WorldWideScience

Sample records for hydrated minerals exposed

  1. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Lachowski, Eric E.;

    1999-01-01

    Vapour phase hydration of purl cement clinker minerals at reduced relative humidities is described. This is relevant to modern high performance concrete that may self-desiccate during hydration and is also relevant to the quality of the cement during storage. Both the oretical considerations and...... experimental data are presented showing that C(3)A can hydrate at lower humidities than either C3S or C2S. It is suggested that the initiation of hydration during exposure to water vapour is nucleation controlled. When C(3)A hydrates at low humidity, the characteristic hydration product is C(3)AH(6...

  2. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    1998-01-01

    This report deals with gas phase hydration of pure cement clinker minerals at reduced relative humidities. This is an important subject in relation to modern high performance concrete which may self-desiccate during hydration. In addition the subject has relevance to storage stability where...

  3. Chemical characteristics of mineral trioxide aggregate and its hydration reaction

    OpenAIRE

    Chang, Seok-Woo

    2012-01-01

    Mineral trioxide aggregate (MTA) was developed in early 1990s and has been successfully used for root perforation repair, root end filling, and one-visit apexification. MTA is composed mainly of tricalcium silicate and dicalcium silicate. When MTA is hydrated, calcium silicate hydrate (CSH) and calcium hydroxide is formed. Formed calcium hydroxide interacts with the phosphate ion in body fluid and form amorphous calcium phosphate (ACP) which finally transforms into calcium deficient hydroxyap...

  4. Uncertainties in the Shock Devolatilization of Hydrated Minerals

    Science.gov (United States)

    Stewart, Sarah; Kraus, Richard; Milliken, Ralph; Tosca, Nicholas

    2011-06-01

    Controlled recovery of hydrated minerals subjected to planar shock loading is challenging because of the large volume required for equilibrium outgassing upon shock release. Significant differences in recovery capsule design confound straightforward interpretation of existing data on shock modification of hydrated minerals. We present results from new experiments on nontronite (a smectite clay observed on Mars) and identify major issues in the interpretation of recovered samples. Most previous work assumes that the first shock pressure step in a ring-up configuration is the most important factor in the interpretation of shock modification. By comparing experiments with similar first shock steps but different final shock states, this work demonstrates the need for a deeper understanding of the thermodynamics of ring-up experiments in order to be able to interpret the results in terms of an equivalent single shock loading pressure for planetary applications. At high shock pressures, vented capsules are essential in order to characterize the structural alteration upon shock release. We have developed a recovery method and validation test that allows us to address the major issues and technical tradeoffs with shock recovery experiments on volatile materials.

  5. The formation of goethite and hydrated clay minerals on Mars

    Science.gov (United States)

    Huguenin, R. L.

    1974-01-01

    Laboratory studies reported by Huguenin (1973) on the kinetics and mechanism of the photostimulated oxidation of magnetic and preliminary laboratory data on the weathering of silicates, reported herein, are applied to Mars. Basalts in the Martian dark areas are predicted to alter to hydrated Fe(2 plus or minus) depleted clay minerals, minor goethite, and minor to trace amounts of transition metal oxides such as TiO2, MnO2, and Cr2O3 at a rate of 10 to the minus 1.5 plus or minus 1.5 micron/yr. Some Ca-Mg carbonates are also expected to be formed. The clay minerals are predicted to be more silica-rich than the silicate source material, SiO2 contents of 60% or higher being expected, and strongly depleted in Fe(2+). The oxygen, OH, and H2O contents of the bulk weathering product are predicted to be significantly greater than those of the dark-area source materials, whereas the relative bulk metal abundances should be the same.

  6. Geologic History of a Felsic and Hydrated Mineral Suite in Syrtis Major

    Science.gov (United States)

    Smith, M. R.; Bandfield, J. L.; Gillespie, A.

    2010-12-01

    Here we assess the ancient environments represented by the compositions of exposures within two craters near Antoniadi Crater in N. Syrtis Major, Mars (63°E, 20°N). We used both thermal (TIR) and visible/near-infrared (VNIR) spectroscopy to place constraints on the mineralogy, formation environment, and astrobiological potential. This region was chosen because of its varied and well-exposed mineralogy. It was first studied in the TIR because of its unique exposures of quartz- and feldspar-rich surfaces1, representing both the only current identification of crystalline quartz and the most felsic composition yet found on Mars. VNIR data acquired within the same region reveal a suite of hydrated minerals, including phyllosilicates, hydrated silica (opal), and the zeolite analcime2. In this study, we utilize the combined stability fields of the full suite of quartzofeldspathic and hydrated minerals - a unique mineral assemblage on Mars - to infer formation conditions: neutral-to-alkaline pH, low-to-moderate temperatures, and sustained water. These conditions have been cited as ideal for providing a habitable environment for nascent life3. We answer three main questions about the alteration history of these deposits: When did alteration occur? Alteration is thought to either pre-date the impact or occur in a post-impact hydrothermal cell. Our study suggests the former, since alteration is restricted to impact breccia blocks, indicating that altered rocks had formed and were later exhumed by impact. How are the quartzofeldspathic and hydrated minerals related? Quartzofeldspathic material exposed within these craters is always co-located with opal. Opal is metastable and will alter to chalcedony (microcrystalline quartz) in 400 Ma under martian conditions4 with sustained exposure to water5. In the TIR, species of opal are separable6, but spectra of chalcedony and quartz share a distinctive doublet between 8-9.5 μm7, and are mostly indistinguishable. However, in the

  7. Distribution of hydrated minerals in the north polar region of Mars

    Science.gov (United States)

    Horgan, B. H.; Bell, J. F.; Noe Dobrea, E. Z.; Cloutis, E. A.; Bailey, D. T.; Craig, M. A.; Roach, L. H.; Mustard, J. F.

    2009-01-01

    The previous discovery of extensive deposits of hydrated minerals in Olympia Planum in the north polar region of Mars by the Mars Express OMEGA instrument raises important questions about the origin and subsequent redistribution of these hydrated minerals. Here we present a new map of the distribution of hydrated minerals within the north polar region of Mars by applying both standard and new spectral analysis techniques to near-infrared spectral data from OMEGA. Our results are in agreement with the previous OMEGA observations but also show more extensive detections of hydrated minerals throughout the circumpolar plains, as well as new detections of hydrated minerals on the surface of Planum Boreum and within the polar troughs. We find that while the circumpolar plains hydration signatures appear to be correlated with the dark dunes of the north polar erg, hydration signatures in Planum Boreum instead appear to be correlated with the north polar veneers and their sources within the polar layered deposits. By applying laboratory-derived empirical models of the dependence of gypsum spectra on grain size and abundance, we provide approximate abundance estimates for the hydrated minerals we have identified in Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité (OMEGA) and Compact Reconnaissance Imaging Spectrometer (CRISM) data. We find that the presence of hydrated minerals throughout the north polar region suggests (1) a complex cycle of sediment exchange between the Olympia Planum dunes and the other polar units; (2) an earlier origin for the hydrated minerals than originally postulated; and (3) the occurrence of significant water activity in this region during the Amazonian.

  8. The effect of natural sand grains and associated mineral changes on methane hydrate formation

    Science.gov (United States)

    Heeschen, K. U.; Schicks, J. M.

    2014-12-01

    The highest gas hydrate saturations and possible energy resource targets are bound to sandy sediments. However, investigations regarding the influence of natural sand particles on gas hydrate formation are rare and almost missing with regards to the particle size effect of different grain size ranges of sand on the gas hydrate kinetics. Comparative investigations commonly use arbitrary sized sands and clay minerals. In addition, sand grains are often represented using glass beads or pure quartz grains instead of natural samples where additional effects from mineral compositions and coatings might occur. However, understanding the kinetics of hydrate formation in sand forms yet another foundation for a successful scale-up model of the production of natural gas hydrate reservoirs, where reformation of hydrates may occur under non-equilibrium conditions. We investigated the particle size effect of sand on methane hydrate formation kinetics using five different grain size ranges of Ottawa sand, a rather pure quartz sand. Conditions of the static and small-volume experiments were far within the methane hydrate stability (7 MPa/1°C). Pressure and temperature recording as well as microscopic and Raman spectroscopic observations could verify methane hydrate formation and growth. For the chosen experimental setup there is a strong particle size effect on the kinetics of gas hydrate formation. A high concentration of the finest range (sand or a small fraction of fine particles diluted in coarse sand grains. This is in contrast to the decrease of thermodynamic driving forces in the presence of fine sized particles given equilibrium conditions. The promoting kinetic effect of the mineral surface properties might be related to the impact of the surface area as well as crystal structures, and/or electrical charge since small fractions of natural sands commonly encounter different mineral compositions compared to the coarser, quartz rich sand fraction. Therefore, additional

  9. HYDRATING CHARACTERISTICS OF MODIFIED PORTLAND WITH Ba-BEARING SULPHOALUMINATE MINERALS

    OpenAIRE

    Chenchen Gong; Jibao Xin; Shoude Wang; Lingchao Lu

    2016-01-01

    The hydrating characteristics of modified Portland cement with Ba-bearing sulphoaluminate minerals were studied in this paper. Scanning Electron Microscopy-Energy Dispersive Spectrometer (SEM-EDS), mercury intrusion porosimeter (MIP) and compressive strength were determined to characterize hydrating products and microstructure. Results show that basic physical properties of modified Portland cement with Ba-bearing sulphoaluminate minerals (SMPC) are similar with PC except the shorter setting ...

  10. Ice nucleation of ammonia gas exposed montmorillonite mineral dust particles

    Directory of Open Access Journals (Sweden)

    A. Salam

    2007-01-01

    Full Text Available The ice nucleation characteristics of montmorillonite mineral dust aerosols with and without exposure to ammonia gas were measured at different atmospheric temperatures and relative humidities with a continuous flow diffusion chamber. The montmorillonite particles were exposed to pure (100% and diluted ammonia gas (25 ppm at room temperature in a stainless steel chamber. There was no significant change in the mineral dust particle size distribution due to the ammonia gas exposure. 100% pure ammonia gas exposure enhanced the ice nucleating fraction of montmorillonite mineral dust particles 3 to 8 times at 90% relative humidity with respect to water (RHw and 5 to 8 times at 100% RHw for 120 min exposure time within our experimental conditions. The percentages of active ice nuclei were 2 to 9 times higher at 90% RHw and 2 to 13 times higher at 100% RHw in 25 ppm ammonia exposed montmorillonite compared to unexposed montmorillonite. All montmorillonite particles are more efficient as ice nuclei with increasing relative humidities and decreasing temperatures. The activation temperature of montmorillonite exposed to 100% pure ammonia was 12°C higher than for unexposed montmorillonite particles at 90% RHw and 10°C higher at 100% RHw. In the 25 ppm ammonia exposed montmorillonite experiments, the activation temperature was 7°C warmer than unexposed montmorillonite at 100% RHw. Degassing does not reverse the ice nucleating ability of ammonia exposed montmorillonite mineral dust particles. This is the first experimental evidence that ammonia gas exposed montmorillonite mineral dust particles can enhance its activation as ice nuclei and that the activation can occur at temperatures warmer than –10°C where natural atmospheric ice nuclei are very scarce.

  11. Ice nucleation of ammonia gas exposed montmorillonite mineral dust particles

    Directory of Open Access Journals (Sweden)

    A. Salam

    2007-07-01

    Full Text Available The ice nucleation characteristics of montmorillonite mineral dust aerosols with and without exposure to ammonia gas were measured at different atmospheric temperatures and relative humidities with a continuous flow diffusion chamber. The montmorillonite particles were exposed to pure (100% and diluted ammonia gas (25 ppm at room temperature in a stainless steel chamber. There was no significant change in the mineral dust particle size distribution due to the ammonia gas exposure. 100% pure ammonia gas exposure enhanced the ice nucleating fraction of montmorillonite mineral dust particles 3 to 8 times at 90% relative humidity with respect to water (RHw and 5 to 8 times at 100% RHw for 120 min exposure time compared to unexposed montmorillonite within our experimental conditions. The percentages of active ice nuclei were 2 to 8 times higher at 90% RHw and 2 to 7 times higher at 100% RHw in 25 ppm ammonia exposed montmorillonite compared to unexposed montmorillonite. All montmorillonite particles are more efficient as ice nuclei with increasing relative humidities and decreasing temperatures. The activation temperature of montmorillonite exposed to 100% pure ammonia was 15°C higher than for unexposed montmorillonite particles at 90% RHw. In the 25 ppm ammonia exposed montmorillonite experiments, the activation temperature was 10°C warmer than unexposed montmorillonite at 90% RHw. Degassing does not reverse the ice nucleating ability of ammonia exposed montmorillonite mineral dust particles suggesting that the ammonia is chemically bound to the montmorillonite particle. This is the first experimental evidence that ammonia gas exposed montmorillonite mineral dust particles can enhance its activation as ice nuclei and that the activation can occur at temperatures warmer than –10°C where natural atmospheric ice nuclei are very scarce.

  12. Atomistic simulation of mineral surfaces: Their structure, hydration and growth

    International Nuclear Information System (INIS)

    In this thesis, we have used atomistic simulation techniques to investigate the surface structure and stability of the biomineral barium sulfate and a number of important iron oxides, namely hematite, magnetite and goethite. We have studied the effect of the molecular adsorption of water on the surface structures and stabilities of all four minerals, and dissociative adsorption of water on the iron oxides. In addition, we have investigated the segregation of foreign ions to the surfaces of barium sulfate. Chapter 1 gives an overview of some previous studies of surfaces, employing both atomistic simulations and electronic structure calculations. Also discussed are some popular experimental analysis techniques used in surface characterisation. Chapter 2 describes the theoretical methods used in atomistic simulations and the mathematical methods used in the calculations, including the evaluation of surface energies. Chapter 3 introduces the potential model and discusses their reliability and transferability between structures. The potential parameters used in chapters 4-7 are given and where possible, compared with experiment. Chapter 4 describes the structures and stabilities of the pure surfaces of barium sulfate, and after the overgrowth of segregation of a layer of impurity ions at the surface. The modified crystal morphologies are discussed. Chapter 5 follows the work in the previous chapter by discussing the effect of the molecular adsorption of water at different coverages on the structure and stabilities of barium sulfate surfaces. The hydrated energies and surface energies are calculated. The second section of chapter 5 investigates structural influences on the growth of barium sulfate. In Chapter 6, the pure surfaces of hematite, magnetite and goethite are described. The surface relaxation are studied and equilibrium crystal morphologies compared with experimental findings. The surface structure of Fe2O3(00.1) under reducing conditions is also investigated

  13. Screening and surveillance of workers exposed to mineral dusts

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G.R.

    1997-12-31

    This publication resulted from a World Health Organisation initiated project to investigate the harmonisation of definitions, approaches and methodologies for the screening and surveillance of workers exposed to mineral dust. The first part of the book provides definitions of screening and surveillance and describes the main elements of such programmes. The second part discusses the practical aspect of the screening and surveillance of working populations exposed to crystalline silica, coal mine dust and asbestos. Although no single set of guidelines is applicable to the development and implementation of a programme for the screening and surveillance of workers exposed to mineral dust, the recommendations, together with certain caveats, should provide a useful starting point. Annexes provide examples of existing programmes in various countries and environments and discuss the use and interpretation of questionnaires, lung spirometry and chest radiography. Overall the book should be of interest to occupational health professionals.

  14. Hydrated Minerals in Circumpolar Terrains: Geographic Distribution, Mineralogical Composition and Possible Origins

    Science.gov (United States)

    Langevin, Y.; Poulet, F.; Fishbaugh, K. E.; Roach, L.; Vincendon, M.; Gondet, B.; Bibring, J.; Murchie, S.

    2007-12-01

    The nearly global mapping provided at a scale of a few km by the OMEGA Vis/NIR imaging spectrometer on board Mars Express revealed that hydrated minerals on Mars are mostly observed in ancient terrains (Bibring et al., 2005). These discoveries led to the conclusion that surface water on Mars was mainly present early in the history of the planet, and that Mars has remained cold and dry during the last 3 billion years (Bibring et al., 2006). The observation by OMEGA of a very strong calcium sulfate signature (most likely dominated by gypsum) within the boundaries of the Olympia Planitia Dune field (Langevin et al., 2005) is a major puzzle as this geological feature is at most a few 100 m.y. old. An independent analysis of the OMEGA data (Horgan et al. 2007) confirmed the results of Langevin et al. (2005), in particular the identification of gypsum as the dominant mineralogical hydrated species in the dune field. The extended region richest in gypsum (~ 60 km x 200 km) remained unresolved at a resolution of 1 km/pixel (Langevin et al., 2006). With its 20 m resolution, CRISM, the Vis/NIR imaging spectrometer on board MRO, secured the relationship between the gypsum signature and the dune field as well as its absence over the "basal unit" (only a few pixels wide in OMEGA data) which is exposed between the dune field and the ice (Roach et al., 2007). CRISM showed that the gypsum signatures were highest over dune crests and weakest over exposed bedrock. Mineralogical modeling of the CRISM and OMEGA spectra shows that Gypsum represents at least 60% of the dune material in the eastern part of the Olympia field and decreases towards the western part. This lower limit has been raised since then by accounting for aerosol contributions which reduce the strength of absorption bands. The low albedo (< 20%) requires significant intimate and/or intra- mixture of dark material. The low thermal inertia (Herkenhoff and Vasavada, 1999) is difficult to reconcile with morphologic

  15. Microbeam recoil detection for hydration of minerals studies

    Energy Technology Data Exchange (ETDEWEB)

    Sie, S.H.; Suter, G.F. [CSIRO, North Ryde, NSW (Australia). Exploration and Mining Div.; Chekhmir, A.; Green, T.H. [Macquarie Univ., North Ryde, NSW (Australia)

    1993-12-31

    The glancing angle geometry is chosen to enable application of the elastic recoil detection microanalysis on thick geological samples, for hydrogen content determination. Simultaneous PIXE measurements can be used to eliminate the problem of uncertainties in beam charge collection. The method is applied to determine the hydration characteristics of silicates, produced experimentally at high pressure and temperature simulating the lower crust and upper mantle conditions. Preliminary results show that the technique can be applied readily on a microscopic (<100 {mu}m) scale for determination of H at fraction of atomic percent level. 9 refs., 3 figs.

  16. HYDRATING CHARACTERISTICS OF MODIFIED PORTLAND WITH Ba-BEARING SULPHOALUMINATE MINERALS

    Directory of Open Access Journals (Sweden)

    Chenchen Gong

    2016-03-01

    Full Text Available The hydrating characteristics of modified Portland cement with Ba-bearing sulphoaluminate minerals were studied in this paper. Scanning Electron Microscopy-Energy Dispersive Spectrometer (SEM-EDS, mercury intrusion porosimeter (MIP and compressive strength were determined to characterize hydrating products and microstructure. Results show that basic physical properties of modified Portland cement with Ba-bearing sulphoaluminate minerals (SMPC are similar with PC except the shorter setting time. Ettringite and C-S-H are the main hydrating produces in SMPC, which is similar to Portland cement (PC. Because of volume expansion of ettringite, SMPC paste structure is denser than PC according to SEM-EDS analysis and the pore size and pore content of SMPC pastes was smaller especially for the harmful pores. Because sulfur aluminum barium calcium was a new early-strength mineral and parts of BaO went into the C₂S lattice and caused lattice distortion to enhance C₂S hydration activity, the compressive strengths of SMPC grew faster and higher than PC.

  17. Authigenesis of magnetic minerals in gas hydrate-bearing sediments in the Nankai Trough, offshore Japan

    Science.gov (United States)

    Kars, Myriam; Kodama, Kazuto

    2015-03-01

    Gas hydrate occurrence is one of the possible mechanisms invoked for iron sulfide formation. A high-resolution rock magnetic study was conducted in IODP Expedition 316 Hole C0008C located in the Megasplay Fault Zone of the Nankai Trough, offshore Japan. In this particular zone, no bottom simulating reflectors (BSR), indicating the base of the gas hydrate stability field, have been identified. Two hundred and eighteen Pleistocene samples were collected from 70 to 110 m CSF in order to document the changes in the concentration, grain size, and rock magnetic parameters of magnetic minerals, through the gas hydrate-bearing horizons. Two different populations of magnetic grains are recognized in the pseudosingle domain range. Three types of magnetic mineral assemblages are identified: iron oxides (magnetite), ferrimagnetic iron sulfides (greigite and pyrrhotite), and their mixture. Greigite and pyrrhotite are authigenic and constitute six layers, called IS1-IS6. IS1, IS3, IS4, and IS6 are associated with pore water anomalies, suggesting the occurrence of gas hydrates and anoxic conditions. IS2 and IS5 are probable gas hydrates horizons, although there is no independent data to confirm it. The remaining intervals are mainly composed of detrital iron oxides and paramagnetic iron sulfides. Two scenarios based on different diagenetic stages are proposed to explain the variations in the magnetic properties and mineralogy over the studied interval. The results suggest that rock magnetism appears useful to better constrain the gas hydrate distribution in Hole C0008C, and counterbalances the low resolution of pore water analyses and the absence of a BSR.

  18. CO2 + N2O mixture gas hydrate formation kinetics and effect of soil minerals on mixture-gas hydrate formation process

    Science.gov (United States)

    Enkh-Amgalan, T.; Kyung, D.; Lee, W.

    2012-12-01

    CO2 mitigation is one of the most pressing global scientific topics in last 30 years. Nitrous oxide (N2O) is one of the main greenhouse gases (GHGs) defined by the Kyoto Protocol and its global warming potential (GWP) of one metric ton is equivalent to 310 metric tons of CO2. They have similar physical and chemical properties and therefore, mixture-gas (50% CO2 + 50% N2O) hydrate formation process was studied experimentally and computationally. There were no significant research to reduce N20 gas and we tried to make hydrate to mitigate N20 and CO2 in same time. Mixture gas hydrate formation periods were approximately two times faster than pure N2O hydrate formation kinetic in general. The fastest induction time of mixture-gas hydrate formation observed in Illite and Quartz among various soil mineral suspensions. It was also observed that hydrate formation kinetic was faster with clay mineral suspensions such as Nontronite, Sphalerite and Montmorillonite. Temperature and pressure change were not significant on hydrate formation kinetic; however, induction time can be significantly affected by various chemical species forming under the different suspension pHs. The distribution of chemical species in each mineral suspension was estimated by a chemical equilibrium model, PHREEQC, and used for the identification of hydrate formation characteristics in the suspensions. With the experimental limitations, a study on the molecular scale modeling has a great importance for the prediction of phase behavior of the gas hydrates. We have also performed molecular dynamics computer simulations on N2O and CO2 hydrate structures to estimate the residual free energy of two-phase (hydrate cage and guest molecule) at three different temperature ranges of 260K, 273K, and 280K. The calculation result implies that N2O hydrates are thermodynamically stable at real-world gas hydrate existing condition within given temperature and pressure. This phenomenon proves that mixture-gas could be

  19. Modeling of Cation Binding in Hydrated 2:1 Clay Minerals - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David E.

    2000-09-14

    Hydrated 2:1 clay minerals are high surface area, layered silicates that play a unique role in determining the fate of radionuclides in the environment. This project consisted of developing and implementing computer simulation methods for molecular characterization of the swelling and ion exchange properties of Hydrated 2:1 clay minerals, and the subsequent analysis and theoretical modeling with a view toward improving contaminant transport modeling as well as soil remediation and radionuclide containment strategies. Project results included the (a) development of simulation methods to treat clays under environmentally relevant conditions of variable water vapor pressure; (b) calculation of clay swelling thermodynamics as a function of interlayer ion size and charge (calculated quantities include immersion energies, free energies, and entropies of swelling); and (c) calculation of ion exchange free energies, including contributions from changing interlayer water contents and layer spacing.

  20. Efflorescence as a source of hydrated sulfate minerals in valley settings on Mars

    Science.gov (United States)

    Szynkiewicz, Anna; Borrok, David M.; Vaniman, David T.

    2014-05-01

    A distinctive sulfur cycle dominates many geological processes on Mars and hydrated sulfate minerals are found in numerous topographic settings with widespread occurrences on the Martian surface. However, many of the key processes controlling the hydrological transport of sulfur, including sulfur sources, climate and the depositional history that led to precipitation of these minerals, remain unclear. In this paper, we use a model for the formation of sulfate efflorescent salts (Mg-Ca-Na sulfates) in the Rio Puerco watershed of New Mexico, a terrestrial analog site from the semiarid Southwest U.S., to assess the origin and environmental conditions that may have controlled deposition of hydrated sulfates in Valles Marineris on Mars. Our terrestrial geochemical results (δS34 of -36.0 to +11.1‰) show that an ephemeral arid hydrological cycle that mobilizes sulfur present in the bedrock as sulfides, sulfate minerals, and dry/wet atmospheric deposition can lead to widespread surface accumulations of hydrated sulfate efflorescences. Repeating cycles of salt dissolution and reprecipitation appear to be major processes that migrate sulfate efflorescences to sites of surface deposition and ultimately increase the aqueous SO42- flux along the watershed (average 41,273 metric tons/yr). We suggest that similar shallow processes may explain the occurrence of hydrated sulfates detected on the scarps and valley floors of Valles Marineris on Mars. Our estimates of salt mass and distribution are in accord with studies that suggest a rather short-lived process of sulfate formation (minimum rough estimate ∼100 to 1000 years) and restriction by prevailing arid conditions on Mars.

  1. SOFIA observations of dark asteroids: Evidence for hydrated minerals on asteroidal surfaces?

    Science.gov (United States)

    McAdam, Margaret; Sunshine, Jessica M.; Kelley, Michael S. P. T.

    2015-11-01

    We present results from recent SOFIA+FORCAST observations of three primitive asteroids and compare these to archived Spitzer Space Telescope (Spitzer) observations of similar objects. Three asteroids from a total of 12 have been observed with SOFIA+FORCAST in our Cycle-3 campaign. Currently, we have observed asteroids 38 Leda, 194 Prokne with both G111 and G227 grisms and asteroid 266 Aline with G227. Both wavelength regions (G111: 8.5-13.5-μm and G227: 17.6-27.7) have recently been shown to contain spectral features directly related degree of alteration of primitive meteorites, including unaltered CO and CV meteorites (McAdam, et al., 2015a ,b). Spectral features in the 17.6-27.7-μm region can be indicative of olivine (19.5-μm), hydrated minerals (21-μm) and silica glass (22-μm). Spitzer observed eight large, primitive, main-belt asteroids using both low-resolution modes (short-low, SL and long-low, LL) of the Infrared Spectrograph (IRS) covering 8.5-38-μm. Additionally, Spitzer observed 22 dark primitive asteroids in the 8.5-13.5-μm region. Asteroids observed with Spitzer fall into three categories: asteroids with a 12-μm feature of 1-5% depth, interpreted as ~60-70% hydrated minerals (McAdam, et al., 2015a) asteroids with a broader 12-13-μm feature with strengths ranging from 4-6% with potential features between 19-22-μm (where observed) and asteroids with a strong 13-μm feature (5-10%), 15-μm and potentially 19-22-μm features (where observed) interpreted as olivine-rich. However, the uncertain calibration at the edges of the LL spectral orders complicates feature identification. 194 Prokne has a feature ~12-13-μm feature and potentially a broad feature between 20-22-μm. This is consistent with primitive asteroids observed with Spitzer that are interpreted as hydrated mineral-bearing. 38 Leda is largely featureless at the noise limit of the spectrum with a potential feature at 25-μm, unlike asteroids observed by Spitzer. 266 Aline has a weak

  2. Acid-base balance and hydration status following consumption of mineral-based alkaline bottled water

    Directory of Open Access Journals (Sweden)

    Heil Daniel P

    2010-09-01

    Full Text Available Abstract Background The present study sought to determine whether the consumption of a mineral-rich alkalizing (AK bottled water could improve both acid-base balance and hydration status in young healthy adults under free-living conditions. The AK water contains a naturally high mineral content along with Alka-PlexLiquid™, a dissolved supplement that increases the mineral content and gives the water an alkalizing pH of 10.0. Methods Thirty-eight subjects were matched by gender and self-reported physical activity (SRPA, hrs/week and then split into Control (12 women, 7 men; Mean +/- SD: 23 +/- 2 yrs; 7.2 +/- 3.6 hrs/week SRPA and Experimental (13 women, 6 men; 22 +/- 2 yrs; 6.4 +/- 4.0 hrs/week SRPA groups. The Control group consumed non-mineralized placebo bottled water over a 4-week period while the Experimental group consumed the placebo water during the 1st and 4th weeks and the AK water during the middle 2-week treatment period. Fingertip blood and 24-hour urine samples were collected three times each week for subsequent measures of blood and urine osmolality and pH, as well as total urine volume. Dependent variables were analyzed using multivariate repeated measures ANOVA with post-hoc focused on evaluating changes over time within Control and Experimental groups (alpha = 0.05. Results There were no significant changes in any of the dependent variables for the Control group. The Experimental group, however, showed significant increases in both the blood and urine pH (6.23 to 7.07 and 7.52 to 7.69, respectively, a decreased blood and increased urine osmolality, and a decreased urine output (2.51 to 2.05 L/day, all during the second week of the treatment period (P Conclusions Consumption of AK water was associated with improved acid-base balance (i.e., an alkalization of the blood and urine and hydration status when consumed under free-living conditions. In contrast, subjects who consumed the placebo bottled water showed no changes over the

  3. Modeling Lung Carcinogenesis in Radon-Exposed Miner

    NARCIS (Netherlands)

    Dillen, Teun van; Dekkers, Fieke; Bijwaard, Harmen; Brüske, Irene

    2015-01-01

    Epidemiological miner cohort data used to estimate lung cancer risks related to occupational radon exposure often lack cohort-wide information on exposure to tobacco smoke, a potential confounder and important effect modifier. We have developed a method to project data on smoking habits from a case-

  4. Vibrational spectra of the hydrated carbonate minerals ikaite, monohydrocalcite, lansfordite and nesquehonite

    Science.gov (United States)

    Coleyshaw, Esther E.; Crump, Gregory; Griffith, William P.

    2003-08-01

    The Raman (200-4000 cm -1) and infrared (600-4000 cm -1) spectra of four rare carbonate hydrate minerals are reported. These are naturally occurring and synthetic ikaite CaCO 3 · 6H 2O, and nesquehonite MgCO 3 · 3H 2O; natural monohydrocalcite CaCO 3 · H 2O, and synthetic lansfordite MgCO 3 · 5H 2O. The spectra of synthetic ikaite partially substituted with 2H 2O and also with 13C were measured, as were those of synthetic deuteriated nesquehonite. Spectra of ikaite and lansfordite, both of which decompose at room temperatures, were measured below 0 °C. Assignments of fundamental modes are proposed.

  5. Water of Hydration Dynamics in Minerals Gypsum and Bassanite: Ultrafast 2D IR Spectroscopy of Rocks.

    Science.gov (United States)

    Yan, Chang; Nishida, Jun; Yuan, Rongfeng; Fayer, Michael D

    2016-08-01

    Water of hydration plays an important role in minerals, determining their crystal structures and physical properties. Here ultrafast nonlinear infrared (IR) techniques, two-dimensional infrared (2D IR) and polarization selective pump-probe (PSPP) spectroscopies, were used to measure the dynamics and disorder of water of hydration in two minerals, gypsum (CaSO4·2H2O) and bassanite (CaSO4·0.5H2O). 2D IR spectra revealed that water arrangement in freshly precipitated gypsum contained a small amount of inhomogeneity. Following annealing at 348 K, water molecules became highly ordered; the 2D IR spectrum became homogeneously broadened (motional narrowed). PSPP measurements observed only inertial orientational relaxation. In contrast, water in bassanite's tubular channels is dynamically disordered. 2D IR spectra showed a significant amount of inhomogeneous broadening caused by a range of water configurations. At 298 K, water dynamics cause spectral diffusion that sampled a portion of the inhomogeneous line width on the time scale of ∼30 ps, while the rest of inhomogeneity is static on the time scale of the measurements. At higher temperature, the dynamics become faster. Spectral diffusion accelerates, and a portion of the lower temperature spectral diffusion became motionally narrowed. At sufficiently high temperature, all of the dynamics that produced spectral diffusion at lower temperatures became motionally narrowed, and only homogeneous broadening and static inhomogeneity were observed. Water angular motions in bassanite exhibit temperature-dependent diffusive orientational relaxation in a restricted cone of angles. The experiments were made possible by eliminating the vast amount of scattered light produced by the granulated powder samples using phase cycling methods. PMID:27385320

  6. Performing Mineral Hydration Experiments in the CheMin Diffractometer on Mars

    Science.gov (United States)

    Vaniman, D. T.; Yen, A. S.; Rampe, E. B.; Blake, D. F.; Chipera, S. J.; Morookian, J. M.; Ming, D. W.; Bristow, T. F.; Morris, R. V.; Geller, R.; Morrison, S. M.; Grotzinger, J. P.; Archilles, C. N.; Downs, R. T.; Rapin, W.; Rice, M.; Bell, J. F., III; Sarrazin, P.; Farmer, J. D.

    2016-01-01

    Laboratory work is the cornerstone of experimental planetary geochemistry, mineralogy, and petrology, but much is to be gained by "experiments" while on a planet surface. Earth-bound experiments are often limited in ability to control multiple conditions relevant to planetary bodies (e.g. cycles in temperature and vapor pressure of water), but observations on-planet provide a unique opportunity where conditions are native to the planet and those affected by sampling and analysis can be constrained. The CheMin XRD instrument on Mars Science Laboratory has been able to test mineral hydration in samples held for up to 300 Mars days (sols). Clay minerals sampled at Yellowknife Bay early in the mission had both collapsed (10 Å) and expanded (13.2 Å) basal spacing. Collapsed interlayers were expected, but larger spacing was not; it was uncertain whether larger basal spacing would collapse on prolonged exposure to warmer conditions inside CheMin. Observation over several hundred sols showed no collapse, with the conclusion that expanded interlayer spacing was due to partial intercalation by metal-hydroxyl groups that resist dehydration. More recently, a sample of the Murray Formation, Oudam, provided the first XRD detection of gypsum and a chance to observe gypsum stability. Laboratory work suggests gypsum should be stable at Mars surface conditions, and indeed gypsum has been observed from orbit at higher latitudes and in thick veins at Yellowknife Bay by Mastcam reflectance spectra. Laboratory experiments have shown that on dehydration the gypsum would not become X-ray amorphous but would rather transform to a water-deficient bassanite structure. Over a period of 37 sols, it was observed that the Oudam sample in CheMin transformed from an assemblage of gypsum+anhydrite, to gypsum+bassanite+anhydrite, and finally to bassanite+anhydrite. Mg-sulfates were also anticipated but have not been observed in CheMin despite chemical evidence for their presence. Unlike gypsum

  7. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument.

    Science.gov (United States)

    Mustard, John F; Murchie, S L; Pelkey, S M; Ehlmann, B L; Milliken, R E; Grant, J A; Bibring, J-P; Poulet, F; Bishop, J; Dobrea, E Noe; Roach, L; Seelos, F; Arvidson, R E; Wiseman, S; Green, R; Hash, C; Humm, D; Malaret, E; McGovern, J A; Seelos, K; Clancy, T; Clark, R; Marais, D D; Izenberg, N; Knudson, A; Langevin, Y; Martin, T; McGuire, P; Morris, R; Robinson, M; Roush, T; Smith, M; Swayze, G; Taylor, H; Titus, T; Wolff, M

    2008-07-17

    Phyllosilicates, a class of hydrous mineral first definitively identified on Mars by the OMEGA (Observatoire pour la Mineralogie, L'Eau, les Glaces et l'Activitié) instrument, preserve a record of the interaction of water with rocks on Mars. Global mapping showed that phyllosilicates are widespread but are apparently restricted to ancient terrains and a relatively narrow range of mineralogy (Fe/Mg and Al smectite clays). This was interpreted to indicate that phyllosilicate formation occurred during the Noachian (the earliest geological era of Mars), and that the conditions necessary for phyllosilicate formation (moderate to high pH and high water activity) were specific to surface environments during the earliest era of Mars's history. Here we report results from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) of phyllosilicate-rich regions. We expand the diversity of phyllosilicate mineralogy with the identification of kaolinite, chlorite and illite or muscovite, and a new class of hydrated silicate (hydrated silica). We observe diverse Fe/Mg-OH phyllosilicates and find that smectites such as nontronite and saponite are the most common, but chlorites are also present in some locations. Stratigraphic relationships in the Nili Fossae region show olivine-rich materials overlying phyllosilicate-bearing units, indicating the cessation of aqueous alteration before emplacement of the olivine-bearing unit. Hundreds of detections of Fe/Mg phyllosilicate in rims, ejecta and central peaks of craters in the southern highland Noachian cratered terrain indicate excavation of altered crust from depth. We also find phyllosilicate in sedimentary deposits clearly laid by water. These results point to a rich diversity of Noachian environments conducive to habitability. PMID:18633411

  8. The mortality experience of a group of Newfoundland fluorspar miners exposed to Rn progeny

    International Nuclear Information System (INIS)

    A cohort study of the mortality experience (1950-1984) of 1,772 Newfoundland fluorspar miners occupationally exposed to high levels of radon daughters has been conducted using two control groups (surface workers and Newfoundland males). Observed numbers of cancers of the lung, salivary gland and buccal cavity/pharynx were significantly elevated among underground miners. A highly significant relationship was noted between radon daughter exposure and risk of dying of lung cancer; the small numbers of salivary gland (n = 2) and buccal cavity/pharynx cancers (n = 6) precluded meaningful analysis of dose-response. Also significantly elevated among underground miners were deaths from silicosis and pneumoconioses. No statistically significant excess was found for any cause of death among surface workers. Using external controls, attributable and relative risk coefficients for lung cancer were estimated as 6.3 per working level month per million person-years and 0.89 percent per working level month respectively. Attributable risk coefficients were similar to some, but not all related mining studies. Relative risk coefficients were highest for those first exposed attributable risks to non-smokers. Relative risks fell sharply with age at observation whereas attributable risks were lowest in the youngest and oldest age groups. Using the risk coefficients from the present study, a miner exposed for 30 years at 4 WLM per year from age 20 has a risk of 7,366 per 100,000 of dying of lung cancer by age 70 using the relative risk model and a risk of 6,371 per 100,000 using the attributable risk model. This compares to 3,740 per 100,000 for a non-exposed male. 85 refs

  9. Natural Gas Hydrates

    OpenAIRE

    Ersland, Geir

    2010-01-01

    The experimental set-up with the MRI monitoring apparatus was capable of forming large quantities of methane hydrates in sandstone pores and monitor hydrate growth patterns for various initial conditions. Spontaneous conversion of methane hydrate to carbon dioxide hydrate occurred when methane hydrate, in porous media, was exposed to liquid carbon dioxide. The MRI images did not detect any significant increase in signal in the hydrate saturated cores that would indicate the presence of free w...

  10. Phase Field Theory Modeling of CH4 and CO2 Fluxes from Exposed Natural Gas Hydrate Reserviors

    OpenAIRE

    Baig, Khuram

    2009-01-01

    Natural gas hydrates are widely distributed in sediments along continental margins, and harbor enormous amounts of energy. Gas hydrates are crystalline solids which occur when water molecules form a cage like structure around a non-polar or slightly polar (eg. CO2, H2S) molecule. These enclathrated molecules are called guest molecules and obviously have to fit into the cavities in terms of volume. Massive hydrates that outcrop the sea floor have been reported in the Gulf of Mexico (MacDonald,...

  11. Thermodynamics of Uranyl Minerals: Enthalpies of Formation of Uranyl Oxide Hydrates

    Energy Technology Data Exchange (ETDEWEB)

    K. Kubatko; K. Helean; A. Navrotsky; P.C. Burns

    2005-05-11

    The enthalpies of formation of seven uranyl oxide hydrate phases and one uranate have been determined using high-temperature oxide melt solution calorimetry: [(UO{sub 2}){sub 4}O(OH){sub 6}](H{sub 2}O){sub 5}, metaschoepite; {beta}-UO{sub 2}(OH){sub 2}; CaUO{sub 4}; Ca(UO{sub 2}){sub 6}O{sub 4}(OH){sub 6}(H{sub 2}O){sub 8}, becquerelite; Ca(UO{sub 2}){sub 4}O{sub 3}(OH){sub 4}(H{sub 2}O){sub 2}; Na(UO{sub 2})O(OH), clarkeite; Na{sub 2}(UO{sub 2}){sub 6}O{sub 4}(OH){sub 6}(H{sub 2}O){sub 7}, the sodium analogue of compreignacite and Pb{sub 3}(UO{sub 2}){sub 8}O{sub 8}(OH){sub 6}(H{sub 2}O){sub 2}, curite. The enthalpy of formation from the binary oxides, {Delta}H{sub f-ox}, at 298 K was calculated for each compound from the respective drop solution enthalpy, {Delta}H{sub ds}. The standard enthalpies of formation from the elements, {Delta}H{sub f}{sup o}, at 298 K are -1791.0 {+-} 3.2, -1536.2 {+-} 2.8, -2002.0 {+-} 3.2, -11389.2 {+-} 13.5, -6653.1 {+-} 13.8, -1724.7 {+-} 5.1, -10936.4 {+-} 14.5 and -13163.2 {+-} 34.4 kJ mol{sup -1}, respectively. These values are useful in exploring the stability of uranyl oxide hydrates in auxiliary chemical systems, such as those expected in U-contaminated environments.

  12. Surface energies of hardened cement pastes and their mineral hydrate components

    OpenAIRE

    BENZARTI, K; Perruchot, C.; CHEHIMI, MM

    2004-01-01

    Concrete is the most common material in the fields of construction and civil engineering. Damaged concrete structures are often repaired by gluing stiff reinforcements on the damaged zones (such as steel or composite plates), using epoxy adhesives. A good wettability of the mineral surface by the epoxy resin is usually required in order to promote an accurate level of adhesion. Therefore, the surface energy of the cementitious substrate can be considered as an important parameter for the dura...

  13. Sorption behavior of iodine on calcium silicate hydrates formed as a secondary mineral

    International Nuclear Information System (INIS)

    This study examined the sorption behaviors of iodine into CSH gel without dried processes, considering the repository system saturated with groundwater after the backfilling. In glove, box saturated with N2 gas, each sample of CSH gel was synthesized with CaO, SiO2, and distilled water with liquid/solid ratio 20. Then, 1 mM iodine solution is added into the aqueous solution including the CSH gel with various Ca/Si molar ratios under the isothermal condition (298 K). In the results, even if the Ca/Si ratio is relatively small (d) of iodine on CSH gel without dried processes were two-order of magnitude larger than those with dried processes. For example, the value of Kd (ml/g) was about 380 in the case of 0.5 in Ca/Si molar ratio. Furthermore, it was confirmed the sorption behavior attain equilibrium in 24 hours. These suggest secondary mineral of CSH gel would retard the migration of anionic nuclides under the conditions saturated with groundwater. In comparison, this study prepared also the co-precipitated samples of CSH gel and iodine, where the 1 mM iodine solution is added before curing the CSH gel. These distribution coefficients and the kinetics almost agreed with those mentioned above. (author)

  14. Acid attack on hydrated cement — Effect of mineral acids on the degradation process

    Energy Technology Data Exchange (ETDEWEB)

    Gutberlet, T.; Hilbig, H.; Beddoe, R.E., E-mail: robin.beddoe@tum.de

    2015-08-15

    During acid attack on concrete structural components, a degraded layer develops whose properties as a protective barrier are decisive for durability. {sup 29}Si NMR spectroscopy and {sup 27}Al NMR spectroscopy were used with XRD to investigate the degraded layer on hardened cement paste exposed to HCl and H{sub 2}SO{sub 4}. The layer comprises an amorphous silica gel with framework silicates, geminate and single silanol groups in which Si is substituted by Al. Amorphous Al(OH){sub 3} and Fe(OH){sub 3} are present. The gel forms by polycondensation and cross-linking of C-A-S-H chains at AlO{sub 4} bridging tetrahedra. In the transition zone between the degraded layer and the undamaged material, portlandite dissolves and Ca is removed from the C-A-S-H phases maintaining their polymer structure at first. With HCl, monosulphate in the transition zone is converted into Friedel's salt and ettringite. With H{sub 2}SO{sub 4}, gypsum precipitates near the degradation front reducing the thickness of the transition zone and the rate of degradation.

  15. Impact of Compound Hydrate Dynamics on Phase Boundary Changes

    Science.gov (United States)

    Osegovic, J. P.; Max, M. D.

    2006-12-01

    Compound hydrate reactions are affected by the local concentration of hydrate forming materials (HFM). The relationship between HFM composition and the phase boundary is as significant as temperature and pressure. Selective uptake and sequestration of preferred hydrate formers (PF) has wide ranging implications for the state and potential use of natural hydrate formation, including impact on climate. Rising mineralizing fluids of hydrate formers (such as those that occur on Earth and are postulated to exist elsewhere in the solar system) will sequester PF before methane, resulting in a positive relationship between depth and BTU content as ethane and propane are removed before methane. In industrial settings the role of preferred formers can separate gases. When depressurizing gas hydrate to release the stored gas, the hydrate initial composition will set the decomposition phase boundary because the supporting solution takes on the composition of the hydrate phase. In other settings where hydrate is formed, transported, and then dissociated, similar effects can control the process. The behavior of compound hydrate systems can primarily fit into three categories: 1) In classically closed systems, all the material that can form hydrate is isolated, such as in a sealed laboratory vessel. In such systems, formation and decomposition are reversible processes with observed hysteresis related to mass or heat transfer limitations, or the order and magnitude in which individual hydrate forming gases are taken up from the mixture and subsequently released. 2) Kinetically closed systems are exposed to a solution mass flow across a hydrate mass. These systems can have multiple P-T phase boundaries based on the local conditions at each face of the hydrate mass. A portion of hydrate that is exposed to fresh mineralizing solution will contain more preferred hydrate formers than another portion that is exposed to a partially depleted solution. Examples of kinetically closed

  16. Mineralogy and stable isotope compositions of carbonate and sulphide minerals of carbonate crusts associated with gas hydrate-forming cold vents from the NE Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Conly, A.G. [Lakehead Univ., Thunder Bay, ON (Canada). Dept. of Geology; Scott, S.D. [Toronto Univ., ON (Canada). Dept. of Geology; Riedel, M. [Natural Resources Canada, Sidney, BC (Canada). Geological Survey of Canada, Pacific Geoscience Centre

    2005-07-01

    In 2001, the ROPOS submersible sampled 21 specimens of carbonate crusts from 2 gas hydrate fields located offshore Vancouver Island on the northeast Pacific continental margin. The mineralogy and stable isotopic composition of carbonate and sulphide minerals were used to evaluate petrogenesis and the relationship to associated gas hydrate occurrences. The crusts form the upper surface of carbonate and pelagic mud mounds within the gas hydrate fields. The crusts are made up of micritic carbonate with a highly variable morphology that includes blocky, fissile, nodular and mudcemented brecciated forms. The crusts include micritic calcite and dolomite/ferroan dolomite, with up to 30 per cent detrital and authigenic silicates. The finely disseminated sulphide minerals include pyrite and trace amounts of sphalerite. Bulk-rock chemical compositions are mainly homogeneous. Any variations reflect the calcite:dolomite and carbonate:silicate ratios. The {delta}13 C values for bulk carbonate (calcite and dolomite) were presented. No definitive correlation between {delta}13 C value and carbonate mineralogy was noted, but calcite-dominant samples were found to be more depleted. The {delta}34 S values for sulphide were also presented. The carbon isotopic composition of the carbonate is associated with the balance of inorganic and organic carbon species. Bacterial sulphate reduction and/or bacterial fermentation and carbonate reduction processes responsible for the production of methane were found to control the {delta}13 C of the carbon dioxide reservoir in gas hydrate environments. It was shown that methane was the carbon source involved in bacterial sulphate reduction and that the isotopic composition of the CO{sub 2} reservoir may be controlled by fractionation during bacterial carbonate reduction. The range in sulphur isotopes correlates with the bacterial sulphate reduction under partially closed conditions, where the rate of diffusion of sulphate is less than the rate of

  17. Modeling Lung Carcinogenesis in Radon-Exposed Miner Cohorts: Accounting for Missing Information on Smoking.

    Science.gov (United States)

    van Dillen, Teun; Dekkers, Fieke; Bijwaard, Harmen; Brüske, Irene; Wichmann, H-Erich; Kreuzer, Michaela; Grosche, Bernd

    2016-05-01

    Epidemiological miner cohort data used to estimate lung cancer risks related to occupational radon exposure often lack cohort-wide information on exposure to tobacco smoke, a potential confounder and important effect modifier. We have developed a method to project data on smoking habits from a case-control study onto an entire cohort by means of a Monte Carlo resampling technique. As a proof of principle, this method is tested on a subcohort of 35,084 former uranium miners employed at the WISMUT company (Germany), with 461 lung cancer deaths in the follow-up period 1955-1998. After applying the proposed imputation technique, a biologically-based carcinogenesis model is employed to analyze the cohort's lung cancer mortality data. A sensitivity analysis based on a set of 200 independent projections with subsequent model analyses yields narrow distributions of the free model parameters, indicating that parameter values are relatively stable and independent of individual projections. This technique thus offers a possibility to account for unknown smoking habits, enabling us to unravel risks related to radon, to smoking, and to the combination of both.

