalton polypeptides from adapted and unadapted cells have similar partial proteolysis peptide maps and are immunologically cross-reactive. During adaptation to NaCl, unadapted cells synthesize and accumulate a major 26-kilodalton polypeptide, and the beginning of synthesis corresponds to the period of osmotic adjustment and culture growth. From their results, the authors suggest an involvement of the 26-kilodalton polypeptide in the adaptation of cultured tobacco cells to NaCl and water stress. 38 references, 11 figures, 2 tables

  20. Study of methane hydrate inhibition using AA/AMPS copolymers; Etude du mecanisme d'action d'une famille de copolymeres inhibiteurs cinetiques susceptibles de modifier la cristallisation des hydrates de methane

    Energy Technology Data Exchange (ETDEWEB)

    Cingotti, B.

    1999-12-02

    Gas hydrates are inclusion compounds that form when water and natural gas come into contact at high pressure and low temperature. In hydrocarbon production, these conditions can be reached in cold areas (artic zones) or in subsea pipelines where hydrates formation can block production facilities. For a few years, a lot of work has been done to develop a new class of low dosage additives called kinetic inhibitors. These hydrosoluble additives are crystallization inhibitors: they delay nucleation and/or slow down crystal growth and/or agglomeration. In this work, we have studied methane hydrate inhibition using AA/AMPS copolymers. To study methane hydrate crystallization, we use a semibatch reactor equipped with a turbidimetric sensor allowing to measure the turbidity spectrum in the reactor. From turbidity measurements, it is possible to calculate the particles size distribution. This set up allows us to obtain macroscopic results (induction time, gas consumption rate) and microscopic results (hydrate particles granulometry). With this set up, we have studied methane hydrate crystallization without additive at macroscopic and microscopic scale and at different pressures and stirring rates. Copolymers have then been tested in the same experimental conditions. Influence of copolymer composition, copolymer molecular mass and additive concentration has been studied. These copolymers have an inhibiting effect on crystals formation kinetics. Optimal performances are obtained for an AMPS molar ratio or 50 %. Furthermore, minimum additive concentration and minimum mean molecular mass are needed to obtain a kinetic effect on crystals. The higher the pressure (driving force) and the higher the stirring rate (gas transfer), the higher these minimum values. To understand results with and without additives, we have used a model. Relating gas consumption rate to crystal growth, it seems that the copolymer inhibits crystal growth by means of a dead zone. Then, using a model based

  1. Experimental investigation of methane release from hydrate formation in sandstone through both hydrate dissociation and CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Husebo, J.; Graue, A.; Kvamme, B. [Bergen Univ., Bergen (Norway). Dept. of Physics and Technology; Stevens, J.; Howard, J.J. [ConocoPhillips, Ponca City, OK (United States); Baldwin, B.A. [Green Country Petrophysics LLC, Dewey, OK (United States)

    2008-07-01

    Large amounts of natural gas trapped in hydrate reservoirs are found in Arctic regions and in deep offshore locations around the world. Natural gas production from hydrate deposits offer significant potential for future energy needs. However, research is needed in order to propose potential production schemes for natural gas hydrates. Natural gas molecules can be freed from hydrate structured cages by depressurization, by heating and by exposing the hydrate to a substance that will form a thermodynamically more stable hydrate structure. This paper provided a comparison of two approaches for releasing methane from methane hydrate in porous sandstone. The study scope covered the dissociation rate of methane hydrate in porous media through depressurization, and also referred to previous work done on producing methane from hydrates in sandstone while sequestering carbon dioxide (CO{sub 2}). The study was conducted in a laboratory setting. The paper discussed the experimental design which included the placing of a pressure- and temperature-controlled sample holder inside the bore of a magnetic resonance imager. The experimental procedures were then outlined, with reference to hydrate formation; carbon dioxide sequestration; hydrate dissociation experiments with constant volume; and hydrate dissociation experiments at constant pressure. The constant volume experiments demonstrated that in order to dissociate a large amount of hydrate, the initial depressurization had to be significantly lower than the hydrate stability pressure. 9 refs., 9 figs.

  2. Microstructure of natural hydrate host sediments

    International Nuclear Information System (INIS)

    Jones, K.W.; Kerkar, P.B.; Mahajan, D.; Lindquist, W.B.; Feng, H.

    2007-01-01

    There is worldwide interest in the study of natural gas hydrate because of its potential impact on world energy resources, control on seafloor stability, significance as a drilling hazard and probable impact on climate as a reservoir of a major greenhouse gas. Gas hydrates can (a) be free floating in the sediment matrix (b) contact, but do not cement, existing sediment grains, or (c) actually cement and stiffen the bulk sediment. Seismic surveys, often used to prospect for hydrates over a large area, can provide knowledge of the location of large hydrate concentrations because the hydrates within the sediment pores modify seismic properties. The ability to image a sample at the grain scale and to determine the porosity, permeability and seismic profile is of great interest since these parameters can help in determining the location of hydrates with certainty. We report here on an investigation of the structure of methane hydrate sediments at the grain-size scale using the synchrotron radiation-based computed microtomography (CMT) technique. Work has started on the measurements of the changes occurring as tetrahydrofuran hydrate, a surrogate for methane hydrate, is formed in the sediment

  3. Observed gas hydrate morphologies in marine sediment

    Energy Technology Data Exchange (ETDEWEB)

    Holland, M.; Schultheiss, P.; Roberts, J.; Druce, M. [Geotek Ltd., Daventry, Northamptonshire (United Kingdom)

    2008-07-01

    The morphology of gas hydrate in marine sediments determines the basic physical properties of the sediment-hydrate matrix and provides information regarding the formation of gas hydrate deposits, and the nature of the disruption that will occur on dissociation. Small-scale morphology is useful in estimating the concentrations of gas hydrate from geophysical data. It is also important for predicting their response to climate change or commercial production. Many remote techniques for gas hydrate detection and quantification depend on hydrate morphology. In this study, morphology of gas hydrate was examined in HYACINTH pressure cores from recent seagoing expeditions. Visual and infrared observations from non-pressurized cores were also used. The expeditions and pressure core analysis were described in detail. This paper described the difference between two types of gas hydrate morphologies, notably pore-filling and grain-displacing. Last, the paper addressed the impact of hydrate morphology. It was concluded that a detailed morphology of gas hydrate is an essential component for a full understanding of the past, present, and future of any gas hydrate environment. 14 refs., 4 figs.

  4. Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand.

    Science.gov (United States)

    Cai, Li; Tong, Meiping; Wang, Xueting; Kim, Hyunjung

    2014-07-01

    This study investigated the influence of two representative suspended clay particles, bentonite and kaolinite, on the transport of titanium dioxide nanoparticles (nTiO2) in saturated quartz sand in both NaCl (1 and 10 mM ionic strength) and CaCl2 solutions (0.1 and 1 mM ionic strength) at pH 7. The breakthrough curves of nTiO2 with bentonite or kaolinite were higher than those without the presence of clay particles in NaCl solutions, indicating that both types of clay particles increased nTiO2 transport in NaCl solutions. Moreover, the enhancement of nTiO2 transport was more significant when bentonite was present in nTiO2 suspensions relative to kaolinite. Similar to NaCl solutions, in CaCl2 solutions, the breakthrough curves of nTiO2 with bentonite were also higher than those without clay particles, while the breakthrough curves of nTiO2 with kaolinite were lower than those without clay particles. Clearly, in CaCl2 solutions, the presence of bentonite in suspensions increased nTiO2 transport, whereas, kaolinite decreased nTiO2 transport in quartz sand. The attachment of nTiO2 onto clay particles (both bentonite and kaolinite) were observed under all experimental conditions. The increased transport of nTiO2 in most experimental conditions (except for kaolinite in CaCl2 solutions) was attributed mainly to the clay-facilitated nTiO2 transport. The straining of larger nTiO2-kaolinite clusters yet contributed to the decreased transport (enhanced retention) of nTiO2 in divalent CaCl2 solutions when kaolinite particles were copresent in suspensions.

  5. Study of the mechanism of a kinetic inhibitor on the crystallization of methane hydrate; Etude du mecanisme d'action d'un inhibiteur cinetique sur la cristallisation de l'hydrate de methane

    Energy Technology Data Exchange (ETDEWEB)

    Pic, J.St.

    2000-01-14

    In the offshore exploitation of liquid fuels, problems of line plugging often occur, especially due to gas hydrates crystallization. At the present time, operators resort to antifreeze additives, which efficiency is defeated either by harder operating conditions or by a more severe environmental legislation. So research recently shifted towards a new class of 'low dosage inhibitors'. In order to understand the influence of such additives, we designed a high pressure reactor, fitted with a liquid injection device and an in situ turbidimetric sensor. Access to both the particle size distribution of the suspension during the first stages of crystallization, and the total gas consumption, allows us to characterize the kinetics of methane hydration formation. First, we developed an original experimental procedure, which generates an initial 'breeding' of the solution, and thus improves the mastering of nucleation. The induction time then becomes one of the relevant parameters to investigate the performance of inhibitors. Afterwards, we performed a first series of experiments which allowed us to determine the influence of the operating conditions (pressure and stirring) on the evolution of the particle size distribution, in the absence of additives. Then, we pointed out the inhibiting effect of a model kinetic inhibitor, polyvinylpyrrolidone. When dissolved in the solution before crystallization occurs, it increases the induction delay, decreases the gas consumption rate and also slows down the birth of new particles for several hours. On the contrary, when injected in the medium during crystallization, this polymer no more affects the reaction kinetics. At last, we raise the bases for a modelling, taking into account the elementary crystallization processes of nucleation, growth and particles agglomeration. A parametric study has been confronted to the experimental data. It enables us to suggest hypotheses regarding the effect of gas hydrates kinetic

  6. Gas hydrates forming and decomposition conditions analysis

    Directory of Open Access Journals (Sweden)

    А. М. Павленко

    2017-07-01

    Full Text Available The concept of gas hydrates has been defined; their brief description has been given; factors that affect the formation and decomposition of the hydrates have been reported; their distribution, structure and thermodynamic conditions determining the gas hydrates formation disposition in gas pipelines have been considered. Advantages and disadvantages of the known methods for removing gas hydrate plugs in the pipeline have been analyzed, the necessity of their further studies has been proved. In addition to the negative impact on the process of gas extraction, the hydrates properties make it possible to outline the following possible fields of their industrial use: obtaining ultrahigh pressures in confined spaces at the hydrate decomposition; separating hydrocarbon mixtures by successive transfer of individual components through the hydrate given the mode; obtaining cold due to heat absorption at the hydrate decomposition; elimination of the open gas fountain by means of hydrate plugs in the bore hole of the gushing gasser; seawater desalination, based on the hydrate ability to only bind water molecules into the solid state; wastewater purification; gas storage in the hydrate state; dispersion of high temperature fog and clouds by means of hydrates; water-hydrates emulsion injection into the productive strata to raise the oil recovery factor; obtaining cold in the gas processing to cool the gas, etc.

  7. Temperature dependence of thermal pressure for NaCl

    Science.gov (United States)

    Singh, Chandra K.; Pande, Brijesh K.; Pandey, Anjani K.

    2018-05-01

    Engineering applications of the materials can be explored upto the desired limit of accuracy with the better knowledge of its mechanical and thermal properties such as ductility, brittleness and Thermal Pressure. For the resistance to fracture (K) and plastic deformation (G) the ratio K/G is treated as an indication of ductile or brittle character of solids. In the present work we have tested the condition of ductility and brittleness with the calculated values of K/G for the NaCl. It is concluded that the nature of NaCl can be predicted upto high temperature simply with the knowledge of its elastic stiffness constant only. Thermoelastic properties of materials at high temperature is directly related to thermal pressure and volume expansion of the materials. An expression for the temperature dependence of thermal pressure is formulated using basic thermodynamic identities. It is observed that thermal pressure ΔPth calculated for NaCl by using Kushwah formulation is in good agreement with the experimental values also the thermal pressure increases with the increase in temperature.

  8. HYDRATE CORE DRILLING TESTS

    Energy Technology Data Exchange (ETDEWEB)

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate

  9. Importance of the rate of hydration of pharmaceutical preparations of guar gum; a new in vitro monitoring method.

    Science.gov (United States)

    Ellis, P R; Morris, E R

    1991-05-01

    Dietary supplements of guar gum are known to improve blood glucose control in diabetic patients. The efficacy of guar is probably dependent mainly upon its capacity to hydrate rapidly and thus to increase viscosity in the small intestine post-prandially. Measurement of the rate of hydration in vitro might therefore be a useful index of the effectiveness of guar formulations. A simple method for monitoring the hydration rate of guar gum has been developed, which involves measuring the changes in viscosity at discrete time intervals over a period of 5 h using a Brookfield RVT rotoviscometer. Six different samples of guar gum (four pharmaceutical preparations and two food grades of guar flour) were hydrated in sealed glass jars rotated at 6 rev min-1 in order to prevent particle aggregation. Marked differences in hydration rate and ultimate (maximum) viscosity between the different guar samples were observed. Three of the four pharmaceutical preparations were lower in viscosity than the food grades of guar flour during the first 60 min of hydration. Two of the preparations hydrated so slowly that even after 5 h they attained viscosity levels of only 60% of their ultimate viscosity. These results may explain why some guar gum preparations are clinically ineffective.

  10. Calcium Aluminate Cement Hydration Model

    Directory of Open Access Journals (Sweden)

    Matusinović, T.

    2011-01-01

    Full Text Available Calcium aluminate cement (AC is a very versatile special cement used for specific applications. As the hydration of AC is highly temperature dependent, yielding structurally different hydration products that continuously alter material properties, a good knowledge of thermal properties at early stages of hydration is essential. The kinetics of AC hydration is a complex process and the use of single mechanisms models cannot describe the rate of hydration during the whole stage.This paper examines the influence of temperature (ϑ=5–20 °C and water-to-cement mass ratio (mH /mAC = 0.4; 0.5 and 1.0 on hydration of commercial iron-rich AC ISTRA 40 (producer: Istra Cement, Pula, Croatia, which is a part of CALUCEM group, Figs 1–3. The flow rate of heat generation of cement pastes as a result of the hydration reactions was measured with differential microcalorimeter. Chemically bonded water in the hydrated cement samples was determined by thermo-gravimetry.Far less heat is liberated when cement and water come in contact for the first time, Fig. 1, than in the case for portland cement (PC. Higher water-to-cement ratio increases the heat evolved at later ages (Fig. 3 due to higher quantity of water available for hydration. A significant effect of the water-to-cement ratio on the hydration rate and hydration degree showed the importance of water as being the limiting reactant that slows down the reaction early. A simplified stoichiometric model of early age AC hydration (eq. (8 based on reaction schemes of principal minerals, nominally CA, C12A7 and C4AF (Table 1, was employed. Hydration kinetics after the induction period (ϑ < 20 °C had been successfully described (Fig. 4 and Table 2 by a proposed model (eq. (23 which simultaneously comprised three main mechanisms: nucleation and growth, interaction at phase boundary, and mass transfer. In the proposed kinetic model the nucleation and growth is proportional to the amount of reacted minerals (eq

  11. A high yield process for hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Giavarini, C.; Maccioni, F. [Univ. of Roma La Sapienza, Roma (Italy). Dept. of Chemical Engineering

    2008-07-01

    Due to the large quantities of natural gas stored in deep ocean hydrates, hydrate reservoirs are a substantial energy resource. Hydrates concentrate methane by as much as a factor of 164. As such, several natural gas transportation and storage systems using gas hydrates have been studied, and many of them are nearing practical use. In these systems, the hydrate is produced as a slurry by a spray process at approximately 7 megapascal (MPa), and then shaped into pellets. The use of a spray process, instead of a conventional stirred vessel is necessary in order to reach high hydrate concentrations in the hydrate-ice system. This paper presented a new procedure to produce a bulk of concentrated methane hydrate in a static traditional reactor at moderate pressure, controlling pressure and temperature in the interval between ice melting and the hydrate equilibrium curve. This paper discussed the experimental procedure which included formation of methane hydrate at approximately 5 MPa and 2 degrees Celsius in a reaction calorimeter at a volume of two liters. Results were also discussed. It was concluded that the procedure seemed suitable for the development of a gas hydrate storage and transport technology. It was found that the spray procedure took more time, but could be sped up and made continuous by using two vessels, one for hydrate formation and the other for hydrate concentration. The advantage was the production of a concentrated hydrate, using a simpler equipment and working at lower pressures respect to the spray process. 9 refs., 5 figs.

  12. Detection and Production of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand

  13. The CO{sub 2} hydrate slurry; Le coulis de glace

    Energy Technology Data Exchange (ETDEWEB)

    Sari, O.; Hu, J.; Eicher, S.; Brun, F. [Institute of Thermal Engineering, University of Applied Sciences of Western Switzerland, Yverdon-les-Bains (Switzerland); Sari, O.; Hu, J. [Clean Cooling Solutions, spin off of University of Applied Sciences of Western Switzerland, Yverdon-les-Bains (Switzerland); Homsy, P. [Nestec Ltd, Vevey (Switzerland); Logel, J.-C. [Axima Refrigeration, Bischheim (France)

    2007-12-15

    A new, very promising refrigerant was developed, which could be used in industrial processes as well as air conditioners: the CO{sub 2} hydrate slurry. Replacing hydrochlorofluorocarbon HCFC refrigerants has a high priority, due to the strong negative environmental impact of these fluids. New refrigerants have to be environment friendly, non-inflammable, cheap and made of natural materials. CO{sub 2} hydrate slurries and/or a mixture of ice slurry and CO{sub 2} hydrate slurry meet these requirements. The University of Applied Sciences of Western Switzerland in Yverdon, together with industrial partners, investigated the properties of such slurries. The slurries were created using the Coldeco process: the refrigerating fluid is directly injected into the liquid brine. The evaporation of the refrigerating fluid cools the liquid down to its freezing point and homogeneously distributed small crystals appear in the liquid. A test rig was built to measure the physical and chemical properties of the slurries obtained in this way. CO{sub 2} hydrate slurries have a higher energy storage capacitance (500 kJ/kg) than ice slurries (333 kJ/kg). The production of CO{sub 2} hydrate slurries in large quantities in a continuous process was demonstrated. The solid particle concentration was 10%, the pressure amounted to 30 bar and the temperature 2 to 4 {sup o}C. Such slurries can be pumped and circulated in pipe networks. Stainless steel is the appropriate material for such networks. However, the main advantage of the new refrigerant will be, according to the authors, a reduced energy consumption compared to traditional refrigerating cycles: the difference between the temperature required by the user and the refrigerant temperature is reduced, thanks to the use of the latent heat in the new process.

  14. Neutralization of Hydroxide Ion in Melt-Grown NaCl Crystals

    Science.gov (United States)

    Otterson, Dumas A.

    1961-01-01

    Many recent studies of solid-state phenomena, particularly in the area of crystal imperfections, have involved the use of melt-grown NaCl single crystals. Quite often trace impurities in these materials have had a prominent effect on these phenomena. Trace amounts of hydroxide ion have been found in melt-grown NaCl crystals. This paper describes a nondestructive method of neutralizing the hydroxide ion in such crystals. Crystals of similar hydroxide content are maintained at an elevated temperature below the melting point of NaCl in a flowing atmosphere containing. dry hydrogen chloride. Heat treatment is continued until an analysis of the test specimens shows no excess hydroxide ion. A colorimetric method previously described4 is used for this analysis.

  15. The initial stages of NaCl dissolution: Ion or ion pair solvation?

    Science.gov (United States)

    Klimes, Jiri; Michaelides, Angelos

    2009-03-01

    The interaction of water with rock salt (NaCl) is important in a wide variety of natural processes and human activities. A lot is known about NaCl dissolution at the macroscopic level but we do not yet have a detailed atomic scale picture of how salt crystals dissolve. Here we report an extensive series of density functional theory, forcefield and molecular dynamics studies of water clusters at flat and defective NaCl surfaces and NaCl clusters. The focus is on answering seemingly elementary questions such as how many water molecules are needed before it becomes favorable to extract an ion or a pair of ions from the crystal or the cluster. It turns out, however, that the answers to these questions are not so straightforward: below a certain number of water molecules (˜ 12) solvation of individual ions is less costly and above this number solvation of ion pairs is favored. These results reveal a hitherto unknown complexity in the NaCl dissolution process born out of a subtle interplay between water-water and water-ion interactions.

  16. Artificial Hydration and Nutrition

    Science.gov (United States)

    ... Crisis Situations Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans ... Your Health Resources Healthcare Management Artificial Hydration and Nutrition Artificial Hydration and Nutrition Share Print Patients who ...

  17. Alcohol cosurfactants in hydrate antiagglomeration.

    Science.gov (United States)

    York, J Dalton; Firoozabadi, Abbas

    2008-08-28

    Because of availability, as well as economical and environmental considerations, natural gas is projected to be the premium fuel of the 21st century. Natural gas production involves risk of the shut down of onshore and offshore operations because of blockage from hydrates formed from coproduced water and hydrate-forming species in natural gas. Industry practice has been usage of thermodynamic inhibitors such as alcohols often in significant amounts, which have undesirable environmental and safety impacts. Thermodynamic inhibitors affect bulk-phase properties and inhibit hydrate formation. An alternative is changing surface properties through usage of polymers and surfactants, effective at 0.5 to 3 weight % of coproduced water. One group of low dosage hydrate inhibitors (LDHI) are kinetic inhibitors, which affect nucleation rate and growth. A second group of LDHI are antiagglomerants, which prevent agglomeration of small hydrate crystallites. Despite great potential, work on hydrate antiagglomeration is very limited. This work centers on the effect of small amounts of alcohol cosurfactant in mixtures of two vastly different antiagglomerants. We use a model oil, water, and tetrahydrofuran as a hydrate-forming species. Results show that alcohol cosurfactants may help with antiagglomeration when traditional antiagglomerants alone are ineffective. Specifically, as low as 0.5 wt. % methanol cosurfactant used in this study is shown to be effective in antiagglomeration. Without the cosurfactant there will be agglomeration independent of the AA concentration. To our knowledge, this is the first report of alcohol cosurfactants in hydrate antiagglomerants. It is also shown that a rhamnolipid biosurfactant is effective down to only 0.5 wt. % in such mixtures, yet a quaternary ammonium chloride salt, i. e., quat, results in hydrate slurries down to 0.01 wt. %. However, biochemical surfactants are less toxic and biodegradable, and thus their use may prove beneficial even if at

  18. Hydration dependent dynamics in RNA

    International Nuclear Information System (INIS)

    Olsen, Greg L.; Bardaro, Michael F.; Echodu, Dorothy C.; Drobny, Gary P.; Varani, Gabriele

    2009-01-01

    The essential role played by local and collective motions in RNA function has led to a growing interest in the characterization of RNA dynamics. Recent investigations have revealed that even relatively simple RNAs experience complex motions over multiple time scales covering the entire ms-ps motional range. In this work, we use deuterium solid-state NMR to systematically investigate motions in HIV-1 TAR RNA as a function of hydration. We probe dynamics at three uridine residues in different structural environments ranging from helical to completely unrestrained. We observe distinct and substantial changes in 2 H solid-state relaxation times and lineshapes at each site as hydration levels increase. By comparing solid-state and solution state 13 C relaxation measurements, we establish that ns-μs motions that may be indicative of collective dynamics suddenly arise in the RNA as hydration reaches a critical point coincident with the onset of bulk hydration. Beyond that point, we observe smaller changes in relaxation rates and lineshapes in these highly hydrated solid samples, compared to the dramatic activation of motion occurring at moderate hydration

  19. Investigations into surfactant/gas hydrate relationship

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Rudy; Zhang, Guochang; Dearman, Jennifer; Woods, Charles [Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762 (United States)

    2007-03-15

    Gas hydrates have unique physical properties portending useful industrial applications of gas storage, gas separation, or water desalination. When gas hydrates were found in the early 1990s to occur naturally and abundantly in seafloors, three other primary interests and concerns emerged: potential new energy source, climate threat from their greenhouse gases, and seafloor instabilities. This paper presents research showing how anionic synthetic surfactants helped develop an industrial gas hydrate storage process for natural gas and how naturally-occurring in-situ anionic biosurfactants influence the formation and placement of gas hydrates in ocean sediments. The catalytic effects, mechanisms, and surface specificities imparted by synthetic surfactants in the gas storage process and imparted by biosurfactants in porous media are discussed. The Bacillus subtilis bacterium that is indigenous to gas hydrate mounds in the Gulf of Mexico was cultured in the laboratory. Its biosurfactant was separated and found to catalyze gas hydrates in porous media. The experiments indicate that seafloor-biosurfactants can be produced rapidly in-situ to achieve threshold concentrations whereby hydrates are promoted. The biosurfactants accumulate and promote hydrate formation on specific mineral surfaces such as sodium montmorillonite. (author)

  20. Comparison of ice particle morphology crushed from ice chunk and directly solidified from droplet

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.H.; Yoon, Y.S.; Bang, S.Y. [Dongguk Univ., Pil-dong, Chung-gu, Seoul (Korea, Republic of). Dept. of Mechanical Engineering

    2008-07-01

    In order to investigate the transition kinetics of ice to hydrate and to produce standard specimens of hydrate pellet from prepared hydrate powders, fine ice beads with uniform diameters must be fabricated. This paper discussed the construction of several experimental setups for the fabrication of fine ice particle generation. The ultrasonic nozzle was used to produce fine mist which solidified near the free surface of liquid nitrogen bath. The shape and population distribution of ice bead diameters was analyzed. The study also compared ice particles produced by crushing. The surface morphology of ice particles produced with a ball mill was also examined. Experimental results were obtained for an ice shaver, ball mill, bowl for grinding medicine, and ultrasonic nozzle. It was concluded that the information generated from the study was useful in estimating the macroscopic flow characteristics such as permeability of bulk powder and in determining mean effective diameter of irregular shaped particles. Future work was also noted as being underway with different experiments for other cases with different operating conditions. 5 refs., 5 figs.

  1. Arbuscular mycorrhizal fungi mitigates nacl induced adverse effects on solanum lycopersicum l

    International Nuclear Information System (INIS)

    Abeer, H.

    2015-01-01

    The present study aimed to investigate the effects of AMF on the growth and physio-biochemical attributes, antioxidant enzyme activities, plant growth regulators and inorganic nutrients in tomato grown under salt stress condition. Tomato plants were exposed to different concentrations of NaCl alone (0, 50 and 150 mM) and in combination with AMF (0mM+AMF, 50mM+AMF and 150mM+AMF). Spore population and colonization, growth and biomass yield, pigments, membrane stability index and malondialdehyde were negatively affected. Exposure of plants to combination of NaCl and AMF showed positive impact on the above parameters. Proline and antioxidant enzyme activity increased with increasing concentration of NaCl and further increase was observed in plants treated with NaCl in combination with AMF. Acid and alkaline phosphatase, hydrolytic enzymes and pectinase are also affected with increasing concentration of salt. However plants treated with NaCl in combination with AMF balances the above enzymatic activity. Salt stress decreases the auxin concentration in plants but application of AMF has been shown to restore the auxin content. ABA increases with salt concentration but less accumulation of ABA have been found in plants treated with AMF. Regarding the nutrient uptake, Na+ and Na;K ratio increased and P, K, Mg and Ca decreases with increasing concentration of NaCl. Enhanced accumulation of P, K, Mg, Ca and K:N ratio and less uptake of Na+ was observed in presence of AMF. The results confirm that NaCl imposes threat to the survival of tomato plants and application of AMF mitigates the negative effect to an appreciable level. (author)

  2. Accelerated hydration of high silica cements

    International Nuclear Information System (INIS)

    Walker, Colin; Yui, Mikazu

    2012-01-01

    Current Japanese designs for high level radioactive waste (HLW) repositories anticipate the use of both bentonite (buffer and backfill material) and cement based materials. Using hydrated Ordinary Portland Cement (OPC) as a grouting material is undesirable because the associated high pH buffer will have an undisputed detrimental effect on the performance of the bentonite buffer and backfill and of the host rock by changing its porosity. Instead, hydrated low pH cement (LopHC) grouting materials are being developed to provide a pH inferior or equal to 11 to reduce these detrimental effects. LopHC grouting materials use mixtures of superfine OPC (SOPC) clinker and silica fume (SF), and are referred as high silica cements (HSC). The focus of the present study was to identify the development of the unhydrated and hydrated mineral assemblage and the solution chemistry during the hydration of HSC. Since hydration experiments of cementitious materials are notably slow, a ball mill was used to accelerate hydration. This was done for two reasons. Firstly, to develop a method to rapidly hydrate cement based materials without the need for higher temperatures (which can alter the mineral assemblage), and secondly, to ensure that the end point of hydration was reached in a reasonable time frame and so to realize the final mineralogy and solution chemistry of hydrated HSC

  3. A Hydrate Database: Vital to the Technical Community

    Directory of Open Access Journals (Sweden)

    D Sloan

    2007-06-01

    Full Text Available Natural gas hydrates may contain more energy than all the combined other fossil fuels, causing hydrates to be a potentially vital aspect of both energy and climate change. This article is an overview of the motivation, history, and future of hydrate data management using a CODATA vehicle to connect international hydrate databases. The basis is an introduction to the Gas Hydrate Markup Language (GHML to connect various hydrate databases. The accompanying four articles on laboratory hydrate data by Smith et al., on field hydrate data by L?wner et al., on hydrate modeling by Wang et al., and on construction of a Chinese gas hydrate system by Xiao et al. provide details of GHML in their respective areas.

  4. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the

  5. Storage capacity of hydrogen in gas hydrates

    International Nuclear Information System (INIS)

    Tsuda, Takaaki; Ogata, Kyohei; Hashimoto, Shunsuke; Sugahara, Takeshi; Sato, Hiroshi; Ohgaki, Kazunari

    2010-01-01

    The storage capacity of H 2 in the THF, THT, and furan hydrates was studied by p-V-T measurements. We confirmed that the storage and release processes of H 2 in all hydrates could be performed reversibly by pressure swing without destroying of hydrate cages. H 2 absorption in both THT and furan hydrates is much faster than THF hydrate in spite of same unit-cell structure. On the other hand, the storage amounts of H 2 are coincident in the all additive hydrates and would reach at about 1.0 mass% asymptotically.

  6. Properties of samples containing natural gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, determined using Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI)

    Science.gov (United States)

    Winters, W.J.

    1999-01-01

    As part of an ongoing laboratory study, preliminary acoustic, strength, and hydraulic conductivity results are presented from a suite of tests conducted on four natural-gas-hydrate-containing samples from the Mackenzie Delta JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well. The gas hydrate samples were preserved in pressure vessels during transport from the Northwest Territories to Woods Hole, Massachusetts, where multistep tests were performed using GHASTLI (Gas Hydrate And Sediment Test Laboratory Instrument), which recreates pressure and temperature conditions that are stable for gas hydrate. Properties and changes in sediment behaviour were measured before, during, and after controlled gas hydrate dissociation. Significant amounts of gas hydrate occupied the sample pores and substantially increased acoustic velocity and shear strength.

  7. Dehydration and hydration behavior of metal-salt-modified materials for chemical heat pumps

    International Nuclear Information System (INIS)

    Ishitobi, Hirokazu; Uruma, Keirei; Takeuchi, Masato; Ryu, Junichi; Kato, Yukitaka

    2013-01-01

    Lithium chloride (LiCl) modified magnesium hydroxide (Mg(OH) 2 ) is a potential new material for chemical heat pumps. However, there is insufficient information concerning its dehydration and hydration behavior. In this study, the dehydration and hydration reactions, corresponding to the heat storage and the heat output operations, respectively, of authentic Mg(OH) 2 and LiCl-modified Mg(OH) 2 were investigated by thermogravimetric methods and near infrared spectroscopy. The dehydration of authentic Mg(OH) 2 proceeded as a one-step reaction. In contrast, the dehydration of LiCl-modified Mg(OH) 2 occurred in two steps. The dehydration reaction rates were increased by LiCl modification of the Mg(OH) 2 surface, while the activation energy for the first-order dehydration reaction was lowered. The mechanism for the hydration reaction of magnesium oxide (MgO) was different to that for the hydration of LiCl-modified MgO. This difference was explained by the effect of the LiCl on the MgO particle surface. - Highlights: ► LiCl-modified Mg(OH) 2 is a candidate material for chemical heat pumps. ► The dehydration reaction of LiCl-modified Mg(OH) 2 is a two-step reaction. ► The dehydration reaction of Mg(OH) 2 was enhanced by LiCl modification. ► The hydration mechanisms of authentic MgO and LiCl-modified MgO were different.

  8. Some physical properties of anhydrous and hydrated Brownmillerite doped with NaF

    International Nuclear Information System (INIS)

    Hassaan, M.Y.; El Desoky, M.M.; Salem, S.M.; Yousif, A.A.

    2003-01-01

    Different samples of Brownmillerite (the ferrite phase of cement clinker) doped with 0, 1 or 3 wt.% NaF were prepared. At first, the oxide mixture of Brownmillerite was prepared according to the following composition: 4 mol CaO, 1 mol Al 2 O 3 and 1 mol Fe 2 O 3 in addition to 1 or 3 wt.% NaF. Each mixture was mixed very well, introduced into an electric furnace at 1300 deg. C for 1 h in a platinum crucible, and then quenched in air. The product was divided into four portions mixed with 40 wt.% distilled water to form Brownmillerite paste, except for one portion which was left dry. Each paste was molded into two molds; after 24 h, they were immersed in a distilled water and withdrawn after 1 or 3 days of hydration, respectively. The pastes were ground again. The anhydrous powders of Brownmillerites and the hydrated samples were prepared for a.c. conduction measurements by pressing it to be in pellets form. The two surfaces of each pellet were coated with silver paste. The a.c. conductivity and dielectric constant for different samples were measured using four-probe method. The data was collected from 320 up to 670 K. Moessbauer spectra and X-ray diffraction patterns were measured for each sample (anhydrous and hydrated) to confirm the formation of Brownmillerite, identify the iron states and the magnetic properties. The results showed that NaF addition to Brownmillerite expedites the hydration reaction rate. The superparamagnetic relaxation, which appeared in the anhydrous Brownmillerite spectra due to the small particle size, decreases with increasing the hydration time. Also, the Fe 3+ (Oh) state increases while Fe 3+ (Td) decreases with the time of hydration. The a.c. conductivity value at fixed frequency for anhydrous and hydrated samples was found to increase with NaF addition. The a.c. conductivity and Moessbauer measurements can be used as good tools to verify the purity of Brownmillerite phase and, accordingly, the purity of cement

  9. Well log characterization of natural gas-hydrates

    Science.gov (United States)

    Collett, Timothy S.; Lee, Myung W.

    2012-01-01

    In the last 25 years there have been significant advancements in the use of well-logging tools to acquire detailed information on the occurrence of gas hydrates in nature: whereas wireline electrical resistivity and acoustic logs were formerly used to identify gas-hydrate occurrences in wells drilled in Arctic permafrost environments, more advanced wireline and logging-while-drilling (LWD) tools are now routinely used to examine the petrophysical nature of gas-hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Resistivity- and acoustic-logging tools are the most widely used for estimating the gas-hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. Recent integrated sediment coring and well-log studies have confirmed that electrical-resistivity and acoustic-velocity data can yield accurate gas-hydrate saturations in sediment grain-supported (isotropic) systems such as sand reservoirs, but more advanced log-analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. New well-logging tools designed to make directionally oriented acoustic and propagation-resistivity log measurements provide the data needed to analyze the acoustic and electrical anisotropic properties of both highly interbedded and fracture-dominated gas-hydrate reservoirs. Advancements in nuclear magnetic resonance (NMR) logging and wireline formation testing (WFT) also allow for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids(i.e., free water along with clay- and capillary-bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms

  10. Influence of fluorosurfactants on hydrate formation rates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.U.; Jeong, K.E.; Chae, H.J.; Jeong, S.Y. [Korea Reasearch Inst. of Chemical Technology, Alternative Chemicals/Fuel Research Center, Yuseong-Gu, Daejon (Korea, Republic of)

    2008-07-01

    Gas hydrates, or clathrates, are ice-like solids that forms when natural gas is in contact with liquid water or ice under high pressure and low temperature. There is significant interest in studying the storage and transportation of gas in the form of hydrates. However, a critical problem impacting the industrial application of gas hydrates for storage and transportation of natural gas is the slow formation rate of natural gas hydrate. Researchers have previously reported on the promotion effect of some additives on gas hydrate formation and hydrate gas content. Fluorosurfactants are significantly superior to nonfluorinated surfactants in wetting action, as well as stability in harsh environments, both thermal and chemical. This paper discussed an experimental investigation into the effects of fluorosurfactants with different ionic types on the formation of methane hydrate. The surfactants used were FSN-100 of DuPont Zonyl as non-ionic surfactant and FC-143 of DuPont as anionic surfactant. The paper discussed the experimental apparatus for methane hydrate formation. It also discussed hydrate formation kinetics and the series of hydrate formation experiments that were conducted in the presence of fluorosurfactants. Last, the paper explored the results of the study. It was concluded that anionic fluorosurfactant of FC-143 had a better promoting effect on methane hydrate formation compared with nonionic surfactant of FSN-100. 8 refs., 2 tabs., 2 figs.

  11. Effect of mycorrhiza symbiosis on the Nacl salinity in Sorghum bicolor

    African Journals Online (AJOL)

    In order to determine mycorrhizal symbiosis on the Nacl salinity tolerance in Sorghum bicolor (aspydfyd cultivar), an experiment with two factors was done in Damghan Islamic Azad University laboratory (Iran) in 2007. The first factor with two levels (mycorihizal and non-mycorihizal) and second factor with six levels Nacl ...

  12. Effect of NaCl on seed germination in some Centaurium Hill. Species (Gentianaceae

    Directory of Open Access Journals (Sweden)

    Živković S.

    2007-01-01

    Full Text Available The influence of high NaCl concentrations on seed germination in both light and darkness was examined in the species Centaurium pulchellum, C. erythraea, C. littorale, C. spicatum, and C. tenuiflorum. Salt tolerance was found to depend on the life history of the seeds. To be specific, seeds of all five species failed to complete germination when exposed to continuous white light if kept all the time in the presence of 100-200 mM and greater NaCl concentrations. However, when after two weeks NaCl was rinsed from the seeds and the seeds were left in distilled water under white light for an additional two weeks, all species completed germination to a certain extent. The percent of germination not only depended on NaCl concentration in the prior medium, but was also species specific. Thus, seeds of C. pulchellum, C. erythraea, and C. littorale completed germination well almost irrespective of the salt concentration previously experienced. On the other hand, seeds of C. tenuiflorum completed germination poorly if NaCl concentrations in the prior media were greater than 200 mM. When seeds after washing were transferred to darkness for an additional 14 days, they failed to complete germination if previously imbibed on media containing NaCl concentrations greater than 400 mM. However, the seeds of all species, even if previously imbibed at 800 mM NaCl, could be induced to complete germination in darkness by 1 mM gibberellic acid. .

  13. Physical Properties of Gas Hydrates: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Gabitto, Jorge [Prairie View A& M University; Tsouris, Costas [ORNL

    2010-01-01

    Methane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 1016?m3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.

  14. Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds

    Directory of Open Access Journals (Sweden)

    Beatrice Castellani

    2014-09-01

    Full Text Available Increasing energy costs are at the origin of the great progress in the field of phase change materials (PCMs. The present work aims at studying the application of clathrate hydrates as PCMs in buildings. Clathrate hydrates are crystalline structures in which guest molecules are enclosed in the crystal lattice of water molecules. Clathrate hydrates can form also at ambient pressure and present a high latent heat, and for this reason, they are good candidates for being used as PCMs. The parameter that makes a PCM suitable to be used in buildings is, first of all, a melting temperature at about 25 °C. The paper provides an overview of groups of clathrate hydrates, whose physical and chemical characteristics could meet the requirements needed for their application in buildings. Simulations with a dynamic building simulation tool are carried out to evaluate the performance of clathrate hydrates in enhancing thermal comfort through the moderation of summer temperature swings and, therefore, in reducing energy consumption. Simulations suggest that clathrate hydrates have a potential in terms of improvement of indoor thermal comfort and a reduction of energy consumption for cooling. Cooling effects of 0.5 °C and reduced overheating hours of up to 1.1% are predicted.

  15. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Lachowski, Eric E.

    1999-01-01

    and experimental data are presented showing that C(3)A can hydrate at lower humidities than either C3S or C2S. It is suggested that the initiation of hydration during exposure to water vapour is nucleation controlled. When C(3)A hydrates at low humidity, the characteristic hydration product is C(3)AH(6......Vapour phase hydration of purl cement clinker minerals at reduced relative humidities is described. This is relevant to modern high performance concrete that may self-desiccate during hydration and is also relevant to the quality of the cement during storage. Both the oretical considerations...

  16. Heterogeneous Nucleation of Methane Hydrate in a Water-Decane-Methane Emulsion

    Science.gov (United States)

    Shestakov, V. A.; Kosyakov, V. I.; Manakov, A. Yu.; Stoporev, A. S.; Grachev, E. V.

    2018-07-01

    Heterogeneous nucleation in disperse systems with metastable disperse phases plays an important role in the mechanisms of environmental and technological processes. The effect the concentration and activity of particles that initiate the formation of a new phase have on nucleation processes in such systems is considered. An approach is proposed that allows construction of a spectrum of particle activity characterizing the features of nucleation in a sample, based on the fraction of crystallized droplets depending on the level of supercooling and the use of Weibull's distribution. The proposed method is used to describe experimental data on the heterogeneous nucleation of methane hydrate in an emulsion in a water-decane-methane system.

  17. Synthesis and hydration behavior of calcium zirconium aluminate (Ca7ZrAl6O18) cement

    International Nuclear Information System (INIS)

    Kang, Eun-Hee; Yoo, Jun-Sang; Kim, Bo-Hye; Choi, Sung-Woo; Hong, Seong-Hyeon

    2014-01-01

    Calcium zirconium aluminate (Ca 7 ZrAl 6 O 18 ) cements were prepared by solid state reaction and polymeric precursor methods, and their phase evolution, morphology, and hydration behavior were investigated. In polymeric precursor method, a nearly single phase Ca 7 ZrAl 6 O 18 was obtained at relatively lower temperature (1200 °C) whereas in solid state reaction, a small amount of CaZrO 3 coexisted with Ca 7 ZrAl 6 O 18 even at higher temperature (1400 °C). Unexpectedly, Ca 7 ZrAl 6 O 18 synthesized by polymeric precursor process was the large-sized and rough-shaped powder. The planetary ball milling was employed to control the particle size and shape. The hydration behavior of Ca 7 ZrAl 6 O 18 was similar to that of Ca 3 Al 2 O 6 (C3A), but the hydration products were Ca 3 Al 2 O 6 ·6H 2 O (C3AH6) and several intermediate products. Thus, Zr (or ZrO 2 ) stabilized the intermediate hydration products of C3A

  18. Hydration and nutrition knowledge in adolescent swimmers. Does water intake affect urine hydration markers after swimming?

    Directory of Open Access Journals (Sweden)

    Cesare Altavilla

    2017-12-01

    Full Text Available Little data exists regarding nutritional knowledge and hydration in adolescent swimmers. The aim of this study was to assess the level of nutrition and hydration knowledge and to describe the fluid balance in adolescent swimmers during training. A study was carried out with a cross-sectional descriptive part and a longitudinal part with repeated measurements over five swimming sessions. Eighty-six adolescent swimmers completed a questionnaire to assess their sport nutrition and hydration knowledge. Fluid balance and urine hydration markers were studied during training. Swimmers showed a limited nutrition knowledge (33.26 % ± SD 12.59 and meagre hydration knowledge (28.61 % ± SD 28.59. Females showed lower scores than male swimmers in nutrition and hydration knowledge. Based on urine specific gravity, swimmers started the training close to the euhydrated threshold (1.019 g/mL ± SD 0.008. Although urine specific gravity and urine colour were reduced after the training, there were minimal changes in body mass (-0.12 Kg ± SD 0.31. Sweat loss (2.67 g/min ± SD 3.23 and the net changes in the fluid balance (-0.22 % ± SD 0.59 were low. The poor knowledge in nutrition and hydration encountered in the swimmers can justify the development of a strategy to incorporate nutritional education programmes for this group. Body water deficit from swimming activity seems to be easily replaced with the water intake to maintain hydration. After the training, the urine of swimmers was diluted regardless of their water intake. Dilution of urine did not reflect real hydration state in swimming.

  19. Methane hydrates in nature - Current knowledge and challenges

    Science.gov (United States)

    Collett, Timothy S.