  18. Modeling Lung Carcinogenesis in Radon-Exposed Miner Cohorts: Accounting for Missing Information on Smoking.

    Science.gov (United States)

    van Dillen, Teun; Dekkers, Fieke; Bijwaard, Harmen; Brüske, Irene; Wichmann, H-Erich; Kreuzer, Michaela; Grosche, Bernd

    2016-05-01

    Epidemiological miner cohort data used to estimate lung cancer risks related to occupational radon exposure often lack cohort-wide information on exposure to tobacco smoke, a potential confounder and important effect modifier. We have developed a method to project data on smoking habits from a case-control study onto an entire cohort by means of a Monte Carlo resampling technique. As a proof of principle, this method is tested on a subcohort of 35,084 former uranium miners employed at the WISMUT company (Germany), with 461 lung cancer deaths in the follow-up period 1955-1998. After applying the proposed imputation technique, a biologically-based carcinogenesis model is employed to analyze the cohort's lung cancer mortality data. A sensitivity analysis based on a set of 200 independent projections with subsequent model analyses yields narrow distributions of the free model parameters, indicating that parameter values are relatively stable and independent of individual projections. This technique thus offers a possibility to account for unknown smoking habits, enabling us to unravel risks related to radon, to smoking, and to the combination of both. PMID:27198876

  19. Results of cytogenetic examinations of miners exposed to radon in ore mines

    International Nuclear Information System (INIS)

    In this study the radon air concentrations and clastogenic effects at three ore mines located in central east Slovakia, the gold mine of Hodrusa-Hamre, talcum mine of Hnusta, and iron ore mine in Nizna Slana are compared with the chromosomal aberrations observed in a control group of healthy men which experienced underground work. A random sample of radon concentration measurements in houses was used for control. Significant differences in counts of aberrations of the chromosomal type in lymphocytes of smoker-miners of Nizna Slana as compared with counts of such aberrations in lymphocytes of a control group of similar age were found. A dependence of chromosomal aberration counts from the underground exposure to radon by multiple regression procedures could not be ascertained. The results indicated that confounding of such dependence by smoking might have taken place

  20. Dosimetric property of mineral extracted from calamari and exposed to gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Zaragoza, E.; Roman-Lopez, J.; Cruz, L. Perez; Furetta, C. [Unidad de Irradiacion y Seguridad Radiologica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 Mexico D.F (Mexico); Chiaravalle, E.; Mangiacotti, M.; Marchesani, G. [Centro di Referenza Nazionale per la Ricerca della Radioattivita nel Settore Zootecnico-Veterinario, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, I-71121 Foggia (Italy)

    2013-07-03

    Dosimetric property of polymineral fraction, quartz mainly, obtained from calamari was investigated. The commercial calamari samples from China and Sud Africa were collected in the markets of Italy. All polymineral debris were extracted and isolated from the whole body of calamari. The surface of the polymineral samples was analyzed by using the Scanning Electron Microscopy (SEM) and their chemical composition was determined using Energy Dispersive Spectroscopy (EDS). The polymineral was exposed to gamma rays ({sup 60}Co) at different doses (0.5-80 Gy) to determine dosimetric property. Thermoluminescent (TL) glow curves showed two peaks centered at around 98-100 Degree-Sign C and 128-138 Degree-Sign C temperature range. The glow curves have been analyzed by using a deconvolution program. A linear dose response between 0.5 to 20 Gy was observed. The TL response of the samples as a function of the time storage, fading, presented a reduction of about 36-40 % at the end of 24 h. The reproducibility of the TL response after ten cycles of irradiation-readout showed an acceptable standard deviation in dosimetry. The polimineral fraction obtained from calamari shows an interesting dosimetric property and it may be useful for dosimetry in gamma radiation field.

  1. Optimisation of concrete mix design with high content of mineral additions :effect on microstructure, hydration and shrinkage

    OpenAIRE

    Khokhar, Muhammad Irfan Ahmad

    2010-01-01

    The cement being used in the construction industry is the result of a chemical processlinked to the decarbonation of limestone conducted at high temperature and results in asignificant release of CO2. This thesis is part of the project EcoBéton (Green concrete) fundedby the French National Research Agency (ANR), with a purpose to show the feasibility ofhigh substitution of cement by mineral additions such as blast furnaces slag, fly ash andlimestone fillers. Generally for high percentages of ...

  2. Minerals

    Directory of Open Access Journals (Sweden)

    Vaquero, M. P.

    1998-08-01

    Full Text Available The possible changes in the mineral composition of food during frying could be the consequence of losses by leaching, or changes in concentrations caused by exchanges between the food and culinary fat of other compounds. The net result depends on the type of food, the frying fat used and the frying process. Moreover, the modifications that frying produces in other nutrients could indirectly affect the availability of dietary minerals. The most outstanding ones are those that can take place in the fat or in the protein. With respect to the interactions between frying oils and minerals, we have recent knowledge concerning the effects of consuming vegetable oils used in repeated fryings of potatoes without turnover, on the nutritive utilization of dietary minerals. The experiments have been carried out in pregnant and growing rats, which consumed diets containing, as a sole source of fat, the testing frying oils or unused oils. It seems that the consumption of various frying oils, with a polar compound content lower or close to the maximum limit of 25% accepted for human consumption, does not alter the absorption and metabolism of calcium, phosphorous, iron or copper. Magnesium absorption from diets containing frying oils tends to increase but the urinary excretion of this element increases, resulting imperceptible the variations in the magnesium balance. The urinary excretion of Zn also increased although its balance remained unchanged. Different studies referring to the effects of consuming fried fatty fish on mineral bioavailability will also be presented. On one hand, frying can cause structural changes in fish protein, which are associated with an increase in iron absorption and a decrease in body zinc retention. The nutritive utilization of other elements such as magnesium, calcium and copper seems to be unaffected. On the other hand; it has been described that an excess of fish fatty acids in the diet produces iron depletion, but when fatty

  3. Mineralogy of Juventae Chasma: Sulfates in the light-toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the plateau

    Science.gov (United States)

    Bishop, Janice L.; Parente, Mario; Weitz, Catherine M.; Noe Dobrea, Eldar Z.; Roach, Leah H.; Murchie, Scott L.; McGuire, Patrick C.; McKeown, Nancy K.; Rossi, Christopher M.; Brown, Adrian J.; Calvin, Wendy M.; Milliken, Ralph; Mustard, John F.

    2009-11-01

    Juventae Chasma contains four light-toned sulfate-bearing mounds (denoted here as A-D from west to east) inside the trough, mafic outcrops at the base of the mounds and in the wall rock, and light-toned layered deposits of opal and ferric sulfates on the plateau. Hyperspectral visible/near-infrared Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectra were used to identify monohydrated and polyhydrated sulfate (PHS) outcrops of layered material on the bright mounds. Most of the monohydrated sulfate signatures closely resemble those of szomolnokite (FeSO4·H2O), characterized by a water band near 2.08 μm, while some areas exhibit spectral features more similar to those of kieserite (MgSO4·H2O), with a band centered closer to 2.13 μm. The largest PHS outcrops occur on the top of mound B, and their spectral features are most consistent with ferricopiapite, melanterite, and starkeyite, but a specific mineral cannot be uniquely identified at this time. Coordinated analyses of CRISM maps, Mars Orbiter Laser Altimeter elevations, and High Resolution Imaging Science Experiment images suggest that mounds A and B may have formed together and then eroded into separate mounds, while mounds C and D likely formed separately. Mafic minerals (low-Ca pyroxene, high-Ca pyroxene, and olivine) are observed in large ˜2-10 km wide outcrops in the wall rock and in smaller outcrops ˜50-500 m across at the floor of the canyon. Most of the wall rock is covered by at least a thin layer of dust and does not exhibit strong features characteristic of these minerals. The plateau region northwest of Juventae Chasma is characterized by an abundance of light-toned layered deposits. One region contains two spectrally unique phases exhibiting a highly stratified, terraced pattern. CRISM spectra of one unit eroded into swirling patterns with arc-like ridges exhibit a narrow 2.23-μm band assigned to hydroxylated ferric sulfate. A thin layer of a fractured material bearing an

  4. 含掺合料混凝土水化产物体积分数计算及其影响因素%Calculation of concrete with mineral admixture hydration products volume fraction and its influential factors

    Institute of Scientific and Technical Information of China (English)

    吴福飞; 董双快; 宫经伟; 陈亮亮; 李东生; 侍克斌

    2016-01-01

    Powers theory proposes calculation method for the pure volume of cement hydration products, which does not apply to calculate the volume of cementitious materials with mineral admixture. The formula of cementitious materials volume was proposed that based on the basic principles of cement and mineral admixture hydration, and the proposed method of reliability was verified by the results of Powers theoretical model and volume fraction of cement hydration products. On this basis, the factor such as water-cement ratio, the ratio of admixture and types was further researched for the volumes of cementitious materials hydration products. Mixture in test were designed 2 water-cement ratio (0.30 and 0.40, respectively), two content (20% and 60%, respectively) of mineral admixture, and 3 kinds of mineral admixture (lithium slag, fly ash and steel slag, respectively), forming paste that was stirred according with the designed ratio in 5 mL centrifuge tube in a blender and curing to 1, 7, 14, 28, 60 and 90 d in curing room (temperature was (20±1)℃, humidity was not less than 95%), and then testing reaction extent of cement and mineral admixture (such as fly ash, steel slag. lithium slag) according with the chemical bound water and HCl dissolution method. The results showed that hydration extent of lithium slag, fly ash and steel slag at 28d decreased by 46.63%, 69.56% and 74.82% (P<0.05) when mineral admixture content varied from 20% to 60% and water-cement ratio was 0.30. Hydration extent of cement at 28 d was increased by 7.25% when water-cement ratio increased from 0.30 to 0.40. When mineral admixture content varied from 20% to 60%, hydration extent of lithium slag, fly ash and steel slag at 28 d increased by 24.14% 18.56%, 17.61% and 8.84%, 12.21%, and 29.37% (P<0.05), respectively. In contrast, the influence of the mineral admixture content was bigger than water-cement ratio for the hydration extent of composite cementitious materials. In different water-cement ratio

  5. PART II. HYDRATED CEMENTS

    Directory of Open Access Journals (Sweden)

    Milan Drabik

    2014-09-01

    Full Text Available Essential focus of the study has been to acquire thermoanalytical events, incl. enthalpies of decompositions - ΔH, of technological materials based on two types of Portland cements. The values of thermoanalytical events and also ΔH of probes of technological compositions, if related with the data of a choice of minerals of calcium-silicate-sulfate-aluminate hydrates, served as a valued input for the assessment of phases present and phase changes due to the topical hydraulic processes. The results indicate mainly the effects of "standard humidity" or "wet storage" of the entire hydration/hydraulic treatment, but also the presence of cement residues alongside calcium-silicate-sulfate-aluminate hydrates (during the tested period of treatment. "A diluting" effect of unhydrated cement residues upon the values of decomposition enthalpies in the studied multiphase system is postulated and discussed

  6. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates

    OpenAIRE

    Pustovgar, Elizaveta; Sangodkar, Rahul P.; Andreev, Andrey S.; Palacios, Marta; Chmelka, Bradley F.; Robert J. Flatt; D'Espinose De Lacaillerie, Jean-Baptiste

    2016-01-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measuremen...

  7. Bone mineral density and polymorphisms in metallothionein 1A and 2A in a Chinese population exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiao [Department of Bone Metabolism, Institute of Radiation Medicine, Fudan University, Shanghai 200032 (China); Lei, Lijian [Department of Occupation Health, School of Public Health, Fudan University, Shanghai 200032 (China); Department of Epidemiology, School of Public Health, Shanxi Medical University, Shanxi 030001 (China); Tian, Liting [Department of Occupation Health, School of Public Health, Fudan University, Shanghai 200032 (China); Zhu, Guoying, E-mail: chx_win@hotmail.com [Department of Bone Metabolism, Institute of Radiation Medicine, Fudan University, Shanghai 200032 (China); Jin, Taiyi, E-mail: tyjin@shmu.edu.cn [Department of Occupation Health, School of Public Health, Fudan University, Shanghai 200032 (China)

    2012-04-15

    Cadmium (Cd) effect on bone varies between individuals. We investigated whether genetic variation in metallothionein (MT)1A and MT2A associated with Cd induced bone loss in this study. A total of 465 persons (311 women and 154 men), living in control, moderately and heavily polluted areas, participated. The participants completed a questionnaire and the bone mineral density (BMD) was measured by dual energy x-ray absorptiometry (DXA) at the proximal radius and ulna. Samples of urine and blood were collected for determination of Cd in urine (UCd) and blood (BCd). Genotypes for polymorphisms in MT1A (rs11076161) and MT2A (rs10636) were determined by Taqman allelic discrimination assays. BCd had a weak association with variant alleles for MT1A (rs11076161) and MT2A (rs10636) in female living in the highly polluted group (p = 0.08 and 0.05, respectively). A weak association was found between bone mineral density and MT2A polymorphisms variation (p = 0.06) in female living in the highly polluted group. Only a weak association was found between bone mineral density and MT1A polymorphisms variation in female. Genetic variation in the MT1A and MT2A genes may not associate with bone loss caused by cadmium exposure. - Highlights: Black-Right-Pointing-Pointer We investigated the association between metallothionein polymorphisms bone mineral density. Black-Right-Pointing-Pointer MT1A and MT2A polymorphisms showed a weak association with cadmium in blood. Black-Right-Pointing-Pointer MT1A and MT2A polymorphisms showed no association with bone mineral density.

  8. Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke

    Directory of Open Access Journals (Sweden)

    Gao Shu-guang

    2012-06-01

    Full Text Available Abstract Background Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF. However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Methods Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC, bone mineral density (BMD, bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Results Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption, affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface, and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. Conclusion The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.

  9. 沥青混合料中掺加消石灰粉替代部分矿粉施工质量控制%Quality Control of Asphalt Mixture with Hydrated Lime Changing Some Mineral Powder

    Institute of Scientific and Technical Information of China (English)

    宋宗平

    2012-01-01

    Changing some mineral powder for hydrated lime in asphalt mixture at down layers of Lianyungang-Yancheng expressway is applied to improve the adhesion between asphalt and pebbles and water damage resistance for asphalt pavement. The construction process, mix proportion, compacting scheme and construction control points of the method of changing some mineral powder for hydrated lime is introduced. The whole quality of asphalt mixture is controlled.%为改善沥青与石料黏附性,提高沥青路面的抗水损害能力,在连盐高速公路下面层结构沥青混凝土混合料中,以消石灰替代部分石灰岩矿粉(总量不超过混合料质量的2%)进行施工.介绍了消石灰粉替代部分矿粉进行施工的工序、配合比设计、压实方案和施工控制要点,最终沥青混合料总体质量得到控制.

  10. Gas hydrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    Content-Type text/plain; charset=UTF-8 43 Gas Hydrates T. Ramprasad National Institute of Oceanography, Dona Paula, Goa-403 004 rprasad@nio.org A gas hydrate is a crystalline solid; its building blocks consist of a gas molecule... surrounded by a cage of water molecules. Thus it is similar to ice, except that the crystalline structure is stabilized by the guest gas molecule within the cage of water molecules. Many gases have molecular sizes suitable to form hydrate, including...

  11. CHANGES IN LEVELS OF ANTIOXIDANT MINERALS AND VITAMINS IN WISTAR MALE RATS EXPOSED TO METHIONINE CONTAINING ACETAMINOPHEN FORMULATION

    Directory of Open Access Journals (Sweden)

    Adeniyi Francis A. A.

    2011-05-01

    Full Text Available This study was carried out to determine the effect of toxic and subtoxic doses of acetaminophen on antioxidant vitamins and minerals in male Wistar rats. Five groups served as the test groups and received different doses of the acetaminophenmethionine formulation in ratio 9:1. The sixth group served as the control and received only the vehicle: physiologic saline. At the end of 24 hours of exposure, blood was obtained from each rat through retro-orbital bleeding, the levels of antioxidant vitamins and minerals were determined using high-performance liquid chromatography and atomic absorption spectrophotometric technique. Results showed that at 100 mg/kg BW level of exposure, niacin, vitamin A, vitamin E, zinc, copper, manganese, selenium were significantly increased (p0.05 compared with controls. At both 350 and 1000 mgkg BW levels of exposure, all these antioxidant indices were significantly decreased (p0.05 at 350 mgkg BW (body weight level of exposure compared with the control group. The animals in 3000 mgkg BW and 5000 mgkg groups suffered 40% and 100% mortality respectively by the end of the 24th hour. This study therefore showed that acetaminophenmethionine formulation in the ratio of 9:1 may cause alteration of vital elements and biomolecules not only at toxic levels but also at tolerable level of 100 mgkg BW.

  12. Prevalence of hepatitis B and C virus markers among malaria-exposed gold miners in Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Francisco José Dutra Souto

    2001-08-01

    Full Text Available Hepatitis B and C virus markers were assessed during a survey on malaria in gold mine camps in southern Brazilian Amazon in order to identify risk factors associated to these viral diseases. The study comprised 520 subjects, most of them were gold miners. Missing subjects totaled 49 (8.6%. Among these 520, 82.9% had HBV markers and 7.1% were HBsAg positive. Previous hospitalization, surgery, sexually transmitted diseases and incarceration were quite common among surveyed people, but there is no association between total HBV markers and these factors. On other hand, HBsAg was independently associated to history of sexually transmitted diseases and history of surgery after adjustment. The most frequent HBsAg subtypes identified, adw2 (59%, predominates in populations of Northeast Brazil. The most surveyed people were immigrants coming from that area suggesting that immigrants carried HBV themselves to the study area. Immunoblot (RIBA confirmed-anti-HCV were found in 2.1%. The only variable associated to anti-HCV in multivariate analysis was illicit intravenous drug. Lack of HCV infection in subjects with such a high HBV markers prevalence reinforces the opinion that HCV is transmitted by restricted routes when compared to HBV. Furthermore, gold miners in Amazon may be considered as a risk group for HBV infection, but not for HCV.

  13. Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments

    Science.gov (United States)

    Lee, J.Y.; Yun, T.S.; Santamarina, J.C.; Ruppel, C.

    2007-01-01

    The interaction among water molecules, guest gas molecules, salts, and mineral particles determines the nucleation and growth behavior of gas hydrates in natural sediments. Hydrate of tetrahydrofuran (THF) has long been used for laboratory studies of gas hydrate-bearing sediments to provide close control on hydrate concentrations and to overcome the long formation history of methane hydrate from aqueous phase methane in sediments. Yet differences in the polarizability of THF (polar molecule) compared to methane (nonpolar molecule) raise questions about the suitability of THF as a proxy for methane in the study of hydrate-bearing sediments. From existing data and simple macroscale experiments, we show that despite its polar nature, THF's large molecular size results in low permittivity, prevents it from dissolving precipitated salts, and hinders the solvation of ions on dry mineral surfaces. In addition, the interfacial tension between water and THF hydrate is similar to that between water and methane hydrate. The processes that researchers choose for forming hydrate in sediments in laboratory settings (e.g., from gas, liquid, or ice) and the pore-scale distribution of the hydrate that is produced by each of these processes likely have a more pronounced effect on the measured macroscale properties of hydrate-bearing sediments than do differences between THF and methane hydrates themselves.

  14. Mineral density and biomechanical properties of bone tissue from male Arctic foxes (Vulpes lagopus) exposed to organochlorine contaminants and emaciation

    DEFF Research Database (Denmark)

    Sonne, Christian; Wolkers, Hans; Rigét, Frank F;

    2008-01-01

    We investigated the impact from dietary OC (organochlorine) exposure and restricted feeding (emaciation) on bone mineral density (BMD; g hydroxy-apatite cm(-2)) in femoral, vertebrate, skull and baculum osteoid tissue from farmed Arctic blue foxes (Vulpes lagopus). For femur, also biomechanical...... and 8 CON foxes were given restricted food rations for 6 months resulting in a body weight reduction (mean body mass=5.46 kg). The results showed that only BMD(skull) vs. BMD(vertebrae) were significantly correlated (R=0.68; p=0.03; n=10) probably due to a similar composition of trabecular and cortical......), energy absorption (J) and time (s) biomechanical properties than fat winter foxes (all p

  15. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates.

    Science.gov (United States)

    Pustovgar, Elizaveta; Sangodkar, Rahul P; Andreev, Andrey S; Palacios, Marta; Chmelka, Bradley F; Flatt, Robert J; d'Espinose de Lacaillerie, Jean-Baptiste

    2016-01-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of (29)Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured. PMID:27009966

  16. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates

    Science.gov (United States)

    Pustovgar, Elizaveta; Sangodkar, Rahul P.; Andreev, Andrey S.; Palacios, Marta; Chmelka, Bradley F.; Flatt, Robert J.; D'Espinose de Lacaillerie, Jean-Baptiste

    2016-03-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of 29Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured.

  17. Authigenic sulfide minerals and their sulfur isotopes in sediments of the northern continental slope of the South China Sea and their implications for methane flux and gas hydrate formation

    Institute of Scientific and Technical Information of China (English)

    PU XiaoQiang; ZHONG ShaoJun; YU WenQuan; TAO XiaoWan

    2007-01-01

    This is a report of the study of the authigenic sulfide minerals and their sulfur isotopes in a sediment core (NH-1) collected on the northern continental slope of the South China Sea, where other geophysical and geochemical evidence seems to suggest gas hydrate formation in the sediments. The study has led to the findings: (1) the pyrite content in sediments was relatively high and its grain size relatively large compared with that in normal pelagic or hemipelagic sediments; (2) the shallowest depth of the acid volatile sulfide (AVS) content maximum was at 437.5 cm (>2 μmol/g), which was deeper than that of the authigenic pyrite content maximum (at 141.5-380.5 cm); (3) δ34S of authigenic pyrite was positive (maximum: +15‰) at depth interval of 250-380 cm; (4) the positive δ34S coincided with pyrite enrichment. Compared with the results obtained from the Black Sea sediments by Jorgensen and coworkers, these observations indicated that at the NH-1 site, the depth of the sulfate-methane interface (SMI) would be or once was at about 437.5-547.5 cm and the relatively shallow SMI depth suggested high upward methane fluxes. This was in good agreement with the results obtained from pore water sulfate gradients and core head-space methane concentrations in sediment cores collected in the area. All available evidence suggested that methane gas hydrate formation may exist or may have existed in the underlying sediments.

  18. Human Health Risk Assessment of Artisanal Miners Exposed to Toxic Chemicals in Water and Sediments in the Prestea Huni Valley District of Ghana

    Science.gov (United States)

    Obiri, Samuel; Yeboah, Philip O.; Osae, Shiloh; Adu-kumi, Sam; Cobbina, Samuel J.; Armah, Frederick A.; Ason, Benjamin; Antwi, Edward; Quansah, Reginald

    2016-01-01

    A human health risk assessment of artisanal miners exposed to toxic metals in water bodies and sediments in the PresteaHuni Valley District of Ghana was carried out in this study, in line with US EPA risk assessment guidelines. A total of 70 water and 30 sediment samples were collected from surface water bodies in areas impacted by the operations of artisanal small-scale gold mines in the study area and analyzed for physico-chemical parameters such as pH, TDS, conductivity, turbidity as well as metals and metalloids such as As, Cd, Hg and Pb at CSIR—Water Research Institute using standard methods for the examination of wastewater as outlined by American Water Works Association (AWWA). The mean concentrations of As, Cd, Hg and Pb in water samples ranged from 15 μg/L to 325 μg/L (As), 0.17 μg/L to 340 μg/L (Cd), 0.17 μg/L to 122 μg/L (Pb) and 132 μg/L to 866 μg/L (Hg), respectively. These measured concentrations of arsenic (As), mercury (Hg), cadmium (Cd) and lead (Pb) were used as input parameters to calculate the cancer and non-cancer health risks from exposure to these metals in surface water bodies and sediments based on an occupational exposure scenario using central tendency exposure (CTE) and reasonable maximum exposure (RME) parameters. The results of the non-cancer human health risk assessment for small-scale miners working around river Anikoko expressed in terms of hazard quotients based on CTE parameters are as follows: 0.04 (Cd), 1.45 (Pb), 4.60 (Hg) and 1.98 (As); while cancer health risk faced by ASGM miners in Dumase exposed to As in River Mansi via oral ingestion of water is 3.1 × 10−3. The hazard quotient results obtained from this study in most cases were above the HQ guidance value of 1.0, furthermore the cancer health risk results were found to be higher than the USEPA guidance value of 1 × 10−4 to 1 × 10−6. These findings call for case-control epidemiological studies to establish the relationship between exposure to the

  19. Human Health Risk Assessment of Artisanal Miners Exposed to Toxic Chemicals in Water and Sediments in the Prestea Huni Valley District of Ghana.

    Science.gov (United States)

    Obiri, Samuel; Yeboah, Philip O; Osae, Shiloh; Adu-Kumi, Sam; Cobbina, Samuel J; Armah, Frederick A; Ason, Benjamin; Antwi, Edward; Quansah, Reginald

    2016-01-01

    A human health risk assessment of artisanal miners exposed to toxic metals in water bodies and sediments in the PresteaHuni Valley District of Ghana was carried out in this study, in line with US EPA risk assessment guidelines. A total of 70 water and 30 sediment samples were collected from surface water bodies in areas impacted by the operations of artisanal small-scale gold mines in the study area and analyzed for physico-chemical parameters such as pH, TDS, conductivity, turbidity as well as metals and metalloids such as As, Cd, Hg and Pb at CSIR-Water Research Institute using standard methods for the examination of wastewater as outlined by American Water Works Association (AWWA). The mean concentrations of As, Cd, Hg and Pb in water samples ranged from 15 μg/L to 325 μg/L (As), 0.17 μg/L to 340 μg/L (Cd), 0.17 μg/L to 122 μg/L (Pb) and 132 μg/L to 866 μg/L (Hg), respectively. These measured concentrations of arsenic (As), mercury (Hg), cadmium (Cd) and lead (Pb) were used as input parameters to calculate the cancer and non-cancer health risks from exposure to these metals in surface water bodies and sediments based on an occupational exposure scenario using central tendency exposure (CTE) and reasonable maximum exposure (RME) parameters. The results of the non-cancer human health risk assessment for small-scale miners working around river Anikoko expressed in terms of hazard quotients based on CTE parameters are as follows: 0.04 (Cd), 1.45 (Pb), 4.60 (Hg) and 1.98 (As); while cancer health risk faced by ASGM miners in Dumase exposed to As in River Mansi via oral ingestion of water is 3.1 × 10(-3). The hazard quotient results obtained from this study in most cases were above the HQ guidance value of 1.0, furthermore the cancer health risk results were found to be higher than the USEPA guidance value of 1 × 10(-4) to 1 × 10(-6). These findings call for case-control epidemiological studies to establish the relationship between exposure to the

  20. New french uranium mineral species; Nouvelles especes uraniferes francaises

    Energy Technology Data Exchange (ETDEWEB)

    Branche, G.; Chervet, J.; Guillemin, C. [Commissariat a l' Energie Atomique, Lab. du Fort de Chatillon, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1952-07-01

    In this work, the authors study the french new uranium minerals: parsonsite and renardite, hydrated phosphates of lead and uranium; kasolite: silicate hydrated of uranium and lead uranopilite: sulphate of uranium hydrated; bayleyite: carbonate of uranium and of hydrated magnesium; {beta} uranolite: silicate of uranium and of calcium hydrated. For all these minerals, the authors give the crystallographic, optic characters, and the quantitative chemical analyses. On the other hand, the following species, very rare in the french lodgings, didn't permit to do quantitative analyses. These are: the lanthinite: hydrated uranate oxide; the {alpha} uranotile: silicate of uranium and of calcium hydrated; the bassetite: uranium phosphate and of hydrated iron; the hosphuranylite: hydrated uranium phosphate; the becquerelite: hydrated uranium oxide; the curite: oxide of uranium and lead hydrated. Finally, the authors present at the end of this survey a primary mineral: the brannerite, complex of uranium titanate. (author) [French] Dans ce travail, les auteurs etudient les nouveaux mineraux uraniferes francais: parsonsite et renardite, phosphates hydrates de plomb et d'uranium; kasolite: silicate hydrate d'uranium et de plomb uranopilite: sulfate d'uranium hydrate; bayleyite: carbonate d'uranium et de magnesium hydrate; {beta} uranolite: silicate d'uranium et de calcium hydrate. Pour tous ces mineraux, les auteurs donnent les caracteres cristallographiques, optiques, et les analyses chimiques quantitatives. Par contre, les especes suivantes, tres rares dans les gites francais, n'ont pas permis d'effectuer d'analyses quantitatives. Ce sont: l'ianthinite: oxyde uraneux hydrate; l'{alpha} uranotile: silicate d'uranium et de calcium hydrate; le bassetite: phosphate d'uranium et de fer hydrate; la hosphuranylite: phosphate duranium hydrate; la becquerelite: oxyde d'uranium hydrate; la curite: oxyde d

  1. Mapping Hydrated Materials with MER Pancam and MSL Mastcam: Results from Gusev Crater and Meridiani Planum, and Plans for Gale Crater

    Science.gov (United States)

    Rice, M. S.; Bell, J. F.

    2011-12-01

    We have developed a "hydration signature" for mapping H2O- and/or OH-bearing materials at Mars landing sites using multispectral visible to near-infrared (Vis-NIR) observations from the Mars Exploration Rover (MER) Panoramic Camera (Pancam). Pancam's 13 narrowband geology filters cover 11 unique wavelengths in the visible and near infrared (434 to 1009 nm). The hydration signature is based on a strongly negative slope from 934 to 1009 nm that characterizes the spectra of hydrated silica-rich rocks and soils observed by MER Spirit; this feature is likely due to the 2ν1 + ν3 H2O combination band and/or the 3vOH overtone centered near ~1000 nm, whose positions vary slightly depending on bonding to nearest-neighbor atoms. Here we present the ways we have used this hydration signature, in combination with observations of morphology and texture, to remotely identify candidate hydrated materials in Pancam observations. At Gusev Crater, we find that the hydration signature is widespread along Spirit's traverse in the Columbia Hills, which adds to the growing body of evidence that aqueous alteration has played a significant role in the complex geologic history of this site. At Meridiani Planum, the hydration signature is associated with a specific stratigraphic layer ("Smith") exposed within the walls of Victoria Crater. We also discuss limitations to the use of the hydration signature, which can give false detections under specific viewing geometries. This hydration signature can similarly be used to map hydrated materials at the Mars Science Laboratory (MSL) landing site, Gale Crater. The MSL Mast Camera (Mastcam) is a two-instrument suite of fixed-focal length (FFL) cameras, one with a 15-degree field of view (FOV) and the other with a 5.1-degree FOV. Mastcam's narrowband filters cover 9 unique wavelengths in the visible and near-infrared (band centers near 440, 525, 675, 750, 800, 865, 905, 935, and 1035 nm), and are distributed between the two FFL cameras. Full

  2. Detection of local H2O exposed at the surface of Ceres

    Science.gov (United States)

    Combe, Jean-Philippe; McCord, Thomas B.; Tosi, Federico; Ammannito, Eleonora; Carrozzo, Filippo Giacomo; De Sanctis, Maria Cristina; Raponi, Andrea; Byrne, Shane; Landis, Margaret E.; Hughson, Kynan H. G.; Raymond, Carol A.; Russell, Christopher T.

    2016-09-01

    The surface of dwarf planet Ceres contains hydroxyl-rich materials. Theories predict a water ice-rich mantle, and water vapor emissions have been observed, yet no water (H2O) has been previously identified. The Visible and InfraRed (VIR) mapping spectrometer onboard the Dawn spacecraft has now detected water absorption features within a low-illumination, highly reflective zone in Oxo, a 10-kilometer, geologically fresh crater, on five occasions over a period of 1 month. Candidate materials are H2O ice and mineral hydrates. Exposed H2O ice would become optically undetectable within tens of years under current Ceres temperatures; consequently, only a relatively recent exposure or formation of H2O would explain Dawn’s findings. Some mineral hydrates are stable on geological time scales, but their formation would imply extended contact with ice or liquid H2O.

  3. Water retention curve for hydrate-bearing sediments

    Science.gov (United States)

    Dai, Sheng; Santamarina, J. Carlos

    2013-11-01

    water retention curve plays a central role in numerical algorithms that model hydrate dissociation in sediments. The determination of the water retention curve for hydrate-bearing sediments faces experimental difficulties, and most studies assume constant water retention curves regardless of hydrate saturation. This study employs network model simulation to investigate the water retention curve for hydrate-bearing sediments. Results show that (1) hydrate in pores shifts the curve to higher capillary pressures and the air entry pressure increases as a power function of hydrate saturation; (2) the air entry pressure is lower in sediments with patchy rather than distributed hydrate, with higher pore size variation and pore connectivity or with lower specimen slenderness along the flow direction; and (3) smaller specimens render higher variance in computed water retention curves, especially at high water saturation Sw > 0.7. Results are relevant to other sediment pore processes such as bioclogging and mineral precipitation.

  4. Evaluation of Hydrated Lime Filler in Asphalt Mixtures

    OpenAIRE

    Mohammed Abbas Hasan Al-Jumaily

    2008-01-01

    Mineral filler is one of important materials and affecting on properties and quality of asphalt mixtures .There are different types of mineral filler depended on cost and quality , the matter encourages us to achieve this study to evaluate hydrated lime filler effects on properties of asphalt mixes related with strength and durability. Conventional asphaltic concrete mixtures with Portland cement and soft sandstone fillers and mixtures modified with hydrated lime were evaluated for their fund...

  5. HYDRATION AND ENZYME ACTIVITY

    OpenAIRE

    Poole, P.

    1984-01-01

    Hydration induced conformation and dynamic changes are followed using a variety of experimental techniques applied to hen egg white lysozyme. These changes are completed just before the onset of enzyme activity, which occurs before all polar groups are hydrated, and before monolayer coverage is attained. We suggest that these hydration induced changes are necessary for the return of enzyme activity.

  6. Dissolution of Hydrocarbon Gas Hydrates in Seawater at 1030-m; Effects of Porosity, Structure, and Compositional Variation as Determined by High-Definition Video and SEM Imaging.

    Science.gov (United States)

    Stern, L. A.; Peltzer, E. T.; Durham, W. B.; Kirby, S. H.; Brewer, P. G.; Circone, S.; Rehder, G.

    2002-12-01

    We compare dissolution rates of pure, porous, compacted, and oil-contaminated sI methane hydrate and sII methane-ethane hydrate to rates measured previously on pure, compacted, sI methane hydrate and sI carbon dioxide hydrate (Rehder et al., Fall AGU 2001). Laboratory-synthesized test specimens were used in both studies, allowing characterization of test materials prior to their transport and exposure to seawater at 1030-meter depth on the Monterey Canyon seafloor, off coastal Moss Landing, CA. Although pressure and temperature (P-T) conditions at this site are within the nominal P-T equilibrium fields of all gas hydrates tested here, the seawater is undersaturated with respect to the hydrate-forming gas species. Hence, samples dissolve with time, at a rate dependent on water current flow. Four samples were deployed in this second experiment: (1) pure, 30% porous methane hydrate; (2) pure, compacted methane hydrate; (3) pure methane hydrate compacted and then contaminated with a low-T mineral oil; and (4) pure, compacted sII methane-ethane hydrate with methane:ethane molar ratio 0.72. Samples were transferred by pressure vessel at 0 ° C and 15 MPa to the seafloor observatory via the MBARI remotely operated vehicle Ventana. Samples were then exposed to the deep ocean environment and monitored by HDTV camera for several hours at the beginning and end of a 25-hour period. Local current speed and direction were also measured throughout the experiment. Those samples that did not undergo complete dissolution after 25 h were successfully recovered to the laboratory for subsequent analysis by scanning electron microscopy (SEM). Previously, video analysis showed dissolution rates corresponding to 4.0 +/- 0.5 mmole CO2/m2 s for compacted CO2 hydrate samples, and 0.37 +/- 0.03 mmole CH4/m2s for compacted methane hydrate samples (Rehder et al, AGU 2001). The ratio of dissolution rates fits a simple diffusive boundary layer model that incorporates relative gas solubilities

  7. Mapping Hydration with the Mars Exploration Rover (MER) Pancam Instruments: Recent Results from Opportunity at Endeavour Crater

    Science.gov (United States)

    Rice, Melissa S.; Bell, James F., III; Arvidson, Raymond E.; Farrand, William H.; Johnson, Jeffrey R.; Rice, James W.; Ruff, Steven W.; Squyres, Steven W.; Wang, Alian

    2013-04-01

    Using the Mars Exploration Rover (MER) Panoramic Camera (Pancam) instruments, we have developed a "hydration signature" for mapping H2O- and/or OH-bearing materials at Mars landing sites with multispectral visible to near-infrared (Vis-NIR) images. Pancam's 13 narrowband geology filters cover 11 unique wavelengths in the visible and near infrared (434 to 1009 nm) [1-2]. The hydration signature is based on a negative slope from 934 to 1009 nm [3] that characterizes the spectra of hydrated silica-rich rocks and soils observed by MER Spirit; this feature is likely due to the 2ν1 + ν3 H2O combination band and/or the 3νOH overtone centered near ~1000 nm, whose positions vary slightly depending on bonding to nearest-neighbor atoms [4]. The hydration signature is sensitive to many - but not all - hydrated minerals, including silica, gypsum and water ice. At Gusev Crater, the hydration signature is widespread along Spirit's traverse in the Columbia Hills, which adds to the growing body of evidence that aqueous alteration has played a significant role in the complex geologic history of this site [4]. At Meridiani Planum, the hydration signature is associated with a specific stratigraphic layer ("Smith") exposed within the walls of Victoria Crater [5], in addition to light-toned veins composed of calcium sulfate at Cape York on the rim of Endeavour Crater [6]. Recently, Opportunity has completed a traverse loop at Matijevic Hill at the southern end of Cape York and has encountered numerous small, light-toned, fracture-filling veins that may be indicative of fluid flow. Spectra of these veins are also consistent with hydrated materials, as are spectra of "Whitewater Lake" outcrops at Matijevic Hill, which may contain phyllosilicate minerals [7-8]. Here we also discuss limitations to the use of the hydration signature, which can give false detections under specific viewing geometries. For example, the Pancam calibration model assumes that the calibration target behaves as a

  8. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  9. 煤矿接尘工人职业任务现状调查研究%Current occupational tasks of dust exposed coal miners: a cross-sectional study

    Institute of Scientific and Technical Information of China (English)

    朱婷娟; 郭支喜; 郭红梅; 李秀萍; 王晓成; 高彩虹; 宋平平; 余红梅

    2012-01-01

    目的 探讨煤矿接尘工人职业任务与社会人口学、生活习惯、疾病史、职业因素、工作特征的关系.方法 采用分层整群抽样方法抽取山西省煤矿工人2300名进行一般情况问卷和职业任务量表调查.结果 煤矿工人职业任务的重点人群特征为:年龄>40岁,来自市区,经济状况较差,吸烟,饮酒,身体状况较差,井下工作、接尘时间>6年,工作危险度大,社会地位较低等.结论 煤矿接尘工人面临着较重的职业任务,可制定相应的卫生政策减轻煤矿工人职业任务.%Objective To analyze the correlation between occupational tasks and sociodemographic factors, living habits, disease history, occupational factors and working conditions in dust exposed coal miners. Methods We did a general condition questionnaire and occupational task scale survey on 2300 coal miners via stratified sampling in Shanxi Province. Results The characteristics of occupational task in coal miners included >40 years of age, living in urban areas, poor economic condition, smoking, alcohol drinking, poor physical conditions, working underground, having dust exposure of >6 years, engaging in risky work and lower social status. Conclusion Health policies should be implemented to reduce occupational tasks of coal miner as a result of current challenging burden.

  10. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate

    Science.gov (United States)

    Yun, T.S.; Santamarina, C.J.; Ruppel, C.

    2007-01-01

    The mechanical behavior of hydrate-bearing sediments subjected to large strains has relevance for the stability of the seafloor and submarine slopes, drilling and coring operations, and the analysis of certain small-strain properties of these sediments (for example, seismic velocities). This study reports on the results of comprehensive axial compression triaxial tests conducted at up to 1 MPa confining pressure on sand, crushed silt, precipitated silt, and clay specimens with closely controlled concentrations of synthetic hydrate. The results show that the stress-strain behavior of hydrate-bearing sediments is a complex function of particle size, confining pressure, and hydrate concentration. The mechanical properties of hydrate-bearing sediments at low hydrate concentration (probably 50% of pore space), the behavior becomes more independent of stress because the hydrates control both stiffness and strength and possibly the dilative tendency of sediments by effectively increasing interparticle coordination, cementing particles together, and filling the pore space. The cementation contribution to the shear strength of hydrate-bearing sediments decreases with increasing specific surface of soil minerals. The lower the effective confining stress, the greater the impact of hydrate formation on normalized strength.

  11. L'hydratation de la surface de Mars vue par l'imageur spectral OMEGA

    OpenAIRE

    Jouglet, Denis

    2008-01-01

    Water is currently present on Mars as ice, vapor and surface hydration. Hydration is known to be adsorbed water on minerals or prisoned in their structure. It can influence the Martian water cycle as well as enable mineral alteration or exobiology. This PhD thesis studies the global and seasonal aspects of hydration using the data from the visible and near infrared imaging spectrometer OMEGA. Our work is based on the 3 µm hydration absorption feature, which has required to develop an efficien...

  12. Hydration Assessment of Athletes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ KEY POINTS · Although there is no scientific consensus for 1 ) howbest to assess the hydration status of athletes, 2)what criteria to use as acceptable outcome measurements, or 3) the best time to apply practical assessment methods, there are methods that can be used toprovide athletes with useful feedback about their hydration status

  13. Hydration of Portland cement with additions of calcium sulfoaluminates

    Energy Technology Data Exchange (ETDEWEB)

    Le Saout, Gwenn, E-mail: gwenn.le-saout@mines-ales.fr [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Lothenbach, Barbara [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Hori, Akihiro [DENKA Chemicals GmbH, Wehrhahn-Center, Cantadorstr. 3, D-40211 Duesseldorf (Germany); Higuchi, Takayuki [Denki Kagaku Kogyo Kabushiki Kaisha (DENKA), Omi, Itoigawa, Niigata, 949-0393 (Japan); Winnefeld, Frank [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2013-01-15

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C-S-H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA-OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  14. Hydration of Portland cement with additions of calcium sulfoaluminates

    International Nuclear Information System (INIS)

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C–S–H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA–OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  15. Experimental techniques for cement hydration studies

    Directory of Open Access Journals (Sweden)

    Andreas Luttge

    2011-10-01

    Full Text Available Cement hydration kinetics is a complex problem of dissolution, nucleation and growth that is still not well understood, particularly in a quantitative way. While cement systems are unique in certain aspects they are also comparable to natural mineral systems. Therefore, geochemistry and particularly the study of mineral dissolution and growth may be able to provide insight and methods that can be utilized in cement hydration research. Here, we review mainly what is not known or what is currently used and applied in a problematic way. Examples are the typical Avrami approach, the application of Transition State Theory (TST to overall reaction kinetics and the problem of reactive surface area. Finally, we suggest an integrated approach that combines vertical scanning interferometry (VSI with other sophisticated analytical techniques such as atomic force microscopy (AFM and theoretical model calculations based on a stochastic treatment.

  16. Hydration process of nuclear-waste glass: an interim report

    International Nuclear Information System (INIS)

    Aging of simulated nuclear waste glass by contact with a controlled-temperature, humid atmosphere results in the formation of a double hydration layer penetrating the glass, as well as the formation of minerals on the glass surface. The hydration process can be described by Arrhenius behavior between 120 and 2400C. Results suggest that simulated aging reactions are necessary for demonstrating that nuclear waste forms can meet projected Nuclear Regulatory Commission regulations. 16 figures, 4 tables

  17. Spectral reflectance properties (0.4-2.5 μm) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate minerals associated with sulphide-bearing mine wastes

    Science.gov (United States)

    Crowley, J.K.; Williams, D.E.; Hammarstrom, J.M.; Piatak, N.; Chou, I.-Ming; Mars, J.C.

    2003-01-01

    Diffuse reflectance spectra of 15 mineral species commonly associated with sulphide-bearing mine wastes show diagnostic absorption bands related to electronic processes involving ferric and/or ferrous iron, and to vibrational processes involving water and hydroxyl. Many of these absorption bands are relatively broad and overlapping; however, spectral analysis methods, including continuum removal and derivative analysis, permit most of the minerals to be distinguished. Key spectral differences between the minerals are illustrated in a series of plots showing major absorption band centres and other spectral feature positions. Because secondary iron minerals are sensitive indicators of pH, Eh, relative humidity, and other environmental conditions, spectral mapping of mineral distributions promises to have important application to mine waste remediation studies.

  18. Hydrated phases and pore solution composition in cement solidified saltstone waste forms

    International Nuclear Information System (INIS)

    The mineral phases and pore solution composition of hydrated cement solidified synthetic saltstone waste forms are quantified using thermogravimetric analysis, quantitative X-ray powder diffraction, and inductively coupled plasma atomic emission spectroscopy. Although the synthetic waste contained additional sulfate, the overall chemistry of the system suppressed the formation of sulfate-bearing mineral phases. This was corroborated by the pore solution analysis that indicated very high sulfur concentrations. After one year of hydration, the mineral phases present and the composition of the pore solution are stable, and are generally consistent with expectations based on the hydration of high volume portland cement replacement mixtures. (authors)

  19. Effect of Active Mineral on Load-Bearing Autoclaved Aerocrete

    Institute of Scientific and Technical Information of China (English)

    彭苏萍; 王立刚

    2001-01-01

    Influence of ultrafine active mineral (DK mineral) on mechanical property of fly ash based load-bearing aerocrete was analyzed. The result shows that the addition of DK mineral in a suitable amount can enhance obviously the compressive strength of aerocrete. According to the SEM-EDS and X-ray diffraction analyses, the crystal shapes of hydration products are well developed and interlocked for samples containing DK mineral. Its microstructure is denser than that of the samples without DK mineral. Having a good activation, the DK mineral makes both the type and the quantity of hydrated products be obviously superior to that of the contrast sample.

  20. Dissolution rates of pure methane hydrate and carbon-dioxide hydrate in undersaturated seawater at 1000-m depth

    Science.gov (United States)

    Rehder, G.; Kirby, S.H.; Durham, W.B.; Stern, L.A.; Peltzer, E.T.; Pinkston, J.; Brewer, P.G.

    2004-01-01

    To help constrain models involving the chemical stability and lifetime of gas clathrate hydrates exposed at the seafloor, dissolution rates of pure methane and carbon-dioxide hydrates were measured directly on the seafloor within the nominal pressure-temperature (P/T) range of the gas hydrate stability zone. Other natural boundary conditions included variable flow velocity and undersaturation of seawater with respect to the hydrate-forming species. Four cylindrical test specimens of pure, polycrystalline CH4 and CO2 hydrate were grown and fully compacted in the laboratory, then transferred by pressure vessel to the seafloor (1028 m depth), exposed to the deep ocean environment, and monitored for 27 hours using time-lapse and HDTV cameras. Video analysis showed diameter reductions at rates between 0.94 and 1.20 ??m/s and between 9.0 and 10.6 ?? 10-2 ??m/s for the CO2 and CH4 hydrates, respectively, corresponding to dissolution rates of 4.15 ?? 0.5 mmol CO2/m2s and 0.37 ?? 0.03 mmol CH4/m2s. The ratio of the dissolution rates fits a diffusive boundary layer model that incorporates relative gas solubilities appropriate to the field site, which implies that the kinetics of the dissolution of both hydrates is diffusion-controlled. The observed dissolution of several mm (CH4) or tens of mm (CO2) of hydrate from the sample surfaces per day has major implications for estimating the longevity of natural gas hydrate outcrops as well as for the possible roles of CO2 hydrates in marine carbon sequestration strategies. ?? 2003 Elsevier Ltd.

  1. Withdrawing Nutrition, Hydration

    Science.gov (United States)

    Module eleven of the EPEC-O Self-Study Original Version discusses the general aspects of withholding or withdrawing of life-sustaining therapies, and presents a specific application to artificial nutrition and hydration.

  2. Hydrate morphology: Physical properties of sands with patchy hydrate saturation

    Science.gov (United States)

    Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.

    2012-01-01

    The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.

  3. A Proposed Unified Theory of Hydrated Asteroids

    Science.gov (United States)

    Rivkin, Andrew S.

    2016-10-01

    The last decade has seen tremendous growth in the study of hydrated and hydroxylated minerals (hereafter simply called "hydrated minerals") on asteroids. Several workers have used absorptions in the 3-µm region and a correlated absorption near 0.7 µm to determine not only the presence or absence of these minerals but gain insight into the compositions of asteroid surfaces. Spectra of hundreds of asteroids have been measured and published or presented at meetings, and we are in a position to use these newer datasets to globally assess the patterns and relationships we see, as previously done by Jones et al. (1990) and Takir et al. (2012). There are several points to be addressed by any such assessment. Several different band shapes are seen in the 3-µm region, only one of which is seen in the hydrated meteorites in our collections. However, each of the main 3-µm band shapes is represented among parent bodies of collisional families. There seems to be little correlation in general between asteroid spectral class and 3-µm band shape, save for the Ch meteorites which are overwhelmingly likely to share the same band shape as the CM meteorites. Ceres has an unusual but not unique band shape, which has thus far only been found on the largest asteroids. I will present an outline scenario for the formation and evolution of hydrated asteroids, where aqueous alteration serves to lithify some objects while other objects remain unlithified and still others differentiate and suffer collisional modification. While some details will no doubt be altered to account for better or new information, this scenario is offered as a starting point for discussion.

  4. Thermodynamic and structural characteristics of cement minerals at elevated temperature

    International Nuclear Information System (INIS)

    We have instituted an experimental and including program designed to elucidate the structural and thermodynamic response of cement minerals to elevated temperature. Components of the program involve: (a) synthesis of hydrated Ca-silicates; (b) structural analysis of cement phases induced by heating and dehydration/rehydration; (c) mechanistic and thermodynamic descriptions of the hydration/dehydration behavior of hydrated Ca-silicates as a function of temperature, pressure and relative humidity; (d) study of naturally occurring hydrated Ca-silicates; and (e) measurements of thermodynamic data for hydrated Ca-silicates

  5. When proteins are completely hydrated in crystals.

    Science.gov (United States)

    Carugo, Oliviero

    2016-08-01

    In the crystalline state, protein surface patches that do not form crystal packing contacts are exposed to the solvent and one or more layers of hydration water molecules can be observed. It is well known that these water molecules cannot be observed at very low resolution, when the scarcity of experimental information precludes the observation of several parts of the protein molecule, like for example side-chains at the protein surface. On the contrary, more details are observable at high resolution. Here it is shown that it is necessary to reach a resolution of about 1.5-1.6Å to observe a continuous hydration layer at the protein surface. This contrasts previous estimations, which were more tolerant and according to which a resolution of 2.5Å was sufficient to describe at the atomic level the structure of the hydration layer. These results should prove useful in guiding a more rigorous selection of structural data to study protein hydration and in interpreting new crystal structures. PMID:27112977

  6. Mechanical and electromagnetic properties of northern Gulf of Mexico sediments with and without THF hydrates

    Science.gov (United States)

    Lee, J.Y.; Santamarina, J.C.; Ruppel, C.

    2008-01-01

    Using an oedometer cell instrumented to measure the evolution of electromagnetic properties, small strain stiffness, and temperature, we conducted consolidation tests on sediments recovered during drilling in the northern Gulf of Mexico at the Atwater Valley and Keathley Canyon sites as part of the 2005 Chevron Joint Industry Project on Methane Hydrates. The tested specimens include both unremolded specimens (as recovered from the original core liner) and remolded sediments both without gas hydrate and with pore fluid exchanged to attain 100% synthetic (tetrahydrofuran) hydrate saturation at any stage of loading. Test results demonstrate the extent to which the electromagnetic and mechanical properties of hydrate-bearing marine sediments are governed by the vertical effective stress, stress history, porosity, hydrate saturation, fabric, ionic concentration of the pore fluid, and temperature. We also show how permittivity and electrical conductivity data can be used to estimate the evolution of hydrate volume fraction during formation. The gradual evolution of geophysical properties during hydrate formation probably reflects the slow increase in ionic concentration in the pore fluid due to ion exclusion in closed systems and the gradual decrease in average pore size in which the hydrate forms. During hydrate formation, the increase in S-wave velocity is delayed with respect to the decrease in permittivity, consistent with hydrate formation on mineral surfaces and subsequent crystal growth toward the pore space. No significant decementation/debonding occurred in 100% THF hydrate-saturated sediments during unloading, hence the probability of sampling hydrate-bearing sediments without disturbing the original sediment fabric is greatest for samples in which the gas hydrate is primarily responsible for maintaining the sediment fabric and for which the time between core retrieval and restoration of in situ effective stress in the laboratory is minimized. In evaluating the

  7. Evaluation of Hydrated Lime Filler in Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Mohammed Abbas Hasan Al-Jumaily

    2008-01-01

    Full Text Available Mineral filler is one of important materials and affecting on properties and quality of asphalt mixtures .There are different types of mineral filler depended on cost and quality , the matter encourages us to achieve this study to evaluate hydrated lime filler effects on properties of asphalt mixes related with strength and durability. Conventional asphaltic concrete mixtures with Portland cement and soft sandstone fillers and mixtures modified with hydrated lime were evaluated for their fundamental engineering properties as defined by Marshall properties , index of retained strength , indirect tensile strength , permanent deformation characteristics , and fatigue resistance .A typical dense graded mixture employed in construction of surface course pavement in Iraq in accordance with SCRB specifications was used .The materials used in this study included mineral aggregate materials (coarse and fine sizes were originally obtained from Najaf Sea quarries and two grades of asphalt cements produced from Daurah refinery which are D47 and D66 . The physical properties , stiffness modulus and chemical composition are evaluated for the recovered asphalt cement from prepared asphalt mixes containing various filler types .The paper results indicated that the addition of hydrated lime as mineral filler improved the permanent deformation characteristics and fatigue life and the use of hydrated lime will decrease the moisture susceptibility of the asphalt mixtures.

  8. Protein hydration and dynamics

    International Nuclear Information System (INIS)

    Inelastic neutron scattering can measure the protein thermal fluctuations under the physiological aqueous environment, especially it is powerful to observe the low-energy protein dynamics in THz region, which are revealed theoretically to be coupled with solvations. Neutron enables the selective observation of protein and hydration water by deuteration. The complementary analysis with molecular dynamics simulation is also effective for the study of protein hydration. Some examples of the application toward the understanding of molecular basis of protein functions will be introduced. (author)

  9. Formation of porous gas hydrates

    CERN Document Server

    Salamatin, Andrey N

    2015-01-01

    Gas hydrates grown at gas-ice interfaces are examined by electron microscopy and found to have a submicron porous texture. Permeability of the intervening hydrate layers provides the connection between the two counterparts (gas and water molecules) of the clathration reaction and makes further hydrate formation possible. The study is focused on phenomenological description of principal stages and rate-limiting processes that control the kinetics of the porous gas hydrate crystal growth from ice powders. Although the detailed physical mechanisms involved in the porous hydrate formation still are not fully understood, the initial stage of hydrate film spreading over the ice surface should be distinguished from the subsequent stage which is presumably limited by the clathration reaction at the ice-hydrate interface and develops after the ice grain coating is finished. The model reveals a time dependence of the reaction degree essentially different from that when the rate-limiting step of the hydrate formation at...

  10. The Early Strength of Slag Cements with Addition of Hydrate Microcrystals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effect of hydrate microcrystals such as calcium silicate hydrates (CSH) and ettringite on the early strength of slag cements was studied.The authors explored the possibility of improving the early strength of the slag cement by applying crystal seed technology.It is shown that slag crystal seeds make the early strength of the cement increased due to the action of hydrate crystal seeds,which speed up the hydration of clinker minerals in the nucleation of ettringite.Therefore,the early strength of the slag cement is obviously improved.

  11. Hydration of calcium sulfoaluminate cements - Experimental findings and thermodynamic modelling

    International Nuclear Information System (INIS)

    Calcium sulfoaluminate cements (CSA) are a promising low-CO2 alternative to ordinary Portland cements and are as well of interest concerning their use as binder for waste encapsulation. In this study, the hydration of two CSA cements has been investigated experimentally and by thermodynamic modelling between 1 h and 28 days at w/c ratios of 0.72 and 0.80, respectively. The main hydration product of CSA is ettringite, which precipitates together with amorphous Al(OH)3 until the calcium sulfate is consumed after around 1-2 days of hydration. Afterwards, monosulfate is formed. In the presence of belite, straetlingite occurs as an additional hydration product. The pore solution analysis reveals that straetlingite can bind a part of the potassium ions, which are released by the clinker minerals. The microstructure of both cements is quite dense even after 16 h of hydration, with not much pore space available at a sample age of 28 days. The pore solution of both cements is dominated during the first hours of hydration by potassium, sodium, calcium, aluminium and sulfate; the pH is around 10-11. When the calcium sulfate is depleted, the sulfate concentration drops by a factor of 10. This increases pH to around 12.5-12.8. Based on the experimental data, a thermodynamic hydration model for CSA cements based on cement composition, hydration kinetics of clinker phases and calculations of thermodynamic equilibria by geochemical speciation has been established. The modelled phase development with ongoing hydration agrees well with the experimental findings.

  12. Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties

    Science.gov (United States)

    Clennell, M.B.; Hovland, M.; Booth, J.S.; Henry, P.; Winters, W.J.

    1999-01-01

    The stability of submarine gas hydrates is largely dictated by pressure and temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of deep marine sediments may also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our conceptual model presumes that gas hydrate behaves in a way analogous to ice in a freezing soil. Hydrate growth is inhibited within fine-grained sediments by a combination of reduced pore water activity in the vicinity of hydrophilic mineral surfaces, and the excess internal energy of small crystals confined in pores. The excess energy can be thought of as a "capillary pressure" in the hydrate crystal, related to the pore size distribution and the state of stress in the sediment framework. The base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature (nearer to the seabed) than would be calculated from bulk thermodynamic equilibrium. Capillary effects or a build up of salt in the system can expand the phase boundary between hydrate and free gas into a divariant field extending over a finite depth range dictated by total methane content and pore-size distribution. Hysteresis between the temperatures of crystallization and dissociation of the clathrate is also predicted. Growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, and lenses in muds; cements in sands) can largely be explained by capillary effects, but kinetics of nucleation and growth are also important. The formation of concentrated gas hydrates in a partially closed system with respect to material transport, or where gas can flush through the system, may lead to water depletion in the host sediment. This "freeze-drying" may be detectable through physical changes to the sediment (low water content and overconsolidation) and/or chemical anomalies in the pore waters and metastable

  13. Mineral resource of the month: vermiculite

    Science.gov (United States)

    Tanner, Arnold O.

    2014-01-01

    Vermiculite comprises a group of hydrated, laminar magnesium-aluminum-iron silicate minerals resembling mica. They are secondary minerals, typically altered biotite, iron-rich phlogopite or other micas or clay-like minerals that are themselves sometimes alteration products of amphibole, chlorite, olivine and pyroxene. Vermiculite deposits are associated with volcanic ultramafic rocks rich in magnesium silicate minerals, and flakes of the mineral range in color from black to shades of brown and yellow. The crystal structure of vermiculite contains water molecules, a property that is critical to its processing for common uses.

  14. The Hydration of Blended Cement at Low W/B Ratio

    Institute of Scientific and Technical Information of China (English)

    HU Shu-guang; LU Lin-nu; HE Yong-jia; LI Yue; DING Qing-jun

    2003-01-01

    The hydration process, hydration product and hydration heat of blended cement paste mixed with mineral admixture and expansive agent at low W/B ratio are studied by XRD , thermo analysis , and calorimetry instrument, and they were compared with those of pure cement paste. The results show that pure cement and blended cement at low W/B ratio have the same types of hydration products, but their respective amounts of hydration products of various blended cements at same ages and the vatiation law of the amount of same hydration products with ages are different; Tim joint effect of tumefaction of gel-ettringite due to water absorption and the expansive pressure on the pore and riff caused by the crystalloid ettringite is the impetus of the volume expansion of cement paste , and the former effect is much greater than the latter one .

  15. Obsidian hydration profile measurements using a nuclear reaction technique

    Science.gov (United States)

    Lee, R.R.; Leich, D.A.; Tombrello, T.A.; Ericson, J.E.; Friedman, I.

    1974-01-01

    AMBIENT water diffuses into the exposed surfaces of obsidian, forming a hydration layer which increases in thickness with time to a maximum depth of 20-40 ??m (ref. 1), this layer being the basic foundation of obsidian dating2,3. ?? 1974 Nature Publishing Group.

  16. Cryopegs as destabilization factor of intra-permafrost gas hydrates

    Science.gov (United States)

    Chuvilin, Evgeny; Bukhanov, Boris; Istomin, Vladimir

    2016-04-01

    A characteristic feature of permafrost soils in the Arctic is widespread intra-permafrost unfrozen brine lenses - cryopegs. They are often found in permafrost horizons in the north part of Western Siberia, in particular, on the Yamal Peninsula. Cryopegs depths in permafrost zone can be tens and hundreds of meters from the top of frozen strata. The chemical composition of natural cryopegs is close to sea waters, but is characterized by high mineralization. They have a sodium-chloride primary composition with a minor amount of sulphate. Mineralization of cryopegs brine is often hundreds of grams per liter, and the temperature is around -6…-8 °C. The formation of cryopegs in permafrost is associated with processes of long-term freezing of sediments and cryogenic concentration of salts and salt solutions in local areas. The cryopegs' formation can take place in the course of permafrost evolution at the sea transgressions and regressions during freezing of saline sea sediments. Very important feature of cryopegs in permafrost is their transformation in the process of changing temperature and pressure conditions. As a result, the salinity and chemical composition are changed and in addition the cryopegs' location can be changed during their migration. The cryopegs migration violates the thermodynamic conditions of existence intra-permafrost gas hydrate formations, especially the relic gas hydrates deposits, which are situated in the shallow permafrost up to 100 meters depth in a metastable state [1]. The interaction cryopegs with gas hydrates accumulations can cause decomposition of intra-permafrost hydrates. Moreover, the increasing of salt and unfrozen water content in sedimentary rocks sharply reduce the efficiency of gas hydrates self-preservation in frozen soils. It is confirmed by experimental investigations of interaction of frozen gas hydrate bearing sediments with salt solutions [2]. So, horizons with elevated pressure can appear, as a result of gas hydrate

  17. Modeling Hydrates and the Gas Hydrate Markup Language

    OpenAIRE

    Wang, Weihua; Moridis, George; Wang, Runqiang; Xiao, Yun; Li, Jianhui

    2007-01-01

    Natural gas hydrates, as an important potential fuels, flow assurance hazards, and possible factors initiating the submarine geo-hazard and global climate change, have attracted the interest of scientists all over the world. After two centuries of hydrate research, a great amount of scientific data on gas hydrates has been accumulated. Therefore the means to manage, share, and exchange these data have become an urgent task. At present, metadata (Markup Language) is recognized as one of the mo...

  18. Authigenic Gypsum in Gas-Hydrate Associated Sediments from the East Coast of India (Bay of Bengal)

    Digital Repository Service at National Institute of Oceanography (India)

    Kocherla, M.

    Authigenic gypsum crystals, along with pyrite and carbonate mineralization, predominantly calcites were noticed in distinct intervals in a 32 m long piston core, collected in the gas hydrate-bearing sediments in the northern portion of the Krishna...

  19. Gas hydrates of Lake Baikal

    OpenAIRE

    Khlystov, O.; De Batist, M.; Shoji, H; Nishio, S.; L. Naudts; J. Poort

    2011-01-01

    This paper reviews some of the results of recent gas-hydrate studies in Lake Baikal, the only fresh-water lake in the world containing gas hydrates in its sedimentary infill. We give a historical overview of the different investigations and discoveries and highlight some recent breakthroughs in our understanding of the Baikal hydrate system. The importance of mapping mud volcanoes and gas seeps is stressed, as these are currently the only locations where gas hydrates at or very close to the f...

  20. Uruguay minerals fuels

    International Nuclear Information System (INIS)

    In this report the bases for the development of the necessary works of prospection are exposed on mineral fuels of Uruguay. We have taken the set from: coal, lutitas bituminous, uranium, petroleum and disturbs. In all the cases we have talked about to the present state of the knowledge and to the works that we considered necessary to develop in each case

  1. An Experimental Determination of Natural Clathrate Hydrate Dissolution Rates in the Deep Sea

    Science.gov (United States)

    Peltzer, E. T.; Walz, P. M.; Brewer, P. G.; Dunk, R. M.; Hester, K.; Sloan, E. D.

    2006-12-01

    In August of 2006 we carried out a series of geochemical experiments on the massive Structure II hydrate mounds in Barkley Canyon using MBARI's ROV Tiburon deployed from the R/V Western Flyer. One of the primary questions regarding the fate of this hydrate exposure at 850m depth is the temporal persistence of un-sedimented surfaces exposed to steady currents of seawater undersaturated with methane. Previous work on the dissolution rate of laboratory prepared methane hydrate (Rehder et al., 2004) showed diameter reduction rates of ~3 m/year. These formations appeared largely unchanged from the earlier descriptions and photographs contained in media reports released in 2002 and later (Chapman et al., 2004; Lu et al., 2005) leading us to speculate that these hydrates are far slower to dissolve. In order to quantify their dissolution rates, samples of the outcropping hydrate, both a pure white hydrate and a much harder yellow, oil-stained hydrate, were collected using an ROV operated coring device and hydraulically expelled into an open mesh container for time-lapse photography over the course of the next 48 hours. By exposing these samples of natural hydrate to the flow of ambient seawater we hoped to observe the dissolution rate consistent with the local environmental conditions. Initial analysis of the time-lapse photographs obtained using a Nikon Cool-pix camera revealed an apparent diameter reduction rate for the yellow hydrate of approximately 0.040 μm/s, corresponding to a volume loss rate of 1.3×10-6cm3/cm2/s. The observed dissolution rate of the white hydrate was significantly faster, consistent with the observed large-scale undercutting of the exposed layered structures. Assuming that the yellow hydrate has a density of 0.93 g/cm3 and an average hydration number near 6, this yields a guest gas loss rate of about 9.4×10-9 mol/cm2/s. This is approximately one-fourth the rate that was observed for the dissolution of synthetic Structure I methane hydrates

  2. In situ X-ray diffraction observation of smectite hydration under constant volume

    International Nuclear Information System (INIS)

    Smectite (especially, montmorillonite) is the major clay mineral constituent of bentonite, which is designed to play a key role as a buffer material in geological repositories for the final disposal of radioactive waste in Japan. It is therefore crucial to understand the hydration behavior of smectite in terms of swelling during hydration and saturation processes. Against such a background, the authors simultaneously observed behaviors of smectite swelling at the micro-level (i.e., both the generation of swelling pressure and the change of hydration state). In the experiments, deionized water was allowed to permeate into a dried specimen of smectite (named Kunipia-F®) with different dry densities (ρd: 0.97, 1.23, 1.43, 1.64 and 1.88 Mg/m3) under conditions of constant temperature and volume. The swelling pressure was measured using an in situ uniaxial consolidation apparatus during the water feeding process. Changes in local hydration states (i.e., one-molecular-layer hydration states to three-molecular-layer hydration states) were also simultaneously observed. Hydration among these different states propagated from the inlet side to the outlet side of the specimen. The authors discussed the relationships governing the hydration state, swelling pressure, the number of hydration moles, dry density, equilibrium final pressure, and then the dynamic mechanism behind pressure propagation. (author)

  3. Low-δD hydration rinds in Yellowstone perlites record rapid syneruptive hydration during glacial and interglacial conditions

    Science.gov (United States)

    Bindeman, Ilya N.; Lowenstern, Jacob B.

    2016-01-01

    rinds in perlites, measuring hundreds of microns, preserve the original D/H values of hydrating water as a recorder of paleoclimate conditions. Measured δD values in perlitic lavas are −150 to −191 or 20–40 ‰ lower than glass hydrated by modern Yellowstone waters. This suggests that Yellowstone perlites record the low-δD signature of glacial ice. Cooling calculations, combined with the observed high water diffusion coefficients noted for 60–150 °C, suggest that if sufficient hot water or steam is available, any rhyolite flow greater than ~5 m thick can develop the observed ~250-µm hydration rinds within the expected timescale of cooling (weeks–years). As the process of hydration involves shattering of 30- to 100-µm-thick slivers to expose unhydrated rhyolite glass, the time required for hydration may be even shorter. Rapid hydration and formation of relatively thick-walled glass shards allow perlites to provide a snapshot view of the meteoric water (and thus climate) at the time of initial alteration. Perlites retain their initial hydration D/H signal better than thin-walled ash, which in contrast hydrates over many thousands of years with time-averaged precipitation.

  4. Gas hydrate dissociation in sediments: Pressure-temperature evolution

    Science.gov (United States)

    Kwon, Tae-Hyuk; Cho, Gye-Chun; Santamarina, J. Carlos

    2008-03-01

    Hydrate-bearing sediments may destabilize spontaneously as part of geological processes, unavoidably during petroleum drilling/production operations or intentionally as part of gas extraction from the hydrate itself. In all cases, high pore fluid pressure generation is anticipated during hydrate dissociation. A comprehensive formulation is derived for the prediction of fluid pressure evolution in hydrate-bearing sediments subjected to thermal stimulation without mass transfer. The formulation considers pressure- and temperature-dependent volume changes in all phases, effective stress-controlled sediment compressibility, capillarity, and the relative solubilities of fluids. Salient implications are explored through parametric studies. The model properly reproduces experimental data, including the PT evolution along the phase boundary during dissociation and the effect of capillarity. Pore fluid pressure generation is proportional to the initial hydrate fraction and the sediment bulk stiffness; is inversely proportional to the initial gas fraction and gas solubility; and is limited by changes in effective stress that cause the failure of the sediment. When the sediment stiffness is high, the generated pore pressure reflects thermal and pressure changes in water, hydrate, and mineral densities. Comparative analyses for CO2 and CH4 highlight the role of gas solubility in excess pore fluid pressure generation. Dissociation in small pores experiences melting point depression due to changes in water activity, and lower pore fluid pressure generation due to the higher gas pressure in small gas bubbles. Capillarity effects may be disregarded in silts and sands, when hydrates are present in nodules and lenses and when the sediment experiences hydraulic fracture.

  5. Hydration and physical performance.

    Science.gov (United States)

    Murray, Bob

    2007-10-01

    There is a rich scientific literature regarding hydration status and physical function that began in the late 1800s, although the relationship was likely apparent centuries before that. A decrease in body water from normal levels (often referred to as dehydration or hypohydration) provokes changes in cardiovascular, thermoregulatory, metabolic, and central nervous function that become increasingly greater as dehydration worsens. Similarly, performance impairment often reported with modest dehydration (e.g., -2% body mass) is also exacerbated by greater fluid loss. Dehydration during physical activity in the heat provokes greater performance decrements than similar activity in cooler conditions, a difference thought to be due, at least in part, to greater cardiovascular and thermoregulatory strain associated with heat exposure. There is little doubt that performance during prolonged, continuous exercise in the heat is impaired by levels of dehydration >or= -2% body mass, and there is some evidence that lower levels of dehydration can also impair performance even during relatively short-duration, intermittent exercise. Although additional research is needed to more fully understand low-level dehydration's effects on physical performance, one can generalize that when performance is at stake, it is better to be well-hydrated than dehydrated. This generalization holds true in the occupational, military, and sports settings.

  6. Some thermodynamical aspects of protein hydration water

    Energy Technology Data Exchange (ETDEWEB)

    Mallamace, Francesco, E-mail: francesco.mallamace@unime.it [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Corsaro, Carmelo [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); CNR-IPCF, Viale F. Stagno D’Alcontres 37, I-98158 Messina (Italy); Mallamace, Domenico [Dipartimento SASTAS, Università di Messina, I-98166 Messina (Italy); Vasi, Sebastiano [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Vasi, Cirino [CNR-IPCF, Viale F. Stagno D’Alcontres 37, I-98158 Messina (Italy); Stanley, H. Eugene [Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Chen, Sow-Hsin [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-06-07

    We study by means of nuclear magnetic resonance the self-diffusion of protein hydration water at different hydration levels across a large temperature range that includes the deeply supercooled regime. Starting with a single hydration shell (h = 0.3), we consider different hydrations up to h = 0.65. Our experimental evidence indicates that two phenomena play a significant role in the dynamics of protein hydration water: (i) the measured fragile-to-strong dynamic crossover temperature is unaffected by the hydration level and (ii) the first hydration shell remains liquid at all hydrations, even at the lowest temperature.

  7. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)

    2012-07-01

    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  8. Investigation on Gas Storage in Methane Hydrate

    Institute of Scientific and Technical Information of China (English)

    Zhigao Sun; Rongsheng Ma; Shuanshi Fan; Kaihua Guo; Ruzhu Wang

    2004-01-01

    The effect of additives (anionic surfactant sodium dodecyl sulfate (SDS), nonionic surfactant alkyl polysaccharide glycoside (APG), and liquid hydrocarbon cyclopentane (CP)) on hydrate induction time and formation rate, and storage capacity was studied in this work. Micelle surfactant solutions were found to reduce hydrate induction time, increase methane hydrate formation rate and improve methane storage capacity in hydrates. In the presence of surfactant, hydrate could form quickly in a quiescent system and the energy costs of hydrate formation were reduced. The critical micelle concentrations of SDS and APG water solutions were found to be 300× 10-6 and 500× 10-6 for methane hydrate formation system respectively. The effect of anionic surfactant (SDS) on methane storage in hydrates is more pronounced compared to a nonionic surfactant (APG). CP also reduced hydrate induction time and improved hydrate formation rate, but could not improve methane storage in hydrates.

  9. CO2 Driven Mineral Transformations in Fractured Reservoir

    Science.gov (United States)

    Schaef, T.

    2015-12-01

    Engineering fracture systems in low permeable formations to increase energy production, accelerate heat extraction, or to enhance injectivity for storing anthropogenic CO2, is a challenging endeavor. To complicate matters, caprocks, essential components of subsurface reservoirs, need to maintain their sealing integrity in this modified subsurface system. Supercritical CO2 (scCO2), a proposed non-aqueous based working fluid, is capable of driving mineral transformations in fracture environments. Water dissolution in scCO2 significantly impacts the reactivity of this fluid, largely due to the development of thin adsorbed H2O films on the surfaces of exposed rocks and minerals. Adsorbed H2O films are geochemically complex microenvironments that host mineral dissolution and precipitation processes that could be tailored to influence overall formation permeability. Furthermore, manipulating the composition of injected CO2 (e.g., moisture content and/or reactive gases such as O2, NOx, or SOx) could stimulate targeted mineral transformations that enhance or sustain reservoir performance. PNNL has developed specialized experimental techniques that can be used to characterize chemical reactions occurring between minerals and pressurized gases. For example, hydration of a natural shale sample (Woodford Shale) has been characterized by an in situ infrared spectroscopic technique as water partitions from the scCO2 onto the shale. Mineral dissolution and carbonate precipitation reactions were tracked by monitoring changes of Si-O and C-O stretching bands, respectively Structural changes indicated expandable clays in the shale such as montmorillonite are intercalated with scCO2, a process not observed with the non-expandable kaolinite component. Extreme scale ab initio molecular dynamics simulations were used in conjunction with model mineral systems to identify the driving force and mechanism of water films. They showed that the film nucleation and formation on minerals is

  10. Animated molecular dynamics simulations of hydrated caesium-smectite interlayers

    Directory of Open Access Journals (Sweden)

    Sposito Garrison

    2002-09-01

    Full Text Available Computer animation of center of mass coordinates obtained from 800 ps molecular dynamics simulations of Cs-smectite hydrates (1/3 and 2/3 water monolayers provided information concerning the structure and dynamics of the interlayer region that could not be obtained through traditional simulation analysis methods. Cs+ formed inner sphere complexes with the mineral surface, and could be seen to jump from one attracting location near a layer charge site to the next, while water molecules were observed to migrate from the hydration shell of one ion to that of another. Neighboring ions maintained a partial hydration shell by sharing water molecules, such that a single water molecule hydrated two ions simultaneously for hundreds of picoseconds. Cs-montmorillonite hydrates featured the largest extent of this sharing interaction, because interlayer ions were able to inhabit positions near surface cavities as well as at their edges, close to oxygen triads. The greater positional freedom of Cs+ within the montmorillonite interlayer, a result of structural hydroxyl orientation and low tetrahedral charge, promoted the optimization of distances between cations and water molecules required for water sharing. Preference of Cs+ for locations near oxygen triads was observed within interlayer beidellite and hectorite. Water molecules also could be seen to interact directly with the mineral surface, entering its surface cavities to approach attracting charge sites and structural hydroxyls. With increasing water content, water molecules exhibited increased frequency and duration of both cavity habitation and water sharing interactions. Competition between Cs+ and water molecules for surface sites was evident. These important cooperative and competitive features of interlayer molecular behavior were uniquely revealed by animation of an otherwise highly complex simulation output.

  11. Percutaneous Absorption of Haloacetonitriles and Chloral Hydrate and Simulated Human Exposures

    OpenAIRE

    Trabaris, Maria; Laskin, Jeffrey D.; Weisel, Clifford P.

    2011-01-01

    Disinfection-by-products (DBPs) have long been a human health concern and many are known carcinogens and teratogens. Skin is exposed to DBPs in water through bathing and swimming; however, dermal uptake of many DBPs has not been characterized. The present studies were initiated to measure the permeation coefficients (Kp) for haloacetonitriles (HANs) and chloral hydrate (CH), important cytotoxic DBPs. The Kp values measured using fully hydrated dermatomed torso skin at 37 °C for the HANs range...

  12. The influence of sulfuric environments on concretes elaborated with sulfate resistant cements and mineral admixtures. Part 2: Concrete exposed to Magnesium Sulfate (MgSO4) = Estudio de la influencia de los medios con presencia de sulfatos en hormigones con cementos sulforresistentes y adiciones minerales. Parte 2.Hormigones expuestos a sulfato magnésico (MgSO4)

    OpenAIRE

    Bernal Camacho, Jesús Manuel; Mahmoud Abdelkader, Safwat; Reyes Pozo, Encarnación; Monteagudo Viera, Silvia M.

    2013-01-01

    The present work studies the resistant of the concrete against magnesium sulfate (MgSO4) and compare the results with values obtained previously of the same concretes exposed to sodium sulfate (Na2SO4). Thus, it is possible analyze the influence of the cation type. To that end, four different concrete mixes were made with sulfur resistant cement and mineral admixtures (silica fume, fly ash and blast furnace slag). The concretes were submerged for different period in magnesium sulfate (MgSO4)....

  13. A Novel Method for Single Sample Multi-Axial Nanoindentation of Hydrated Heterogeneous Tissues Based on Testing Great White Shark Jaws

    OpenAIRE

    Ferrara, Toni L.; Philip Boughton; Eve Slavich; Stephen Wroe

    2013-01-01

    Nanomechanical testing methods that are suitable for a range of hydrated tissues are crucial for understanding biological systems. Nanoindentation of tissues can provide valuable insights into biology, tissue engineering and biomimetic design. However, testing hydrated biological samples still remains a significant challenge. Shark jaw cartilage is an ideal substrate for developing a method to test hydrated tissues because it is a unique heterogeneous composite of both mineralized (hard) and ...

  14. Hydration in soccer: a review

    OpenAIRE

    Monteiro Cristiano Ralo; Guerra Isabela; Barros Turíbio Leite de

    2003-01-01

    Hydration should be considered before, during and after the exercise. This review intends to approach the main points of hydration process in soccer. The replacement of fluids during exercise is proportional to some factors, such as: exercise intensity; climatic conditions; the athlete's acclimatization; the athlete's physical conditioning; physiologic individual characteristics and the player's biomechanics. Performance is improved when players ingest not only water but also carbohydrate. Th...

  15. Norwegian Research Strategies on gas Hydrates and Natural Seeps in the Nordic Seas Region (GANS)

    Science.gov (United States)

    Hjelstuen, B. O.; Sejrup, H. P.; Andreassen, K.; Boe, R.; Eldholm, O.; Hovland, M.; Knies, J.; Kvalstad, T.; Kvamme, B.; Mienert, J.; Pedersen, R. B.

    2004-12-01

    Continuous leakage of methane to the oceans from hydrate reservoirs that partially are exposed towards the seafloor is an increasing international concern, as the greenhouse gas methane is significantly more (c. 20 times) aggressive than CO2. In Norway we have research groups with interest and experience on natural seeps and gas hydrates. These features, and processes related to them, are challenging research targets which demands inputs from different fields if important research breakthroughs shall be made. In February 2004 deep sea researchers from the University of Tromso, Geological Survey of Norway, Norwegian Geotechnical Institute, Statoil and University of Bergen met to obtain an overview of the research effort in the fields of natural seeps and gas hydrates in Norway and to discuss national coordination, research strategies, research infrastructure and international co-operation. The following research strategies were agreed upon: i) Strengthen multidisciplinary research on deep sea systems, ii) develop a strategy for research on natural seeps and gas hydrates, iii) contribute in national coordination of research on natural seeps and gas hydrates, iv) Coordinate the use and development of research infrastructures important for research on natural seeps and gas hydrates, and v) contribute in the international evaluations of strategies for hydrate reservoir exploitation. Proposed research tasks for GANS include: i) Gas and gas hydrate formation processes and conditions for transport, accumulation, preservation and dissociation in sediments, ii) Effect of gas hydrate on physical properties of sediment, iii) Detection and quantification of in situ gas hydrate content and distribution pattern, iv) Effect of dissociation on soil properties, v) Gas hydrates as an energy resource, vi) Rapid methane release and climate change, and vii) Geohazard and environmental impact.

  16. Preferential accumulation of gas hydrate in the Andaman accretionary wedge and relationship to anomalous porosity preservation

    Science.gov (United States)

    Rose, K.; Torres, M. E.; Johnson, J. E.; Hong, W.; Giosan, L.; Solomon, E. A.; Kastner, M.; Cawthern, T.; Long, P.; Schaef, T.

    2015-12-01

    In the marine environment, sediments in the gas hydrate stability zone often correspond to slope and basin settings. These settings are dominantly composed of fine-grained silt and clay lithofacies with typically low vertical permeability, and pore fluids frequently under-saturated with respect to methane. As a result, the pressure-temperature conditions requisite for a GHSZ to be present occur widely worldwide across marine settings, however, the distribution of gas hydrate in these settings is neither ubiquitous nor uniform. This study uses sediment core and borehole related data recovered by drilling at Site 17 in the Andaman Sea during the Indian National Gas Hydrate Program Expedition 1 in 2006, to investigate reservoir-scale controls on gas hydrate distribution. In particular, this study finds that conditions beyond reservoir pressure, temperature, salinity, and gas concentration, appear to influence the concentration of gas hydrate in host sediments. Using field-generated datasets along with newly acquired sedimentology, physical property, imaging and geochemical data with mineral saturation and ion activity products of key mineral phases such as amorphous silica and calcite, we document the presence and nature of secondary precipitates that contributed to anomalous porosity preservation at Site 17 in the Andaman Sea. This study demonstrates the importance of grain-scale subsurface heterogeneities in controlling the occurrence and distribution of concentrated gas hydrate accumulations in marine sediments, and document the importance that increased permeability and enhanced porosity play in supporting gas concentrations sufficient to support gas hydrate formation. This illustrates the complex balance and lithology-driven controls on hydrate accumulations of higher concentrations and offers insights into what may control the occurrence and distribution of gas hydrate in other sedimentary settings.

  17. Mechanism of gypsum hydration

    Directory of Open Access Journals (Sweden)

    Pacheco, G.

    1991-06-01

    Full Text Available There is an hypothesis that the mechanism o f gypsum hydration and dehydration is performed through two simultaneous phenomena. In this study we try to clear up this phenomenon using chlorides as accelerators or a mixture of ethanol-methanol as retarders to carry out the gypsum setting. Natural Mexican gypsum samples and a hemihydrate prepared in the laboratory are used. The following analytical techniques are used: MO, DRX, DTA, TG and DTG. In agreement with the obtained results, it can be concluded: that colloid formation depends on the action of accelerators or retarders and the crystals are a consequence of the quantity of hemihydrate formed.

    En el mecanismo de hidratación y deshidratación del yeso existe la hipótesis de que éste se efectúa por dos fenómenos simultáneos. Este estudio intenta esclarecer estos fenómenos, empleando: cloruros como aceleradores o mezcla etanol-metanol como retardadores para efectuar el fraguado del yeso. Se emplean muestras de yeso de origen natural mexicano y hemihydrate preparado en laboratorio; se utilizan técnicas analíticas: MO, DRX, DTA, TG y DTG. De acuerdo a los resultados obtenidos se puede deducir: que la formación del coloide depende de la acción de los agentes aceleradores o retardadores y que los cristales son consecuencia de la cantidad de hemihidrato formado.

  18. Assessment of chromium content of feedstuffs, their estimated requirement, and effects of dietary chromium supplementation on nutrient utilization, growth performance, and mineral balance in summer-exposed buffalo calves (Bubalus bubalis).

    Science.gov (United States)

    Kumar, Muneendra; Kaur, Harjit; Tyagi, Amrish; Mani, Veena; Deka, Rijusmita Sarma; Chandra, Gulab; Sharma, Vijay Kumar

    2013-10-01

    This study was conducted to determine the chromium content of different feedstuffs, their estimated requirement, and effect of dietary Cr supplementation on nutrient intake, nutrient utilization, growth performance, and mineral balance in buffalo calves during summer season. Levels of Cr was higher in cultivated fodder, moderate in cakes and cereal grains, while straw, grasses, and non-conventional feeds were poor in Cr content. To test the effect of Cr supplementation in buffalo calves, 0, 0.5, 1.0, and 1.5 ppm of inorganic Cr were fed to 24 buffalo calves. Buffalo calves were randomly assigned to four treatments (n = 6) and raised for 120 days. A metabolic trial for a period of 7 days was conducted after 3 months of dietary treatments. Blood samples were collected at fortnight interval for plasma mineral estimation. The results suggested that dietary Cr supplementation in summer did not have any affects (P > 0.05) on feed consumption, growth performance, nitrogen balance, and physiological variables. However, dietary Cr supplementation had significant effect (P 0.05) balance and plasma levels of other trace minerals. The estimated Cr requirement of buffalo calves during summer season was calculated to be 0.044 mg/kg body mass and 10.37 ppm per day. In conclusion, dietary Cr supplementation has regardless effect on feed consumption, mass gain, and nutrient utilization in buffalo calves reared under heat stress conditions. However, supplementation of Cr had positive effect on its balance and plasma concentration without interacting with other trace minerals. PMID:23963742

  19. Progress of Gas Hydrate Studies in China

    Institute of Scientific and Technical Information of China (English)

    樊栓狮; 汪集旸

    2006-01-01

    A brief overview is given on the gas hydrate-related research activities carried out by Chinese researchers in the past 15 years. The content involves: (1) Historical review. Introducing the gas hydrate research history in China; (2) Gas hydrate research groups in China. There are nearly 20 groups engaged in gas hydrate research now; (3) Present studies.Including fundamental studies, status of the exploration of natural gas hydrate resources in the South China Sea region, and development of hydrate-based new techniques; (4) Future development.

  20. Mineral resources

    NARCIS (Netherlands)

    Henckens, M.L.C.M.; Ierland, van E.C.; Driessen, P.P.J.; Worrell, E.

    2016-01-01

    The extractable ores of the world's geologically scarcest mineral resources (e.g. antimony, molybdenum and zinc) may be exhausted within several decades to a century, if their extraction continues to increase. This paper explores the likelihood that these scarce mineral resources can be conserved

  1. Effect of Fine Steel Slag Powder on the Early Hydration Process of Portland Cement

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Hydration heat evolution, non-evaporative water, setting time and SEM tests were performed to investigate the effect of fine steel slag powder on the hydration process of Portland cement and its mechanism.The results show that the effect of fine steel slag powder on the hydration process of Portland cement is closely related to its chemical composition, mineral phases, fineness, etc.Fine steel slag powder retards the hydration of portland cement at early age.The major reason for this phenomenon is the relative high content of MgO , MnO2, P2 O5in steel slag, and MgO solid solved in C3 S contained in steel slag.

  2. Study on activity evaluation of activated coal-gangue and the hydration process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chemical compositions, mineral compositions and the activated mechanism of the coal-gangue were analyzed. And pozzolana activities of the coal-gangue were evaluated after activated. Moreover, hydration heat and hydration compositions of activated coal-gangue-calcium oxide system, as well as hydration degree and hardened paste microstructures of activated coal-gangue-cement system were studied. Results show that pozzolana activities of the activated coal-gangue root in amorphous SiO2 and activated Al2 O3. With the exciting of gypsum, the reaction of activated coal-gangue and Ca(OH)2 would produce hydration products as ettringite, calcium silicate hydrate, and calcium aluminate. The relationship between the curing age and the content of Ca(OH)2 in coal-gangue-cement system was ascertained. Unhydrated particles in the coal-gangue-cement paste were more than that in the neat cement paste at the same hydration periods, and even existed at the later stage of hydration. Furthermore, the activated coal-gangue could inhibit growth and gathering of the calcium oxide crystal, and improve the structure of hardened cement paste.

  3. Numerical simulation of sealing effect of gas hydrate for CO2 leakage in marine sediment

    Science.gov (United States)

    Sato, T.; Yu, T.; Oyama, H.; Yoshida, T.; Nakashima, T.; Kamada, K.

    2015-12-01

    Although carbon dioxide capture and storage in subsea geological structure is regarded as one of the promising mitigation technologies against the global warming, there is a risk of CO2 leakage and it is required to develop numerical models to predict how the CO2 migrate in the marine sediments. It is said that there are CO2-trap mechanisms in the geological formations, such as capillary trap, dissolution trap, and mineral trap. In this study, we focus on another trap mechanism: namely, hydrate trap. If the water is deep in the ocean, say more than 250 m, CO2 hydrate forms near the sea floor, at which temperature and pressure conditions can stabilise CO2 hydrate. To predict the gas productivity, it is important to know permeability damage in hydrate bearing sediments. Although hydrate saturation is the same, the permeability is different depending on its spatial distribution within the pore of sand sediment. Here, to know where hydrate is formed in the pore of porous media, we propose a numerical model for estimating the microscopic distribution of CO2 hydrate in sand sediment using a classical nucleation theory and the phase-field model.

  4. Indicators of δ13C and δ18O of gas hydrate-associated sediments

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The analyses of δ13C and δ18O of gas hydrate-associated sediments from two cores on Hydrate Ridge in Cascadia convergent margin offshore Oregon, eastern North Pacific show the values of d 13C from -29.81‰ to -48.28‰ (PDB) and d 18O from 2.56‰ to 4.28‰ (PDB), which could be plotted into a group called typical carbonate minerals influenced by the methane in cold venting. Moreover, the values of d 13C and d 18O show a consistent trend in both cores from top to bottom with increasing of d 13C and decreasing of d 18O. This trend could be explained as an effect caused by the anaerobic oxidation of methane (AOM) in depth and the oxygen fraction during the formation of gas hydrate in depth together. These characteristics of d 13C and d 18O indicate that the gas hydrate-associated sediments are significantly different from the normal marine carbonates, and they are deeply influenced by the formation and evolution of gas hydrate. So, the distinct characteristics of d 13C and d 18O of gas hydrate-associated sediments could be undoubtedly believed as one of parameters to determine the presence of gas hydrates in other unknown marine sediment cores.

  5. Fast x-ray fluorescence microtomography of hydrated biological samples.

    Directory of Open Access Journals (Sweden)

    Enzo Lombi

    Full Text Available Metals and metalloids play a key role in plant and other biological systems as some of them are essential to living organisms and all can be toxic at high concentrations. It is therefore important to understand how they are accumulated, complexed and transported within plants. In situ imaging of metal distribution at physiological relevant concentrations in highly hydrated biological systems is technically challenging. In the case of roots, this is mainly due to the possibility of artifacts arising during sample preparation such as cross sectioning. Synchrotron x-ray fluorescence microtomography has been used to obtain virtual cross sections of elemental distributions. However, traditionally this technique requires long data acquisition times. This has prohibited its application to highly hydrated biological samples which suffer both radiation damage and dehydration during extended analysis. However, recent advances in fast detectors coupled with powerful data acquisition approaches and suitable sample preparation methods can circumvent this problem. We demonstrate the heightened potential of this technique by imaging the distribution of nickel and zinc in hydrated plant roots. Although 3D tomography was still impeded by radiation damage, we successfully collected 2D tomograms of hydrated plant roots exposed to environmentally relevant metal concentrations for short periods of time. To our knowledge, this is the first published example of the possibilities offered by a new generation of fast fluorescence detectors to investigate metal and metalloid distribution in radiation-sensitive, biological samples.

  6. Hydration water in dynamics of a hydrated beta-lactoglobulin

    Science.gov (United States)

    Yoshida, K.; Yamaguchi, T.; Bellissent-Funel, M.-C.; Longeville, S.

    2007-02-01

    Incoherent spin-echo signals of a hydrated β-lactoglobulin protein were investigated, at 275 and 293 K. The intermediate scattering functions I(Q,t) were divided in two contributions from surface water and protein, respectively. On one hand, the dynamics of the surface water follows a KWW stretched exponential function (the exponent is ~0.5), on the other hand, that of the protein follows a single exponential. The present results are consistent with our previous results of hydrated C-phycocyanin combining elastic and quasielastic neutron scattering and by molecular dynamics simulation.

  7. Window contamination on Expose-R

    Science.gov (United States)

    Demets, R.; Bertrand, M.; Bolkhovitinov, A.; Bryson, K.; Colas, C.; Cottin, H.; Dettmann, J.; Ehrenfreund, P.; Elsaesser, A.; Jaramillo, E.; Lebert, M.; van Papendrecht, G.; Pereira, C.; Rohr, T.; Saiagh, K.

    2015-01-01

    Expose is a multi-user instrument for astrobiological and astrochemical experiments in space. Installed at the outer surface of the International Space Station, it enables investigators to study the impact of the open space environment on biological and biochemical test samples. Two Expose missions have been completed so far, designated as Expose-E (Rabbow et al. 2012) and Expose-R (Rabbow et al. this issue). One of the space-unique environmental factors offered by Expose is full-spectrum, ultraviolet (UV)-rich electromagnetic radiation from the Sun. This paper describes and analyses how on Expose-R, access of the test samples to Solar radiation degraded during space exposure in an unpredicted way. Several windows in front of the Sun-exposed test samples acquired a brown shade, resulting in a reduced transparency in visible light, UV and vacuum UV (VUV). Post-flight investigations revealed the discolouration to be caused by a homogenous film of cross-linked organic polymers at the inside of the windows. The chemical signature varied per sample carrier. No such films were found on windows from sealed, pressurized compartments, or on windows that had been kept out of the Sun. This suggests that volatile compounds originating from the interior of the Expose facility were cross-linked and photo-fixed by Solar irradiation at the rear side of the windows. The origin of the volatiles was not fully identified; most probably there was a variety of sources involved including the biological test samples, adhesives, plastics and printed circuit boards. The outer surface of the windows (pointing into space) was chemically impacted as well, with a probable effect on the transparency in VUV. The reported analysis of the window contamination on Expose-R is expected to help the interpretation of the scientific results and offers possibilities to mitigate this problem on future missions - in particular Expose-R2, the direct successor of Expose-R.

  8. Imaging hydrated microbial extracellular polymers: Comparative analysis by electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dohnalkova, A.C.; Marshall, M. J.; Arey, B. W.; Williams, K. H.; Buck, E. C.; Fredrickson, J. K.

    2011-01-01

    Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

  9. Great Market Potential of Hydrazine Hydrate

    Institute of Scientific and Technical Information of China (English)

    Shi Yuying

    2007-01-01

    @@ Stable consumption growth worldwide Hydrazine hydrate is an organic chemical raw material with extensive applications. The world's capacity to produce hydrazine hydrate has reached more than 200 thousand t/atoday (based on 100% hydrazine content).