    2014-01-01

    Recognizing the importance of methane hydrate research and the need for a coordinated effort, the United States Congress enacted the Methane Hydrate Research and Development Act of 2000. At the same time, the Ministry of International Trade and Industry in Japan launched a research program to develop plans for a methane hydrate exploratory drilling project in the Nankai Trough. India, China, the Republic of Korea, and other nations also have established large methane hydrate research and development programs. Government-funded scientific research drilling expeditions and production test studies have provided a wealth of information on the occurrence of methane hydrates in nature. Numerous studies have shown that the amount of gas stored as methane hydrates in the world may exceed the volume of known organic carbon sources. However, methane hydrates represent both a scientific and technical challenge, and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of methane hydrates in nature, (2) assessing the volume of natural gas stored within various methane hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural methane hydrates, (5) analyzing the methane hydrate role as a geohazard, (6) establishing the means to detect and characterize methane hydrate accumulations using geologic and geophysical data, and (7) establishing the thermodynamic phase equilibrium properties of methane hydrates as a function of temperature, pressure, and gas composition. The U.S. Department of Energy (DOE) and the Consortium for Ocean Leadership (COL) combined their efforts in 2012 to assess the contributions that scientific drilling has made and could continue to make to advance

  20. Geologic implications of gas hydrates in the offshore of India: results of the National Gas Hydrate Program Expedition 01

    Science.gov (United States)

    Collett, Timothy S.; Boswell, Ray; Cochran, J.R.; Kumar, Pushpendra; Lall, Malcolm; Mazumdar, Aninda; Ramana, Mangipudi Venkata; Ramprasad, Tammisetti; Riedel, Michael; Sain, Kalachand; Sathe, Arun Vasant; Vishwanath, Krishna

    2014-01-01

    The Indian National Gas Hydrate Program Expedition 01 (NGHP-01) is designed to study the occurrence of gas hydrate along the passive continental margin of the Indian Peninsula and in the Andaman convergent margin, with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. The NGHP-01 expedition established the presence of gas hydrates in the Krishna-Godavari and Mahanadi Basins, and the Andaman Sea. The expedition discovered in the Krishna-Godavari Basin one of the thickest gas hydrate accumulations ever documented, in the Andaman Sea one of the thickest and deepest gas hydrate stability zones in the world, and established the existence of a fully developed gas hydrate petroleum system in all three basins.

  1. Spatial resolution of gas hydrate and permeability changes from ERT data in LARS simulating the Mallik gas hydrate production test

    Science.gov (United States)

    Priegnitz, Mike; Thaler, Jan; Spangenberg, Erik; Schicks, Judith M.; Abendroth, Sven

    2014-05-01

    The German gas hydrate project SUGAR studies innovative methods and approaches to be applied in the production of methane from hydrate-bearing reservoirs. To enable laboratory studies in pilot scale, a large reservoir simulator (LARS) was realized allowing for the formation and dissociation of gas hydrates under simulated in-situ conditions. LARS is equipped with a series of sensors. This includes a cylindrical electrical resistance tomography (ERT) array composed of 25 electrode rings featuring 15 electrodes each. The high-resolution ERT array is used to monitor the spatial distribution of the electrical resistivity during hydrate formation and dissociation experiments over time. As the present phases of poorly conducting sediment, well conducting pore fluid, non-conducting hydrates, and isolating free gas cover a wide range of electrical properties, ERT measurements enable us to monitor the spatial distribution of these phases during the experiments. In order to investigate the hydrate dissociation and the resulting fluid flow, we simulated a hydrate production test in LARS that was based on the Mallik gas hydrate production test (see abstract Heeschen et al., this volume). At first, a hydrate phase was produced from methane saturated saline water. During the two months of gas hydrate production we measured the electrical properties within the sediment sample every four hours. These data were used to establish a routine estimating both the local degrees of hydrate saturation and the resulting local permeabilities in the sediment's pore space from the measured resistivity data. The final gas hydrate saturation filled 89.5% of the total pore space. During hydrate dissociation, ERT data do not allow for a quantitative determination of free gas and remaining gas hydrates since both phases are electrically isolating. However, changes are resolved in the spatial distribution of the conducting liquid and the isolating phase with gas being the only mobile isolating phase

  2. Simulation and Characterization of Methane Hydrate Formation

    Science.gov (United States)

    Dhakal, S.; Gupta, I.

    2017-12-01

    The ever rising global energy demand dictates human endeavor to explore and exploit new and innovative energy sources. As conventional oil and gas reserves deplete, we are constantly looking for newer sources for sustainable energy. Gas hydrates have long been discussed as the next big energy resource to the earth. Its global occurrence and vast quantity of natural gas stored is one of the main reasons for such interest in its study and exploration. Gas hydrates are solid crystalline substances with trapped molecules of gas inside cage-like crystals of water molecules. Gases such as methane, ethane, propane and carbon dioxide can form hydrates but in natural state, methane hydrates are the most common. Subsurface geological conditions with high pressure and low temperature favor the formation and stability of gas hydrates. While the occurrence and potential of gas hydrates as energy source has long been studied, there are still gaps in knowledge, especially in the quantitative research of gas hydrate formation and reservoir characterization. This study is focused on exploring and understanding the geological setting in which gas hydrates are formed and the subsequent changes in rock characteristics as they are deposited. It involves the numerical simulation of methane gas flow through fault to form hydrates. The models are representative of the subsurface geologic setting of Gulf of Mexico with a fault through layers of shale and sandstone. Hydrate formation simulated is of thermogenic origin. The simulations are conducted using TOUGH+HYDRATE, a numerical code developed at the Lawrence Berkley National Laboratory for modeling multiphase flow through porous medium. Simulation results predict that as the gas hydrates form in the pores of the model, the porosity, permeability and other rock properties are altered. Preliminary simulation results have shown that hydrates begin to form in the fault zone and gradually in the sandstone layers. The increase in hydrate

  3. Analysis of clay particles behaviour during hydration-dehydration processes

    International Nuclear Information System (INIS)

    Maison, T.; Laouafa, F.; Delalain, P.; Fleureau, J.M.

    2010-01-01

    Document available in extended abstract form only. The knowledge of the physico-chemical processes at a local (micro) level during the shrinkage or the swelling processes of clayey materials is an essential step to characterise the ability of such soils to shrink or to swell. In order to better understand these phenomena, we performed research at microscopic levels using mainly an Environmental Scanning Electron Microscope (ESEM). This apparatus allows exploring some features of the behaviour and physical properties of clays subjected to controlled hygrometry conditions. The observations were performed on an heterogeneous natural clay, the Romainville clay. This clay, showing a sensitive behavior to shrinkage and swelling, is taken in situ from affected site by the drought. This site is well monitored. This clay was characterised by classical geotechnical laboratory tests (mercury porosimetry, X-Ray diffraction, grain size analysis...). Microstructure observations are done on cubic samples of 1 cm side. Swelling-shrinkage cycles are done on clay powder with grain sizes between 63 μm and 125 μm. The microstructure shows a compact clayey matrix with small calcite and quartz grains. Calcite may be present in veins form, due to sedimentation or pressure-dissolution effect. At high humidity value around 98%, moulds are observed on the totality of sample surface. During swelling-shrinkage cycles, surface sample changes are real time followed. Hydratation-dehydration cycles are imposed with a time of 30 minutes (considered as sufficient to reach steady state). The sample deformation induced by swelling and shrinkage is calculated by analyzing 2D ESEM images and assuming isotropic behaviour for the out of plane strain. The result shows a kinetics of swelling and shrinkage which can be decomposed into two successive phases. At each change of relative humidity, the first step is characterized by a discontinuity (jump) in the deformation, followed by a quite constant strain

  4. Equilibrium chemical transformations in NaPO3 + NaCl melts

    International Nuclear Information System (INIS)

    Kovarskaya, E.N.; Rodionov, Yu.I.

    1988-01-01

    Because of the problems of the burial of solidified radioactive wastes into different geological rock formations, in particular into massives of rock-salt, the state of molten polyphosphate-chloride mixtures (taking into account the chemical character of the interaction of their components) for a prolonged period of time. The equilibrium products of the reaction in the NaPO 3 -NaCl system were studied in melts in air in the composition range of 30-70 mole % NaCl. It was shown that with increase in the NaCl content in the mixtures, the polyphosphate gradually depolymerizes to sodium tri-, di-, and monophosphates, and the composition of the equilibrium melts is dependent only on the ratio between the components in the initial molten mixtures. The time until the equilibrium is attained is shorter, the higher is the experimental temperature

  5. Cement hydration from hours to centuries controlled by diffusion through barrier shells of C-S-H

    Science.gov (United States)

    Rahimi-Aghdam, Saeed; Bažant, Zdeněk P.; Abdolhosseini Qomi, M. J.

    2017-02-01

    Although a few good models for cement hydration exist, they have some limitations. Some do not take into account the complete range of variation of pore relative humidity and temperature, and apply over durations limited from up a few months to up to about a year. The ones that are applicable for long durations are either computationally too intensive for use in finite element programs or predict the hydration to terminate after few months. However, recent tests of autogenous shrinkage and swelling in water imply that the hydration may continue, at decaying rate, for decades, provided that a not too low relative pore humidity (above 0.7) persists for a long time, as expected for the cores of thick concrete structural members. Therefore, and because design lifetimes of over hundred years are required for large concrete structures, a new hydration model for a hundred year lifespan and beyond is developed. The new model considers that, after the first day of hydration, the remnants of anhydrous cement grains, gradually consumed by hydration, are enveloped by contiguous, gradually thickening, spherical barrier shells of calcium-silicate hydrate (C-S-H). The hydration progress is controlled by transport of water from capillary pores through the barrier shells toward the interface with anhydrous cement. The transport is driven by a difference of humidity, defined by equivalence with the difference in chemical potential of water. Although, during the period of 4-24 h, the C-S-H forms discontinuous nano-globules around the cement grain, an equivalent barrier shell control was formulated for this period, too, for ease and effectiveness of calculation. The entire model is calibrated and validated by published test data on the evolution of hydration degree for various cement types, particle size distributions, water-cement ratios and temperatures. Computationally, this model is sufficiently effective for calculating the evolution of hydration degree (or aging) at every

  6. Composite anion-exchangers modified with nanoparticles of hydrated oxides of multivalent metals

    Science.gov (United States)

    Maltseva, T. V.; Kolomiets, E. O.; Dzyazko, Yu. S.; Scherbakov, S.

    2018-02-01

    Organic-inorganic composite ion-exchangers based on anion exchange resins have been obtained. Particles of one-component and two-component modifier were embedded using the approach, which allows us to realize purposeful control of a size of the embedded particles. The approach is based on Ostwald-Freundlich equation, which was adapted to deposition in ion exchange matrix. The equation was obtained experimentally. Hydrated oxides of zirconium and iron were applied to modification, concentration of the reagents were varied. The embedded particles accelerate sorption, the rate of which is fitted by the model equation of chemical reactions of pseudo-second order. When sorption of arsenate ions from very diluted solution (50 µg dm-3) occurs, the composites show higher distribution coefficients comparing with the pristine resin.

  7. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K

    1996-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  8. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K.

    1995-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  9. Effect of Grinding on the Solid-State Stability and Particle Dissolution of Acyclovir Polymorphs.

    Science.gov (United States)

    Magnoni, Federico; Gigliobianco, Maria Rosa; Vargas Peregrina, Dolores; Censi, Roberta; Di Martino, Piera

    2017-10-01

    The present work investigated the solid state change of 4 acyclovir polymorphs when ground at room temperature (Method A) and under cryo-grinding in the presence of liquid nitrogen (Method B). Modifications in particle size and shape (evaluated by scanning electron microscopy) and in the water content (evaluated by thermal analysis) were related to transitions at the solid state, as confirmed by X-ray powder diffractometry. Anhydrous Form I was stable under grinding by both Methods A and B. The anhydrous Form II was stable during grinding under Method A, whereas it was progressively converted to the hydrate Form V during grinding under Method B. The hydrate Form V was stable under Method A, whereas it was converted to the anhydrous Form I after 15 min and then to the hydrate Form VI after 45 min of grinding. The hydrate Form VI proved to be stable under grinding by both Methods A and B. Thus, Form I and VI were the only forms that yielded a sizeable decrease in particle size under grinding, with a consequent increase in particle dissolution rate, while maintaining solid state physicochemical stability. Form I treated under Method B grinding gave the best dissolution rate. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Irreversible dilation of NaCl contaminated lime-cement mortar due to crystallization cycles

    International Nuclear Information System (INIS)

    Lubelli, B.; Hees, R.P.J. van; Huinink, H.P.; Groot, C.J.W.P.

    2006-01-01

    The mechanism of damage occurring in NaCl contaminated materials has not been clarified yet. Apart from crystallization pressure, other hypotheses have been proposed to explain the cause of decay. Irreversible dilation has been observed in a few cases but has never been studied in a more systematic way. The aim of the research is to contribute to the modeling of this phenomenon. In the present paper the effect of NaCl on the hydric and hygric behavior of a lime-cement mortar is extensively studied. The results indicate that NaCl influences the hydric and hygric dilation behavior of the material. The material contaminated with NaCl shrinks during dissolution and dilates during crystallization of the salt. This dilation is irreversible and sufficient to damage the material after few dissolution/crystallization cycles. This behavior is not restricted to NaCl, but is observed in the presence of other salts as well (NaNO 3 and KCl). Outcomes of electron microscopy studies suggest that salts causing irreversible dilation tend to crystallize as layers on the pore wall

  11. Gas Hydrate Storage of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  12. Low-δD hydration rinds in Yellowstone perlites record rapid syneruptive hydration during glacial and interglacial conditions

    Science.gov (United States)

    Bindeman, Ilya N.; Lowenstern, Jacob B.

    2016-01-01

    Hydration of silicic volcanic glass forms perlite, a dusky, porous form of altered glass characterized by abundant “onion-skin” fractures. The timing and temperature of perlite formation are enigmatic and could plausibly occur during eruption, during post-eruptive cooling, or much later at ambient temperatures. To learn more about the origin of natural perlite, and to fingerprint the hydration waters, we investigated perlitic glass from several synglacial and interglacial rhyolitic lavas and tuffs from the Yellowstone volcanic system. Perlitic cores are surrounded by a series of conchoidal cracks that separate 30- to 100-µm-thick slivers, likely formed in response to hydration-induced stress. H2O and D/H profiles confirm that most D/H exchange happens together with rapid H2O addition but some smoother D/H variations may suggest separate minor exchange by deuterium atom interdiffusion following hydration. The hydrated rinds (2–3 wt% H2O) transition rapidly (within 30 µm, or by 1 wt% H2O per 10 µm) to unhydrated glass cores. This is consistent with quenched “hydration fronts” where H2O diffusion coefficients are strongly dependent on H2O concentrations. The chemical, δ18O, and δD systematics of bulk glass records last equilibrium between ~110 and 60 °C without chemical exchange but with some δ18O exchange. Similarly, the δ18O of water extracted from glass by rapid heating suggests that water was added to the glass during cooling at higher rates of diffusion at 60–110 °C temperatures, compared with values expected from extrapolation of high-temperature (>400 °C) experimental data. The thick hydration rinds in perlites, measuring hundreds of microns, preserve the original D/H values of hydrating water as a recorder of paleoclimate conditions. Measured δD values in perlitic lavas are −150 to −191 or 20–40 ‰ lower than glass hydrated by modern Yellowstone waters. This suggests that Yellowstone perlites record the low-δD signature

  13. Adsorption of water and carbon dioxide on hematite and consequences for possible hydrate formation.

    Science.gov (United States)

    Kvamme, Bjørn; Kuznetsova, Tatiana; Kivelae, Pilvi-Helina

    2012-04-07

    The interest in carbon dioxide for enhanced oil recovery is increasing proportional to the decline in naturally driven oil production and also due to the increasing demand for reduced emission of carbon dioxide into the atmosphere. Transport of carbon dioxide in offshore pipelines involves high pressure and low temperatures, conditions which may lead to formation of hydrates from residual water dissolved in carbon dioxide and carbon dioxide. The critical question is whether the water at certain temperatures and pressures will drop out as liquid droplets first, and then form hydrates, or alternatively, adsorb on the pipeline surfaces, and subsequently form hydrates heterogeneously. In this work, we used several different basis sets of density functional theory in ab initio calculations to estimate the charge distribution of hematite (the dominating component of rust) crystals. These rust particles were embedded in water and chemical potential for adsorbed water molecules was estimated through thermodynamic integration and compared to similar estimates for water clusters of the same size. While the generated charges were not unique, the use of high order approximations and different basis sets provides a range of likely charge distributions. Values obtained for the chemical potential of water in different surroundings indicated that it would be thermodynamically favorable for water to adsorb on hematite, and that evaluation of potential carbon dioxide hydrate formation conditions and kinetics should be based on this formation mechanism. Depending on the basis set and approximations, the estimated gain for water to adsorb on the hematite surface rather than condense as droplets varied between -1.7 kJ mole(-1) and -3.4 kJ mole(-1). The partial charge distribution on the hematite surface is incompatible with the hydrate structure, and thus hydrates will be unable to attach to the surface. The behavior of water outside the immediate vicinity of hematite (beyond 3

  14. The effect of NaCl substitution by KCl on telemea cheese properties

    Directory of Open Access Journals (Sweden)

    Mihai ANGHELOIU

    2016-12-01

    Full Text Available The effect of partial or total substitution of sodium chloride by potassium chloride on the chemical composition, texture profile and sensory properties of Telemea cheese during 28 days of ripening at 4°C was evaluated in the current study. Telemea cheese was ripened in 4 different brine solutions (20%, wt/wt made from different NaCl:KCl ratios as follows: (NaCl (A, KCl (B, 1NaCl:1KCl (C and 1NaCl:2KCl (D. The physicochemical properties of Telemea cheese (dry matter, fat, protein, ash, pH, total nitrogen (TN, water soluble nitrogen (WSN and ripening degree values were determined after 1, 7, 14, 21 and 28 days of ripening. Dry matter, pH and ripening degree values were significantly (p < 0.05 affected during ripening. The results of this study indicated that replacing 66% NaCl with KCl influenced the texture profile and sensorial characteristics of Telemea cheese.

  15. Photoresponsive Release from Azobenzene-Modified Single Cubic Crystal NaCl/Silica Particles

    Directory of Open Access Journals (Sweden)

    Xingmao Jiang

    2011-01-01

    Full Text Available Azobenzene ligands were uniformly anchored to the pore surfaces of nanoporous silica particles with single crystal NaCl using 4-(3-triethoxysilylpropylureidoazobenzene (TSUA. The functionalization delayed the release of NaCl significantly. The modified particles demonstrated a photocontrolled release by trans/cis isomerization of azobenzene moieties. The addition of amphiphilic solvents, propylene glycol (PG, propylene glycol propyl ether (PGPE, and dipropylene glycol propyl ether (DPGPE delayed the release in water, although the wetting behavior was improved and the delay is the most for the block molecules with the longest carbon chain. The speedup by UV irradiation suggests a strong dependence of diffusion on the switchable pore size. TGA, XRD, FTIR, and NMR techniques were used to characterize the structures.

  16. THERMODYNAMIC MODEL OF GAS HYDRATES

    OpenAIRE

    Недоступ, В. И.; Недоступ, О. В.

    2015-01-01

    The interest to gas hydrates grows last years. Therefore working out of reliable settlement-theoretical methods of definition of their properties is necessary. The thermodynamic model of gas hydrates in which the central place occupies a behaviour of guest molecule in cell is described. The equations of interaction of molecule hydrate formative gas with cell are received, and also an enthalpy and energy of output of molecule from a cell are determined. The equation for calculation of thermody...

  17. Gas hydrate cool storage system

    Science.gov (United States)

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  18. Indian National Gas Hydrate Program Expedition 01 report

    Science.gov (United States)

    Collett, Timothy S.; Riedel, M.; Boswell, R.; Presley, J.; Kumar, P.; Sathe, A.; Sethi, A.; Lall, M.V.; ,

    2015-01-01

    Gas hydrate is a naturally occurring “ice-like” combination of natural gas and water that has the potential to serve as an immense resource of natural gas from the world’s oceans and polar regions. However, gas-hydrate recovery is both a scientific and a technical challenge and much remains to be learned about the geologic, engineering, and economic factors controlling the ultimate energy resource potential of gas hydrate. The amount of natural gas contained in the world’s gas-hydrate accumulations is enormous, but these estimates are speculative and range over three orders of magnitude from about 2,800 to 8,000,000 trillion cubic meters of gas. By comparison, conventional natural gas accumulations (reserves and undiscovered, technically recoverable resources) for the world are estimated at approximately 440 trillion cubic meters. Gas recovery from gas hydrate is hindered because the gas is in a solid form and because gas hydrate commonly occurs in remote Arctic and deep marine environments. Proposed methods of gas recovery from gas hydrate generally deal with disassociating or “melting” in situ gas hydrate by heating the reservoir beyond the temperature of gas-hydrate formation, or decreasing the reservoir pressure below hydrate equilibrium. The pace of energy-related gas hydrate assessment projects has accelerated over the past several years.

  19. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated

  20. Gas-solute dispersivity ratio in granular porous media as related to particle size distribution and particle shape

    DEFF Research Database (Denmark)

    Pugliese, Lorenzo; Poulsen, Tjalfe; Straface, Salvatore

    2013-01-01

    Measurements of solute dispersion in porous media is generally much more time consuming than gas dispersion measurements performed under equivalent conditions. Significant time savings may therefore, be achieved if solute dispersion coefficients can be estimated based on measured gas dispersion...... data. This paper evaluates the possibility for estimating solute dispersion based on gas dispersion measurements. Breakthrough measurements were carried out at different fluid velocities (covering the same range in Reynolds number), using O2 and NaCl as gas and solute tracers, respectively. Three...... different, granular porous materials were used: (1) crushed granite (very angular particles), (2) gravel (particles of intermediate roundness) and (3) Leca® (almost spherical particles). For each material, 21 different particle size fractions were used. Gas and solute dispersion coefficients were determined...

  1. Clustering mechanism of oxocarboxylic acids involving hydration reaction: Implications for the atmospheric models

    Science.gov (United States)

    Liu, Ling; Kupiainen-Määttä, Oona; Zhang, Haijie; Li, Hao; Zhong, Jie; Kurtén, Theo; Vehkamäki, Hanna; Zhang, Shaowen; Zhang, Yunhong; Ge, Maofa; Zhang, Xiuhui; Li, Zesheng

    2018-06-01

    The formation of atmospheric aerosol particles from condensable gases is a dominant source of particulate matter in the boundary layer, but the mechanism is still ambiguous. During the clustering process, precursors with different reactivities can induce various chemical reactions in addition to the formation of hydrogen bonds. However, the clustering mechanism involving chemical reactions is rarely considered in most of the nucleation process models. Oxocarboxylic acids are common compositions of secondary organic aerosol, but the role of oxocarboxylic acids in secondary organic aerosol formation is still not fully understood. In this paper, glyoxylic acid, the simplest and the most abundant atmospheric oxocarboxylic acid, has been selected as a representative example of oxocarboxylic acids in order to study the clustering mechanism involving hydration reactions using density functional theory combined with the Atmospheric Clusters Dynamic Code. The hydration reaction of glyoxylic acid can occur either in the gas phase or during the clustering process. Under atmospheric conditions, the total conversion ratio of glyoxylic acid to its hydration reaction product (2,2-dihydroxyacetic acid) in both gas phase and clusters can be up to 85%, and the product can further participate in the clustering process. The differences in cluster structures and properties induced by the hydration reaction lead to significant differences in cluster formation rates and pathways at relatively low temperatures.

  2. Bran hydration and physical treatments improve the bread-baking quality of whole grain wheat flour

    Science.gov (United States)

    Fine and coarse bran particles of a hard red and a hard white wheat were used to study the influences of bran hydration and physical treatments such as autoclaving and freezing as well as their combinations on the dough properties and bread-baking quality of whole grain wheat flour (WWF). For both h...

  3. Changes in structure and preferential cage occupancy of ethane hydrate and ethane-methane mixed gas hydrate under high pressure

    International Nuclear Information System (INIS)

    Hirai, H; Takahara, N; Kawamura, T; Yamamoto, Y; Yagi, T

    2010-01-01

    Structural changes and preferential cage occupancies were examined for ethane hydrate and ethane-methane mixed gas hydrates with five compositions in a pressure range of 0.2 to 2.8 GPa at room temperature. X-ray diffractometry and Raman spectroscopy showed the following structural changes. The initial structure, structure I (sI), of ethane hydrate was retained up to 2.1 GPa without any structural change. For the mixed hydrates, sI was widely distributed throughout the region examined except for the methane-rich and lower pressure regions, where sII and sH appeared. Above 2.1 GPa ethane hydrate and all of the mixed hydrates decomposed into ice VI and ethane fluid or methane-ethane fluid, respectively. The Raman study revealed that occupation of the small cages by ethane molecules occurred above 0.1 GPa in ethane hydrate and continued up to decomposition at 2.1 GPa, although it was thought that ethane molecules were contained only in the large cage.

  4. The Salty Scrambled Egg: Detection of NaCl Toward CRL 2688

    Science.gov (United States)

    Highberger, J. L.; Thomson, K. J.; Young, P. A.; Arnett, D.; Ziurys, L. M.

    2003-08-01

    NaCl has been detected toward the circumstellar envelope of the post-AGB star CRL 2688 using the IRAM 30 m telescope, the first time this molecule has been identified in a source other than IRC +10216. The J=7-->6, 11-->10, 12-->11, and 18-->17 transitions of NaCl at 1, 2, and 3 mm have been observed, as well as the J=8-->7 line of the 37Cl isotopomer. The J=12-->11 line was also measured at the ARO 12 m telescope. An unsuccessful search was additionally conducted for AlCl toward CRL 2688, although in the process new transitions of NaCN were observed. Both NaCl and NaCN were found to be present in the AGB remnant wind, as suggested by their U-shaped line profiles, indicative of emission arising from an optically thin, extended shell-like source of radius ~10"-12". These data contrast with past results in IRC +10216, where the distribution of both molecules is confined to within a few arcseconds of the star. A high degree of excitation is required for the transitions observed for NaCl and NaCN; therefore, these two species likely arise in the region where the high-velocity outflow has collided with the remnant wind. Here the effects of shocks and clumping due to Rayleigh-Taylor instabilities have raised the densities and temperatures significantly. The shell source is thus likely to be clumpy and irregular. The chemistry producing the sodium compounds is consequently more complex than simple LTE formation. Abundances of NaCl and NaCN, relative to H2, are f~1.6×10-10 and ~5.2×10-9, respectively, while the upper limit to AlCl is f<2×10-9. These values differ substantially from those in IRC +10216, where AlCl has an abundance near 10-7. The NaCl observations additionally indicate a chlorine isotope ratio of 35Cl/37Cl=2.1+/-0.8 in CRL 2688, suggestive of s-process enhancement of chlorine 37.

  5. Manipulating Single Microdroplets of NaCl Solutions: Solvent Dissolution, Microcrystallization, and Crystal Morphology

    DEFF Research Database (Denmark)

    Utoft, Anders; Kinoshita, Koji; Bitterfield, Deborah

    2018-01-01

    that the same Epstein−Plesset (EP) model, which was originally developed for diffusion-controlled dissolution and uptake of gas, and successfully applied to liquid-in-liquid dissolution, can now also be applied to describe the diffusion-controlled uptake of water from a water-saturated environment using...... of nucleation in the decane system as compared to the octanol system. Thus, the crystal structure is reported to be dendritic for NaCl solution microdroplets dissolving rapidly and nucleating violently in octanol, while they are formed as single cubic crystals in a gentler way for solution-dissolution in decane....... These new techniques and analyses can now also be used for any other system where all relevant parameters are known. An example of this is control of drug/hydrogel/emulsion particle size change due to solvent uptake....

  6. A 2D Micromodel Study of Fines Migration and Clogging Behavior in Porous Media: Implications of Fines on Methane Extraction from Hydrate-Bearing Sediments

    Science.gov (United States)

    Cao, S. C.; Jang, J.; Waite, W. F.; Jafari, M.; Jung, J.

    2017-12-01

    Fine-grained sediment, or "fines," exist nearly ubiquitously in natural sediment, even in the predominantly coarse-grained sediments that host gas hydrates. Fines within these sandy sediments can play a crucial role during gas hydrate production activities. During methane extraction, several processes can alter the mobility and clogging potential of fines: 1) fluid flow as the formation is depressurized to release methane from hydrate; 2) pore-fluid chemistry shifts as pore-fluid brine freshens due to pure water released from dissociating hydrate; 3) the presence of a moving gas/water interface as gas evolves from dissociating hydrate and moves through the reservoir toward the production well. To evaluate fines migration and clogging behavior changes resulting from methane gas production and pore-water freshening during hydrate dissociation, 2D micromodel experiments have been conducted on a selection of pure fines, pore-fluids, and micromodel pore-throat sizes. Additionally, tests have been run with and without an invading gas phase (CO2) to test the significance of a moving meniscus on fines mobility and clogging. The endmember fine particles chosen for this research include silica silt, mica, calcium carbonate, diatoms, kaolinite, illite, and bentonite (primarily made of montmorillonite). The pore fluids include deionized water, sodium chloride brine (2M concentration), and kerosene. The microfluidic pore models, used as porous media analogs, were fabricated with pore-throat widths of 40, 60, and 100 µm. Results from this research show that in addition to the expected dependence of clogging on the ratio of particle-to-pore-throat size, pore-fluid chemistry is also a significant factor because the interaction between a particular type of fine and pore fluid influences that fine's capacity to cluster, clump together and effectively increase its particle "size" relative to the pore-throat width. The presence of a moving gas/fluid meniscus increases the clogging

  7. INTERACTION OF LASER RADIATION WITH MATTER: Influence of Ca and Pb impurities on the bulk optical strength of ultrapure NaCl and KCl crystals

    Science.gov (United States)

    Vinogradov, An V.; Voszka, R.; Kovalev, Valerii I.; Faĭzullov, F. S.; Janszky, J.

    1987-06-01

    A significant increase (by a factor of about 3) of the bulk damage threshold in the case of interaction of CO2 laser radiation pulses with ultrapure NaCl and KCl crystals grown in a reactive atmosphere was observed on introduction of divalent metal ions Ca and Pb in concentrations of 10-5-10-6 mol/mol. Impurities were introduced in concentrations of 10-8-10-3 and 2×10-7-10-4 mol/mol into the melts of KCl and NaCl, respectively. The concentration of other impurities (including OH) did not exceed ~10-6 mol/mol. A physical model was developed to account for the observed dependence on the basis of an analogy between a system of colloidal particles and F centers in a crystal and a liquid-vapor system.

  8. Impact of Compound Hydrate Dynamics on Phase Boundary Changes

    Science.gov (United States)

    Osegovic, J. P.; Max, M. D.

    2006-12-01

    Compound hydrate reactions are affected by the local concentration of hydrate forming materials (HFM). The relationship between HFM composition and the phase boundary is as significant as temperature and pressure. Selective uptake and sequestration of preferred hydrate formers (PF) has wide ranging implications for the state and potential use of natural hydrate formation, including impact on climate. Rising mineralizing fluids of hydrate formers (such as those that occur on Earth and are postulated to exist elsewhere in the solar system) will sequester PF before methane, resulting in a positive relationship between depth and BTU content as ethane and propane are removed before methane. In industrial settings the role of preferred formers can separate gases. When depressurizing gas hydrate to release the stored gas, the hydrate initial composition will set the decomposition phase boundary because the supporting solution takes on the composition of the hydrate phase. In other settings where hydrate is formed, transported, and then dissociated, similar effects can control the process. The behavior of compound hydrate systems can primarily fit into three categories: 1) In classically closed systems, all the material that can form hydrate is isolated, such as in a sealed laboratory vessel. In such systems, formation and decomposition are reversible processes with observed hysteresis related to mass or heat transfer limitations, or the order and magnitude in which individual hydrate forming gases are taken up from the mixture and subsequently released. 2) Kinetically closed systems are exposed to a solution mass flow across a hydrate mass. These systems can have multiple P-T phase boundaries based on the local conditions at each face of the hydrate mass. A portion of hydrate that is exposed to fresh mineralizing solution will contain more preferred hydrate formers than another portion that is exposed to a partially depleted solution. Examples of kinetically closed

  9. Natural gas hydrates. Experimental techniques and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Yuguang; Liu, Changling (eds.) [Qingdao Institute of Marine Geology (China). Gas Hydrate Laboratory

    2013-07-01

    Focuses on gas hydrate experiment in laboratory. Intends to provide practical significant parameters for gas hydrate exploration and exploitation in the oceanic and permafrost environments. Consists of different themes that present up-to-date information on hydrate experiments. ''Natural Gas Hydrates: Experimental Techniques and Their Applications'' attempts to broadly integrate the most recent knowledge in the fields of hydrate experimental techniques in the laboratory. The book examines various experimental techniques in order to provide useful parameters for gas hydrate exploration and exploitation. It provides experimental techniques for gas hydrates, including the detection techniques, the thermo-physical properties, permeability and mechanical properties, geochemical abnormalities, stability and dissociation kinetics, exploitation conditions, as well as modern measurement technologies etc.

  10. Experimental Determination of Refractive Index of Gas Hydrates

    DEFF Research Database (Denmark)

    Bylov, Martin; Rasmussen, Peter

    1997-01-01

    . For methane hydrate (structure I) the refractive index was found to be 1.346 and for natural gas hydrate (structure II) it was found to be 1.350. The measurements further suggest that the gas hydrate growth rate increases if the water has formed hydrates before. The induction time, on the other hand, seems......The refractive indexes of methane hydrate and natural gas hydrate have been experimentally determined. The refractive indexes were determined in an indirect manner making use of the fact that two non-absorbing materials will have the same refractive index if they cannot be distinguished visually...

  11. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  12. Raman studies of methane-ethane hydrate metastability.

    Science.gov (United States)

    Ohno, Hiroshi; Strobel, Timothy A; Dec, Steven F; Sloan, E Dendy; Koh, Carolyn A

    2009-03-05

    The interconversion of methane-ethane hydrate from metastable to stable structures was studied using Raman spectroscopy. sI and sII hydrates were synthesized from methane-ethane gas mixtures of 65% or 93% methane in ethane and water, both with and without the kinetic hydrate inhibitor, poly(N-vinylcaprolactam). The observed faster structural conversion rate in the higher methane concentration atmosphere can be explained in terms of the differences in driving force (difference in chemical potential of water in sI and sII hydrates) and kinetics (mass transfer of gas and water rearrangement). The kinetic hydrate inhibitor increased the conversion rate at 65% methane in ethane (sI is thermodynamically stable) but retards the rate at 93% methane in ethane (sII is thermodynamically stable), implying there is a complex interaction between the polymer, water, and hydrate guests at crystal surfaces.

  13. Methane Hydrate Field Program: Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Greg [Consortium for Ocean Leadership, Washington, DC (United States)

    2014-02-01

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report: Historical Methane Hydrate Project Review Report; Methane Hydrate Workshop Report; Topical Report: Marine Methane Hydrate Field Research Plan; and Final Scientific/Technical Report.

  14. The influence of raw material, added emulsifying salt and spray drying on cheese powder structure and hydration properties

    DEFF Research Database (Denmark)

    Felix da Silva, Denise; Larsen, Flemming Hofmann; Hougaard, Anni Bygvrå

    2017-01-01

    The present work has evaluated how raw material, addition of emulsifying salts (ES) and drying technology affect particle characteristics, structure, and hydration of cheese powders. In this context the spray drying technology induced the strongest effect on morphology and swelling of cheese powder...

  15. A possible NaCl pathway in the bioregenerative human life support system

    Science.gov (United States)

    Polonskiy, V. I.; Gribovskaya, I. V.

    One of the ways to involve NaCl in the mass exchange of the bioregenerative human life support system (BLSS) is to grow some vegetables and leafy greens that can accumulate sodium chloride at high concentrations in their edible biomass. Lettuce, celery cabbage, chard, dill and radish plants were grown hydroponically in Knop's nutrient solution. In the first series of experiments, at the end of the growth period the plants were grown on solutions containing 2-14 g/L of NaCl for 1-5 days. It was found that the amount of sodium in edible biomass of the plants increased with NaCl concentration in the solution and with the time plants were irrigated with that solution. The content of NaCl in the biomass of leaves and edible roots was considerable—up to 10% dry matter. At the same time, the amount of water in the leaves decreased and productivity of the treatment plants was 14-28% lower than that of the control ones, grown on Knop's solution. The treatment plants contained less than half of the amount of nitrates recorded in the control ones. Expert evaluation showed that the taste of the vegetables and leafy greens of the treatment group were not inferior to the taste of the control plants. In the second series of experiments, prior to being grown on the NaCl solution, the plants were irrigated with water for 2, 4 or 6 days. It was found that lower salt status of the plants was not favorable for increased salt accumulation in their biomass. If a human consumes 30 g salad vegetables and follows a low-sodium diet (3 g/d of table salt), it may be feasible to recycle NaCl in the BLSS using vegetables and leafy greens.

  16. NaCl islands decorated with 2D or 3D 3,4,9,10-perylene-tetracarboxylic-dianhydride nanostructures

    International Nuclear Information System (INIS)

    Sun Xiaonan; Silly, Fabien

    2010-01-01

    The formation of PTCDA (3,4,9,10-perylene-tetracarboxylic-dianhydride) nanostrutures on Au(1 1 1)-(22x√(3)) covered with NaCl islands has been studied using scanning tunneling microscopy (STM). Atomically resolved STM images show that NaCl grows as (1 0 0)-terminated layers on Au(1 1 1)-(22x√(3)). Local atomic hexagonal packing has also been observed in the NaCl(1 0 0) layer. At submonolayer NaCl coverage, PTCDA forms two-dimensional islands on the Au(1 1 1) surface and nucleate preferentially at the NaCl island step edges. When the Au surface is fully covered with NaCl layers, PTCDA molecules form three-dimensional molecular clusters decorating the step edges of NaCl layers.

  17. NaCl islands decorated with 2D or 3D 3,4,9,10-perylene-tetracarboxylic-dianhydride nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xiaonan [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen (Netherlands); Silly, Fabien, E-mail: Fabien.silly@cea.fr [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen (Netherlands); CEA, IRAMIS, SPCSI, Nanostructures and Organic Semiconductors Laboratory, F-91191 Gif-sur-Yvette (France); UPMC, IPCM, UMR CNRS 7201, 4 place Jussieu, F-75005 Paris (France)

    2010-01-15

    The formation of PTCDA (3,4,9,10-perylene-tetracarboxylic-dianhydride) nanostrutures on Au(1 1 1)-(22x{radical}(3)) covered with NaCl islands has been studied using scanning tunneling microscopy (STM). Atomically resolved STM images show that NaCl grows as (1 0 0)-terminated layers on Au(1 1 1)-(22x{radical}(3)). Local atomic hexagonal packing has also been observed in the NaCl(1 0 0) layer. At submonolayer NaCl coverage, PTCDA forms two-dimensional islands on the Au(1 1 1) surface and nucleate preferentially at the NaCl island step edges. When the Au surface is fully covered with NaCl layers, PTCDA molecules form three-dimensional molecular clusters decorating the step edges of NaCl layers.

  18. [Effect of NaCl stress on ion compartmentation, photosynthesis and growth of Salicornia bigelovii Torr].

    Science.gov (United States)

    Wang, Li-Yan; Zhao, Ke-Fu

    2004-02-01

    Seedlings of Salicornia bigelovii Torr. were treated with different concentrations of NaCl (0, 100, 300, 600 mmol/L). Ion contents, Na(+) subcelluar localization, photosynthetic rate, ultrastructure of chloroplast and other parameters were measured. The data showed both fresh and dry weight of whole plant of Salicornia bigelovii Torr. under salinity were higher than the control. When NaCl concentration is about 300 mmol/L Salicornia bigelovii Torr. grow strongest. The contents of Na(+) and Cl(-) and c(Na)/c(K) in shoots increased with the salinity. Both Na(+) and Cl(-) were mainly transported to shoots. Ion X-ray microanalysis indicated Na(+) was mainly compartmentalized into vacuoles. Photosynthetic rate increased with the salinity under NaCl 100-300 mmol/L, but declined under NaCl 600 mmol/L. Ultrastructure of chloroplast was destroyed by NaCl 600 mmol/L.

  19. An effective medium inversion algorithm for gas hydrate quantification and its application to laboratory and borehole measurements of gas hydrate-bearing sediments

    Science.gov (United States)

    Chand, S.; Minshull, T.A.; Priest, J.A.; Best, A.I.; Clayton, C.R.I.; Waite, W.F.

    2006-01-01

    The presence of gas hydrate in marine sediments alters their physical properties. In some circumstances, gas hydrate may cement sediment grains together and dramatically increase the seismic P- and S-wave velocities of the composite medium. Hydrate may also form a load-bearing structure within the sediment microstructure, but with different seismic wave attenuation characteristics, changing the attenuation behaviour of the composite. Here we introduce an inversion algorithm based on effective medium modelling to infer hydrate saturations from velocity and attenuation measurements on hydrate-bearing sediments. The velocity increase is modelled as extra binding developed by gas hydrate that strengthens the sediment microstructure. The attenuation increase is modelled through a difference in fluid flow properties caused by different permeabilities in the sediment and hydrate microstructures. We relate velocity and attenuation increases in hydrate-bearing sediments to their hydrate content, using an effective medium inversion algorithm based on the self-consistent approximation (SCA), differential effective medium (DEM) theory, and Biot and squirt flow mechanisms of fluid flow. The inversion algorithm is able to convert observations in compressional and shear wave velocities and attenuations to hydrate saturation in the sediment pore space. We applied our algorithm to a data set from the Mallik 2L–38 well, Mackenzie delta, Canada, and to data from laboratory measurements on gas-rich and water-saturated sand samples. Predictions using our algorithm match the borehole data and water-saturated laboratory data if the proportion of hydrate contributing to the load-bearing structure increases with hydrate saturation. The predictions match the gas-rich laboratory data if that proportion decreases with hydrate saturation. We attribute this difference to differences in hydrate formation mechanisms between the two environments.

  20. Utilization of Magnesium Hydroxide Produced by Magnesia Hydration as Fire Retardant for Nylon 6-6,6

    Directory of Open Access Journals (Sweden)

    Rocha Sônia D.F.

    2001-01-01

    Full Text Available The present work investigates the use of magnesium hydroxide, produced by magnesia hydration, as a fire retardant in polymers. The hydration was carried out in an autoclave, at temperature of 130°C for 1 hour, and the product was further submitted to cominution in a jet mill. The solids were characterized with regard to their chemical composition, particle size distribution, surface area and morphology. The performance evaluation of the hydroxide as a flame retardant for a copolymer of nylon 6-6,6 was carried out according to the UL94 specifications for vertical burning tests. V-0 flammability rating at 1.6 mm (60% magnesium hydroxide-filled nylon composite and at 3.2 mm (40% magnesium hydroxide filled nylon composite were achieved. Mechanical properties were maintained at the desired values. These results indicate that the hydroxide obtained from magnesia hydration can be successfully employed as a fire retardant for nylon 6-6,6.

  1. Ab initio interionic potentials for NaCl by multiple lattice inversion

    International Nuclear Information System (INIS)

    Zhang Shuo; Chen Nanxian

    2002-01-01

    Based on the Chen-Moebius lattice inversion and a series of pseudopotential total-energy curves, a different method is presented to derive the ab initio interionic pair potentials for B1-type ionic crystals. Comparing with the experimental data, the static properties of B1- and B2-type NaCl are well reproduced by the interionic potentials. Moreover, the phase stability of B1-NaCl has been described by the energy minimizations from the global deformed and disturbed states. The molecular-dynamics simulations for the molten NaCl indicate that the calculated mean-square displacements, radial distribution function, and diffusion coefficients gain good agreements with the experimental results. It can be concluded that the inversion pair potentials are valid over a wide range of interionic separations for describing the structural properties of B1-type ionic crystals

  2. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon; Santamarina, Carlos

    2016-01-01

    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  3. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon

    2016-06-20

    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  4. The Role of Concentration and Solvent Character in the Molecular Organization of Humic Acids

    Directory of Open Access Journals (Sweden)

    Martina Klučáková

    2016-10-01

    Full Text Available The molecular organization of humic acids in different aqueous solutions was studied over a wide concentration range (0.01–10 g·dm−3. Solutions of humic acids were prepared in three different media: NaOH, NaCl, and NaOH neutralized by HCl after dissolution of the humic sample. Potentiometry, conductometry, densitometry, and high resolution ultrasound spectrometry were used in order to investigate conformational changes in the humic systems. The molecular organization of humic acids in the studied systems could be divided into three concentration ranges. The rearrangements were observed at concentrations of ~0.02 g·dm−3 and ~1 g·dm−3. The first “switch-over point” was connected with changes in the hydration shells of humic particles resulting in changes in their elasticity. The compressibility of water in the hydration shells is less than the compressibility of bulk water. The transfer of hydration water into bulk water increased the total compressibility of the solution, reducing the ultrasonic velocity. The aggregation of humic particles and the formation of rigid structures in systems with concentrations higher than 1 g·dm−3 was detected.

  5. Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone

    Science.gov (United States)

    Braun, Doris E.; Griesser, Ulrich J.