  10. Ianthinite: A rare hydrous uranium oxide mineral from Akkavaram, Andhra Pradesh, India

    Indian Academy of Sciences (India)

    Yamuna Singh; R Viswanathan; K K Parashar; S K Srivastava; P V Ramesh Babu; P S Parihar

    2014-02-01

    Ianthinite is the only known uranyl oxide hydrate mineral that contains both U6+ and U4+. For the first time, we report ianthinite from India (at Akkavaram, Andhra Pradesh), which is hosted in basement granitoids. The mineral occurs in the form of tiny grains, encrustations and coatings in intimate association with uraninite and uranophane. X-ray diffraction (XRD) data reveals that d-spacings of the investigated ianthinite are in close agreement with the corresponding values given for ianthinite standard in International Centre for Diffraction Data (ICDD) card no. 12-272. The crystallographic parameters of the studied ianthinite are: ao = 11.3 (1) Å, bo = 7.19 (3) Å and co = 30.46 (8) Å, with a unit cell volume of 2474 (27) Å3. The association of investigated ianthinite with uraninite suggests that the former has formed due to oxidation of the latter. Since a major part of the uraninite was exposed to oxidizing meteoric water, much of it has been transformed into hydrous uranium oxide (ianthinite) and very little part remained unaltered as uranium oxide (uraninite). Absence of schoepite in the investigated ianthinite suggests that after its formation it (ianthinite) was not exposed to oxygen/oxidizing meteoric water. As the oxidation was partial and short lived, some amount of primary uraninite is also preserved.

  11. Mineral Quantification.

    Science.gov (United States)

    2016-01-01

    Optimal intakes of elements, such as sodium, potassium, magnesium, calcium, manganese, copper, zinc and iodine, can reduce individual risk factors including those related to cardiovascular diseases among humans and animals. In order to meet the need for vitamins, major minerals, trace minerals, fatty acids and amino acids, it is necessary to include a full spectrum programme that can deliver all of the nutrients in the right ratio. Minerals are required for normal growth, activities of muscles, skeletal development (such as calcium), cellular activity, oxygen transport (copper and iron), chemical reactions in the body, intestinal absorption (magnesium), fluid balance and nerve transmission (sodium and potassium), as well as the regulation of the acid base balance (phosphorus). The chapter discusses the chemical and instrumentation techniques used for estimation of minerals such as N, P, Ca, Mg, K, Na, Fe, Cu, Zn, B and Mb. PMID:26939263

  12. 77 FR 40032 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2012-07-06

    ... Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane Hydrate Advisory Committee.... SUPPLEMENTARY INFORMATION: Purpose of the Committee: The purpose of the Methane Hydrate Advisory Committee is...

  13. 75 FR 9886 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2010-03-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Methane... meeting. SUMMARY: This notice announces a meeting of the Methane Hydrate Advisory Committee. Federal... Methane Hydrate Advisory Committee is to provide advice on potential applications of methane hydrate...

  14. Laser-radiation scattering by cement in the process of hydration: simulation of the dynamics and experiment.

    Science.gov (United States)

    Gorsky, M P; Maksimyak, P P; Maksimyak, A P

    2012-04-01

    This paper discusses simulation of speckle-field dynamics during coherent light scattering by a cement surface in the process of hydration. Cement particles are represented by the spheres whose sizes and reflection indices are changing during the hydration process. The study of intensity fluctuations of scattered coherent radiation is a suitable technique for the analysis of both fast and slow processes of mineral binder hydration and formation of polycrystalline structures in the process of hardening. The results of simulation are in good agreement with the experimental data.

  15. Improved Design and Fabrication of Hydrated-Salt Pills

    Science.gov (United States)

    Shirron, Peter J.; DiPirro, Michael J.; Canavan, Edgar R.

    2011-01-01

    A high-performance design, and fabrication and growth processes to implement the design, have been devised for encapsulating a hydrated salt in a container that both protects the salt and provides thermal conductance between the salt and the environment surrounding the container. The unitary salt/container structure is known in the art as a salt pill. In the original application of the present design and processes, the salt is, more specifically, a hydrated paramagnetic salt, for use as a refrigerant in a very-low-temperature adiabatic demagnetization refrigerator (ADR). The design and process can also be applied, with modifications, to other hydrated salts. Hydrated paramagnetic salts have long been used in ADRs because they have the desired magnetic properties at low temperatures. They also have some properties, disadvantageous for ADRs, that dictate the kind of enclosures in which they must be housed: Being hydrated, they lose water if exposed to less than 100-percent relative humidity. Because any dehydration compromises their magnetic properties, salts used in ADRs must be sealed in hermetic containers. Because they have relatively poor thermal conductivities in the temperature range of interest (<0.1 K), integral thermal buses are needed as means of efficiently transferring heat to and from the salts during refrigeration cycles. A thermal bus is typically made from a high-thermal-conductivity met al (such as copper or gold), and the salt is configured to make intimate thermal contact with the metal. Commonly in current practice (and in the present design), the thermal bus includes a matrix of wires or rods, and the salt is grown onto this matrix. The density and spacing of the conductors depend on the heat fluxes that must be accommodated during operation.

  16. Physical properties of gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Kliner, J.T.R.; Grozic, J.L.H. [Calgary Univ., AB (Canada)

    2003-07-01

    Gas hydrates are naturally occurring, solid crystalline compounds (clathrates) that encapsulate gas molecules inside the lattices of hydrogen bonded water molecules within a specific temperature-pressure stability zone. Estimates of the total quantity of available methane gas in natural occurring hydrates are based on twice the energy content of known conventional fossil fuels reservoirs. Accurate and reliable in-situ quantification techniques are essential in determining the economic viability of this potential energy yield, which is dependent upon several factors such as sensitivity of the temperature-pressure stability zone, sediment type, porosity, permeability, concentration/abundance of free gas, spatial distribution in pore spaces, specific cage occupancy, and the influence of inhibitors. Various techniques like acoustic P and S waves, time domain reflectometry, and electrical resistance have been used to analyze the quantity and spatial distribution of the gas hydrate samples. These techniques were reviewed and the results obtained in the course of gas hydrate research were presented. 34 refs., 8 figs.

  17. Mesoscale texture of cement hydrates.

    Science.gov (United States)

    Ioannidou, Katerina; Krakowiak, Konrad J; Bauchy, Mathieu; Hoover, Christian G; Masoero, Enrico; Yip, Sidney; Ulm, Franz-Josef; Levitz, Pierre; Pellenq, Roland J-M; Del Gado, Emanuela

    2016-02-23

    Strength and other mechanical properties of cement and concrete rely upon the formation of calcium-silicate-hydrates (C-S-H) during cement hydration. Controlling structure and properties of the C-S-H phase is a challenge, due to the complexity of this hydration product and of the mechanisms that drive its precipitation from the ionic solution upon dissolution of cement grains in water. Departing from traditional models mostly focused on length scales above the micrometer, recent research addressed the molecular structure of C-S-H. However, small-angle neutron scattering, electron-microscopy imaging, and nanoindentation experiments suggest that its mesoscale organization, extending over hundreds of nanometers, may be more important. Here we unveil the C-S-H mesoscale texture, a crucial step to connect the fundamental scales to the macroscale of engineering properties. We use simulations that combine information of the nanoscale building units of C-S-H and their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles. We compute small-angle scattering intensities, pore size distributions, specific surface area, local densities, indentation modulus, and hardness of the material, providing quantitative understanding of different experimental investigations. Our results provide insight into how the heterogeneities developed during the early stages of hydration persist in the structure of C-S-H and impact the mechanical performance of the hardened cement paste. Unraveling such links in cement hydrates can be groundbreaking and controlling them can be the key to smarter mix designs of cementitious materials. PMID:26858450

  18. Physical activity, hydration and health

    Directory of Open Access Journals (Sweden)

    Ascensión Marcos

    2014-06-01

    Full Text Available Since the beginning of mankind, man has sought ways to promote and preserve health as well as to prevent disease. Hydration, physical activity and exercise are key factors for enhancing human health. However, either a little dose of them or an excess can be harmful for health maintenance at any age. Water is an essential nutrient for human body and a major key to survival has been to prevent dehydration. However, there is still a general controversy regarding the necessary amount to drink water or other beverages to properly get an adequate level of hydration. In addition, up to now the tools used to measure hydration are controversial. To this end, there are several important groups of variables to take into account such as water balance, hydration biomarkers and total body water. A combination of methods will be the most preferred tool to find out any risk or situation of dehydration at any age range. On the other hand, physical activity and exercise are being demonstrated to promote health, avoiding or reducing health problems, vascular and inflammatory diseases and helping weight management. Therefore, physical activity is also being used as a pill within a therapy to promote health and reduce risk diseases, but as in the case of drugs, dose, intensity, frequency, duration and precautions have to be evaluated and taken into account in order to get the maximum effectiveness and success of a treatment. On the other hand, sedentariness is the opposite concept to physical activity that has been recently recognized as an important factor of lifestyle involved in the obesogenic environment and consequently in the risk of the non-communicable diseases. In view of the literature consulted and taking into account the expertise of the authors, in this review a Decalogue of global recommendations is included to achieve an adequate hydration and physical activity status to avoid overweight/obesity consequences.

  19. Zeolites as structure formation products of alkalineous cements hydration

    OpenAIRE

    Kryvenko, Р. V.; Runova, R. F.; Rudenko, I. I.

    2014-01-01

    The paper concerns analysis of theoretical and experimental studies, according to which, in conditions of artificial stone making for buildings purposes (cement, concrete), synthesis of alkaline aluminosilicates similar to natural minerals of zeolitic group occurs. Presence of such new formations in hydration products of standartized type alkaline cements provides their high running abilities and durability. Наведено аналіз теоретичних і експериментальних досл...

  20. Comparison of the effects of gamma radiation on hydrated and air dried rye grass seeds

    International Nuclear Information System (INIS)

    This is a comparative study of the effects of gamma radiation on the growth of hydrated and air dried seeds during the first weeks of primary growth. Four groups of seeds were used in the study: 1) hydrated sweet corn, 2) air dried sweet corn, 3) hydrated rye grass, and 4) air dried rye grass. Each group was then further subdivided and exposed to various levels of gamma radiation using a Cobalt-60 irradiator, except for the control samples of the four groups which received no radiation above background level. All seeds samples were then planted, allowed to grow for approximately 12 days, and harvested. Growth of both shoot and root of each seed was recorded for data analysis according to specific groups. Analyses of data from this study shows that the mean growth of air dried seeds when exposed to gamma radiation prior to planting

  1. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K.

    1995-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  2. Influence of fluorosurfactants on hydrate formation rates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.U.; Jeong, K.E.; Chae, H.J.; Jeong, S.Y. [Korea Reasearch Inst. of Chemical Technology, Alternative Chemicals/Fuel Research Center, Yuseong-Gu, Daejon (Korea, Republic of)

    2008-07-01

    Gas hydrates, or clathrates, are ice-like solids that forms when natural gas is in contact with liquid water or ice under high pressure and low temperature. There is significant interest in studying the storage and transportation of gas in the form of hydrates. However, a critical problem impacting the industrial application of gas hydrates for storage and transportation of natural gas is the slow formation rate of natural gas hydrate. Researchers have previously reported on the promotion effect of some additives on gas hydrate formation and hydrate gas content. Fluorosurfactants are significantly superior to nonfluorinated surfactants in wetting action, as well as stability in harsh environments, both thermal and chemical. This paper discussed an experimental investigation into the effects of fluorosurfactants with different ionic types on the formation of methane hydrate. The surfactants used were FSN-100 of DuPont Zonyl as non-ionic surfactant and FC-143 of DuPont as anionic surfactant. The paper discussed the experimental apparatus for methane hydrate formation. It also discussed hydrate formation kinetics and the series of hydrate formation experiments that were conducted in the presence of fluorosurfactants. Last, the paper explored the results of the study. It was concluded that anionic fluorosurfactant of FC-143 had a better promoting effect on methane hydrate formation compared with nonionic surfactant of FSN-100. 8 refs., 2 tabs., 2 figs.

  3. Study of radio-restoration by various mineral salts and silice wich products (Tuf and Pouzzolane) of rice embryos (oryza-sativa L, Cigalon variety) exposed to cobalt 60 gamma rays

    International Nuclear Information System (INIS)

    Mutagenic treatments produce a large number of mutants per unit time and are used for plant improvement. However these treatments cause damage to cells. To counteract this radio-induced damage 2 methods are being tried: - Protection, which consists in the supply of an active product before application of mutagenic agents; - Restoration, which tries to repair the damage after mutagenic treatment. This work is devoted to restoration processes. Technique for the isolation and culture on a suitable nutrient of rice embryos (oryza sativa L, Cigalon variety) separated from non-irradiated caryopses were developed first. By separating out the embryo in this way it is possible to study in vitro the interactions between the embryo and the rest of the caryopsis (albumin + pericarp). The effects of radiations on embryos from caryopses exposed to cobalt 60 gamma rays were measured next, then the action of certain inorganic elements contained in the caryopsis tissues was analysed. On the basis of the first results obtained the differences in response between plantlets from embryos irradiated or otherwise treated or not either by zinc sulphate or by very silice-rich volcanic products (Tuf and Pouzzolane), were examined by chemical analysis techniques. These tests have allowed the detection of ionic changes induced by irradiation during the different stages of plant development and led to a better estimate of the radio-restoration mechanisms brought about by the various chemical compounds used

  4. Is the Surface of Gas Hydrates Dry?

    Directory of Open Access Journals (Sweden)

    Nobuo Maeda

    2015-06-01

    Full Text Available Adhesion (cohesion and agglomeration properties of gas hydrate particles have been a key to hydrate management in flow assurance in natural gas pipelines. Despite its importance, the relevant data in the area, such as the surface energy and the interfacial energy of gas hydrates with gas and/or water, are scarce; presumably due to the experimental difficulties involved in the measurements. Here we review what is known about the surface energy and the interfacial energy of gas hydrates to date. In particular, we ask a question as to whether pre-melting can occur on the surface of gas hydrates. Surface thermodynamic analyses show that pre-melting is favoured to occur on the surface of gas hydrates, however, not sufficient data are available to assess its thickness. The effects of the existence of pre-melting layers on the cohesion and friction forces between gas hydrate particles are also discussed.

  5. Handbook of gas hydrate properties and occurrence

    Energy Technology Data Exchange (ETDEWEB)

    Kuustraa, V.A.; Hammershaimb, E.C.

    1983-12-01

    This handbook provides data on the resource potential of naturally occurring hydrates, the properties that are needed to evaluate their recovery, and their production potential. The first two chapters give data on the naturally occurring hydrate potential by reviewing published resource estimates and the known and inferred occurrences. The third and fourth chapters review the physical and thermodynamic properties of hydrates, respectively. The thermodynamic properties of hydrates that are discussed include dissociation energies and a simplified method to calculate them; phase diagrams for simple and multi-component gases; the thermal conductivity; and the kinetics of hydrate dissociation. The final chapter evaluates the net energy balance of recovering hydrates and shows that a substantial positive energy balance can theoretically be achieved. The Appendices of the Handbook summarize physical and thermodynamic properties of gases, liquids and solids that can be used in designing and evaluating recovery processes of hydrates. 158 references, 67 figures, 47 tables.

  6. Well log characterization of natural gas hydrates

    Science.gov (United States)

    Collett, Timothy S.; Lee, Myung W.

    2011-01-01

    In the last 25 years we have seen significant advancements in the use of downhole well logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From an early start of using wireline electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells drilled in Arctic permafrost environments to today where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. The most established and well known use of downhole log data in gas hydrate research is the use of electrical resistivity and acoustic velocity data (both compressional- and shear-wave data) to make estimates of gas hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. New downhole logging tools designed to make directionally oriented acoustic and propagation resistivity log measurements have provided the data needed to analyze the acoustic and electrical anisotropic properties of both highly inter-bedded and fracture dominated gas hydrate reservoirs. Advancements in nuclear-magnetic-resonance (NMR) logging and wireline formation testing have also allowed for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids (i.e., free-water along with clay and capillary bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms controlling the formation and occurrence of gas hydrate in nature along with data on gas hydrate reservoir properties (i.e., permeabilities) needed to accurately predict gas production rates for various gas hydrate

  7. Pockmark formation and evolution in deep water Nigeria: Rapid hydrate growth versus slow hydrate dissolution

    Science.gov (United States)

    Sultan, N.; Bohrmann, G.; Ruffine, L.; Pape, T.; Riboulot, V.; Colliat, J.-L.; De Prunelé, A.; Dennielou, B.; Garziglia, S.; Himmler, T.; Marsset, T.; Peters, C. A.; Rabiu, A.; Wei, J.

    2014-04-01

    In previous works, it has been suggested that dissolution of gas hydrate can be responsible for pockmark formation and evolution in deep water Nigeria. It was shown that those pockmarks which are at different stages of maturation are characterized by a common internal architecture associated to gas hydrate dynamics. New results obtained by drilling into gas hydrate-bearing sediments with the MeBo seafloor drill rig in concert with geotechnical in situ measurements and pore water analyses indicate that pockmark formation and evolution in the study area are mainly controlled by rapid hydrate growth opposed to slow hydrate dissolution. On one hand, positive temperature anomalies, free gas trapped in shallow microfractures near the seafloor and coexistence of free gas and gas hydrate indicate rapid hydrate growth. On the other hand, slow hydrate dissolution is evident by low methane concentrations and almost constant sulfate values 2 m above the Gas Hydrate Occurrence Zone.

  8. Characterization of methane hydrate host sediments using synchrotron-computed microtomography (CMT)

    Science.gov (United States)

    Jones, K.W.; Feng, H.; Tomov, S.; Winters, W.J.; Prodanovic, M.; Mahajan, D.

    2007-01-01

    The hydrate-sediment interaction is an important aspect of gas hydrate studies that needs further examination. We describe here the applicability of the computed microtomography (CMT) technique that utilizes an intense X-ray synchrotron source to characterize sediment samples, two at various depths from the Blake Ridge area (a well-known hydrate-prone region) and one from Georges Bank, that once contained methane trapped as hydrates. Detailed results of the tomographic analysis performed on the deepest sample (667??m) from Blake Ridge are presented as 2-D and 3-D images which show several mineral constituents, the internal grain/pore microstructure, and, following segmentation into pore and grain space, a visualization of the connecting pathways through the pore-space of the sediment. Various parameters obtained from the analysis of the CMT data are presented for all three sediment samples. The micro-scale porosity values showed decreasing trend with increasing depth for all three samples that is consistent with the previously reported bulk porosity data. The 3-D morphology, pore-space pathways, porosity, and permeability values are also reported for all three samples. The application of CMT is now being expanded to the laboratory-formed samples of hydrate in sediments as well as field samples of methane hydrate bearing sediments.

  9. Mineral Resources

    OpenAIRE

    Ababsa, Myriam

    2014-01-01

    Jordan’s natural resources are very limited: water is scarce, there is little arable land and the country has few sources of energy (fig. I.11). Jordan’s mineral industry has a long history: flint was used in prehistoric times and early copper mining started in Wadi Faynan during the Chalcolithic Period. The following is a brief presentation of Jordan’s resources. Mining and investments will be studied in Part 3. Figure I.11 — Jordan Mineral Resources. NRA 2012 Phosphates The Jordanian Natur...

  10. Removal of phosphate from greenhouse wastewater using hydrated lime.

    Science.gov (United States)

    Dunets, C Siobhan; Zheng, Youbin

    2014-01-01

    Phosphate (P) contamination in nutrient-laden wastewater is currently a major topic of discussion in the North American greenhouse industry. Precipitation of P as calcium phosphate minerals using hydrated lime could provide a simple, inexpensive method for retrieval. A combination of batch experiments and chemical equilibrium modelling was used to confirm the viability of this P removal method and determine lime addition rates and pH requirements for greenhouse wastewater of varying nutrient compositions. Lime: P ratio (molar ratio of CaMg(OH)₄: PO₄‒P) provided a consistent parameter for estimating lime addition requirements regardless of initial P concentration, with a ratio of 1.5 providing around 99% removal of dissolved P. Optimal P removal occurred when lime addition increased the pH from 8.6 to 9.0, suggesting that pH monitoring during the P removal process could provide a simple method for ensuring consistent adherence to P removal standards. A Visual MINTEQ model, validated using experimental data, provided a means of predicting lime addition and pH requirements as influenced by changes in other parameters of the lime-wastewater system (e.g. calcium concentration, temperature, and initial wastewater pH). Hydrated lime addition did not contribute to the removal of macronutrient elements such as nitrate and ammonium, but did decrease the concentration of some micronutrients. This study provides basic guidance for greenhouse operators to use hydrated lime for phosphate removal from greenhouse wastewater. PMID:25176490

  11. Synthesis of hydrated lutetium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Song Liu [South China Univ. of Technology, Dept. of Applied Chemistry, Guangdong (China); Rong-jun Ma [Changsha Research Institute of Minig and Metallurgy, Hunan (China)

    1997-09-01

    Crystalline lutetium carbonate was synthesized for the corresponding chloride using ammonium bicarbonate as precipitant. The chemical analyses suggest that the synthesized lutetium carbonate is a hydrated basic carbonate or oxycarbonate. The X-ray powder diffraction data are presented. The IR data for the compound show the presence of two different carbonate groups. There is no stable intermediate carbonate in the process of thermal decomposition of the lutetium carbonate. (au) 15 refs.

  12. Well log evaluation of gas hydrate saturations

    Science.gov (United States)

    Collett, Timothy S.

    1998-01-01

    The amount of gas sequestered in gas hydrates is probably enormous, but estimates are highly speculative due to the lack of previous quantitative studies. Gas volumes that may be attributed to a gas hydrate accumulation within a given geologic setting are dependent on a number of reservoir parameters; one of which, gas-hydrate saturation, can be assessed with data obtained from downhole well logging devices. The primary objective of this study was to develop quantitative well-log evaluation techniques which will permit the calculation of gas-hydrate saturations in gas-hydrate-bearing sedimentary units. The `standard' and `quick look' Archie relations (resistivity log data) yielded accurate gas-hydrate and free-gas saturations within all of the gas hydrate accumulations assessed in the field verification phase of the study. Compressional wave acoustic log data have been used along with the Timur, modified Wood, and the Lee weighted average acoustic equations to calculate accurate gas-hydrate saturations in this study. The well log derived gas-hydrate saturations calculated in the field verification phase of this study, which range from as low as 2% to as high as 97%, confirm that gas hydrates represent a potentially important source of natural gas.

  13. Micelle Structure and Hydrophobic Hydration.

    Science.gov (United States)

    Long, Joshua A; Rankin, Blake M; Ben-Amotz, Dor

    2015-08-26

    Despite the ubiquity and utility of micelles self-assembled from aqueous surfactants, longstanding questions remain regarding their surface structure and interior hydration. Here we combine Raman spectroscopy with multivariate curve resolution (Raman-MCR) to probe the hydrophobic hydration of surfactants with various aliphatic chain lengths, and either anionic (carboxylate) or cationic (trimethylammonium) head groups, both below and above the critical micelle concentration. Our results reveal significant penetration of water into micelle interiors, well beyond the first few carbons adjacent to the headgroup. Moreover, the vibrational C-D frequency shifts of solubilized deuterated n-hexane confirm that it resides in a dry, oil-like environment (while the localization of solubilized benzene is sensitive to headgroup charge). Our findings imply that the hydrophobic core of a micelle is surrounded by a highly corrugated surface containing hydrated non-polar cavities whose depth increases with increasing surfactant chain length, thus bearing a greater resemblance to soluble proteins than previously recognized. PMID:26222042

  14. Gas hydrates: Technology status report

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    In 1983, the US Department of Energy (DOE) assumed the responsibility for expanding the knowledge base and for developing methods to recover gas from hydrates. These are ice-like mixtures of gas and water where gas molecules are trapped within a framework of water molecules. This research is part of the Unconventional Gas Recovery (UGR) program, a multidisciplinary effort that focuses on developing the technology to produce natural gas from resources that have been classified as unconventional because of their unique geologies and production mechanisms. Current work on gas hydrates emphasizes geological studies; characterization of the resource; and generic research, including modeling of reservoir conditions, production concepts, and predictive strategies for stimulated wells. Complementing this work is research on in situ detection of hydrates and field tests to verify extraction methods. Thus, current research will provide a comprehensive technology base from which estimates of reserve potential can be made, and from which industry can develop recovery strategies. 7 refs., 3 figs., 6 tabs.

  15. Hydration of protonated aromatic amino acids: phenylalanine, tryptophan, and tyrosine.

    Science.gov (United States)

    Gao, Bing; Wyttenbach, Thomas; Bowers, Michael T

    2009-04-01

    The first steps of hydration of the protonated aromatic amino acids phenylalanine, tryptophan, and tyrosine were studied experimentally employing a mass spectrometer equipped with a drift cell to examine the sequential addition of individual water molecules in equilibrium experiments and theoretically by a combination of molecular mechanics and electronic structure calculations (B3LYP/6-311++G**) on the three amino acid systems including up to five water molecules. It is found that both the ammonium and carboxyl groups offer good water binding sites with binding energies of the order of 13 kcal/mol for the first water molecule. Subsequent water molecules bind less strongly, in the range of 7-11 kcal/mol for the second through fifth water molecules. The ammonium group is able to host up to three water molecules and the carboxyl group one water molecule before additional water molecules bind either to the amino acid side chain as in tyrosine or to already-bound water in a second solvation shell around the ammonium group. Reasons for the surprisingly high water affinity of the neutral carboxyl group, comparable to that of the charge-carrying ammonium group, are found to be high intrinsic hydrophilicity, favorable charge-dipole alignment, and--for the case of multiply hydrated species--favorable dipole-dipole interaction among water molecules and the lack of alternative fully exposed hydration sites.

  16. Study of Formation Mechanisms of Gas Hydrate

    Science.gov (United States)

    Yang, Jia-Sheng; Wu, Cheng-Yueh; Hsieh, Bieng-Zih

    2015-04-01

    Gas hydrates, which had been found in subsurface geological environments of deep-sea sediments and permafrost regions, are solid crystalline compounds of gas molecules and water. The estimated energy resources of hydrates are at least twice of that of the conventional fossil fuel in the world. Gas hydrates have a great opportunity to become a dominating future energy. In the past years, many laboratory experiments had been conducted to study chemical and thermodynamic characteristics of gas hydrates in order to investigate the formation and dissociation mechanisms of hydrates. However, it is difficult to observe the formation and dissociation of hydrates in a porous media from a physical experiment directly. The purpose of this study was to model the dynamic formation mechanisms of gas hydrate in porous media by reservoir simulation. Two models were designed for this study: 1) a closed-system static model with separated gas and water zones; this model was a hydrate equilibrium model to investigate the behavior of the formation of hydrates near the initial gas-water contact; and 2) an open-system dynamic model with a continuous bottom-up gas flow; this model simulated the behavior of gas migration and studied the formation of hydrates from flowed gas and static formation water in porous media. A phase behavior module was developed in this study for reservoir simulator to model the pressure-volume-temperature (PVT) behavior of hydrates. The thermodynamic equilibriums and chemical reactions were coupled with the phase behavior module to have functions modelling the formation and dissociation of hydrates from/to water and gas. The simulation models used in this study were validated from the code-comparison project proposed by the NETL. According to the modelling results of the closed-system static model, we found that predominated location for the formation of hydrates was below the gas-water contact (or at the top of water zone). The maximum hydrate saturation

  17. Development of Alaskan gas hydrate resources

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  18. Fundamentals and applications of gas hydrates.

    Science.gov (United States)

    Koh, Carolyn A; Sloan, E Dendy; Sum, Amadeu K; Wu, David T

    2011-01-01

    Fundamental understanding of gas hydrate formation and decomposition processes is critical in many energy and environmental areas and has special importance in flow assurance for the oil and gas industry. These areas represent the core of gas hydrate applications, which, albeit widely studied, are still developing as growing fields of research. Discovering the molecular pathways and chemical and physical concepts underlying gas hydrate formation potentially can lead us beyond flowline blockage prevention strategies toward advancing new technological solutions for fuel storage and transportation, safely producing a new energy resource from natural deposits of gas hydrates in oceanic and arctic sediments, and potentially facilitating effective desalination of seawater. The state of the art in gas hydrate research is leading us to new understanding of formation and dissociation phenomena that focuses on measurement and modeling of time-dependent properties of gas hydrates on the basis of their well-established thermodynamic properties. PMID:22432618

  19. SEISMIC STUDIES OF MARINE GAS HYDRATES

    Institute of Scientific and Technical Information of China (English)

    SONG Haibin

    2003-01-01

    We give a brief introduction of developments of seismic methods in the studies of marine gas hydrates. Then we give an example of seismic data processing for BSRs in western Nankai accretionary prism, a typical gas hydrate distribution region. Seismic data processing is proved to be important to obtain better images of BSRs distribution. Studies of velocity structure of hydrated sediments are useful for better understanding the distribution of gas hydrates. Using full waveform inversion, we successfully derived high-resolution velocity model of a double BSR in eastern Nankai Trough area. Recent survey and research show that gas hydrates occur in the marine sediments of the South China Sea and East China Sea.But we would like to say seismic researches on gas hydrate in China are very preliminary.

  20. Geomechanical Modeling of Gas Hydrate Bearing Sediments

    Science.gov (United States)

    Sanchez, M. J.; Gai, X., Sr.

    2015-12-01

    This contribution focuses on an advance geomechanical model for methane hydrate-bearing soils based on concepts of elasto-plasticity for strain hardening/softening soils and incorporates bonding and damage effects. The core of the proposed model includes: a hierarchical single surface critical state framework, sub-loading concepts for modeling the plastic strains generally observed inside the yield surface and a hydrate enhancement factor to account for the cementing effects provided by the presence of hydrates in sediments. The proposed framework has been validated against recently published experiments involving both, synthetic and natural hydrate soils, as well as different sediments types (i.e., different hydrate saturations, and different hydrates morphologies) and confinement conditions. The performance of the model in these different case studies was very satisfactory.

  1. Non-equilibrium simulation of CH4 production through the depressurization method from gas hydrate reservoirs

    Science.gov (United States)

    Qorbani, Khadijeh; Kvamme, Bjørn

    2016-04-01

    Natural gas hydrates (NGHs) in nature are formed from various hydrate formers (i.e. aqueous, gas, and adsorbed phases). As a result, due to Gibbs phase rule and the combined first and second laws of thermodynamics CH4-hydrate cannot reach thermodynamic equilibrium in real reservoir conditions. CH4 is the dominant component in NGH reservoirs. It is formed as a result of biogenic degradation of biological material in the upper few hundred meters of subsurface. It has been estimated that the amount of fuel-gas reserve in NGHs exceed the total amount of fossil fuel explored until today. Thus, these reservoirs have the potential to satisfy the energy requirements of the future. However, released CH4 from dissociated NGHs could find its way to the atmosphere and it is a far more aggressive greenhouse gas than CO2, even though its life-time is shorter. Lack of reliable field data makes it difficult to predict the production potential, as well as safety of CH4 production from NGHs. Computer simulations can be used as a tool to investigate CH4 production through different scenarios. Most hydrate simulators within academia and industry treat hydrate phase transitions as an equilibrium process and those which employ the kinetic approach utilize simple laboratory data in their models. Furthermore, it is typical to utilize a limited thermodynamic description where only temperature and pressure projections are considered. Another widely used simplification is to assume only a single route for the hydrate phase transitions. The non-equilibrium nature of hydrate indicates a need for proper kinetic models to describe hydrate dissociation and reformation in the reservoir with respect to thermodynamics variables, CH4 mole-fraction, pressure and temperature. The RetrasoCodeBright (RCB) hydrate simulator has previously been extended to model CH4-hydrate dissociation towards CH4 gas and water. CH4-hydrate is added to the RCB data-base as a pseudo mineral. Phase transitions are treated

  2. Terahertz Time Domain Spectroscopy for Structure-II Gas Hydrates

    DEFF Research Database (Denmark)

    Takeya, Kei; Zhang, Caihong; Kawayama, Iwao;

    2009-01-01

    For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has a charact...

  3. Desalination utilizing clathrate hydrates (LDRD final report).

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Blake Alexander; Bradshaw, Robert W.; Dedrick, Daniel E.; Cygan, Randall Timothy (Sandia National Laboratories, Albuquerque, NM); Greathouse, Jeffery A. (Sandia National Laboratories, Albuquerque, NM); Majzoub, Eric H. (University of Missouri, Columbia, MO)

    2008-01-01

    Advances are reported in several aspects of clathrate hydrate desalination fundamentals necessary to develop an economical means to produce municipal quantities of potable water from seawater or brackish feedstock. These aspects include the following, (1) advances in defining the most promising systems design based on new types of hydrate guest molecules, (2) selection of optimal multi-phase reactors and separation arrangements, and, (3) applicability of an inert heat exchange fluid to moderate hydrate growth, control the morphology of the solid hydrate material formed, and facilitate separation of hydrate solids from concentrated brine. The rate of R141b hydrate formation was determined and found to depend only on the degree of supercooling. The rate of R141b hydrate formation in the presence of a heat exchange fluid depended on the degree of supercooling according to the same rate equation as pure R141b with secondary dependence on salinity. Experiments demonstrated that a perfluorocarbon heat exchange fluid assisted separation of R141b hydrates from brine. Preliminary experiments using the guest species, difluoromethane, showed that hydrate formation rates were substantial at temperatures up to at least 12 C and demonstrated partial separation of water from brine. We present a detailed molecular picture of the structure and dynamics of R141b guest molecules within water cages, obtained from ab initio calculations, molecular dynamics simulations, and Raman spectroscopy. Density functional theory calculations were used to provide an energetic and molecular orbital description of R141b stability in both large and small cages in a structure II hydrate. Additionally, the hydrate of an isomer, 1,2-dichloro-1-fluoroethane, does not form at ambient conditions because of extensive overlap of electron density between guest and host. Classical molecular dynamics simulations and laboratory trials support the results for the isomer hydrate. Molecular dynamics simulations

  4. Separation of water through gas hydrate formation

    DEFF Research Database (Denmark)

    Boch Andersen, Torben; Thomsen, Kaj

    2009-01-01

    Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goal...... of the project was to formulate an alternative separation concept, which can replace the traditional water evaporation process in the sugar production. Work with the separation concept showed that gas hydrates can be used for water separation. The process is not suitable for sugar production because of large...

  5. A combined QXRD/TG method to quantify the phase composition of hydrated Portland cements

    Energy Technology Data Exchange (ETDEWEB)

    Soin, Alexander V.; Catalan, Lionel J.J. [Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1 (Canada); Kinrade, Stephen D., E-mail: stephen.kinrade@lakeheadu.ca [Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1 (Canada)

    2013-06-15

    A new method is reported for quantifying the mineral phases in hydrated cement pastes that is based on a combination of quantitative X-ray diffractometry (QXRD) and thermogravimetry (TG). It differs from previous methods in that it gives a precise measure of the amorphous phase content without relying on an assumed stoichiometric relationship between the principal hydration products, calcium hydroxide (CH) and calcium silicate hydrate (C–S–H). The method was successfully applied to gray and white ordinary Portland cements (GOPC and WOPC, respectively) that were cured for up to 56 days. Phase distributions determined by QXRD/TG closely matched those from gray-level analysis of backscattered scanning electron microscope (BSEM) images, whereas elemental compositions obtained for the amorphous phase by QXRD/TG agreed well with those measured by quantitative energy dispersive X-ray spectroscopy (EDS)

  6. The Mechanical Properties and Hydration Characteristics of Cement Pastes Containing Added-calcium Coal Gangue

    Institute of Scientific and Technical Information of China (English)

    LI Dongxu; SONG Xuyan

    2008-01-01

    The mechanical properties of several kinds of coal gangue calcined with limestone were Researched so as to find the optimum way of calcinations with limestone. Mierostructure and property of hydration process of cement pastes containing added-calcium coal gangue were analyzed by means of scanning electron microscope (SEM) and method of mercury in trusion poremeasurement (MIP), etc. The experiment can approve those results: when proper amounst of gypsum and fluorite were taken as mineralizers in the course of calcinations of added-calcium coal gangue, activity of coal gangue can be effectively improved. The results of mechanical property and structural characteristic such as hydration process, hydration product and microstructure etc. of cement pastes containing added-calcium coal gangue are consistent.

  7. Mineral fibres and health

    International Nuclear Information System (INIS)

    The use of inorganic fibrous materials is a comparatively new phenomenon and was uncommon before the Industrial Revolution. Humans evolved in a comparatively fibre-free environment and consequently never fully developed the defence mechanisms needed to deal with the consequences of inhaling fibres. However, the urban environment now has an airborne fibre concentration of around 1 f.l-1, which is a tenfold increase on the natural background. Any sample of ambient air collected indoors or outdoors will probably contain some mineral fibres, but there is little evidence that these pose any risk to human health. They come from asbestos used in brakes, glass and mineral wools used as insulation and fire proofing of buildings, gypsum from plaster and a variety of types from many sources. Few of these have the potential to do any harm. Asbestos is the only fibre of note but urban levels are insignificant compared to occupational exposures. When the health of cohorts occupationally exposed to the several types of asbestos is studied the problem can be put into perspective. Studies of workers in the chrysotile industry exposed to much higher dust levels than in a factory today show no excess lung cancer or mesothelioma. By comparison those living near crocidolite mines, let alone working in them, may develop asbestos-related disease. As always, dose is the critical factor. Chrysotile is cleared from the lungs very efficiently, only the amphiboles are well retained. The only real health problem comes from the earlier use of asbestos products that may now be old, friable and damaged and made from amphibole or mixed fibre. If though, these are still in good condition, they do not pose a health problem. Asbestos-related diseases are very rare in those not occupationally exposed. Where they exist exposure has nearly always been to crocidolite. (author)

  8. Lectures held at the congress on ``Gas hydrates: problem substance / resource``, organised by the GDMK Division for ``Exploration and Extraction`` and the Institute for Mineral Oil and Natural Gas Research, in Clausthal-Zellerfeld (Harz) on 6/7 November 1997. Author`s manuscripts; Vortraege der Veranstaltung ``Gashydrate: Problemstoff/Resource`` des GDMK-Fachbereichs `Aufsuchung und Gewinnung` und dem Institut fuer Erdoel- und Erdgasforschung am 06. und 07. November 1997 in Clausthal-Zellerfeld (Harz). Autorenmanuskripte

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The following topics are dealt with in detail: the chemical and physical properties of gas hydrates as derivable from their phase behaviour; the significance and occurrence of gas hydrates in offshore areas; gas hydrates and permafrost in continental northern West Siberia; information on HYACE, a research project of the European Union on test drilling for gas hydrates in offshore areas; sediment-mechanical criteria of gas hydrate formation in deep-sea sediments; gas hydrate formation in gas cavern storages; the use of hydrate inhibitors in operating natural gas storages; and the inhibition of gas hydrates with kinetic inhibitors. Eight abstracts were abstracted individually for the Energy Database. (MSK) [Deutsch] Folgende Themen werden detailliert behandelt: die chemischen und physikalischen Eigenschaften von Gashydraten,welche aus dem Phasenverhalten der Gashydrate herzuleiten sind; zur Bedeutung und Vorkommen von Gashydraten im Offshore-Bereich; Gashydrate und Permafrost im kontinentalen noerdlichen Westsibirien; Informationen zu HYACE, einem Forschungsprojekt der Europaeischen Union zu Probebohrungen nach Gashydraten im Offshore-Bereich; sedimentmechanische Kriterien bei der Gashydratbildung in Tiefseesedimenten; die Gashydratbildung in Gaskavernenspeichern; der Einsatz von Hydratinhibitoren beim Betrieb von Erdgasspeichern sowie die Inhibierung von Gashydraten mit kinetischen Inhibitoren. Fuer die Datenbank Energy wurden acht Beitraege einzeln aufgenommen.

  9. Non-autoclaved aerated concrete with mineral additives

    Science.gov (United States)

    Il'ina, L. V.; Rakov, M. A.

    2016-01-01

    We investigated the effect of joint grinding of Portland cement clinker, silica and carbonate components and mineral additives to specific surface of 280 - 300 m2/kg on the properties (strength, average density and thermal conductivity) of non-autoclaved aerated concrete, and the porosity of the hardened cement paste produced from Portland cement clinker with mineral additives. The joint grinding of the Portland cement clinker with silica and carbonate components and mineral additives reduces the energy consumption of non-autoclaved aerated concrete production. The efficiency of mineral additives (diopside, wollastonite) is due to the closeness the composition, the type of chemical bonds, physical and chemical characteristics (specific enthalpy of formation, specific entropy) to anhydrous clinker minerals and their hydration products. Considering the influence of these additions on hydration of clinker minerals and formation of hardened cement paste structure, dispersed wollastonite and diopside should be used as mineral additives. The hardness and, consequently, the elastic modulus of diopside are higher than that of hardened cement paste. As a result, there is a redistribution of stresses in the hardened cement paste interporous partitions and hardening, both the partitions and aerated concrete on the whole. The mineral additives introduction allowed to obtain the non-autoclaved aerated concrete with average density 580 kg/m3, compressive strength of 3.3 MPa and thermal conductivity of 0.131 W/(m.°C).

  10. Hydration in soccer: a review

    Directory of Open Access Journals (Sweden)

    Monteiro Cristiano Ralo

    2003-01-01

    Full Text Available Hydration should be considered before, during and after the exercise. This review intends to approach the main points of hydration process in soccer. The replacement of fluids during exercise is proportional to some factors, such as: exercise intensity; climatic conditions; the athlete's acclimatization; the athlete's physical conditioning; physiologic individual characteristics and the player's biomechanics. Performance is improved when players ingest not only water but also carbohydrate. The rates that carbohydrate and water are absorbed by the organism are limited by the rates of gastric emptying and intestinal absorption. The composition of drinks offered to the players should be influenced by the relative importance of the need of supplying carbohydrates or water; it should be remembered that the depletion of carbohydrate can result in fatigue and decrease of performance, but it is not usually a life-threatening condition. The addition of carbohydrate in these drinks increases the concentrations of blood glucose, increases the use of external fuel through the increase of the glucose oxidation in the muscles and it spares muscle glycogen. So, the ingestion of carbohydrate before and during the exercise can delay the emergence of fatigue and increase the players' performance. Several tactics can be used to avoid dehydration, like hyperhydration before exercise and player's acclimatization. The ideal situation to restore the player's fluid losses is between the sessions of exercises. Since soccer is a sport with quite peculiar characteristics related to hydration, the players should be concerned and educated about the importance of fluid ingestion before, during and after the exercise.

  11. Hydration behaviour of polyhydroxylated fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Zavala, J G [Departamento de Ciencias Exactas y Tecnologicas, Centro Universitario de Los Lagos, Universidad de Guadalajara, Enrique Diaz de Leon S/N, 47460 Jalisco (Mexico); Barajas-Barraza, R E [Departamento de Matematicas y Fisica, Instituto Tecnologico y de Estudios Superiores de Occidente, Periferico Sur, Manuel Gomez MorIn No 8585, 45604 Jalisco (Mexico); Padilla-Osuna, I; Guirado-Lopez, R A, E-mail: jgrz@culagos.udg.mx, E-mail: ebarajas@iteso.mx, E-mail: ismael@ifisica.uaslp.mx, E-mail: guirado@ifisica.uaslp.mx [Instituto de Fisica ' Manuel Sandoval Vallarta' , Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi (Mexico)

    2011-10-28

    We have performed semi-empirical as well as density functional theory calculations in order to analyse the hydration properties of both bare C{sub 60} and highly hydroxylated C{sub 60}(OH){sub 26} fullerenes. In all of our calculations, a total of 42 and 98 water molecules are always surrounding our here-considered carbon nanostructures. We found different wetting properties as a function of the chemical composition and structure of the OH-molecular over-layer covering the fullerene surface. In the case of bare C{sub 60}, water adsorption reveals that the H{sub 2}O species are not uniformly arranged around the carbon network but rather forms water droplets of different sizes, clearly revealing the hydrophobic nature of the C{sub 60} structure. In contrast, in the polyhydroxylated C{sub 60}(OH){sub 26} fullerenes, the degree of wetting is strongly influenced by the precise location of the hydroxyl groups. We found that different adsorbed configurations for the OH-molecular coating can lead to the formation of partially hydrated or completely covered C{sub 60}(OH){sub 26} compounds, a result that could be used to synthesize fullerene materials with different degrees of wettability. By comparing the relative stability of our hydroxylated structures in both bare and hydrated conditions we obtain that the energy ordering of the C{sub 60}(OH){sub 26} isomers can change in the presence of water. The radial distribution function of our hydrated fullerenes reveals that water near these kinds of surfaces is densely packed. In fact, by counting the number of H{sub 2}O molecules which are adsorbed, by means of hydrogen bonds, to the surface of our more stable C{sub 60}(OH){sub 26} isomer, we found that it varies in the range of 5-10, in good agreement with experiments. Finally, by comparing the calculated optical absorption spectra of various C{sub 60}(OH){sub 26} structures in the presence and absence of water molecules, we note that only slight variations in the position and

  12. Protein dynamics: hydration and cavities

    Directory of Open Access Journals (Sweden)

    Heremans K.

    2005-01-01

    Full Text Available The temperature-pressure behavior of proteins seems to be unique among the biological macromolecules. Thermodynamic as well as kinetic data show the typical elliptical stability diagram. This may be extended by assuming that the unfolded state gives rise to volume and enthalpy-driven liquid-liquid transitions. A molecular interpretation follows from the temperature and the pressure dependence of the hydration and cavities. We suggest that positron annihilation spectroscopy can provide additional quantitative evidence for the contributions of cavities to the dynamics of proteins. Only mature amyloid fibrils that form from unfolded proteins are very resistant to pressure treatment.

  13. Methods of gas hydrate concentration estimation with field examples

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, D.; Dash, R.; Dewangan, P.

    important factors being the background property value in the absence of gas hydrate, and the modeling relationship between the physical property and gas hydrate saturation. a simple work-flow for hydrate saturation estimation from seismic velocity in a...

  14. Formation rate of natural gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Mork, Marit

    2002-07-01

    The rate of methane hydrate and natural gas hydrate formation was measured in a 9.5 litre stirred tank reactor of standard design. The experiments were performed to better understand the performance and scale-up of a reactor for continuous production of natural gas hydrates. The hydrate formation rate was measured at steady-state conditions at pressures between 70 and 90 bar and temperatures between 7 and 15 deg C. Between 44 and 56 % of the gas continuously supplied to the reactor was converted to hydrate. The experimental results show that the rate of hydrate formation is strongly influenced by gas injection rate and pressure. The effect of stirring rate is less significant and subcooling has no observable effect on the formation rate. Hydrate crystal concentration and gas composition do not influence the hydrate formation rate. Observations of produced hydrate crystals indicate that the crystals are elongated, about 5 micron in diameter and 10 micron long. Analysis of the results shows that the rate of hydrate formation is dominated by gas-liquid mass transfer. A mass transfer model, the bubble-to-crystal model, was developed for the hydrate formation rate in a continuous stirred tank reactor, given in terms of concentration driving force and an overall mass transfer coefficient. The driving force is the difference between the gas concentration at the gas-liquid interface and at the hydrate crystal surface. These concentrations correspond to the solubility of gas in water at experimental temperature and pressure and the solubility of gas at hydrate equilibrium temperature and experimental pressure, respectively. The overall mass transfer coefficient is expressed in terms of superficial gas velocity and impeller power consumption, parameters commonly used in study of stirred tank reactors. Experiments and modeling show that the stirred tank reactor has a considerable potential for increased production capacity. However, at higher hydrate production rates the

  15. SCM Paste Samples Exposed To Aggressive Solutions. Cementitious Barriers Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Foster, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-12-01

    This report summarizes experimental work performed by SIMCO Technologies Inc. (SIMCO) as part of the Cementitious Barriers Partnership (CBP) project. The test series followed an experimental program dedicated to the study of ordinary Portland cement (OPC) hydrated cement pastes exposed to aggressive solutions. In the present study, the scope is extended to hydrated cement pastes incorporating supplementary cementitious materials (SCM) such as fly ash and ground granulated blast furnace slag (GGBFS). Also, the range of aggressive contact solutions was expanded. The experimental program aimed at testing aggressive contact solutions that more closely mimic the chemical composition of saltstone pore solution. Five different solutions, some of which incorporated high levels of carbonate and nitrate, were placed in contact with four different hydrated cement paste mixes. In all solutions, 150 mmol/L of SO42– (14 400 ppm) were present. The solutions included different pH conditions and different sodium content. Two paste mixes were equivalent to Vault 1/4 and Vault 2 concrete mixes used at SRS in storage structures. Two additional paste mixes, cast at the same water-to-cement ratio and using the same cements but without SCMs, were also tested. The damage evolution in samples was monitored using ultrasonic pulse velocity (UPV) and mass measurements. After three and twelve months of exposure conditions, samples were taken out of solution containers and analyzed to perform migration tests and porosity measurements. Globally, results were in line with the previous study and confirmed that high pH may limit the formation of some deleterious phases like gypsum. In this case, ettringite may form but is not necessarily associated with damage. However, the high concentration of sodium may be associated with the formation of an AFm-like mineral called U-phase. The most significant evidences of damage were all associated with the Vault 2 paste analog. This

  16. The Surface Groups and Active Site of Fibrous Mineral Materials

    Institute of Scientific and Technical Information of China (English)

    DONG Fa-qin; WAN Pu; FENG Qi-ming; SONG Gong-bao; PENG Tong-jiang; LI Ping; LI Guo-wu

    2004-01-01

    The exposed and transformed groups of fibrous brucite,wollastonite,chrysotile asbestos,sepiolite,palygorskite,clinoptilolite,crocidolite and diatomaceous earth mineral materials are analyzed by IR spectra after acid and alikali etching,strong mechanical and polarity molecular interaction.The results show the active sites concentrate on the ends in stick mineral materials and on the defect or hole edge in pipe mineral materials.The inside active site of mineral materials plays a main role in small molecular substance.The shape of minerals influence their distribution and density of active site.The strong mechanical impulsion and weak chemical force change the active site feature of minerals,the powder process enables minerals exposed more surface group and more combined types.The surface processing with the small polarity molecular or the brand of middle molecular may produce ionation and new coordinate bond,and change the active properties and level of original mineral materials.

  17. Gas hydrate inhibition of drilling fluid additives

    Energy Technology Data Exchange (ETDEWEB)

    Xiaolan, L.; Baojiang, S.; Shaoran, R. [China Univ. of Petroleum, Dongying (China). Inst. of Petroleum Engineering

    2008-07-01

    Gas hydrates that form during offshore well drilling can have adverse impacts on well operational safety. The hydrates typically form in the risers and the annulus between the casing and the drillstring, and can stop the circulation of drilling fluids. In this study, experiments were conducted to measure the effect of drilling fluid additives on hydrate inhibition. Polyalcohols, well-stability control agents, lubricating agents, and polymeric materials were investigated in a stirred tank reactor at temperatures ranging from -10 degree C to 60 degrees C. Pressure, temperature, and torque were used to detect onset points of hydrate formation and dissociation. The inhibitive effect of the additives on hydrate formation was quantified. Phase boundary shifts were measured in terms of temperature difference or sub-cooling gained when chemicals were added to pure water. Results showed that the multiple hydroxyl groups in polyalcohol chemicals significantly inhibited hydrate formation. Polymeric and polyacrylamide materials had only a small impact on hydrate formation, while sulfonated methyl tannins were found to increase hydrate formation. 6 refs., 1 tab., 4 figs.

  18. 78 FR 37536 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2013-06-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Methane... meeting. SUMMARY: This notice announces a meeting of the Methane Hydrate Advisory Committee. The Federal... of the Methane Hydrate Advisory Committee is to provide advice on potential applications of...

  19. 76 FR 59667 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2011-09-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Methane... Meeting. SUMMARY: This notice announces a meeting of the Methane Hydrate Advisory Committee. Federal... of the Committee: The purpose of the Methane Hydrate Advisory Committee is to provide advice...

  20. 78 FR 26337 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2013-05-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Methane... Meeting. SUMMARY: This notice announces a meeting of the Methane Hydrate Advisory Committee. The Federal... of the Methane Hydrate Advisory Committee is to provide advice on potential applications of...

  1. A new geotechnical gas hydrates research laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grozic, J.L.H. [Calgary Univ., AB (Canada)

    2003-07-01

    Gas hydrates encapsulate natural gas molecules in a very compact form, as ice-like compounds composed of water molecules. Permafrost environments and offshore areas contain vast quantities of gas hydrates within soil and rock. This paper describes the role played by gas hydrates in submarine slope instability, their potential as a sustainable energy source, and their effects on global climate change. A new state-of-the-art laboratory located at the University of Calgary, which was developed to study the geomechanical behaviour of gas hydrate-sediment mixtures, was also presented. A specialized high pressure low temperature triaxial apparatus capable of performing a suite of tests on gas hydrate-sediment mixtures is housed in this laboratory. Extensive renovations were required in order to enable the use of methane gas to simulate natural hydrate formation conditions. The laboratory is specifically designed to examine the properties and behaviour of reconstituted gas hydrate-sediment mixtures and natural gas hydrate core samples. 26 refs., 9 figs.

  2. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  3. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the

  4. Hydrate plug decomposition: Measurements and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Yousif, M.H.; Dunayevsky, V.A.

    1995-12-31

    Depressurization (venting) is almost the only option available to remove hydrate blockages from subsea natural gas or gas condensate pipelines. This process is normally applied with little or no accurate information about the plug location, size or composition. Hydrate decomposition by depressurization is a heat and mass transfer dependent process. Quantifying this dependency is necessary to perform an optimum plug removal scheme. In this paper, a moving boundary mathematical model is developed to predict the decomposition rate of a hydrate plug under various depressurization scenarios. The model was validated experimentally by measuring the rate of decomposition of hydrate plugs in a 2 inch internal diameter, 38.5 inch long pipe. The motion of the hydrate plug/gas interface is tracked by 16 pairs of infrared light transmitters and receivers diametrically positioned across the pipe.

  5. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-07-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  6. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-06-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  7. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated

  8. Overview on Hydrate Coring, Handling and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

    2003-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

  9. Effects of Hydration on Mechanical Properties of a Highly Sclerotized Tissue

    OpenAIRE

    Moses, Dana N; Pontin, Michael G.; Waite, J. Herbert; Zok, Frank W.

    2008-01-01

    The jaws of the bloodworm Glycera dibranchiata consist principally of protein and melanin scaffolds with small amounts of unmineralized copper (Cu) and mineralized atacamite (Cu2Cl(OH)3) fibers in distinct regions. Remarkably, when tested in air, the regions containing unmineralized Cu are the hardest, stiffest, and most abrasion resistant. To establish the functions of jaw constituents in physiologically relevant environments, this study examines the effects of hydration on their response to...

  10. Experimental investigation of smectite hydration from the simulation of 001 X-ray diffraction lines. Implications for the characterization of mineralogical modifications of the 'argilite' from the Meuse - Haute Marne site as a result of a thermal perturbation

    International Nuclear Information System (INIS)

    The structural modifications affecting the reactive mineral constituents of the clay barriers (smectite) and possibly resulting from the thermal pulse related to nuclear waste storage are essentially limited to the amount and location of the layer charge deficit. These modifications likely impact the hydration properties of these minerals, and a specific methodology has thus been developed to describe, using simulation of X-ray diffraction profiles (001 reflections), these hydration properties and specifically the heterogeneity resulting from the inter-stratification of different layer types, each exhibiting a specific hydration state. The detailed study of the hydration properties of a low-charge montmorillonite (octahedral charge) has shown that the affinity of the interlayer cation for water rules the hydration state and the thickness of hydrated smectite layers. If the layer charge is increased, the transition between the different hydration states is shifted, following a water desorption isotherm, towards lower relative humidities. In addition, the hydration of studied beidellites (tetrahedral charge) was shown to be more heterogeneous than that of montmorillonites. The developed methodology also allowed describing the structural modifications resulting from a chemical perturbation (chlorinated anionic background, pH). Finally, the link between the thickness of elementary layers and the amount of interlayer water molecules has been evidenced. A new structure model has also been determined for these interlayer species allowing an improved description of their positional distribution in bi-hydrated interlayers. (author)

  11. Methane Recovery from Hydrate-bearing Sediments

    Energy Technology Data Exchange (ETDEWEB)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with

  12. Clathrate hydrate tuning for technological purposes

    Science.gov (United States)

    di Profio, Pietro; Germani, Raimondo; Savelli, Gianfranco

    2010-05-01

    Gas hydrates are being increasingly considered as convenient media for gas storage and transportation as the knowledge of their properties increases, in particular as relates to methane and hydrogen. Clathrate hydrates may also represent a feasible sequestration technology for carbon dioxide, due to a well defined P/T range of stability, and several research programs are addressing this possibility. Though the understanding of the molecular structure and supramolecular interactions which are responsible of most properties of hydrates have been elucitated in recent years, the underlying theoretical physico-chemical framework is still poor, especially as relates to the role of "conditioners" (inhibitors and promoters) from the molecular/supramolecular point of view. In the present communication we show some results from our research approach which is mainly focused on the supramolecular properties of clathrate hydrate systems - and their conditioners - as a way to get access to a controlled modulation of the formation, dissociation and stabilization of gas hydrates. In particular, this communication will deal with: (a) a novel, compact apparatus for studying the main parameters of formation and dissociation of gas hydrates in a one-pot experiment, which can be easily and rapidly carried out on board of a drilling ship;[1] (b) the effects of amphiphile molecules (surfactants) as inhibitors or promoters of gas hydrate formation;[2] (c) a novel nanotechnology for a reliable and quick production of hydrogen hydrates, and its application to fuel cells;[3,4] and (d) the development of a clathrate hydrate tecnology for the sequestration and geological storage of man-made CO2, possibly with concomitant recovery of natural gas from NG hydrate fields. Furthermore, the feasibility of catalyzing the reduction of carbon dioxide to energy-rich species by hydrates is being investigated. [1] Di Profio, P., Germani, R., Savelli, G., International Patent Application PCT/IT2006

  13. Role of taurine accumulation in keratinocyte hydration.

    Science.gov (United States)

    Janeke, Guido; Siefken, Wilfried; Carstensen, Stefanie; Springmann, Gunja; Bleck, Oliver; Steinhart, Hans; Höger, Peter; Wittern, Klaus-Peter; Wenck, Horst; Stäb, Franz; Sauermann, Gerhard; Schreiner, Volker; Doering, Thomas

    2003-08-01

    Epidermal keratinocytes are exposed to a low water concentration at the stratum corneum-stratum granulosum interface. When epithelial tissues are osmotically perturbed, cellular protection and cell volume regulation is mediated by accumulation of organic osmolytes such as taurine. Previous studies reported the presence of taurine in the epidermis of several animal species. Therefore, we analyzed human skin for the presence of the taurine transporter (TAUT) and studied the accumulation of taurine as one potential mechanism protecting epidermal keratinocytes from dehydration. According to our results, TAUT is expressed as a 69 kDa protein in human epidermis but not in the dermis. For the epidermis a gradient was evident with maximal levels of TAUT in the outermost granular keratinocyte layer and lower levels in the stratum spinosum. No TAUT was found in the basal layer or in the stratum corneum. Keratinocyte accumulation of taurine was induced by experimental induction of skin dryness via application of silica gel to human skin. Cultured human keratinocytes accumulated taurine in a concentration- and osmolarity-dependent manner. TAUT mRNA levels were increased after exposure of human keratinocytes to hyperosmotic culture medium, indicating osmosensitive TAUT mRNA expression as part of the adaptation of keratinocytes to hyperosmotic stress. Keratinocyte uptake of taurine was inhibited by beta-alanine but not by other osmolytes such as betaine, inositol, or sorbitol. Accumulation of taurine protected cultured human keratinocytes from both osmotically induced and ultraviolet-induced apoptosis. Our data indicate that taurine is an important epidermal osmolyte required to maintain keratinocyte hydration in a dry environment. PMID:12880428

  14. Accelerating Mineral Carbonation Using Carbonic Anhydrase.

    Science.gov (United States)

    Power, Ian M; Harrison, Anna L; Dipple, Gregory M

    2016-03-01

    Carbonic anhydrase (CA) enzymes have gained considerable attention for their potential use in carbon dioxide (CO2) capture technologies because they are able to catalyze rapidly the interconversion of aqueous CO2 and bicarbonate. However, there are challenges for widespread implementation including the need to develop mineralization process routes for permanent carbon storage. Mineral carbonation of highly reactive feedstocks may be limited by the supply rate of CO2. This rate limitation can be directly addressed by incorporating enzyme-catalyzed CO2 hydration. This study examined the effects of bovine carbonic anhydrase (BCA) and CO2-rich gas streams on the carbonation rate of brucite [Mg(OH)2], a highly reactive mineral. Alkaline brucite slurries were amended with BCA and supplied with 10% CO2 gas while aqueous chemistry and solids were monitored throughout the experiments (hours to days). In comparison to controls, brucite carbonation using BCA was accelerated by up to 240%. Nesquehonite [MgCO3·3H2O] precipitation limited the accumulation of hydrated CO2 species, apparently preventing BCA from catalyzing the dehydration reaction. Geochemical models reproduce observed reaction progress in all experiments, revealing a linear correlation between CO2 uptake and carbonation rate. Data demonstrates that carbonation in BCA-amended reactors remained limited by CO2 supply, implying further acceleration is possible. PMID:26829491

  15. Mass fractionation of noble gases in synthetic methane hydrate: Implications for naturally occurring gas hydrate dissociation

    Science.gov (United States)

    Hunt, Andrew G.; Stern, Laura; Pohlman, John W.; Ruppel, Carolyn; Moscati, Richard J.; Landis, Gary P.

    2013-01-01

    As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings may presently be dissociating and releasing methane and other gases to the ocean-atmosphere system. A key challenge in assessing the impact of dissociating gas hydrates on global atmospheric methane is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sediments (some newly thawed), coal beds, and other sources. Carbon and deuterium stable isotopic fractionation during methane formation provides a first-order constraint on the processes (microbial or thermogenic) of methane generation. However, because gas hydrate formation and dissociation do not cause significant isotopic fractionation, a stable isotope-based hydrate-source determination is not possible. Here, we investigate patterns of mass-dependent noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.

  16. Detection and Production of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand

  17. Gas Hydrates Research Programs: An International Review

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2009-12-09

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  18. Prospecting for marine gas hydrate resources

    Science.gov (United States)

    Boswell, Ray; Shipp, Craig; Reichel, Thomas; Shelander, Dianna; Saeki, Tetsuo; Frye, Matthew; Shedd, William; Collett, Timothy S.; McConnell, Daniel R.

    2016-01-01

    As gas hydrate energy assessment matures worldwide, emphasis has evolved away from confirmation of the mere presence of gas hydrate to the more complex issue of prospecting for those specific accumulations that are viable resource targets. Gas hydrate exploration now integrates the unique pressure and temperature preconditions for gas hydrate occurrence with those concepts and practices that are the basis for conventional oil and gas exploration. We have aimed to assimilate the lessons learned to date in global gas hydrate exploration to outline a generalized prospecting approach as follows: (1) use existing well and geophysical data to delineate the gas hydrate stability zone (GHSZ), (2) identify and evaluate potential direct indications of hydrate occurrence through evaluation of interval of elevated acoustic velocity and/or seismic events of prospective amplitude and polarity, (3) mitigate geologic risk via regional seismic and stratigraphic facies analysis as well as seismic mapping of amplitude distribution along prospective horizons, and (4) mitigate further prospect risk through assessment of the evidence of gas presence and migration into the GHSZ. Although a wide range of occurrence types might ultimately become viable energy supply options, this approach, which has been tested in only a small number of locations worldwide, has directed prospect evaluation toward those sand-hosted, high-saturation occurrences that were presently considered to have the greatest future commercial potential.

  19. From Black Hole to Hydrate Hole: Gas hydrates, authigenic carbonates and vent biota as indicators of fluid migration at pockmark sites of the Northern Congo Fan

    Science.gov (United States)

    Kasten, S.; Schneider, R.; Spiess, V.; Cruise Participants Of M56b

    2003-04-01

    A recent high-resolution seismic, echosounder and video survey combined with detailed geological and geochemical sampling of pockmark sites on the Northern Congo Fan was carried out with RV Meteor in November/December 2002 in the frame of the project "CONGO" (BMBF/BEO "Geotechnologien"). These investigations revealed the extensive occurrence of surface and sub-surface gas hydrates as well as characteristic features of fluid venting such as clams (Calyptogena), tube worms (Pogonophera) and huge amounts of authigenic carbonates. In a first approach the patchyness in the occurrence of these features was mapped in relation to pockmark structure and seismic reflectors. Detailed sampling of three pockmarks by gravity corer showed that gas hydrates are present at and close to the sediment surface and often occur as several distinct layers and/or veins intercalated with hemipelagic muds. The depth of the upper boundary of these hydrate-bearing sediments increases from the center towards the edge of the pockmark structures. Pore water concentration profiles of sulfate and methane document the process of anaerobic methane oxidation above the hydrate-bearing layers. For those cores which contained several gas hydrate layers preliminary pore water profiles suggest the occurrence of more than one zone of anaerobic methane oxidation. Authigenic carbonates are found in high abundance, irregularly distributed within the pockmarks close to the sediment surface. These carbonates occur in a wide variety with respect to size, shape, structure and mineralogy. Their formation is associated with high amounts of bicarbonate released by the process of anaerobic methane oxidation. In the gravity cores authigenic carbonates are always present above hydrate-bearing sections. However, the quantities and characteristics of these authigenic minerals in relation to venting and microbial activity as well as to gas hydrate dissociation are not clear yet. Unraveling this relationship will be a major

  20. Biomimetic Mineralization of Recombinamer-Based Hydrogels toward Controlled Morphologies and High Mineral Density.

    Science.gov (United States)

    Li, Yuping; Chen, Xi; Fok, Alex; Rodriguez-Cabello, Jose Carlos; Aparicio, Conrado

    2015-11-25

    The use of insoluble organic matrices as a structural template for the bottom-up fabrication of organic-inorganic nanocomposites is a powerful way to build a variety of advanced materials with defined and controlled morphologies and superior mechanical properties. Calcium phosphate mineralization in polymeric hydrogels is receiving significant attention in terms of obtaining biomimetic hierarchical structures with unique mechanical properties and understanding the mechanisms of the biomineralization process. However, integration of organic matrices with hydroxyapatite nanocrystals, different in morphology and composition, has not been well-achieved yet at nanoscale. In this study, we synthesized thermoresponsive hydrogels, composed of elastin-like recombinamers (ELRs), to template mineralization of hydroxyapatite nanocrystals using a biomimetic polymer-induced liquid-precursor (PILP) mineralization process. Different from conventional mineralization where minerals were deposited on the surface of organic matrices, they were infiltrated into the frameworks of ELR matrices, preserving their microporous structure. After 14 days of mineralization, an average of 78 μm mineralization depth was achieved. Mineral density up to 1.9 g/cm(3) was found after 28 days of mineralization, which is comparable to natural bone and dentin. In the dry state, the elastic modulus and hardness of the mineralized hydrogels were 20.3 ± 1.7 and 0.93 ± 0.07 GPa, respectively. After hydration, they were reduced to 4.50 ± 0.55 and 0.10 ± 0.03 GPa, respectively. These values were lower but still on the same order of magnitude as those of natural hard tissues. The results indicated that inorganic-organic hybrid biomaterials with controlled morphologies can be achieved using organic templates of ELRs. Notably, the chemical and physical properties of ELRs can be tuned, which might help elucidate the mechanisms by which living organisms regulate the mineralization process.

  1. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-04-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  2. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by Maurer Technology, Noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition. We plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. We also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. We are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. We hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, our goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

  3. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-07-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release as much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  4. Structural Phase Transitions and Water Dynamics in Uranyl Fluoride Hydrates.

    Science.gov (United States)

    Miskowiec, Andrew; Kirkegaard, Marie C; Huq, Ashfia; Mamontov, Eugene; Herwig, Kenneth W; Trowbridge, Lee; Rondinone, Adam; Anderson, Brian

    2015-12-10

    We report a novel production method for uranium oxyfluoride [(UO2)7F14(H2O)7]·4H2O, referred to as structure D. Structure D is produced as a product of hydrating anhydrous uranyl fluoride, UO2F2, through the gas phase at ambient temperatures followed by desiccation by equilibration with a dry environment. We follow the structure of [(UO2)7F14(H2O)7]·4H2O through an intermediate, liquid-like phase, wherein the coordination number of the uranyl ion is reduced to 5 (from 6 in the anhydrous structure), and a water molecule binds as an equatorial ligand to the uranyl ion. Quasielastic neutron scattering results compare well with previous measurements of mineral hydrates. The two groups of structurally distinct water molecules in D perform restricted motion on a length scale commensurate with the O-H bond (r = 0.92 Å). The more tightly bound equatorial ligand waters rotate slower (Dr = 2.2 ps(-1)) than their hydrogen-bonded partners (Dr = 28.7 ps(-1)). PMID:26575434

  5. Dynamics of hydration water in protein

    International Nuclear Information System (INIS)

    Incoherent quasi-elastic neutron scattering studies of in vivo deuterated C-phycocyanin, at different levels of hydration, have been made. We show that the mobility at high temperature, (∝300 K) of the water molecules near the protein surface can be described by relatively simple models. At full hydration the high temperature data can be interpreted using a model where each water molecule is diffusing in a confined space of 3 A in radius. At low hydration, and 298 K, the diffusional behaviour is typical of jump diffusion with a residence time 10 times larger than the one in bulk water at the same temperature. (orig.)

  6. Tapping methane hydrates for unconventional natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2007-01-01

    Methane hydrate is an icelike form of concentrated methane and water found in the sediments of permafrost regions and marine continental margins at depths far shallower than conventional oil and gas. Despite their relative accessibility and widespread occurrence, methane hydrates have never been tapped to meet increasing global energy demands. With rising natural gas prices, production from these unconventional gas deposits is becoming economically viable, particularly in permafrost areas already being exploited for conventional oil and gas. This article provides an overview of gas hydrate occurrence, resource assessment, exploration, production technologies, renewability, and future challenges.

  7. Mitigating Greenhouse Gas Emissions with Minerals

    Science.gov (United States)

    Wilson, S. A.; Dipple, G. M.; Raudsepp, M.; Anderson, R. G.

    2006-05-01

    Carbon sequestration or disposal has been recognized as a necessary first step toward the stabilization of atmospheric carbon dioxide (CO2) levels. Of the proposed methodologies for carbon disposal, binding CO2 in carbonate minerals represents the most environmentally benign and geologically stable means of reducing atmospheric carbon levels. By some estimates, as much as 87% of the Earth's carbon is bound in carbonate minerals. Carbon sequestration seeks to accelerate the natural weathering processes responsible for carbon fixation in minerals. Atmospheric CO2 is being fixed in carbonate efflorescences forming in tailings from both inactive and active chrysotile mines. Our data suggest that microbial activity in tailings may mediate the precipitation of more thermodynamically stable hydrated magnesium carbonate phases. Carbonation of kaolinite-serpentine group minerals in ultramafic mine tailings represents a potential implementation of the carbon sequestration process. We have developed a protocol for verifying and quantifying carbon sequestration in mine tailings. Quantitative phase analysis with the Rietveld method and X-ray powder-diffraction data is used to determine the modal abundance of hydrated magnesium carbonates in mine tailings. Stable and radiogenic isotopes are used to fingerprint an atmospheric source for CO2 and to detect contamination by bedrock carbonate. Global implementation of carbon sequestration in ultramafic mine tailings has the potential to draw CO2 directly from the atmosphere at a rate of 10(8) tonnes of carbon per year. In situ sequestration in mine tailings bypasses the need to transport large quantities of tailings to industrial point sources and can be accomplished without high-pressure, high-temperature reactors. Mine tailings may, therefore, represent the optimal environment in which to pursue carbon sequestration in minerals.

  8. Glass powder blended cement hydration modelling

    Science.gov (United States)

    Saeed, Huda

    The use of waste materials in construction is among the most attractive options to consume these materials without affecting the environment. Glass is among these types of potential waste materials. In this research, waste glass in powder form, i.e. glass powder (GP) is examined for potential use in enhancing the characteristics of concrete on the basis that it is a pozzolanic material. The experimental and the theoretical components of the work are carried out primarily to prove that glass powder belongs to the "family" of the pozzolanic materials. The chemical and physical properties of the hydrated activated glass powder and the hydrated glass powder cement on the microstructure level have been studied experimentally and theoretically. The work presented in this thesis consists of two main phases. The first phase contains experimental investigations of the reaction of glass powder with calcium hydroxide (CH) and water. In addition, it includes experiments that are aimed at determining the consumption of water and CH with time. The reactivity, degree of hydration, and nature of the pore solution of the glass powder-blended cement pastes and the effect of adding different ratios of glass powder on cement hydration is also investigated. The experiments proved that glass powder has a pozzolanic effect on cement hydration; hence it enhances the chemical and physical properties of cement paste. Based on the experimental test results, it is recommended to use a glass powder-to-cement ratio (GP/C) of 10% as an optimum ratio to achieve the best hydration and best properties of the paste. Two different chemical formulas for the produced GP C-S-H gel due to the pure GP and GP-CH pozzolanic reaction hydration are proposed. For the pure GP hydration, the produced GP C-S-H gel has a calcium-to-silica ratio (C/S) of 0.164, water-to-silica ratio (H/S) of 1.3 and sodium/silica ratio (N/S) of 0.18. However, for the GP-CH hydration, the produced GP C-S-H gel has a C/S ratio of 1

  9. Effect of Some Admixtures on the Hydration of Silica Fume and Hydrated Lime

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effects of sodium salt of naphthalene formaldehyde sulfonic acid and stearic acid on the hydration of silica fume and Ca(0H)2 have been investigated. The hydration was carried out at 60℃ and W/S ratio of 4 for various time intervals namely, 1, 3, 7 and 28 days and in the presence of 0.2% and 5% superplasticizer and stearic acid. The results of the hydration kinetics show that both admixtures accelerate the hydration reaction of silica fume and calcium hydroxide during the first 7 days. Whereas, after 28 days hydration there is no significant effect. Generally, most of free calcium hydroxide seems to be consumed after 28 days. In addition, the phase composition as well as the microstructure of the formed hydrates was examined by using X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) respectively.

  10. Formation mechanism of authigenic gypsum in marine methane hydrate settings: Evidence from the northern South China Sea

    Science.gov (United States)

    Lin, Qi; Wang, Jiasheng; Algeo, Thomas J.; Su, Pibo; Hu, Gaowei

    2016-09-01

    During the last decade, gypsum has been discovered widely in marine methane hydrate-bearing sediments. However, whether this gypsum is an in-situ authigenic precipitate remains controversial. The GMGS2 expedition carried out in 2013 by the Guangzhou Marine Geological Survey (GMGS) in the northern South China Sea provided an excellent opportunity for investigating the formation of authigenic minerals and, in particular, the relationship between gypsum and methane hydrate. In this contribution, we analyzed the morphology and sulfur isotope composition of gypsum and authigenic pyrite as well as the carbon and oxygen isotopic compositions of authigenic carbonate in a drillcore from Site GMGS2-08. These methane-derived carbonates have characteristic carbon and oxygen isotopic compositions (δ13C: -57.9‰ to -27.3‰ VPDB; δ18O: +1.0‰ to +3.8‰ VPDB) related to upward seepage of methane following dissociation of underlying methane hydrates since the Late Pleistocene. Our data suggest that gypsum in the sulfate-methane transition zone (SMTZ) of this core precipitated as in-situ authigenic mineral. Based on its sulfur isotopic composition, the gypsum sulfur is a mixture of sulfate derived from seawater and from partial oxidation of authigenic pyrite. Porewater Ca2+ ions for authigenic gypsum were likely generated from carbonate dissolution through acidification produced by oxidation of authigenic pyrite and ion exclusion during methane hydrate formation. This study thus links the formation mechanism of authigenic gypsum with the oxidation of authigenic pyrite and evolution of underlying methane hydrates. These findings suggest that authigenic gypsum may be a useful proxy for recognition of SMTZs and methane hydrate zones in modern and ancient marine methane hydrate geo-systems.

  11. Gas hydrates in the deep water Ulleung Basin, East Sea, Korea.

    Science.gov (United States)

    Ryu, Byong-Jae

    2016-04-01

    Studies on gas hydrates in the deep-water Ulleung Basin, East Sea, Korea was initiated by the Korea Institute of Geoscience and Mineral Resources (KIGAM) to secure the future energy resources in 1996. Bottom simulating reflectors (BSRs) were first identified on seismic data collected in the southwestern part of the basin from 1998 to 1999. Regional geophysical surveys and geological studies of gas hydrates in the basin have been carried out by KIGAM from 2000 to 2004. The work included 12,367 km of 2D multi-channel seismic reflection lines and 38 piston cores 5 to 8 m long. As a part of the Korean National Gas Hydrate Program that has been performed since 2005, 6690 km of 2D multi-channel reflection seismic lines, 900 km2 of 3D seismic data, 69 piston cores and three PROD cores were additionally collected. In addition, two gas hydrate drilling expeditions were performed in 2007 and 2010. Cracks generally parallel to beddings caused by the dissociation of gas hydrate were often observed in cores. The lack of higher hydrocarbons and the carbon isotope ratios indicate that the methane is primarily biogenic. The seismic data showed clear and wide-spread bottom-simulating reflectors (BSRs). The BSR was identified by (a) its polarity opposite to the seafloor, (b) its seafloor-parallel reflection behavior, and (c) its occurrence at a sub-bottom depth corresponding to the expected base of gas hydrate stability zone. Several vertical to sub-vertical chimney-like blank zones up to several kilometers in diameter were also identified in the study area. They are often associated with velocity pull-up structures that are interpreted due to higher velocity in gas hydrate-bearing deposits. Seismic velocity analysis also showed a high velocity anomaly within the pull-up structure. Gas hydrate samples were collected from the shallow sedimentary section of blanking zone by piston coring in 2007. BSRs mainly occur in the southern part of the basin. They also locally observed in the

  12. Experimental Investigation of Effect on Hydrate Formation in Spray Reactor

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhao

    2015-01-01

    Full Text Available The effects of reaction condition on hydrate formation were conducted in spray reactor. The temperature, pressure, and gas volume of reaction on hydrate formation were measured in pure water and SDS solutions at different temperature and pressure with a high-pressure experimental rig for hydrate formation. The experimental data and result reveal that additives could improve the hydrate formation rate and gas storage capacity. Temperature and pressure can restrict the hydrate formation. Lower temperature and higher pressure can promote hydrate formation, but they can increase production cost. So these factors should be considered synthetically. The investigation will promote the advance of gas storage technology in hydrates.

  13. 53rd Cement Technical Conference. Cement hydration 3; Dai 53 kai semento gijutsu taikai. Semento no suiwa 3

    Energy Technology Data Exchange (ETDEWEB)

    Hanehara, Shunsuke [Taiheiyo Cement Corp., Tokyo (Japan)

    1999-08-10

    Osawa et al. reported the quantitative reaction rate of fly ash in cement paste by using the unreacted quartz quantitative method using hydrochloric acid and sodium carbonate in regard of the fly ash reaction rate in the fly ash cement hydration. Miyahara et al examined the influence of potassium chloride on the hydration speed of 4 type clinker minerals in regard of the cement hydration in addition of potassium chloride. Morioka et al examined the influence of various expansion materials on C{sub 3}A hydration and reported that a reason to delay the C{sub 3}A hydration in the CSA and quartz system expansion materials was high mole ratio of SO{sub 3}/Al{sub 2}O{sub 3}. Tsuyumoto et al examined the noncontacting monitoring in the hardening process of the cement- admixture ingredient- water system by means of the quasi-elasticity laser scattering method. Nakada et al examined the measurement of cement hydration rate in combination of the selective dissolution method and the X-ray powder diffraction. (NEDO)

  14. Pockmark formation and evolution in deep water Nigeria: Rapid hydrate growth versus slow hydrate dissolution

    OpenAIRE

    Sultan, Nabil; Bohrmann, G.; Ruffine, Livio; Pape, T.; Riboulot, Vincent; Colliat, J. -l.; De Prunele, Alexis; Dennielou, Bernard; Garziglia, Sebastien; Himmler, Tobias; Marsset, Tania; Peters, C. A.; Rabiu, A.; J. Wei

    2014-01-01

    In previous works, it has been suggested that dissolution of gas hydrate can be responsible for pockmark formation and evolution in deep water Nigeria. It was shown that those pockmarks which are at different stages of maturation are characterized by a common internal architecture associated to gas hydrate dynamics. New results obtained by drilling into gas hydrate-bearing sediments with the MeBo seafloor drill rig in concert with geotechnical in situ measurements and pore water analyses indi...

  15. ConocoPhillips Gas Hydrate Production Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoderbek, David; Farrell, Helen; Howard, James; Raterman, Kevin; Silpngarmlert, Suntichai; Martin, Kenneth; Smith, Bruce; Klein, Perry

    2013-06-30

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  16. Neutron cross section of methane hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Kiyanagi, Y.; Date, S.; Horikawa, T.; Takamine, J.; Iwasa, H.; Kamiyama, T. [Graduate School of Eng., Hokkaido Univ., Sapporo (Japan); Uchida, T.; Ebinuma, T.; Narrita, H. [National Inst. of Advanced Industrial Science, Tsukisamu, Sapporo (Japan); Bennington, S.M. [ISIS Dept., Rutherford Appleton, Chilton, Didcot, Oxon (United Kingdom)

    2004-03-01

    To estimate the neutronic characteristics of methane hydrate and also to synthesize cross section data for simulation we need neutron scattering data ranging wide energy and momentum region. We performed inelastic neutron scattering experiments to get information about the neutron cross section on methane hydrate. It was found that at high momentum transfer region rotational mode as well as vibration mode showed recoil like behavior. On the other hand, at low momentum region, as well known, free rotation like energy levels were observed. The energy level of ice in methane hydrate was very similar to normal ice. The results suggest that the rough expression of the cross section of the methane hydrate is presented by linear combination of the methane and ice. (orig.)

  17. Hydrate Control for Gas Storage Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  18. Polyethylene oxide hydration in grafted layers

    Science.gov (United States)

    Dormidontova, Elena; Wang, Zilu

    Hydration of water soluble polymers is one of the key-factors defining their conformation and properties, similar to biopolymers. Polyethylene oxide (PEO) is one of the most important biomedical-applications polymers and is known for its reverse temperature solubility due to hydrogen bonding with water. As in many practical applications PEO chains are grafted to surfaces, e.g. of nanoparticles or planar surfaces, it is important to understand PEO hydration in such grafted layers. Using atomistic molecular dynamic simulations we investigate the details of molecular conformation and hydration of PEO end-grafted to gold surfaces. We analyze polymer and water density distribution as a function of distance from the surface for different grafting densities. Based on a detailed analysis of hydrogen bonding between polymer and water in grafted PEO layers, we will discuss the extent of PEO hydration and its implication for polymer conformation, mobility and layer properties. This research is supported by NSF (DMR-1410928).

  19. Vibrational dynamics of hydration water in amylose

    CERN Document Server

    Cavatorta, F; Albanese, G; Angelini, N

    2002-01-01

    We present a study of the dynamical properties of hydration water associated with amylose helices, based on low-temperature vibrational spectra collected using the TOSCA inelastic spectrometer at ISIS. The structural constraints of the polysaccharidic chains favour the formation of a high-density structure for water, which has been suggested by Imberty and Perez on the basis of conformational analysis. According to this model, hydration water can only enter the pores formed by six adjacent helices and completely fills the pores at a hydration level of about 0.27-g water/g dry amylose. Our measurements show that the dynamical behaviour of hydration water is similar to that observed in high-density amorphous ice. (orig.)

  20. Coupled multiphysics modeling of gas hydrate bearing sediments

    OpenAIRE

    Sanchez, Marcelo; Gai, Xuerui; Santamarina, J. Carlos

    2014-01-01

    Gas hydrates are crystalline clathrate compounds made of water and a low molecular gas like methane (Sloan 1998). Gas hydrates are generally present in oil-producing areas and in permafrost regions. Methane hydrate deposits can lead to large-scale submarine slope failures, blowouts, platform foundation failures, and -borehole instability. Gas hydrates constitute also an attractive source of energy as they are estimated to contain very large reserves of methane. Hydrate formation, dissociation...

  1. Experimental Investigation of Effect on Hydrate Formation in Spray Reactor

    OpenAIRE

    Jianzhong Zhao; Yaqin Tian; Yangsheng Zhao; Wenping Cheng

    2015-01-01

    The effects of reaction condition on hydrate formation were conducted in spray reactor. The temperature, pressure, and gas volume of reaction on hydrate formation were measured in pure water and SDS solutions at different temperature and pressure with a high-pressure experimental rig for hydrate formation. The experimental data and result reveal that additives could improve the hydrate formation rate and gas storage capacity. Temperature and pressure can restrict the hydrate formation. Lower ...

  2. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  3. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2004-11-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained

  4. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained

  5. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling

  6. Experimental Dissociation of Methane Hydrates Through Depressurization

    Science.gov (United States)

    Borgfeldt, T.; Flemings, P. B.; Meyer, D.; You, K.

    2015-12-01

    We dissociated methane hydrates by stepwise depressurization. The initial hydrates were formed by injecting gas into a cylindrical sample of brine-saturated, coarse-grained sand at hydrate-stable conditions with the intention of reaching three-phase equilibrium. The sample was initially at 1°C with a pore pressure of 1775 psi and a salinity of 7 wt. % NaBr. The depressurization setup consisted of one pump filled with tap water attached to the confining fluid port and a second pump attached to the inlet port where the methane was injected. Depressurization was conducted over sixteen hours at a constant temperature of 1°C. The pore pressure was stepwise reduced from 1775 psi to atmospheric pressure by pulling known volumes of gas from the sample. After each extraction, we recorded the instantaneous and equilibrium pore pressure. 0.503 moles of methane were removed from the sample. The pore pressure decreased smoothly and nonlinearly with the cumulative gas withdrawn from the sample. We interpret that hydrate began to dissociate immediately with depressurization, and it continued to dissociate when the pressure decreased below the three-phase pressure for 1°C and 0 wt. % salinity. Two breaks in slope in the pressure vs. mass extracted data are bounded by smooth, nonlinear curves with differing slopes on either side. We attribute the breaks to dissociation of three zones of hydrate concentration. We created a box model to simulate the experimental behavior. For a 10% initial gas saturation (estimated from the hydrate formation experiment and based on mass conservation), an initial hydrate saturation of 55% is required to match the total methane extracted from the sample. Future experiments will be conducted over a longer timespan while monitoring hydrate dissociation with CT imaging throughout the process.

  7. Intermolecular Hydrogen Transfer in Isobutane Hydrate

    OpenAIRE

    Takeshi Sugahara; Kei Takeya; Mikio Nakagoshi; Takashi Minami; Atsushi Tani; Naohiro Kobayashi; Kazunari Ohgaki

    2012-01-01

    Electron spin resonance (ESR) spectra of butyl radicals induced with γ-ray irradiation in the simple isobutane (2-methylpropane) hydrate (prepared with deuterated water) were investigated. Isothermal annealing results of the γ-ray-irradiated isobutane hydrate reveal that the isobutyl radical in a large cage withdraws a hydrogen atom from the isobutane molecule through shared hexagonal-faces of adjacent large cages. During this “hydrogen picking” process, the isobutyl radical is apparently tra...

  8. Exploitation of subsea gas hydrate reservoirs

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2016-04-01

    Natural gas hydrates are considered to be a potential energy resource in the future. They occur in permafrost areas as well as in subsea sediments and are stable at high pressure and low temperature conditions. According to estimations the amount of carbon bonded in natural gas hydrates worldwide is two times larger than in all known conventional fossil fuels. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e.g. depressurization and/or injection of carbon dioxide) is numerically studied in the frame of the German research project »SUGAR«. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into a numerical model. The physics of the process leads to strong non-linear couplings between hydraulic fluid flow, hydrate dissociation and formation, hydraulic properties of the sediment, partial pressures and seawater solution of components and the thermal budget of the system described by the heat equation. This paper is intended to provide an overview of the recent development regarding the production of natural gas from subsea gas hydrate reservoirs. It aims at giving a broad insight into natural gas hydrates and covering relevant aspects of the exploitation process. It is focused on the thermodynamic principles and technological approaches for the exploitation. The effects occurring during natural gas production within hydrate filled sediment layers are identified and discussed by means of numerical simulation results. The behaviour of relevant process parameters such as pressure, temperature and phase saturations is described and compared for different strategies. The simulations are complemented by calculations for different safety relevant problems.

  9. Effect of clay minerals on the stabilization of black cotton and lateritic soils

    International Nuclear Information System (INIS)

    The problem associated with black cotton and lateritic soils because of the swelling-shrinkage property of their constituent clay minerals were investigated. Samples of black cotton lateritic soils were collected from different parts of Kenya. The samples were analysed for their mineral compositions and later treated with hydrated lime in order to eliminate the swelling shrinkage behaviour. The samples were subsequently tested for their engineering properties in a soil mechanics laboratory using shear box and Casagrande apparatus. It was found that the chemical treatment of the soils with hydrated lime removes their plastic property and improves their shear strength. (author)

  10. Aluminium phosphate sulphate minerals (APS) associated with proterozoic unconformity-type uranium deposits: crystal-chemical characterisation and petrogenetic significance; Les sulfates phosphates d'aluminium hydrates (APS) dans l'environnement des gisements d'uranium associes a une discordance proterozoique: caracterisation cristallochimique et signification petrogenetique

    Energy Technology Data Exchange (ETDEWEB)

    Gaboreau, St

    2005-07-01

    Aluminium phosphate sulfate minerals (APS) are particularly widespread and spatially associated with hydrothermal clay alteration in both the East Alligator River Uranium Field (Northern Territory, Australia) and the Athabasca basin (Saskatchewan, Canada), in the environment of proterozoic unconformity-related uranium deposits (URUD). The purpose of this study is both: 1) to characterize the nature and the origin of the APS minerals on both sides of the middle proterozoic unconformity between the overlying sandstones and the underlying metamorphic basement rocks that host the uranium ore bodies, 2) to improve our knowledge on the suitability of these minerals to indicate the paleo-conditions (redox, pH) at which the alteration processes relative to the uranium deposition operated. The APS minerals result from the interaction of oxidising and relatively acidic fluids with aluminous host rocks enriched in monazite. Several APS-bearing clay assemblages and APS crystal-chemistry have also been distinguished as a function of the distance from the uranium ore bodies or from the structural discontinuities which drained the hydrothermal solutions during the mineralisation event. One of the main results of this study is that the index mineral assemblages, used in the recent literature to describe the alteration zones around the uranium ore bodies, can be theoretically predicted by a set of thermodynamic calculations which simulate different steps of fluid-rock interaction processes related to a downward penetrating of hyper-saline, oxidizing and acidic diagenetic fluids through the lower sandstone units of the basins and then into the metamorphic basement rocks. The above considerations and the fact that APS with different crystal-chemical compositions crystallized in a range of fO{sub 2} and pH at which uranium can either be transported in solution or precipitated as uraninite in the host-rocks make these minerals not only good markers of the degree of alteration of the

  11. Trade in mineral resources

    OpenAIRE

    Davis, Graham A.

    2010-01-01

    This paper provides a review of current thinking on the economics of international trade in mineral resources. I first define what is meant by trade in mineral resources. I then discuss patterns of trade in mineral resources. The paper then moves on to the five topics requested by the World Trade Organization: theoretical and empirical literature on international trade in minerals; trade impacts of mineral abundance and the resource curse; the political economy of mineral trade in resource-ab...

  12. Hydration during intense exercise training.

    Science.gov (United States)

    Maughan, R J; Meyer, N L

    2013-01-01

    Hydration status has profound effects on both physical and mental performance, and sports performance is thus critically affected. Both overhydration and underhydration - if sufficiently severe - will impair performance and pose a risk to health. Athletes may begin exercise in a hypohydrated state as a result of incomplete recovery from water loss induced in order to achieve a specific body mass target or due to incomplete recovery from a previous competition or training session. Dehydration will also develop in endurance exercise where fluid intake does not match water loss. The focus has generally been on training rather than on competition, but sweat loss and fluid replacement in training may have important implications. Hypohydration may impair training quality and may also increase stress levels. It is unclear whether this will have negative effects (reduced training quality, impaired immunity) or whether it will promote a greater adaptive response. Hypohydration and the consequent hyperthermia, however, can enhance the effectiveness of a heat acclimation program, resulting in improved endurance performance in warm and temperate environments. Drinking in training may be important in enhancing tolerance of the gut when athletes plan to drink in competition. The distribution of water between body water compartments may also be important in the initiation and promotion of cellular adaptations to the training stimulus. PMID:23899752

  13. Phase Transition of Methane Gas Hydrate and Response of Marine Gas Hydrate Systems to Environmental Changes

    Science.gov (United States)

    Xu, W.

    2003-12-01

    Gas hydrates, which contain mostly methane as the gas component in marine sediment, are stable under relatively high pressure and low temperature conditions such as those found along continental margins and permafrost regions. Its stability is mostly controlled by in-situ pressure, temperature and salinity of pore fluid. Environmentally introduced changes in pressure and temperature can affect the stability of gas hydrate in marine sediment. While certain changes may enhance the process of gas hydrate formation, we are much more interested in the resultant dissociation processes, which may contribute to sub-marine slope instability, seafloor sediment failure, formation of mud volcanoes and pock marks, potential vulnerability of engineering structures, and the risk to drilling and production. We have been developing models to quantify phase transition processes of marine gas hydrates and to investigate the response of marine gas hydrate systems to environmental changes. Methane gas hydrate system is considered as a three-component (water, methane, salt) four-phase (liquid, gas, hydrate, halite) system. Pressure, temperature and salinity of pore fluid constrain the stability of gas hydrate and affect phase transition processes via their effects on methane solubility and fluid density and enthalpy. Compared to the great quantity of studies on its stability in the literature, in-depth research on phase transition of gas hydrate is surprisingly much less. A method, which employs pressure, enthalpy, salinity and methane content as independent variables, is developed to calculate phase transition processes of the three-component four-phase system. Temperature, an intensive thermodynamic parameter, is found not sufficient in describing phase transition of gas hydrate. The extensive thermodynamic parameter enthalpy, on the other hand, is found to be sufficient both in calculation of the phase transition processes and in modeling marine gas hydrate systems. Processes

  14. A pump-probe XFEL particle injector for hydrated samples

    CERN Document Server

    Weierstall, U; Spence, J C H

    2011-01-01

    We have developed a liquid jet injector system that can be used for hydrated sample delivery at X-ray Free Electron Laser (XFEL) sources and 3rd generation synchrotron sources. The injector is based on the Gas Dynamic Virtual Nozzle (GDVN), which generates a liquid jet with diameter ranging from 300 nm to 20 {\\mu}m without the clogging problems associated with conventional Rayleigh jets. An improved nozzle design is presented here. A differential pumping system protects the vacuum chamber and an in-vacuum microscope allows observation of the liquid jet for diagnostics while it is being exposed to the X-ray beam. A fiber optically coupled pump laser illuminating the jet is incorporated for pump-probe experiments. First results with this injector system have been obtained at the LCLS.

  15. 30 CFR 77.508 - Lightning arresters, ungrounded and exposed power conductors and telephone wires.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lightning arresters, ungrounded and exposed... arresters, ungrounded and exposed power conductors and telephone wires. All ungrounded, exposed power conductors and telephone wires shall be equipped with suitable lightning arresters which are...

  16. Using Terrestrial Sulfate Efflorescences as an Analogue of Hydrated Sulfate Formation in Valles Marineris on Mars

    Science.gov (United States)

    Smith, P. C.; Szynkiewicz, A.

    2015-12-01

    Hydrated sulfate minerals provide conclusive evidence that a hydrologic cycle was once active on the surface of Mars. Two classes of hydrated sulfate minerals have been detected by robotic instruments on Mars: monohydrated sulfate minerals comprised of kieserite and gypsum, and various polyhydrated sulfates with Fe-Ca-Na-Mg-rich compositions. These minerals are found in various locations on Mars, including large surface exposures in valley settings of Valles Marineris. However, the sulfate sources and formation mechanisms of these minerals are not yet well understood.Recently, it has been suggested that the sulfate minerals in Valles Marineris might have formed in a manner similar to sulfate efflorescences found in dry environments on Earth. In this study, we use sulfate effloresences from the Rio Puerco Watershed, New Mexico as a terrestrial analogue to assess major factors that might have led to deposition of sulfate minerals in Valles Marineris. In different seasons indicative of dry and wet conditions, we collected field photographs and sediment samples for chemical and stable isotopic analyses (sulfur content, δ34S) to determine major sources of sulfate ions for efflorescences and to assess how the seasonal changes in surface/groundwater activity affect their formation. Preliminary sulfur isotope results suggest that oxidation of bedrock sulfides (0.01-0.05 wt. S %) is a major source of sulfate ion for efflorescences formation because their δ34S varied in negative range (-28 to -20‰) similar to sulfides (average -32‰). Using field photographs collected in Oct 2006, Feb and Nov 2012, May 2013, Mar and Oct 2014, we infer that the highest surface accumulation of sulfate efflorescences in the studied analog site was observed after summer monsoon seasons when more water was available for surface and subsurface transport of solutes from chemical weathering. Conversely, spring snow melt led to enhanced dissolution of sulfate efflorescences.