    2018-01-01

    The observed moisture- and temperature dependent transformations of the dapsone (4,4′-diaminodiphenyl sulfone, DDS) 0. 33-hydrate were correlated to its structure and the number and strength of the water-DDS intermolecular interactions. A combination of characterization techniques was used, including thermal analysis (hot-stage microscopy, differential scanning calorimetry and thermogravimetric analysis), gravimetric moisture sorption/desorption studies and variable humidity powder X-ray diffraction, along with computational modeling (crystal structure prediction and pair-wise intermolecular energy calculations). Depending on the relative humidity the hydrate contains between 0 and 0.33 molecules of water per molecule DDS. The crystal structure is retained upon dehydration indicating that DDS hydrate shows a non-stoichiometric (de)hydration behavior. Unexpectedly, the water molecules are not located in structural channels but at isolated-sites of the host framework, which is counterintuitively for a hydrate with non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker than water-host interactions that are commonly observed in stoichiometric hydrates and the lattice energies of the isomorphic dehydration product (hydrate structure without water molecules) and (form III) differ only by ~1 kJ mol−1. The computational generation of hypothetical monohydrates confirms that the hydrate with the unusual DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall, this study highlights that a deeper understanding of the formation of hydrates with non-stoichiometric behavior requires a multidisciplinary approach including suitable experimental and computational methods providing a firm basis for the development and manufacturing of high quality drug products. PMID:29520359

  6. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-07-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release as much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  7. Elastic wave speeds and moduli in polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate

    Science.gov (United States)

    Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.

    2009-01-01

    We used ultrasonic pulse transmission to measure compressional, P, and shear, S, wave speeds in laboratory-formed polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate. From the wave speed's linear dependence on temperature and pressure and from the sample's calculated density, we derived expressions for bulk, shear, and compressional wave moduli and Poisson's ratio from -20 to 15??C and 22.4 to 32.8 MPa for ice Ih, -20 to 15??C and 30.5 to 97.7 MPa for si methane hydrate, and -20 to 10??C and 30.5 to 91.6 MPa for sll methane-ethane hydrate. All three materials had comparable P and S wave speeds and decreasing shear wave speeds with increasing applied pressure. Each material also showed evidence of rapid intergranular bonding, with a corresponding increase in wave speed, in response to pauses in sample deformation. There were also key differences. Resistance to uniaxial compaction, indicated by the pressure required to compact initially porous samples, was significantly lower for ice Ih than for either hydrate. The ice Ih shear modulus decreased with increasing pressure, in contrast to the increase measured in both hydrates ?? 2009.

  8. Gas hydrate exploration activities in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Keun-Pil Park, K.P. [Korea Inst. of Geoscience and Mineral Resources, Gas Hydrate R and D Organization, Ministry of Knowledge Economy, Yuseong-gu, Daejeon (Korea, Republic of)

    2008-07-01

    Korea's first gas hydrate research project was launched in 1996 to study the gas hydrate potential in the Ulleung Basin of the East Sea. It involved a series of laboratory experiments followed by a preliminary offshore seismic survey and regional reconnaissance geophysical and marine geological surveys. The bottom simulating reflector (BSR) was interpreted to show wide area distribution in the southern part of the Ulleung Basin, and its average burial depth was 187 m below the sea floor in the East Sea. A three-phase 10-year National Gas Hydrate Development Program was launched in 2004 to estimate the potential reserves in the East Sea. It will involve drilling to identify natural gas hydrates and to determine the most optimized production methods. Drilling sites were proposed based on five indicators that imply gas hydrate occurrence, notably BSR, gas vent, enhanced seismic reflection, acoustic blanking and gas seeping structure. The UBGH-X-01 gas hydrate expedition in the East Sea Ulleung Basin involved 5 logging while drilling (LWD) surveys at three high priority sites. One wire line logging was implemented at the site of the UBGH09. A total 334 m of non-pressurized conventional cores and 16 pressure cores were obtained in late 2007. The UBGH-X-01 was successfully completed, recovering many natural samples of gas hydrate from 3 coring sites in the East Sea. 7 refs., 12 figs.

  9. Seismic-Scale Rock Physics of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Amos Nur

    2009-01-08

    We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

  10. Methane Hydrate Field Program. Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    Energy Technology Data Exchange (ETDEWEB)

    Collett, Tim [U.S. Geological Survey, Boulder, CO (United States); Bahk, Jang-Jun [Korea Inst. of Geoscience and Mineral Resources, Daejeon (Korea); Frye, Matt [U.S. Bureau of Ocean Energy Management, Sterling, VA (United States); Goldberg, Dave [Lamont-Doherty Earth Observatory, Palisades, NY (United States); Husebo, Jarle [Statoil ASA, Stavenger (Norway); Koh, Carolyn [Colorado School of Mines, Golden, CO (United States); Malone, Mitch [Texas A & M Univ., College Station, TX (United States); Shipp, Craig [Shell International Exploration and Production Inc., Anchorage, AK (United States); Torres, Marta [Oregon State Univ., Corvallis, OR (United States); Myers, Greg [Consortium For Ocean Leadership Inc., Washington, DC (United States); Divins, David [Consortium For Ocean Leadership Inc., Washington, DC (United States); Morell, Margo [Consortium For Ocean Leadership Inc., Washington, DC (United States)

    2013-12-31

    This topical report represents a pathway toward better understanding of the impact of marine methane hydrates on safety and seafloor stability and future collection of data that can be used by scientists, engineers, managers and planners to study climate change and to assess the feasibility of marine methane hydrate as a potential future energy resource. Our understanding of the occurrence, distribution and characteristics of marine methane hydrates is incomplete; therefore, research must continue to expand if methane hydrates are to be used as a future energy source. Exploring basins with methane hydrates has been occurring for over 30 years, but these efforts have been episodic in nature. To further our understanding, these efforts must be more regular and employ new techniques to capture more data. This plan identifies incomplete areas of methane hydrate research and offers solutions by systematically reviewing known methane hydrate “Science Challenges” and linking them with “Technical Challenges” and potential field program locations.

  11. Energy from gas hydrates - assessing the opportunities and challenges for Canada: report of the expert panel on gas hydrates

    International Nuclear Information System (INIS)

    2008-09-01

    Gas hydrates form when water and natural gas combine at low temperatures and high pressures in regions of permafrost and in marine subseafloor sediments. Estimates suggest that the total amount of natural gas bound in hydrate form may exceed all conventional gas resources, or even the amount of all combined hydrocarbon energy. Gas from gas hydrate could provide a potentially vast new source of energy to offset declining supplies of conventional natural gas in North America and to provide greater energy security for countries such as Japan and India that have limited domestic sources. However, complex issues would need to be addressed if gas hydrate were to become a large part of the energy future of Canada. Natural Resources Canada asked the Council of Canadian Academies to assemble a panel of experts to examine the challenges for an acceptable operational extraction of gas hydrates in Canada. This report presented an overview of relevant contextual background, including some basic science; the medium-term outlook for supply and demand in markets for natural gas; broad environmental issues related to gas hydrate in its natural state and as a fuel; and an overview of Canada's contribution to knowledge about gas hydrate in the context of ongoing international research activity. The report also presented current information on the subject and what would be required to delineate and quantify the resource. Techniques for extracting gas from gas hydrate were also outlined. The report also addressed safety issues related to gas hydrate dissociation during drilling operations or release into the atmosphere; the environmental issues associated with potential leakage of methane into the atmosphere and with the large volumes of water produced during gas hydrate dissociation; and jurisdictional and local community issues that would need to be resolved in order to proceed with the commercial exploitation of gas hydrate. It was concluded that there does not appear to be

  12. Gas Hydrates Research Programs: An International Review

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2009-12-09

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  13. Obsidian hydration dates glacial loading?

    Science.gov (United States)

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  14. Effects of Nanosilica on Early Age Stages of Cement Hydration

    Directory of Open Access Journals (Sweden)

    Forood Torabian Isfahani

    2017-01-01

    Full Text Available Effects of nanosilica on cement hydration have been broadly investigated in the literature and early age cement hydration, as a whole, has been mainly considered, disregarding the substages of the hydration. The hydration of cement is characterized by different substages and nanosilica effect on the hydration could be a result of diverse, even contradictory, behavior of nanosilica in individual stages of the hydration. In this study, effects of nanosilica on different substages of cement hydration are investigated. Isothermal calorimetry results show that at early ages (initial 72 hours the effects of nanosilica depend on the phenomenon by which the hydration is governed: when the hydration is chemically controlled, that is, during initial reaction, dormant period, and acceleratory period, the hydration rate is accelerated by adding nanosilica; when the hydration is governed by diffusion process, that is, during postacceleratory period, the hydration rate is decelerated by adding nanosilica. The Thermal Gravimetric Analysis on the samples at the hardened state (after 28 days of curing reveals that, after adding nanosilica, the hydration degree slightly increased compared to the plain paste.

  15. Determination of oxidative stress in wheat leaves as influenced by boron toxicity and NaCl stress.

    Science.gov (United States)

    Masood, Sajid; Saleh, Livia; Witzel, Katja; Plieth, Christoph; Mühling, Karl H

    2012-07-01

    Boron (B) toxicity symptoms are visible in the form of necrotic spots and may worsen the oxidative stress caused by salinity. Hence, the interactive effects of combined salinity and B toxicity stress on antioxidative activities (TAC, LUPO, SOSA, CAT, and GR) were investigated by novel luminescence assays and standard photometric procedures. Wheat plants grown under hydroponic conditions were treated with 2.5 μM H₃BO₃ (control), 75 mM NaCl, 200 μM H₃BO₃, or 75 mM NaCl + 200 μM H₃BO₃, and analysed 6 weeks after germination. Shoot fresh weight (FW), shoot dry weight (DW), and relative water content (RWC) were significantly reduced, whereas the antioxidative activity of all enzymes was increased under salinity compared with the control. High B application led to necrotic leaf spots but did not influence growth parameters. Following NaCl + B treatment, shoot DW, RWC, SOSA, GR, and CAT activities remained the same compared with NaCl alone, whereas the TAC and LUPO activities were increased under the combined stress compared with NaCl alone. However, shoot FW was significantly reduced under NaCl + B compared with NaCl alone, as an additive effect of combined stress. Thus, we found an adjustment of antioxidative enzyme activity to the interactive effects of NaCl and high B. The stress factor "salt" mainly produced more oxidative stress than that of the factor "high B". Furthermore, addition of higher B in the presence of NaCl increases TAC and LUPO demonstrating that increased LUPO activity is an important physiological response in wheat plants against multiple stresses. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  16. A unified approach for description of gas hydrate formation kinetics in the presence of kinetic promoters in gas hydrate converters

    International Nuclear Information System (INIS)

    ZareNezhad, Bahman; Varaminian, Farshad

    2013-01-01

    Highlights: • A unified kinetic model for description of promoted and non-promoted gas hydrate formation processes is presented. • Effects of impeller speed, promoter concentration and different kinetic promoters are investigated. • A unique region of gas hydrate formation is identified regarding gas hydrate formation processes. • The proposed model is useful for understanding the behavior of gas hydrate formation processes and design of GTH converters. - Abstract: The kinetic promoters have found wide applications in enhancing the rate of energy conversion and storage via gas hydrate formation processes. Effects of different kinetic promoters such as anionic surfactants sodium dodecyl sulfate (SDS), dodecylbenzene sulfonic acid (DBSA), and sodium dodecyl benzene sulfonate (SDBS); cationic surfactants, Cetyl trimethyl ammonium bromide (CTAB), dodecyl trimethyl ammonium bromide (DTAB) and non-ionic surfactants, alkylpolyglucoside (APG), dodecyl polysaccharide glycoside (DPG), TritonX-100 (TX100) on methane (CH 4 ), ethane (C 2 H 6 ) and propane (C 3 H 8 ) gas hydrate formation processes are investigated in this work. A macroscopic kinetic model based on the time variations of reaction chemical potential is also presented for global description of gas hydrate formation processes. Experimental gas hydrate formation data are employed to validate the proposed kinetic model. Effects of promoter’s concentrations and agitation intensities on the gas consumption profiles are also investigated. A universal correlation and a unified kinetic map have been proposed for macroscopic description of gas hydrate formation kinetics in the presence or absence of kinetic promoters. According to the presented unified kinetic map, a unique region of gas hydrate formation is identified for the first time. For negligible amounts of kinetic promoters, the presented region disappears and approaches to a unique path at high agitation intensities. The presented unified approach is

  17. Protein Hydration Thermodynamics: The Influence of Flexibility and Salt on Hydrophobin II Hydration.

    Science.gov (United States)

    Remsing, Richard C; Xi, Erte; Patel, Amish J

    2018-04-05

    The solubility of proteins and other macromolecular solutes plays an important role in numerous biological, chemical, and medicinal processes. An important determinant of protein solubility is the solvation free energy of the protein, which quantifies the overall strength of the interactions between the protein and the aqueous solution that surrounds it. Here we present an all-atom explicit-solvent computational framework for the rapid estimation of protein solvation free energies. Using this framework, we estimate the hydration free energy of hydrophobin II, an amphiphilic fungal protein, in a computationally efficient manner. We further explore how the protein hydration free energy is influenced by enhancing flexibility and by the addition of sodium chloride, and find that it increases in both cases, making protein hydration less favorable.

  18. Methane hydrate synthesis from ice: Influence of pressurization and ethanol on optimizing formation rates and hydrate yield

    Science.gov (United States)

    Chen, Po-Chun.; Huang, Wuu-Liang; Stern, Laura A.

    2010-01-01

    Polycrystalline methane gas hydrate (MGH) was synthesized using an ice-seeding method to investigate the influence of pressurization and ethanol on the hydrate formation rate and gas yield of the resulting samples. When the reactor is pressurized with CH4 gas without external heating, methane hydrate can be formed from ice grains with yields up to 25% under otherwise static conditions. The rapid temperature rise caused by pressurization partially melts the granular ice, which reacts with methane to form hydrate rinds around the ice grains. The heat generated by the exothermic reaction of methane hydrate formation buffers the sample temperature near the melting point of ice for enough time to allow for continuous hydrate growth at high rates. Surprisingly, faster rates and higher yields of methane hydrate were found in runs with lower initial temperatures, slower rates of pressurization, higher porosity of the granular ice samples, or mixtures with sediments. The addition of ethanol also dramatically enhanced the formation of polycrystalline MGH. This study demonstrates that polycrystalline MGH with varied physical properties suitable for different laboratory tests can be manufactured by controlling synthesis procedures or parameters. Subsequent dissociation experiments using a gas collection apparatus and flowmeter confirmed high methane saturation (CH 4·2O, with n = 5.82 ± 0.03) in the MGH. Dissociation rates of the various samples synthesized at diverse conditions may be fitted to different rate laws, including zero and first order.

  19. Probing the Surface Charge on the Basal Planes of Kaolinite Particles with High-Resolution Atomic Force Microscopy.

    Science.gov (United States)

    Kumar, N; Andersson, M P; van den Ende, D; Mugele, F; Siretanu, I

    2017-12-19

    High-resolution atomic force microscopy is used to map the surface charge on the basal planes of kaolinite nanoparticles in an ambient solution of variable pH and NaCl or CaCl 2 concentration. Using DLVO theory with charge regulation, we determine from the measured force-distance curves the surface charge distribution on both the silica-like and the gibbsite-like basal plane of the kaolinite particles. We observe that both basal planes do carry charge that varies with pH and salt concentration. The silica facet was found to be negatively charged at pH 4 and above, whereas the gibbsite facet is positively charged at pH below 7 and negatively charged at pH above 7. Investigations in CaCl 2 at pH 6 show that the surface charge on the gibbsite facet increases for concentration up to 10 mM CaCl 2 and starts to decrease upon further increasing the salt concentration to 50 mM. The increase of surface charge at low concentration is explained by Ca 2+ ion adsorption, while Cl - adsorption at higher CaCl 2 concentrations partially neutralizes the surface charge. Atomic resolution imaging and density functional theory calculations corroborate these observations. They show that hydrated Ca 2+ ions can spontaneously adsorb on the gibbsite facet of the kaolinite particle and form ordered surface structures, while at higher concentrations Cl - ions will co-adsorb, thereby changing the observed ordered surface structure.

  20. Standardization and software infrastructure for gas hydrate data communications

    Energy Technology Data Exchange (ETDEWEB)

    Kroenlein, K.; Chirico, R.D.; Kazakov, A.; Frenkel, M. [National Inst. of Standards and Technology, Boulder, CO (United States). Physical and Chemical Properties Div.; Lowner, R. [GeoForschungsZentrum Potsdam (Germany); Wang, W. [Chinese Academy of Science, Beijing (China). Computer Network Information Center; Smith, T. [MIT Systems, Flushing, NY (United States); Sloan, E.D. [Colorado School of Mines, Golden, CO (United States). Centre for Hydrate Research

    2008-07-01

    The perceived value of gas hydrates as an energy resource for the future has led to extensive hydrate research studies and experiments. The hydrate deposits are widely dispersed throughout the world, and many countries are now investigating methods of extracting gas hydrate resources. This paper described a gas hydrates markup language (GHML) developed as an international standard for data transfer and storage within the gas hydrates community. The language is related to a hydrates database developed to facilitate a greater understanding of naturally occurring hydrate interactions with geophysical processes, and aid in the development of hydrate technologies for resource recovery and storage. Recent updates to the GHML included the addition of ThermoML, a communication standard for thermodynamic data into the GHML schema. The standard will be used to represent all gas hydrates thermodynamic data. A new element for the description of crystal structures has also been developed, as well as a guided data capture tool. The tool is available free of charge and is publicly licensed for use by gas hydrate data producers. A web service has also been provided to ensure that access to GHML files for gas hydrates and data files are available for users. It was concluded that the tool will help to ensure data quality assurance for the conversion of data and meta-data within the database. 28 refs., 9 figs.

  1. Towards CO2 sequestration and applications of CO2 hydrates: the effects of tetrahydrofuran on the phase equilibria of CO2 hydrates

    International Nuclear Information System (INIS)

    Khalik, M.S.; Peters, C.J.

    2006-01-01

    The increasing quantity of carbon dioxide (CO 2 ) in the atmosphere has caused widespread global concerns. Capturing CO 2 from its sources and stored it in the form of gas hydrates and application of CO 2 hydrates are among the proposed methods to overcome this problem. In order to make hydrate-based process more attractive, the use of cyclic ethers as promoters is suggested to reduce the required hydrate formation pressure and enhancing the corresponding kinetic rate. In the present work, tetrahydrofuran (THF) is chosen as a hydrate promoter, participating in forming hydrates and produces mixed hydrate together with CO 2 . The pressure and temperature ranges of hydrate stability region are carefully determined through phase equilibrium measurement of the ternary CO 2 , tetrahydrofuran (THF) and water systems. From the experimental results, it is confirmed that the presence of THF in CO 2 + water systems will extend the hydrate formation region to higher temperature at a constant pressure. The extension of the hydrate stability region is depended on the overall concentration of the ternary system. Moreover, four-phase equilibrium of H-Lw-Lv-V is observed in the system, which may be due to a liquid phase split. In the region where the four-phase equilibrium exists, the ternary system loses its concentration dependency of the hydrate equilibrium conditions. (Author)

  2. A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy

    International Nuclear Information System (INIS)

    Andersen, Morten Daugaard; Jakobsen, Hans J.; Skibsted, Jorgen

    2006-01-01

    Recent 27 Al MAS NMR studies of hydrated Portland cements and calcium-silicate-hydrate (C-S-H) phases have shown a resonance from Al in octahedral coordination, which cannot be assigned to the well-known aluminate species in hydrated Portland cements. This resonance, which exhibits the isotropic chemical shift δ iso = 5.0 ppm and the quadrupole product parameter P Q = 1.2 MHz, has been characterized in detail by 27 Al MAS and 27 Al{ 1 H} CP/MAS NMR for different hydrated white Portland cements and C-S-H phases. These experiments demonstrate that the resonance originates from an amorphous or disordered aluminate hydrate which contains Al(OH) 6 3- or O x Al(OH) 6-x (3+x)- units. The formation of the new aluminate hydrate is related to the formation of C-S-H at ambient temperatures, however, it decomposes by thermal treatment at temperatures of 70-90 o C. From the experiments in this work it is proposed that the new aluminate hydrate is either an amorphous/disordered aluminate hydroxide or a calcium aluminate hydrate, produced as a separate phase or as a nanostructured surface precipitate on the C-S-H phase. Finally, the possibilities of Al 3+ for Ca 2+ substitution in the principal layers and interlayers of the C-S-H structure are discussed

  3. LABORATORY STRATEGIES FOR HYDRATE FORMATION IN FINE-GRAINED SEDIMENTS

    KAUST Repository

    Lei, L.; Santamarina, Carlos

    2018-01-01

    Fine‐grained sediments limit hydrate nucleation, shift the phase boundary and hinder gas supply. Laboratory experiments in this study explore different strategies to overcome these challenges, including the use of a more soluble guest molecule rather than methane, grain‐scale gas‐storage within porous diatoms, ice‐to‐hydrate transformation to grow lenses at predefined locations, forced gas injection into water saturated sediments, and long‐term guest molecule transport. Tomographic images, thermal and pressure data provide rich information on hydrate formation and morphology. Results show that hydrate formation is inherently displacive in fine‐grained sediments; lenses are thicker and closer to each other in compressible, high specific surface area sediments subjected to low effective stress. Temperature and pressure trajectories follow a shifted phase boundary that is consistent with capillary effects. Exo‐pore growth results in freshly formed hydrate with a striped and porous structure; this open structure becomes an effective pathway for gas transport to the growing hydrate front. Ice‐to‐hydrate transformation goes through a liquid stage at pre‐melt temperatures; then, capillarity and cryogenic suction compete, and some water becomes imbibed into the sediment faster than hydrate reformation. The geometry of hydrate lenses and the internal hydrate structure continue evolving long after the exothermal response to hydrate formation has completely decayed. Multiple time‐dependent processes occur during hydrate formation, including gas, water and heat transport, sediment compressibility, reaction rate and the stochastic nucleation process. Hydrate formation strategies conceived for this study highlight the inherent difficulties in emulating hydrate formation in fine‐grained sediments within the relatively short time‐scale available for laboratory experiments.

  4. LABORATORY STRATEGIES FOR HYDRATE FORMATION IN FINE-GRAINED SEDIMENTS

    KAUST Repository

    Lei, L.

    2018-04-02

    Fine‐grained sediments limit hydrate nucleation, shift the phase boundary and hinder gas supply. Laboratory experiments in this study explore different strategies to overcome these challenges, including the use of a more soluble guest molecule rather than methane, grain‐scale gas‐storage within porous diatoms, ice‐to‐hydrate transformation to grow lenses at predefined locations, forced gas injection into water saturated sediments, and long‐term guest molecule transport. Tomographic images, thermal and pressure data provide rich information on hydrate formation and morphology. Results show that hydrate formation is inherently displacive in fine‐grained sediments; lenses are thicker and closer to each other in compressible, high specific surface area sediments subjected to low effective stress. Temperature and pressure trajectories follow a shifted phase boundary that is consistent with capillary effects. Exo‐pore growth results in freshly formed hydrate with a striped and porous structure; this open structure becomes an effective pathway for gas transport to the growing hydrate front. Ice‐to‐hydrate transformation goes through a liquid stage at pre‐melt temperatures; then, capillarity and cryogenic suction compete, and some water becomes imbibed into the sediment faster than hydrate reformation. The geometry of hydrate lenses and the internal hydrate structure continue evolving long after the exothermal response to hydrate formation has completely decayed. Multiple time‐dependent processes occur during hydrate formation, including gas, water and heat transport, sediment compressibility, reaction rate and the stochastic nucleation process. Hydrate formation strategies conceived for this study highlight the inherent difficulties in emulating hydrate formation in fine‐grained sediments within the relatively short time‐scale available for laboratory experiments.

  5. Effects of dilute aqueous NaCl solution on caffeine aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bhanita; Paul, Sandip, E-mail: sandipp@iitg.ernet.in [Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam (India)

    2013-11-21

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogen bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.

  6. Effects of dilute aqueous NaCl solution on caffeine aggregation

    International Nuclear Information System (INIS)

    Sharma, Bhanita; Paul, Sandip

    2013-01-01

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogen bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl

  7. Sodium caseinate stabilized zein colloidal particles.

    Science.gov (United States)

    Patel, Ashok R; Bouwens, Elisabeth C M; Velikov, Krassimir P

    2010-12-08

    The present work deals with the preparation and stabilization of zein colloidal particles using sodium caseinate as electrosteric stabilizer. Colloidal particles with well-defined size range (120-150 nm) and negative surface potential (-29 to -47 mV) were obtained using a simple antisolvent precipitation method. Due to the presence of caseinate, the stabilized colloidal particles showed a shift of isoelectric point (IEP) from 6.0 to around pH 5.0 and thus prevent the aggregation of zein near its native IEP (pH 6.2). The particles also showed good stability to varying ionic strength (15 mM-1.5 M NaCl). Furthermore, stabilized particles retained the property of redispersibility after drying. In vitro protein hydrolysis study confirmed that the presence of caseinate did not alter the digestibility of zein. Such colloidal particles could potentially serve as all-natural delivery systems for bioactive molecules in food, pharmaceutical, and agricultural formulations.

  8. The hygroscopicity of indoor aerosol particles

    International Nuclear Information System (INIS)

    Wei, L.

    1993-07-01

    A system to study the hygroscopic growth of particle was developed by combining a Tandem Differential Mobility Analyzer (TDMA) with a wetted wall reactor. This system is capable of mimicking the conditions in human respiratory tract, and measuring the particle size change due to the hygroscopic growth. The performance of the system was tested with three kinds of particles of known composition, NaCl, (NH 4 ) 2 SO 4 , and (NH 4 )HS0 4 particles. The hygroscopicity of a variety of common indoor aerosol particles was studied including combustion aerosols (cigarette smoking, cooking, incenses and candles) and consumer spray products such as glass cleaner, general purpose cleaner, hair spray, furniture polish spray, disinfectant, and insect killer. Experiments indicate that most of the indoor aerosols show some hygroscopic growth and only a few materials do not. The magnitude of hygroscopic growth ranges from 20% to 300% depending on the particle size and fraction of water soluble components

  9. Structural transformations of sVI tert-butylamine hydrates to sII binary hydrates with methane.

    Science.gov (United States)

    Prasad, Pinnelli S R; Sugahara, Takeshi; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2009-10-22

    Binary clathrate hydrates with methane (CH(4), 4.36 A) and tert-butylamine (t-BuNH(2), 6.72 A) as guest molecules were synthesized at different molar concentrations of t-BuNH(2) (1.00-9.31 mol %) with methane at 7.0 MPa and 250 K, and were characterized by powder X-ray diffraction (PXRD) and Raman microscopy. A structural transformation from sVI to sII of t-BuNH(2) hydrate was clearly observed on pressurizing with methane. The PXRD showed sII signatures and the remnant sVI signatures were insignificant, implying the metastable nature of sVI binary hydrates. Raman spectroscopic data on these binary hydrates suggest that the methane molecules occupy the small cages and vacant large cages. The methane storage capacity in this system was nearly doubled to approximately 6.86 wt % for 5.56 mol % > t-BuNH(2) > 1.0 mol %.

  10. The U.S. Geological Survey’s Gas Hydrates Project

    Science.gov (United States)

    Ruppel, Carolyn D.

    2018-01-17

    The Gas Hydrates Project at the U.S. Geological Survey (USGS) focuses on the study of methane hydrates in natural environments. The project is a collaboration between the USGS Energy Resources and the USGS Coastal and Marine Geology Programs and works closely with other U.S. Federal agencies, some State governments, outside research organizations, and international partners. The USGS studies the formation and distribution of gas hydrates in nature, the potential of hydrates as an energy resource, and the interaction between methane hydrates and the environment. The USGS Gas Hydrates Project carries out field programs and participates in drilling expeditions to study marine and terrestrial gas hydrates. USGS scientists also acquire new geophysical data and sample sediments, the water column, and the atmosphere in areas where gas hydrates occur. In addition, project personnel analyze datasets provided by partners and manage unique laboratories that supply state-of-the-art analytical capabilities to advance national and international priorities related to gas hydrates.

  11. Hydration behaviors of calcium silicate-based biomaterials.

    Science.gov (United States)

    Lee, Yuan-Ling; Wang, Wen-Hsi; Lin, Feng-Huie; Lin, Chun-Pin

    2017-06-01

    Calcium silicate (CS)-based biomaterials, such as mineral trioxide aggregate (MTA), have become the most popular and convincing material used in restorative endodontic treatments. However, the commercially available CS-based biomaterials all contain different minor additives, which may affect their hydration behaviors and material properties. The purpose of this study was to evaluate the hydration behavior of CS-based biomaterials with/without minor additives. A novel CS-based biomaterial with a simplified composition, without mineral oxides as minor additives, was produced. The characteristics of this biomaterial during hydration were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectrometry. The hydration behaviors of commercially available gray and white MTAs with mineral oxide as minor additives were also evaluated for reference. For all three test materials, the XRD analysis revealed similar diffraction patterns after hydration, but MTAs presented a significant decrease in the intensities of Bi 2 O 3 -related peaks. SEM results demonstrated similar porous microstructures with some hexagonal and facetted crystals on the outer surfaces. In addition, compared to CS with a simplified composition, the FTIR plot indicated that hydrated MTAs with mineral oxides were better for the polymerization of calcium silicate hydrate (CSH), presenting Si-O band shifting to higher wave numbers, and contained more water crystals within CSH, presenting sharper bands for O-H bending. Mineral oxides might not result in significant changes in the crystal phases or microstructures during the hydration of CS-based biomaterials, but these compounds affected the hydration behavior at the molecular level. Copyright © 2016. Published by Elsevier B.V.

  12. Cryogenic-SEM investigation of CO{sub 2} hydrate morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Camps, A.P.; Milodowski, A.; Rochelle, C.; Williams, J.F.; Jackson, P. D. [British Geological Survey, Keyworth, Nottinghamshire (United Kingdom); Camps, A.P; Lovell, M.; Williams, J.F. [Leicester Univ., Leicester (United Kingdom). Dept. of Geology

    2008-07-01

    Gas hydrates occur naturally around the world in the shallow-marine geosphere, and are seen as a drilling hazard in the petroleum industry due to their role in the carbon cycle, and their possible contribution in past and present climate change. Hydrates are ice-like structures composed of cages of water molecules containing one or more guest molecules, such as methane and carbon dioxide (CO{sub 2}). CO{sub 2} hydrates also occur naturally on earth and are being investigated for their potential to store large volumes of CO{sub 2} to reduce atmospheric emissions of greenhouse gases as a climate change mitigation strategy. However, the mineralogy and formation processes of hydrates are relatively poorly understood. Different imaging techniques have been utilized to study gas hydrates, such as nuclear magnetic resonance, magnetic resonance imaging, and x-ray computed tomography. Scanning Electron Microscopy (SEM) at cryogenic temperatures is another technique to study hydrates, and has been used successfully for investigation of methane and CO{sub 2} hydrates. This paper presented a study that investigated CO{sub 2} hydrates formed in laboratories, using a cryogenic-SEM. The paper presented the study methods and observations, including euhedral crystalline carbon dioxide hydrate; acicular carbon dioxide hydrate; granoblastic carbon dioxide hydrate; and gas rich carbon dioxide hydrate. It was concluded that the investigation produced various different hydrate morphologies resulting from different formation conditions. Morphologies ranged from well-defined euhedral crystals to acicular needles, and more complex, intricate forms. 22 refs., 6 figs., 1 appendix.

  13. Gas Hydrates | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Preliminary Report - Cascadia Margin Gas Hydrates, Volume 204 Initial Report Mallik 2002 GSC Bulletin 585 : Scientific results from the Mallik 2002 gas hydrate production well program Offshore gas hydrate sample

  14. Atomic and nano-scale characterization of a 50-year-old hydrated C3S paste

    KAUST Repository

    Geng, Guoqing; Taylor, Rae; Bae, Sungchul; Herná ndez-Cruz, Daniel; Kilcoyne, David A.; Emwas, Abdul-Hamid M.; Monteiro, Paulo J M

    2015-01-01

    This paper investigates the atomic and nano-scale structures of a 50-year-old hydrated alite paste. Imaged by TEM, the outer product C-S-H fibers are composed of particles that are 1.5-2 nm thick and several tens of nanometers long. 29Si NMR shows 47.9% Q1 and 52.1% Q2, with a mean SiO4 tetrahedron chain length (MCL) of 4.18, indicating a limited degree of polymerization after 50 years' hydration. A Scanning Transmission X-ray Microscopy (STXM) study was conducted on this late-age paste and a 1.5 year old hydrated C3S solution. Near Edge X-ray Absorption Fine Structure (NEXAFS) at Ca L3,2-edge indicates that Ca2 + in C-S-H is in an irregular symmetric coordination, which agrees more with the atomic structure of tobermorite than that of jennite. At Si K-edge, multi-scattering phenomenon is sensitive to the degree of polymerization, which has the potential to unveil the structure of the SiO44 - tetrahedron chain. © 2015 Elsevier Ltd. All rights reserved.

  15. Atomic and nano-scale characterization of a 50-year-old hydrated C3S paste

    KAUST Repository

    Geng, Guoqing

    2015-07-15

    This paper investigates the atomic and nano-scale structures of a 50-year-old hydrated alite paste. Imaged by TEM, the outer product C-S-H fibers are composed of particles that are 1.5-2 nm thick and several tens of nanometers long. 29Si NMR shows 47.9% Q1 and 52.1% Q2, with a mean SiO4 tetrahedron chain length (MCL) of 4.18, indicating a limited degree of polymerization after 50 years\\' hydration. A Scanning Transmission X-ray Microscopy (STXM) study was conducted on this late-age paste and a 1.5 year old hydrated C3S solution. Near Edge X-ray Absorption Fine Structure (NEXAFS) at Ca L3,2-edge indicates that Ca2 + in C-S-H is in an irregular symmetric coordination, which agrees more with the atomic structure of tobermorite than that of jennite. At Si K-edge, multi-scattering phenomenon is sensitive to the degree of polymerization, which has the potential to unveil the structure of the SiO44 - tetrahedron chain. © 2015 Elsevier Ltd. All rights reserved.

  16. Atomic and nano-scale characterization of a 50-year-old hydrated C3S paste

    International Nuclear Information System (INIS)

    Geng, Guoqing; Taylor, Rae; Bae, Sungchul; Hernández-Cruz, Daniel; Kilcoyne, David A.; Emwas, Abdul-Hamid; Monteiro, Paulo J.M.

    2015-01-01

    This paper investigates the atomic and nano-scale structures of a 50-year-old hydrated alite paste. Imaged by TEM, the outer product C–S–H fibers are composed of particles that are 1.5–2 nm thick and several tens of nanometers long. 29 Si NMR shows 47.9% Q 1 and 52.1% Q 2 , with a mean SiO 4 tetrahedron chain length (MCL) of 4.18, indicating a limited degree of polymerization after 50 years' hydration. A Scanning Transmission X-ray Microscopy (STXM) study was conducted on this late-age paste and a 1.5 year old hydrated C 3 S solution. Near Edge X-ray Absorption Fine Structure (NEXAFS) at Ca L 3,2 -edge indicates that Ca 2+ in C–S–H is in an irregular symmetric coordination, which agrees more with the atomic structure of tobermorite than that of jennite. At Si K-edge, multi-scattering phenomenon is sensitive to the degree of polymerization, which has the potential to unveil the structure of the SiO 4 4− tetrahedron chain.

  17. Study of constraints in using household NaCl salt for retrospective dosimetry

    Science.gov (United States)

    Elashmawy, M.

    2018-05-01

    Thermoluminescence (TL) characteristics of 5 different household NaCl salts and one analytical salt were determined to investigate the possible factors that affect the reliability of using household salt for retrospective dosimetry. Salts' TL sensitivities were found to be particle-size dependent and approached saturation at the largest size, whereas for salts that have the same particle size, the TL sensitivity depended on their origin. TL dependence on the particle size interprets significant variations in TL response reported in the literature for the same salt patch. The first TL readout indicated that all salts have similar glow curves with one distinctive peak. Typical second TL readout at two different doses showed a dramatic decrease in TL sensitivity associated with a significant change in the glow curve structure possessing two prominent peaks. Glow curve deconvolution (GCD) of the first TL readout for all salts yielded 6 individual glow peaks of first-order kinetics, whereas in GCD of second TL readouts, 5 individual glow peaks of second-order kinetics were obtained. Similarities in the glow curve structures of the first and second TL readouts suggest that additives such as KIO3 and MgCO3 have no effect on the TL process. Fading effect was evaluated for the salt of highest TL sensitivity, and it was found that the integral TL intensity decreased gradually and lost 40% of its initial value over 2 weeks, after which it remained constant. Results conclude that a household salt cannot be used for retrospective dosimetry without considering certain constraints such as the salt's origin and particle size. Furthermore, preparedness for radiological accidents and accurate dose reconstructions require that most of the commonly distributed household salt brands should be calibrated in advance and stored in a repository to be recalled in case of accidents.

  18. Comparative Assessment of Advanced Gay Hydrate Production Methods

    Energy Technology Data Exchange (ETDEWEB)

    M. D. White; B. P. McGrail; S. K. Wurstner

    2009-06-30

    Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to pore clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.

  19. Long-term adaptation of methanol-fed thermophilic (55°C) sulfate-reducing reactors to NaCl

    NARCIS (Netherlands)

    Vallero, M.V.G.; Lettinga, G.; Lens, P.N.L.

    2003-01-01

    A laboratory-scale upflow anaerobic sludge bed (UASB) reactor was operated during 273 days at increasing NaCl concentrations (0.5-12.5 g NaCl l(-1)) to assess whether the stepwise addition of the salt NaCl results in the acclimation of that sludge. The 6.5-1 thermophilic (55 degreesC), sulfidogenic

  20. Proteomic changes in Debaryomyces hansenii upon exposure to NaCl stress

    DEFF Research Database (Denmark)

    Gori, Klaus; Hébraud, Michel; Chambon, Christophe

    2007-01-01

    The proteome of the highly NaCl-tolerant yeast Debaryomyces hansenii was investigated by two-dimensional polyacrylamide gel electrophoresis (2D PAGE), and 47 protein spots were identified by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) followed by mass spectrometry (MS...... 7% and 4% of the rate in medium without NaCl. In addition, the number of protein spots detected on 2D gels prepared from cells exposed to 8% and 12% (w/v) NaCl exceeded less than 28% of the number of protein spots detected on 2D gels prepared from cells without added NaCl. Several proteins were...

  1. Terahertz Time Domain Spectroscopy for Structure-II Gas Hydrates

    DEFF Research Database (Denmark)

    Takeya, Kei; Zhang, Caihong; Kawayama, Iwao

    2009-01-01

    For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has...... a characteristic broad absorption peak at 0.5 THz corresponding to the dipole moment of THF molecules. The refractive indices of THF and propane hydrates are 1.725 and 1.775 at 1 THz, respectively, and show a slight but clear difference from the refractive index of ice (1.79). THz-TDS is a potentially useful...... technique for the ondestructive inspection of gas hydrates. # 2009 The Japan Society of Applied Physics...

  2. Hydrate Control for Gas Storage Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  3. Development of hydrate risk quantification in oil and gas production

    Science.gov (United States)

    Chaudhari, Piyush N.

    Subsea flowlines that transport hydrocarbons from wellhead to the processing facility face issues from solid deposits such as hydrates, waxes, asphaltenes, etc. The solid deposits not only affect the production but also pose a safety concern; thus, flow assurance is significantly important in designing and operating subsea oil and gas production. In most subsea oil and gas operations, gas hydrates form at high pressure and low temperature conditions, causing the risk of plugging flowlines, with a undesirable impact on production. Over the years, the oil and gas industry has shifted their perspective from hydrate avoidance to hydrate management given several parameters such as production facility, production chemistry, economic and environmental concerns. Thus, understanding the level of hydrate risk associated with subsea flowlines is an important in developing efficient hydrate management techniques. In the past, hydrate formation models were developed for various flow-systems (e.g., oil dominated, water dominated, and gas dominated) present in the oil and gas production. The objective of this research is to extend the application of the present hydrate prediction models for assessing the hydrate risk associated with subsea flowlines that are prone to hydrate formation. It involves a novel approach for developing quantitative hydrate risk models based on the conceptual models built from the qualitative knowledge obtained from experimental studies. A comprehensive hydrate risk model, that ranks the hydrate risk associated with the subsea production system as a function of time, hydrates, and several other parameters, which account for inertial, viscous, interfacial forces acting on the flow-system, is developed for oil dominated and condensate systems. The hydrate plugging risk for water dominated systems is successfully modeled using The Colorado School of Mines Hydrate Flow Assurance Tool (CSMHyFAST). It is found that CSMHyFAST can be used as a screening tool in

  4. Advanced Gas Hydrate Reservoir Modeling Using Rock Physics

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Daniel

    2017-12-30

    Prospecting for high saturation gas hydrate deposits can be greatly aided with improved approaches to seismic interpretation and especially if sets of seismic attributes can be shown as diagnostic or direct hydrocarbon indicators for high saturation gas hydrates in sands that would be of most interest for gas hydrate production.

    A large 3D seismic data set in the deep water Eastern Gulf of Mexico was screened for gas hydrates using a set of techniques and seismic signatures that were developed and proven in the Central deepwater Gulf of Mexico in the DOE Gulf of Mexico Joint Industry Project JIP Leg II in 2009 and recently confirmed with coring in 2017.

    A large gas hydrate deposit is interpreted in the data where gas has migrated from one of the few deep seated faults plumbing the Jurassic hydrocarbon source into the gas hydrate stability zone. The gas hydrate deposit lies within a flat-lying within Pliocene Mississippi Fan channel that was deposited outboard in a deep abyssal environment. The uniform architecture of the channel aided the evaluation of a set of seismic attributes that relate to attenuation and thin-bed energy that could be diagnostic of gas hydrates. Frequency attributes derived from spectral decomposition also proved to be direct hydrocarbon indicators by pseudo-thickness that could be only be reconciled by substituting gas hydrate in the pore space. The study emphasizes that gas hydrate exploration and reservoir characterization benefits from a seismic thin bed approach.

  5. Experimental Setup to Characterize Bentonite Hydration Processes

    International Nuclear Information System (INIS)

    Bru, A.; Casero, D.; Pastor, J. M.

    2001-01-01

    We present an experimental setup to follow-up the hydration process of a bentonite. Clay samples, of 2 cm x 12 cm x 12 cm, were made and introduced in a Hele-Shaw cell with two PMM windows and two steel frames. In hydration experiments, a fluid enters by an orifice in the frame, located both at the top and the bottom of the cell, to perform hydration in both senses. To get a uniform hydration we place a diffuser near the orifice. Volume influxes in hydration cells are registered in time. The evolution of the developed interface was recorded on a videotape. The video cameras was fixed to a holder so that the vertical direction in the monitor was the same as the direction of the larger extension of the cell. (Author) 6 refs

  6. Effect of NaCl and KCl on irradiated diploid yeast cells

    International Nuclear Information System (INIS)

    Amirtaev, K.G.; Lobachevskij, P.N.; Lyu Gvan Son

    1984-01-01

    Irradiated dipload yeast Saccharomyces cerevisiae kept in NaCl and KCl solutions died more readily than nonirradiated cells: the death rate was a functaon of radiation Jose and temperature of exposure. It was suggested that the radiation-induced injury to mass cell structures was responsible for the death rate. It was shown that the postirradiataon recovery of cells from radiation damages proceeded in KCl solution two-three times slower than mn water, and it was inhibited completely in NaCl solution

  7. Marine Gas Hydrates - An Untapped Non-conventional Energy ...

    Indian Academy of Sciences (India)

    Table of contents. Marine Gas Hydrates - An Untapped Non-conventional Energy Resource · Slide 2 · Slide 3 · Slide 4 · Gas Hydrate Stability Zone · Slide 6 · Slide 7 · Exploration of gas hydrates (seismic) · Characteristics of BSR · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Distribution of Gas Hydrates in KG ...

  8. The structure of hydrate bearing fine grained marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Priest, J.; Kingston, E.; Clayton, C. [Southampton Univ., Highfield (United Kingdom). School of Civil Engineering and the Environment; Schultheiss, P.; Druce, M. [Geotek Ltd., Daventry (United Kingdom)

    2008-07-01

    This paper discussed the structure of naturally occurring methane gas hydrates in fine-grained sediments from core samples recovered using in situ pressures from the eastern margin of the Indian Ocean. High resolution X-ray computed tomography (CT) images were taken of gas hydrate cores. The hydrate structure was examined and comparisons were made between low resolution X-ray images obtained on the cores prior to sub-sectioning and depressurization procedures. The X-ray images showed the presence of high-angle, sub-parallel veins within the recovered sediments. The scans indicated that the hydrates occurred as fracture filing veins throughout the core. Fracture orientation was predominantly sub-vertical. Thick millimetric hydrate veins were composed of sub-millimetric veins with variations in fracture angle. The analysis indicated that hydrate formation was episodic in nature and subject to changes in the stress regime. Results of the study showed that depressurization and subsequent freezing alter the structure of the sediment even when the gas hydrate has not been altered. A large proportion of the hydrate survived when outside of its stability region. The self-preserving behaviour of the hydrate was attributed to the endothermic nature of gas hydrate dissociation. It was concluded that the accurate physical characterization of gas hydrates can only be conducted when the core section remains under in situ stress conditions. 13 refs., 9 figs.