  17. Individual and combined effects of chloride, sulfate, and magnesium ions on hydrated Portland-cement paste

    International Nuclear Information System (INIS)

    Ground water with a high concentration of magnesium ion is known to cause deterioration to portland cement concretes. A proposed mechanism for this deterioration process published previously involves an approximate 1:1 replacement of Ca ions by Mg ions in the crystalline phases of hydrated cement. The current study was undertaken to determine which ions, among magnesium, chloride, and sulfate, cause deterioration; whether their deleterious action is individual or interdependent; and to relate this mechanism of deterioration to the outlook for a 100-yr service life of concretes used in mass placements at the Waste Isolation Pilot Plant. Loss of Ca ion by cement pastes was found to be strongly related to the concentration of Mg ion in simulated ground-water solutions in which the paste samples were aged. This was true of both salt- containing and conventional cement pastes. No other ion in the solutions exerted a strong effect on Ca loss. Ca ion left first from calcium hydroxide in the pastes, depleting all calcium hydroxide by 60 days. Some calcium silicate hydrate remained even after 90 days in the solutions with the highest concentration of Mg ion, while the paste samples deteriorated noticeably. The results indicated a mechanism that involves dissolution of Ca phases and transport of Ca ions to the surface of the sample, followed by formation of Mg-bearing phases at this reaction surface rather than directly by substitution within the microstructure of hydrated cement. Given that calcium hydroxide and calcium silicate hydrate are the principal strength-giving phases of hydrated cement, this mechanism indicates the likelihood of significant loss of integrity of a concrete exposed to Mg-bearing ground water at the WIPP. The rate of deterioration ultimately will depend on Mg-ion concentration, the microstructure materials of the concrete exposed to that groundwater, and the availability of brine

  18. Analysis of mixed-layer clay mineral structures

    Science.gov (United States)

    Bradley, W.F.

    1953-01-01

    Among the enormously abundant natural occurrences of clay minerals, many examples are encountered in which no single specific crystallization scheme extends through a single ultimate grain. The characterization of such assemblages becomes an analysis of the distribution of matter within such grains, rather than the simple identification of mineral species. It having become established that the particular coordination complex typified by mica is a common component of many natural subcrystalline assemblages, the opportunity is afforded to analyze scattering from random associations of these complexes with other structural units. Successful analyses have been made of mixed hydration states of montmorillonite, of montmorillonite with mica, of vermiculite with mica, and of montmorillonite with chlorite, all of which are variants of the mica complex, and of halloysite with hydrated halloysite.

  19. Hydrate pingoes at Nyegga: some characteristic features

    Science.gov (United States)

    Hovland, M.

    2009-04-01

    Hydrate pingoes were observed on the seafloor during two different remotely operated vehicle (ROV)-dives, conducted by Statoil at complex-pockmark G11, at Nyegga, off Mid-Norway. Confirmation that these structures actually represent hydrate ice-cored sediment mounds (pingoes), was done by other investigators (Ivanov et al., 2006). Because it is expected that hydrate pingoes represent relatively dynamic seafloor topographic structures and that their shape and size most probably will change over relatively short time, it is important to know how to recognise them visually. Hovland and Svensen (2006) highlighted five different characteristic aspects that define hydrate pingoes on the sea floor: 1) They are dome- or disc-shaped features, which may attain any size from ~0.5 m in height and upwards. Inside pockmark G11, they were up to 1 m high. 2) They are circular or oval in plan view and may attain lateral sizes on the seafloor ranging upwards from ~0.5 m. Inside G11 they had lengths of several metres and widths of up to 4 m. 3) They have dense communities of organisms growing on their surfaces. At G11, they were overgrown with small pogonophoran tube-worms. 4) They have patches of white or grey bacterial mats growing on their surface, indicating advection (seepage) of reduced pore-waters. 5) They have small pits and patches of fluidized sediments on their surface, indicating pit corrosion of the sub-surface gas hydrate. Because gas hydrates often form in high-porosity, near-surface sediments, where water is readily available, it is thought that they will build up at locations where gases are actively migrating upwards from depth. However, gas hydrates are not stable in the presence of ambient seawater, as seawater is deficient in guest molecule gases (normally methane). Therefore, they tend to build up below surface above conduits for gas flow from depth. But, the near-surface hydrate ice-lenses will continually be corroded by seawater circulating into the sediments

  20. Hydration characteristics and environmental friendly performance of a cementitious material composed of calcium silicate slag.

    Science.gov (United States)

    Zhang, Na; Li, Hongxu; Zhao, Yazhao; Liu, Xiaoming

    2016-04-01

    Calcium silicate slag is an alkali leaching waste generated during the process of extracting Al2O3 from high-alumina fly ash. In this research, a cementitious material composed of calcium silicate slag was developed, and its mechanical and physical properties, hydration characteristics and environmental friendly performance were investigated. The results show that an optimal design for the cementitious material composed of calcium silicate slag was determined by the specimen CFSC7 containing 30% calcium silicate slag, 5% high-alumina fly ash, 24% blast furnace slag, 35% clinker and 6% FGD gypsum. This blended system yields excellent physical and mechanical properties, confirming the usefulness of CFSC7. The hydration products of CFSC7 are mostly amorphous C-A-S-H gel, rod-like ettringite and hexagonal-sheet Ca(OH)2 with small amount of zeolite-like minerals such as CaAl2Si2O8·4H2O and Na2Al2Si2O8·H2O. As the predominant hydration products, rod-like ettringite and amorphous C-A-S-H gel play a positive role in promoting densification of the paste structure, resulting in strength development of CFSC7 in the early hydration process. The leaching toxicity and radioactivity tests results indicate that the developed cementitious material composed of calcium silicate slag is environmentally acceptable. This study points out a promising direction for the proper utilization of calcium silicate slag in large quantities. PMID:26691955

  1. Hydration characteristics and environmental friendly performance of a cementitious material composed of calcium silicate slag.

    Science.gov (United States)

    Zhang, Na; Li, Hongxu; Zhao, Yazhao; Liu, Xiaoming

    2016-04-01

    Calcium silicate slag is an alkali leaching waste generated during the process of extracting Al2O3 from high-alumina fly ash. In this research, a cementitious material composed of calcium silicate slag was developed, and its mechanical and physical properties, hydration characteristics and environmental friendly performance were investigated. The results show that an optimal design for the cementitious material composed of calcium silicate slag was determined by the specimen CFSC7 containing 30% calcium silicate slag, 5% high-alumina fly ash, 24% blast furnace slag, 35% clinker and 6% FGD gypsum. This blended system yields excellent physical and mechanical properties, confirming the usefulness of CFSC7. The hydration products of CFSC7 are mostly amorphous C-A-S-H gel, rod-like ettringite and hexagonal-sheet Ca(OH)2 with small amount of zeolite-like minerals such as CaAl2Si2O8·4H2O and Na2Al2Si2O8·H2O. As the predominant hydration products, rod-like ettringite and amorphous C-A-S-H gel play a positive role in promoting densification of the paste structure, resulting in strength development of CFSC7 in the early hydration process. The leaching toxicity and radioactivity tests results indicate that the developed cementitious material composed of calcium silicate slag is environmentally acceptable. This study points out a promising direction for the proper utilization of calcium silicate slag in large quantities.

  2. Distinguishing between hydrated, partially hydrated or unhydrated clinker in hardened concrete using microscopy

    NARCIS (Netherlands)

    Valcke, S.L.A.; Rooij, M.R. de; Visser, J.H.M.; Nijland, T.G.

    2010-01-01

    Hydration of clinker particles is since long a topic of interest in both designing and optimizing cement composition and its quantity used in concrete. The interest for carefully observing and also quantifying the type or stage of clinker hydration in hardened cement paste is twofold. Firstly, the c

  3. Hydrate-phobic surfaces: fundamental studies in clathrate hydrate adhesion reduction.

    Science.gov (United States)

    Smith, J David; Meuler, Adam J; Bralower, Harrison L; Venkatesan, Rama; Subramanian, Sivakumar; Cohen, Robert E; McKinley, Gareth H; Varanasi, Kripa K

    2012-05-01

    Clathrate hydrate formation and subsequent plugging of deep-sea oil and gas pipelines represent a significant bottleneck for deep-sea oil and gas operations. Current methods for hydrate mitigation are expensive and energy intensive, comprising chemical, thermal, or flow management techniques. In this paper, we present an alternate approach of using functionalized coatings to reduce hydrate adhesion to surfaces, ideally to a low enough level that hydrodynamic shear stresses can detach deposits and prevent plug formation. Systematic and quantitative studies of hydrate adhesion on smooth substrates with varying solid surface energies reveal a linear trend between hydrate adhesion strength and the practical work of adhesion (γ(total)[1 + cos θ(rec)]) of a suitable probe liquid, that is, one with similar surface energy properties to those of the hydrate. A reduction in hydrate adhesion strength by more than a factor of four when compared to bare steel is achieved on surfaces characterized by low Lewis acid, Lewis base, and van der Waals contributions to surface free energy such that the practical work of adhesion is minimized. These fundamental studies provide a framework for the development of hydrate-phobic surfaces, and could lead to passive enhancement of flow assurance and prevention of blockages in deep-sea oil and gas operations. PMID:22441203

  4. Kinetic studies of gas hydrate formation with low-dosage hydrate inhibitors

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Pipeline blockage by gas hydrates is a serious problem in the petroleum industry.Low-dosage inhibitors have been developed for its cost-effective and environmentally acceptable characteristics.In a 1.072-L reactor with methane,ethane and propane gas mixture under the pressure of about 8.5 MPa at 4 °C,hydrate formation was investigated with low-dosage hydrate inhibitors PVP and GHI1,the change of the compressibility factor and gas composition in the gas phase was analyzed,the gas contents in hydrates were compared with PVP and GHI1 added,and the inhibition mechanism of GHI1 was discussed.The results show that PVP and GHI1 could effectively inhibit the growth of gas hydrates but not nucleation.Under the experimental condition with PVP added,methane and ethane occupied the small cavities of the hydrate crystal unit and the ability of ethane entering into hydrate cavities was weaker than that of methane.GHI1 could effectively inhibit molecules which could more readily form hydrates.The ether and hydroxy group of diethylene glycol monobutyl ether have the responsibility for stronger inhibition ability of GHI1 than PVP.

  5. Controls on Gas Hydrate Formation and Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Miriam Kastner; Ian MacDonald

    2006-03-03

    The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both

  6. Depressurization and electrical heating of hydrate sediment for gas production

    Science.gov (United States)

    Minagawa, H.

    2015-12-01

    As a part of a Japanese National hydrate research program (MH21, funded by METI), we performed a study on electrical heating of the hydrate core combined with depressurization for gas production. In-situ dissociation of natural gas hydrate is necessary for commercial recovery of natural gas from natural gas hydrate sediment. Thermal stimulation is an effective dissociation method, along with depressurization.To simulate methane gas production from methane hydrate layer, we investigated electrical heating of methane hydrate sediment. A decrease in core temperature due to the endothermic reaction of methane hydrate dissociation was suppressed and the core temperature increased between 1oC and 4oC above the control temperature with electric heating. A current density of 10A/m2 with depressurization would effectively dissociate hydrate. Therefore, depressurization and additional electrode heating of hydrate sediment saturated with electrolyte solution was confirmed to enable higher gas production from sediment with less electric power.

  7. Properties of equilibrium carbon dioxide hydrate in porous medium

    Science.gov (United States)

    Voronov, V. P.; Gorodetskii, E. E.; Podnek, V. E.; Grigoriev, B. A.

    2016-09-01

    Specific heat capacity, dissociation heat and hydration number of carbon dioxide hydrate in porous medium are determined by adiabatic calorimetry method. The measurements were carried out in the temperature range 250-290 K and in pressure range 1-5 MPa. The measured specific heat of the hydrate is approximately 2.7 J/(g K), which is significantly larger than the specific heat of methane hydrate. In particular, at heating, larger value of the specific heat of carbon dioxide hydrate is a result of gas emission from the hydrate. The hydration number at the hydrate-gas coexistence changes from 6.2 to 6.9. The dissociation heat of carbon dioxide hydrate varies from the 55 kJ/mol near the upper quadruple point to the 57 kJ/mol near the lower quadruple point.

  8. Thermodynamic modeling for clathrate hydrates of ozone

    International Nuclear Information System (INIS)

    Highlights: • We present a phase-equilibrium model for ozone-containing clathrate hydrates. • We determine intermolecular potential parameters for O3. • There is good agreement between the developed model and the experimental data. • The results show the capability of O3 as a guest substance for clathrate hydrates. • We perform parametric studies for O3 storage capacity with various thermodynamic conditions. -- Abstract: We report a theoretical study to predict the phase-equilibrium properties of ozone-containing clathrate hydrates based on the statistical thermodynamics model developed by van der Waals and Platteeuw. The Patel–Teja–Valderrama equation of state is employed for an accurate estimation of the properties of gas phase ozone. We determined the three parameters of the Kihara intermolecular potential for ozone as a = 6.815 · 10−2 nm, σ = 2.9909 · 10−1 nm, and ε · kB−1 = 184.00 K. An infinite set of ε–σ parameters for ozone were determined, reproducing the experimental phase equilibrium pressure–temperature data of the (O3 + O2 + CO2) clathrate hydrate. A unique parameter pair was chosen based on the experimental ozone storage capacity data for the (O3 + O2 + CCl4) hydrate that we reported previously. The prediction with the developed model showed good agreement with the experimental phase equilibrium data within ±2% of the average deviation of the pressure. The Kihara parameters of ozone showed slightly better suitability for the structure-I hydrate than CO2, which was used as a help guest. Our model suggests the possibility of increasing the ozone storage capacity of clathrate hydrates (∼7% on a mass basis) from the previously reported experimental capacity (∼1%)

  9. Calcium-aluminum-silicate-hydrate "cement" phases and rare Ca-zeolite association at Colle Fabbri, Central Italy

    Science.gov (United States)

    Stoppa, F.; Scordari, F.; Mesto, E.; Sharygin, V.; Bortolozzi, G.

    2010-06-01

    Very high temperature, Ca-rich alkaline magma intruded an argillite formation at Colle Fabbri, Central Italy, producing cordierite-tridymite metamorphism in the country rocks. An intense Ba-rich sulphate-carbonate-alkaline hydrothermal plume produced a zone of mineralization several meters thick around the igneous body. Reaction of hydrothermal fluids with country rocks formed calcium-silicate-hydrate (CSH), i.e., tobermorite-afwillite-jennite; calcium-aluminum-silicate-hydrate (CASH) — "cement" phases - i.e., thaumasite, strätlingite and an ettringite-like phase and several different species of zeolites: chabazite-Ca, willhendersonite, gismon-dine, three phases bearing Ca with the same or perhaps lower symmetry of phillipsite-Ca, levyne-Ca and the Ca-rich analogue of merlinoite. In addition, apophyllite-(KF) and/or apophyllite-(KOH), Ca-Ba-carbonates, portlandite and sulphates were present. A new polymorph from the pyrrhotite group, containing three layers of sphalerite-type structure in the unit cell, is reported for the first time. Such a complex association is unique. Most of these minerals are specifically related to hydration processes of: (1) pyrometamorphic metacarbonate/metapelitic rocks (natural analogues of cement clinkers); (2) mineralization between intrusive stocks and slates; and (3) high-calcium, alkaline igneous rocks such as melilitites and foidites as well as carbonatites. The Colle Fabbri outcrop offers an opportunity to study in situ complex crystalline overgrowth and specific crystal chemistry in mineral phases formed in igneous to hydrothermal conditions.

  10. Experimental characterization of production behavior accompanying the hydrate reformation in methane hydrate bearing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, T.; Kang, J.M.; Nguyen, H.T. [Seoul National Univ., Seoul (Korea, Republic of); Park, C. [Kangwon National Univ., (Korea, Republic of); Lee, J. [Korea Inst., of Geoscience and Mineral Resources (Korea, Republic of)

    2010-07-01

    This study investigated the production behaviour associated with gas hydrate reformation in methane hydrate-bearing sediment by hot-brine injection. A range of different temperature and brine injection rates were used to analyze the pressure and temperature distribution, the gas production behaviour and the movement of the dissociation front. The study showed that hydrate reformation reduces the production rate considerably at an early time. However, gas production increases during the dissociation, near the outlet because the dissociated methane around the inlet is consumed in reforming the hydrate and increases the hydrate saturation around the outlet. Higher temperature also increases the gas production rate and the speed of the dissociation front. 12 refs., 2 tabs., 4 figs.

  11. GULF OF MEXICO SEAFLOOR STABILITY AND GAS HYDRATE MONITORING STATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    J. Robert Woolsey; Thomas M. McGee; Robin C. Buchannon

    2004-11-01

    The gas hydrates research Consortium (HRC), established and administered at the University if Mississippi's Center for Marine Research and Environmental Technology (CMRET) has been active on many fronts in FY 03. Extension of the original contract through March 2004, has allowed completion of many projects that were incomplete at the end of the original project period due, primarily, to severe weather and difficulties in rescheduling test cruises. The primary objective of the Consortium, to design and emplace a remote sea floor station for the monitoring of gas hydrates in the Gulf of Mexico by the year 2005 remains intact. However, the possibility of levering HRC research off of the Joint Industries Program (JIP) became a possibility that has demanded reevaluation of some of the fundamental assumptions of the station format. These provisions are discussed in Appendix A. Landmark achievements of FY03 include: (1) Continuation of Consortium development with new researchers and additional areas of research contribution being incorporated into the project. During this period, NOAA's National Undersea Research Program's (NURP) National Institute for Undersea Science and Technology (NIUST) became a Consortium funding partner, joining DOE and Minerals Management Service (MMS); (2) Very successful annual and semiannual meetings in Oxford Mississippi in February and September, 2003; (3) Collection of piston cores from MC798 in support of the effort to evaluate the site for possible monitoring station installation; (4) Completion of the site evaluation effort including reports of all localities in the northern Gulf of Mexico where hydrates have been documented or are strongly suspected to exist on the sea floor or in the shallow subsurface; (5) Collection and preliminary evaluation of vent gases and core samples of hydrate from sites in Green Canyon and Mississippi Canyon, northern Gulf of Mexico; (6) Monitoring of gas activity on the sea floor, acoustically

  12. Composite model to reproduce the mechanical behaviour of methane hydrate bearing soils

    Science.gov (United States)

    De la Fuente, Maria

    2016-04-01

    Methane hydrate bearing sediments (MHBS) are naturally-occurring materials containing different components in the pores that may suffer phase changes under relative small temperature and pressure variations for conditions typically prevailing a few hundreds of meters below sea level. Their modelling needs to account for heat and mass balance equations of the different components, and several strategies already exist to combine them (e.g., Rutqvist & Moridis, 2009; Sánchez et al. 2014). These equations have to be completed by restrictions and constitutive laws reproducing the phenomenology of heat and fluid flows, phase change conditions and mechanical response. While the formulation of the non-mechanical laws generally includes explicitly the mass fraction of methane in each phase, which allows for a natural update of parameters during phase changes, mechanical laws are, in most cases, stated for the whole solid skeleton (Uchida et al., 2012; Soga et al. 2006). In this paper, a mechanical model is proposed to cope with the response of MHBS. It is based on a composite approach that allows defining the thermo-hydro-mechanical response of mineral skeleton and solid hydrates independently. The global stress-strain-temperature response of the solid phase (grains + hydrate) is then obtained by combining both responses according to energy principle following the work by Pinyol et al. (2007). In this way, dissociation of MH can be assessed on the basis of the stress state and temperature prevailing locally within the hydrate component. Besides, its structuring effect is naturally accounted for by the model according to patterns of MH inclusions within soil pores. This paper describes the fundamental hypothesis behind the model and its formulation. Its performance is assessed by comparison with laboratory data presented in the literature. An analysis of MHBS response to several stress-temperature paths representing potential field cases is finally presented. References

  13. Chemical and physical transformations of aluminosilicate clay minerals due to acid treatment and consequences for heterogeneous ice nucleation.

    Science.gov (United States)

    Sihvonen, Sarah K; Schill, Gregory P; Lyktey, Nicholas A; Veghte, Daniel P; Tolbert, Margaret A; Freedman, Miriam Arak

    2014-09-25

    Mineral dust aerosol is one of the largest contributors to global ice nuclei, but physical and chemical processing of dust during atmospheric transport can alter its ice nucleation activity. In particular, several recent studies have noted that sulfuric and nitric acids inhibit heterogeneous ice nucleation in the regime below liquid water saturation in aluminosilicate clay minerals. We have exposed kaolinite, KGa-1b and KGa-2, and montmorillonite, STx-1b and SWy-2, to aqueous sulfuric and nitric acid to determine the physical and chemical changes that are responsible for the observed deactivation. To characterize the changes to the samples upon acid treatment, we use X-ray diffraction, transmission electron microscopy, and inductively coupled plasma-atomic emission spectroscopy. We find that the reaction of kaolinite and montmorillonite with aqueous sulfuric acid results in the formation of hydrated aluminum sulfate. In addition, sulfuric and nitric acids induce large structural changes in montmorillonite. We additionally report the supersaturation with respect to ice required for the onset of ice nucleation for these acid-treated species. On the basis of lattice spacing arguments, we explain how the chemical and physical changes observed upon acid treatment could lead to the observed reduction in ice nucleation activity.

  14. Chemical and physical transformations of aluminosilicate clay minerals due to acid treatment and consequences for heterogeneous ice nucleation.

    Science.gov (United States)

    Sihvonen, Sarah K; Schill, Gregory P; Lyktey, Nicholas A; Veghte, Daniel P; Tolbert, Margaret A; Freedman, Miriam Arak

    2014-09-25

    Mineral dust aerosol is one of the largest contributors to global ice nuclei, but physical and chemical processing of dust during atmospheric transport can alter its ice nucleation activity. In particular, several recent studies have noted that sulfuric and nitric acids inhibit heterogeneous ice nucleation in the regime below liquid water saturation in aluminosilicate clay minerals. We have exposed kaolinite, KGa-1b and KGa-2, and montmorillonite, STx-1b and SWy-2, to aqueous sulfuric and nitric acid to determine the physical and chemical changes that are responsible for the observed deactivation. To characterize the changes to the samples upon acid treatment, we use X-ray diffraction, transmission electron microscopy, and inductively coupled plasma-atomic emission spectroscopy. We find that the reaction of kaolinite and montmorillonite with aqueous sulfuric acid results in the formation of hydrated aluminum sulfate. In addition, sulfuric and nitric acids induce large structural changes in montmorillonite. We additionally report the supersaturation with respect to ice required for the onset of ice nucleation for these acid-treated species. On the basis of lattice spacing arguments, we explain how the chemical and physical changes observed upon acid treatment could lead to the observed reduction in ice nucleation activity. PMID:25211030

  15. Authigenic gypsum found in gas hydrate-associated sediments from Hydrate Ridge, the eastern North Pacific

    Institute of Scientific and Technical Information of China (English)

    WANG Jiasheng; Erwin Suess; Dirk Rickert

    2004-01-01

    Characteristic gypsum micro-sphere and granular mass were discovered by binocular microscope in the gas hydrate-associated sediments at cores SO143-221 and SO143/TVG40-2A respectively on Hydrate Ridge of Cascadia margin, the eastern North Pacific. XRD patterns and EPA analyses show both micro-sphere and granular mass of the crystals have the typical peaks and the typical main chemical compositions of gypsum, although their weight percents are slightly less than the others in the non-gas hydrate-associated marine regions. SEM pictures show that the gypsum crystals have clear crystal boundaries, planes, edges and cleavages of gypsum in form either of single crystal or of twin crystals. In view of the fact that there are meanwhile gas hydrate-associated authigenic carbonates and SO42(-rich pore water in the same sediment cores, it could be inferred reasonably that the gypsums formed also authigenically in the gas hydrate-associated environment too, most probably at the interface between the downward advecting sulfate-rich seawater and the below gas hydrate, which spilled calcium during its formation on Hydrate Ridge. The two distinct forms of crystal intergrowth, which are the granular mass of series single gypsum crystals at core SO143/TVG40-2A and the microsphere of gypsum crystals accompanied with detrital components at core SO143-221 respectively, indicate that they precipitated most likely in different interstitial water dynamic environments. So, the distinct authigenic gypsums found in gas hydrate-associated sediments on Hydrate Ridge could also be believed as one of the parameters which could be used to indicate the presence of gas hydrate in an unknown marine sediment cores.

  16. Structural Investigations of Portland Cement Components, Hydration, and Effects of Admixtures by Solid-State NMR Spectroscopy

    DEFF Research Database (Denmark)

    Skibsted, Jørgen Bengaard; Andersen, Morten D.; Jakobsen, Hans Jørgen

    2006-01-01

    for the C-S-H phase formed during hydration. It will be demonstrated that Al3+ and flouride guest-ions in the anhydrous and hydrated calcium silicates can be studied in detail by 27Al and 19F MAS NMR, thereby providing information on the local structure and the mechanisms for incorporation of these ions...... in the cement phases. The role of flouride ions is of special interest for mineralized Portland cements and it demonstrated that the location of these anions in anhydrous and hydrated Portland cements can be clarified using 19F MAS or 29Si{19F} CP/MAS NMR despite these cements contain only about 0.2 wt...

  17. Determinants of pathologic mineralization.

    Science.gov (United States)

    Kirsch, Thorsten

    2008-01-01

    Physiologic mineralization is necessary for the formation of skeletal tissues and for their appropriate functions during adulthood. Mineralization has to be controlled and restricted to specific regions. If the mineralization process occurs in regions that normally do not mineralize, there can be severe consequences (pathologic or ectopic mineralization). Recent findings have indicated that physiologic and pathologic mineralization events are initiated by matrix vesicles, membrane-enclosed particles released from the plasma membranes of mineralization-competent cells. The understanding of how these vesicles are released from the plasma membrane and initiate the mineralization process may provide novel therapeutic strategies to prevent pathologic mineralization. In addition, other regulators (activators and inhibitors) of physiologic mineralization have been identified and characterized, and there is evidence that the same factors also contribute to the regulation of pathologic mineralization. Finally, programmed cell death (apoptosis) may be a contributor to physiologic mineralization and if occurring after tissue injury may induce pathologic mineralization and mineralization-related differentiation events in the injured and surrounding areas. This review describes how the understanding of mechanisms and factors regulating physiologic mineralization can be used to develop new therapeutic strategies to prevent pathologic or ectopic mineralization events.

  18. Immobilisation and solidification of cesium on 11 A calcium silicate hydroxy hydrate column

    International Nuclear Information System (INIS)

    Calcium silicate hydrate closely resembling silicate mineral 11 A tobermorite has been synthesised by hydrothermal treatment of lime and silica at 175 degC. The synthetic mineral exhibits selectivity for Cs+ in the presence of strong solutions of alkali and alkaline earth cations, viz, Na+, K+, Mg2+, Ca2+, Sr2+, etc. The Al-substituted form of this mineral effectively separates cesium ion when used as an exchanger in column of size 35x5 mm (hxr). It is possible to remove 98.65±0.5%Cs+ from a mixed solution of cesium and sodium (0.0001N Cs+ + 0.5N Na+). Column separation of cesium from simulated intermediate level waste solution shows that from the first run ∼ 76% Cs+ can be immobilised on a small column, 18x10mm (hxr), having 2.0 g of exchanger. (author)

  19. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom

  20. Development of hydrate risk quantification in oil and gas production

    Science.gov (United States)

    Chaudhari, Piyush N.

    Subsea flowlines that transport hydrocarbons from wellhead to the processing facility face issues from solid deposits such as hydrates, waxes, asphaltenes, etc. The solid deposits not only affect the production but also pose a safety concern; thus, flow assurance is significantly important in designing and operating subsea oil and gas production. In most subsea oil and gas operations, gas hydrates form at high pressure and low temperature conditions, causing the risk of plugging flowlines, with a undesirable impact on production. Over the years, the oil and gas industry has shifted their perspective from hydrate avoidance to hydrate management given several parameters such as production facility, production chemistry, economic and environmental concerns. Thus, understanding the level of hydrate risk associated with subsea flowlines is an important in developing efficient hydrate management techniques. In the past, hydrate formation models were developed for various flow-systems (e.g., oil dominated, water dominated, and gas dominated) present in the oil and gas production. The objective of this research is to extend the application of the present hydrate prediction models for assessing the hydrate risk associated with subsea flowlines that are prone to hydrate formation. It involves a novel approach for developing quantitative hydrate risk models based on the conceptual models built from the qualitative knowledge obtained from experimental studies. A comprehensive hydrate risk model, that ranks the hydrate risk associated with the subsea production system as a function of time, hydrates, and several other parameters, which account for inertial, viscous, interfacial forces acting on the flow-system, is developed for oil dominated and condensate systems. The hydrate plugging risk for water dominated systems is successfully modeled using The Colorado School of Mines Hydrate Flow Assurance Tool (CSMHyFAST). It is found that CSMHyFAST can be used as a screening tool in

  1. Complex admixtures of clathrate hydrates in a water desalination method

    Science.gov (United States)

    Simmons, Blake A.; Bradshaw, Robert W.; Dedrick, Daniel E.; Anderson, David W.

    2009-07-14

    Disclosed is a method that achieves water desalination by utilizing and optimizing clathrate hydrate phenomena. Clathrate hydrates are crystalline compounds of gas and water that desalinate water by excluding salt molecules during crystallization. Contacting a hydrate forming gaseous species with water will spontaneously form hydrates at specific temperatures and pressures through the extraction of water molecules from the bulk phase followed by crystallite nucleation. Subsequent dissociation of pure hydrates yields fresh water and, if operated correctly, allows the hydrate-forming gas to be efficiently recycled into the process stream.

  2. Gas hydrates: past and future geohazard?

    Science.gov (United States)

    Maslin, Mark; Owen, Matthew; Betts, Richard; Day, Simon; Dunkley Jones, Tom; Ridgwell, Andrew

    2010-05-28

    Gas hydrates are ice-like deposits containing a mixture of water and gas; the most common gas is methane. Gas hydrates are stable under high pressures and relatively low temperatures and are found underneath the oceans and in permafrost regions. Estimates range from 500 to 10,000 giga tonnes of carbon (best current estimate 1600-2000 GtC) stored in ocean sediments and 400 GtC in Arctic permafrost. Gas hydrates may pose a serious geohazard in the near future owing to the adverse effects of global warming on the stability of gas hydrate deposits both in ocean sediments and in permafrost. It is still unknown whether future ocean warming could lead to significant methane release, as thermal penetration of marine sediments to the clathrate-gas interface could be slow enough to allow a new equilibrium to occur without any gas escaping. Even if methane gas does escape, it is still unclear how much of this could be oxidized in the overlying ocean. Models of the global inventory of hydrates and trapped methane bubbles suggest that a global 3( degrees )C warming could release between 35 and 940 GtC, which could add up to an additional 0.5( degrees )C to global warming. The destabilization of gas hydrate reserves in permafrost areas is more certain as climate models predict that high-latitude regions will be disproportionately affected by global warming with temperature increases of over 12( degrees )C predicted for much of North America and Northern Asia. Our current estimates of gas hydrate storage in the Arctic region are, however, extremely poor and non-existent for Antarctica. The shrinking of both the Greenland and Antarctic ice sheets in response to regional warming may also lead to destabilization of gas hydrates. As ice sheets shrink, the weight removed allows the coastal region and adjacent continental slope to rise through isostacy. This removal of hydrostatic pressure could destabilize gas hydrates, leading to massive slope failure, and may increase the risk of

  3. Novel hydrogen hydrate structures under pressure.

    Science.gov (United States)

    Qian, Guang-Rui; Lyakhov, Andriy O; Zhu, Qiang; Oganov, Artem R; Dong, Xiao

    2014-01-01

    Gas hydrates are systems of prime importance. In particular, hydrogen hydrates are potential materials of icy satellites and comets, and may be used for hydrogen storage. We explore the H₂O-H₂ system at pressures in the range 0-100 GPa with ab initio variable-composition evolutionary simulations. According to our calculation and previous experiments, the H₂O-H₂ system undergoes a series of transformations with pressure, and adopts the known open-network clathrate structures (sII, C₀), dense "filled ice" structures (C₁, C₂) and two novel hydrate phases. One of these is based on the hexagonal ice framework and has the same H₂O:H₂ ratio (2:1) as the C₀ phase at low pressures and similar enthalpy (we name this phase Ih-C₀). The other newly predicted hydrate phase has a 1:2 H₂O:H₂ ratio and structure based on cubic ice. This phase (which we name C₃) is predicted to be thermodynamically stable above 38 GPa when including van der Waals interactions and zero-point vibrational energy, and explains previously mysterious experimental X-ray diffraction and Raman measurements. This is the hydrogen-richest hydrate and this phase has a remarkable gravimetric density (18 wt.%) of easily extractable hydrogen.

  4. First-principles elasticity of monocarboaluminate hydrates

    KAUST Repository

    Moon, J.

    2014-07-01

    The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.

  5. Fire exposed aluminium structures

    NARCIS (Netherlands)

    Maljaars, J.; Fellinger, J.H.H.; Soetens, F.

    2006-01-01

    Material properties and mechanical response models for fire design of steel structures are based on extensive research and experience. Contrarily, the behaviour of aluminium load bearing structures exposed to fire is relatively unexplored. This article gives an overview of physical and mechanical pr

  6. Dry building mixture with complex dispersed mineral additives

    Science.gov (United States)

    Il'ina, Liliia; Mukhina, Irina; Teplov, Alexandr

    2016-01-01

    The effectiveness of the complex dispersed mineral additive consisting of diopside and limestone was provided by the following factors. Diopside, due to the high hardness, reinforces formed hardened cement paste and prevents the spread of micro-cracks in it under the action of loads. Furthermore, diopside due to the greater elastic modulus than cement paste causes redistribution of stress between the additive particles and the cement. Limestone, since it has chemical affinity with the clinker minerals and products of their hydration hardening, effects on the hydration process and the formation of the contact area between the additive particles and the cement. The optimum quantity of complex dispersed mineral additive is 7%. At the same time the strength of the solution, made of dry building mixture "rough leveler for floor", increased by 22.1%, and the strength of the solution, made of dry mortar "masonry mixture" increased by 32.7%. With the mineral additive introduction the offset of the endoeffect temperatures to higher temperatures on derivatograms is fixed. If there is a mineral additive in the hardened cement paste, which may act as substrate for the tumors crystallization, the hardened cement paste structure strengthening while the complex thermal analysis is seen.

  7. Effects of CO2 hydrate on deep-sea foraminiferal assemblages

    Energy Technology Data Exchange (ETDEWEB)

    Ricketts, E. R.; Kennett, J. P.; Hill, T. M.; Barry, J. P.

    2005-07-01

    This study, conducted with the Monterey Bay Aquarium Research Institute (MBARI), is the first to investigate potential effects of carbon dioxide (CO2) hydrates on benthic microfossils, specifically oraminifera. The experiment was conducted in September 2003 aboard the R/V Western Flier using the ROV Tiburon. Experimental (CO2 exposed) and control cores were collected at 3600m and stained to distinguish live (stained) from dead (unstained) individuals. Foraminifera are ideal for these investigations because of differing test composition (calcareous and agglutinated) and thickness, and diverse epifaunal and infaunal depth preferences. The effects of the CO2 on assemblages have been tracked both vertically (10cm depth) and horizontally, and between live and dead individuals. Increased mortality and dissolution of calcareous forms resulted from exposure to CO2 hydrate. Preliminary results suggest several major effects on surface sediment assemblages: 1) total number of foraminifera in a sample decreases; 2) foraminiferal diversity decreases in both stained and unstained specimens. The number of planktonic and hyaline calcareous tests declines greatly, with milliolids being more resistant to dissolution when stained; and 3) percentage of stained (live) forms is higher. Down-core trends (up to 10cm) indicate: 1) percent agglutinated forms decline and calcareous forms increasingly dominate; 2) agglutinated diversity decreases with depth; and 3) assemblages become increasingly similar with depth to those in control cores not subjected to CO2 hydrate. These results imply almost complete initial mortality and dissolution upon CO2 hydrate emplacement in the corrals. (Author)

  8. Stability evaluation of hydrate-bearing sediments during thermally-driven hydrate dissociation

    Science.gov (United States)

    Kwon, T.; Cho, G.; Santamarina, J.; Kim, H.; Lee, J.

    2009-12-01

    Hydrate-bearing sediments may destabilize spontaneously as part of geological processes, unavoidably during petroleum drilling/production operations, or intentionally as part of gas extraction from the hydrate itself. In all cases, high pore fluid pressure generation is anticipated during hydrate dissociation. This study examined how thermal changes destabilize gas hydrate-bearing sediments. First, an analytical formulation was derived for predicting fluid pressure evolution in hydrate-bearing sediments subjected to thermal stimulation without mass transfer. The formulation captures the self-preservation behavior, calculates the hydrate and free gas quantities during dissociation, considering effective stress-controlled sediment compressibility and gas solubility in aqueous phase. Pore fluid pressure generation is proportional to the initial hydrate fraction and the sediment bulk stiffness; is inversely proportional to the initial gas fraction and gas solubility; and is limited by changes in effective stress that cause the failure of the sediment. Second, the analytical formulation for hydrate dissociation was incorporated as a user-defined function into a verified finite difference code (FLAC2D). The underlying physical processes of hydrate-bearing sediments, including hydrate dissociation, self-preservation, pore pressure evolution, gas dissolution, and sediment volume expansion, were coupled with the thermal conduction, pore fluid flow, and mechanical response of sediments. We conducted the simulations for a duration of 20 years, assuming a constant-temperature wellbore transferred heat to the surrounding hydrate-bearing sediments, resulting in dissociation of methane hydrate in the well vicinity. The model predicted dissociation-induced excess pore fluid pressures which resulted in a large volume expansion and plastic deformation of the sediments. Furthermore, when the critical stress was reached, localized shear failure of the sediment around the borehole was

  9. Coordinates Analyses of Hydrated Interplanetary Dust Particles: Samples of Primitive Solar System Bodies

    Science.gov (United States)

    Keller, L. P.; Snead, C.; McKeegan, K. D.

    2016-01-01

    Interplanetary dust particles (IDPs) collected in the stratosphere fall into two major groups: an anhydrous group termed the "chondritic-porous (CP) IDPs and a hydrated group, the "chondritic-smooth (CS) IDPs, although rare IDPs with mineralogies intermediate between these two groups are known [1]. The CP-IDPs are widely believed to be derived from cometary sources [e.g. 2]. The hydrated CS-IDPs show mineralogical similarities to heavily aqueously altered carbonaceous chondrites (e.g. CI chondrites), but only a few have been directly linked to carbonaceous meteorite parent bodies [e.g. 3, 4]. Most CS-IDPs show distinct chemical [5] and oxygen isotopic composition differences [6-8] from primitive carbonaceous chondrites. Here, we report on our coordinated analyses of a suite of carbon-rich CS-IDPs focusing on their bulk compositions, mineralogy, mineral chemistry, and isotopic compositions.

  10. Experimental investigation of smectite hydration from the simulation of 001 X-ray diffraction lines. Implications for the characterization of mineralogical modifications of the 'argilite' from the Meuse - Haute Marne site as a result of a thermal perturbation; Etude experimentale de l'hydratation des smectites par simulation des raies OOl de diffraction des rayons X. Implications pour l'etude d'une perturbation thermique sur la mineralogie de l'argilite du site Meuse-Haute Marne

    Energy Technology Data Exchange (ETDEWEB)

    Ferrage, E

    2004-10-15

    The structural modifications affecting the reactive mineral constituents of the clay barriers (smectite) and possibly resulting from the thermal pulse related to nuclear waste storage are essentially limited to the amount and location of the layer charge deficit. These modifications likely impact the hydration properties of these minerals, and a specific methodology has thus been developed to describe, using simulation of X-ray diffraction profiles (001 reflections), these hydration properties and specifically the heterogeneity resulting from the inter-stratification of different layer types, each exhibiting a specific hydration state. The detailed study of the hydration properties of a low-charge montmorillonite (octahedral charge) has shown that the affinity of the interlayer cation for water rules the hydration state and the thickness of hydrated smectite layers. If the layer charge is increased, the transition between the different hydration states is shifted, following a water desorption isotherm, towards lower relative humidities. In addition, the hydration of studied beidellites (tetrahedral charge) was shown to be more heterogeneous than that of montmorillonites. The developed methodology also allowed describing the structural modifications resulting from a chemical perturbation (chlorinated anionic background, pH). Finally, the link between the thickness of elementary layers and the amount of interlayer water molecules has been evidenced. A new structure model has also been determined for these interlayer species allowing an improved description of their positional distribution in bi-hydrated interlayers. (author)

  11. Methane hydrates in nature - Current knowledge and challenges

    Science.gov (United States)

    Collett, Timothy S.

    2014-01-01

    Recognizing the importance of methane hydrate research and the need for a coordinated effort, the United States Congress enacted the Methane Hydrate Research and Development Act of 2000. At the same time, the Ministry of International Trade and Industry in Japan launched a research program to develop plans for a methane hydrate exploratory drilling project in the Nankai Trough. India, China, the Republic of Korea, and other nations also have established large methane hydrate research and development programs. Government-funded scientific research drilling expeditions and production test studies have provided a wealth of information on the occurrence of methane hydrates in nature. Numerous studies have shown that the amount of gas stored as methane hydrates in the world may exceed the volume of known organic carbon sources. However, methane hydrates represent both a scientific and technical challenge, and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of methane hydrates in nature, (2) assessing the volume of natural gas stored within various methane hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural methane hydrates, (5) analyzing the methane hydrate role as a geohazard, (6) establishing the means to detect and characterize methane hydrate accumulations using geologic and geophysical data, and (7) establishing the thermodynamic phase equilibrium properties of methane hydrates as a function of temperature, pressure, and gas composition. The U.S. Department of Energy (DOE) and the Consortium for Ocean Leadership (COL) combined their efforts in 2012 to assess the contributions that scientific drilling has made and could continue to make to advance

  12. Aggregation of Calcium Silicate Hydrate Nanoplatelets.

    Science.gov (United States)

    Delhorme, Maxime; Labbez, Christophe; Turesson, Martin; Lesniewska, Eric; Woodward, Cliff E; Jönsson, Bo

    2016-03-01

    We study the aggregation of calcium silicate hydrate nanoplatelets on a surface by means of Monte Carlo and molecular dynamics simulations at thermodynamic equilibrium. Calcium silicate hydrate (C-S-H) is the main component formed in cement and is responsible for the strength of the material. The hydrate is formed in early cement paste and grows to form platelets on the nanoscale, which aggregate either on dissolving cement particles or on auxiliary particles. The general result is that the experimentally observed variations in these dynamic processes generically called growth can be rationalized from interaction free energies, that is, from pure thermodynamic arguments. We further show that the surface charge density of the particles determines the aggregate structures formed by C-S-H and thus their growth modes. PMID:26859614

  13. Relaxation mechanism of the hydrated electron.

    Science.gov (United States)

    Elkins, Madeline H; Williams, Holly L; Shreve, Alexander T; Neumark, Daniel M

    2013-12-20

    The relaxation dynamics of the photoexcited hydrated electron have been subject to conflicting interpretations. Here, we report time-resolved photoelectron spectra of hydrated electrons in a liquid microjet with the aim of clarifying ambiguities from previous experiments. A sequence of three ultrashort laser pulses (~100 femtosecond duration) successively created hydrated electrons by charge-transfer-to-solvent excitation of dissolved anions, electronically excited these electrons via the s→p transition, and then ejected them into vacuum. Two distinct transient signals were observed. One was assigned to the initially excited p-state with a lifetime of ~75 femtoseconds, and the other, with a lifetime of ~400 femtoseconds, was attributed to s-state electrons just after internal conversion in a nonequilibrated solvent environment. These assignments support the nonadiabatic relaxation model. PMID:24357314

  14. Propane hydrate nucleation: Experimental investigation and correlation

    DEFF Research Database (Denmark)

    Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas

    2008-01-01

    In this work the nucleation kinetics of propane gas hydrate has been investigated experimentally using a stirred batch reactor. The experiments have been performed isothermally recording the pressure as a function of time. Experiments were conducted at different stirring rates, but in the same...... supersaturation region. The experiments showed that the gas dissolution rate rather than the induction time of propane hydrate is influenced by a change in agitation. This was especially valid at high stirring rates when the water surface was severely disturbed.Addition of polyvinylpyrrolidone (PVP...... the presence of additives. In most cases reasonable agreement between the data and the model could be obtained. The results revealed that especially the effective surface energy between propane hydrate and water is likely to change when the stirring rate varies from very high to low. The prolongation...

  15. Hydration shells exchange charge with their protein

    DEFF Research Database (Denmark)

    Abitan, Haim; Lindgård, Per-Anker; Nielsen, Bjørn Gilbert;

    2010-01-01

    Investigation of the interaction between a protein and its hydration shells is an experimental and theoretical challenge. Here, we used ultrasonic pressure waves in aqueous solutions of a protein to explore the conformational states of the protein and its interaction with its hydration shells....... In our experiments, the amplitude of an ultrasonic pressure wave is gradually increased (0–20 atm) while we simultaneously measure the Raman spectra from the hydrated protein (β-lactoglobulin and lysozyme). We detected two types of spectral changes: first, up to 70% increase in the intensity...... of the fluorescence background of the Raman spectrum with a typical relaxation time of 30–45 min. Second, we detect changes in the vibrational Raman spectra. To clarify these results we conducted similar experiments with aqueous solutions of amino acids and ethanol. These experiments led us to conclude that, without...

  16. Simulation of Methane Recovery from Gas Hydrates Combined with Storing Carbon Dioxide as Hydrates

    Directory of Open Access Journals (Sweden)

    Georg Janicki

    2011-01-01

    Full Text Available In the medium term, gas hydrate reservoirs in the subsea sediment are intended as deposits for carbon dioxide (CO2 from fossil fuel consumption. This idea is supported by the thermodynamics of CO2 and methane (CH4 hydrates and the fact that CO2 hydrates are more stable than CH4 hydrates in a certain P-T range. The potential of producing methane by depressurization and/or by injecting CO2 is numerically studied in the frame of the SUGAR project. Simulations are performed with the commercial code STARS from CMG and the newly developed code HyReS (hydrate reservoir simulator especially designed for hydrate processing in the subsea sediment. HyReS is a nonisothermal multiphase Darcy flow model combined with thermodynamics and rate kinetics suitable for gas hydrate calculations. Two scenarios are considered: the depressurization of an area 1,000 m in diameter and a one/two-well scenario with CO2 injection. Realistic rates for injection and production are estimated, and limitations of these processes are discussed.

  17. The Influence of Mineral Functional Materials on Chloride Ion Penetration of Concrete

    Institute of Scientific and Technical Information of China (English)

    HU Hongmei; MA Baoguo

    2005-01-01

    The mechanism of chloride ion penetration in high performance concrete was analyzed. The experimental results indicate that there are two important reasons that influence the anti-chloride penetration of high performance concrete. One is the function effect of mineral functional material, so that it increases concrete's capability to resist chloride ion penetration. The other is combined action of mineral functional material's original capability of binding the chloride ion (physical adsorption) and physicochemical adsorption after hydration.

  18. Abundance retrieval of hydrous minerals around the Mars Science Laboratory landing site in Gale crater, Mars

    Science.gov (United States)

    Lin, Honglei; Zhang, Xia; Shuai, Tong; Zhang, Lifu; Sun, Yanli

    2016-02-01

    The detection of hydrous minerals on Mars is of great importance for revealing the early water environment as well as possible biotic activity. However, few studies focus on abundance retrieval of hydrous minerals for some difficulties. In this paper, we studied the area around the Mars Science Laboratory (MSL) landing site, to identify hydrous minerals and retrieve their abundance. Firstly, the distribution of hydrous minerals was extracted using their hydration features. Then, a sparse unmixing algorithm was applied along with the CRISM spectral library to retrieve the abundance of hydrous minerals in this area. As a result, seven hydrous minerals were retrieved, i.e. actinolite, montmorillonite, saponite, jarosite, halloysite, szomolnokite and magnesite and, the total concentration of all hydrous minerals was as high as 40 vol% near the lower reaches of Mount Sharp. Our results were consistent with results from related research and the in-situ analysis of the MSL rover Curiosity.

  19. Rate of CO2 attack on hydrated Class H well cement under geologic sequestration conditions.

    Science.gov (United States)

    Kutchko, Barbara G; Strazisar, Brian R; Lowry, Gregory V; Dzombak, David A; Thaulow, Niels

    2008-08-15

    Experiments were conducted to study the degradation of hardened cement paste due to exposure to CO2 and brine under geologic sequestration conditions (T = 50 degrees C and 30.3 MPa). The goal was to determine the rate of reaction of hydrated cement exposed to supercritical CO2 and to CO2-saturated brine to assess the potential impact of degradation in existing wells on CO2 storage integrity. Two different forms of chemical alteration were observed. The supercritical CO2 alteration of cement was similar in process to cement in contact with atmospheric CO2 (ordinary carbonation), while alteration of cement exposed to CO2-saturated brine was typical of acid attack on cement. Extrapolation of the hydrated cement alteration rate measured for 1 year indicates a penetration depth range of 1.00 +/- 0.07 mm for the CO2-saturated brine and 1.68 +/- 0.24 mm for the supercritical CO2 after 30 years. These penetration depths are consistent with observations of field samples from an enhanced oil recovery site after 30 years of exposure to CO2-saturated brine under similar temperature and pressure conditions. These results suggest that significant degradation due to matrix diffusion of CO2 in intact Class H neat hydrated cement is unlikely on time scales of decades. PMID:18767693

  20. Simulation of subsea gas hydrate exploitation

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2014-05-01

    The recovery of methane from gas hydrate layers that have been detected in several subsea sediments and permafrost regions around the world is a promising perspective to overcome future shortages in natural gas supply. Being aware that conventional natural gas resources are limited, research is going on to develop technologies for the production of natural gas from such new sources. Thus various research programs have started since the early 1990s in Japan, USA, Canada, India, and Germany to investigate hydrate deposits and develop required technologies. In recent years, intensive research has focussed on the capture and storage of CO2 from combustion processes to reduce climate impact. While different natural or man-made reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid CO2, the storage of CO2 as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in the form of hydrates. Regarding technological implementation many problems have to be overcome. Especially mixing, heat and mass transfer in the reservoir are limiting factors causing very long process times. Within the scope of the German research project »SUGAR« different technological approaches for the optimized exploitation of gas hydrate deposits are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical processes are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs. Simulations based on geological field data have been carried out. The studies focus on the potential of gas production from turbidites and their fitness for CO2 storage. The effects occurring during gas production and CO2 storage within

  1. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.

    2010-05-11

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  2. Experimental Study of Gas Hydrate Dynamics

    Science.gov (United States)

    Fandino, O.; Ruffine, L.

    2011-12-01

    Important quantities of methane and other gases are trapped below the seafloor and in the permafrost by an ice-like solid, called gas hydrates or clathrate hydrates. The latter is formed when water is mixing with different gases at high pressures and low temperatures. Due to a their possible use as a source of energy [1] or the problematic related to flow assurance failure in pipelines [2] the understanding of their processes of formation/destabilisation of these structures becomes a goal for many laboratories research as well as industries. In this work we present an experimental study on the stochastic behaviour of hydrate formation from a bulk phase. The method used here for the experiments was to repeat several time the same hydrate formation procedure and to notice the different from one experiment to another. A variable-volume type high-pressure apparatus with two sapphire windows was used. This device, already presented by Ruffine et al.[3], allows us to perform both kinetics and phase equilibrium measurements. Three initial pressure conditions were considered here, 5.0 MPa, 7.5 MPa and 10.0 MPa. Hydrates have been formed, then allowed to dissociate by stepwise heating. The memory effect has also been investigated after complete dissociation. It turned out that, although the thermodynamics conditions of formation and/or destabilization were reproducible. An attempt to determine the influence of pressure on the nucleation induction time will be discussed. References 1. Sum, A. K.; Koh, C. A.; Sloan, E. D., Clathrate Hydrates: From Laboratory Science to Engineering Practice. Industrial & Engineering Chemistry Research 2009, 48, 7457-7465. 2. Sloan, E. D., A changing hydrate paradigm-from apprehension to avoidance to risk management. Fluid Phase Equilibria 2005, 228, 67-74. 3. Ruffine, L.; Donval, J. P.; Charlou, J. L.; Cremière, A.; Zehnder, B. H., Experimental study of gas hydrate formation and destabilisation using a novel high-pressure apparatus. Marine

  3. Component analysis of the protein hydration entropy

    Science.gov (United States)

    Chong, Song-Ho; Ham, Sihyun

    2012-05-01

    We report the development of an atomic decomposition method of the protein solvation entropy in water, which allows us to understand global change in the solvation entropy in terms of local changes in protein conformation as well as in hydration structure. This method can be implemented via a combined approach based on molecular dynamics simulation and integral-equation theory of liquids. An illustrative application is made to 42-residue amyloid-beta protein in water. We demonstrate how this method enables one to elucidate the molecular origin for the hydration entropy change upon conformational transitions of protein.

  4. GLASS TRANSITION OF HYDRATED WHEAT GLIADIN POWDERS

    Institute of Scientific and Technical Information of China (English)

    Shao-min Sun; Li Zhao; Yi-hu Song; Qiang Zheng

    2011-01-01

    Modulated-temperature differential scanning calorimetric and dynamic mechanical analyses and dielectric spectroscopy were used to investigate the glass transition of hydrated wheat gliadin powders with moisture absorption ranged from 2.30 db% to 18.21 db%. Glass transition temperature (Tg) of dry wheat gliadin was estimated according to the GordonTaylor equation. Structural heterogeneity at high degrees of hydration was revealed in dielectric temperature and frequency spectra. The activation energies (Ea) of the two relaxations were calculated from Arrhenius equation.

  5. Stratigraphy and formation of clays, sulfates, and hydrated silica within a depression in Coprates Catena, Mars

    Science.gov (United States)

    Weitz, Catherine M.; Bishop, Janice L.

    2016-05-01

    We investigate the morphology, mineralogy, and stratigraphy of light-toned layered deposits within a trough of Coprates Catena, centered at -15°N, 300°E. One of the deposits in the eastern portion of the trough contains numerous hydrated minerals, including Al-phyllosilicates, Fe/Mg-phyllosilicates, hydrated silica, hydrated sulfates, jarosite and acid alteration products characterized by a spectral doublet between 2.2 and 2.3 µm, and weakly hydrated materials. The Al-phyllosilicates are observed both stratigraphically above and below the Fe/Mg-phyllosilicate unit, which is a rare and perhaps unique association on Mars. Most of the western light-toned layered deposit underlies a terraced fan. This deposit contains hydrated materials, including Al-phyllosilicates and Fe/Mg-phyllosilicates. Dip measurements indicate that both the eastern and western deposits dip toward the center of the trough, indicating that they postdate formation of the trough and are consequently Late Hesperian or younger in age. Volcanic ash, most likely erupted during formation of the pit crater in the eastern portion of the trough, seems to best explain our observations for several of the units. Valleys sourced from water along the plateau may have flowed into the trough and altered the sediments, with changing aqueous chemistries over time resulting in the diverse range of mineralogies now observed in the eastern light-toned deposit. Our results reveal a complex sedimentary and aqueous history within the Coprates Catena trough, indicating that localized habitable conditions were possible relatively late in Martian history at a time when colder, drier conditions likely dominated the majority of the planet.

  6. [Oral hydration with rehydration salts in appendectomized patients].

    Science.gov (United States)

    Azabache Puente, W; Johanson Arias, L

    1992-01-01

    A randomised prospective study of 80 patients to demonstrate if oral hydration with rehydratant salts is as effective as the parenteral infusion for the hydration of patients immediately after appendectomy was performed. The tolerance and conditions of hydration were excellent with 92.5% and 87.5% respectively with oral hydration and with parenteral hydration (p > 0.05). The use of Metronidazole orally with Gentamycetin intramuscular or complication such a wound infection did not influence the hospital stay. With oral hydration, apatite returned sooner, (p saving of cost, saving of time en administration of fluids and shorter hospital stay in the patient with oral hydration than with the parenteral hydration group. PMID:1340245

  7. Geo-scientific investigations of gas-hydrates in India

    Digital Repository Service at National Institute of Oceanography (India)

    Sain, K.; Gupta, H.; Mazumdar, A.; Bhaumik, A.K.; Bhowmick, P.K.

    gradient, and geological, geophysical and microbiological studies indicate that shallow sediments in deep water regions are good hosts for gas-hydrates. First, we have prepared the gas-hydrates stability thickness map along the Indian margin, which provides...

  8. Gas hydrate of Lake Baikal: Discovery and varieties

    Science.gov (United States)

    Khlystov, Oleg; De Batist, Marc; Shoji, Hitoshi; Hachikubo, Akihiro; Nishio, Shinya; Naudts, Lieven; Poort, Jeffrey; Khabuev, Andrey; Belousov, Oleg; Manakov, Andrey; Kalmychkov, Gennаdy

    2013-01-01

    This paper summarizes the results of recent gas-hydrate studies in Lake Baikal, the only fresh-water lake in the world containing gas hydrates in its sedimentary infill. We provide a historical overview of the different investigations and discoveries and highlight some recent breakthroughs in our understanding of the Baikal hydrate system. So far, 21 sites of gas hydrate occurrence have been discovered. Gas hydrates are of structures I and II, which are of thermogenic, microbial, and mixed origin. At the 15 sites, gas hydrates were found in mud volcanoes, and the rest six - near gas discharges. Additionally, depending on type of discharge and gas hydrate structure, they were visually different. Investigations using MIR submersibles allowed finding of gas hydrates at the bottom surface of Lake Baikal at the three sites.

  9. Sorption Energy Maps of Clay Mineral Surfaces

    International Nuclear Information System (INIS)

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation

  10. Sorption Energy Maps of Clay Mineral Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, Randall T.; Kirkpatrick, R. James

    1999-07-19

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation.

  11. Radiological hazards to uranium miners

    International Nuclear Information System (INIS)

    The purpose of the present document is to review and assess the occupational hazards to uranium miners in Canada. Amendments to regulations set the maximum permissible dose to uranium miners at 50 mSv per year. Uranium miners are exposed to radon and thoron progeny, external gamma radiation and long-lived alpha-emitting radionuclides in dust. The best estimate for the lifetime risk of inhaled radon progeny is about 3 x 10-4 lung cancers per WLM for the average miner, with a range of uncertainty from about 1 -6 x 10-4 per WLM. This central value is nearly twice as high as that recommended by the ICRP in 1981. The probability of serious biological consequences following exposure to external gamma rays is currently under review but is expected to be in the range of 3 - 6 x 10-2 Sv-1. Dosimetric calculations indicate that the stochastic risks per WLM of thoron progeny are about one-third of those for radon progeny. The annual limits on intake of inhaled ore dusts recommended by the ICRP are probably too low by at least a factor of two for the type of ore and dust normally encountered in underground uranium mines in Ontario; this is due in part to the fact that the average diameter of these dusts is five times greater than the value used by the ICRP. Radiological exposures of uranium miners in Canada were reviewed. The biological impact of these exposures were compared with those of conventional accidents on the basis of the years of normal life expectancy that are lost or seriously impaired due to occupational hazards. The objectives in considering all occupational risks are to reduce the total risk from all causes and to use funds spent for health protection as effectively as possible

  12. A new geopolymeric binder from hydrated-carbonated cement

    OpenAIRE

    Paya Bernabeu, Jorge Juan; Borrachero Rosado, María Victoria; Monzó Balbuena, José Mª; Soriano Martinez, Lourdes; Mitsuuchi Tashima, Mauro

    2012-01-01

    This paper evaluates the use of hydrated Portland cement as the raw material in the production of geopolymers. The silicon and aluminium oxides needed for the geopolymerization process were produced by the carbonation of hydrated Portland cement, which transforms CSH and CAH (Portland cement hydrates) into silica and alumina gels. Hydrated-carbonated Portland cement was alkali activated with a NaOH/waterglass solution. Pastes and mortars were prepared, and micro-structural and mechanical prop...

  13. Enzyme Activity and Flexibility at Very Low Hydration

    OpenAIRE

    Kurkal, V.; Daniel, R M; Finney, John L.; Tehei, M.; Dunn, R. V.; Jeremy C Smith

    2005-01-01

    Recent measurements have demonstrated enzyme activity at hydrations as low as 3%. This raises the question of whether hydration-induced enzyme flexibility is important for activity. Here, to address this, picosecond dynamic neutron scattering experiments are performed on pig liver esterase powders at 0%, 3%, 12%, and 50% hydration by weight and at temperatures ranging from 120 to 300 K. At all temperatures and hydrations, significant quasielastic scattering intensity is found in the protein, ...

  14. Gas hydrate occurrence and Morpho-structures along Chilean margin

    OpenAIRE

    Vargas Cordero, Ivan De La Cruz

    2009-01-01

    During the last decades, the scientific community spent many efforts to study the gas hydrates in oceanic and permafrost environments. In fact, the gas hydrate occurrence has a global significance because of the potential energy resource represented by the large amount of hydrocarbon trapped in the hydrate phase. Moreover, it may play a role in global climate change, and it is also study because of the hazard that accumulations of gas hydrate may cause to drilling and seabed installations. In...

  15. Mineral abundances and different levels of alteration around Mawrth Vallis, Mars

    Institute of Scientific and Technical Information of China (English)

    Sheng Gou; Zongyu Yue; Kaichang Di; Jinnian Wang

    2015-01-01

    Spectral indices from OMEGA hyperspectral data show that there are two main phyllosilicates exposed in and around Mawrth Vallis: Al phyllosilicates and Fe/Mg phyllosilicates. Detailed analysis of CRISM spectra shows that Al phyllosilicates such as montmorillonite, hydrated silica, kaolinite; Fe/Mg phyllo-silicates such as nontronite, saponite, serpentine are widespread on the light-toned outcrops. Though similar stratigraphical sequences, morphologies and textures are observed on both sides of Mawrth Vallis from HiRISE images, suggesting that the geological processes that formed these units must have operated at a regional scale; the multiple endmember spectral mixture analysis (MESMA) derived mineral abundance indicates that there is a higher level of alteration in the western side relative to the eastern side. We suggest that the observed phyllosilicates, stratigraphical sequences and different levels of alteration might have been caused by sedimentary deposition processes in which the composition of the external source sediment or the local solution was different, or by a pedogenic process closely related to the leaching of abundant liquid water with different chemical properties.

  16. Application of various water soluble polymers in gas hydrate inhibition

    DEFF Research Database (Denmark)

    Kamal, Muhammad Shahzad; Hussein, Ibnelwaleed A.; Sultan, Abdullah S.;

    2016-01-01

    Formation of hydrates in gas transmission lines due to high pressures and low temperatures is a serious problem in the oil and gas industry with potential hazards and/or economic losses. Kinetic hydrate inhibitors are water soluble polymeric compounds that prevent or delay hydrate formation. This...

  17. Small angle X-ray scattering from hydrating tricalcium silicate

    International Nuclear Information System (INIS)

    The small-angle X-ray scattering technique was used to study the structural evolution of hydrated tricalcium silicate at room temperature. The changes in specific area of the associated porosity and the evolution of density fluctuations in the solid hydrated phase were deduced from the scattering data. A correlation of these variations with the hydration mechanism is tried. (Author)

  18. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon

    2016-06-20

    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  19. Elastic properties of gas hydrate-bearing sediments

    Science.gov (United States)

    Lee, M.W.; Collett, T.S.

    2001-01-01

    Downhole-measured compressional- and shear-wave velocities acquired in the Mallik 2L-38 gas hydrate research well, northwestern Canada, reveal that the dominant effect of gas hydrate on the elastic properties of gas hydrate-bearing sediments is as a pore-filling constituent. As opposed to high elastic velocities predicted from a cementation theory, whereby a small amount of gas hydrate in the pore space significantly increases the elastic velocities, the velocity increase from gas hydrate saturation in the sediment pore space is small. Both the effective medium theory and a weighted equation predict a slight increase of velocities from gas hydrate concentration, similar to the field-observed velocities; however, the weighted equation more accurately describes the compressional- and shear-wave velocities of gas hydrate-bearing sediments. A decrease of Poisson's ratio with an increase in the gas hydrate concentration is similar to a decrease of Poisson's ratio with a decrease in the sediment porosity. Poisson's ratios greater than 0.33 for gas hydrate-bearing sediments imply the unconsolidated nature of gas hydrate-bearing sediments at this well site. The seismic characteristics of gas hydrate-bearing sediments at this site can be used to compare and evaluate other gas hydrate-bearing sediments in the Arctic.

  20. Methane and carbon dioxide exchange production studies from exposed natural gas hydrate

    OpenAIRE

    Jalloh, Alusine

    2010-01-01

    Two laboratory experimental setups have been designed in collaboration with the Reservoir Physics Group at the Department of Physics and Technology. The equipments have been completed and tested. The first experiment was conducted using the four electrode resistivity measurement method on porous media. The equipment has been used to study the influence of resistance with core samples saturated with salinity concentration at 1 kHz, 1200 psig pressure and temperatures down to 3oC during stages ...

  1. Effects of CO2 Hydrate on Deep-Sea Foraminiferal Assemblages

    Energy Technology Data Exchange (ETDEWEB)

    Ricketts, E R; Kennett, J P; Hill, T M; Barry, J P

    2005-06-01

    THE EFFECTS OF CO2 HYDRATE ON DEEP-SEA FORAMINIFERAL ASSEMBLAGES E. R. Ricketts*, J. P. Kennett and T. M. Hill Department of Geological Sciences University of California, Santa Barbara, CA USA Jim Barry Monterey Bay Aquarium Research Institute Moss Landing, CA USA ABSTRACT This study, conducted with the Monterey Bay Aquarium Research Institute (MBARI), is the first to investigate potential effects of CO2 hydrates on benthic microfossils, specifically foraminifera. The experiment was conducted in September 2003 aboard the R/V Western Flier using the ROV Tiburon. Experimental (CO2 exposed) and control cores were collected at 3600m and stained to distinguish live (stained) from dead (unstained) individuals. Foraminifera are ideal because of differing test composition (calcareous and agglutinated) and thickness, and diverse epifaunal and infaunal depth preferences. The effects of the CO2 on assemblages have been tracked both vertically (10cm depth) and horizontally, and between live and dead individuals. Increased mortality and dissolution of calcareous forms resulted from exposure to CO2 hydrate. Preliminary results suggest several major effects on surface sediment assemblages: 1) total number of foraminifera in a sample decreases; 2) foraminiferal diversity decreases in both stained and unstained specimens. The number of planktonic and hyaline calcareous tests declines greatly, with milliolids being more resistant to dissolution when stained; and 3) percentage of stained (live) forms is higher. Down-core trends (up to 10cm) indicate: 1) percent agglutinated forms decline and calcareous forms increasingly dominate; 2) agglutinated diversity decreases with depth; and 3) assemblages become increasingly similar with depth to those in control cores not subjected to CO2 hydrate. These results imply almost complete initial mortality and dissolution upon CO2 hydrate emplacement.

  2. Foam drilling in natural gas hydrate

    Directory of Open Access Journals (Sweden)

    Wei Na

    2015-01-01

    Full Text Available The key problem of foam drilling in natural gas hydrate is prediction of characteristic parameters of bottom hole. The simulation shows that when the well depth increases, the foam mass number reduces and the pressure increases. At the same depth, pressure in drill string is always higher than annulus. The research findings provide theoretical basis for safety control.

  3. A positron annihilation study of hydrated DNA

    DEFF Research Database (Denmark)

    Warman, J. M.; Eldrup, Morten Mostgaard

    1986-01-01

    Positron annihilation measurements are reported for hydrated DNA as a function of water content and as a function of temperature (20 to -180.degree. C) for samples containing 10 and 50% wt of water. The ortho-positronium mean lifetime and its intensity show distinct variations with the degree...

  4. Alkali binding in hydrated Portland cement paste

    NARCIS (Netherlands)

    Chen, W.; Brouwers, H.J.H.

    2010-01-01

    The alkali-binding capacity of C–S–H in hydrated Portland cement pastes is addressed in this study. The amount of bound alkalis in C–S–H is computed based on the alkali partition theories firstly proposed by Taylor (1987) and later further developed by Brouwers and Van Eijk (2003). Experimental data

  5. Hydration dynamics near a model protein surface

    International Nuclear Information System (INIS)

    The evolution of water dynamics from dilute to very high concentration solutions of a prototypical hydrophobic amino acid with its polar backbone, N-acetyl-leucine-methylamide (NALMA), is studied by quasi-elastic neutron scattering and molecular dynamics simulation for both the completely deuterated and completely hydrogenated leucine monomer. We observe several unexpected features in the dynamics of these biological solutions under ambient conditions. The NALMA dynamics shows evidence of de Gennes narrowing, an indication of coherent long timescale structural relaxation dynamics. The translational water dynamics are analyzed in a first approximation with a jump diffusion model. At the highest solute concentrations, the hydration water dynamics is significantly suppressed and characterized by a long residential time and a slow diffusion coefficient. The analysis of the more dilute concentration solutions takes into account the results of the 2.0M solution as a model of the first hydration shell. Subtracting the first hydration layer based on the 2.0M spectra, the translational diffusion dynamics is still suppressed, although the rotational relaxation time and residential time are converged to bulk-water values. Molecular dynamics analysis shows spatially heterogeneous dynamics at high concentration that becomes homogeneous at more dilute concentrations. We discuss the hydration dynamics results of this model protein system in the context of glassy systems, protein function, and protein-protein interfaces

  6. Mineral Resources Data System

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Mineral resource occurrence data covering the world, most thoroughly within the U.S. This database contains the records previously provided in the Mineral Resource...

  7. Construction Minerals Operations

    Data.gov (United States)

    Department of Homeland Security — This map layer includes construction minerals operations in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  8. Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean

    DEFF Research Database (Denmark)

    Treude, T.; Boetius, A.; Knittel, K.;

    2003-01-01

    At Hydrate Ridge (HR), Cascadia convergent margin, surface sediments contain massive gas hydrates formed from methane that ascends together with fluids along faults from deeper reservoirs. Anaerobic oxidation of methane (AOM), mediated by a microbial consortium of archaea and sulfate-reducing...... bacteria, generates high concentrations of hydrogen sulfide in the surface sediments. The production of sulfide supports chemosynthetic communities that gain energy from sulfide oxidation. Depending on fluid flow, the surface communities are dominated either by the filamentous sulfur bacteria Beggiatoa...

  9. Comparison on Heat of Hydration between Current Concrete for NPP and High Fluidity Concrete including Pozzolan Powders

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Jea Myoung; Cho, Myung Sug [KEPCO Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Nuclear power plant (NPP) concrete structures are exposed to many construction factors that lower the quality of concrete due to densely packed reinforcements and heat of hydration since they are mostly constructed with mass concrete. The concrete currently being used in Korean NPPs is mixed with Type I cement and fly ash. However, there is a demand to improve the performance of concrete with reduced heat of hydration and superior constructability. Many advantages such as improving workability and durability of concrete and decreasing heat of hydration are introduced by replacing cement with pozzolan binders. Therefore, the manufacturing possibility of high fluidity concrete should be investigated through applying multi-component powders blended with pozzolan binders to the concrete structure of NPPs, while the researches on properties, characteristic of hydration, durability and long-term behavior of high fluidity concrete using multi-component cement should be carried out. High fluidity concrete which is made using portland cement and pozzlonan powders such as fly ash and blast furnace slag has better properties on heat of hydration than the concrete currently in use for NPPs

  10. Chelated minerals for poultry

    OpenAIRE

    SL Vieira

    2008-01-01

    Organic minerals have been subject of an increasing number of investigations recently. These compounds can be considered the most significant event regarding commercial forms of minerals targeting animal supplementation in the last decades. Minerals, especially metals, are usually supplemented in poultry feeds using cheap saline sources and have never required a lot of attention in terms of quality. On the other hand, definitions of organic minerals are very broad and frequently lead to confu...

  11. Testing the cation-hydration effect on the crystallization of Ca–Mg–CO3 systems

    OpenAIRE

    Xu, Jie; Yan, Chao; Zhang, Fangfu; Konishi, Hiromi; Xu, Huifang; Teng, H. Henry

    2013-01-01

    Magnesium-bearing carbonate minerals play critical roles in the health and function of the Earth system because they constitute a significant fraction of lithosphere carbon reservoir and build skeletal structures for the majority of marine invertebrate organisms. Despite wide occurrence, high-Mg and sole-Mg phases such as dolomite ([Ca,Mg]CO3) and magnesite (MgCO3) prove virtually impossible to be crystallized under ambient conditions. It has long been believed that Mg2+ hydration is the caus...

  12. Mineral Supply Challenges

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Faced with shortcomings in its mineral supply, it’s imperative for China to balance its desire for reserves with its current economic needs Mineral resources are the corner- stone of materials needed for China’s national economic and social development.The country even counts on its mineral resources to satisfy 90 percent of its energy demands and over 95

  13. Comparative Study of Water Adsorption on a H(+) and K(+) Ion Exposed Mica Surface: Monte Carlo Simulation Study.

    Science.gov (United States)

    Debbarma, Rousan; Malani, Ateeque

    2016-02-01

    Clay minerals are used in variety of applications ranging from composites to electronic devices. For their efficient use in such areas, understanding the effect of surface-active agents on interfacial properties is essential. We investigated the role of surface ions in the adsorption of water molecules by using a muscovite mica surface populated with two different, H(+) and K(+), surface ions. A series of grand canonical Monte Carlo (GCMC) simulations at various relative vapor pressures (p/p0) were performed to obtain the water structure and adsorption isotherm on the H(+)-exposed mica (H-mica) surface. The obtained results were compared to the recent simulation data of water adsorption on the K(+)-exposed mica (K-mica) surface reported by Malani and Ayyappa (Malani, A.; Ayappa, K. G. J. Phys. Chem. B 2009, 113, 1058-1067). Water molecules formed two prominent layers adjacent to the H-mica surface, whereas molecular layering was observed adjacent to the K-mica surface. The adsorption isotherm of water on the K-mica surface was characterized by three stages that corresponded to rapid adsorption in the initial regime below p/p0 = 0.1, followed by a linear development regime for p/p0 = 0.1-0.7 and rapid film thickening for p/p0 ≥ 0.7, whereas only latter two regimes were observed in the H-mica system. In addition, the film thickness of adsorbed water molecules for p/p0 mica surface and comparable beyond. The film thickness obtained from the MC simulations was in excellent agreement with the interferometry experimental data of Balmer et al. (Balmer, T. E.; Christenson, H. K.; Spencer, N. D.; Heuberger, M. Langmuir 2008, 24, 1566-1569). It was observed that the hydration behaviors of the two ions were completely different and depended on the size of their hydration shell and their ability to form hydrogen bonds. The behavior of water adsorption between these two cases was illustrated using the water density distribution, orientational distributions, hydrogen bonding

  14. China's Research on Non-conventional Energy Resources- Gas Hydrate

    Institute of Scientific and Technical Information of China (English)

    Pu Ming; Ma Jianguo

    2002-01-01

    @@ Methane exists in ice-like formations called gas hydrate. Hydrate traps methane molecules inside a cage of frozen water. The magnitude of this previously unknown global storehouse of methane is truly staggering and has raised serious inquiry into the possibility of using methane hydrate as a substitute source of energy for oil and conventional natural gas. According to the estimation by PGC, gas hydrate deposits amount to 7.6 × 1018m3 and contain more than twice as much organic carbon as all the world's coal, oil and non-hydrate natural gas combined.

  15. The degree of hydration assessment of blended cement pastes by differential thermal and thermogravimetric analysis. Morphological evolution of the solid phases

    Energy Technology Data Exchange (ETDEWEB)

    Monteagudo, S.M., E-mail: sm.monteagudo@alumnos.upm.es [Departamento de Ingeniería Civil: Construcción, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid 28040 (Spain); Moragues, A., E-mail: amoragues@caminos.upm.es [Departamento de Ingeniería Civil: Construcción, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid 28040 (Spain); Gálvez, J.C., E-mail: jaime.galvez@upm.es [Departamento de Ingeniería Civil: Construcción, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid 28040 (Spain); Casati, M.J., E-mail: mariajesus.casati@upm.es [Departamento de Vehículos Aeroespaciales, Escuela de Ingeniería Aeronáutica, Universidad Politécnica de Madrid (Spain); Reyes, E., E-mail: encarnacion.reyes@upm.es [Departamento de Ingeniería Civil: Construcción, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid 28040 (Spain)

    2014-09-20

    Highlights: • A proposal of hydration degree calculation for blended cement pastes is presented. • The method is based both on the contributions of various authors and on DTA–TG results. • Paste and mortar specimens with BFS, FA and SF mineral admixtures were used. • The evaluation of CH gives information on hydration and pozzolanic reactions. • The assessment of α provides an insight into future strength evolution. - Abstract: The degree of hydration assessment of cement paste from differential thermal and thermogravimetric analysis data has been performed by several authors that have offered a number of proposals for technical application to blended cements. In this paper, two calculation methods are studied in detail. Then, a proposal of the degree of hydration calculation for blended cements, based on the analysis of experimental results of DTA–TG, is presented. The proposed method combines the contributions of the authors and allows straightforward calculation of the degree of hydration from the experimental results. Validation of the methodology was performed by macroscopic and microstructural tests through paste and mortar specimens with blast furnace slag, flying ash and silica fume mineral admixtures bei(g)ng used. Tests of scanning electron microscopy with an energy dispersive analyser on paste specimens, and of mechanical strength on mortar specimens with the same percentages of substitution, were performed. They showed good agreement with the information derived from the differential thermal and thermogravimetric analysis data.

  16. A method of harvesting gas hydrates from marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.Q.; Brill, J.P.; Sarica, C. [Tulsa Univ., Tulsa, OK (United States). Dept. of Petroleum Engineering

    2008-07-01

    Methane is known to exist in gas hydrates, but low productivity is expected for gas production from gas hydrates in marine sediments because of the shallow depths, low hydrate concentration, low permeability of the gas hydrate stability zone, lack of driving pressure and the slow melting process. This paper presented a newly developed methane harvesting method which aims to overcome technical barriers, maintain cost and energy efficiencies and minimize safety and environmental concerns. The method is based on the concept of capturing the gas released from hydrate dissociation in the sediments. The captured gases can reform hydrates inside and overhead receiver, which once full, can be lifted to shallow warm water for gas collection. This simple and open production system does not require high pressure and does not involve any flow assurance issues. As such, technical difficulties, safety issues and environmental concerns are minimized. The proposed gas harvesting method makes the best use of the nature of hydrates and the subsea pressure and temperature profiles. It combines many new concepts, including electrically adding heat inside the hydrate rich sediments to release gas, using an overhead receiver to capture the gas, allowing the gas to reform hydrates again in the overhead receiver, and lifting produced hydrates to warm water where it can be released and collected. It was concluded that this newly proposed production system enables the development of massive hydrate production fields on the sea bed with high production rates that are economically viable. 4 refs., 7 figs.

  17. Osmotically driven tensile stress in collagen-based mineralized tissues.

    Science.gov (United States)

    Bertinetti, Luca; Masic, Admir; Schuetz, Roman; Barbetta, Aurelio; Seidt, Britta; Wagermaier, Wolfgang; Fratzl, Peter

    2015-12-01

    Collagen is the most abundant protein in mammals and its primary role is to serve as mechanical support in many extracellular matrices such as those of bones, tendons, skin or blood vessels. Water is an integral part of the collagen structure, but its role is still poorly understood, though it is well-known that the mechanical properties of collagen depend on hydration. Recently, it was shown that the conformation of the collagen triple helix changes upon water removal, leading to a contraction of the molecule with considerable forces. Here we investigate the influence of mineralization on this effect by studying bone and turkey leg tendon (TLT) as model systems. Indeed, TLT partially mineralizes so that well-aligned collagen with various mineral contents can be found in the same tendon. We show that water removal leads to collagen contraction in all cases generating tensile stresses up to 80MPa. Moreover, this contraction of collagen puts mineral particles under compression leading to strains of around 1%, which implies localized compressive loads in mineral of up to 800MPa. This suggests that collagen dehydration upon mineralization is at the origin of the compressive pre-strains commonly observed in bone mineral. PMID:25862347

  18. Comparative Assessment of Advanced Gay Hydrate Production Methods

    Energy Technology Data Exchange (ETDEWEB)

    M. D. White; B. P. McGrail; S. K. Wurstner

    2009-06-30

    Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to pore clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.

  19. Natural gas hydrates. Experimental techniques and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Yuguang; Liu, Changling (eds.) [Qingdao Institute of Marine Geology (China). Gas Hydrate Laboratory

    2013-07-01

    Focuses on gas hydrate experiment in laboratory. Intends to provide practical significant parameters for gas hydrate exploration and exploitation in the oceanic and permafrost environments. Consists of different themes that present up-to-date information on hydrate experiments. ''Natural Gas Hydrates: Experimental Techniques and Their Applications'' attempts to broadly integrate the most recent knowledge in the fields of hydrate experimental techniques in the laboratory. The book examines various experimental techniques in order to provide useful parameters for gas hydrate exploration and exploitation. It provides experimental techniques for gas hydrates, including the detection techniques, the thermo-physical properties, permeability and mechanical properties, geochemical abnormalities, stability and dissociation kinetics, exploitation conditions, as well as modern measurement technologies etc.

  20. Towards a green hydrate inhibitor: imaging antifreeze proteins on clathrates.

    Directory of Open Access Journals (Sweden)

    Raimond Gordienko

    Full Text Available The formation of hydrate plugs in oil and gas pipelines is a serious industrial problem and recently there has been an increased interest in the use of alternative hydrate inhibitors as substitutes for thermodynamic inhibitors like methanol. We show here that antifreeze proteins (AFPs possess the ability to modify structure II (sII tetrahydrofuran (THF hydrate crystal morphologies by adhering to the hydrate surface and inhibiting growth in a similar fashion to the kinetic inhibitor poly-N-vinylpyrrolidone (PVP. The effects of AFPs on the formation and growth rate of high-pressure sII gas mix hydrate demonstrated that AFPs are superior hydrate inhibitors compared to PVP. These results indicate that AFPs may be suitable for the study of new inhibitor systems and represent an important step towards the development of biologically-based hydrate inhibitors.

  1. In-situ gas hydrate hydrate saturation estimated from various well logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Lee, M.W.; Collett, T.S.

    2011-01-01

    In 2006, the U.S. Geological Survey (USGS) completed detailed analysis and interpretation of available 2-D and 3-D seismic data and proposed a viable method for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area of northern Alaska. To validate the predictions of the USGS and to acquire critical reservoir data needed to develop a long-term production testing program, a well was drilled at the Mount Elbert prospect in February, 2007. Numerous well log data and cores were acquired to estimate in-situ gas hydrate saturations and reservoir properties.Gas hydrate saturations were estimated from various well logs such as nuclear magnetic resonance (NMR), P- and S-wave velocity, and electrical resistivity logs along with pore-water salinity. Gas hydrate saturations from the NMR log agree well with those estimated from P- and S-wave velocity data. Because of the low salinity of the connate water and the low formation temperature, the resistivity of connate water is comparable to that of shale. Therefore, the effect of clay should be accounted for to accurately estimate gas hydrate saturations from the resistivity data. Two highly gas hydrate-saturated intervals are identified - an upper ???43 ft zone with an average gas hydrate saturation of 54% and a lower ???53 ft zone with an average gas hydrate saturation of 50%; both zones reach a maximum of about 75% saturation. ?? 2009.

  2. Fissure minerals, literature review

    International Nuclear Information System (INIS)

    This paper is a review of methods used for direct and indirect dating of tectonic events. Isotope geochemistry including stable isotopes as well as fission track- dating, fluid inclusion and thermoluminescens techniques have been considered. It has been concluded that an investigation of tectonic (and thermal) events should start with a detailed study of the mineral phases grown in seald fissures as well as minerals from fissure walls. This study should include phase identification, textures as well as mineral chemistry. The information from this study is fundamental for the decision of further investigations. Mineral chemistry including isotopes and fluid inclusion studies will give an essential knowledge about crystallization conditions for fissure minerals concerned. Direct dating using fission tracks as well as radioactive isotopes could be useful for some minerals. Application of thermoluminescens dating on fissure minerals is doubtful. (Auth.)

  3. Probing methane hydrate nucleation through the forward flux sampling method.

    Science.gov (United States)

    Bi, Yuanfei; Li, Tianshu

    2014-11-26

    Understanding the nucleation of hydrate is the key to developing effective strategies for controlling methane hydrate formation. Here we present a computational study of methane hydrate nucleation, by combining the forward flux sampling (FFS) method and the coarse-grained water model mW. To facilitate the application of FFS in studying the formation of methane hydrate, we developed an effective order parameter λ on the basis of the topological analysis of the tetrahedral network. The order parameter capitalizes the signature of hydrate structure, i.e., polyhedral cages, and is capable of efficiently distinguishing hydrate from ice and liquid water while allowing the formation of different hydrate phases, i.e., sI, sII, and amorphous. Integration of the order parameter λ with FFS allows explicitly computing hydrate nucleation rates and obtaining an ensemble of nucleation trajectories under conditions where spontaneous hydrate nucleation becomes too slow to occur in direct simulation. The convergence of the obtained hydrate nucleation rate was found to depend crucially on the convergence of the spatial distribution for the spontaneously formed hydrate seeds obtained from the initial sampling of FFS. The validity of the approach is also verified by the agreement between the calculated nucleation rate and that inferred from the direct simulation. Analyzing the obtained large ensemble of hydrate nucleation trajectories, we show hydrate formation at 220 K and 500 bar is initiated by the nucleation events occurring in the vicinity of water-methane interface, and facilitated by a gradual transition from amorphous to crystalline structure. The latter provides the direct support to the proposed two-step nucleation mechanism of methane hydrate. PMID:24849698

  4. A novel method for single sample multi-axial nanoindentation of hydrated heterogeneous tissues based on testing great white shark jaws.

    Directory of Open Access Journals (Sweden)

    Toni L Ferrara

    Full Text Available Nanomechanical testing methods that are suitable for a range of hydrated tissues are crucial for understanding biological systems. Nanoindentation of tissues can provide valuable insights into biology, tissue engineering and biomimetic design. However, testing hydrated biological samples still remains a significant challenge. Shark jaw cartilage is an ideal substrate for developing a method to test hydrated tissues because it is a unique heterogeneous composite of both mineralized (hard and non-mineralized (soft layers and possesses a jaw geometry that is challenging to test mechanically. The aim of this study is to develop a novel method for obtaining multidirectional nanomechanical properties for both layers of jaw cartilage from a single sample, taken from the great white shark (Carcharodon carcharias. A method for obtaining multidirectional data from a single sample is necessary for examining tissue mechanics in this shark because it is a protected species and hence samples may be difficult to obtain. Results show that this method maintains hydration of samples that would otherwise rapidly dehydrate. Our study is the first analysis of nanomechanical properties of great white shark jaw cartilage. Variation in nanomechanical properties were detected in different orthogonal directions for both layers of jaw cartilage in this species. The data further suggest that the mineralized layer of shark jaw cartilage is less stiff than previously posited. Our method allows multidirectional nanomechanical properties to be obtained from a single, small, hydrated heterogeneous sample. Our technique is therefore suitable for use when specimens are rare, valuable or limited in quantity, such as samples obtained from endangered species or pathological tissues. We also outline a method for tip-to-optic calibration that facilitates nanoindentation of soft biological tissues. Our technique may help address the critical need for a nanomechanical testing method

  5. A novel method for single sample multi-axial nanoindentation of hydrated heterogeneous tissues based on testing great white shark jaws.

    Science.gov (United States)

    Ferrara, Toni L; Boughton, Philip; Slavich, Eve; Wroe, Stephen

    2013-01-01

    Nanomechanical testing methods that are suitable for a range of hydrated tissues are crucial for understanding biological systems. Nanoindentation of tissues can provide valuable insights into biology, tissue engineering and biomimetic design. However, testing hydrated biological samples still remains a significant challenge. Shark jaw cartilage is an ideal substrate for developing a method to test hydrated tissues because it is a unique heterogeneous composite of both mineralized (hard) and non-mineralized (soft) layers and possesses a jaw geometry that is challenging to test mechanically. The aim of this study is to develop a novel method for obtaining multidirectional nanomechanical properties for both layers of jaw cartilage from a single sample, taken from the great white shark (Carcharodon carcharias). A method for obtaining multidirectional data from a single sample is necessary for examining tissue mechanics in this shark because it is a protected species and hence samples may be difficult to obtain. Results show that this method maintains hydration of samples that would otherwise rapidly dehydrate. Our study is the first analysis of nanomechanical properties of great white shark jaw cartilage. Variation in nanomechanical properties were detected in different orthogonal directions for both layers of jaw cartilage in this species. The data further suggest that the mineralized layer of shark jaw cartilage is less stiff than previously posited. Our method allows multidirectional nanomechanical properties to be obtained from a single, small, hydrated heterogeneous sample. Our technique is therefore suitable for use when specimens are rare, valuable or limited in quantity, such as samples obtained from endangered species or pathological tissues. We also outline a method for tip-to-optic calibration that facilitates nanoindentation of soft biological tissues. Our technique may help address the critical need for a nanomechanical testing method that is applicable

  6. A novel method for single sample multi-axial nanoindentation of hydrated heterogeneous tissues based on testing great white shark jaws.

    Science.gov (United States)

    Ferrara, Toni L; Boughton, Philip; Slavich, Eve; Wroe, Stephen

    2013-01-01

    Nanomechanical testing methods that are suitable for a range of hydrated tissues are crucial for understanding biological systems. Nanoindentation of tissues can provide valuable insights into biology, tissue engineering and biomimetic design. However, testing hydrated biological samples still remains a significant challenge. Shark jaw cartilage is an ideal substrate for developing a method to test hydrated tissues because it is a unique heterogeneous composite of both mineralized (hard) and non-mineralized (soft) layers and possesses a jaw geometry that is challenging to test mechanically. The aim of this study is to develop a novel method for obtaining multidirectional nanomechanical properties for both layers of jaw cartilage from a single sample, taken from the great white shark (Carcharodon carcharias). A method for obtaining multidirectional data from a single sample is necessary for examining tissue mechanics in this shark because it is a protected species and hence samples may be difficult to obtain. Results show that this method maintains hydration of samples that would otherwise rapidly dehydrate. Our study is the first analysis of nanomechanical properties of great white shark jaw cartilage. Variation in nanomechanical properties were detected in different orthogonal directions for both layers of jaw cartilage in this species. The data further suggest that the mineralized layer of shark jaw cartilage is less stiff than previously posited. Our method allows multidirectional nanomechanical properties to be obtained from a single, small, hydrated heterogeneous sample. Our technique is therefore suitable for use when specimens are rare, valuable or limited in quantity, such as samples obtained from endangered species or pathological tissues. We also outline a method for tip-to-optic calibration that facilitates nanoindentation of soft biological tissues. Our technique may help address the critical need for a nanomechanical testing method that is applicable

  7. Chelated minerals for poultry

    Directory of Open Access Journals (Sweden)

    SL Vieira

    2008-06-01

    Full Text Available Organic minerals have been subject of an increasing number of investigations recently. These compounds can be considered the most significant event regarding commercial forms of minerals targeting animal supplementation in the last decades. Minerals, especially metals, are usually supplemented in poultry feeds using cheap saline sources and have never required a lot of attention in terms of quality. On the other hand, definitions of organic minerals are very broad and frequently lead to confusion when decision-making becomes necessary. Organic minerals include any mineral bound to organic compounds, regardless of the type of existing bond between mineral and organic molecules. Proteins and carbohydrates are the most frequent candidates in organic mineral combinations. Organic fraction size and bond type are not limitations in organic mineral definition; however, essential metals (Cu, Fe, Zn, and Mn can form coordinated bonds, which are stable in intestinal lumen. Metals bound to organic ligands by coordinated bonds can dissociate within animal metabolism whereas real covalent bonds cannot. Chelated minerals are molecules that have a metal bound to an organic ligand through coordinated bonds; but many organic minerals are not chelates or are not even bound through coordinated bonds. Utilization of organic minerals is largely dependent on the ligand; therefore, amino acids and other small molecules with facilitated access to the enterocyte are supposed to be better utilized by animals. Organic minerals with ligands presenting long chains may require digestion prior to absorption. After absorption, organic minerals may present physiological effects, which improve specific metabolic responses, such as the immune response. Many studies have demonstrated the benefits of metal-amino acid chelates on animal metabolism, but the detection positive effects on live performance is less consistent.

  8. Hydration index--a better parameter for explaining small molecule hydration in inhibition of ice recrystallization.

    Science.gov (United States)

    Tam, Roger Y; Ferreira, Sandra S; Czechura, Pawel; Chaytor, Jennifer L; Ben, Robert N

    2008-12-24

    Several simple mono- and disaccharides have been assessed for their ability to inhibit ice recrystallization. Two carbohydrates were found to be effective recrystallization inhibitors. D-galactose (1) was the best monosaccharide and D-melibiose (5) was the most active disaccharide. The ability of each carbohydrate to inhibit ice growth was correlated to its respective hydration number reported in the literature. A hydration number reflects the number of tightly bound water molecules to the carbohydrate and is a function of carbohydrate stereochemistry. It was discovered that using the absolute hydration number of a carbohydrate does not allow one to accurately predict its ability to inhibit ice recrystallization. Consequently, we have defined a hydration index in which the hydration number is divided by the molar volume of the carbohydrate. This new parameter not only takes into account the number of water molecules tightly bound to a carbohydrate but also the size or volume of a particular solute and ultimately the concentration of hydrated water molecules. The hydration index of both mono- and disaccharides correlates well with experimentally measured RI activity. C-Linked derivatives of the monosaccharides appear to have RI activity comparable to that of their O-linked saccharides but a more thorough investigation is required. The relationship between carbohydrate concentration and RI activity was shown to be noncolligative and a 0.022 M solution of D-galactose (1) and C-linked galactose derivative (10) inhibited recrystallization as well as a 3% DMSO solution. The carbohydrates examined in this study did not possess any thermal hysteresis activity (selective depression of freezing point relative to melting point) or dynamic ice shaping. As such, we propose that they are inhibiting recrystallization at the interface between bulk water and the quasi liquid layer (a semiordered interface between ice and bulk water) by disrupting the preordering of water.

  9. Microstructure and Composition of Hydration Products of Ordinary Portland Cement with Ground Steel-making Slag

    Institute of Scientific and Technical Information of China (English)

    LI Yong-xin; CHEN Yi-min; ZHANG Hong-tao; HE Xing-yang; WEI Jiang-xiong; ZHANG Wen-sheng

    2003-01-01

    The effect of ground steel-making slag on microstructure and composition of hydration products of ordinary Portland cement (OPC) was investigated by mercury intrusion porosimetry ( MIP ), X- ray diffraction (XRD) and differential thermal analysis (DTA). Results show that ground steel-making slag is a kind of high activity mineral additives and it can raise the longer-age strength of OPC mortar. The total porosity and average pore diameter of OPC paste with groand steel-making slag increase with the increase of the amount of ground steelmaking slag replacing OPC at various ages, while after 28 days most pores in OPC paste with ground steel-making slag do not influeace the strength because the diameter of those pores is in the rang of 20 to 50nm. The hydration mechanism of ground steel-making slag is similar to that of OPC but different from that of fly ash and blast furnace slag. The hydration products of ground steel-making slag contain quite a lot of Ca( OH)2 in long age.

  10. Mineral Resources and Their Comprehensive Utilization in China Sea

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@It was said that mineral resources in oceans might be a reliable source for the material production. Ocean water is regarded as a huge “liquid deposit” for its ability to dissolve many kinds of elements. The total amount of elements in ocean water is greater than that in land. At the seafloor or below, occur a large number of mineral resources besides those in the water.China Sea, situated in the junction between North China block, Yangtze block and the Pacific plate and the Philippines plate, is excellent in ore-forming geological conditions, resulting in the presence of many kinds of deposits and abundant reserves. Mineral resources found in China Sea mainly include oil-gas resources, sea-beach placer and submarine coalfield.In addition, the manganese nodule and cobalt-rich crust are also discovered in South China Sea. Furthermore, the hydrothermal metalliferous deposit and gas hydrate may also be present in South China Sea.