  9. Proteomic analysis of the response to NaCl stress of Lactobacillus bulgaricus.

    Science.gov (United States)

    Li, Chun; Li, Pei-Zhao; Sun, Jin-Wei; Huo, Gui-Cheng; Liu, Li-Bo

    2014-11-01

    Lactobacillus bulgaricus is commonly used in dairy products as a starter culture. Its viability during freeze-drying is of commercial interest. Here a significant (p bulgaricus ATCC 11842 was achieved during freeze-drying when it was prestressed with 2 % (w/v) NaCl for 2 h in the late growth phase. To understand the mechanism of this stress-related viability improvement in L. bulgaricus, protein synthesis was analyzed by 2D difference gel electrophoresis. Nine protein spots were significantly altered by NaCl and were subsequently identified by peptide mass fingerprinting. The functions of the proteins included stress-related protein synthesis, amino acid biosynthesis, nucleotide biosynthesis, sugar metabolism, transport systems, and vitamin biosynthesis. These findings provide a considerable background regarding the NaCl stress response of L. bulgaricus.

  10. Ultrafine particles in concrete: Influence of ultrafine particles on concrete properties and application to concrete mix design

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Carsten

    2010-07-01

    In this work, the influence of ultrafine particles on concrete properties was investigated. In the context of this work, ultrafine particles (reactive and inert materials) are particles finer than cement. Due to the development of effective superplasticizers, the incorporation of ultrafine particles in concrete is nowadays possible. Different minerals, usually considered inert, were tested. These minerals were also used in combination with reactive silica fume. The modified Andreassen model was used to optimise the particle size distribution and thus the packing density of the complete mix composition. Heat of hydration, compressive strength, shrinkage, frost resistance and the microstructure were investigated.The influence of different ultrafine inert materials on the cement hydration was investigated. The results show that most of the minerals have an accelerating effect. They provide nucleation sites for hydration products and contribute in that way to a faster dissolution of cement grains. Minerals containing calcium were found to influence the early stage of hydration as well. These minerals shortened the dormant period of the cement hydration, the effect is known from limestone filler in self-compacting concrete. In a first test series on concrete, different ultrafine inert particles were used to replace cement. That was done in several ways; with constant water content or constant w/c. The results from this test series show that the best effect is achieved when cement is replaced by suitable ultrafines while the w/c is kept constant. In doing so, the compressive strength can be increased and shrinkage can be reduced. The microstructure is improved and becomes denser with improved packing at microlevel. Efficiency factors (k values) for the ultrafine inert materials were calculated from the compressive strength results. The k values are strongly dependent on the mode of cement replacement, fineness and type of the replacement material and curing time. Drying

  11. NaCl stress impact on the key enzymes in glycolysis from Lactobacillus bulgaricus during freeze-drying.

    Science.gov (United States)

    Li, Chun; Sun, Jinwei; Qi, Xiaoxi; Liu, Libo

    2015-01-01

    The viability of Lactobacillus bulgaricus in freeze-drying is of significant commercial interest to dairy industries. In the study, L.bulgaricus demonstrated a significantly improved (p enzymes in glycolysis during 2% NaCl stress were studied. NaCl stress significantly enhanced (p enzymes (phosphofructokinase, pyruvate kinase, and lactate dehydrogenase) decreased during freeze-drying, and NaCl stress were found to improve activities of these enzymes before and after freeze-drying. However, a transcriptional analysis of the corresponding genes suggested that the effect of NaCl stress on the expression of the pfk2 gene was not obvious. The increased survival of freeze-dried cells of L. bulgaricus under NaCl stress might be due to changes in only the activity or translation level of these enzymes in different environmental conditions but have no relation to their mRNA transcription level.

  12. Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone

    Directory of Open Access Journals (Sweden)

    Doris E. Braun

    2018-02-01

    Full Text Available The observed moisture- and temperature dependent transformations of the dapsone (4,4′-diaminodiphenyl sulfone, DDS 0. 33-hydrate were correlated to its structure and the number and strength of the water-DDS intermolecular interactions. A combination of characterization techniques was used, including thermal analysis (hot-stage microscopy, differential scanning calorimetry and thermogravimetric analysis, gravimetric moisture sorption/desorption studies and variable humidity powder X-ray diffraction, along with computational modeling (crystal structure prediction and pair-wise intermolecular energy calculations. Depending on the relative humidity the hydrate contains between 0 and 0.33 molecules of water per molecule DDS. The crystal structure is retained upon dehydration indicating that DDS hydrate shows a non-stoichiometric (dehydration behavior. Unexpectedly, the water molecules are not located in structural channels but at isolated-sites of the host framework, which is counterintuitively for a hydrate with non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker than water-host interactions that are commonly observed in stoichiometric hydrates and the lattice energies of the isomorphic dehydration product (hydrate structure without water molecules and (form III differ only by ~1 kJ mol−1. The computational generation of hypothetical monohydrates confirms that the hydrate with the unusual DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall, this study highlights that a deeper understanding of the formation of hydrates with non-stoichiometric behavior requires a multidisciplinary approach including suitable experimental and computational methods providing a firm basis for the development and manufacturing of high quality drug products.

  13. TOUGH+Hydrate v1.0 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George; Moridis, George J.; Kowalsky, Michael B.; Pruess, Karsten

    2008-03-01

    TOUGH+HYDRATE v1.0 is a new code for the simulation of the behavior of hydrate-bearing geologic systems. By solving the coupled equations of mass and heat balance, TOUGH+HYDRATE can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH{sub 4}-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy's law is valid. TOUGH+HYDRATE v1.0 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH{sub 4}, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects. TOUGH+HYDRATE is the first member of TOUGH+, the successor to the TOUGH2 [Pruess et al., 1991] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available.

  14. Nuclear microprobe analysis and source apportionment of individual atmospheric aerosol particles

    International Nuclear Information System (INIS)

    Artaxo, P.; Rabello, M.L.C.; Watt, F.; Grime, G.; Swietlicki, E.

    1993-01-01

    In atmospheric aerosol reserach, one key issue is to determine the sources of the airborne particles. Bulk PIXE analysis coupled with receptor modeling provides a useful, but limited view of the aerosol sources influencing one particular site or sample. The scanning nuclear microprobe (SNM) technique is a microanalytical technique that gives unique information on individual aerosol particles. In the SNM analyses a 1.0 μm size 2.4 MeV proton beam from the Oxford SNM was used. The trace elements with Z>11 were measured by the particle induced X-ray emission (PIXE) method with detection limits in the 1-10 ppm range. Carbon, nitrogen and oxygen are measured simultaneously using Rutherford backscattering spectrometry (RBS). Atmospheric aerosol particles were collected at the Brazilian Antarctic Station and at biomass burning sites in the Amazon basin tropical rain forest in Brazil. In the Antarctic samples, the sea-salt aerosol particles were clearly predominating, with NaCl and CaSO 4 as major compounds with several trace elements as Al, Si, P, K, Mn, Fe, Ni, Cu, Zn, Br, Sr, and Pb. Factor analysis of the elemental data showed the presence of four components: 1) Soil dust particles; 2) NaCl particles; 3) CaSO 4 with Sr; and 4) Br and Mg. Strontium, observed at 20-100 ppm levels, was always present in the CaSO 4 particles. The hierarchical cluster procedure gave results similar to the ones obtained through factor analysis. For the tropical rain forest biomass burning aerosol emissions, biogenic particles with a high organic content dominate the particle population, while K, P, Ca, Mg, Zn, and Si are the dominant elements. Zinc at 10-200 ppm is present in biogenic particles rich in P and K. The quantitative aspects and excellent detection limits make SNM analysis of individual aerosol particles a very powerful analytical tool. (orig.)

  15. Amorphous silica in ultra-high performance concrete: First hour of hydration

    Energy Technology Data Exchange (ETDEWEB)

    Oertel, Tina, E-mail: tina.oertel@isc.fraunhofer.de [Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Chair for Inorganic Chemistry I, Universität Bayreuth, Universitätsstr. 30, 95440 Bayreuth (Germany); Hutter, Frank [Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Helbig, Uta, E-mail: uta.helbig@th-nuernberg.de [Chair for Crystallography and X-ray Methods, Technische Hochschule Nürnberg Georg Simon Ohm, Wassertorstraße 10, 90489 Nürnberg (Germany); Sextl, Gerhard [Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Chair for Chemical Technology of Advanced Materials, Julius Maximilian Universität, Röntgenring 11, 97070 Würzburg (Germany)

    2014-04-01

    Amorphous silica in the sub-micrometer size range is widely used to accelerate cement hydration. Investigations including properties of silica which differ from the specific surface area are rare. In this study, the reactivity of varying types of silica was evaluated based on their specific surface area, surface silanol group density, content of silanol groups and solubility in an alkaline suspension. Pyrogenic silica, silica fume and silica synthesized by hydrolysis and condensation of alkoxy silanes, so-called Stoeber particles, were employed. Influences of the silica within the first hour were further examined in pastes with water/cement ratios of 0.23 using in-situ X-ray diffraction, cryo scanning electron microscopy and pore solution analysis. It was shown that Stoeber particles change the composition of the pore solution. Na{sup +}, K{sup +}, Ca{sup 2+} and silicate ions seem to react to oligomers. The extent of this reaction might be highest for Stoeber particles due to their high reactivity.

  16. Gas composition and isotopic geochemistry of cuttings, core, and gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well

    Science.gov (United States)

    Lorenson, T.D.

    1999-01-01

    Molecular and isotopic composition of gases from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well demonstrate that the in situ gases can be divided into three zones composed of mixtures of microbial and thermogenic gases. Sediments penetrated by the well are thermally immature; thus the sediments are probably not a source of thermogenic gas. Thermogenic gas likely migrated from depths below 5000 m. Higher concentrations of gas within and beneath the gas hydrate zone suggest that gas hydrate is a partial barrier to gas migration. Gas hydrate accumulations occur wholly within zone 3, below the base of permafrost. The gas in gas hydrate resembles, in part, the thermogenic gas in surrounding sediments and gas desorbed from lignite. Gas hydrate composition implies that the primary gas hydrate form is Structure I. However, Structure II stabilizing gases are more concentrated and isotopically partitioned in gas hydrate relative to the sediment hosting the gas hydrate, implying that Structure II gas hydrate may be present in small quantities.

  17. Hydration shells exchange charge with their protein

    DEFF Research Database (Denmark)

    Abitan, Haim; Lindgård, Per-Anker; Nielsen, Bjørn Gilbert

    2010-01-01

    . In our experiments, the amplitude of an ultrasonic pressure wave is gradually increased (0–20 atm) while we simultaneously measure the Raman spectra from the hydrated protein (β-lactoglobulin and lysozyme). We detected two types of spectral changes: first, up to 70% increase in the intensity......Investigation of the interaction between a protein and its hydration shells is an experimental and theoretical challenge. Here, we used ultrasonic pressure waves in aqueous solutions of a protein to explore the conformational states of the protein and its interaction with its hydration shells...... the presence of an ultrasonic pressure, a protein and its hydration shells are in thermodynamic and charge equilibrium, i.e. a protein and its hydration shells exchange charges. The ultrasonic wave disrupts these equilibria which are regained within 30–45 min after the ultrasonic pressure is shut off....

  18. Oceanic hydrates: more questions than answers

    International Nuclear Information System (INIS)

    Laherrere, Jean

    2000-01-01

    Methane hydrates create problems by blocking pipelines and casing; they are also accused of contributing to environmental problems (e.g. global warming). Methane hydrates are also found in permafrost areas and in oceanic sediments where the necessary temperature and pressure for stability occur. Claims for the widespread occurrence in thick oceanic deposits are unfounded: apparently indirect evidence from seismic reflectors, seismic hydrocarbon indicators, logs and free samples is unreliable. At one time, hydrate was seen as a static, biogenic, continuous, huge resource but that view is changing to one of a dynamic, overpressurised, discontinuous and unreliable resource. Only Japan and India are currently showing any serious interest in hydrates. Academic research has raised more questions than answers. It is suggested that more hard exploratory evidence rather than theoretical study is required

  19. Chloral Hydrate

    Science.gov (United States)

    ... if you are allergic to chloral hydrate, aspirin, tartrazine (a yellow dye in some processed foods and ... in, tightly closed, and out of reach of children. Store it at room temperature, away from excess ...

  20. Effect of addition of Sikament-R superplasticizer on the hydration characteristics of portland cement pastes

    Directory of Open Access Journals (Sweden)

    Safaa.M. El Gamal

    2012-08-01

    Full Text Available The effect of addition of Sikament-R superplasticizer (modified lignosulphonate base on the hydration characteristics of hardened Portland cement pastes were studied at different curing conditions. Four mixtures were prepared using 0, 0.2, 0.4 and 0.6 wt% addition of Sikament-R superplasticizer (SR of cement. These pastes were hydrated under two different conditions; (i normal curing at room temperature; 25 °C up to 90 days periods and (ii hydrothermal curing at a pressure of 8 atm. of saturated steam up to 24 h. The compressive strength, combined water content, free lime content, gel/space ratio and microstructure of hardened cement pastes were studied. The results revealed that addition of SR superplasticizer promote the dispersion of cement particles and interacts with Ca(OH2. The addition of SR superplasticizer exhibits Portland cement better workability during the preparation of pastes. In addition, amore compact structure were obtained leading to higher values of compressive strength for all the hardened hydrated pastes under both normal and hydrothermal curing. The results indicated that the addition of SR superplasticizer to Portland cement does not alter the types of hydration products formed during normal or hydrothermal conditions; only it caused a decrease in the degree of the porosity of the formed pastes.

  1. Carbon dioxide hydrate formation in a fixed-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fan, S.; Lang, X. [South China Univ. of Technology, Guangzhou (China). Key Laboratory of Enhanced Heat Transfer and Energy Conservation; Wang, Y.; Liang, D. [Chinese Academy of Sciences, Guangzhou (China). Guangzhou Inst. of Energy Conversion and Guangzhou Center of Natural Gas Hydrate; Sun, X.; Jurcik, B. [Air Liquide Laboratories, Tsukuba (Japan)

    2008-07-01

    Gas hydrates are thermodynamically stable at high pressures and near the freezing temperature of pure water. Methane hydrates occur naturally in sediments in the deep oceans and permafrost regions and constitute an extensive hydrocarbon reservoir. Carbon dioxide (CO{sub 2}) hydrates are of interest as a medium for marine sequestration of anthropogenic carbon dioxide. Sequestering CO{sub 2} as hydrate has potential advantages over most methods proposed for marine CO{sub 2} sequestration. Because this technique requires a shallower depth of injection when compared with other ocean sequestration methods, the costs of CO{sub 2} hydrate sequestration may be lower. Many studies have successfully used different continuous reactor designs to produce CO{sub 2} hydrates in both laboratory and field settings. This paper discussed a study that involved the design and construction of a fixed-bed reactor for simulation of hydrate formation system. Water, river sands and carbon dioxide were used to simulate the seep kind of hydrate formation. Carbon dioxide gas was distributed as small bubbles to enter from the bottom of the fixed-bed reactor. The paper discussed the experimental data and presented a diagram of the gas hydrate reactor system. The morphology as well as the reaction characters of CO{sub 2} hydrate was presented in detail. The results were discussed in terms of experimental phenomena and hydrate formation rate. A mathematical model was proposed for describing the process. 17 refs., 7 figs.

  2. Structural and hydration properties of amorphous tricalcium silicate

    International Nuclear Information System (INIS)

    Mori, K.; Fukunaga, T.; Shiraishi, Y.; Iwase, K.; Xu, Q.; Oishi, K.; Yatsuyanagi, K.; Yonemura, M.; Itoh, K.; Sugiyama, M.; Ishigaki, T.; Kamiyama, T.; Kawai, M.

    2006-01-01

    Mechanical milling was carried out to synthesize amorphous tricalcium silicate (Ca 3 SiO 5 ) sample, where Ca 3 SiO 5 is the most principal component of Portland cement. The partial phase transformation from the crystalline to the amorphous state was observed by X-ray and neutron diffractions. Moreover, it was found that the structural distortion on the Ca-O correlation exists in the milled Ca 3 SiO 5 . The hydration of the milled Ca 3 SiO 5 with D 2 O proceeds as follows: the formation of hydration products such as Ca(OD) 2 rapidly occurs in the early hydration stage, and then proceeds slowly after about 15 h. The induction time for the hydration of the milled Ca 3 SiO 5 is approximately one half shorter than that for the hydration of the unmilled one. This result means that the mechanical milling brings about the chemical activity of Ca 3 SiO 5 for hydration, and may be particularly useful for increasing the reactivity in the early hydration stage

  3. Ab initio modelling of methane hydrate thermophysical properties.

    Science.gov (United States)

    Jendi, Z M; Servio, P; Rey, A D

    2016-04-21

    The key thermophysical properties of methane hydrate were determined using ab initio modelling. Using density functional theory, the second-order elastic constants, heat capacity, compressibility, and thermal expansion coefficient were calculated. A wide and relevant range of pressure-temperature conditions were considered, and the structures were assessed for stability using the mean square displacement and radial distribution functions. Methane hydrate was found to be elastically isotropic with a linear dependence of the bulk modulus on pressure. Equally significant, multi-body interactions were found to be important in hydrates, and water-water interactions appear to strongly influence compressibility like in ice Ih. While the heat capacity of hydrate was found to be higher than that of ice, the thermal expansion coefficient was significantly lower, most likely due to the lower rigidity of hydrates. The mean square displacement gave important insight into stability, heat capacity, and elastic moduli, and the radial distribution functions further confirmed stability. The presented results provide a much needed atomistic thermoelastic characterization of methane hydrates and are essential input for the large-scale applications of hydrate detection and production.

  4. Hydration of the lower stratosphere by ice crystal geysers over land convective systems

    Directory of Open Access Journals (Sweden)

    S. Khaykin

    2009-03-01

    Full Text Available The possible impact of deep convective overshooting over land has been explored by six simultaneous soundings of water vapour, particles and ozone in the lower stratosphere next to Mesoscale Convective Systems (MCSs during the monsoon season over West Africa in Niamey, Niger in August 2006. The water vapour measurements were carried out using a fast response FLASH-B Lyman-alpha hygrometer. The high vertical resolution observations of the instrument show the presence of accumulation of enhanced water vapour layers between the tropopause at 370 K and the 420 K level. Most of these moist layers are shown connected with overshooting events occurring upwind as identified from satellite IR images over which the air mass probed by the sondes passed during the three previous days. In the case of a local overshoot identified by echo top turrets above the tropopause by the MIT C-band radar also in Niamey, tight coincidence was found between enhanced water vapour, ice crystal and ozone dip layers indicative of fast uplift of tropospheric air across the tropopause. The water vapour mixing ratio in the enriched layers exceeds frequently by 1–3 ppmv the average 6 ppmv saturation ratio at the tropopause and by up to 7 ppmv in the extreme case of local storm in coincidence with the presence of ice crystals. The presence of such layers strongly suggests hydration of the lower stratosphere by geyser-like injection of ice particles over overshooting turrets. The pile-like increase of water vapour up to 19 km seen by the high-resolution hygrometer during the season of maximum temperature of the tropopause, suggests that the above hydration mechanism may contribute to the summer maximum moisture in the lower stratosphere. If this interpretation is correct, hydration by ice geysers across the tropopause might be an important contributor to the stratospheric water vapour budget.

  5. CO2 injection into submarine, CH4-hydrate bearing sediments: Parameter studies towards the development of a hydrate conversion technology

    Science.gov (United States)

    Deusner, Christian; Bigalke, Nikolaus; Kossel, Elke; Haeckel, Matthias

    2013-04-01

    In the recent past, international research efforts towards exploitation of submarine and permafrost hydrate reservoirs have increased substantially. Until now, findings indicate that a combination of different technical means such as depressurization, thermal stimulation and chemical activation is the most promising approach for producing gas from natural hydrates. Moreover, emission neutral exploitation of CH4-hydrates could potentially be achieved in a combined process with CO2 injection and storage as CO2-hydrate. In the German gas hydrate initiative SUGAR, a combination of experimental and numerical studies is used to elucidate the process mechanisms and technical parameters on different scales. Experiments were carried out in the novel high-pressure flow-through system NESSI (Natural Environment Simulator for sub-Seafloor Interactions). Recent findings suggest that the injection of heated, supercritical CO2 is beneficial for both CH4 production and CO2 retention. Among the parameters tested so far are the CO2 injection regime (alternating vs. continuous injection) and the reservoir pressure / temperature conditions. Currently, the influence of CO2 injection temperature is investigated. It was shown that CH4 production is optimal at intermediate reservoir temperatures (8 ° C) compared to lower (2 ° C) and higher temperatures (10 ° C). The reservoir pressure, however, was of minor importance for the production efficiency. At 8 ° C, where CH4- and CO2-hydrates are thermodynamically stable, CO2-hydrate formation appears to be slow. Eventual clogging of fluid conduits due to CO2-rich hydrate formation force open new conduits, thereby tapping different regions inside the CH4-hydrate sample volume for CH4gas. In contrast, at 2 ° C immediate formation of CO2-hydrate results in rapid and irreversible obstruction of the entire pore space. At 10 ° C pure CO2-hydrates can no longer be formed. Consequently the injected CO2 flows through quickly and interaction with

  6. Enhancement of the surface methane hydrate-bearing layer based on the specific microorganisms form deep seabed sediment in Japan Sea.

    Science.gov (United States)

    Hata, T.; Yoneda, J.; Yamamoto, K.

    2017-12-01

    A methane hydrate-bearing layer located near the Japan Sea has been investigated as a new potential energy resource. In this study examined the feasibility of the seabed surface sediment strength located in the Japan Sea improvement technologies for enhancing microbial induced carbonate precipitation (MICP) process. First, the authors cultivated the specific urease production bacterium culture medium from this surface methane hydrate-bearing layer in the seabed (-600m depth) of Japan Sea. After that, two types of the laboratory test (consolidated-drained triaxial tests) were conducted using this specific culture medium from the seabed in the Japan Sea near the Toyama Prefecture and high urease activities bacterium named Bacillus pasteurii. The main outcomes of this research are as follows. 1) Specific culture medium focused on the urease production bacterium can enhancement of the urease activities from the methane hydrate-bearing layer near the Japan Sea side, 2) This specific culture medium can be enhancement of the surface layer strength, 3) The microbial induced carbonate precipitation process can increase the particle size compared to that of the original particles coating the calcite layer surface, 4) The mechanism for increasing the soil strength is based on the addition of cohesion like a cement stabilized soil.

  7. Investigating the Metastability of Clathrate Hydrates for Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Carolyn Ann [Colorado School of Mines, Golden, CO (United States)

    2014-11-18

    Important breakthrough discoveries have been achieved from the DOE award on the key processes controlling the synthesis and structure-property relations of clathrate hydrates, which are critical to the development of clathrate hydrates as energy storage materials. Key achievements include: (i) the discovery of key clathrate hydrate building blocks (stable and metastable) leading to clathrate hydrate nucleation and growth; (ii) development of a rapid clathrate hydrate synthesis route via a seeding mechanism; (iii) synthesis-structure relations of H2 + CH4/CO2 binary hydrates to control thermodynamic requirements for energy storage and sequestration applications; (iv) discovery of a new metastable phase present during clathrate hydrate structural transitions. The success of our research to-date is demonstrated by the significant papers we have published in high impact journals, including Science, Angewandte Chemie, J. Am. Chem. Soc. Intellectual Merits of Project Accomplishments: The intellectual merits of the project accomplishments are significant and transformative, in which the fundamental coupled computational and experimental program has provided new and critical understanding on the key processes controlling the nucleation, growth, and thermodynamics of clathrate hydrates containing hydrogen, methane, carbon dioxide, and other guest molecules for energy storage. Key examples of the intellectual merits of the accomplishments include: the first discovery of the nucleation pathways and dominant stable and metastable structures leading to clathrate hydrate formation; the discovery and experimental confirmation of new metastable clathrate hydrate structures; the development of new synthesis methods for controlling clathrate hydrate formation and enclathration of molecular hydrogen. Broader Impacts of Project Accomplishments: The molecular investigations performed in this project on the synthesis (nucleation & growth)-structure-stability relations of clathrate

  8. The impact of permafrost-associated microorganisms on hydrate formation kinetics

    Science.gov (United States)

    Luzi-Helbing, Manja; Liebner, Susanne; Spangenberg, Erik; Wagner, Dirk; Schicks, Judith M.

    2016-04-01

    The relationship between gas hydrates, microorganisms and the surrounding sediment is extremely complex: On the one hand, microorganisms producing methane provide the prerequisite for gas hydrate formation. As it is known most of the gas incorporated into natural gas hydrates originates from biogenic sources. On the other hand, as a result of microbial activity gas hydrates are surrounded by a great variety of organic compounds which are not incorporated into the hydrate structure but may influence the formation or degradation process. For gas hydrate samples from marine environments such as the Gulf of Mexico a direct association between microbes and gas hydrates was shown by Lanoil et al. 2001. It is further assumed that microorganisms living within the gas hydrate stability zone produce biosurfactants which were found to enhance the hydrate formation process significantly and act as nucleation centres (Roger et al. 2007). Another source of organic compounds is sediment organic matter (SOM) originating from plant material or animal remains which may also enhance hydrate growth. So far, the studies regarding this relationship were focused on a marine environment. The scope of this work is to extend the investigations to microbes originating from permafrost areas. To understand the influence of microbial activity in a permafrost environment on the methane hydrate formation process and the stability conditions of the resulting hydrate phase we will perform laboratory studies. Thereby, we mimic gas hydrate formation in the presence and absence of methanogenic archaea (e.g. Methanosarcina soligelidi) and other psychrophilic bacteria isolated from permafrost environments of the Arctic and Antarctic to investigate their impact on hydrate induction time and formation rates. Our results may contribute to understand and predict the occurrences and behaviour of potential gas hydrates within or adjacent to the permafrost. Lanoil BD, Sassen R, La Duc MT, Sweet ST, Nealson KH

  9. Nuclear Well Log Properties of Natural Gas Hydrate Reservoirs

    Science.gov (United States)

    Burchwell, A.; Cook, A.

    2015-12-01

    Characterizing gas hydrate in a reservoir typically involves a full suite of geophysical well logs. The most common method involves using resistivity measurements to quantify the decrease in electrically conductive water when replaced with gas hydrate. Compressional velocity measurements are also used because the gas hydrate significantly strengthens the moduli of the sediment. At many gas hydrate sites, nuclear well logs, which include the photoelectric effect, formation sigma, carbon/oxygen ratio and neutron porosity, are also collected but often not used. In fact, the nuclear response of a gas hydrate reservoir is not known. In this research we will focus on the nuclear log response in gas hydrate reservoirs at the Mallik Field at the Mackenzie Delta, Northwest Territories, Canada, and the Gas Hydrate Joint Industry Project Leg 2 sites in the northern Gulf of Mexico. Nuclear logs may add increased robustness to the investigation into the properties of gas hydrates and some types of logs may offer an opportunity to distinguish between gas hydrate and permafrost. For example, a true formation sigma log measures the thermal neutron capture cross section of a formation and pore constituents; it is especially sensitive to hydrogen and chlorine in the pore space. Chlorine has a high absorption potential, and is used to determine the amount of saline water within pore spaces. Gas hydrate offers a difference in elemental composition compared to water-saturated intervals. Thus, in permafrost areas, the carbon/oxygen ratio may vary between gas hydrate and permafrost, due to the increase of carbon in gas hydrate accumulations. At the Mallik site, we observe a hydrate-bearing sand (1085-1107 m) above a water-bearing sand (1107-1140 m), which was confirmed through core samples and mud gas analysis. We observe a decrease in the photoelectric absorption of ~0.5 barnes/e-, as well as an increase in the formation sigma readings of ~5 capture units in the water-bearing sand as

  10. First-principles elasticity of monocarboaluminate hydrates

    KAUST Repository

    Moon, J.; Yoon, S.; Wentzcovitch, R. M.; Monteiro, P. J. M.

    2014-01-01

    The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.

  11. First-principles elasticity of monocarboaluminate hydrates

    KAUST Repository

    Moon, J.

    2014-07-01

    The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.

  12. Radiation chemistry of salt-mine brines and hydrates

    International Nuclear Information System (INIS)

    Jenks, G.H.; Walton, J.R.; Bronstein, H.R.; Baes, C.F. Jr.

    1981-07-01

    Certain aspects of the radiation chemistry of NaCl-saturated MgCl 2 solutions and MgCl 2 hydrates at temperatures in the range of 30 to 180 0 C were investigated through experiments. A principal objective was to establish the values for the yields of H 2 [G(H 2 )] and accompanying oxidants in the gamma-ray radiolysis of concentrated brines that might occur in waste repositories in salt. We concluded that G(H 2 ) from gamma-irradiated brine solution into a simultaneously irradiated, deaerated atmosphere above the solution is between 0.48 and 0.49 over most of the range 30 to 143 0 C. The yield is probably somewhat lower at the lower end of this range, averaging 0.44 at 30 to 45 0 C. Changes in the relative amounts of MgCl 2 and NaCl in the NaCl-saturated solutions have negligible effects on the yield. The yield of O 2 into the same atmosphere averages 0.13, independent of the temperature and brine composition, showing that only about 50% of the radiolytic oxidant that was formed along with the H 2 was present as O 2 . We did not identify the species that compose the remainder of the oxidant. We concluded that the yield of H 2 from a gamma-irradiated brine solution into a simultaneously irradiated atmosphere containing 5 to 8% air in He may be greater than the yield in deaerated systems by amounts ranging from 0% for temperatures of 73 to 85 0 C, to about 30 and 40% for temperatures in the ranges 100 to 143 0 C and 30 to 45 0 C, respectively. We did not establish the mechanism whereby the air affected the yields of H 2 and O 2 . The values found in this work for G(H 2 ) in deaerated systems are in approximate agreement with the value of 0.44 for the gamma-irradiation yield of H 2 in pure H 2 O at room temperature. They are also in agreement with the values predicted by extrapolation from the findings of previous researchers for the value for G(H 2 ) in 2 M NaCl solutions at room temperature

  13. Water Dynamics in the Hydration Shells of Biomolecules

    Science.gov (United States)

    2017-01-01

    The structure and function of biomolecules are strongly influenced by their hydration shells. Structural fluctuations and molecular excitations of hydrating water molecules cover a broad range in space and time, from individual water molecules to larger pools and from femtosecond to microsecond time scales. Recent progress in theory and molecular dynamics simulations as well as in ultrafast vibrational spectroscopy has led to new and detailed insight into fluctuations of water structure, elementary water motions, electric fields at hydrated biointerfaces, and processes of vibrational relaxation and energy dissipation. Here, we review recent advances in both theory and experiment, focusing on hydrated DNA, proteins, and phospholipids, and compare dynamics in the hydration shells to bulk water. PMID:28248491

  14. Prospects of gas hydrate presence in the Chukchi sea

    Directory of Open Access Journals (Sweden)

    Т. В. Матвеева

    2017-08-01

    Full Text Available The purpose of this study is to forecast the scale and distribution character of gas hydrate stability zone in the Chukchi Sea under simulated natural conditions and basing on these results to estimate resource potential of gas hydrates within this area. Three types of stability zone have been identified. A forecast map of gas hydrate environment and potentially gas hydrate-bearing water areas in the Chukchi Sea has been plotted to a scale of 1:5 000 000. Mapping of gas hydrate stability zone allowed to give a justified forecast based on currently available data on geologic, fluid dynamic, cryogenic, geothermal and pressure-temperature conditions of gas hydrate formation in the Chukchi Sea. It is the first forecast of such kind that focuses on formation conditions for hydrates of various types and compositions in the Arctic seas offshore Russia. Potential amount of gas, stored beneath the Chukchi Sea in the form of hydrates, is estimated based on mapping of their stability zone and falls into the interval of 7·1011-11.8·1013 m3.

  15. Modeling dissociation behaviour of methane hydrate in porous soil media

    Energy Technology Data Exchange (ETDEWEB)

    Jayasinghe, A.G.; Grozic, J.L.H. [Calgary Univ., AB (Canada). Dept. of Civil Engineering

    2008-07-01

    Gas hydrates, or clathrates, exist in the form of crystalline solid structures of hydrogen bonded water molecules where the lattice cages are occupied by guest gas molecules. Methane gas hydrates are the most common. As such, hydrate bearing sediments are considered to be a potential future energy resource. Gas hydrates also function as a source or sink for atmospheric methane, which may influence global warming. The authors emphasized that an understanding of the behaviour of soils containing gas hydrates is necessary in order to develop ways of recovering the vast gas resources that exist in the form of hydrates, particularly since hydrates are also suspected to be a potential factor in the initiation and propagation of submarine slope failures. Gas hydrate dissociation occurs when water and gas are released, resulting in an increase in pore fluid pressure, thereby causing significant reductions in effective stress leading to sediment failure. Dissociation may occur as a result of pressure reductions or increases in temperature. This study focused on the strength and deformation behaviour of hydrate bearing soils associated with temperature induced dissociation. Modeling the dissociation behavior of hydrates in porous soil media involves an understanding of the geomechanics of hydrate dissociation. This paper addressed the issue of coupling the hydrate dissociation problem with the soil deformation problem. A mathematical framework was constructed in which the thermally stimulated hydrate dissociation process in porous soil media under undrained conditions was considered with conduction heat transfer. It was concluded that a knowledge of geomechanical response of hydrate bearing sediments will enable better estimates of benefits and risks associated with the recovery process, thereby ensuring safe and economical exploration. 20 refs., 1 fig., 1 appendix.

  16. Constraining gas hydrate occurrence in the northern Gulf of Mexico continental slope : fine scale analysis of grain-size in hydrate-bearing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Hangsterfer, A.; Driscoll, N.; Kastner, M. [Scripps Inst. of Oceanography, La Jolla, CA (United States). Geosciences Research Division

    2008-07-01

    Methane hydrates can form within the gas hydrate stability zone (GHSZ) in sea beds. The Gulf of Mexico (GOM) contains an underlying petroleum system and deeply buried, yet dynamic salt deposits. Salt tectonics and fluid expulsion upward through the sediment column result in the formation of fractures, through which high salinity brines migrate into the GHSZ, destabilizing gas hydrates. Thermogenic and biogenic hydrocarbons also migrate to the seafloor along the GOMs northern slope, originating from the thermal and biogenic degradation of organic matter. Gas hydrate occurrence can be controlled by either primary permeability, forming in coarse-grained sediment layers, or by secondary permeability, forming in areas where hydrofracture and faulting generate conduits through which hydrocarbon-saturated fluids flow. This paper presented a study that attempted to determine the relationship between grain-size, permeability, and gas hydrate distribution. Grain-size analyses were performed on cores taken from Keathley Canyon and Atwater Valley in the GOM, on sections of cores that both contained and lacked gas hydrate. Using thermal anomalies as proxies for the occurrence of methane hydrate within the cores, samples of sediment were taken and the grain-size distributions were measured to see if there was a correlation between gas hydrate distribution and grain-size. The paper described the methods, including determination of hydrate occurrence and core analysis. It was concluded that gas hydrate occurrence in Keathley Canyon and Atwater Valley was constrained by secondary permeability and was structurally controlled by hydrofractures and faulting that acted as conduits through which methane-rich fluids flowed. 11 refs., 2 tabs., 5 figs.

  17. TOUGH+HYDRATE v1.2 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kowalsky, Michael B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pruess, Karsten [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-08-01

    TOUGH+HYDRATE v1.2 is a code for the simulation of the behavior of hydratebearing geologic systems, and represents the second update of the code since its first release [Moridis et al., 2008]. By solving the coupled equations of mass and heat balance, TOUGH+HYDRATE can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH4-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy’s law is valid. TOUGH+HYDRATE v1.2 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH4, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects. TOUGH+HYDRATE is a member of TOUGH+, the successor to the TOUGH2 [Pruess et al., 1991] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available.

  18. Methane Recycling During Burial of Methane Hydrate-Bearing Sediments

    Science.gov (United States)

    You, K.; Flemings, P. B.

    2017-12-01

    We quantitatively investigate the integral processes of methane hydrate formation from local microbial methane generation, burial of methane hydrate with sedimentation, and methane recycling at the base of the hydrate stability zone (BHSZ) with a multiphase multicomponent numerical model. Methane recycling happens in cycles, and there is not a steady state. Each cycle starts with free gas accumulation from hydrate dissociation below the BHSZ. This free gas flows upward under buoyancy, elevates the hydrate saturation and capillary entry pressure at the BHSZ, and this prevents more free gas flowing in. Later as this layer with elevated hydrate saturation is buried and dissociated, the large amount of free gas newly released and accumulated below rapidly intrudes into the hydrate stability zone, drives rapid hydrate formation and creates three-phase (gas, liquid and hydrate) equilibrium above the BHSZ. The gas front retreats to below the BHSZ until all the free gas is depleted. The shallowest depth that the free gas reaches in one cycle moves toward seafloor as more and more methane is accumulated to the BHSZ with time. More methane is stored above the BHSZ in the form of concentrated hydrate in sediments with relatively uniform pore throat, and/or with greater compressibility. It is more difficult to initiate methane recycling in passive continental margins where the sedimentation rate is low, and in sediments with low organic matter content and/or methanogenesis reaction rate. The presence of a permeable layer can store methane for significant periods of time without recycling. In a 2D system where the seafloor dips rapidly, the updip gas flow along the BHSZ transports more methane toward topographic highs where methane gas and elevated hydrate saturation intrude deeper into the hydrate stability zone within one cycle. This could lead to intermittent gas venting at seafloor at the topographic highs. This study provides insights on many phenomenon associated with

  19. Basics of development of gas hydrate deposits

    Energy Technology Data Exchange (ETDEWEB)

    Makogon, Yuri F.; Holditch, Stephen A.; Makogon, Taras Y.

    2005-07-01

    Natural gas hydrate deposits could possibly be an important energy resource during this century. However, many problems associated with producing these deposits must first be solved. The industry must develop new technologies to produce the gas, to forecast possible tectonic cataclysms in regions of gas hydrate accumulations, and to prevent damage to the environment. These global issues must be addressed by every company or country who wants to produce gas hydrate deposits. Cooperative research between industry and universities can lead to technology breakthroughs in coming years. This paper reviews the Messoyakha field and the Blake Ridge and Nankai areas to explain a methodology for estimating how much gas might be producible from gas hydrate deposits (GHDs) under various conditions. The Messoyakha field is located on land, while the Blake Ridge and Nankai areas are offshore. Messoyakha is the first and the only GHD where gas production from hydrates has reached commercial flow rates. The Blake Ridge GHD has been studied for 20 years and 11 wells have been drilled to collect gas-hydrate samples. The potential resources of gas (gas in place) from Blake Ridge is estimated at 37.7Oe10{sup 12} m{sup 3} (1.330 Tcf) in hydrate form and 19.3Oe10{sup 12}m{sup 3} (681 Bcf) [5] in free gas. To estimate how much of the potential resource can be produced we need a thorough understanding of both the geologic and the thermodynamic characteristics of the formations. (Author)

  20. CLATHRATE HYDRATES FORMATION IN SHORT-PERIOD COMETS

    International Nuclear Information System (INIS)

    Marboeuf, Ulysse; Mousis, Olivier; Petit, Jean-Marc; Schmitt, Bernard

    2010-01-01

    The initial composition of current models of cometary nuclei is only based on two forms of ice: crystalline ice for long-period comets and amorphous ice for short-period comets. A third form of ice, i.e., clathrate hydrate, could exist within the short-period cometary nuclei, but the area of formation of this crystalline structure in these objects has never been studied. Here, we show that the thermodynamic conditions in the interior of short-period comets allow the existence of clathrate hydrates in Halley-type comets. We show that their existence is viable in the Jupiter family comets only when the equilibrium pressure of CO clathrate hydrate is at least 1 order of magnitude lower than the usually assumed theoretical value. We calculate that the amount of volatiles that could be trapped in the clathrate hydrate layer may be orders of magnitude greater than the daily amount of gas released at the surface of the nucleus at perihelion. The formation and the destruction of the clathrate hydrate cages could then explain the diversity of composition of volatiles observed in comets, as well as some pre-perihelion outbursts. We finally show that the potential clathrate hydrate layer in comet 67P/Churyumov-Gerasimenko would, unfortunately, be deep inside the nucleus, out of reach of the Rosetta lander. However, such a clathrate hydrate layer would show up by the gas composition of the coma.

  1. DNA scanning mechanism of T4 endonuclease V. Effect of NaCl concentration on processive nicking activity

    International Nuclear Information System (INIS)

    Gruskin, E.A.; Lloyd, R.S.

    1986-01-01

    T4 endonuclease V is a pyrimidine dimer-specific endonuclease which generates incisions in DNA at the sites of pyrimidine dimers by a processive reaction mechanism. A model is presented in which the degree of processivity is directly related to the efficacy of the one-dimensional diffusion of endonuclease V on DNA by which the enzyme locates pyrimidine dimers. The modulation of the processive nicking activity of T4 endonuclease V on superhelical covalently closed circular DNA (form I) which contains pyrimidine dimers has been investigated as a function of the ionic strength of the reaction. Agarose gel electrophoresis was used to separate the three topological forms of the DNA which were generated in time course reactions of endonuclease V with dimer-containing form I DNA in the absence of NaCl, and in 25, 50, and 100 mM NaCl. The degree of processivity was evaluated in terms of the mass fraction of form III (linear) DNA which was produced as a function of the fraction of form I DNA remaining. Processivity is maximal in the absence of NaCl and decreases as the NaCl concentration is increased. At 100 mM NaCl, processivity is abolished and endonuclease V generates incisions in DNA at the site of dimers by a distributive reaction mechanism. The change from the distributive to a processive reaction mechanism occurs at NaCl concentrations slightly below 50 mM. The high degree of processivity which is observed in the absence of NaCl is reversible to the distributive mechanism, as demonstrated by experiments in which the NaCl concentration was increased during the time course reaction. In addition, unirradiated DNA inhibited the incision of irradiated DNA only at NaCl concentrations at which processivity was observed

  2. Experimental Investigation of Effect on Hydrate Formation in Spray Reactor

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhao

    2015-01-01

    Full Text Available The effects of reaction condition on hydrate formation were conducted in spray reactor. The temperature, pressure, and gas volume of reaction on hydrate formation were measured in pure water and SDS solutions at different temperature and pressure with a high-pressure experimental rig for hydrate formation. The experimental data and result reveal that additives could improve the hydrate formation rate and gas storage capacity. Temperature and pressure can restrict the hydrate formation. Lower temperature and higher pressure can promote hydrate formation, but they can increase production cost. So these factors should be considered synthetically. The investigation will promote the advance of gas storage technology in hydrates.

  3. Nasogastric Hydration in Infants with Bronchiolitis Less Than 2 Months of Age.

    Science.gov (United States)

    Oakley, Ed; Bata, Sonny; Rengasamy, Sharmila; Krieser, David; Cheek, John; Jachno, Kim; Babl, Franz E

    2016-11-01

    To determine whether nasogastric hydration can be used in infants less than 2 months of age with bronchiolitis, and characterize the adverse events profile of these infants compared with infants given intravenous (IV) fluid hydration. A descriptive retrospective cohort study of children with bronchiolitis under 2 months of age admitted for hydration at 3 centers over 3 bronchiolitis seasons was done. We determined type of hydration (nasogastric vs IV fluid hydration) and adverse events, intensive care unit admission, and respiratory support. Of 491 infants under 2 months of age admitted with bronchiolitis, 211 (43%) received nonoral hydration: 146 (69%) via nasogastric hydration and 65 (31%) via IV fluid hydration. Adverse events occurred in 27.4% (nasogastric hydration) and 23.1% (IV fluid hydration), difference of 4.3%; 95%CI (-8.2 to 16.9), P = .51. The majority of adverse events were desaturations (21.9% nasogastric hydration vs 21.5% IV fluid hydration, difference 0.4%; [-11.7 to 12.4], P = .95). There were no pulmonary aspirations in either group. Apneas and bradycardias were similar in each group. IV fluid hydration use was positively associated with intensive care unit admission (38.5% IV fluid hydration vs 19.9% nasogastric hydration; difference 18.6%, [5.1-32.1], P = .004); and use of ventilation support (27.7% IV fluid hydration vs 15.1% nasogastric hydration; difference 12.6 [0.3-23], P = .03). Fewer infants changed from nasogastric hydration to IV fluid hydration than from IV fluid hydration to nasogastric hydration (12.3% vs 47.7%; difference -35.4% [-49 to -22], P hydration can be used in the majority of young infants admitted with bronchiolitis. Nasogastric hydration and IV fluid hydration had similar rates of complications. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Ethylene Separation via Hydrate Formation in W/O Emulsions

    Directory of Open Access Journals (Sweden)

    Yong Pan

    2015-05-01

    Full Text Available An hybrid absorption-hydration method was adopted to recover C2H4 from C2H4/CH4 binary gas mixtures and the hydrate formation conditions of C2H4/CH4 mixtures was studied experimentally in diesel in water (w/o emulsions. Span 20 at a concentration of 1.0 wt% in the aqueous phase was added to form water in diesel emulsions before hydrate formation and then hydrate in diesel slurry was separated after hydrate formation. The influences of initial gas-liquid volume ratio (53–142, pressure (3.4–5.4 MPa, temperature (274.15–278.15 K, water cuts (10–30 vol%, and the mole fraction of C2H4 in feed gas (13.19–80.44 mol% upon the C2H4 separation efficiency were systematically investigated. The experimental results show that ethylene can be enriched in hydrate slurry phase with high separation factor (S and recovery ratio (R. Most hydrate formation finished in 20 min, after that, the hydrate formation rate became very slow. The conclusion is useful for determining the suitable operation conditions when adopting an absorption-hydration method to separate C2H4/CH4.

  5. Influence of a multiple emulsion, liposomes and a microemulsion gel on sebum, skin hydration and TEWL.

    Science.gov (United States)

    Mahrhauser, D; Nagelreiter, C; Baierl, A; Skipiol, J; Valenta, C

    2015-04-01

    In this study, the influence of three cosmetically relevant, priorly characterized vehicles on skin hydration, sebum content and transepidermal water loss was investigated. The chosen vehicles included a liposomal pre-formulation, a multiple W/O/W emulsion and a microemulsion gel. The in vivo effects of these vehicles were demonstrated and compared among them. The stability of the prepared vehicles was determined visually, microscopically, rheologically by pH measurements and particle size. Interactions with skin were assessed by non-invasive biophysical techniques using the Corneometer(®), Aqua Flux(®) and Sebumeter, measuring skin hydration, TEWL and skin sebum content, respectively. All vehicles remained stable over an observation period of 6 weeks. The multiple emulsion increased sebum content and skin hydration. In case of the liposomes, each monitored parameter remained almost constant. In contrast, the microemulsion gel lowered skin hydration and increased TEWL values, but even 1 week after termination of the treatment TEWL decreased almost close to control levels. All produced vehicles were proven to remain physically stable over the duration of this study. The used multiple emulsion showed very skin-friendly properties by increasing sebum and skin hydration. Likewise, the liposomal pre-formulation exhibited no negative effects. On the contrary, the investigated microemulsion gel seemed to have skin dehydrating and TEWL increasing features. However, the multiple emulsion as well as liposomes was identified to be well-tolerated vehicles for skin which might qualify them for the use in cosmetic formulations. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  6. Thermal conductivity measurements in unsaturated hydrate-bearing sediments

    Science.gov (United States)

    Dai, Sheng; Cha, Jong-Ho; Rosenbaum, Eilis J.; Zhang, Wu; Seol, Yongkoo

    2015-08-01

    Current database on the thermal properties of hydrate-bearing sediments remains limited and has not been able to capture their consequential changes during gas production where vigorous phase changes occur in this unsaturated system. This study uses the transient plane source (TPS) technique to measure the thermal conductivity of methane hydrate-bearing sediments with various hydrate/water/gas saturations. We propose a simplified method to obtain thermal properties from single-sided TPS signatures. Results reveal that both volume fraction and distribution of the pore constituents govern the thermal conductivity of unsaturated specimens. Thermal conductivity hysteresis is observed due to water redistribution and fabric change caused by hydrate formation and dissociation. Measured thermal conductivity increases evidently when hydrate saturation Sh > 30-40%, shifting upward from the geometric mean model prediction to a Pythagorean mixing model. These observations envisage a significant drop in sediment thermal conductivity when residual hydrate/water saturation falls below ~40%, hindering further gas production.

  7. Effect of Gemini-type surfactant on methane hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K.E.; Park, J.M.; Kim, C.U.; Chae, H.J.; Jeong, S.Y. [Korea Research Inst. of Chemical Technology, Jang-Dong, Yuseong-Gu, Daejeon (Korea, Republic of)

    2008-07-01

    Natural gas hydrates are formed from water and natural gas molecules at particular temperatures and pressures that become ice-like inclusion compounds. Gas hydrates offer several benefits such as energy resource potential and high storage capacity of natural gas in the form of hydrates. However, the application of natural gas hydrates has been deterred by its low formation rate and low conversion ratio of water into hydrate resulting in low actual storage capacity. This paper presented an experimental study to determine the effect of adding a novel Gemini-type surfactant on methane hydrate formation. The experimental study was described with reference to the properties of prepared diols and properties of prepared disulfonates. Gemini surfactant is the family of surfactant molecules possessing more than one hydrophobic tail and hydrophilic head group. They generally have better surface-active properties than conventional surfactants of equal chain length. The paper presented the results of the study in terms of the reactions of diols with propane sultone; storage capacity of hydrate formed with and without surfactant; and methane hydrate formation with and without disulfonate. It was concluded that the methane hydrate formation was accelerated by the addition of novel anionic Gemini-type surfactants and that hydrate formation was influenced by the surfactant concentration and alkyl chain length. For a given concentration, the surfactant with the highest chain length demonstrated the highest formation rate and storage capacity. 5 refs., 3 tabs., 4 figs.

  8. Volume of hydration in terminal cancer patients.

    Science.gov (United States)

    Bruera, E; Belzile, M; Watanabe, S; Fainsinger, R L

    1996-03-01

    In this retrospective study we reviewed the volume and modality of hydration of consecutive series of terminal cancer patients in two different settings. In a palliative care unit 203/290 admitted patients received subcutaneous hydration for 12 +/- 8 days at a daily volume of 1015 +/- 135 ml/day. At the cancer center, 30 consecutive similar patients received intravenous hydration for 11.5 +/- 5 days (P > 0.2) but at a daily volume of 2080 +/- 720 ml/day (P palliative care unit patients required discontinuation of hydration because of complications. Hypodermoclysis was administered mainly as a continuous infusion, an overnight infusion, or in one to three 1-h boluses in 62 (31%), 98 (48%) and 43 (21%) patients, respectively. Our findings suggest that, in some settings, patients may be receiving excessive volumes of hydration by less comfortable routes such as the intravenous route. Increased education and research in this area are badly needed.

  9. Geomechanical Performance of Hydrate-Bearing Sediment in Offshore Environments

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Holditch; Tad Patzek; Jonny Rutqvist; George Moridis; Richard Plumb

    2008-03-31

    The objective of this multi-year, multi-institutional research project was to develop the knowledge base and quantitative predictive capability for the description of geomechanical performance of hydrate-bearing sediments (hereafter referred to as HBS) in oceanic environments. The focus was on the determination of the envelope of hydrate stability under conditions typical of those related to the construction and operation of offshore platforms. We have developed a robust numerical simulator of hydrate behavior in geologic media by coupling a reservoir model with a commercial geomechanical code. We also investigated the geomechanical behavior of oceanic HBS using pore-scale models (conceptual and mathematical) of fluid flow, stress analysis, and damage propagation. The objective of the UC Berkeley work was to develop a grain-scale model of hydrate-bearing sediments. Hydrate dissociation alters the strength of HBS. In particular, transformation of hydrate clusters into gas and liquid water weakens the skeleton and, simultaneously, reduces the effective stress by increasing the pore pressure. The large-scale objective of the study is evaluation of geomechanical stability of offshore oil and gas production infrastructure. At Lawrence Berkeley National Laboratory (LBNL), we have developed the numerical model TOUGH + Hydrate + FLAC3D to evaluate how the formation and disassociation of hydrates in seafloor sediments affects seafloor stability. Several technical papers were published using results from this model. LBNL also developed laboratory equipment and methods to produce realistic laboratory samples of sediments containing gas hydrates so that mechanical properties could be measured in the laboratory. These properties are required to run TOUGH + Hydrate + FLAC3D to evaluate seafloor stability issues. At Texas A&M University we performed a detailed literature review to determine what gas hydrate formation properties had been measured and reported in the literature. We

  10. Life Origination Hydrate Theory (LOH-Theory) and Mitosis and Replication Hydrate Theory (MRH-Theory): three-dimensional PC validation

    Science.gov (United States)

    Kadyshevich, E. A.; Dzyabchenko, A. V.; Ostrovskii, V. E.

    2014-04-01

    Size compatibility of the CH4-hydrate structure II and multi-component DNA fragments is confirmed by three-dimensional simulation; it is validation of the Life Origination Hydrate Theory (LOH-Theory).

  11. Supercooling of aqueous NaCl and KCl solutions under acoustic levitation.

    Science.gov (United States)

    Lü, Y J; Wei, B

    2006-10-14

    The supercooling capability of aqueous NaCl and KCl solutions is investigated at containerless state by using acoustic levitation method. The supercooling of water is obviously enhanced by the alkali metal ions and increases linearly with the augmentation of concentrations. Furthermore, the supercooling depends on the nature of ions and is 2-3 K larger for NaCl solution than that for KCl solution in the present concentration range: Molecular dynamics simulations are performed to reveal the intrinsic correlation between supercoolability and microstructure. The translational and orientational order parameters are applied to quantitatively demonstrate the effect of ionic concentration on the hydrogen-bond network and ice melting point. The disrupted hydrogen-bond structure determines essentially the concentration dependence of supercooling. On the other hand, the introduced acoustic pressure suppresses the increase of supercooling by promoting the growth and coalescence of microbubbles, the effective nucleation catalysts, in water. However, the dissolved ions can weaken this effect, and moreover the degree varies with the ion type. This results in the different supercoolability for NaCl and KCl solutions under the acoustic levitation conditions.

  12. Controls on Gas Hydrate Formation and Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Miriam Kastner; Ian MacDonald

    2006-03-03

    The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both

  13. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom

  14. Vibrational dynamics of hydration water in amylose

    CERN Document Server

    Cavatorta, F; Albanese, G; Angelini, N

    2002-01-01

    We present a study of the dynamical properties of hydration water associated with amylose helices, based on low-temperature vibrational spectra collected using the TOSCA inelastic spectrometer at ISIS. The structural constraints of the polysaccharidic chains favour the formation of a high-density structure for water, which has been suggested by Imberty and Perez on the basis of conformational analysis. According to this model, hydration water can only enter the pores formed by six adjacent helices and completely fills the pores at a hydration level of about 0.27-g water/g dry amylose. Our measurements show that the dynamical behaviour of hydration water is similar to that observed in high-density amorphous ice. (orig.)

  15. Separation of water through gas hydrate formation

    DEFF Research Database (Denmark)

    Boch Andersen, Torben; Thomsen, Kaj

    2009-01-01

    Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goal...... of the project was to formulate an alternative separation concept, which can replace the traditional water evaporation process in the sugar production. Work with the separation concept showed that gas hydrates can be used for water separation. The process is not suitable for sugar production because of large...... volumes and the needs for high pressure. The process could be interesting for concentration of heat sensitive, high value products...

  16. Spectral Decomposition and Other Seismic Attributes for Gas Hydrate Prospecting

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Dan

    2018-02-25

    Studying the sediments at the base of gas hydrate stability is ideal for determining the seismic response to gas hydrate saturation. First, assuming gas migration to the shallow section, this area is more likely to have concentrated gas hydrate because it encompasses the zone in which upward moving buoyant gas transitions to form immobile gas hydrate deposits. Second, this zone is interesting because these areas have the potential to show a hydrate filled zone and a gas filled zone within the same sediments. Third, the fundamental measurement within seismic data is impedance contrasts between velocity*density layers. High saturation gas hydrates and free gas inhabit opposite ends of these measurements making the study of this zone ideal for investigating the seismic characteristics of gas hydrate and, hence, the investigation of other seismic attributes that may indicate gas hydrate fill.

  17. Study on molecular controlled mining system of methane hydrate; Methane hydrate no bunshi seigyo mining ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyagawa, M; Saito, T; Kobayashi, H; Karasawa, H; Kiyono, F; Nagaoki, R; Yamamoto, Y; Komai, T; Haneda, H; Takahashi, Y [National Institute for Resources and Environment, Tsukuba (Japan); Nada, H [Science and Technology Agency, Tokyo (Japan)

    1997-02-01

    Basic studies are conducted for the collection of methane from the methane hydrate that exists at levels deeper than 500m in the sea. The relationship between the hydrate generation mechanism and water cluster structure is examined by use of mass spectronomy. It is found that, among the stable liquid phase clusters, the (H2O)21H{sup +} cluster is the most stable. Stable hydrate clusters are in presence in quantities, and participate in the formation of hydrate crystal nuclei. For the elucidation of the nucleus formation mechanism, a kinetic simulation is conducted of molecules in the cohesion system consisting of water and methane molecules. Water molecules that array near methane molecules at the normal pressure is disarrayed under a higher pressure for rearray into a hydrate structure. Hydrate formation and breakdown in the three-phase equilibrium state of H2O, CH4, and CO2 at a low temperature and high pressure are tested, which discloses that supercooling is required for formation, that it is possible to extract CH4 first for replacement by guest molecule CO2 since CO2 is stabler than CH4 at a lower pressure or higher temperature, and that formation is easier to take place when the grain diameter is larger at the formation point since larger grain diameters result in a higher formation temperature. 3 figs.

  18. Effects of different NaCl Concentrations on germination and ...

    African Journals Online (AJOL)

    USER

    Salinity refers to the salt content of any given system. By nature, arid .... Effect of varying concentrations of NaCl on seed germination of Amaranthus hybridus in percentages. .... Osmotic differences could explain this phenomenon where by ...

  19. Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models

    Science.gov (United States)

    Warzinski, Robert P.; Lynn, Ronald; Haljasmaa, Igor; Leifer, Ira; Shaffer, Frank; Anderson, Brian J.; Levine, Jonathan S.

    2014-10-01

    Predicting the fate of subsea hydrocarbon gases escaping into seawater is complicated by potential formation of hydrate on rising bubbles that can enhance their survival in the water column, allowing gas to reach shallower depths and the atmosphere. The precise nature and influence of hydrate coatings on bubble hydrodynamics and dissolution is largely unknown. Here we present high-definition, experimental observations of complex surficial mechanisms governing methane bubble hydrate formation and dissociation during transit of a simulated oceanic water column that reveal a temporal progression of deep-sea controlling mechanisms. Synergistic feedbacks between bubble hydrodynamics, hydrate morphology, and coverage characteristics were discovered. Morphological changes on the bubble surface appear analogous to macroscale, sea ice processes, presenting new mechanistic insights. An inverse linear relationship between hydrate coverage and bubble dissolution rate is indicated. Understanding and incorporating these phenomena into bubble and bubble plume models will be necessary to accurately predict global greenhouse gas budgets for warming ocean scenarios and hydrocarbon transport from anthropogenic or natural deep-sea eruptions.

  20. Laser ablation of nanoscale particles with 193 nm light

    International Nuclear Information System (INIS)

    Choi, J H; Lucas, D; Koshland, C P

    2007-01-01

    Laser interaction with nanoscale particles is distinct and different from laser-bulk material interaction, where a hot plasma is normally created. Here, we review our studies on 193 nm laser ablation of various nanoscale particles including NaCl, soot, polystyrene, and gold. The 20 ns laser beam with fluences up to 0.3 J/cm 2 irradiates nanoparticles in a gas stream at laser repetition rates from 10 to 100 Hz. The particle size distributions before and after irradiation are measured with a scanning mobility particle sizer (SMPS), and particle morphology is examined with electron microscopy. All the nanomaterials studied exhibit a similar disintegration pattern and similar particle formation characteristics. No broadband emission associated with particle heating or optical breakdown is observed. The nanoparticles formed after irradiation have a smaller mean diameter and an order of magnitude higher number concentration with a more spherical shape compared to the original particles. We use the photon-atom ratio (PAR) to interpret the laser-particle interaction energetics

  1. Influence of Lithium Carbonate on C3A Hydration

    Directory of Open Access Journals (Sweden)

    Weiwei Han

    2018-01-01

    Full Text Available Lithium salts, known to ameliorate the effects of alkali-silica reaction, can make significant effects on cement setting. However, the mechanism of effects on cement hydration, especially the hydration of C3A which is critical for initial setting time of cement, is rarely reported. In this study, the development of pH value of pore solution, conductivity, thermodynamics, and mineralogical composition during hydration of C3A with or without Li2CO3 are investigated. The results demonstrate that Li2CO3 promotes C3A hydration through high alkalinity, due to higher activity of lithium ion than that of calcium ion in the solution and carbonation of C3A hydration products resulted from Li2CO3. Li2CO3 favors the C3A hydration in C3A-CaSO4·2H2O-Ca(OH2-H2O hydration system and affects the mineralogical variation of the ettringite phase(s.

  2. Hysteresis of methane hydrate formation/decomposition at subsea geological conditions

    International Nuclear Information System (INIS)

    Klapproth, Alice; Piltz, Ross; Peterson, Vanessa K.; Kennedy, Shane J.; Kozielski, Karen A.; Hartley, Patrick G.

    2009-01-01

    Full text: Gas hydrates are a major risk when transporting oil and gas in offshore subsea pipelines. Under typical conditions in these pipelines (at high pressure and low temperature) the formation of gas hydrates is favourable. The hydrates form large solid plugs that can block pipelines and can even cause them to burst. This represents a major problem for the gas mining industry, which currently goes to extreme measures to reduce the risk of hydrate formation because there is no reliable experimental data on hydrate processes. The mechanisms of gas hydrate formation, growth and inhibition are poorly understood. A clear understanding of the fundamental processes will allow development of cost effective technologies to avoid production losses in gas pipelines. We are studying the nucleation of the methane hydrates by measuring the hysteresis of hydrate formation/decomposition by neutron diffraction. When a gas hydrate is decomposed (melted) the resulting water has a 'supposed memory effect' raising the probability of rapid hydrate reformation. This rapid reformation does not occur for pure water where nucleation can be delayed by several hours (induction time) due to metastability [1]. The memory effect can only be destroyed by extreme heating of the effected area. Possible causes of this effect include residual water structure, persistent hydrate crystal lites remaining in solution and remaining dissolved gas. We will compare the kinetics of formation and the stability region of hydrate formation of 'memory' water for comparison with pure water. This information has important implications for the oil and gas industry because it should provide a better understanding of the role of multiple dissociation and reformation of gas hydrates in plug formation.

  3. Nano-sized precipitated formations in irradiated NaCl

    NARCIS (Netherlands)

    Sugonyako, Anton V.

    2007-01-01

    The interest in the formation of radiation damage in alkali halides and in particular, in NaCl, is stimulated by the fact that rock-salt in stable geological formations is a prominent candidate medium for storage of high-level waste (HLW) of nuclear power plants. Since the 1950s, scientists and

  4. Gas hydrate inhibition by perturbation of liquid water structure

    Science.gov (United States)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong

    2015-06-01

    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates.

  5. Formation and dissociation of CO{sub 2} and CO{sub 2}-THF hydrates compared to CH{sub 4} and CH{sub 4}-THF hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Giavarini, C.; Maccioni, F.; Broggi, A. [Roma Univ. La Sapienza, Roma (Italy). Dept. of Chemical Engineering; Politi, M. [ENEL-RICERCHE, Brindisi (Italy)

    2008-07-01

    Carbon sequestration involves the removal of greenhouse gases from industrial or utility plant streams and their long term storage so that they cannot interact with the climate system. Different methods for selective carbon dioxide (CO{sub 2}) removal are in commercial use and are based on, gas absorption, membrane process, and cryogenic fractionation. In addition, disposal of captured CO{sub 2} in the ocean and in geological reservoirs has been proposed by researchers. Another challenge is to take advantage of the properties of CO{sub 2} hydrates for carbon sequestration since it could have a number of uses such as chemical production. As such, it is important to understand the hydrate decomposition kinetics during storage, transportation, and disposal. This paper presented a project that involved the separation of carbon dioxide from the flue gases of powers plants, in the form of hydrate. The project also involved the storage, use, and disposal of the hydrate. The purpose of the study was to evaluate the decomposition kinetics of CO{sub 2} hydrate containing different quantities of ice, at low pressures and temperatures between -3 and 0 degrees Celsius. In addition, in order to evaluate the tetrahydrofuran (THF) stabilization effect, the study examined the influence of THF on the formation and decomposition kinetics of mixed THF-methane (CH{sub 4}) and THF-CO{sub 2} hydrates. Preservation tests were conducted to determine the best pressure and temperature conditions for the mixed-hydrates conservation, with reference to the simple hydrates. The paper described the apparatus for the formation and dissociation tests which consisted of a jacketed stainless steel reactor, equipped with stirrer. The paper also described the hydrate formation procedure as well as hydrate characterization. Last, the paper discussed the hydrate dissociation tests that were conducted immediately after hydrate formation in the reactor. It was concluded that the hydrophilic and hydrophobic

  6. Micromechanical investigation of sand migration in gas hydrate-bearing sediments

    Science.gov (United States)

    Uchida, S.; Klar, A.; Cohen, E.

    2017-12-01

    Past field gas production tests from hydrate bearing sediments have indicated that sand migration is an important phenomenon that needs to be considered for successful long-term gas production. The authors previously developed the continuum based analytical thermo-hydro-mechanical sand migration model that can be applied to predict wellbore responses during gas production. However, the model parameters involved in the model still needs to be calibrated and studied thoroughly and it still remains a challenge to conduct well-defined laboratory experiments of sand migration, especially in hydrate-bearing sediments. Taking the advantage of capability of micromechanical modelling approach through discrete element method (DEM), this work presents a first step towards quantifying one of the model parameters that governs stresses reduction due to grain detachment. Grains represented by DEM particles are randomly removed from an isotropically loaded DEM specimen and statistical analyses reveal that linear proportionality exists between the normalized volume of detached solids and normalized reduced stresses. The DEM specimen with different porosities (different packing densities) are also considered and statistical analyses show that there is a clear transition between loose sand behavior and dense sand behavior, characterized by the relative density.

  7. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    1998-01-01

    This report deals with gas phase hydration of pure cement clinker minerals at reduced relative humidities. This is an important subject in relation to modern high performance concrete which may self-desiccate during hydration. In addition the subject has relevance to storage stability where...... prehydration may occur. In the report both theoretical considerations and experimental data are presented. It is suggested that the initiation of hydration during water vapour exposure is nucleation controlled....

  8. Impact of welan gum on tricalcium aluminate–gypsum hydration

    International Nuclear Information System (INIS)

    Ma Lei; Zhao Qinglin; Yao Chukang; Zhou Mingkai

    2012-01-01

    The retarding effect of welan gum on tricalcium aluminate–gypsum hydration, as a partial system of ordinary Portland cement (OPC) hydration, was investigated with several methods. The tricalcium aluminate–gypsum hydration behavior in the presence or absence of welan gum was researched by field emission gun scanning electron microscopy, X-ray diffraction and zeta potential analysis. Meanwhile, we studied the surface electrochemical properties and adsorption characteristics of welan gum by utilizing a zeta potential analyzer and UV–VIS absorption spectrophotometer. By adding welan gum, the morphology change of ettringite and retardation of hydration stages in tricalcium aluminate–gypsum system was observed. Moreover, we detected the adsorption behavior and zeta potential inversion of tricalcium aluminate and ettringite, as well as a rapid decrease in the zeta potential of tricalcium aluminate–gypsum system. The reduction on nucleation rate of ettringite and hydration activity of C 3 A was also demonstrated. Thus, through the adsorption effect, welan gum induces a retarding behavior in tricalcium aluminate–gypsum hydration. Highlights: ► Adsorption characteristics of welan gum on C 3 A and ettringite have been studied. ► C 3 A–gypsum hydration behavior and the hydration products are examined in L/S = 3. ► Welan gum retards the process of C 3 A–gypsum hydration. ► The addition of welan gum changes the nucleation growth of ettringite.

  9. Reflective terahertz (THz) imaging: system calibration using hydration phantoms

    Science.gov (United States)

    Bajwa, Neha; Garritano, James; Lee, Yoon Kyung; Tewari, Priyamvada; Sung, Shijun; Maccabi, Ashkan; Nowroozi, Bryan; Babakhanian, Meghedi; Sanghvi, Sajan; Singh, Rahul; Grundfest, Warren; Taylor, Zachary

    2013-02-01

    Terahertz (THz) hydration sensing continues to gain traction in the medical imaging community due to its unparalleled sensitivity to tissue water content. Rapid and accurate detection of fluid shifts following induction of thermal skin burns as well as remote corneal hydration sensing have been previously demonstrated in vivo using reflective, pulsed THz imaging. The hydration contrast sensing capabilities of this technology were recently confirmed in a parallel 7 Tesla Magnetic Resonance (MR) imaging study, in which burn areas are associated with increases in local mobile water content. Successful clinical translation of THz sensing, however, still requires quantitative assessments of system performance measurements, specifically hydration concentration sensitivity, with tissue substitutes. This research aims to calibrate the sensitivity of a novel, reflective THz system to tissue water content through the use of hydration phantoms for quantitative comparisons of THz hydration imagery.Gelatin phantoms were identified as an appropriate tissue-mimicking model for reflective THz applications, and gel composition, comprising mixtures of water and protein, was varied between 83% to 95% hydration, a physiologically relevant range. A comparison of four series of gelatin phantom studies demonstrated a positive linear relationship between THz reflectivity and water concentration, with statistically significant hydration sensitivities (p hydration). The THz-phantom interaction is simulated with a three-layer model using the Transfer Matrix Method with agreement in hydration trends. Having demonstrated the ability to accurately and noninvasively measure water content in tissue equivalent targets with high sensitivity, reflective THz imaging is explored as a potential tool for early detection and intervention of corneal pathologies.

  10. Behaviour of gas production from type 3 hydrate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Pooladi-Darvish, M. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering]|[Fekete Associates Inc., Calgary, AB (Canada); Zatsepina, O. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Hong, H. [Fekete Associates Inc., Calgary, AB (Canada)

    2008-07-01

    The possible role of gas hydrates as a potential energy resource was discussed with particular reference to methods for estimating the rate of gas production from hydrate reservoirs under different operating conditions. This paper presented several numerical simulations studies of gas production from type 3 hydrate reservoirs in 1-D and 2-D geometries. Type 3 reservoirs include gas production from hydrate-reservoirs that lie totally within the hydrate stability zone and are sandwiched by impermeable layers on top and bottom. The purpose of this study was to better understand hydrate decomposition by depressurization. The study questioned whether 1-D modeling of type 3 hydrate reservoirs is a reasonable approximation. It also determined whether gas rate increases or decreases with time. The important reservoir characteristics for determining the rate of gas production were identified. Last, the study determined how competition between fluid and heat flow affects hydrate decomposition. This paper also described the relation and interaction between the heat and fluid flow mechanisms in depressurization of type 3 hydrate reservoirs. All results of 1-D and 2-D numerical simulation and analyses were generated using the STARS simulator. It was shown that the rate of gas production depends on the initial pressure/temperature conditions and permeability of the hydrate bearing formation. A high peak rate may be achieved under favourable conditions, but this peak rate is obtained after an initial period where the rate of gas production increases with time. The heat transfer in the direction perpendicular to the direction of fluid flow is significant, requiring 2D modeling. The hydraulic diffusivity is low because of the low permeability of hydrate-bearing formations. This could result in competition between heat and fluid flow, thereby influencing the behaviour of decomposition. 6 refs., 3 tabs., 12 figs.

  11. Water around fullerene shape amphiphiles: A molecular dynamics simulation study of hydrophobic hydration

    Energy Technology Data Exchange (ETDEWEB)

    Varanasi, S. R., E-mail: s.raovaranasi@uq.edu.au, E-mail: guskova@ipfdd.de; John, A. [Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden D-01069 (Germany); Guskova, O. A., E-mail: s.raovaranasi@uq.edu.au, E-mail: guskova@ipfdd.de [Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden D-01069 (Germany); Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, Dresden D-01069 (Germany); Sommer, J.-U. [Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden D-01069 (Germany); Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, Dresden D-01069 (Germany); Institut für Theoretische Physik, Technische Universität Dresden, Zellescher Weg 17, Dresden D-01069 (Germany)

    2015-06-14

    Fullerene C{sub 60} sub-colloidal particle with diameter ∼1 nm represents a boundary case between small and large hydrophobic solutes on the length scale of hydrophobic hydration. In the present paper, a molecular dynamics simulation is performed to investigate this complex phenomenon for bare C{sub 60} fullerene and its amphiphilic/charged derivatives, so called shape amphiphiles. Since most of the unique properties of water originate from the pattern of hydrogen bond network and its dynamics, spatial, and orientational aspects of water in solvation shells around the solute surface having hydrophilic and hydrophobic regions are analyzed. Dynamical properties such as translational-rotational mobility, reorientational correlation and occupation time correlation functions of water molecules, and diffusion coefficients are also calculated. Slower dynamics of solvent molecules—water retardation—in the vicinity of the solutes is observed. Both the topological properties of hydrogen bond pattern and the “dangling” –OH groups that represent surface defects in water network are monitored. The fraction of such defect structures is increased near the hydrophobic cap of fullerenes. Some “dry” regions of C{sub 60} are observed which can be considered as signatures of surface dewetting. In an effort to provide molecular level insight into the thermodynamics of hydration, the free energy of solvation is determined for a family of fullerene particles using thermodynamic integration technique.

  12. Water around fullerene shape amphiphiles: A molecular dynamics simulation study of hydrophobic hydration

    International Nuclear Information System (INIS)

    Varanasi, S. R.; John, A.; Guskova, O. A.; Sommer, J.-U.

    2015-01-01

    Fullerene C 60 sub-colloidal particle with diameter ∼1 nm represents a boundary case between small and large hydrophobic solutes on the length scale of hydrophobic hydration. In the present paper, a molecular dynamics simulation is performed to investigate this complex phenomenon for bare C 60 fullerene and its amphiphilic/charged derivatives, so called shape amphiphiles. Since most of the unique properties of water originate from the pattern of hydrogen bond network and its dynamics, spatial, and orientational aspects of water in solvation shells around the solute surface having hydrophilic and hydrophobic regions are analyzed. Dynamical properties such as translational-rotational mobility, reorientational correlation and occupation time correlation functions of water molecules, and diffusion coefficients are also calculated. Slower dynamics of solvent molecules—water retardation—in the vicinity of the solutes is observed. Both the topological properties of hydrogen bond pattern and the “dangling” –OH groups that represent surface defects in water network are monitored. The fraction of such defect structures is increased near the hydrophobic cap of fullerenes. Some “dry” regions of C 60 are observed which can be considered as signatures of surface dewetting. In an effort to provide molecular level insight into the thermodynamics of hydration, the free energy of solvation is determined for a family of fullerene particles using thermodynamic integration technique

  13. Hydrate Evolution in Response to Ongoing Environmental Shifts

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Alan [Univ. of Oregon, Eugene, OR (United States)

    2015-12-31

    Natural gas hydrates have the potential to become a vital domestic clean-burning energy source. However, past changes in environmental conditions have caused hydrates to become unstable and trigger both massive submarine landslides and the development of crater-like pockmarks, thereby releasing methane into the overlying seawater and atmosphere, where it acts as a powerful greenhouse gas. This project was designed to fill critical gaps in our understanding of domestic hydrate resources and improve forecasts for their response to environmental shifts. Project work can be separated into three interrelated components, each involving the development of predictive mathematical models. The first project component concerns the role of sediment properties on the development and dissociation of concentrated hydrate anomalies. To this end, we developed numerical models to predict equilibrium solubility of methane in twophase equilibrium with hydrate as a function of measureable porous medium characteristics. The second project component concerned the evolution of hydrate distribution in heterogeneous reservoirs. To this end, we developed numerical models to predict the growth and decay of anomalies in representative physical environments. The third project component concerned the stability of hydrate-bearing slopes under changing environmental conditions. To this end, we developed numerical treatments of pore pressure evolution and consolidation, then used "infinite-slope" analysis to approximate the landslide potential in representative physical environments, and developed a "rate-and-state" frictional formulation to assess the stability of finite slip patches that are hypothesized to develop in response to the dissociation of hydrate anomalies. The increased predictive capabilities that result from this work provide a framework for interpreting field observations of hydrate anomalies in terms of the history of environmental forcing that led to their development. Moreover

  14. An international effort to compare gas hydrate reservoir simulators

    Energy Technology Data Exchange (ETDEWEB)

    Wilder, J.W. [Akron Univ., Akron, OH (United States). Dept. of Theoretical and Applied Math; Moridis, G.J. [California Univ., Berkely, CA (United States). Earth Sciences Div., Lawrence Berkely National Lab.; Wilson, S.J. [Ryder Scott Co., Denver, CO (United States); Kurihara, M. [Japan Oil Engineering Co. Ltd., Tokyo (Japan); White, M.D. [Pacific Northwest National Laboratory Hydrology Group, Richland, WA (United States); Masuda, Y. [Tokyo Univ., Tokyo (Japan). Dept. of Geosystem Engineering; Anderson, B.J. [National Energy Technology Lab., Morgantown, WV (United States)]|[West Virginia Univ., Morgantown, WV (United States). Dept. of Chemical Engineering; Collett, T.S. [United States Geological Survey, Denver, CO (United States); Hunter, R.B. [ASRC Energy Services, Anchorage, AK (United States); Narita, H. [National Inst. of Advanced Industrial Science and Technology, MEthane hydrate Research Lab., Sapporo (Japan); Pooladi-Darvish, M. [Fekete Associates Inc., Calgary, AB (Canada); Rose, K.; Boswell, R. [National Energy Technology Lab., Morgantown, WV (United States)

    2008-07-01

    In this study, 5 different gas hydrate production scenarios were modeled by the CMG STARS, HydateResSim, MH-21 HYDRES, STOMP-HYD and the TOUGH+HYDRATE reservoir simulators for comparative purposes. The 5 problems ranged in complexity from 1 to 3 dimensional with radial symmetry, and in horizontal dimensions of 20 meters to 1 kilometer. The scenarios included (1) a base case with non-isothermal multi-fluid transition to equilibrium, (2) a base case with gas hydrate (closed-domain hydrate dissociation), (3) dissociation in a 1-D open domain, (4) gas hydrate dissociation in a one-dimensional radial domain, similarity solutions, (5) gas hydrate dissociation in a two-dimensional radial domain. The purpose of the study was to compare the world's leading gas hydrate reservoir simulators in an effort to improve the simulation capability of experimental and naturally occurring gas hydrate accumulations. The problem description and simulation results were presented for each scenario. The results of the first scenario indicated very close agreement among the simulators, suggesting that all address the basics of mass and heat transfer, as well as overall process of gas hydrate dissociation. The third scenario produced the initial divergence among the simulators. Other differences were noted in both scenario 4 and 5, resulting in significant corrections to algorithms within several of the simulators. The authors noted that it is unlikely that these improvements would have been identified without this comparative study due to a lack of real world data for validation purposes. It was concluded that the solution for gas hydrate production involves a combination of highly coupled fluid, heat and mass transport equations combined with the potential for formation or disappearance of multiple solid phases in the system. The physical and chemical properties of the rocks containing the gas hydrate depend on the amount of gas hydrate present in the system. Each modeling and

  15. NMR Studies of Protein Hydration and Protein-Ligand Interactions

    Science.gov (United States)

    Chong, Yuan

    Water on the surface of a protein is called hydration water. Hydration water is known to play a crucial role in a variety of biological processes including protein folding, enzymatic activation, and drug binding. Although the significance of hydration water has been recognized, the underlying mechanism remains far from being understood. This dissertation employs a unique in-situ nuclear magnetic resonance (NMR) technique to study the mechanism of protein hydration and the role of hydration in alcohol-protein interactions. Water isotherms in proteins are measured at different temperatures via the in-situ NMR technique. Water is found to interact differently with hydrophilic and hydrophobic groups on the protein. Water adsorption on hydrophilic groups is hardly affected by the temperature, while water adsorption on hydrophobic groups strongly depends on the temperature around 10 C, below which the adsorption is substantially reduced. This effect is induced by the dramatic decrease in the protein flexibility below 10 C. Furthermore, nanosecond to microsecond protein dynamics and the free energy, enthalpy, and entropy of protein hydration are studied as a function of hydration level and temperature. A crossover at 10 C in protein dynamics and thermodynamics is revealed. The effect of water at hydrophilic groups on protein dynamics and thermodynamics shows little temperature dependence, whereas water at hydrophobic groups has stronger effect above 10 C. In addition, I investigate the role of water in alcohol binding to the protein using the in-situ NMR detection. The isotherms of alcohols are first measured on dry proteins, then on proteins with a series of controlled hydration levels. The free energy, enthalpy, and entropy of alcohol binding are also determined. Two distinct types of alcohol binding are identified. On the one hand, alcohols can directly bind to a few specific sites on the protein. This type of binding is independent of temperature and can be

  16. [Laser Raman Spectroscopy and Its Application in Gas Hydrate Studies].

    Science.gov (United States)

    Fu, Juan; Wu, Neng-you; Lu, Hai-long; Wu, Dai-dai; Su, Qiu-cheng

    2015-11-01

    Gas hydrates are important potential energy resources. Microstructural characterization of gas hydrate can provide information to study the mechanism of gas hydrate formation and to support the exploitation and application of gas hydrate technology. This article systemly introduces the basic principle of laser Raman spectroscopy and summarizes its application in gas hydrate studies. Based on Raman results, not only can the information about gas composition and structural type be deduced, but also the occupancies of large and small cages and even hydration number can be calculated from the relative intensities of Raman peaks. By using the in-situ analytical technology, laser Raman specstropy can be applied to characterize the formation and decomposition processes of gas hydrate at microscale, for example the enclathration and leaving of gas molecules into/from its cages, to monitor the changes in gas concentration and gas solubility during hydrate formation and decomposition, and to identify phase changes in the study system. Laser Raman in-situ analytical technology has also been used in determination of hydrate structure and understanding its changing process under the conditions of ultra high pressure. Deep-sea in-situ Raman spectrometer can be employed for the in-situ analysis of the structures of natural gas hydrate and their formation environment. Raman imaging technology can be applied to specify the characteristics of crystallization and gas distribution over hydrate surface. With the development of laser Raman technology and its combination with other instruments, it will become more powerful and play a more significant role in the microscopic study of gas hydrate.

  17. Hydrate phase equilibrium and structure for (methane + ethane + tetrahydrofuran + water) system

    International Nuclear Information System (INIS)

    Sun Changyu; Chen Guangjin; Zhang Lingwei

    2010-01-01

    The separation of methane and ethane through forming hydrate is a possible choice in natural gas, oil processing, or ethylene producing. The hydrate formation conditions of five groups of (methane + ethane) binary gas mixtures in the presence of 0.06 mole fraction tetrahydrofuran (THF) in water were obtained at temperatures ranging from (277.7 to 288.2) K. In most cases, the presence of THF in water can lower the hydrate formation pressure of (methane + ethane) remarkably. However, when the composition of ethane is as high as 0.832, it is more difficult to form hydrate than without THF system. Phase equilibrium model for hydrates containing THF was developed based on a two-step hydrate formation mechanism. The structure of hydrates formed from (methane + ethane + THF + water) system was also determined by Raman spectroscopy. When THF concentration in initial aqueous solution was only 0.06 mole fraction, the coexistence of structure I hydrate dominated by ethane and structure II hydrate dominated by THF in the hydrate sample was clearly demonstrated by Raman spectroscopic data. On the contrary, only structure II hydrate existed in the hydrate sample formed from (methane + ethane + THF + water) system when THF concentration in initial aqueous solution was increased to 0.10 mole fraction. It indicated that higher THF concentration inhibited the formation of structure I hydrate dominated by ethane and therefore lowered the trapping of ethane in hydrate. It implies a very promising method to increase the separation efficiency of methane and ethane.

  18. Hydration states of AFm cement phases

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  19. Reactions of metal oxides with molten NaPO3 + NaCl mixtures

    International Nuclear Information System (INIS)

    Kovarskaya, E.N.; Mityakhina, V.S.; Rodionov, Yu.I.; Silin, M.Yu.

    1988-01-01

    We consider the dissolution mechanism for iron (III), europium(III), and tin(IV) oxides in molten NaPO 3 + NaCl that are responsible for the peak solubilities. We chose Fe 2 O 3 as the basic material since this occurs in large amounts around damaged metal structures in rock salt mines in a proposed zone for storing vitrified radioactive wastes. Solubility measurement and paper chromatography show that Fe 2 O 3 dissolves in molten NaPO 3 + NaCl in air by reaction with the solvent to give double iron and sodium diphosphates and monophosphates in accordance with the initial solution-in-the-melt composition, the degree of equilibration, and the temperature. The elevated solubilities for initial NaCl contents close to 30 mole % are due to sodium triphosphates and tricyclophosphates present in these melts. Moessbauer spectroscopy confirms that double iron, europium and tin diphosphates and monophosphates containing sodium occur in these chloride-polyphosphate melts

  20. Carbon dioxide gas hydrates accumulation in freezing and frozen sediments

    Energy Technology Data Exchange (ETDEWEB)

    Chuvilin, E.; Guryeva, O. [Moscow State Univ., Moscow (Russian Federation). Dept. of Geology

    2008-07-01

    Carbon dioxide (CO{sub 2}) hydrates and methane hydrates can be formed, and exist under natural conditions. The permafrost area has been considered as an environment for the potential disposal of CO{sub 2}. The favorable factors for preserving CO{sub 2} in liquid and gas hydrate states in frozen sediments and under permafrost horizons are great thickness of frozen sediments; low permeability in comparison with thawed sediments; and favourable conditions for hydrates formation. Therefore, research on the formation and existence conditions of CO{sub 2} gas hydrates in permafrost and under permafrost sediments are of great importance for estimation of CO{sub 2} disposal conditions in permafrost, and for working out specific sequestration schemes. This paper presented the results of an experimental study on the process of carbon dioxide (CO{sub 2}) gas hydrates formation in the porous media of sediments under positive and negative temperatures. Sediment samples of various compositions including those selected in the permafrost area were used. The research was conducted in a special pressure chamber, which allowed to monitor pressure and temperature. The study used the monitoring results in order to make quantitative estimation of the kinetics of CO{sub 2} hydrates accumulation in the model sediments. Results were presented in terms of kinetics of CO{sub 2} hydrates accumulation in the porous media at positive and negative temperatures; kinetics of CO{sub 2} hydrates accumulation in various porous media; gas hydrate-former influence on kinetics of hydrates accumulation in frozen sediments; and influence of freezing on CO{sub 2} hydrates accumulation in porous media. It was concluded that hydrate accumulation took an active place in porous media not only under positive, but also under high negative temperatures, when the water was mainly in the form of ice in porous media. 27 refs., 3 tabs., 5 figs.

  1. High-resolution well-log derived dielectric properties of gas-hydrate-bearing sediments, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Sun, Y.; Goldberg, D.; Collett, T.; Hunter, R.

    2011-01-01

    A dielectric logging tool, electromagnetic propagation tool (EPT), was deployed in 2007 in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert Well), North Slope, Alaska. The measured dielectric properties in the Mount Elbert well, combined with density log measurements, result in a vertical high-resolution (cm-scale) estimate of gas hydrate saturation. Two hydrate-bearing sand reservoirs about 20 m thick were identified using the EPT log and exhibited gas-hydrate saturation estimates ranging from 45% to 85%. In hydrate-bearing zones where variation of hole size and oil-based mud invasion are minimal, EPT-based gas hydrate saturation estimates on average agree well with lower vertical resolution estimates from the nuclear magnetic resonance logs; however, saturation and porosity estimates based on EPT logs are not reliable in intervals with substantial variations in borehole diameter and oil-based invasion.EPT log interpretation reveals many thin-bedded layers at various depths, both above and below the thick continuous hydrate occurrences, which range from 30-cm to about 1-m thick. Such thin layers are not indicated in other well logs, or from the visual observation of core, with the exception of the image log recorded by the oil-base microimager. We also observe that EPT dielectric measurements can be used to accurately detect fine-scale changes in lithology and pore fluid properties of hydrate-bearing sediments where variation of hole size is minimal. EPT measurements may thus provide high-resolution in-situ hydrate saturation estimates for comparison and calibration with laboratory analysis. ?? 2010 Elsevier Ltd.

  2. Amount of gas hydrate estimated from compressional- and shear-wave velocities at the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well

    Science.gov (United States)

    Lee, M.W.

    1999-01-01

    The amount of in situ gas hydrate concentrated in the sediment pore space at the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well was estimated by using compressional-wave (P-wave) and shear-wave (S-wave) downhole log measurements. A weighted equation developed for relating the amount of gas hydrate concentrated in the pore space of unconsolidated sediments to the increase of seismic velocities was applied to the acoustic logs with porosities derived from the formation density log. A weight of 1.56 (W=1.56) and the exponent of 1 (n=1) provided consistent estimates of gas hydrate concentration from the S-wave and the P-wave logs. Gas hydrate concentration is as much as 80% in the pore spaces, and the average gas hydrate concentration within the gas-hydrate-bearing section from 897 m to 1110 m (excluding zones where there is no gas hydrate) was calculated at 39.0% when using P-wave data and 37.8% when using S-wave data.

  3. A DFT-based comparative equilibrium study of thermal dehydration and hydrolysis of CaCl2 hydrates and MgCl2 hydrates for seasonal heat storage

    NARCIS (Netherlands)

    Pathak, A.D.; Gaastra-Nedea, S.V.; Zondag, H.A.; Rindt, C.C.M.; Smeulders, D.M.J.

    2016-01-01

    Salt hydrates store solar energy in chemical form via a reversible dehydration–hydration reaction. However, as a side reaction to dehydration, hydrolysis (HCl formation) may occur in chloride based salt hydrates (specially in MgCl2 hydrates), affecting the durability of the storage system. The

  4. In vitro chemical and cellular tests applied to uranium trioxide with different hydration states

    International Nuclear Information System (INIS)

    Ansoborlo, E.; Chalabreysse, J.; Henge-Napoli, M.H.; Pujol, E.

    1992-01-01

    A simple and rapid in vitro chemical solubility test applicable to industrial uranium trioxide (UO 3 ) was developed together with two in vitro cellular tests using rat alveolar macrophages maintained either in gas phase or in alginate beads at 37 degrees C. Industrial UO 3 was characterized by particle size, X-ray, and IR spectra, and chemical transformation (e.g., aging and hydration of the dust) was also studied. Solvents used for the in vitro chemical solubility study included carbonates, citrates, phosphates, water, Eagle's basal medium, and Gamble's solution (simulated lung fluid), alone, with oxygen, or with superoxide ions. Results, expressed in terms of the half-time of dissolution, according to International Commission on Radiological Protection (ICRP) classification (D,W,Y), varied for different hydration states of UO 3 , showing a lower solubility of hydrated UO 3 in solvents compared to basic UO 3 or UO 3 heated at 450 degrees C. Two in vitro cellular tests on cultured rat alveolar macrophages (cells maintained in gas phase and cells immobilized in alginate beads) were used on the same UO 3 samples and generally showed a lower solution transfer rate in the presence of macrophages than in the culture medium alone. The results of in vitro chemical and cellular tests were compared, with four main conclusions; a good reproducibility of the three tests in Eagle's basal medium of the effect of hydration state on solubility, the classification of UO 3 in terms of ICRP solubility criteria, and the ability of macrophoges to decrease uranium solubility in medium. 16 refs., 3 figs., 4 tabs

  5. Thermodynamic stability and guest distribution of CH4/N2/CO2 mixed hydrates for methane hydrate production using N2/CO2 injection

    International Nuclear Information System (INIS)

    Lim, Dongwook; Ro, Hyeyoon; Seo, Yongwon; Seo, Young-ju; Lee, Joo Yong; Kim, Se-Joon; Lee, Jaehyoung; Lee, Huen

    2017-01-01

    Highlights: • We examine the thermodynamic stability and guest distribution of CH 4 /N 2 /CO 2 mixed hydrates. • Phase equilibria of the CH 4 /N 2 /CO 2 mixed hydrates were measured to determine the thermodynamic stability. • The N 2 /CO 2 ratio of the hydrate phase is almost constant despite the enrichment of CO 2 in the hydrate phase. • 13 C NMR results indicate the preferential occupation of N 2 and CO 2 in the small and large cages of sI hydrates, respectively. - Abstract: In this study, thermodynamic stability and cage occupation behavior in the CH 4 – CO 2 replacement, which occurs in natural gas hydrate reservoirs by injecting flue gas, were investigated with a primary focus on phase equilibria and composition analysis. The phase equilibria of CH 4 /N 2 /CO 2 mixed hydrates with various compositions were measured to determine the thermodynamic stability of gas hydrate deposits replaced by N 2 /CO 2 gas mixtures. The fractional experimental pressure differences (Δp/p) with respect to the CSMGem predictions were found to range from −0.11 to −0.02. The composition analysis for various feed gas mixtures with a fixed N 2 /CO 2 ratio (4.0) shows that CO 2 is enriched in the hydrate phase, and the N 2 /CO 2 ratio in the hydrate phase is independent of the feed CH 4 fractions. Moreover, 13 C NMR measurements indicate that N 2 molecules preferentially occupy the small 5 12 cages of sI hydrates while the CO 2 molecules preferentially occupy the large 5 12 6 2 cages, resulting in an almost constant area ratio of CH 4 molecules in the large to small cages of the CH 4 /N 2 /CO 2 mixed hydrates. The overall experimental results provide a better understanding of stability conditions and guest distributions in natural gas hydrate deposits during CH 4 – flue gas replacement.

  6. Imbibition and percentage of germination of cape gooseberry (Physalis peruviana L. seeds under NaCl stress

    Directory of Open Access Journals (Sweden)

    Miranda Diego

    2010-04-01

    Full Text Available

    In Colombia cape gooseberry is often grown on salt affected soils. The present study evaluated the effect of increasing NaCl concentrations on imbibition and percentage of germination of ‘Colombia’ ecotype cape gooseberry seeds. Under controlled laboratory conditions (25/20°C day/night temperature, 80% relative humidity, and a 12 hour photoperiod, the seeds were subjected to 0, 30, 60, 90 and 120 mM NaCl concentrations (corresponding to respective electrical conductivity levels of 0.8, 3.0, 6.0, 9.0, and 12.2 dS m-1, during an evaluation period of 299 hours. A significantly lower imbibition level, expressed as 35% of the fresh weight accumulated by the control seeds, was observed in the 120 mM NaCl treatment. At the end of the experiment, respective germination percentages of 97.6% and 96.4% were recorded in the salt-free seeds and in those exposed to 30 mM NaCl. In contrast, only 62.5% of those seeds treated with 120 mM NaCl germinated. Root malformations such as lack of elongation were observed in the highest NaCl concentration treatment. Regarding its germination process, cape gooseberry can be classified as moderately tolerant to sodium. In effect, after 299 h of treatment, there was no statistical difference in imbibition level or percentage of germination between the 0, 30 and 60 mM NaCl treatments.

  7. Skin Hydration Assessment through Modern Non-Invasive Bioengineering Technologies.

    Science.gov (United States)

    Constantin, Maria-Magdalena; Poenaru, Elena; Poenaru, Calin; Constantin, Traian

    2014-03-01

    Non-invasive bioengineering technologies continuously discovered and developed in recent decades provide a significant input to research development and remarkably contribute to the improvement of medical education and care to our patients. Assessing skin hydration by using the capacitance method for a group of patients with allergic contact dermatitis versus healthy subjects, before and after applying a moisturiser (assessing the immediate and long-term effectiveness of hydration). For both groups, but especially for the patients with dry skin, there was a clear improvement of hydration, statistically significant after applying the moisturiser. In the case of the patients with allergic contact dermatitis, hydration was at a maximum immediately after the first application, and then maintained an increased level after 7 and 28 days, respectively. In the healthy subjects, the increase in hydration was lower, but progressive. The moisturiser determined an increase in hydration for all age groups, but those who showed the most obvious effect were the young adults (18-29 years old) with an increase of 19.9%.The maintenance effect of hydration lasted for 28 days, while the improvement was important for allergic skin (17.1%) and significant for healthy skin (10.9%). The assessment of epidermal hydration performed by using the corneometer showed very good hydration of the stratum corneum for both groups studied, with immediate and long-term effect. This study also showed that the degree of skin hydration was inversely proportional with age. The corneometer is easy to use, efficient and widely utilised in international studies for measurements in healthy or pathological conditions, for quantitative assessment of the effectiveness of various preparations intended for application to the skin surface, under well-controlled and standardised conditions.

  8. Precise structural analysis of methane hydrate by neutron diffraction

    International Nuclear Information System (INIS)

    Igawa, Naoki; Hoshikawa, Akinori; Ishii, Yoshinobu

    2006-01-01

    Methane hydrate has attracted great interest as an energy resource to replace natural gas since this material is deposited in the seafloor and the deposits are estimated to exceed those of natural gas. Understanding the physical proprieties, such as the temperature dependence of the crystal structure, helps to specify the optimum environmental temperature and pressure during drilling, transport, and storage of methane hydrate. Clathrate hydrates consisted of encaging atomic and/or molecular species as a guest and host water formed by a hydrogen bonding. Although many studies on the clathrate hydrate including methane hydrate were reported, no detailed crystallographic property has yet been cleared. We focused on the motion of methane in the clathrate hydrate by the neutron diffraction. The crystal structure of the methane hydrate was analyzed by the applying the combination of the Rietveld refinement and the maximum entropy method (MEM) to neutron powder diffraction. Temperature dependence of the scattering-length density distribution maps revealed that the motion of methane molecules differs between the shapes of dodecahedron and tetrakaidecahedron. (author)

  9. National Gas Hydrate Program Expedition 01 offshore India; gas hydrate systems as revealed by hydrocarbon gas geochemistry

    Science.gov (United States)

    Lorenson, Thomas; Collett, Timothy S.

    2018-01-01

    The National Gas Hydrate Program Expedition 01 (NGHP-01) targeted gas hydrate accumulations offshore of the Indian Peninsula and along the Andaman convergent margin. The primary objectives of coring were to understand the geologic and geochemical controls on the accumulation of methane hydrate and their linkages to underlying petroleum systems. Four areas were investigated: 1) the Kerala-Konkan Basin in the eastern Arabian Sea, 2) the Mahanadi and 3) Krishna-Godavari Basins in the western Bay of Bengal, and 4) the Andaman forearc Basin in the Andaman Sea.Upward flux of methane at three of the four of the sites cored during NGHP-01 is apparent from the presence of seafloor mounds, seismic evidence for upward gas migration, shallow sub-seafloor geochemical evidence of methane oxidation, and near-seafloor gas composition that resembles gas from depth.The Kerala-Konkan Basin well contained only CO2 with no detectable hydrocarbons suggesting there is no gas hydrate system here. Gas and gas hydrate from the Krishna-Godavari Basin is mainly microbial methane with δ13C values ranging from −58.9 to −78.9‰, with small contributions from microbial ethane (−52.1‰) and CO2. Gas from the Mahanadi Basin was mainly methane with lower concentrations of C2-C5 hydrocarbons (C1/C2 ratios typically >1000) and CO2. Carbon isotopic compositions that ranged from −70.7 to −86.6‰ for methane and −62.9 to −63.7‰ for ethane are consistent with a microbial gas source; however deeper cores contained higher molecular weight hydrocarbon gases suggesting a small contribution from a thermogenic gas source. Gas composition in the Andaman Basin was mainly methane with lower concentrations of ethane to isopentane and CO2, C1/C2 ratios were mainly >1000 although deeper samples were compositions range from −65.2 to −80.7‰ for methane, −53.1 to −55.2‰ for ethane is consistent with mainly microbial gas sources, although one value recorded of −35.4‰ for propane

  10. The influence of Na2O on the hydration of C3A II. Suspension hydration

    NARCIS (Netherlands)

    Spierings, G.A.C.M.; Stein, H.N.

    1976-01-01

    The influence of Na2O on the hydration of C3A was studied in suspensions from the start of the reaction onwards. The heat evolution rate in very early stages of the hydration, measured at varying NaOH concentrations, and SEM, indicate that at NaOH concentrations larger then 0.1 M the reaction

  11. Hydration of urea and alkylated urea derivatives

    Science.gov (United States)

    Kaatze, Udo

    2018-01-01

    Compressibility data and broadband dielectric spectra of aqueous solutions of urea and some of its alkylated derivatives have been evaluated to yield their numbers Nh of hydration water molecules per molecule of solute. Nh values in a broad range of solute concentrations are discussed and are compared to hydration numbers of other relevant molecules and organic ions. Consistent with previous results, it is found that urea differs from other solutes in its unusually small hydration number, corresponding to just one third of the estimated number of nearest neighbor molecules. This remarkable hydration behavior is explained by the large density φH of hydrogen bonding abilities offered by the urea molecule. In terms of currently discussed models of reorientational motions and allied dynamics in water and related associating liquids, the large density φH causes a relaxation time close to that of undisturbed water with most parts of water encircling the solute. Therefore only a small part of disturbed ("hydration") water is left around each urea molecule. Adding alkyl groups to the basic molecule leads to Nh values which, within the series of n-alkylurea derivatives, progressively increase with the number of methyl groups per solute. With n-butylurea, Nh from dielectric spectra, in conformity with many other organic solutes, slightly exceeds the number of nearest neighbors. Compared to such Nh values, hydration numbers from compressibility data are substantially smaller, disclosing incorrect assumptions in the formula commonly used to interpret the experimental compressibilities. Similar to other series of organic solutes, effects of isomerization have been found with alkylated urea derivatives, indicating that factors other than the predominating density φH of hydrogen bond abilities contribute also to the hydration properties.

  12. Estimating pore-space gas hydrate saturations from well log acoustic data

    Science.gov (United States)

    Lee, Myung W.; Waite, William F.

    2008-07-01

    Relating pore-space gas hydrate saturation to sonic velocity data is important for remotely estimating gas hydrate concentration in sediment. In the present study, sonic velocities of gas hydrate-bearing sands are modeled using a three-phase Biot-type theory in which sand, gas hydrate, and pore fluid form three homogeneous, interwoven frameworks. This theory is developed using well log compressional and shear wave velocity data from the Mallik 5L-38 permafrost gas hydrate research well in Canada and applied to well log data from hydrate-bearing sands in the Alaskan permafrost, Gulf of Mexico, and northern Cascadia margin. Velocity-based gas hydrate saturation estimates are in good agreement with Nuclear Magneto Resonance and resistivity log estimates over the complete range of observed gas hydrate saturations.

  13. Dehydration behaviour of hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Dette, S.S.; Stelzer, T.; Jones, M.J.; Ulrich, J. [Martin-Luther-Universitaet Halle-Wittenberg, Zentrum fuer Ingenieurwissenschaften, Verfahrenstechnik/TVT, 06099 Halle (Germany)

    2010-07-15

    Immersing a crystalline solvate in a suitable anti-solvent can induce phase transformation to solvent-free solid phase. In certain cases the solvent-mediated phase transition results in the generation of hollow, tubular structures. Both the tube dimensions of sodium-2-keto-L-gulonate anhydrate (skga) and the dehydration kinetics of sodium-2-keto-L-gulonate monohydrate (skgm) can be modified by the antisolvent employed. An explanation for the variable dehydration behaviour of skgm in the antisolvents is presented here. Furthermore, other crystalline hydrates were dehydrated in dry methanol. Providing an operational window can be found, any hydrate material could possibly find use in the production of tubes (micro- or nanotubes for different applications). The experimental conditions selected (dry methanol as antisolvent, dehydration temperature at 25 C) for the dehydration did not lead to the anhydrate tube growth for all hydrates investigated. Based upon the results presented here a first hypothesis is presented to explain this effect. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Methane hydrates in quaternary climate change

    International Nuclear Information System (INIS)

    Kennett, J. P.; Hill, T. M.; Behl, R. J.

    2005-01-01

    The hydrate reservoir in marine sediments is known to contain a large volume of exchangeable carbon stored as solid methane hydrate and associated free gas. This reservoir has been shown to be potentially unstable in response to changing intermediate water temperature and sea level (pressure). Evidence continues to grow for past episodes of major methane release at times of climatic warming. Yet few studies of late Quaternary climate change include methane hydrates as an integral part of the global climate system, in spite of the largest known oscillations at this time in sea level and upper ocean temperature changes for the Cenozoic or earlier, conditions that favor instability of the methane hydrate reservoir. Abrupt increases in atmospheric methane recorded in polar ice cores are widely believed to have resulted, not from ocean-floor methane degassing, but instead from continental wetland activation, a hypothesis thus far unsupported by geological data. Furthermore, as part of this Wetland Methane Hypothesis, the abrupt methane increases have been seen as a response to climatic warming rather than contributing significantly to the change. An alternative view (formulated as the Clathrate Gun Hypothesis) is that the speed, magnitude and timing of abrupt climate change in the recent geologic past are consistent with the process of major degassing of methane hydrates. We summarize aspects of this hypothesis here and needs to test this hypothesis. (Author)

  15. Tolerance of soil flagellates to increased NaCl levels

    DEFF Research Database (Denmark)

    Ekelund, Flemming

    2002-01-01

    The ability of heterotrophic flagellates to survive and adapt to increasing salinities was investigated in this study. Whole soil samples were subjected to salinities corresponding to marine conditions and clonal cultures were used to perform growth and adaptation experiments at a wide range...... of different salinities (0-50 ppm). More morphotypes tolerant to elevated NaCl levels were found in road verge soil that was heavily exposed to de-icing salt than in less exposed soils, though there were fewer tolerant than intolerant morphotypes in all soils examined. Heterotrophic flagellates isolated...... on a freshwater medium from a non-exposed soil were unable to thrive at salinities above 15 ppt, and showed reduced growth rates even at low salt salinities (1-5 ppt). The findings suggest that heterotrophic soil flagellates are less tolerant to NaCl than their aquatic relatives, possibly due to their long...

  16. Effects of exogenous salinity (NaCl) gradient on Cd release in acidified contaminated brown soil

    Science.gov (United States)

    Zhang, Lina; Rong, Yong; Mao, Li; Gao, Zhiyuan; Liu, Xiaoyu; Dong, Zhicheng

    2018-02-01

    Taking acidified Cd contaminated brown soil in Yantai as the research object, based on different exogenous salinity (NaCl) gradient (0%, 0.3%, 0.6%, 0.9%, 1.5%, 2% and 5%), indoor simulation experiments of Cd release were carried out after field investigation. Results showed that there was a significantly positive relation (r>0.90) between Cd release concentration/amount/ratio and exogenous salt (NaCl). Besides, the more exogenous salt (NaCl) was added; maximum release concentration/amount of Cd appeared the earlier. It was found that exogenous salt (NaCl) addition could obviously promote Cd release from acidified Cd contaminated brown soil. It was believed that this could be mainly due to the cation exchange between Cd2+ and Na+, together with the dissociation and/or complexation between Cl- and Cd2+. In addition, available adsorption sites reduction by exchange base in soil causing Cd changed from solid state to soil solution was also a probable reason.

  17. Synthesis of a Biglucoside and Its Application as Montmorillonite Hydration Inhibitor

    Directory of Open Access Journals (Sweden)

    Xin-chun Zhang

    2014-01-01

    Full Text Available A biglucoside (BG was synthesized with glucose and epichlorohydrin as raw materials. The inhibition of BG against montmorillonite swelling was investigated by various methods including montmorillonite linear expansion test, mud ball immersing test, thermogravimetric analysis, and scanning electron microscopy. The results show that the BG has good inhibition ability to the hydration swelling and dispersion of montmorillonite. Under the same condition, the linear expansion ratio of montmorillonite in BG solution is much lower than that of MEG. The particle distribution measurement, thermogravimetric analysis, FT-IR, and scanning electron microscopy results all prove the efficient inhibition of BG.

  18. India National Gas Hydrate Program Expedition 02 Technical Contributions

    Science.gov (United States)

    Collett, T. S.; Kumar, P.; Shukla, K. M.; Nagalingam, J.; Lall, M. V.; Yamada, Y.; Schultheiss, P. J.; Holland, M.; Waite, W. F.

    2017-12-01

    The National Gas Hydrate Program Expedition 02 (NGHP-02) was conducted from 3-March-2015 to 28-July-2015 off the eastern coast of India. The primary objective of this expedition was the exploration and discovery of highly saturated gas hydrate occurrences in sand reservoirs that would be targets of future production testing. The first 2 months of the expedition were dedicated to logging while drilling (LWD) operations with a total of 25 holes being drilled and logged. The next 3 months were dedicated to coring operations at 10 of the most promising sites. NGHP-02 downhole logging, coring and formation pressure testing have confirmed the presence of large, highly saturated, gas hydrate accumulations in coarse-grained sand-rich depositional systems throughout the Krishna-Godavari Basin within the regions defined during NGHP-02 as Area-B, Area-C, and Area-E. The nature of the discovered gas hydrate occurrences closely matched pre-drill predictions, confirming the project developed depositional models for the sand-rich depositional facies in the Krishna-Godavari and Mahanadi Basins. The existence of a fully developed gas hydrate petroleum system was established in Area-C of the Krishna-Godavari Basin with the discovery of a large slope-basin interconnected depositional system, including a sand-rich, gas-hydrate-bearing channel-levee prospect at Sites NGHP-02-08 and -09. The acquisition of closely spaced LWD and core holes in the Area-B L1 Block gas hydrate accumulation have provided one of the most complete three-dimensional petrophysical-based views of any known gas hydrate reservoir system in the world. It was concluded that Area-B and Area-C in the area of the greater Krishna-Godavari Basin contain important world-class gas hydrate accumulations and represent ideal sites for consideration of future gas hydrate production testing.

  19. Experimental Investigation into the Combustion Characteristics of Propane Hydrates in Porous Media

    Directory of Open Access Journals (Sweden)

    Xiang-Ru Chen

    2015-02-01

    Full Text Available The combustion characteristics of both pure propane hydrates and the mixtures of hydrates and quartz sands were investigated by combustion experiments. The flame propagation, flame appearance, burning time and temperature in different hydrate layers were studied. For pure propane hydrate combustion, the initial flame falls in the “premixed” category. The flame propagates very rapidly, mainly as a result of burnt gas expansion. The flame finally self-extinguishes with some proportion of hydrates remaining unburned. For the hydrate-sand mixture combustion, the flame takes the form of many tiny discontinuous flames appearing and disappearing at different locations. The burn lasts for a much shorter amount of time than pure hydrate combustion. High porosity and high hydrate saturation is beneficial to the combustion. The hydrate combustion is the combustion of propane gas resulting from the dissociation of the hydrates. In both combustion test scenarios, the hydrate-dissociated water plays a key role in the fire extinction, because it is the main resistance that restrains the heat transfer from the flame to the hydrates and that prevents the hydrate-dissociated gas from releasing into the combustion zone.

  20. The equation of state of B2-type NaCl

    International Nuclear Information System (INIS)

    Ono, S

    2010-01-01

    The equation of state (EOS) of B2-type NaCl has been investigated to 270 GPa and 3000 K using the first-principles molecular dynamics method and high-pressure experiments in a diamond anvil cell. We used the high-pressure experimental data to determine the compressibility at room temperature, and used the generalized gradient approximation (GGA) and the projector augmented-wave method (PAW) in simulations to calculate the thermal pressure. A Vinet EOS fitted to the room temperature data yielded an isothermal bulk modulus of B T0 = 39.25 GPa and a pressure derivative of B T0 ' = 4.72. The high-temperature data from the first-principles calculations were fitted to the thermal pressure EOS. The resulting calculated parameters of the thermal pressure, αB T (V 0 ,T) and (δB T /δT) V , were 3.28 x 10 -3 (GPa/K) and 4.3 x10 -4 (GPa/K), respectively. A small volume dependence of the thermal pressure of B2-type NaCl was revealed from the analysis of our data. A significant temperature dependence of the calculated Grueneisen parameters was confirmed. This indicates that the conventional approach using the Mie-Grueneisen approximation is likely to have a significant uncertainty in determining the EOS for B2-type NaCl, and that an intrinsic anharmonicity should be considered to analyze the EOS.

  1. Effect of NaCl on the hydric and hygric dilation behaviour of lime-cement mortar

    NARCIS (Netherlands)

    Lubelli, B.; van Hees, R.P.J.; Huinink, H.P.

    2006-01-01

    The mechanism of damage due to NaCl crystallization has not been clarified yet. Apart from crystallization pressure, other hypotheses have been proposed to explain the decay. Irreversible dilation during NaCl crystallization has been observed in a few cases but has never been studied in a systematic

  2. Kinetic Hydration Heat Modeling for High-Performance Concrete Containing Limestone Powder

    Directory of Open Access Journals (Sweden)

    Xiao-Yong Wang

    2017-01-01

    Full Text Available Limestone powder is increasingly used in producing high-performance concrete in the modern concrete industry. Limestone powder blended concrete has many advantages, such as increasing the early-age strength, reducing the setting time, improving the workability, and reducing the heat of hydration. This study presents a kinetic model for modeling the hydration heat of limestone blended concrete. First, an improved hydration model is proposed which considers the dilution effect and nucleation effect due to limestone powder addition. A degree of hydration is calculated using this improved hydration model. Second, hydration heat is calculated using the degree of hydration. The effects of water to binder ratio and limestone replacement ratio on hydration heat are clarified. Third, the temperature history and temperature distribution of hardening limestone blended concrete are calculated by combining hydration model with finite element method. The analysis results generally agree with experimental results of high-performance concrete with various mixing proportions.

  3. Natural gas storage in hydrates with the presence of promoters

    International Nuclear Information System (INIS)

    Sun Zhigao; Wang Ruzhu; Ma Rongsheng; Guo Kaihua; Fan Shuanshi

    2003-01-01

    Hydrate technology is being developed for the storage and transport of natural gas. Micellar surfectant solutions were found to increase the gas hydrate formation rate and storage capacity. An anionic surfactant, a nonionic surfactant, their mixtures and cyclopentane were used to improve the hydrate formation of a synthetic natural gas (methane=92.05 mol%, ethane=4.96 mol%, propane=2.99 mol%) in a quiescent system in this work. The effect of an anionic surfactant (sodium dodecyl sulfate) on natural gas storage in hydrates is more pronounced compared to the effect of a nonionic surfactant (dodecyl polysaccharide glycoside). Cyclopentane could reduce hydrate formation induction time but could not improve the hydrate formation rate and storage capacity

  4. Discrete element modeling of calcium-silicate-hydrate

    International Nuclear Information System (INIS)

    Chandler, Mei Qiang; Peters, John F; Pelessone, Daniele

    2013-01-01

    The discrete element method (DEM) was used to model calcium-silicate-hydrate (C-S-H) at the nanoscale. The C-S-H nanoparticles were modeled as spherical particles with diameters of approximately 5 nm. Interparticle forces included traditional mechanical contact forces, van der Waals forces and ionic correlation forces due to negatively charged C-S-H nanoparticles and ion species in the nanopores. Previous work by the authors demonstrated the DEM method was feasible in studying the properties of the C-S-H nanostructures. In this work, the simulations were performed to look into the effects of nanoparticle packing, nanoparticle morphology, interparticle forces and nanoparticle properties on the deformation mechanisms and mechanical properties of the C-S-H matrix. This work will provide insights into possible ways to improve the properties of the C-S-H matrix. (paper)

  5. Swelling/deswelling of polyacrylamide gels in aqueous NaCl solution

    Indian Academy of Sciences (India)

    Swelling kinetics of water-swollen polyacrylamide (PAAm) hydrogels (WSG) was investigated in various ... parameter, χ, were calculated and found to decrease with increase in [NaCl]. Collective ..... in other words, increase in hydrophilicity.

  6. Methane Production and Carbon Capture by Hydrate Swapping

    DEFF Research Database (Denmark)

    Mu, Liang; von Solms, Nicolas

    2017-01-01

    There are essentially two different approaches to producing methane from natural gas hydrate reservoirs, either bring the hydrate out of its thermodynamic stability region or expose the hydrate to a substance that will form a more stable hydrate structure, forcing an in situ swapping of the trapped...... experimental runs were performed to examine the influence of operating conditions on methane production by CO2/(CO2 + N2) injection in the temperature range of 274.15–277.15 K and 7.039–10.107 MPa pressure. Our results show that the use of the (CO2 + N2) binary gas mixture is advantageous compared to the use...

  7. Effect of Particle Association on 2,2'-Bipyridyl Adsorption onto Kaolinite.

    Science.gov (United States)

    Helmy, A. K.; Ferreiro, E. A.; de Bussetti, S. G.

    2000-05-15

    The effect of particle concentration, in kaolin suspensions, on the adsorption of 2,2'-bipyridyl was studied. Adsorption expressed in units of micromoles per gram decreased as a result of the increase in particle concentration and also as a result of the presence of coagulant (0.25 M NaCl). Dispersion treatment with sodium hexametaphosphate increased the adsorption of bipyridyl. The decrease in adsorption with the increase in particle concentration suggests a possible relation between adsorption and flocculation phenomena. On the basis of classic flocculation theory a straight-line relation was obtained between the square root of the adsorption maximum (mmol/L) and particle concentration (g/L). It is concluded that particle association, which is a function of particle concentration, reduces the surface/aqueous interface and consequently the adsorption of bipyridyl. Copyright 2000 Academic Press.

  8. Irrigation port hydration in phacoemulsification surgery

    Directory of Open Access Journals (Sweden)

    Suzuki H

    2018-01-01

    Full Text Available Hisaharu Suzuki,1 Yoichiro Masuda,2 Yuki Hamajima,1 Hiroshi Takahashi3 1Department of Ophthalmology, Nippon Medical School Musashikosugi Hospital, Kawasaki City, Kanagawa, 2Department of Ophthalmology, The Jikei University, Katsushika Medical Center, Tokyo, 3Department of Ophthalmology, Nippon Medical School, Tokyo, Japan Background: In most cases, hydration is performed by water injection into the stromal tissue with a needle. The technique is simple, however it is sometimes troublesome.Purpose: We describe a simple technique for hydrating the corneal stroma in cataract surgery using an irrigation port.Patients and methods: The technique began by pushing the irrigation port against the corneal stroma for a few seconds during phacoemulsification, which generated edema in the corneal incision that subsequently prevented leakage. This procedure is called the hydration using irrigation port (HYUIP technique. A total of 60 eyes were randomized and placed in two groups, 30 eyes underwent surgeries using the HYUIP technique (HYUIP group and 30 eyes underwent surgeries without the HYUIP technique (control. The three points evaluated during each surgery included 1 the occurrence of anterior chamber collapse during the pulling out of the I/A tip after inserting the intraocular lens, 2 the need for conventional hydration, and 3 watertight completion at the end stage of surgery.Results: The anterior chamber collapse and the need for conventional hydration were significantly smaller in the HYUIP group compared to the control group. Regarding the self-sealing completion, no significant difference was observed between the two groups.Conclusion: The HYUIP technique is an effective method for creating self-sealing wound. In addition, this technique helps to prevent anterior chamber collapse. Keywords: cataract surgery, hydration, irrigation and aspiration, phacoemulsification, wound, self-sealing 

  9. Structural studies of aqueous solutions at high temperatures. Critical opalescence and hydration

    International Nuclear Information System (INIS)

    Sullivan, D.M.

    2000-09-01

    Neutron scattering techniques were used to study aspects of the static, or equilibrium, structure at microscopic scales in a number of aqueous solutions at non ambient conditions (Temperature, T > 300 K, and pressure, P > 1 bar). Critical opalescence was observed in both pure D 2 O and a NaCI-D 2 O mixture by means of small-angle neutron scattering (SANS), as described in Part I. The dependence of the correlation length, ξ, and the long wavelength limit, S(0), was measured at a number of state points on the critical isochore. The results are interpreted in terms of theories of critical phenomena; in particular the expected power law behaviour of ξ and S(0) with respect to reduced temperature, t, on the critical isochore. In the case of D 2 O, we observe the expected 3d-Ising behaviour with exponents (ν = 0.623 ± 0.030, γ = 1.14 ± 0.05) and amplitudes in agreement with theoretical and semi-empirical predictions. We performed measurements on aqueous sodium chloride, equivalent to those on pure 020, with the intention of classifying the critical behaviour. Although strong power-law divergence of the quantities ξ and S(0) was not observed, we find that the value of S(0) for a given ξ is strongly reduced in the ionic solution with respect to the pure solvent. Such behaviour is inconsistent with a thermodynamic model of aqueous sodium chloride, based on experimental thermodynamic data and the expected asymptotic 3d-Ising behaviour. Short-range structural correlations between solute and solvent atoms in aqueous solutions were studied by the technique of neutron diffraction and isotopic substitution (NDIS), as described in Part II. The anion hydration structure in 1.5 molal aqueous NaCl, was investigated at (T = 580 K, P = 800 bar) and (T = 380 K, P = 200 bar). Isotopic substitution was performed on the chloride ion, enabling the difference between scattering functions to be interpreted in terms of CI-H and CI-O correlation functions. The results show the chloride

  10. Structural studies of aqueous solutions at high temperatures. Critical opalescence and hydration

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, D.M

    2000-09-01

    Neutron scattering techniques were used to study aspects of the static, or equilibrium, structure at microscopic scales in a number of aqueous solutions at non ambient conditions (Temperature, T > 300 K, and pressure, P > 1 bar). Critical opalescence was observed in both pure D{sub 2}O and a NaCI-D{sub 2}O mixture by means of small-angle neutron scattering (SANS), as described in Part I. The dependence of the correlation length, {xi}, and the long wavelength limit, S(0), was measured at a number of state points on the critical isochore. The results are interpreted in terms of theories of critical phenomena; in particular the expected power law behaviour of {xi} and S(0) with respect to reduced temperature, t, on the critical isochore. In the case of D{sub 2}O, we observe the expected 3d-Ising behaviour with exponents ({nu} = 0.623 {+-} 0.030, {gamma} = 1.14 {+-} 0.05) and amplitudes in agreement with theoretical and semi-empirical predictions. We performed measurements on aqueous sodium chloride, equivalent to those on pure 020, with the intention of classifying the critical behaviour. Although strong power-law divergence of the quantities {xi} and S(0) was not observed, we find that the value of S(0) for a given {xi} is strongly reduced in the ionic solution with respect to the pure solvent. Such behaviour is inconsistent with a thermodynamic model of aqueous sodium chloride, based on experimental thermodynamic data and the expected asymptotic 3d-Ising behaviour. Short-range structural correlations between solute and solvent atoms in aqueous solutions were studied by the technique of neutron diffraction and isotopic substitution (NDIS), as described in Part II. The anion hydration structure in 1.5 molal aqueous NaCl, was investigated at (T = 580 K, P = 800 bar) and (T = 380 K, P = 200 bar). Isotopic substitution was performed on the chloride ion, enabling the difference between scattering functions to be interpreted in terms of CI-H and CI-O correlation functions

  11. A new automated NaCl based robust method for routine production of gallium-68 labeled peptides

    International Nuclear Information System (INIS)

    Schultz, Michael K.; Mueller, Dirk; Baum, Richard P.; Leonard Watkins, G.; Breeman, Wouter A.P.

    2013-01-01

    A new NaCl based method for preparation of gallium-68 labeled radiopharmaceuticals has been adapted for use with an automated gallium-68 generator system. The method was evaluated based on 56 preparations of [ 68 Ga]DOTATOC and compared to a similar acetone-based approach. Advantages of the new NaCl approach include reduced preparation time ( 97%), and specific activity (>40 MBq nmole −1 [ 68 Ga]DOTATOC) and is well-suited for clinical production of radiopharmaceuticals. - Highlights: ► A NaCl based automated production of Ga-68-radiopharmaceuticals is described. ► Using 5 M NaCl for pre-purification of 68Ga eliminates the need for organic solvents. ► The method provides for high efficiency, specific activity, and radiochemical purity. ► The new method eliminates the need for the quality control by gas chromatography

  12. Pitched Blade Turbine Efficiency at Particle Suspension

    Directory of Open Access Journals (Sweden)

    D. Ceres

    2010-01-01

    Full Text Available Mixing suspensions is a very important hydraulic operation. The pitched six-blade turbine is a widely-used axial-flow impeller. This paper deals with effect relative impeller size and particle content on theefficiency of a pitched six-blade turbine at particle suspension. Two pitched six-blade turbines were used in model measurements of just suspension impeller speed. The ratios of the vessel to agitator diameter D/d were 3 and 4.5. The measurements were carried out in a dish-bottomed vessel 300 mm in diameter. The just suspension impeller speeds were measured using an electrochemical method, and were checked visually. A 2.5 % NaCl water solution was used as the liquid phase, and glass particles with four equivalent diameters between 0.18 and 0.89 mmand volumetric concentration from 2.5 % to 40% were usedasthesolid phase. The criterion values πs=Po√Fr'3(d/D7 were calculated from the particle suspension and power consumption measurements. The dependencies of πs on particle content cv show that larger agitators are more efficient for higher particle content.

  13. Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng [Georgia Tech Research Corporation, Atlanta, GA (United States); Santamarina, J. Carlos [King Abdulaziz Univ., Jeddah (Saudi Arabia)

    2017-12-30

    Fine-grained sediments host more than 90 percent of global gas hydrate accumulation. However, hydrate formation in clay-dominated sediments is less understood and characterized than other types of hydrate occurrence. There is an inadequate understanding of hydrate formation mechanisms, segregation structures, hydrate lens topology, system connectivity, and physical macro-scale properties of clay-dominated hydrate-bearing sediments. This situation hinders further analyses of the global carbon budget as well as engineering challenges/solutions related to hydrate instability and production. This project studies hydrate-bearing clay-dominated sediments with emphasis on the enhanced fundamental understanding of hydrate formation and resulting morphology, the development laboratory techniques to emulate natural hydrate formations, the assessment of analytical tools to predict physical properties, the evaluation of engineering and geological implications, and the advanced understanding of gas production potential from finegrained sediments.

  14. Hydration for the prevention of contrast medium-induced nephropathy. An update

    International Nuclear Information System (INIS)

    Heinrich, M.; Uder, M.

    2006-01-01

    Contrast medium-induced nephropathy (CIN) continues to be one of the most common causes of hospital-acquired acute renal failure. Since most of the clinical studies on the prophylactic use of different drugs to prevent CIN produced disappointing results, hydration remains the mainstay of prophylaxis. A number of recent prospective randomized trials provided further evidence of the effectiveness of hydration and relevant information regarding the optimization of hydration protocols. It was shown that a bolus hydration solely during examination is not sufficient to prevent CIN. In addition, isotonic 0.9% saline was superior to the commonly used halfisotonic 0.45% saline in another trial. An outpatient hydration protocol including oral hydration before the examination followed by forced intravenous hydration over 6 hrs. beginning 30 to 60 min. prior to examination seems to be comparable to the usual hydration over 24 hrs. Another hydration protocol, which could also be very attractive especially for outpatients, included the infusion of sodium bicarbonate. In a recent trial, hydration with sodium bicarbonate, given as a bolus for 1 hr. prior to examination followed by an infusion for 6 hrs. after examination, was more effective than hydration with sodium chloride for the prophylaxis of CIN. However, there is still a lack of large-scale, multi-center trials comparing different hydration protocols and investigating their influence on clinically relevant endpoints such as mortality or the need for dialysis. (orig.)

  15. The effect of hydrate promoters on gas uptake.

    Science.gov (United States)

    Xu, Chun-Gang; Yu, Yi-Song; Ding, Ya-Long; Cai, Jing; Li, Xiao-Sen

    2017-08-16

    Gas hydrate technology is considered as a promising technology in the fields of gas storage and transportation, gas separation and purification, seawater desalination, and phase-change thermal energy storage. However, to date, the technology is still not commercially used mainly due to the low gas hydrate formation rate and the low gas uptake. In this study, the effect of hydrate promoters on gas uptake was systematically studied and analyzed based on hydrate-based CH 4 storage and CO 2 capture from CO 2 /H 2 gas mixture experiments. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC) were employed to analyze the microstructures and gas compositions. The results indicate that the effect of the hydrate promoter on the gas uptake depends on the physical and chemical properties of the promoter and gas. A strong polar ionic promoter is not helpful towards obtaining the ideal gas uptake because a dense hydrate layer is easily formed at the gas-liquid interface, which hinders gas diffusion from the gas phase to the bulk solution. For a weak polar or non-polar promoter, the gas uptake depends on the dissolution characteristics among the different substances in the system. The lower the mutual solubility among the substances co-existing in the system, the higher the independence among the substances in the system; this is so that each phase has an equal chance to occupy the hydrate cages without or with small interactions, finally leading to a relatively high gas uptake.

  16. Enzyme hydration, activity and flexibility : A neutron scattering approach

    International Nuclear Information System (INIS)

    Kurkal-Siebert, V.; Finney, J.L.; Daniel, R.M.; Smith, Jeremy C.

    2006-01-01

    Recent measurements have demonstrated enzyme activity at hydrations as low as 3%. The question of whether the hydration-induced enzyme flexibility is important for activity is addressed by performing picosecond dynamic neutron scattering experiments on pig liver esterase powders at various temperatures as well as solutions. At all temperatures and hydrations investigated here, significant quasielastic scattering intensity is found in the protein, indicating the presence of anharmonic, diffusive motion. As the hydration increases a temperature-dependent dynamical transition appears and strengthens involving additional diffusive motion. At low temperature, increasing hydration resulted in lower flexibility of the enzyme. At higher temperatures, systems containing sufficient number of water molecules interacting with the protein exhibit increased flexibility. The implication of these results is that, although the additional hydration-induced diffusive motion and flexibility at high temperatures in the enzyme detected here may be related to increased activity, they are not required for the enzyme to function

  17. Balancing Accuracy and Computational Efficiency for Ternary Gas Hydrate Systems

    Science.gov (United States)

    White, M. D.

    2011-12-01

    Geologic accumulations of natural gas hydrates hold vast organic carbon reserves, which have the potential of meeting global energy needs for decades. Estimates of vast amounts of global natural gas hydrate deposits make them an attractive unconventional energy resource. As with other unconventional energy resources, the challenge is to economically produce the natural gas fuel. The gas hydrate challenge is principally technical. Meeting that challenge will require innovation, but more importantly, scientific research to understand the resource and its characteristics in porous media. Producing natural gas from gas hydrate deposits requires releasing CH4 from solid gas hydrate. The conventional way to release CH4 is to dissociate the hydrate by changing the pressure and temperature conditions to those where the hydrate is unstable. The guest-molecule exchange technology releases CH4 by replacing it with a more thermodynamically stable molecule (e.g., CO2, N2). This technology has three advantageous: 1) it sequesters greenhouse gas, 2) it releases energy via an exothermic reaction, and 3) it retains the hydraulic and mechanical stability of the hydrate reservoir. Numerical simulation of the production of gas hydrates from geologic deposits requires accounting for coupled processes: multifluid flow, mobile and immobile phase appearances and disappearances, heat transfer, and multicomponent thermodynamics. The ternary gas hydrate system comprises five components (i.e., H2O, CH4, CO2, N2, and salt) and the potential for six phases (i.e., aqueous, liquid CO2, gas, hydrate, ice, and precipitated salt). The equation of state for ternary hydrate systems has three requirements: 1) phase occurrence, 2) phase composition, and 3) phase properties. Numerical simulation of the production of geologic accumulations of gas hydrates have historically suffered from relatively slow execution times, compared with other multifluid, porous media systems, due to strong nonlinearities and

  18. Tapping methane hydrates for unconventional natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2007-01-01

    Methane hydrate is an icelike form of concentrated methane and water found in the sediments of permafrost regions and marine continental margins at depths far shallower than conventional oil and gas. Despite their relative accessibility and widespread occurrence, methane hydrates have never been tapped to meet increasing global energy demands. With rising natural gas prices, production from these unconventional gas deposits is becoming economically viable, particularly in permafrost areas already being exploited for conventional oil and gas. This article provides an overview of gas hydrate occurrence, resource assessment, exploration, production technologies, renewability, and future challenges.

  19. Influence of nanostructured lipid carriers (NLC) on the physical properties of the Cutanova Nanorepair Q10 cream and the in vivo skin hydration effect.

    Science.gov (United States)

    Pardeike, Jana; Schwabe, Kay; Müller, Rainer H

    2010-08-30

    Cutanvoa Nanorepair Q10 cream, the first NLC containing cosmetical product introduced to the market in October 2005, was compared to an identical o/w cream without NLC with regards to particle size, melting behaviour, rheological properties and the in vivo effect on skin hydration. The consistency, the spreadability on the skin and the subjective feeling of increase in skin hydration were evaluated using a standardized questionnaire, and compared to hydration data measured. Furthermore, it was shown by epicutaneous patch test that Cutanova Nanorepair Q10 cream has no irritating effects on the skin. By laser diffraction (LD) and differential scanning calorimetry (DSC) measurements it could be shown that NLC are physically stable in Cutanova Nanorepair Q10 cream. After 7 days application of Cutanova Nanorepair Q10 cream and NLC negative control cream an increase in skin hydration could be objectively confirmed by measurements in vivo. From day 28 on the skin hydration measured in the test areas of Cutanova Nanorepair Q10 cream was significantly higher than the skin hydration in the test areas of the NLC negative control cream (p=0.05). The subjective feeling of increase in skin hydration was also rated from the volunteers as superior for Cutanova Nanorepair Q10 cream. The rheological properties of Cutanova Nanorepair Q10 cream contributed to a better subjective impression of consistency and spreadability on the skin than found for NLC negative control cream. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Recovery of phenol of industrial wastewaters with NaCl treatment

    International Nuclear Information System (INIS)

    Serna, Iveth; Torres, Jesus; Hoyos Bibian

    2003-01-01

    A technique for phenol recovery from residual wastewater, which has been made in an empiric way in some local industries, is explored in this work. It was carried out an experimental design that takes into account the concentration of NaCl as the entrance variable and the phenol recovery percentage as the exit variable. The statistical analysis of data determined that the best operation point is 25 Celsius degrade, with a initial ph between 2 and 3, an initial concentration of 6% and 21,5% for phenol and NaCl respectively, achieving a phenol recovery of 79 % with a phenol concentration in the organic phase of 83%. Besides the experimental part some theories are exposed dealing with the separation of a no electrolyte and water by salt addition

  1. Study on the spectrum of photonic crystal cavity and its application in measuring the concentration of NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yun [Nanjing Agricultural Univ., Nanjing (China). Dept. of Physics; Wuxi Institute of Commerce, Wuxi (China). School of Electromechanical Technology; Xie, Xun; Hao, Jiong-Ju; Yang, Hong-Wei [Nanjing Agricultural Univ., Nanjing (China). Dept. of Physics; Yang, Ze-Kun [Lanzhou Univ. (China). School of Information Science and Engineering; Xu, Zhi-Gang [Nanjing Agricultural Univ., Nanjing (China). College of Agriculture

    2017-07-01

    In this article, we propose an approach to measure solution concentrations by using photonic crystal cavities. Based on the experimental data, the refractive index of a NaCl solution is proportional to the concentration. Filling the proposed photonic crystal cavity with a NaCl solution, we calculate the spectral transmission using the transfer matrix method. We found that the cavity transmittance was proportional to the refractive index of the NaCl solution, and thus we obtained a linear relationship between cavity transmittance and the concentration of the NaCl solution. The formula was found by fitting the simulation results with experimental data. Such a formula can be applied to the measurement of an unknown concentration of NaCl solution utilizing a photonic crystal cavity.

  2. Influence of NaCl salinity on growth analysis of strawberry cv. Camarosa

    Directory of Open Access Journals (Sweden)

    H. Mirdehghan

    2011-12-01

    Full Text Available In order to study of salinity effect on growth analysis of strawberry, a greenhouse experiment was conducted in Vali-e-Asr University of Rafsanjan in 2010. This study was carried out RCBD design with 4 replications to determine the influence of salinity (30, 60, 90 Mmol and control with distilled water on strawberry growth analysis. Results indicated that relative growth rate (RGR, crop growth rate (CGR, leaf area ratio (LAR and dry matter accumulation were decreased with increasing salinity. The lowest RGR, CGR and LAR were observed in 90 Mmol NaCl salinity. Results also indicated that maximum dry matter accumulations were observed in 1050, 1200 and 1400 degree days in 30, 60 and 90 Mmol NaCl salinity, respectively. Water salinity more than 30 Mmol NaCl L-1 will decreased fresh fruit yield more than 50 percent in hydroponics strawberry production. Dry mass partitioning in NaCl-stressed plants was in favor of crown and petioles and at expense of root, stem and leaf whereas leaf, stem and root DM progressively declined with an increase in salinity.

  3. Methane hydrate induced permeability modification for multiphase flow in unsaturated porous media

    Science.gov (United States)

    Seol, Yongkoo; Kneafsey, Timothy J.

    2011-08-01

    An experimental study was performed using X-ray computed tomography (CT) scanning to capture three-dimensional (3-D) methane hydrate distributions and potential discrete flow pathways in a sand pack sample. A numerical study was also performed to develop and analyze empirical relations that describe the impacts of hydrate accumulation habits within pore space (e.g., pore filling or grain cementing) on multiphase fluid migration. In the experimental study, water was injected into a hydrate-bearing sand sample that was monitored using an X-ray CT scanner. The CT images were converted into numerical grid elements, providing intrinsic sample data including porosity and phase saturations. The impacts of hydrate accumulation were examined by adapting empirical relations into the flow simulations as additional relations governing the evolution of absolute permeability of hydrate bearing sediment with hydrate deposition. The impacts of pore space hydrate accumulation habits on fluid migration were examined by comparing numerical predictions with experimentally measured water saturation distributions and breakthrough curves. A model case with 3-D heterogeneous initial conditions (hydrate saturation, porosity, and water saturation) and pore body-preferred hydrate accumulations best captured water migration behavior through the hydrate-bearing sample observed in the experiment. In the best matching model, absolute permeability in the hydrate bearing sample does not decrease significantly with increasing hydrate saturation until hydrate saturation reaches about 40%, after which it drops rapidly, and complete blockage of flow through the sample can occur as hydrate accumulations approach 70%. The result highlights the importance of permeability modification due to hydrate accumulation habits when predicting multiphase flow through high-saturation, reservoir quality hydrate-bearing sediments.

  4. Hydrates plugs dissociation in pipelines; Dissociation des bouchons d'hydrates de gaz dans les conduites petrolieres sous-marines

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Hong, D.

    2005-03-15

    Natural gas hydrates plugs cause problems during drilling, well operations, production, transportation and processing of oil and gas. Especially, it is a very serious problem in off-shore oil transportation where low temperature and high pressure become more and more favourable to gas hydrate formation as the new production wells are more and more deeper. Up to now, although many studies have been developed concerning the possibility of preventing pipe plugging, there is limited information in open literature on hydrate plugs dissociation and all models in literature are numerically complicated. In this study, hydrate plugs are formed from water in n-dodecane mixture with addition of a dispersant E102B in two different experimental apparatus in order to obtain hydrates plugs with different sizes (diameter of 7, 10.75 and 12 cm). Then, the plugs are dissociated by the method of two-sided depressurization. In this paper, we propose a numerical model which describes the dissociation of gas hydrate plugs in pipelines. The numerical model, which is constructed for cylindrical coordinates and for two-sided pressurization, is based on enthalpy method. We present also an approximate analytical model which has an average error 2.7 % in comparison with the numerical model. The excellent agreement between our experimental results, literature data and the two models shows that the models give a good prediction independently of the pipeline diameter, plug porosity and gas. The simplicity of the analytical model will make it easier in industrial applications. (author)

  5. Ultrasonic sound speed of hydrating calcium sulphate hemihydrate; part 2, the correlation of sound velocity to hydration degree

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos; Fischer, H.B; Matthes, C.; Beuthan, C.

    2011-01-01

    In this article the sound velocity through a mix is correlated to the hydration degree of the mix. Models are presented predicting the sound velocity through fresh slurries and hardened products. These two states correspond to the starting and finishing point of the hydration process. The present

  6. Ultrasonic sound speed of hydrating calcium sulphate hemihydrate; Part 2, The correlation of sound velocity to hydration degree

    NARCIS (Netherlands)

    Korte, de A.C.J.; Brouwers, H.J.H.; Fischer, H.B.; Mattes, Chr.; Beutha, C.

    2011-01-01

    In this article the sound velocity through a mix is correlated to the hydration degree of the mix. Models are presented predicting the sound velocity through fresh slurries and hardened products. These two states correspond to the starting and finishing point of the hydration process. The present

  7. Concretos refratários preparados com alumina hidratável: efeito dos dispersantes Refractory castables prepared with hydratable alumina: the dispersant effect

    Directory of Open Access Journals (Sweden)

    I. R. Oliveira

    2009-03-01

    Full Text Available Uma alumina de transição capaz de formar fases hidratadas em água tem sido utilizada como ligante hidráulico alternativo para concretos refratários. Entretanto, têm-se observado que a secagem de concretos preparados com este ligante é normalmente mais lenta do que no caso de composições contendo cimento. Essa característica pode favorecer a pressurização do vapor de água gerado no interior do concreto durante a secagem, podendo culminar na explosão do revestimento refratário. O presente trabalho teve como objetivo relacionar o tipo de aditivo utilizado no processamento de concretos refratários com seu comportamento de secagem e resistência mecânica, por meio da atuação do aditivo na dispersão da matriz do concreto e no mecanismo de hidratação do ligante. Embora a dispersão das partículas do ligante mostre-se primordial no desenvolvimento das fases hidratadas, o total recobrimento da superfície das partículas pelo aditivo ácido cítrico desfavoreceu a hidratação gerando defeitos nos corpos e comprometendo a sua aplicação. Por outro lado, os aditivos poliméricos foram apontados como os mais efetivos para conciliar dispersão e desenvolvimento de fases hidratadas com conseqüente ganho de resistência mecânica.A reactive alumina able of forming hydrated phases in water has been used as an alternative hydraulic binder in refractory castables. However, it has been observed that the drying of these materials is usually slower comparing to cement containing compositions. Due to reduction of the permeability, this aspect increases the difficult of the vapor migration and can promote water vapor pressurization inside the structure and, eventually, explosion of refractories. Additives usually used in refractory castables, in order to promote matrix dispersion, are shown to affect the hydratable alumina hydration mechanism. The dispersion of binder particles presents a main role in the development of hydratable phases but

  8. Characteristics of injury and recovery of net NO3- transport of barley seedlings from treatments of NaCl

    Science.gov (United States)

    Klobus, G.; Ward, M. R.; Huffaker, R. C.

    1988-01-01

    The nature of the injury and recovery of nitrate uptake (net uptake) from NaCl stress in young barley (Hordeum vulgare L, var CM 72) seedlings was investigated. Nitrate uptake was inhibited rapidly by NaCl, within 1 minute after exposure to 200 millimolar NaCl. The duration of exposure to saline conditions determined the time of recovery of NO3- uptake from NaCl stress. Recovery was dependent on the presence of NO3- and was inhibited by cycloheximide, 6-methylpurine, and cerulenin, respective inhibitors of protein, RNA, and sterol/fatty acid synthesis. These inhibitors also prevented the induction of the NO3- uptake system in uninduced seedlings. Uninduced seedlings exhibited endogenous NO3- transport activity that appeared to be constitutive. This constitutive activity was also inhibited by NaCl. Recovery of constitutive NO3- uptake did not require the presence of NO3-.

  9. Stages of Gas-Hydrate Evolution on the Northern Cascadia Margin

    Directory of Open Access Journals (Sweden)

    the IODP Expedition 311 Scientists

    2006-09-01

    Full Text Available Natural gas hydrate occurs beneath many continental slopes and in arctic permafrost areas. Recent studies have indicated that the largest deposits of gas hydrate might lie in nearly horizontal layers several hundred meters beneath the seafloor of continental slopes, especially in the large, accretionary sedimentary prisms of subduction zones. Expedition 311 of the Integrated Ocean Drilling Program (IODP investigated the formation of gas hydrate in the accretionary prism of the Cascadia subduction zone (Fig. 1. The primary objectives of Expedition 311 were to test and constraingeological models of gas hydrate formation by upward fluidand methane transport in accretionary prisms. We specifi -cally sought to (a determine the mechanisms that controlthe nature, magnitude, and distribution of the gas hydrate,(b find the pathways of the fluid migration required to formlarge concentrations of gas hydrate, (c examine the effectsof gas hydrate on the physical properties of the host sediment,and (d investigate the microbiology and geochemistryassociated with the occurrence of gas hydrate. Furthermore,we concentrated on the contrast between methane transportby focused fl ow in fault zones and by dispersed pervasiveupward flow at various scales of permeability.

  10. [Effects of NaCl stress on cation contents in different pumpkin cultivars' seedlings].

    Science.gov (United States)

    Li, Wei-Xin; Chen, Gui-Lin; Ren, Liang-Yu; Wang, Peng

    2008-03-01

    With the seedlings of 19 pumpkin cultivars as test materials, this paper studied the variations of Na+, K+, Ca2+, Na+/K+, Na+/Ca2+, SN+, K+ and SNa+, ca2+ in their shoots and roots under the stress of 300 mmol NaCl x L(-1). The results showed that after an 8-day exposure to 300 mmol NaCl x L(-1), the Na+ content in the seedlings increased significantly while the K+ content decreased, resulting in the brokenness of ion balance. The root Na+ content, shoot Na+/K+ and Na+/Ca2+ ratios, and SNa+, K+ and SNa+, Ca2+ of Cucurbita moschata (Q1) were significantly higher than those of C. maxima (H2) and C. ficifolia (H3). The variation tendency of these parameters of different pumpkin cultivars' seedlings were nearly consistent with the salt injury index of the seedlings under NaCl stress, which further proved that the strong salt-tolerance of Q1 was related to the lower values of shoot Na+/K+, Na+/Ca2+, SNa+, K+ and SNa+, Ca2+, and the high contents of K+ and Ca2+, while the salt-sensitivity of H2 and H3 was related to the higher values of shoot Na+/K+, Na+/Ca2+, SNa+, K+ and SNa+, Ca2+, and low contents of K+ and Ca2+ under NaCl stress.

  11. Spectroscopic determination of optimal hydration time of zircon surface

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Garcia R, G. [Instituto Tecnologico de Toluca, Division de Estudios del Posgrado, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Garcia G, N., E-mail: eduardo.ordonez@inin.gob.m [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Av. Colon y Av. Tollocan, 50180 Toluca, Estado de Mexico (Mexico)

    2010-07-01

    When a mineral surface is immersed in an aqueous solution, it develops and electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO{sub 4}) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and rea liable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis showed the presence of trace quantities of Dy{sup 3+}, Eu{sup 3+} and Er{sup 3} in the bulk of zircon. The Dy{sup 3+} is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy{sup 3+} has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 minutes from only one batch. Both methods showed that the zircon surface have a 16 h optimal hydration time. (Author)

  12. Spectroscopic determination of optimal hydration time of zircon surface

    International Nuclear Information System (INIS)

    Ordonez R, E.; Garcia R, G.; Garcia G, N.

    2010-01-01

    When a mineral surface is immersed in an aqueous solution, it develops and electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO 4 ) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and rea liable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis showed the presence of trace quantities of Dy 3+ , Eu 3+ and Er 3 in the bulk of zircon. The Dy 3+ is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy 3+ has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 minutes from only one batch. Both methods showed that the zircon surface have a 16 h optimal hydration time. (Author)

  13. Frictional forces between cohesive powder particles studied by AFM

    International Nuclear Information System (INIS)

    Jones, Robert; Pollock, Hubert M; Geldart, Derek; Verlinden-Luts, Ann

    2004-01-01

    A range of commercially important powders (hydrated alumina, limestone, titania and zeolite) and glass ballotini were attached to atomic force microscope cantilevers, and inter-particle friction forces studied in air using lateral force microscopy (LFM). The in situ calibration procedure for friction forces is described. LF images, line profiles, LF histograms, surface roughness, pull-off forces, and the load dependence of friction in the range 0-25 nN were studied for both particle-particle and particle-wall (steel) contacts. The single-particle friction results are discussed in terms of contact mechanics theory. Particle-particle contacts showed load-dependent friction, involving single asperity contacts (non-linear behaviour) or multi-asperity contacts (linear behaviour). Particle-wall contacts usually showed little load dependence and were more adhesive. The results are also related to shear stress-normal stress data (yield loci) for the same materials from bulk shear testers

  14. Experimental solid state NMR of gas hydrates : problems and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Moudrakovski, I.; Lu, H.; Ripmeester, J. [National Research Council of Canada, Ottawa, ON (Canada). Steacie Inst. for Molecular Sciences; Kumar, R.; Susilo, R. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Luzi, M. [GeoForschungsZentrum Potsdam, Potsdam (Germany)

    2008-07-01

    Solid State NMR is a suitable spectroscopic technique for hydrate research for several reasons, including its capability to distinguish between different structural types of hydrates, its quantitative nature and potential for both in-situ and time resolved experiments. This study illustrated the applications of solid state NMR for compositional and structural studies of clathrate hydrates, with particular emphasis on experimental techniques and potential ways to overcome technical difficulties. In order to use the method to its full capacity, some instrumental developments are needed to adapt it to the specific experimental requirements of hydrate studies, such as very low temperatures and high pressures. This presentation discussed the quantification of the Carbon-13 spectra with examples from natural and synthetic hydrates prepared from multi-component mixtures of hydrocarbons. The main approach used for the first two examples was Carbon-13 NMR with Magic Angle Spinning (MAS) at -100 degrees C. The detailed characterization of mixed hydrogen hydrates required low temperature hydrogen MAS. The quantification problems encountered during these experiments were also discussed. The purpose of these recent experimental developments was to prompt wider application of Solid State NMR in hydrate research. NMR proved to be a viable method for analyzing the composition and structure of multi-component mixed gas hydrates; characterizing natural gas hydrates; and, evaluating the formation conditions and properties of mixed hydrogen hydrates. The limitations of the method were highlighted and sensible choices of experimental conditions and techniques that ensure accurate results were discussed. 34 refs., 10 figs.

  15. Is Br2 hydration hydrophobic?

    Science.gov (United States)

    Alcaraz-Torres, A; Gamboa-Suárez, A; Bernal-Uruchurtu, M I

    2017-02-28

    The spectroscopic properties of bromine in aqueous systems suggest it can behave as either hydrophilic or hydrophobic solute. In small water clusters, the halogen bond and the hydrogen-halogen interaction are responsible for its specific way of binding. In water hydrates, it is efficiently hosted by two different cages forming the crystal structure and it has been frequently assumed that there is little or no interaction between the guest and the host. Bromine in liquid solution poses a challenging question due to its non-negligible solubility and the large blue shift measured in its absorption spectra. Using a refined semi-empirical force field, PM3-PIF, we performed a Born-Oppenheimer molecular dynamics study of bromine in liquid water. Here we present a detailed study in which we retrieved the most representative hydration structures in terms of the most frequent positions around bromine and the most common water orientations. Albeit being an approximate description of the total hydration phenomenon, it captures the contribution of the leading molecular interactions in form of the recurrent structures. Our findings confirm that the spectroscopic signature is mainly caused by the closest neighbors. The dynamics of the whole first hydration shell strongly suggests that the external molecules in that structure effectively isolate the bulk from the presence of bromine. The solvation structure fluctuates from a hydrophilic to a hydrophobic-like environment along the studied trajectory.

  16. NaCl and osmolarity produce different responses in organum vasculosum of the lamina terminalis neurons, sympathetic nerve activity and blood pressure.

    Science.gov (United States)

    Kinsman, Brian J; Browning, Kirsteen N; Stocker, Sean D

    2017-09-15

    Changes in extracellular osmolarity stimulate thirst and vasopressin secretion through a central osmoreceptor; however, central infusion of hypertonic NaCl produces a greater sympathoexcitatory and pressor response than infusion of hypertonic mannitol/sorbitol. Neurons in the organum vasculosum of the lamina terminalis (OVLT) sense changes in extracellular osmolarity and NaCl. In this study, we discovered that intracerebroventricular infusion or local OVLT injection of hypertonic NaCl increases lumbar sympathetic nerve activity, adrenal sympathetic nerve activity and arterial blood pressure whereas equi-osmotic mannitol/sorbitol did not alter any variable. In vitro whole-cell recordings demonstrate the majority of OVLT neurons are responsive to hypertonic NaCl or mannitol. However, hypertonic NaCl stimulates a greater increase in discharge frequency than equi-osmotic mannitol. Intracarotid or intracerebroventricular infusion of hypertonic NaCl evokes a greater increase in OVLT neuronal discharge frequency than equi-osmotic sorbitol. Collectively, these novel data suggest that subsets of OVLT neurons respond differently to hypertonic NaCl versus osmolarity and subsequently regulate body fluid homeostasis. These responses probably reflect distinct cellular mechanisms underlying NaCl- versus osmo-sensing. Systemic or central infusion of hypertonic NaCl and other osmolytes readily stimulate thirst and vasopressin secretion. In contrast, central infusion of hypertonic NaCl produces a greater increase in arterial blood pressure (ABP) than equi-osmotic mannitol/sorbitol. Although these responses depend on neurons in the organum vasculosum of the lamina terminalis (OVLT), these observations suggest OVLT neurons may sense or respond differently to hypertonic NaCl versus osmolarity. The purpose of this study was to test this hypothesis in Sprague-Dawley rats. First, intracerebroventricular (icv) infusion (5 μl/10 min) of 1.0 m NaCl produced a significantly greater

  17. Free energy landscape and molecular pathways of gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Yuanfei; Porras, Anna; Li, Tianshu, E-mail: tsli@gwu.edu [Department of Civil and Environmental Engineering, George Washington University, Washington DC 20052 (United States)

    2016-12-07

    Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p{sub B} histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the p{sub B} histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.

  18. Free energy landscape and molecular pathways of gas hydrate nucleation

    International Nuclear Information System (INIS)

    Bi, Yuanfei; Porras, Anna; Li, Tianshu

    2016-01-01

    Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p B histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the p B histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.

  19. Free energy landscape and molecular pathways of gas hydrate nucleation.

    Science.gov (United States)

    Bi, Yuanfei; Porras, Anna; Li, Tianshu

    2016-12-07

    Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p B histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the p B histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.

  20. Effect of Nano-SiO2 on the Hydration and Microstructure of Portland Cement

    Science.gov (United States)

    Wang, Liguo; Zheng, Dapeng; Zhang, Shupeng; Cui, Hongzhi; Li, Dongxu

    2016-01-01

    This paper systematically studied the modification of cement-based materials by nano-SiO2 particles with an average diameter of about 20 nm. In order to obtain the effect of nano-SiO2 particles on the mechanical properties, hydration, and pore structure of cement-based materials, adding 1%, 3%, and 5% content of nano-SiO2 in cement paste, respectively. The results showed that the reaction of nano-SiO2 particles with Ca(OH)2 (crystal powder) started within 1 h, and formed C–S–H gel. The reaction speed was faster after aging for three days. The mechanical properties of cement-based materials were improved with the addition of 3% nano-SiO2, and the early strength enhancement of test pieces was obvious. Three-day compressive strength increased 33.2%, and 28-day compressive strength increased 18.5%. The exothermic peak of hydration heat of cement increased significantly after the addition of nano-SiO2. Appearance time of the exothermic peak was advanced and the total heat release increased. Thermogravimetric-differential scanning calorimetry (TG-DSC) analysis showed that nano-SiO2 promoted the formation of C–S–H gel. The results of mercury intrusion porosimetry (MIP) showed that the total porosity of cement paste with 3% nano-SiO2 was reduced by 5.51% and 5.4% at three days and 28 days, respectively, compared with the pure cement paste. At the same time, the pore structure of cement paste was optimized, and much-detrimental pores and detrimental pores decreased, while less harmful pores and innocuous pores increased. PMID:28335369

  1. Effect of Nano-SiO2 on the Hydration and Microstructure of Portland Cement

    Directory of Open Access Journals (Sweden)

    Liguo Wang

    2016-12-01

    Full Text Available This paper systematically studied the modification of cement-based materials by nano-SiO2 particles with an average diameter of about 20 nm. In order to obtain the effect of nano-SiO2 particles on the mechanical properties, hydration, and pore structure of cement-based materials, adding 1%, 3%, and 5% content of nano-SiO2 in cement paste, respectively. The results showed that the reaction of nano-SiO2 particles with Ca(OH2 (crystal powder started within 1 h, and formed C–S–H gel. The reaction speed was faster after aging for three days. The mechanical properties of cement-based materials were improved with the addition of 3% nano-SiO2, and the early strength enhancement of test pieces was obvious. Three-day compressive strength increased 33.2%, and 28-day compressive strength increased 18.5%. The exothermic peak of hydration heat of cement increased significantly after the addition of nano-SiO2. Appearance time of the exothermic peak was advanced and the total heat release increased. Thermogravimetric-differential scanning calorimetry (TG-DSC analysis showed that nano-SiO2 promoted the formation of C–S–H gel. The results of mercury intrusion porosimetry (MIP showed that the total porosity of cement paste with 3% nano-SiO2 was reduced by 5.51% and 5.4% at three days and 28 days, respectively, compared with the pure cement paste. At the same time, the pore structure of cement paste was optimized, and much-detrimental pores and detrimental pores decreased, while less harmful pores and innocuous pores increased.

  2. Multicomponent modelling of Portland cement hydration reactions

    NARCIS (Netherlands)

    Ukrainczyk, N.; Koenders, E.A.B.; Van Breugel, K.

    2012-01-01

    The prospect of cement and concrete technologies depends on more in depth understanding of cement hydration reactions. Hydration reaction models simulate the development of the microstructures that can finally be used to estimate the cement based material properties that influence performance and

  3. Experimental determination of methane hydrate formation in the presence of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Dong, T.B.; Wang, L.Y.; Liu, A.X.; Guo, X.Q.; Chen, G.J.; Ma, Q.L.; Li, G.W. [China Univ. of Petroleum, Beijng (China). State Key Laboratory of Heavy Oil Processing

    2008-07-01

    Gas hydrates are non-stoichiometric inclusion compounds that are created by a lattice of water molecules. The host molecule has a strong hydrogen bond and encages low molecular weight gases or volatile liquids. The guest molecules favor hydrate formation. Historically, gas hydrates have been thought to be problematic during natural gas transportation because the formed solid hydrate can block pipelines and cause tubing and casing collapse. However, the discovery of huge deposits of gas hydrates in deep-sea sediments and in permafrost has renewed interest in gas hydrates as a new energy resource. This paper discussed a study that is a part of an ongoing experimental and computational program dealing with the thermodynamics of gas hydrate formation in ammonia-water systems. The purpose of the study was to develop a new method to separate and recycle the vent gas of ammonia synthesis by forming or dissociating hydrate. The hydrate-forming conditions of methane in ammonia and water system were studied and reported in this paper with reference to the experimental apparatus and procedure. The materials and preparation of samples were also explained. The experimental results showed that the ammonia had an inhibitive effect on the hydrate formation. 26 refs., 2 tabs., 3 figs.

  4. The structural response of the cornea to changes in stromal hydration.

    Science.gov (United States)

    Hayes, Sally; White, Tomas; Boote, Craig; Kamma-Lorger, Christina S; Bell, James; Sorenson, Thomas; Terrill, Nick; Shebanova, Olga; Meek, Keith M

    2017-06-01

    The primary aim of this study was to quantify the relationship between corneal structure and hydration in humans and pigs. X-ray scattering data were collected from human and porcine corneas equilibrated with polyethylene glycol (PEG) to varying levels of hydration, to obtain measurements of collagen fibril diameter, interfibrillar spacing (IFS) and intermolecular spacing. Both species showed a strong positive linear correlation between hydration and IFS 2 and a nonlinear, bi-phasic relationship between hydration and fibril diameter, whereby fibril diameter increased up to approximately physiological hydration, H = 3.0, with little change thereafter. Above H = 3.0, porcine corneas exhibited a larger fibril diameter than human corneas ( p < 0.001). Intermolecular spacing also varied with hydration in a bi-phasic manner but reached a maximum value at a lower hydration ( H = 1.5) than fibril diameter. Human corneas displayed a higher intermolecular spacing than porcine corneas at all hydrations ( p < 0.0001). Human and porcine corneas required a similar PEG concentration to reach physiological hydration, suggesting that the total fixed charge that gives rise to the swelling pressure is the same. The difference in their structural responses to hydration can be explained by variations in molecular cross-linking and intra/interfibrillar water partitioning. © 2017 The Authors.

  5. Influence of limestone on the hydration of Portland cements

    International Nuclear Information System (INIS)

    Lothenbach, Barbara; Le Saout, Gwenn; Gallucci, Emmanuel; Scrivener, Karen

    2008-01-01

    The influence of the presence of limestone on the hydration of Portland cement was investigated. Blending of Portland cement with limestone was found to influence the hydrate assemblage of the hydrated cement. Thermodynamic calculations as well as experimental observations indicated that in the presence of limestone, monocarbonate instead of monosulfate was stable. Thermodynamic modelling showed that the stabilisation of monocarbonate in the presence of limestone indirectly stabilised ettringite leading to a corresponding increase of the total volume of the hydrate phase and a decrease of porosity. The measured difference in porosity between the 'limestone-free' cement, which contained less than 0.3% CO 2 , and a cement containing 4% limestone, however, was much smaller than calculated. Coupling of thermodynamic modelling with a set of kinetic equations which described the dissolution of the clinker, predicted quantitatively the amount of hydrates. The quantities of ettringite, portlandite and amorphous phase as determined by TGA and XRD agreed well with the calculated amounts of these phases after different periods of time. The findings in this paper show that changes in the bulk composition of hydrating cements can be followed by coupled thermodynamic models. Comparison between experimental and modelled data helps to understand in more detail the dominating processes during cement hydration

  6. Relaxation mechanism of the hydrated electron.

    Science.gov (United States)

    Elkins, Madeline H; Williams, Holly L; Shreve, Alexander T; Neumark, Daniel M

    2013-12-20

    The relaxation dynamics of the photoexcited hydrated electron have been subject to conflicting interpretations. Here, we report time-resolved photoelectron spectra of hydrated electrons in a liquid microjet with the aim of clarifying ambiguities from previous experiments. A sequence of three ultrashort laser pulses (~100 femtosecond duration) successively created hydrated electrons by charge-transfer-to-solvent excitation of dissolved anions, electronically excited these electrons via the s→p transition, and then ejected them into vacuum. Two distinct transient signals were observed. One was assigned to the initially excited p-state with a lifetime of ~75 femtoseconds, and the other, with a lifetime of ~400 femtoseconds, was attributed to s-state electrons just after internal conversion in a nonequilibrated solvent environment. These assignments support the nonadiabatic relaxation model.

  7. Gas hydrate drilling transect across northern Cascadia margin - IODP Expedition 311

    Science.gov (United States)

    Riedel, M.; Collett, T.; Malone, M.J.; Collett, T.S.; Mitchell, M.; Guerin, G.; Akiba, F.; Blanc-Valleron, M.; Ellis, M.; Hashimoto, Y.; Heuer, V.; Higashi, Y.; Holland, M.; Jackson, P.D.; Kaneko, M.; Kastner, M.; Kim, J.-H.; Kitajima, H.; Long, P.E.; Malinverno, A.; Myers, Gwen E.; Palekar, L.D.; Pohlman, J.; Schultheiss, P.; Teichert, B.; Torres, M.E.; Trehu, A.M.; Wang, Jingyuan; Worthmann, U.G.; Yoshioka, H.

    2009-01-01

    A transect of four sites (U1325, U1326, U1327 and U1329) across the northern Cascadia margin was established during Integrated Ocean Drilling Program Expedition 311 to study the occurrence and formation of gas hydrate in accretionary complexes. In addition to the transect sites, a fifth site (U1328) was established at a cold vent with active fluid flow. The four transect sites represent different typical geological environments of gas hydrate occurrence across the northern Cascadia margin from the earliest occurrence on the westernmost first accreted ridge (Site U1326) to the eastward limit of the gas hydrate occurrence in shallower water (Site U1329). Expedition 311 complements previous gas hydrate studies along the Cascadia accretionary complex, especially ODP Leg 146 and Leg 204 by extending the aperture of the transect sampled and introducing new tools to systematically quantify the gas hydrate content of the sediments. Among the most significant findings of the expedition was the occurrence of up to 20 m thick sand-rich turbidite intervals with gas hydrate concentrations locally exceeding 50% of the pore space at Sites U1326 and U1327. Moreover, these anomalous gas hydrate intervals occur at unexpectedly shallow depths of 50-120 metres below seafloor, which is the opposite of what was expected from previous models of gas hydrate formation in accretionary complexes, where gas hydrate was predicted to be more concentrated near the base of the gas hydrate stability zone just above the bottom-simulating reflector. Gas hydrate appears to be mainly concentrated in turbidite sand layers. During Expedition 311, the visual correlation of gas hydrate with sand layers was clearly and repeatedly documented, strongly supporting the importance of grain size in controlling gas hydrate occurrence. The results from the transect sites provide evidence for a structurally complex, lithology-controlled gas hydrate environment on the northern Cascadia margin. Local shallow

  8. Theoretical description of biomolecular hydration - Application to A-DNA

    International Nuclear Information System (INIS)

    Garcia, A.E.; Hummer, G.; Soumpasis, D.M.

    1994-01-01

    The local density of water molecules around a biomolecule is constructed from calculated two- and three-points correlation functions of polar solvents in water using a Potential-of-Mean-Force (PMF) expansion. As a simple approximation, the hydration of all polar (including charged) groups in a biomolecule is represented by the hydration of water oxygen in bulk water, and the effect of non-polar groups on hydration are neglected, except for excluded volume effects. Pair and triplet correlation functions are calculated by molecular dynamics simulations. We present calculations of the structural hydration for ideal A-DNA molecules with sequences [d(CG) 5 ] 2 and [d(C 5 G 5 )] 2 . We find that this method can accurately reproduce the hydration patterns of A-DNA observed in neutron diffraction experiments on oriented DNA fibers

  9. Characterization of methane-hydrate formation inferred from insitu Vp-density relationship for hydrate-bearing sediment cores obtained off the eastern coast of India

    Science.gov (United States)

    Kinoshita, M.; Hamada, Y.; Hirose, T.; Yamada, Y.

    2017-12-01

    In 2015, the Indian National Gas Hydrate Program (NGHP) Drilling Expedition 02 was carried out off the eastern margin of the Indian Peninsula in order to investigate distribution and occurrence of gas hydrates. From 25 drill sites, downhole logging data, cored samples, and drilling performance data were collected. One of the target areas (area B) is located on the axial and flank of an anticline, where the BSR is identified 100 m beneath the summit of anticline. 3 sites were drilled in the crest. The lower potential hydrate zone II was suggested by downhole logging (LWD) at 270-290 m below seafloor across the top of anticline. Core samples from this interval is characterized by a higher natural gamma radiation, gamma-ray-based higher bulk density and lower porosity, and higher electrical resistivity. All these features are in good agreement with LWD results. During this expedition, numerous special core sampling operations (PCAT) were carried out, keeping its insitu pressure in a pressure-tight vessel. They enabled acquiring insitu P-wave velocity and gamma-ray attenuation density measurements. In-situ X-CT images exhibit very clear hydrate distribution as lower density patches. Hydrate-bearing sediments exhibit a Vp-density trend that is clearly different from the ordinary formation. Vp values are significantly higher than 2 km/s whereas the density remains constant at 2-2.2 g/cm3 in hydrate zones. At some hydrate-bearing sediments, we noticed that Vp is negatively correlated to the density in the deeper portion (235-285 mbsf). On the other hand, in the shallower portion they are positively correlated. From lithostratigraphy the shallower portion consists of sand, whereas deeper portion are silty-clay dominant. We infer that the sand-dominant, shallower hydrate is a pore-filling type, and Vp is correlated positively to density. On the other hand, the clay-dominant, deeper hydrate is filled in vertical veins, and Vp is negatively correlated to density. Negative

  10. 75 FR 9886 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2010-03-04

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Department of Energy, Office of Fossil Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... the Committee: The purpose of the Methane Hydrate Advisory Committee is to provide advice on potential...

  11. Geologic implications of gas hydrates in the offshore of India: Results of the National Gas Hydrate Program Expedition 01

    Digital Repository Service at National Institute of Oceanography (India)

    Collett, T.S.; Boswell, R.; Cochran, J.R.; Kumar, P.; Lall, M.; Mazumdar, A.; Ramana, M.V.; Ramprasad, T.; Riedel, M.; Sain, K.; Sathe, A.V.; Vishwanath, K.; NGHP Expedition 01 Scientific Party

    in Japan (Tsujii et al., 2009) and in the Gulf of Mexico (Boswell et al., 2012a) and the pace of gas-hydrate energy-assessment projects continues to accelerate. Beyond a future energy resource, gas hydrates may in some cases represent a significant...

  12. Effect of overpressure on gas hydrate distribution

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, G.; Chapman, W.G.; Hirasaki, G.J. [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Dickens, G.R.; Dugan, B. [Rice Univ., Houston, TX (United States). Dept. of Earth Sciences

    2008-07-01

    Natural gas hydrate systems can be characterized by high sedimentation rates and/or low permeability sediments, which can lead to pore pressure higher than hydrostatic. This paper discussed a study that examined this effect of overpressure on gas hydrate and free gas distribution in marine sediments. A one-dimensional numerical model that coupled sedimentation, fluid flow, and gas hydrate formation was utilized. In order to quantify the relative importance of sedimentation rates and low permeability sediments, a dimensionless sedimentation-compaction group (scN) was defined, that compared the absolute permeability of the sediments to the sedimentation rate. Higher values of scN mean higher permeability or low sedimentation rate which generally yield hydrostatic pore pressure while lower values of scN normally create pore pressure greater than hydrostatic. The paper discussed non-hydrostatic consolidation in gas hydrate systems, including mass balances; constitutive relationships; normalized variables; and dimensionless groups. A numerical solution to the problem was presented. It was concluded that simulation results demonstrated that decreasing scN not only increased pore pressure above hydrostatic values, but also lowered the lithostatic stress gradient and gas hydrate saturation. This occurred because overpressure resulted in lower effective stress, causing higher porosity and lower bulk density of the sediment. 16 refs., 5 figs., 1 appendix.

  13. Blue LED irradiation to hydration of skin

    Science.gov (United States)

    Menezes, Priscila F. C.; Requena, Michelle B.; Lizarelli, Rosane F., Z.; Bagnato, Vanderlei S.

    2015-06-01

    Blue LED system irradiation shows many important properties on skin as: bacterial decontamination, degradation of endogenous skin chromophores and biostimulation. In this clinical study we prove that the blue light improves the skin hydration. In the literature none authors reports this biological property on skin. Then this study aims to discuss the role of blue light in the skin hydration. Twenty patients were selected to this study with age between 25-35 years old and phototype I, II and III. A defined area from forearm was pre determined (A = 4.0 cm2). The study was randomized in two treatment groups using one blue light device (power of 5.3mW and irradiance of 10.8mW/cm2). The first treatment group was irradiated with 3J/cm2 (277seconds) and the second with 6J/cm2 (555 seconds). The skin hydration evaluations were done using a corneometer. The measurements were collected in 7, 14, 21 and 30 days, during the treatment. Statistical test of ANOVA, Tukey and T-Student were applied considering 5% of significance. In conclusion, both doses were able to improve the skin hydration; however, 6J/cm2 has kept this hydration for 30 days.

  14. Methane hydrates. A possible energy source in the twenty-first century

    International Nuclear Information System (INIS)

    Sorassi, S.

    1998-01-01

    The morphological characteristics of particular crystal structures, to be found in nature both in arctic and Antarctic regions and under seas and oceans, and consisting of water and gas molecules, the so-called 'gas hydrates', are dealt with. Technical problems related to gas recovery (methane in particular) from hydrates, above all under sea level, mainly due to their reduced stability, are examined. On the ground of these considerations, various gas recovery methods from hydrate fields are described. An overall evaluation of methane availability as hydrates all over the world, as well as a comparison between extraction costs from hydrate and well as a comparison between extraction costs from hydrate and conventional fields, are made. Finally, short-term programmes on research and development of methane hydrate fields in some areas of the Earth are described [it

  15. Detailed evaluation of gas hydrate reservoir properties using JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well downhole well-log displays

    Science.gov (United States)

    Collett, T.S.

    1999-01-01

    The JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well project was designed to investigate the occurrence of in situ natural gas hydrate in the Mallik area of the Mackenzie Delta of Canada. Because gas hydrate is unstable at surface pressure and temperature conditions, a major emphasis was placed on the downhole logging program to determine the in situ physical properties of the gas-hydrate-bearing sediments. Downhole logging tool strings deployed in the Mallik 2L-38 well included the Schlumberger Platform Express with a high resolution laterolog, Array Induction Imager Tool, Dipole Shear Sonic Imager, and a Fullbore Formation Microlmager. The downhole log data obtained from the log- and core-inferred gas-hydrate-bearing sedimentary interval (897.25-1109.5 m log depth) in the Mallik 2L-38 well is depicted in a series of well displays. Also shown are numerous reservoir parameters, including gas hydrate saturation and sediment porosity log traces, calculated from available downhole well-log and core data. The gas hydrate accumulation delineated by the Mallik 2L-38 well has been determined to contain as much as 4.15109 m3 of gas in the 1 km2 area surrounding the drill site.

  16. Effect of hydration on the organo-noble gas molecule HKrCCH: role of krypton in the stabilization of hydrated HKrCCH complexes.

    Science.gov (United States)

    Biswas, Biswajit; Singh, Prashant Chandra

    2015-11-11

    The effect of hydration on the fluorine free organo-noble gas compound HKrCCH and the role of krypton in the stabilization of the hydrated HKrCCH complexes have been investigated using the quantum chemical calculations on the HKrCCH-(H2O)n=1-6 clusters. Structure and energetics calculations show that water stabilizes HKrCCH through the π hydrogen bond in which the OH group of water interacts with the C[triple bond, length as m-dash]C group of HKrCCH. A maximum of four water molecules can directly interact with the C[triple bond, length as m-dash]C of HKrCCH and after that only inter-hydrogen bonding takes place between the water molecules indicating that the primary hydration shell contains four water molecules. Atom in molecule analysis depicts that π hydrogen bonded complexes of the hydrated HKrCCH are cyclic structures in which the OKr interaction cooperates in the formation of strong O-HC[triple bond, length as m-dash]C interaction. Structure, energetics and charge analysis clearly established that krypton plays an important role in the stabilization as well as the formation of the primary hydration shell of hydrated HKrCCH complexes.

  17. Characteristics of Methane Hydrate Formation in Artificial and Natural Media

    Directory of Open Access Journals (Sweden)

    Qingbai Wu

    2013-03-01

    Full Text Available The formation of methane hydrate in two significantly different media was investigated, using silica gel as an artificial medium and loess as a natural medium. The methane hydrate formation was observed through the depletion of water in the matrix, measured via the matrix potential and the relationship between the matrix potential and the water content was determined using established equations. The velocity of methane hydrate nucleation slowed over the course of the reaction, as it relied on water transfer to the hydrate surfaces with lower Gibbs free energy after nucleation. Significant differences in the reactions in the two types of media arose from differences in the water retention capacity and lithology of media due to the internal surface area and pore size distributions. Compared with methane hydrate formation in silica gel, the reaction in loess was much slower and formed far less methane hydrate. The results of this study will advance the understanding of how the properties of the environment affect the formation of gas hydrates in nature.

  18. Nonequilibrium Thermodynamics of Hydrate Growth on a Gas-Liquid Interface

    Science.gov (United States)

    Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben

    2018-04-01

    We develop a continuum-scale phase-field model to study gas-liquid-hydrate systems far from thermodynamic equilibrium. We design a Gibbs free energy functional for methane-water mixtures that recovers the isobaric temperature-composition phase diagram under thermodynamic equilibrium conditions. The proposed free energy is incorporated into a phase-field model to study the dynamics of hydrate formation on a gas-liquid interface. We elucidate the role of initial aqueous concentration in determining the direction of hydrate growth at the interface, in agreement with experimental observations. Our model also reveals two stages of hydrate growth at an interface—controlled by a crossover in how methane is supplied from the gas and liquid phases—which could explain the persistence of gas conduits in hydrate-bearing sediments and other nonequilibrium phenomena commonly observed in natural methane hydrate systems.

  19. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  20. Observation of microstructure of hydrated Ca3SiO5

    International Nuclear Information System (INIS)

    Mori, Kazuhiro; Sato, Takashi; Fukunaga, Toshiharu; Oishi, Koji; Kimura, Katsuhiko; Iwase, Kenji; Sugiyama, Masaaki; Itoh, Keiji; Shikanai, Fumihito; Wuernisha, Tuerxun; Yonemura, Masao; Sulistyanintyas, Dyah; Tsukushi, Itaru; Takata, Shinich; Otomo, Toshiya; Kamiyma, Takashi; Kawai, Masayoshi

    2006-01-01

    Quasi-elastic neutron scattering experiments were carried out to evaluate the hydration rate of tricalcium silicate (Ca 3 SiO 5 ). Furthermore, in the early hydration period, a variation in surface roughness of Ca 3 SiO 5 was observed in nano-scale by the small-angle neutron scattering. From these results, it was found that the hydration rate of Ca 3 SiO 5 is suppressed when the surface of Ca 3 SiO 5 becomes rough through the creation of hydration products C-S-H gel and Ca(OH) 2 , and this roughness is associated with changes in the Ca 3 SiO 5 hydration rate

  1. Modelling the incongruent dissolution of hydrated cement minerals

    International Nuclear Information System (INIS)

    Berner, U.R.

    1988-01-01

    Hydrated calciumsilicates are the main constituents of hydrated portland cements. Their chemistry will strongly influence the longterm behaviour of a concrete system envisioned in use in radioactive waste repositories. Experimental data show that hydrated calciumsilicates dissolve incongruently, depending on the calcium/silicon ratio of the solid. A model that simulates the incongruent dissolution behaviour of these hydrated calciumsilicates is presented. In the model the hydrated calciumcilicates are represented as a mixture of two congruently soluble components. The dissolution of the particular components is described using the concept of variable activities in the solid state. Each component's activity in the solid state is obtained from a large body of solubility data by applying the Gibbs-Duhem equation for nonideal mixtures. Using this approach a simplified set of equations, which describe the solubility of the components as a function of the calcium/silicon ratio of the solid, is derived. As an application, the degradation of a standard portland cement in pure water and in a carbonate-rich groundwater is modelled. (orig.)

  2. Theoretical description of biomolecular hydration - Application to A-DNA

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.E.; Hummer, G. [Los Alamos National Laboratory, NM (United States); Soumpasis, D.M. [Max Planck Inst. for Biophysical Chemistry, Goettingen (Germany)

    1994-12-31

    The local density of water molecules around a biomolecule is constructed from calculated two- and three-points correlation functions of polar solvents in water using a Potential-of-Mean-Force (PMF) expansion. As a simple approximation, the hydration of all polar (including charged) groups in a biomolecule is represented by the hydration of water oxygen in bulk water, and the effect of non-polar groups on hydration are neglected, except for excluded volume effects. Pair and triplet correlation functions are calculated by molecular dynamics simulations. We present calculations of the structural hydration for ideal A-DNA molecules with sequences [d(CG){sub 5}]{sub 2} and [d(C{sub 5}G{sub 5})]{sub 2}. We find that this method can accurately reproduce the hydration patterns of A-DNA observed in neutron diffraction experiments on oriented DNA fibers.

  3. BSR and methane hydrates: New challenges for geophysics and rock physics

    Energy Technology Data Exchange (ETDEWEB)

    Nur, A. [Stanford Univ., CA (United States). Dept. of Geophysics

    1996-12-31

    It is generally accepted that solid gas hydrates which form within the uppermost few hundred meters of the sea floor are responsible for so-called Bottom Simulating Reflectors (BSRs) at continental margins. Gas to solid volumetric ratio in recovered hydrate samples may be as large as 170. Consequently, huge amounts of compressed methane (more than twice all recoverable and nonrecoverable oil, gas, and coal on earth) may exist under earth`s oceans. These hydrates are a potential energy resource, they influence global warming and effect seafloor mechanical stability. It is possible, in principle, to obtain a quantitative estimate of the amount and state of existing hydrates by relating seismic velocity to the volume of gas hydrate in porous sediments. This can be done by linking the elastic properties of hydrated sediments to their internal structure. The authors approach this problem by examining two micromechanical models of hydrate deposition in the pore space: (1) the hydrate cements grain contacts and thus significantly stiffens the sediment; and (2) the hydrate is located away from grain contacts and only weakly affects the stiffness of the sediment frame. To discriminate between the two models the authors use the Amplitude Versus Offset (AVO) technique of seismic data processing. This approach allows them to estimate the amount of gas hydrates in the pore space, and also to tell whether the permeability of the hydrated sediment is high or low. The latter is important for determining whether free methane can be trapped underneath a BSR.

  4. Comparing the sensitivity of permafrost and marine gas hydrate to climate warming

    International Nuclear Information System (INIS)

    Taylor, A.E.; Dallimore, S.R.; Hyndman, R.D.; Wright, F.

    2005-01-01

    The sensitivity of Arctic subpermafrost gas hydrate at the Mallik borehole was compared to temperate marine gas hydrate located offshore southwestern Canada. In particular, a finite element geothermal model was used to determine the sensitivity to the end of the ice age, and contemporary climate warming of a 30 m thick methane hydrate layer lying at the base of a gas hydrate stability zone prior to 13.5 kiloannum (ka) before present (BP). It was suggested that the 30 m gas-hydrate-bearing layer would have disappeared by now, according to the thermal signal alone. However, the same gas-hydrate-bearing layer underlying permafrost would persist until at least 4 ka after present, even with contemporary climate warming. The longer time for subpermafrost gas hydrate comes from the thawing pore ice at the base of permafrost, at the expense of dissociation of the deeper gas hydrate. The dissociation of underlying gas hydrate from climate surface warming is buffered by the overlying permafrost

  5. Thermal conductivity measurements in porous mixtures of methane hydrate and quartz sand

    Science.gov (United States)

    Waite, W.F.; deMartin, B.J.; Kirby, S.H.; Pinkston, J.; Ruppel, C.D.

    2002-01-01

    Using von Herzen and Maxwell's needle probe method, we measured thermal conductivity in four porous mixtures of quartz sand and methane gas hydrate, with hydrate composing 0, 33, 67 and 100% of the solid volume. Thermal conductivities were measured at a constant methane pore pressure of 24.8 MPa between -20 and +15??C, and at a constant temperature of -10??C between 3.5 and 27.6 MPa methane pore pressure. Thermal conductivity decreased with increasing temperature and increased with increasing methane pore pressure. Both dependencies weakened with increasing hydrate content. Despite the high thermal conductivity of quartz relative to methane hydrate, the largest thermal conductivity was measured in the mixture containing 33% hydrate rather than in hydrate-free sand. This suggests gas hydrate enhanced grain-to-grain heat transfer, perhaps due to intergranular contact growth during hydrate synthesis. These results for gas-filled porous mixtures can help constrain thermal conductivity estimates in porous, gas hydrate-bearing systems.

  6. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope

    Science.gov (United States)

    Collett, T.S.; Lee, M.W.; Agena, W.F.; Miller, J.J.; Lewis, K.A.; Zyrianova, M.V.; Boswell, R.; Inks, T.L.

    2011-01-01

    In the 1960s Russian scientists made what was then a bold assertion that gas hydrates should occur in abundance in nature. Since this early start, the scientific foundation has been built for the realization that gas hydrates are a global phenomenon, occurring in permafrost regions of the arctic and in deep water portions of most continental margins worldwide. In 1995, the U.S. Geological Survey made the first systematic assessment of the in-place natural gas hydrate resources of the United States. That study suggested that the amount of gas in the gas hydrate accumulations of northern Alaska probably exceeds the volume of known conventional gas resources on the North Slope. Researchers have long speculated that gas hydrates could eventually become a producible energy resource, yet technical and economic hurdles have historically made gas hydrate development a distant goal. This view began to change in recent years with the realization that this unconventional resource could be developed with existing conventional oil and gas production technology. One of the most significant developments was the completion of the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well on the Alaska North Slope, which along with the Mallik project in Canada, have for the first time allowed the rational assessment of gas hydrate production technology and concepts. Almost 40 years of gas hydrate research in northern Alaska has confirmed the occurrence of at least two large gas hydrate accumulations on the North Slope. We have also seen in Alaska the first ever assessment of how much gas could be technically recovered from gas hydrates. However, significant technical concerns need to be further resolved in order to assess the ultimate impact of gas hydrate energy resource development in northern Alaska. ?? 2009 Elsevier Ltd.

  7. Role of Polycarboxylate-ether superplasticizers on cement hydration kinetics and microstructural development

    Directory of Open Access Journals (Sweden)

    Valentini L.

    2018-01-01

    Full Text Available Polycarboxylate-ether (PCE superplasticizers are a fundamental constituent of modern cementbased materials due to their impact on the rheology of the fresh mix and mechanical performance of the hardened material. The effect of PCEs on cement hydration kinetics has been known since their introduction in the early 1980s. However, detailed knowledge of the role played by PCE macromolecules on the basic mechanisms of cement hydration (dissolution, diffusion, precipitation is still lacking. A better understanding of how such mechanisms are influenced by the addition of PCE is no doubt beneficial to the design of novel superplasticizing admixtures. Here, I report on some recent findings about the role of PCE superplasticizers on cement hydration kinetics and microstructural development. The interaction between PCE and C3S pastes was investigated by an ad-hoc kinetic model based on a combination of generalized forms of the Avrami and BNG (Boundary Nucleation and Growth models. The model is used to fit the rate of C-S-H precipitation measured by in-situ X-ray powder diffraction combined with mass balance calculations. The results show that a switch from heterogeneous to homogeneous C-S-H nucleation occurs in the presence of PCEs and that the C-S-H growth rate decreases proportionally to the amount of PCE used. The predicted switch to homogeneous nucleation is in agreement with experimental results obtained by XRD-enhanced micro-tomography imaging, showing that, in the presence of PCE, C-S-H preferentially forms in the pore space rather than at the surface of clinker particles.

  8. Major factors influencing the generation of natural gas hydrate in porous media

    Directory of Open Access Journals (Sweden)

    V.N. Khlebnikov

    2017-11-01

    Full Text Available Current researches related to natural gas hydrate mainly focus on its physical and chemical properties, as well as the approaches to the production (decomposition of hydrate. Physical modeling of the flow process in hydrate deposits is critical to the study on the exploitation or decomposition of hydrate. However, investigation of the dynamic hydrate process by virtue of porous media like sand-packed tubes which are widely used in petroleum production research is rarely reported in literature. In this paper, physical simulation of methane hydrate generation process was conducted using river sand-packed tubes in the core displacement apparatus. During the simulation, the influences of parameters such as reservoir temperature, methane pressure and reservoir model properties on the process of hydrate generation were investigated. The following results are revealed. First, the use of ice-melted water as the immobile water in the reservoir model can significantly enhance the rate of methane hydrate generation. Second, the process driving force in porous media (i.e., extents to which the experimental pressure or temperature deviating those corresponding to the hydrate phase equilibrium plays a key role in the generation of methane hydrate. Third, the induction period of methane hydrate generation almost does not change with temperature or pressure when the methane pressure is above 1.4 folds of the hydrate phase equilibrium pressure or the laboratory temperature is lower than the phase equilibrium temperature by 3 °C or more. Fourth, the parameters such as permeability, water saturation and wettability don't have much influence on the generation of methane hydrate.

  9. Dissociation heat of mixed-gas hydrate composed of methane and ethane

    Energy Technology Data Exchange (ETDEWEB)

    Hachikubo, A.; Nakagawa, R.; Kubota, D.; Sakagami, H.; Takahashi, N.; Shoji, H. [Kitami Inst. of Technology, Kitami (Japan)

    2008-07-01

    Formation and dissociation processes of natural gas hydrates in permafrost, marine and lake sediments are highly controlled by their thermal properties. Dissociation heat of gas hydrates can be estimated from phase equilibrium data using the Clausius-Clapeyron equation. However, this method is applicable for pure gas hydrate and at a temperature of 0 degrees Celsius. Direct calorimetric measurements on gas hydrates using a calorimeter have been developed to obtain thermal properties of gas hydrates, including dissociation heat and heat capacity. Studies have shown that a structure 2 gas hydrate appears in appropriate gas composition of methane and ethane. This paper investigated the effect of ethane concentration on dissociation heat of mixed-gas (methane and ethane) hydrate. Raman spectroscopy was used to confirm the appearance of a structure 2 gas hydrate. The paper identified the experimental procedure and discussed sample preparation, Raman spectroscopy, and calorimetric measurements. A schematic diagram of the calorimeter was also presented. It was concluded that in most cases, two stages of dissociation were found at the dissociation process. 15 refs., 6 figs.

  10. Small angle X-ray scattering from hydrating tricalcium silicate

    International Nuclear Information System (INIS)

    Vollet, D.

    1983-01-01

    The small-angle X-ray scattering technique was used to study the structural evolution of hydrated tricalcium silicate at room temperature. The changes in specific area of the associated porosity and the evolution of density fluctuations in the solid hydrated phase were deduced from the scattering data. A correlation of these variations with the hydration mechanism is tried. (Author) [pt

  11. Cephradine as corrosion inhibitor for copper in 0.9% NaCl solution

    Science.gov (United States)

    Tasić, Žaklina Z.; Petrović Mihajlović, Marija B.; Radovanović, Milan B.; Simonović, Ana T.; Antonijević, Milan M.

    2018-05-01

    The effect of (6R,7R)-7-[[(2R)-2-amino-2-cyclohexa-1,4-dien-1-ylacetyl]amino]-3-methyl-8-oxo-5-thia-1-azobicyclo[4.2.0]oct-2-ene-2-carboxylic acid (cephradine) on corrosion behavior of copper in 0.9% NaCl solution was investigated. The electrochemical methods including the open circuit potential measurements, potentiodynamic polarization and electrochemical impedance spectroscopy measurements, scanning electron microscopy with energy dispersive X-ray spectroscopy and quantum chemical calculations were used for this investigation. According to the results obtained by potentiodynamic polarization, cephradine acts as mixed type inhibitor. Also, the results obtained by electrochemical impedance spectroscopy indicate that cephradine provides good copper protection in 0.9% NaCl solution. The inhibition efficiency of cephradine increases with increasing its concentration. The scanning electron microscopy with energy dispersive X-ray spectroscopy confirms that a protective layer is formed on the copper surface due to the adsorption of cephradine on the active sites on the copper surface. Adsorption of cephradine in 0.9% NaCl solution follows the Langmuir adsorption isotherm. Quantum chemical calculations are in agreement with results obtained by electrochemical measurements.

  12. On the electrolytic generation of hydrated electron

    International Nuclear Information System (INIS)

    Ghosh Mazumdar, A.S.; Guha, S.N.

    1975-01-01

    Investigations on the electrolytic generation of hydrated electron in oxygenated as well as oxygen-free solutions at different pH were undertaken. Since sup(-e)aq is known to react rapidly with O 2 yielding the transient O 2 - ion, the latter was looked for through its interaction with phosphite ions resulting in their oxidation near the cathode. It appears from the results that in electrolytic processes, the primary electron (esup(-)sub(cathode)) probably reacts directly with reactive solutes like oxygen, bypassing the hydration step. Data obtained in oxygen-free solutions, however, support the possible formation of hydrated electron at least in alkaline solutions. (author)

  13. Methane hydrates and the future of natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2011-01-01

    For decades, gas hydrates have been discussed as a potential resource, particularly for countries with limited access to conventional hydrocarbons or a strategic interest in establishing alternative, unconventional gas reserves. Methane has never been produced from gas hydrates at a commercial scale and, barring major changes in the economics of natural gas supply and demand, commercial production at a large scale is considered unlikely to commence within the next 15 years. Given the overall uncertainty still associated with gas hydrates as a potential resource, they have not been included in the EPPA model in MITEI’s Future of Natural Gas report. Still, gas hydrates remain a potentially large methane resource and must necessarily be included in any consideration of the natural gas supply beyond two decades from now.

  14. Calculation of inelastic helium atom scattering from H2/ NaCl(001)

    DEFF Research Database (Denmark)

    Bruch, L.W.; Hansen, Flemming Yssing; Traeger, F.

    2011-01-01

    The one-phonon inelastic low energy helium atom scattering theory is adapted to cases where the target monolayer is a p(1 × 1) commensurate square lattice. Experimental data for para-H2/NaCl(001) are re-analyzed and the relative intensities of energy loss peaks in the range 6 to 9 meV are determi......The one-phonon inelastic low energy helium atom scattering theory is adapted to cases where the target monolayer is a p(1 × 1) commensurate square lattice. Experimental data for para-H2/NaCl(001) are re-analyzed and the relative intensities of energy loss peaks in the range 6 to 9 me...

  15. Relationship between NaCl- and H2O2-induced cytosolic Ca2+ increases in response to stress in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Zhonghao Jiang

    Full Text Available Salinity is among the environmental factors that affect plant growth and development and constrain agricultural productivity. Salinity stress triggers increases in cytosolic free Ca(2+ concentration ([Ca(2+]i via Ca(2+ influx across the plasma membrane. Salinity stress, as well as other stresses, induces the production of reactive oxygen species (ROS. It is well established that ROS also triggers increases in [Ca(2+]i. However, the relationship and interaction between salinity stress-induced [Ca(2+]i increases and ROS-induced [Ca(2+]i increases remain poorly understood. Using an aequorin-based Ca(2+ imaging assay we have analyzed [Ca(2+]i changes in response to NaCl and H2O2 treatments in Arabidopsis thaliana. We found that NaCl and H2O2 together induced larger increases in [Ca(2+]i in Arabidopsis seedlings than either NaCl or H2O2 alone, suggesting an additive effect on [Ca(2+]i increases. Following a pre-treatment with either NaCl or H2O2, the subsequent elevation of [Ca(2+]i in response to a second treatment with either NaCl or H2O2 was significantly reduced. Furthermore, the NaCl pre-treatment suppressed the elevation of [Ca(2+]i seen with a second NaCl treatment more than that seen with a second treatment of H2O2. A similar response was seen when the initial treatment was with H2O2; subsequent addition of H2O2 led to less of an increase in [Ca(2+]i than did addition of NaCl. These results imply that NaCl-gated Ca(2+ channels and H2O2-gated Ca(2+ channels may differ, and also suggest that NaCl- and H2O2-evoked [Ca(2+]i may reduce the potency of both NaCl and H2O2 in triggering [Ca(2+]i increases, highlighting a feedback mechanism. Alternatively, NaCl and H2O2 may activate the same Ca(2+ permeable channel, which is expressed in different types of cells and/or activated via different signaling pathways.

  16. Analysis of Decomposition for Structure I Methane Hydrate by Molecular Dynamics Simulation

    Science.gov (United States)

    Wei, Na; Sun, Wan-Tong; Meng, Ying-Feng; Liu, An-Qi; Zhou, Shou-Wei; Guo, Ping; Fu, Qiang; Lv, Xin

    2018-05-01

    Under multi-nodes of temperatures and pressures, microscopic decomposition mechanisms of structure I methane hydrate in contact with bulk water molecules have been studied through LAMMPS software by molecular dynamics simulation. Simulation system consists of 482 methane molecules in hydrate and 3027 randomly distributed bulk water molecules. Through analyses of simulation results, decomposition number of hydrate cages, density of methane molecules, radial distribution function for oxygen atoms, mean square displacement and coefficient of diffusion of methane molecules have been studied. A significant result shows that structure I methane hydrate decomposes from hydrate-bulk water interface to hydrate interior. As temperature rises and pressure drops, the stabilization of hydrate will weaken, decomposition extent will go deep, and mean square displacement and coefficient of diffusion of methane molecules will increase. The studies can provide important meanings for the microscopic decomposition mechanisms analyses of methane hydrate.

  17. Microstructure of hydrated cement pastes as determined by SANS

    International Nuclear Information System (INIS)

    Sabine, T.; Bertram, W.; Aldridge, L.

    1999-01-01

    Full text: Technologists have known how to make concrete for over 2000 years but despite painstaking research no one has been able to show how and why concrete sets. Part of the problem is that the calcium silicate hydrate (the gel produced by hydrating cement) is amorphous and cannot be characterised by x-ray crystallographic techniques. Small angle neutron scattering on instrument V12a at BENSC was used to characterise the hydration reactions and show the growth of the calcium silicate hydrates during initial hydration and the substantial differences in the rate of growth and structure as different additives are used. SANS spectra were measured as a function of the hydration from three different types of cement paste: 1) Ordinary Portland Cement made with a water to cement ratio of about 0.4; 2) A blend of Ordinary Portland Cement(25%) and Ground Granulated Blast Furnace Slag (75%) with a water to cement ration of about 0.4; 3) A dense paste made from silica fume(24%), Ordinary Portland Cement (76%) at a water to powder ratio of 0.18. The differences in the spectra are interpreted in terms of differences between the microstructure of the pastes

  18. Gas Hydrate-Sediment Morphologies Revealed by Pressure Core Analysis

    Science.gov (United States)

    Holland, M.; Schultheiss, P.; Roberts, J.; Druce, M.

    2006-12-01

    Analysis of HYACINTH pressure cores collected on IODP Expedition 311 and NGHP Expedition 1 showed gas hydrate layers, lenses, and veins contained in fine-grained sediments as well as gas hydrate contained in coarse-grained layers. Pressure cores were recovered from sediments on the Cascadia Margin off the North American West Coast and in the Krishna-Godavari Basin in the Western Bay of Bengal in water depths of 800- 1400 meters. Recovered cores were transferred to laboratory chambers without loss of pressure and nondestructive measurements were made at in situ pressures and controlled temperatures. Gamma density, P-wave velocity, and X-ray images showed evidence of grain-displacing and pore-filling gas hydrate in the cores. Data highlights include X-ray images of fine-grained sediment cores showing wispy subvertical veins of gas hydrate and P-wave velocity excursions corresponding to grain-displacing layers and pore-filling layers of gas hydrate. Most cores were subjected to controlled depressurization experiments, where expelled gas was collected, analyzed for composition, and used to calculate gas hydrate saturation within the core. Selected cores were stored under pressure for postcruise analysis and subsampling.

  19. Exergy analysis of a gas-hydrate cool storage system

    International Nuclear Information System (INIS)

    Bi, Yuehong; Liu, Xiao; Jiang, Minghe

    2014-01-01

    Based on exergy analysis of charging and discharging processes in a gas-hydrate cool storage system, the formulas for exergy efficiency at the sensible heat transfer stage and the phase change stage corresponding to gas-hydrate charging and discharging processes are obtained. Furthermore, the overall exergy efficiency expressions of charging, discharging processes and the thermodynamic cycle of the gas-hydrate cool storage system are obtained. By using the above expressions, the effects of number of transfer units, the inlet temperatures of the cooling medium and the heating medium on exergy efficiencies of the gas-hydrate cool storage system are emphatically analyzed. The research results can be directly used to evaluate the performance of gas-hydrate cool storage systems and design more efficient energy systems by reducing the sources of inefficiency in gas-hydrate cool storage systems. - Highlights: • Formulas for exergy efficiency at four stages are obtained. • Exergy efficiency expressions of two processes and one cycle are obtained. • Three mainly influencing factors on exergy efficiencies are analyzed. • With increasing the inlet temperature of cooling medium, exergy efficiency increases. • With decreasing the inlet temperature of heating medium, exergy efficiency increases

  20. Investigating the influence of lithologic heterogeneity on gas hydrate formation and methane recycling at the base of the gas hydrate stability zone in channelized systems

    Energy Technology Data Exchange (ETDEWEB)

    Daigle, Hugh; Nole, Michael; Cook, Ann; Malinverno, Alberto

    2017-12-14

    In marine environments, gas hydrate preferentially accumulates in coarse-grained sediments. At the meso- to micro-scale, however, hydrate distribution in these coarse-grained units is often heterogeneous. We employ a methane hydrate reservoir simulator coupling heat and mass transfer as well as capillary effects to investigate how capillary controls on methane solubility affect gas and hydrate accumulations in reservoirs characterized by graded bedding and alternating sequences of coarse-grained sands and fine-grained silt and clay. Simulations bury a channelized reservoir unit encased in homogeneous, fine-grained material characterized by small pores (150 nm) and low permeability (~1 md in the absence of hydrate). Pore sizes within each reservoir bed between vary between coarse sand and fine silt. Sands have a median pore size of 35 microns and a lognormal pore size distribution. We also investigate how the amount of labile organic carbon (LOC) affects hydrate growth due to microbial methanogenesis within the sediments. In a diffusion-dominated system, methane movies into reservoir layers along spatial gradients in dissolved methane concentration. Hydrate grows in such a way as to minimize these concentration gradients by accumulating slower in finer-grained reservoir layers and faster in coarser-grained layers. Channelized, fining-upwards sediment bodies accumulate hydrate first along their outer surfaces and thence inward from top to bottom. If LOC is present in thin beds within the channel, higher saturations of hydrate will be distributed more homogeneously throughout the unit. When buried beneath the GHSZ, gas recycling can occur only if enough hydrate is present to form a connected gas phase upon dissociation. Simulations indicate that this is difficult to achieve for diffusion-dominated systems, especially those with thick GHSZs and/or small amounts of LOC. However, capillary-driven fracturing behavior may be more prevalent in settings with thick GHSZs.

  1. A millimeter-wave reflectometer for whole-body hydration sensing

    Science.gov (United States)

    Zhang, W.-D.; Brown, E. R.

    2016-05-01

    This paper demonstrates a non-invasive method to determine the hydration level of human skin by measuring the reflectance of W-band (75-110 GHz) and Ka-band (26-40 GHz) radiation. Ka-band provides higher hydration accuracy ( 1 mm), thereby allowing access to the important dermis layer of skin. W-band provides less depth of penetration but finer spatial resolution (~2 mm). Both the hydration sensing concept and experimental results are presented here. The goal is to make a human hydration sensor that is 1% accurate or better, operable by mechanically scanning, and fast enough to measure large areas of the human body in seconds.

  2. Effects of various vehicles on skin hydration in vivo.

    Science.gov (United States)

    Wiedersberg, S; Leopold, C S; Guy, R H

    2009-01-01

    The stratum corneum, the outermost layer of the skin, regulates the passive loss of water to the environment. Furthermore, it is well accepted that drug penetration is influenced by skin hydration, which may be manipulated by the application of moisturizing or oleaginous vehicles. Measurements of transepidermal water loss (TEWL), and of skin hydration using a corneometer, were used to assess the effect of different vehicles on stratum corneum barrier function in vivo in human volunteers. A microemulsion significantly increased skin hydration relative to a reference vehicle based on medium chain triglycerides; in contrast, Transcutol(R) lowered skin hydration. TEWL measurements confirmed these observations. Copyright 2009 S. Karger AG, Basel.

  3. Thermoluminescence and photoluminescence properties of NaCl:Mn, NaCL:Cu nano-particles produced using co-precipitation and sono-chemistry methods

    Energy Technology Data Exchange (ETDEWEB)

    Mehrabi, M. [Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); Zahedifar, M. [Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanosince and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Saeidi-Sogh, Z. [Institute of Nanosince and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Ramazani-Moghaddam-Arani, A., E-mail: ramazmo@kashanu.ac.ir [Institute of Nanosince and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Sadeghi, E. [Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanosince and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Harooni, S. [Institute of Nanosince and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of)

    2017-02-21

    The NaCl: Cu and NaCl: Mn nanoparticles (NPs) were produced by co-precipitation and sono-chemistry methods and their thermoluminescence (TL) and photoluminescence (PL) properties were studied. By decreasing the particles size a considerable increase in sensitivity of the samples to high dose gamma radiation was observed. The NPs produced by sono-chemistry method have smaller size, homogeneous structure, more sensitivity to high gamma radiation and less fading than of those produced by co-precipitation method.

  4. Examination of Hydrate Formation Methods: Trying to Create Representative Samples

    Energy Technology Data Exchange (ETDEWEB)

    Kneafsey, T.J.; Rees, E.V.L.; Nakagawa, S.; Kwon, T.-H.

    2011-04-01

    Forming representative gas hydrate-bearing laboratory samples is important so that the properties of these materials may be measured, while controlling the composition and other variables. Natural samples are rare, and have often experienced pressure and temperature changes that may affect the property to be measured [Waite et al., 2008]. Forming methane hydrate samples in the laboratory has been done a number of ways, each having advantages and disadvantages. The ice-to-hydrate method [Stern et al., 1996], contacts melting ice with methane at the appropriate pressure to form hydrate. The hydrate can then be crushed and mixed with mineral grains under controlled conditions, and then compacted to create laboratory samples of methane hydrate in a mineral medium. The hydrate in these samples will be part of the load-bearing frame of the medium. In the excess gas method [Handa and Stupin, 1992], water is distributed throughout a mineral medium (e.g. packed moist sand, drained sand, moistened silica gel, other porous media) and the mixture is brought to hydrate-stable conditions (chilled and pressurized with gas), allowing hydrate to form. This method typically produces grain-cementing hydrate from pendular water in sand [Waite et al., 2004]. In the dissolved gas method [Tohidi et al., 2002], water with sufficient dissolved guest molecules is brought to hydrate-stable conditions where hydrate forms. In the laboratory, this is can be done by pre-dissolving the gas of interest in water and then introducing it to the sample under the appropriate conditions. With this method, it is easier to form hydrate from more soluble gases such as carbon dioxide. It is thought that this method more closely simulates the way most natural gas hydrate has formed. Laboratory implementation, however, is difficult, and sample formation is prohibitively time consuming [Minagawa et al., 2005; Spangenberg and Kulenkampff, 2005]. In another version of this technique, a specified quantity of gas

  5. Focus on the Development of Natural Gas Hydrate in China

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2016-05-01

    Full Text Available Natural gas hydrate, also known as combustible ice, and mainly composed of methane, is identified as a potential clean energy for the 21st century. Due to its large reserves, gas hydrate can ease problems caused by energy resource shortage and has gained attention around the world. In this paper, we focus on the exploration and development of gas hydrate as well as discussing its status and future development trend in China and abroad. We then analyze its opportunities and challenges in China from four aspects, resource, technology, economy and policy, with five forces model and Politics Economics Society Technology method. The results show China has abundance gas hydrate resource; however, backward technologies and inadequate investment have seriously hindered the future development of gas hydrate; thus, China should establish relevant cooperation framework and intuitional arrangement to attract more investment as well as breaking through technical difficulties to commercialization gas hydrate as soon as possible.

  6. Preparation of spherical silver particles for solar cell electronic paste with gelatin protection

    International Nuclear Information System (INIS)

    Ao Yiwei; Yang Yunxia; Yuan Shuanglong; Ding Lihua; Chen Guorong

    2007-01-01

    Spherical silver particles used in electronic paste for solar cell were prepared using the chemical reduction method with ammonia as a complex agent, hydrazine hydrate as a reducing agent, and gelatin as a protective agent. The gelatin protective mechanism in the preparing process of spherical silver particles was studied. Observations of SEM and results of laser particle size analysis and ultraviolet absorption spectra demonstrate the formation of the coordinative complex of silver ions with gelatin in aqueous solution which accelerated the reduction of silver ions. Moreover, gelatin can promote the nucleation of the metallic silver particles, thus beneficiating availability of the monodisperse spherical silver particles

  7. Hydro-geomechanical behaviour of gas-hydrate bearing soils during gas production through depressurization and CO2 injection

    Science.gov (United States)

    Deusner, C.; Gupta, S.; Kossel, E.; Bigalke, N.; Haeckel, M.

    2015-12-01

    Results from recent field trials suggest that natural gas could be produced from marine gas hydrate reservoirs at compatible yields and rates. It appears, from a current perspective, that gas production would essentially be based on depressurization and, when facing suitable conditions, be assisted by local thermal stimulation or gas hydrate conversion after injection of CO2-rich fluids. Both field trials, onshore in the Alaska permafrost and in the Nankai Trough offshore Japan, were accompanied by different technical issues, the most striking problems resulting from un-predicted geomechanical behaviour, sediment destabilization and catastrophic sand production. So far, there is a lack of experimental data which could help to understand relevant mechanisms and triggers for potential soil failure in gas hydrate production, to guide model development for simulation of soil behaviour in large-scale production, and to identify processes which drive or, further, mitigate sand production. We use high-pressure flow-through systems in combination with different online and in situ monitoring tools (e.g. Raman microscopy, MRI) to simulate relevant gas hydrate production scenarios. Key components for soil mechanical studies are triaxial systems with ERT (Electric resistivity tomography) and high-resolution local strain analysis. Sand production control and management is studied in a novel hollow-cylinder-type triaxial setup with a miniaturized borehole which allows fluid and particle transport at different fluid injection and flow conditions. Further, the development of a large-scale high-pressure flow-through triaxial test system equipped with μ-CT is ongoing. We will present results from high-pressure flow-through experiments on gas production through depressurization and injection of CO2-rich fluids. Experimental data are used to develop and parametrize numerical models which can simulate coupled process dynamics during gas-hydrate formation and gas production.

  8. A comparative study of functional properties of normal and wooden breast broiler chicken meat with NaCl addition.

    Science.gov (United States)

    Xing, Tong; Zhao, Xue; Han, Minyi; Cai, Linlin; Deng, Shaolin; Zhou, Guanghong; Xu, Xinglian

    2017-09-01

    The selection of broilers for augmented growth rate and breast has brought about wooden-breast (WB) muscle abnormalities, which caused substantial economic losses. The objective of this study was to compare water holding capacity, water mobility and distribution, salt-soluble protein (SSP) content, and protein profiles of normal and WB chicken meat with different additions of NaCl. Thirty WB and 30 normal chicken breasts were selected from a deboning line of a major Chinese processing plant at 2 to 3 h post mortem. Two different meat batters were formulated to 150 mg/g meat protein and different NaCl contents (0%, 1%, 2%, 3%, and 4%). Results indicated that as NaCl contents increased, the cooking loss of meat batters decreased (P meat showed different protein profiles, with myosin heavy chain exhibiting a higher intensity at ≥3% salt level. Low-field nuclear magnetic resonance (LF-NMR)revealed an increased T22 and higher P22 in raw WB meat compared to normal meat (P meat batters, WB meat batters had reduced T21 and lower immobilized water proportions at low NaCl contents (meat gels. Meat gels prepared from WB had a lower proportion of water within the myofibrillar protein matrix and a greater proportion of exuded bulk water at NaCl contents meat, meat batters and gels, water distribution and mobility of WB exhibited significant differences compared to normal meat. The addition of NaCl affected water mobility and distributions in meat batters, with a level of 3% NaCl eliminating the differences between processed normal and WB meat products. © 2017 Poultry Science Association Inc.

  9. PEMANFAATAN LIMBAH CAIR GARAM BAHAN BAKU 30˚ Be UNTUK PENGASINAN IKAN GABUS RENDAH NACl DAN MENGANDUNG Mg

    Directory of Open Access Journals (Sweden)

    Nilawati Nilawati

    2014-12-01

    Full Text Available Pengasinan merupakan metode pengawetan yang sudah lama dengan menggunakan garam krosok namun pengasinan dengan  limbah cair garam 30˚ Be belum banyak dilakukan. Keuntungan dengan metode ini akan menghasilkan produk ikan asin yang rendah NaCl dan tinggi kandungan Mg. Penelitian ini menggunakan 1 variabel yaitu konsentrasi limbah cair garam 30˚ Be  yaitu B0 (0 persen- kontrol, B10 (10 persen. B20 (20 persen, B30 (30 persen,  B40(40 persen, B50 (50 persen  dan kontrol  B100 (100 persen  serta kontrol pembanding penggaraman kering dengan garam bahan baku G100 (100 persen atau dikenal garam krosok. Hasil penelitian diperoleh kandungan NaCl murni pada pemakaian larutan 30˚ Be sebanyak 10 persen  sebesar 6,952 persen. Dan pada konsentrasi limbah cair garam 30˚ Be dengan konsentrasi   50 persen diperoleh kndungan NaCl murni sebesar 15,478 persen, namun untuk kontrol yang menggunakan garam krosok maka NaCl nya paling tinggi, sedangkan kontrol dengan 100 persen larutan 30˚ Be kandungan NaCl murninya sampai 25,134 persen, yang menggunakan garam bahan baku  kandungan NaCl sebesar 43,864 persen.  Perlakuan yang terbaik diperoleh pada pemakaian larutan garam 30˚ Be pada konsentrasi 40 persen. Kandungan Magnesium pada     penelitian ini berkisar antara 0,387 Sampai  3,444  persen.  Perlakuan mulai konsentrasi 30 persen keatas   penampakan ikan asin putih kecoklatan , empuk, bersih, namun kalau dibawah 30 persen penampakannya kecoklatan muda, daging liat agak keras namun NaCl nya rendah

  10. Acoustical method of whole-body hydration status monitoring

    Science.gov (United States)

    Sarvazyan, A. P.; Tsyuryupa, S. N.; Calhoun, M.; Utter, A.

    2016-07-01

    An acoustical handheld hydration monitor (HM) for assessing the water balance of the human body was developed. Dehydration is a critical public health problem. Many elderly over age of 65 are particularly vulnerable as are infants and young children. Given that dehydration is both preventable and reversible, the need for an easy-to-perform method for the detection of water imbalance is of the utmost clinical importance. The HM is based on an experimental fact that ultrasound velocity in muscle is a linear function of water content and can be referenced to the hydration status of the body. Studies on the validity of HM for the assessment of whole-body hydration status were conducted in the Appalachian State University, USA, on healthy young adults and on elderly subjects residing at an assisted living facility. The HM was able to track changes in total body water during periods of acute dehydration and rehydration in athletes and day-to-day and diurnal variability of hydration in elderly. Results of human studies indicate that HM has a potential to become an efficient tool for detecting abnormal changes in the body hydration status.

  11. Steam hydration-reactivation of FBC ashes for enhanced in situ desulphurization

    Energy Technology Data Exchange (ETDEWEB)

    Fabio Montagnaro; Marianna Nobili; Antonio Telesca; Gian Lorenz Valenti; Edward J. Anthony; Piero Salatino [Universita degli Studi di Napoli Federico II, Napoli (Italy). Dipartimento di Chimica

    2009-06-15

    Bed and fly ashes originating from industrial-scale fluidized bed combustors (FBCs) were steam hydrated to produce sorbents suitable for further in situ desulphurization. Samples of the hydrated ash were characterized by X-ray diffraction analysis, scanning electron microscopy and porosimetry. Bed ashes were hydrated in a pressure bomb for 30 and 60 min at 200{sup o}C and 250{sup o}C. Fly ash was hydrated in an electrically heated tubular reactor for 10 and 60 min at 200{sup o}C and 300{sup o}C. The results were interpreted by considering the hydration process and the related development of accessible porosity suitable for resulphation. The performance of the reactivated bed ash as sulphur sorbent improved with a decrease of both the hydration temperature and time. For reactivated fly ash, more favourable porosimetric features were observed at longer treatment times and lower hydration temperatures. Finally, it was shown that an ashing treatment (at 850{sup o}C for 20 min) promoted a speeding up of the hydration process and an increase in the accessible porosity. 36 refs., 6 figs., 2 tabs.

  12. Gas hydrate phase equilibria measurement techniques and phase rule considerations

    International Nuclear Information System (INIS)

    Beltran, Juan G.; Bruusgaard, Hallvard; Servio, Phillip

    2012-01-01

    Highlights: → Inconsistencies found in hydrate literature. → Clarification to the number of variables needed to satisfy and justify equilibrium data. → Application of phase rule to mixed hydrate systems. → Thermodynamically consistent format to present data. - Abstract: A brief review of the Gibbs phase rule for non-reacting systems and its correct application to clathrate hydrates is presented. Clarification is provided for a common mistake found in hydrate phase-equilibria literature, whereby initial compositions are used as intensive variables to satisfy the Gibbs phase rule instead of the equilibrium values. The system of (methane + carbon dioxide + water) under (hydrate + liquid + vapor) equilibrium is used as a case study to illustrate key points and suggestions to improve experimental techniques are proposed.

  13. Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrical resistivity log data

    Science.gov (United States)

    Collett, T.S.; Ladd, J.

    2000-01-01

    Let 164 of the Ocean Drilling Program was designed to investigate the occurrence of gas hydrate in the sedimentary section beneath the Blake Ridge on the southeastern continental margin of North America. Site 994, and 997 were drilled on the Blake Ridge to refine our understanding of the in situ characteristics of natural gas hydrate. Because gas hydrate is unstable at surface pressure and temperature conditions, a major emphasis was placed on the downhole logging program to determine the in situ physical properties of the gas hydrate-bearing sediments. Downhole logging tool strings deployed on Leg 164 included the Schlumberger quad-combination tool (NGT, LSS/SDT, DIT, CNT-G, HLDT), the Formation MicroScanner (FMS), and the Geochemical Combination Tool (GST). Electrical resistivity (DIT) and acoustic transit-time (LSS/SDT) downhole logs from Sites 994, 995, and 997 indicate the presence of gas hydrate in the depth interval between 185 and 450 mbsf on the Blake Ridge. Electrical resistivity log calculations suggest that the gas hydrate-bearing sedimentary section on the Blake Ridge may contain between 2 and 11 percent bulk volume (vol%) gas hydrate. We have determined that the log-inferred gas hydrates and underlying free-gas accumulations on the Blake Ridge may contain as much as 57 trillion m3 of gas.

  14. Ground movements associated with gas hydrate production

    International Nuclear Information System (INIS)

    Siriwardane, H.J.; Kutuk, B.

    1992-03-01

    This report deals with a study directed towards a modeling effort on production related ground movements and subsidence resulting from hydrate dissociation. The goal of this research study was to evaluate whether there could be subsidence related problems that could be an impediment to hydrate production. During the production of gas from a hydrate reservoir, it is expected that porous reservoir matrix becomes more compressible which may cause reservoir compression (compaction) under the influence of overburden weight. The overburden deformations can propagate its influence upwards causing subsidence near the surface where production equipment will be located. In the present study, the reservoir compaction is modeled by using the conventional ''stress equilibrium'' approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ''cavity'' generated by reservoir depletion. The present study is expected to provide a ''lower bound'' solution to the subsidence caused by hydrate reservoir depletion. The reservoir compaction anticipated during hydrate production was modeled by using the finite element method, which is a powerful computer modeling technique. The ground movements at the reservoir roof (i.e. reservoir compression) cause additional stresses and disturbance in the overburden strata. In this study, the reservoir compaction was modeled by using the conventional ''stress equilibrium'' approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ''cavity'' generated by reservoir depletion. The resulting stresses and ground movements were computed by using the finite element method. Based on the parameters used in this investigation, the maximum ground subsidence could vary anywhere from 0.50 to 6.50 inches depending on the overburden depth and the size of the depleted hydrate reservoir

  15. Chemical alteration of cement hydrates by dissolution

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari; Nakanishi, Kiyoshi

    2000-01-01

    Cementitious material is a potential waste packaging and backfilling material for the radioactive waste disposal, and is expected to provide both physical and chemical containment. In particular, the sorption of radionuclides onto cementitious material and the ability to provide a high pH condition are very important parameters when considering the release of radionuclides from radioactive wastes. For the long term, in the geological disposal environment, cement hydrates will be altered by, for example, dissolution, chemical reaction with ions in the groundwater, and hydrothermal reaction. Once the composition or crystallinity of the constituent minerals of a cement hydrate is changed by these processes, the pH of the repository buffered by cementitious material and its sorption ability might be affected. However, the mechanism of cement alteration is not yet fully understood. In this study, leaching experiments of some candidate cements for radioactive waste disposal were carried out. Hydrated Ordinary Portland Cement (OPC), Blast Furnace Slag blended cement (OPC/BFS) and Highly containing Flyash and Silicafume Cement (HFSC) samples were contacted with distilled water at liquid:solid ratios of 10:1, 100:1 and 1000:1 at room temperature for 200 days. In the case of OPC, Ca(OH) 2 dissolved at high liquid:solid ratios. The specific surface area of all cement samples increased by leaching process. This might be caused by further hydration and change of composition of constituent minerals. A model is presented which predicts the leaching of cement hydrates and the mineral composition in the hydrated cement solid phase, including the incongruent dissolution of CSH gel phases and congruent dissolution of Ca(OH) 2 , Ettringite and Hydrotalcite. Experimental results of dissolution of Ca-O-H and Ca-Si-O-H phases were well predicted by this model. (author)

  16. Thermal Regeneration of Sulfuric Acid Hydrates after Irradiation

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.

    2012-01-01

    In an attempt to more completely understand the surface chemistry of the jovian icy satellites, we have investigated the effect of heating on two irradiated crystalline sulfuric acid hydrates, H2SO4 4H2O and H2SO4 H2O. At temperatures relevant to Europa and the warmer jovian satellites, post-irradiation heating recrystallized the amorphized samples and increased the intensities of the remaining hydrate's infrared absorptions. This thermal regeneration of the original hydrates was nearly 100% efficient, indicating that over geological times, thermally-induced phase transitions enhanced by temperature fluctuations will reform a large fraction of crystalline hydrated sulfuric acid that is destroyed by radiation processing. The work described is the first demonstration of the competition between radiation-induced amorphization and thermally-induced recrystallization in icy ionic solids relevant to the outer Solar System.

  17. Free energy of hydration of niobium oxide

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1996-01-01

    Some of the glasses being formulated by SRTC researchers contain niobium oxide. In this report, the free energy of hydration of the oxide is calculated from the free energies of formation of the oxide, the hydroxide, and water. This value can be used in calculations of the free energy of hydration of glasses containing niobium

  18. Effects of NaCl on Fermentative Metabolism of Mature Green Tomatoes cv. Ailsa Craig in Brine

    Directory of Open Access Journals (Sweden)

    Sotirios Fragkostefanakis

    2010-01-01

    Full Text Available The effect of osmotic strength on gene expression and activity of the major enzymes of fermentative metabolism of mature green tomato fruit (Solanum lycopersicum cv. Ailsa Craig has been studied by exposing fruit to brine containing 0 (water, 5 and 10 % NaCl. The fruits were surface sterilized prior to treatment to prevent the growth of microbes naturally present on the skin of the fruit. Changes in fruit expression of fermentation genes and the activity of the respective enzymes as well as physicochemical quality characteristics (soluble solid content, titratable acidity, pH and firmness were studied in both fruit and brine for 0.5, 1, 1.5, 2, 3, 7 and 14 days. Discrepancies in responses that resulted from the different salt concentrations were obtained at molecular and quality levels. The complex kinetics of solutes between the fruit and the surrounding solution due to osmotic potential has led to different responses of the tissue to fermentation. Tomato fruit showed cracking soon after storage in water; water-stored fruit had higher titratable acidity, lower soluble solid content, and higher induction of anaerobic metabolism as indicated by the expression or the activity of the fermentation enzymes compared to fruit stored in brine with 5 or 10 % NaCl. No cracking was observed in fruit stored in 5 (isotonic or 10 % NaCl (hypertonic brine, though in the latter, signs of dehydration were observed. The presence of salt in brine reduced the intensity of fermentative metabolism as indicated by the lower gene expression and enzyme activity. However, fruit stored in brine with 5 % NaCl survived longer than with 0 or 10 % NaCl. The presence of 5 % NaCl in brine caused mild changes of both the fermentative metabolism and the physicochemical characteristics and prevented fruit deterioration during storage.

  19. Morphological, Physiological, and Structural Responses of Two Species of Artemisia to NaCl Stress

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Guan

    2013-01-01

    Full Text Available Effects of salt stress on Artemisia scoparia and A. vulgaris “Variegate” were examined. A. scoparia leaves became withered under NaCl treatment, whereas A. vulgaris “Variegate” leaves were not remarkably affected. Chlorophyll content decreased in both species, with a higher reduction in A. scoparia. Contents of proline, MDA, soluble carbohydrate, and Na+ increased in both species under salt stress, but A. vulgaris “Variegate” had higher level of proline and soluble carbohydrate and lower level of MDA and Na+. The ratios of K+/Na+, Ca2+/Na+, and Mg2+/Na+ in A. vulgaris “Variegate” under NaCl stress were higher. Moreover, A. vulgaris “Variegate” had higher transport selectivity of K+/Na+ from root to stem, stem to middle mature leaves, and upper newly developed leaves than A. scoparia under NaCl stress. A. vulgaris “Variegate” chloroplast maintained its morphological integrity under NaCl stress, whereas A. scoparia chloroplast lost integrity. The results indicated that A. scoparia is more sensitive to salt stress than A. vulgaris “Variegate.” Salt tolerance is mainly related to the ability of regulating osmotic pressure through the accumulation of soluble carbohydrates and proline, and the gradient distribution of K+ between roots and leaves was also contributed to osmotic pressure adjustment and improvement of plant salt tolerance.

  20. Spontaneous nano-gap formation in Ag film using NaCl sacrificial layer for Raman enhancement

    Science.gov (United States)

    Min, Kyungchan; Jeon, Wook Jin; Kim, Youngho; Choi, Jae-Young; Yu, Hak Ki

    2018-03-01

    We report the method of fabrication of nano-gaps (known as hot spots) in Ag thin film using a sodium chloride (NaCl) sacrificial layer for Raman enhancement. The Ag thin film (20-50 nm) on the NaCl sacrificial layer undergoes an interfacial reaction due to the AgCl formed at the interface during water molecule intercalation. The intercalated water molecules can dissolve the NaCl molecules at interfaces and form the ionic state of Na+ and Cl-, promoting the AgCl formation. The Ag atoms can migrate by the driving force of this interfacial reaction, resulting in the formation of nano-size gaps in the film. The surface-enhanced Raman scattering activity of Ag films with nano-size gaps has been investigated using Raman reporter molecules, Rhodamine 6G (R6G).