  11. Geologic implications of gas hydrates in the offshore of India: results of the National Gas Hydrate Program Expedition 01

    Science.gov (United States)

    Collett, Timothy S.; Boswell, Ray; Cochran, J.R.; Kumar, Pushpendra; Lall, Malcolm; Mazumdar, Aninda; Ramana, Mangipudi Venkata; Ramprasad, Tammisetti; Riedel, Michael; Sain, Kalachand; Sathe, Arun Vasant; Vishwanath, Krishna

    2014-01-01

    The Indian National Gas Hydrate Program Expedition 01 (NGHP-01) is designed to study the occurrence of gas hydrate along the passive continental margin of the Indian Peninsula and in the Andaman convergent margin, with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. The NGHP-01 expedition established the presence of gas hydrates in the Krishna-Godavari and Mahanadi Basins, and the Andaman Sea. The expedition discovered in the Krishna-Godavari Basin one of the thickest gas hydrate accumulations ever documented, in the Andaman Sea one of the thickest and deepest gas hydrate stability zones in the world, and established the existence of a fully developed gas hydrate petroleum system in all three basins.

  12. Cruise report for a seismic investigation of gas hydrates in the Mississippi Canyon region, northern Gulf of Mexico; cruise M1-98-GM

    Science.gov (United States)

    Cooper, Alan K.; Hart, Patrick E.; Pecher, Ingo

    1998-01-01

    During June 1998, the U.S. Geological Survey (USGS) and the University of Mississippi Marine Minerals Technology Center (MMTC) conducted a 12-day cruise in the Mississippi Canyon region of the Gulf of Mexico (Fig. 1). The R/V Tommy Munro, owned by the Marine Research Institute of the University of Southern Mississippi, was chartered for the cruise. The general objective was to acquire very high resolution seismic-reflection data across of the upper and middle continental slope (200-1200-m water depths) to study the acoustic character, distribution and potential effects of gas hydrates within the shallow subsurface, extending from the sea floor down to the base of the gas-hydrate stability zone. The Gulf of Mexico is well known for hydrocarbon resources that include petroleum and related gases. Areas of the Gulf that lie in waters deeper than about 250 m potentially have conditions (e.g., pressure, temperature, near-surface gas content, etc.) that are right for the shallow-subsurface formation of the ice-like substance (gas and water) known as gas hydrate (Kvenvolden, 1993). Gas hydrates have previously been sampled in sea-floor cores and observed as massive mounds in several parts of the northern Gulf, including the Mississippi Canyon region (e.g., Anderson et al., 1992). Extensive seismic data have been recorded in the Gulf, in support of commercial drilling efforts, but few very high resolution data exist in the public domain to aid in gas-hydrate studies. Studies of long-term interest include those on the resource potential of gas hydrates, the geologic hazards associated with dissociation and formation of hydrates, and the impact, if any, of gas-hydrate dissociation on atmospheric warming (i.e., via release of methane, a "greenhouse" gas). Several very high resolution seismic systems (surface-towed, deep-towed, and sea-floor) were used during the cruise to test the feasibility of using such data for detailed structural (geometric) and stratigraphic (physical

  13. Distribution of Water in Synthetic Calcium Silicate Hydrates.

    Science.gov (United States)

    Roosz, C; Gaboreau, S; Grangeon, S; Prêt, D; Montouillout, V; Maubec, N; Ory, S; Blanc, P; Vieillard, P; Henocq, P

    2016-07-12

    Understanding calcium silicate hydrates (CSHs) is of paramount importance for understanding the behavior of cement materials because they control most of the properties of these man-made materials. The atomic scale water content and structure have a major influence on their properties, as is analogous with clay minerals, and we should assess these. Here, we used a multiple analytical approach to quantify water distribution in CSH samples and to determine the relative proportions of water sorbed on external and internal (interlayer) surfaces. Water vapor isotherms were used to explain the water distribution in the CSH microstructure. As with many layered compounds, CSHs have external and internal (interlayer) surfaces displaying multilayer adsorption of water molecules on external surfaces owing to the hydrophilic surfaces. Interlayer water was also quantified from water vapor isotherm, X-ray diffraction (XRD), and thermal gravimetric analyses (TGA) data, displaying nonreversible swelling/shrinkage behavior in response to drying/rewetting cycles. From this quantification and balance of water distribution, we were able to explain most of the widely dispersed data already published according to the various relative humidity (RH) conditions and measurement techniques. Stoichiometric formulas were proposed for the different CSH samples analyzed (0.6 < Ca/Si < 1.6), considering the interlayer water contribution. PMID:27281114

  14. Pressure induced reactions amongst calcium aluminate hydrate phases

    KAUST Repository

    Moon, Ju-hyuk

    2011-06-01

    The compressibilities of two AFm phases (strätlingite and calcium hemicarboaluminate hydrate) and hydrogarnet were obtained up to 5 GPa by using synchrotron high-pressure X-ray powder diffraction with a diamond anvil cell. The AFm phases show abrupt volume contraction regardless of the molecular size of the pressure-transmitting media. This volume discontinuity could be associated to a structural transition or to the movement of the weakly bound interlayer water molecules in the AFm structure. The experimental results seem to indicate that the pressure-induced dehydration is the dominant mechanism especially with hygroscopic pressure medium. The Birch-Murnaghan equation of state was used to compute the bulk modulus of the minerals. Due to the discontinuity in the pressure-volume diagram, a two stage bulk modulus of each AFm phase was calculated. The abnormal volume compressibility for the AFm phases caused a significant change to their bulk modulus. The reliability of this experiment is verified by comparing the bulk modulus of hydrogarnet with previous studies. © 2011 Elsevier Ltd. All rights reserved.

  15. The Impact of Magnesium Oxide on the Hydratation and Features of Mechanicaly Activated Phosphogypsum

    Directory of Open Access Journals (Sweden)

    Andrejus Jefimovas

    2011-04-01

    Full Text Available Extractive hemihydrate phosphogypsum (E-PG is the most popular mineral waste in Lithuania. The dumps of that are rapidly growing and the question of possible use still remains open. Phosphogypsum is obtained during the process of extracting phosphoric acid from apatite using sulphuric acid. Due to low activity and contamination with acidic mineral admixtures (phosphorus and fluorine compounds, this technogenic product cannot be used for producing construction materials. Instead of present energy consuming processes used for neutralisation, another method – mechanical activation neutralizing acid admixtures with cement and opoka mix is offered. Whereas cement and opoka are grey, the items made of phosphogypsum (neutralised using these admixtures are dark. Research was made trying to find out the possibility of gaining the white binder from phosphogypsum. In order to achieve that magnesium oxide was chosen to neutralise phosphogypsum and its impact on E-PG, hydratation and features were studied.Article in Lithuanian

  16. Origin and character of gaseous hydrocarbons in the hydrate and non-hydrate charged sediments on the Norway - Svalbard margins

    Energy Technology Data Exchange (ETDEWEB)

    Vaular, Espen Nesheim

    2011-05-15

    Gas incubated in clathrate water-structures, stabilizes the hydrogen bonded substance termed gas hydrate. In the marine environment vast amount of carbon is stored as gas hydrates within the temperature and pressure zone these ice-like structures are stable. Natural gas hydrate mapping and characterization is important basic research that brings about critical knowledge concerning various topics. Natural gas hydrates is a vital part of the carbon cycle, it is a potential energy resource (and thereby a potential climate agent) and it is a potential geo-hazard. One of the goals the GANS initiative aimed at exploring, was the hydrate bearing sediment of the Norway -Svalbard margins, to investigate the character and expansion of natural gas hydrates. Part of the investigation was to define how the gas in the hydrated sediment was produced and where it came from. As a result this thesis addresses the matter of light hydrocarbon characterization and origin in two Norwegian hydrate deposits. On cruises to Vestnesa on the Svalbard margin and to Nyegga in the mid-Norwegian margin, samples of hydrate charged and non-hydrate charged sediments were obtained and analyzed. Through compositional and isotopic analyses the origin of the hydrate bound gas in the fluid escape feature G11 at Nyegga was determined. The hydrate incubated methane is microbial produced as well as parts of the hydrate bound ethane. The compositional analysis in both the Nyegga area and at the Vestnesa Ridge points at thermogenic contributions in the sediment interstitials and pore water. The two hydrate bearing margins show large differences in hydrocarbon content and microbial activity in the pockmarks investigated. The gravity cores from the penetrated pockmark at Vestnesa showed low hydrocarbon content and thus suggest ceased or periodic venting. The fluid flow escape features at Nyegga show large variety of flux rates based on ROV monitoring and headspace analysis of the sediment and pore water. The

  17. Advances in understanding hydration of Portland cement

    Energy Technology Data Exchange (ETDEWEB)

    Scrivener, Karen L., E-mail: Karen.scrivener@epfl.ch [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 (Switzerland); Juilland, Patrick [Sika Technology AG, Zürich (Switzerland); Monteiro, Paulo J.M. [Department of Civil and Environmental Engineering, University of California at Berkeley (United States)

    2015-12-15

    Progress in understanding hydration is summarized. Evidence supports the geochemistry dissolution theory as an explanation for the induction period, in preference to the inhibiting layer theory. The growth of C–S–H is the principal factor controlling the main heat evolution peak. Electron microscopy indicates that C–S–H “needles” grow from the surface of grains. At the peak, the surface is covered, but deceleration cannot be attributed to diffusion control. The shoulder peak comes from renewed reaction of C{sub 3}A after depletion of sulfate in solution, but release of sulfate absorbed on C–S–H means that ettringite continues to form. After several days space becomes the major factor controlling hydration. The use of new analytical technique is improving our knowledge of the action of superplasticizers and leading to the design of molecules for different applications. Atomistic modeling is becoming a topic of increasing interest. Recent publications in this area are reviewed.

  18. Predicting hydration energies for multivalent ions

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Stipp, Susan Louise Svane

    2014-01-01

    errors. Our results indicate that quantum chemical calculations combined with COSMO-RS solvent treatment is a reliable method for treating multivalent ions in solution, provided one hydration shell of explicit water molecules is included for metal cations. The accuracy is not high enough to allow...... (TZVP) level. Agreement with experimental data for monovalent and divalent ions is good and shows no significant systematic errors. Predictions are noticeably better than with standard COSMO. The agreement with experimental data for trivalent and tetravalent ions is slightly worse and shows systematic...... absolute predictions of hydration energies but could be used to investigate trends for several ions, thanks to the low computational cost, in particular for ligand exchange reactions....

  19. A statistical mechanical description of biomolecular hydration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    We present an efficient and accurate theoretical description of the structural hydration of biological macromolecules. The hydration of molecules of almost arbitrary size (tRNA, antibody-antigen complexes, photosynthetic reaction centre) can be studied in solution and in the crystal environment. The biomolecular structure obtained from x-ray crystallography, NMR, or modeling is required as input information. The structural arrangement of water molecules near a biomolecular surface is represented by the local water density analogous to the corresponding electron density in an x-ray diffraction experiment. The water-density distribution is approximated in terms of two- and three-particle correlation functions of solute atoms with water using a potentials-of-mean-force expansion.

  20. Hydration: The New FIFA World Cup's Challenge for Referee Decision Making?

    Science.gov (United States)

    Houssein, Mohamed; Lopes, Philippe; Fagnoni, Bruno; Ahmaidi, Said; Yonis, Soubère Mahamoud; Leprêtre, Pierre-Marie

    2016-03-01

    Various continental sporting events have exposed team sports referees to different environmental conditions. Several studies have focused on strategies to prevent athlete performance impairment induced by heat or warm (or both) conditions, but few authors have investigated the effect of heat on referees' performance. In a thermoneutral environment, referees' physical activity induced mild 2.0% dehydration, which was responsible for reductions in physical, psychomotor, and cognitive performances. Therefore, the hydration status of referees should be taken into account to reduce referees' errors and misjudgments in the heat. PMID:26881750

  1. Bioimpedance in medicine: Measuring hydration influence

    Science.gov (United States)

    Hlubik, J.; Hlubik, P.; Lhotska, L.

    2010-04-01

    The aim of the paper is to present results of our ongoing research focused on the influence of body hydration on the body impedance measurements and also on the influence of the frequency used for the measurement. The question is why to measure human body composition and if these values have beneficial results. First goal of the work deals with a question of measuring human body composition. The performed measurements showed certain influence which must be verified by repeated experiments.

  2. Serrano charged up for hydrates battle

    Energy Technology Data Exchange (ETDEWEB)

    Flatern, R. von

    2001-07-01

    The plugging of pipelines by paraffin and hydrate formations is an obstacle still to be overcome in the transportation of gases in deep cold water. However, a new flow assurance technique is soon to be installed in Shell's Serrano and Oregano fields in the Gulf of Mexico and this is expected to eventually impact on the entire offshore industry: it is this development which is discussed. The system uses electricity to heat the pipelines.

  3. CO₂ processing and hydration of fruit and vegetable tissues by clathrate hydrate formation.

    Science.gov (United States)

    Takeya, Satoshi; Nakano, Kohei; Thammawong, Manasikan; Umeda, Hiroki; Yoneyama, Akio; Takeda, Tohoru; Hyodo, Kazuyuki; Matsuo, Seiji

    2016-08-15

    CO2 hydrate can be used to preserve fresh fruits and vegetables, and its application could contribute to the processing of carbonated frozen food. We investigated water transformation in the frozen tissue of fresh grape samples upon CO2 treatment at 2-3 MPa and 3°C for up to 46 h. Frozen fresh bean, radish, eggplant and cucumber samples were also investigated for comparison. X-ray diffraction indicated that after undergoing CO2 treatment for several hours, structure I CO2 hydrate formed within the grape tissue. Phase-contrast X-ray imaging using the diffraction-enhanced imaging technique revealed the presence of CO2 hydrate within the intercellular spaces of these tissues. The carbonated produce became effervescent because of the dissociation of CO2 hydrate through the intercellular space, especially above the melting point of ice. In addition, suppressed metabolic activity resulting from CO2 hydrate formation, which inhibits water and nutrient transport through intercellular space, can be expected. PMID:27006222

  4. Silicate anion structural change in calcium silicate hydrate gel on dissolution of hydrated cement

    International Nuclear Information System (INIS)

    High pH conditions of aqueous solutions in a radioactive waste repository can be brought about by dissolution of cementitious materials. In order to clarify the mechanisms involved in maintaining this high pH for long time, we investigated the dissolution phenomena of OPC hydrate. In the present research, leaching tests on powdered cement hydrates were conducted by changing the ratio of mass of leaching water to mass of OPC hydrate (liquid/solid ratio) from 10 - 2,000 (wt/wt). Ordinary Portland Cement hydrate was contacted with deionized water and placed in a sealed bottle. After a predetermined period, the solid was separated from the solution. From the results of XRD analysis on the solid phase and the Ca concentration in the aqueous phase, it was confirmed that Ca(OH)2 was preferentially dissolved when the liquid/solid ratio was 10 or 100 (wt/wt), and that C-S-H gel as well as Ca(OH)2 were dissolved when the liquid/solid ratio was 500 (wt/wt) or larger. 29Si-NMR results showed that the silicate anion chain of the C-S-H gel became longer when the liquid/solid ratio was 500 (wt/wt) or greater. This indicates that leaching of OPC hydrate results in a structural change of C-S-H gel. (author)

  5. Terahertz spectroscopy of concrete for evaluating the critical hydration level

    Science.gov (United States)

    Dash, Jyotirmayee; Ray, Shaumik; Nallappan, Kathirvel; Sasmal, Saptarshi; Pesala, Bala

    2014-03-01

    Concrete, a mixture of cement, coarse aggregate, sand and filler material (if any), is widely used in the construction industry. Cement, mainly composed of Tricalcium Silicate (C3S) and Dicalcium Silicate (C2S) reacts readily with water, a process known as hydration. The hydration process forms a solid material known as hardened cement paste which is mainly composed of Calcium Silicate Hydrate (C-S-H), Calcium Hydroxide and Calcium Carbonate. To quantify the critical hydration level, an accurate and fast technique is highly desired. However, in conventional XRD technique, the peaks of the constituents of anhydrated and hydrated cement cannot be resolved properly, where as Mid-infrared (MIR) spectroscopy has low penetration depth and hence cannot be used to determine the hydration level of thicker concrete samples easily. Further, MIR spectroscopy cannot be used to effectively track the formation of Calcium Hydroxide, a key by-product during the hydration process. This paper describes a promising approach to quantify the hydration dynamics of cement using Terahertz (THz) spectroscopy. This technique has been employed to track the time dependent reaction mechanism of the key constituents of cement that react with water and form the products in the hydrated cement, viz., C-S-H, Calcium Hydroxide and Calcium Carbonate. This study helps in providing an improved understanding on the hydration kinetics of cement and also to optimise the physio-mechanical characteristics of concrete.

  6. Coupled THCM Modeling of Gas Hydrate Bearing Sediments

    Science.gov (United States)

    Sanchez, M. J.; Gai, X., Sr.; Shastri, A.; Santamarina, J. C.

    2014-12-01

    Gas hydrates are crystalline clathrate compounds made of water and a low molecular gas, like methane. Gas hydrates are generally present in oil-producing areas and in permafrost regions. Methane hydrate deposits can lead to large-scale submarine slope failures, blowouts, platform foundation failures, and borehole instability. Gas hydrates constitute also an attractive source of energy as they are estimated to contain very large reserves of methane. Hydrate formation, dissociation and methane production from hydrate bearing sediments are coupled Thermo-Hydro-Mechanical (THM) processes that involve, amongst other, exothermic formation and endothermic dissociation of hydrate and ice phases, mixed fluid flow and large changes in fluid pressure. A comprehensive THM formulation is briefly presented here. Momentum balance, mass balance and energy balance equations take into consideration the interaction among all phases (i.e. solid, liquid, gas, hydrates and ice) and mechanical equilibrium. Constitutive equations describe the intrinsic THM behavior of the sediment. Simulation results conducted for hydrate bearing sediments subjected to boundary conditions highlight the complex interaction among THM processes in hydrate bearing sediments.

  7. Hydration process in Portland cement blended with activated coal gangue

    Institute of Scientific and Technical Information of China (English)

    Xian-ping LIU; Pei-ming WANG; Min-ju DING

    2011-01-01

    This paper deals with the hydration of a blend of Portland cement and activated coal gangue in order to determine the relationship between the degree of hydration and compressive strength development.The hydration process was investigated by various means:isothermal calorimetry,thermal analysis,non-cvaporable water measurement,and X-ray diffraction analysis.The results show that the activated coal gangue is a pozzolanic material that contributes to the hydration of the cement blend.The pozzolanic reaction occurs over a period of between 7 and 90 d,consuming portlandite and forming both crystal hydrates and ill-crystallized calcium silicate hydrates.These hydrates are similar to those found in pure Portland cement.The results show that if activated coal gangue is substituted for cement at up to 30% (w/w),it does not significantly affect the final compressive strength of the blend.A long-term compressive strength improvement can in fact be achieved by using activated coal gangue as a supplementary cementing material.The relationship between compressive strength and degree of hydration for both pure Portland cement and blended cement can be described with the same equation.However,the parameters are different since blended cement produces fewer calcium silicate hydrates than pure Portland cement at the same degree of hydration.

  8. Effect of Gemini-type surfactant on methane hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K.E.; Park, J.M.; Kim, C.U.; Chae, H.J.; Jeong, S.Y. [Korea Research Inst. of Chemical Technology, Jang-Dong, Yuseong-Gu, Daejeon (Korea, Republic of)

    2008-07-01

    Natural gas hydrates are formed from water and natural gas molecules at particular temperatures and pressures that become ice-like inclusion compounds. Gas hydrates offer several benefits such as energy resource potential and high storage capacity of natural gas in the form of hydrates. However, the application of natural gas hydrates has been deterred by its low formation rate and low conversion ratio of water into hydrate resulting in low actual storage capacity. This paper presented an experimental study to determine the effect of adding a novel Gemini-type surfactant on methane hydrate formation. The experimental study was described with reference to the properties of prepared diols and properties of prepared disulfonates. Gemini surfactant is the family of surfactant molecules possessing more than one hydrophobic tail and hydrophilic head group. They generally have better surface-active properties than conventional surfactants of equal chain length. The paper presented the results of the study in terms of the reactions of diols with propane sultone; storage capacity of hydrate formed with and without surfactant; and methane hydrate formation with and without disulfonate. It was concluded that the methane hydrate formation was accelerated by the addition of novel anionic Gemini-type surfactants and that hydrate formation was influenced by the surfactant concentration and alkyl chain length. For a given concentration, the surfactant with the highest chain length demonstrated the highest formation rate and storage capacity. 5 refs., 3 tabs., 4 figs.

  9. Histocompatibility antigens in coal miners with pneumoconiosis.

    OpenAIRE

    Soutar, C A; Coutts, I.; Parkes, W R; Dodi, I. A.; Gauld, S; Castro, J E; Turner-Warwick, M

    1983-01-01

    Twenty-five histocompatibility antigens have been measured in 100 coal miners with pneumoconiosis attending a pneumoconiosis medical panel and the results compared with a panel of 200 normal volunteers not exposed to dust. Chest radiographs were read independently by three readers according to the ILO U/C classification. On a combined score, 40 men were thought to have simple pneumoconiosis and 60 men complicated pneumoconiosis. The number of antigens tested and associations between antigens ...

  10. 30 CFR 75.521 - Lightning arresters; ungrounded and exposed power conductors and telephone wires.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lightning arresters; ungrounded and exposed... Electrical Equipment-General § 75.521 Lightning arresters; ungrounded and exposed power conductors and... leads underground shall be equipped with suitable lightning arresters of approved type within 100...

  11. Ethical issues in artificial nutrition and hydration.

    Science.gov (United States)

    Fine, Robert L

    2006-04-01

    From the time of Hippocrates, approximately 2500 years ago, medical ethics has been seen as an essential complement to medical science in pursuit of the healing art of medicine. This is no less true today, not only for physicians but also for other essential professionals involved in patient care, including clinical nutrition support practitioners. One aspect of medical ethics that the clinical nutritionist must face involves decisions to provide, withhold, or withdraw artificial nutrition and hydration. Such a decision is not only technical but often has a strong moral component as well. Although it is the physician who writes any such order, the clinical nutritionist as fellow professional should be a part not only of the scientific aspects of the order but of the moral discourse leading to such an order and may certainly be involved in counseling physicians, other healthcare providers, patients, and families alike. This paper is intended to give the clinical nutritionist a familiarity with the discipline of medical ethics and its proper relationship to medical science, politics, and law. This review will then offer a more specific analysis of the ethical aspects of decisions to initiate, withhold, or withdraw artificial nutrition and hydration (ANH) and offer particular commentary on the ethically significant pronouncements of Pope John Paul II in March of 2004 related to vegetative patients and artificial or "assisted" nutrition and hydration. PMID:16556921

  12. Intermolecular Hydrogen Transfer in Isobutane Hydrate

    Directory of Open Access Journals (Sweden)

    Takeshi Sugahara

    2012-05-01

    Full Text Available Electron spin resonance (ESR spectra of butyl radicals induced with γ-ray irradiation in the simple isobutane (2-methylpropane hydrate (prepared with deuterated water were investigated. Isothermal annealing results of the γ-ray-irradiated isobutane hydrate reveal that the isobutyl radical in a large cage withdraws a hydrogen atom from the isobutane molecule through shared hexagonal-faces of adjacent large cages. During this “hydrogen picking” process, the isobutyl radical is apparently transformed into a tert-butyl radical, while the sum of isobutyl and tert-butyl radicals remains constant. The apparent transformation from isobutyl to tert-butyl radicals is an irreversible first-order reaction and the activation energy was estimated to be 35 ± 3 kJ/mol, which was in agreement with the activation energy (39 ± 5 kJ/mol of hydrogen picking in the γ-ray-irradiated propane hydrate with deuterated water.

  13. Exposed H2O-rich areas detected on Ceres with Dawn Visible and Infrared Mapping Spectrometer

    Science.gov (United States)

    Combe, Jean-Philippe; Raponi, Andrea; De Sanctis, Maria Cristina; Tosi, Federico; Ammannito, Eleonora; Byrne, Shane; Giacomo Carrozzo, Filippo; Hayne, Paul O.; Hughson, Kynan Horace; Johnson, Katherine Ellen; Landis, Margaret E.; Mazarico, Erwan; McCord, Thomas B.; Pieters, Carle; Ruesch, Ottaviano; Singh, Sandeep; Raymond, Carol; Russell, Christopher T.; VIR Team

    2016-10-01

    H2O-rich materials are exposed at the surface of Ceres as discovered from VIR spectra [1] of the Dawn mission [2]. Oxo crater exhibits the most diagnostic absorption bands of the H2O molecule at 1.65 and 1.28 µm [3]. These features exist in at least four other locations, and they are consistent with H2O ice mixed with low-albedo components [3,4]. Spectra of mineral hydrates such as salts are also characterized by H2O absorption overtones, however they do not fit VIR observations as well as H2O ice spectra. In order to further constrain the composition, the thermophysical and chemical stability of exposed H2O-rich compounds on Ceres and results from chemical models of Ceres interior are being investigated. One meter of pure H2O ice exposed to direct sunlight would sublimate within a few tens of years [5-7].The sublimation of a H2O ice-cemented regolith would leave a low-albedo lag deposit that would also decrease detectability over time [8]. All the reported H2O exposures occur at latitudes higher than 30°N in fresh craters near rim shadows, have surface area < 3 km2, and relatively high albedo.The exposed H2O ice observed by VIR is likely due to a recent impact or a landslide. In some occurrences, high-albedo materials observed within these shadows by the Framing Camera (FC) are contiguous to the observed H2O several of them could be in Permanently Shadowed Regions. The surface shape model and history of illumination will allow us to determine whether these areas could be cold traps where H2O ice could be preserved from sublimation [9].AcknowledgementsThe funding for this research was provided under the NASA Dawn mission through a subcontract 2090-S-MB516 from the University of California, Los Angeles and the Dawn Guest Investigator Program. The VIR instrument and VIR team are funded by ASI (Italian Space Agency) and INAF (Istituto Nazionale di Astrofisica).References1. De Sanctis M.C. et al.,2011, SSR 1632. Russell C. T. et al., 2011, SSR 1633. Combe J-Ph. et al

  14. Hydration effects on gypsum dissolution revealed by in situ nanoscale atomic force microscopy observations

    Science.gov (United States)

    Burgos-Cara, A.; Putnis, C. V.; Rodriguez-Navarro, C.; Ruiz-Agudo, E.

    2016-04-01

    Recent work has suggested that the rates of mineral dissolution in aqueous solutions are dependent on the kinetics of dehydration of the ions building the crystal. Dehydration kinetics will be ultimately determined by the competition between ion-water and water-water interactions, which can be significantly modified by the presence of background ions in solution. At low ionic strength, the effect of electrolytes on ion-water (electrostatic) interactions will dominate (Kowacz et al., 2007). By performing macroscopic and in situ, microscopic (atomic force microscopy) dissolution experiments, the effect of background electrolytes on the dissolution kinetics of gypsum (CaSO4·2H2O) {0 1 0} cleavage surfaces is tested at constant, low ionic strength (IS = 0.05) and undersaturation (saturation index, SI = -0.045). Dissolution rates are systematically lower in the presence of 1:1 background electrolytes than in an electrolyte-free solution, regardless of the nature of the electrolyte tested. We hypothesize that stabilization of the hydration shell of calcium by the presence of background ions can explain this result, based on the observed correlations in dissolution rates with the ionic surface tension increment of the background ion in solution. Stabilization of the cation hydration shell should favor dissolution. However, in the case of strongly hydrated ions such as Ca2+, this has a direct entropic effect that reduces the overall ΔG of the system, so that dissolution is energetically less favorable. Overall, these results provide new evidence that supports cation dehydration being the rate-controlling step for gypsum dissolution, as proposed for other minerals such as barite, dolomite and calcite.

  15. Reagan issues mineral policy

    Science.gov (United States)

    The National Materials and Minerals Program plan and report that President Reagan sent to Congress on April 5 aims to ‘decrease America's minerals vulnerability’ while reducing future dependence on potentially unstable foreign sources of minerals. These goals would be accomplished by taking inventory of federal lands to determine mineral potential; by meeting the stockpile goals set by the Strategic and Critical Material Stockpiling Act; and by establishing a business and political climate that would encourage private-sector research and development on minerals.Now that the Administration has issued its plan, the Subcommittee on Mines and Mining of the House Committee on Interior and Insular Affairs will consider the National Minerals Security Act (NMSA), which was introduced 1 year ago by subcommittee chairman Jim Santini (D-Nev.) [Eos, May 19, 1981, p. 497]. The bill calls for establishing a three-member White-House-level council to coordinate the development of a national minerals policy; amending tax laws to assist the mining industry to make capital investments to locate and produce strategic materials; and creating a revolving fund for the sale and purchase of strategic minerals. In addition, the NMSA bill would allow the secretary of the interior to make previously withdrawn public lands available for mineral development. The subcommittee will hold a hearing on the Administration's plan on May 11. Interior Secretary James Watt has been invited to testify.

  16. Recent results from a study of thorium lung burdens and health effects among miners in China

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xingan; Cheng, Y-E; Rong Zhen [Laboratory of Industrial Hygiene, Ministry of Health, PO Box 8018, Beijing 100088 (China)

    2005-12-15

    The purpose of this study was to obtain more information about health effects among the dust-exposed male miners of Bayun Obo Rare-Earth and Iron Mine, China. From 2390 male miners from the seven dust-generating workshops of the mine, 136 dust-exposed miners were randomly selected for study. Of these, 64 men were from the high-dust-generating workshop and 72 from the lower-dust-generating workshops; the latter group was used as an internal control. Physical measurements and medical examinations were carried out on each of these 136 men. The average measured thorium lung burden for the high-dust-exposure miners was significantly greater than that for the group of lower-exposure miners, and the incidence of severe breathlessness and pneumoconiosis of stage 0{sup +} was also significantly raised in the high-exposure group relative to the low-exposure group. An epidemiological study of lung cancer mortality among all the miners and staff of this mine was also carried out. This showed significantly raised levels of lung cancer mortality in both exposed miners and unexposed workers when compared with the Chinese population, and the level in exposed miners was significantly higher than that in unexposed men. The general high rate of lung cancer mortality in the workers of the mine is attributed to high levels of cigarette smoking, and the raised rate in the exposed miners relative to the unexposed workers to inhalation of silica- and thorium-bearing dusts and thoron progeny.

  17. Development of Alaskan gas hydrate resources. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  18. Focus on the Development of Natural Gas Hydrate in China

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2016-05-01

    Full Text Available Natural gas hydrate, also known as combustible ice, and mainly composed of methane, is identified as a potential clean energy for the 21st century. Due to its large reserves, gas hydrate can ease problems caused by energy resource shortage and has gained attention around the world. In this paper, we focus on the exploration and development of gas hydrate as well as discussing its status and future development trend in China and abroad. We then analyze its opportunities and challenges in China from four aspects, resource, technology, economy and policy, with five forces model and Politics Economics Society Technology method. The results show China has abundance gas hydrate resource; however, backward technologies and inadequate investment have seriously hindered the future development of gas hydrate; thus, China should establish relevant cooperation framework and intuitional arrangement to attract more investment as well as breaking through technical difficulties to commercialization gas hydrate as soon as possible.

  19. Enzyme hydration, activity and flexibility : A neutron scattering approach

    Energy Technology Data Exchange (ETDEWEB)

    Kurkal-Siebert, V [University of Heidelberg; Finney, J.L. [University College, London; Daniel, R. M. [University of Waikato, New Zealand; Smith, Jeremy C [ORNL

    2006-01-01

    Recent measurements have demonstrated enzyme activity at hydrations as low as 3%. The question of whether the hydration-induced enzyme flexibility is important for activity is addressed by performing picosecond dynamic neutron scattering experiments on pig liver esterase powders at various temperatures as well as solutions. At all temperatures and hydrations investigated here, significant quasielastic scattering intensity is found in the protein, indicating the presence of anharmonic, diffusive motion. As the hydration increases a temperature-dependent dynamical transition appears and strengthens involving additional diffusive motion. At low temperature, increasing hydration resulted in lower flexibility of the enzyme. At higher temperatures, systems containing sufficient number of water molecules interacting with the protein exhibit increased flexibility. The implication of these results is that, although the additional hydration-induced diffusive motion and flexibility at high temperatures in the enzyme detected here may be related to increased activity, they are not required for the enzyme to function.

  20. STUDY FOR NATURAL GAS HYDRATE CONVERSED FROM ICE

    Institute of Scientific and Technical Information of China (English)

    WANG Shengjie; SHEN Jiandong; HAO Miaoli; LIU Furong

    2003-01-01

    Natural gas hydrates are crystalline clathrate compounds composed of water and gases of small molecular diameters that can be used for storage and transport of natural gas as a novel method. In the paper a series of experiments of aspects and kinetics for hydrate formed from natural gas and ice were carried out on the industrial small scale production apparatus. The experimental results show that formation conditions of hydrate conversed from ice are independent of induction time, and bigger degrees of supersaturation and supercooling improved the driving force and advanced the hydrate formation.Superpressure is also favorable for ice particle conversion to hydrate. In addition, it was found there have an optimal reaction time during hydrate formation.

  1. Octa-coordination and the hydrated Ba2+(aq) ion

    CERN Document Server

    Chaudhari, Mangesh I; Rempe, Susan B

    2014-01-01

    The hydration structure of Ba^{2+} ion is important for understanding blocking mechanisms in potassium ion channels. Here, we combine statistical mechanical theory, ab initio molecular dynamics simulations, and electronic structure methods to calculate the hydration free energy and local hydration structure of Ba^{2+}(aq). The predicted hydration free energy (-302.9$\\pm$0.7 kcal/mol) matches the experimental value (-302.56 kcal/mol) when the fully occupied and exclusive inner solvation shell is treated. In the local environment defined by the inner and first shell of hydrating waters, Ba^{2+} is directly coordinated by eight (8) waters. Octa-coordination resembles the structure of Ba^{2+} and K^+ bound in potassium ion channels, but differs from the local hydration structure of K^+(aq) determined earlier.

  2. Pore capillary pressure and saturation of methane hydrate bearing sediments

    Institute of Scientific and Technical Information of China (English)

    SUN Shicai; LIU Changling; YE Yuguang; LIU Yufeng

    2014-01-01

    To better understand the relationship between the pore capillary pressure and hydrate saturation in sedi-ments, a new method was proposed. First, the phase equilibria of methane hydrate in fine-grained silica sands were measured. As to the equilibrium data, the pore capillary pressure and saturation of methane hydrate were calculated. The results showed that the phase equilibria of methane hydrates in fine-grained silica sands changed due to the depressed activity of pore water caused by the surface group and negatively charged characteristic of silica particles as well as the capillary pressure in small pores together. The capil-lary pressure increased with the increase of methane hydrate saturation due to the decrease of the available pore space. However, the capillary-saturation relationship could not yet be described quantitatively because of the stochastic habit of hydrate growth.

  3. Particle size and hydration medium effects on hydration properties and sugar release of wheat straw fibers

    International Nuclear Information System (INIS)

    Wheat straw is gaining importance as a feedstock for the production of biofuels and high value-added bioproducts. Several pretreatments recover the fermentable fraction involving the use of water or aqueous solutions. Therefore, hydration properties of wheat straw fibers play an important role in improving pretreatment performance. In this study, the water retention capacity (WRC) and swelling of wheat straw fibers were studied using water, propylene glycol (PPG) and an effluent from a H2-producing reactor as the hydration media with three particle sizes (3.35, 2.00 and 0.212 mm). The effects of swelling were analyzed by optical and confocal laser scanning microscopy (CLSM). The highest WRC was reached with the effluent medium (9.84 ± 0.87 g g−1 in 4 h), followed by PPG (8.52 ± 0.18 g g−1 in 1 h) and water (8.74 ± 0.76 g g−1 in 10 h). The effluent hydration treatment had a synergic effect between the enzymes present and the water. The particle size had a significant effect on the WRC (P < 0.01), the highest values were reached with 3.35 mm fibers. The CLSM images showed that finer fibers were subjected to a shaving effect due to the grinding affecting its capacity to absorb the hydration medium. The microscopic analysis showed the increase in the width of the epidermal cells after the hydration and a more undulating cell wall likely due to the hydration of the amorphous regions in the cellulose microfibrils. The sugar release was determined, achieving the highest glucose content with the effluent hydration treatment. - Highlights: • Water retention capacity (WRC) and swelling of wheat straw fibers were studied. • The highest WRC was achieved with a biological effluent. • The enzymatic activity in the biological effluent yielded the highest sugar release. • Finer fibers showed a shaving effect that affected its capacity to absorb water. • A more undulating cell wall was visualized after the hydration

  4. Insights into methane hydrate formation, agglomeration, and dissociation in water + diesel oil dispersed system

    International Nuclear Information System (INIS)

    Highlights: • Hydrate agglomeration occurs at initial hydrate formation or under shutting down stages. • The agglomeration of hydrate is inhibited and dispersed with the action of anti-agglomerants. • The appearance of surface water may cause the agglomeration of hydrate during hydrate dissociation. • A mechanism was proposed to describe hydrate dissociation from water in oil dispersed system. - Abstract: Methane hydrate formation and dissociation in (5 vol% water + 95 vol% diesel oil) dispersed system containing a combined anti-agglomerant were experimentally studied using a high pressure autoclave installed with particle video microscope and focused beam reflectance measurement probes. The agglomeration of hydrate was found to occur at the initial hydrate formation stage. With the continuous formation of hydrate, the agglomeration of hydrate will be inhibited and hydrate was dispersed with the action of the anti-agglomerant. The agglomeration of hydrate also occurs when the hydrate containing fluid is under static state for a certain time. Larger hydrate particles attached by gas bubble with grape-like shape were found during hydrate dissociation. The dissociated surface water would contact with un-dissociated hydrate and accumulate to larger water/hydrate particles may be the reason that causes the agglomeration during initial hydrate dissociation process. A mechanism was proposed to describe hydrate dissociation from water in oil dispersed system

  5. Arguments for a Comprehensive Laboratory Research Subprogram on Hydrocarbon Gas Hydrates and Hydrate-Sediment Aggregates in the 2005-2010 DOE Methane Hydrate R & D Program

    Science.gov (United States)

    Kirby, S. H.

    2005-12-01

    Field observations of natural hydrocarbon clathrate hydrates, including responses to drilling perturbations of hydrates, well logging and analysis of drill core, and field geophysics are, combined with theoretical modeling, justifiably key activities of the authorized 2005-2010 DOE Methane Hydrate Program. It is argued in this presentation that sustained fundamental laboratory research amplifies, extends and verifies results obtained from field and modeling investigations and does so in a cost-effective way. Recent developments of hydrocarbon clathrate hydrate and sediment aggregate synthesis methods, applications of in-situ optical cell, Raman, NMR, x-ray tomography and neutron diffraction techniques, and cryogenic x-ray and SEM methods re-enforce the importance of such lab investigations. Moreover, there are large data gaps for hydrocarbon-hydrate and hydrate-sediment-aggregate properties. We give three examples: 1) All natural hydrocarbon hydrates in sediment core have been altered to varying degrees by their transit, storage, depressurization, and subsequent lab investigations, as are well-log observations during drilling operations. Interpretation of drill core properties and structure and well logs are also typically not unique. Emulations of the pressure-temperature-deformation-time histories of synthetic samples offer a productive way of gaining insight into how natural samples and logging measurements may be compositionally and texturally altered during sampling and handling. 2) Rock physics models indicate that the effects of hydrates on sediment properties depend on the manner in which hydrates articulate with the sediment matrix (their conformation). Most of these models have not been verified by direct testing using hydrocarbon hydrates with conformation checked by optical cell observations or cryogenic SEM. Such tests are needed and technically feasible. 3) Modeling the effects of exchanges of heat, multiphase fluid fluxes, and deformation involve

  6. Eucalyptus obliqua seedling growth in organic vs. mineral soil horizons.

    Science.gov (United States)

    Barry, Karen M; Janos, David P; Nichols, Scott; Bowman, David M J S

    2015-01-01

    Eucalyptus obliqua, the most widespread timber tree in Tasmania, is a pioneer after fire which can eliminate the organic layer of forest soil, exposing the underlying mineral soil. We compared seedling growth, mycorrhiza formation, and mineral nutrient limitation in organic layer vs. mineral soil. We grew E. obliqua seedlings separately in pots of organic layer and mineral soil in a glasshouse. Additional treatments of organic soil only, involved fully crossed methyl-bromide fumigation and fertilization. Fertilization comprised chelated iron for 121 days after transplant (DAT) followed by soluble phosphorus. At 357 DAT, whole plant dry weight was three times greater in ambient organic than in mineral soil. In organic soil, fumigation halved ectomycorrhiza abundance and reduced seedling growth at 149 DAT, but by 357 DAT when negative effects of fumigation on seedling growth had disappeared, neither fumigation nor fertilization affected mycorrhiza abundance. Iron fertilization diminished seedling growth, but subsequent phosphorus fertilization improved it. E. obliqua seedlings grow much better in organic layer soil than in mineral soil, although phosphorus remains limiting. The prevalent forestry practice of burning to mineral soil after timber harvest exposes a poor growth medium likely only partially compensated by fire-induced mineral soil alterations.

  7. Eucalyptus obliqua seedling growth in organic versus mineral soil horizons

    Directory of Open Access Journals (Sweden)

    Karen eBarry

    2015-02-01

    Full Text Available Eucalyptus obliqua, the most widespread timber tree in Tasmania, is a pioneer after fire which can eliminate the organic layer of forest soil, exposing the underlying mineral soil. We compared seedling growth, mycorrhiza formation, and mineral nutrient limitation in organic layer versus mineral soil. We grew E. obliqua seedlings separately in pots of organic layer and mineral soil in a glasshouse. Additional treatments of organic soil only, involved fully crossed methyl-bromide fumigation and fertilization. Fertilization comprised chelated iron for 121 days after transplant (DAT followed by soluble phosphorus. At 357 DAT, whole plant dry weight was three times greater in ambient organic than in mineral soil. In organic soil, fumigation halved ectomycorrhiza abundance and reduced seedling growth at 149 DAT, but by 357 DAT when negative effects of fumigation on seedling growth had disappeared, neither fumigation nor fertilization affected mycorrhiza abundance. Iron fertilization diminished seedling growth, but subsequent phosphorus fertilization improved it. E. obliqua seedlings grow much better in organic layer soil than in mineral soil, although phosphorus remains limiting. The prevalent forestry practice of burning to mineral soil after timber harvest exposes a poor growth medium likely only partially compensated by fire-induced mineral soil alterations.

  8. Hydration behaviour of synthetic saponite at variable relative humidity

    Indian Academy of Sciences (India)

    Karmous Mohamed Salah; Jean Louis Robert

    2011-10-01

    Hydration behaviour of synthetic saponite was examined by X-ray powder diffraction simulation at various relative humidities (RH). The basal spacing of the Ca-saponite increased stepwise with increase in RH. The (00) reflections observed reflect single or dual hydration states of smectite. Quasi-rational, intermediate, or asymmetrical reflections were observed for all XRD patterns and reflecting heterogeneity of the samples, especially along the transition between two hydration states.

  9. Comparative Hydration Behavior of Metakaolin-Microfine System

    OpenAIRE

    Sood, Vivek; Kumar, Ashok; Agarwal, S. K.

    2014-01-01

    In the present study comparative hydration behaviour of cement with metakaolin and-microfine (ultra fine slag) system has been investigated. Various properties like pozzolanic activity, compressive strength, heat of hydration, XRD of control, hydrated and blended metakaolin/microfine-cement compositions has been compared. With 5%, 7.5% and 10% replacement of cement by metakaolin and microfine, pozzolanic activity increases about 22%, 27%,13% for metakaolin and 23%,35%,20% for microfine compar...

  10. Influence of PC superplasticizers on tricalcium silicate hydration.

    OpenAIRE

    Pourchet, S.; Comparet, C.; Nicoleau, L.; Nonat, A.

    2007-01-01

    The influence of polycarboxylate superplasticizers with variations of content of anionic groups was studied on pure tricalcium silicate hydration. The hydration in diluted suspension has been investigated by conductimetry, calorimetry, and ionic and total organic carbon analysis of the liquid phase. The tricalcium silicate hydration is always delayed in presence of polycarboxylate superplasticizer. Moreover, the delay can be correlated with the number of carboxylate groups which are on the ad...

  11. New Methods for Gas Hydrate Energy and Climate Studies

    Science.gov (United States)

    Ruppel, C. D.; Pohlman, J.; Waite, W. F.; Hunt, A. G.; Stern, L. A.; Casso, M.

    2015-12-01

    Over the past few years, the USGS Gas Hydrates Project has focused on advancements designed to enhance both energy resource and climate-hydrate interaction studies. On the energy side, the USGS now manages the Pressure Core Characterization Tools (PCCTs), which includes the Instrumented Pressure Testing Chamber (IPTC) that we have long maintained. These tools, originally built at Georgia Tech, are being used to analyze hydrate-bearing sediments recovered in pressure cores during gas hydrate drilling programs (e.g., Nankai 2012; India 2015). The USGS is now modifying the PCCTs for use on high-hydrate-saturation and sand-rich sediments and hopes to catalyze third-party tool development (e.g., visualization). The IPTC is also being used for experiments on sediments hosting synthetic methane hydrate, and our scanning electron microscope has recently been enhanced with a new cryo-stage for imaging hydrates. To support climate-hydrate interaction studies, the USGS has been re-assessing the amount of methane hydrate in permafrost-associated settings at high northern latitudes and examined the links between methane carbon emissions and gas hydrate dissociation. One approach relies on the noble gas signature of methane emissions. Hydrate dissociation uniquely releases noble gases partitioned by molecular weight, providing a potential fingerprint for hydrate-sourced methane emissions. In addition, we have linked a DOC analyzer with an IRMS at Woods Hole Oceanographic Institution, allowing rapid and precise measurement of DOC and DIC concentrations and carbon isotopic signatures. The USGS has also refined methods to measure real-time sea-air flux of methane and CO2 using cavity ring-down spectroscopy measurements coupled with other data. Acquiring ~8000 km of data on the Western Arctic, US Atlantic, and Svalbard margins, we have tested the Arctic methane catastrophe hypothesis and the link between seafloor methane emissions and sea-air methane flux.

  12. Methane gas hydrate effect on sediment acoustic and strength properties

    Science.gov (United States)

    Winters, W.J.; Waite, W.F.; Mason, D.H.; Gilbert, L.Y.; Pecher, I.A.

    2007-01-01

    To improve our understanding of the interaction of methane gas hydrate with host sediment, we studied: (1) the effects of gas hydrate and ice on acoustic velocity in different sediment types, (2) effect of different hydrate formation mechanisms on measured acoustic properties (3) dependence of shear strength on pore space contents, and (4) pore pressure effects during undrained shear. A wide range in acoustic p-wave velocities (Vp) were measured in coarse-grained sediment for different pore space occupants. Vp ranged from less than 1 km/s for gas-charged sediment to 1.77–1.94 km/s for water-saturated sediment, 2.91–4.00 km/s for sediment with varying degrees of hydrate saturation, and 3.88–4.33 km/s for frozen sediment. Vp measured in fine-grained sediment containing gas hydrate was substantially lower (1.97 km/s). Acoustic models based on measured Vp indicate that hydrate which formed in high gas flux environments can cement coarse-grained sediment, whereas hydrate formed from methane dissolved in the pore fluid may not. The presence of gas hydrate and other solid pore-filling material, such as ice, increased the sediment shear strength. The magnitude of that increase is related to the amount of hydrate in the pore space and cementation characteristics between the hydrate and sediment grains. We have found, that for consolidation stresses associated with the upper several hundred meters of sub-bottom depth, pore pressures decreased during shear in coarse-grained sediment containing gas hydrate, whereas pore pressure in fine-grained sediment typically increased during shear. The presence of free gas in pore spaces damped pore pressure response during shear and reduced the strengthening effect of gas hydrate in sands.

  13. Natural Gas Hydrates - from the Microstructure towards a Geological Understanding

    OpenAIRE

    Klapp, Stephan A.

    2009-01-01

    The dissertation addresses mineralogical characteristics of natural gas hydrates from cold seeps in the Gulf of Mexico and the eastern Black Sea. The investigated properties are the crystal structure, the crystallite sizes and size distributions, the compositions of the hydrate-forming gases, the hydrate porosity as well as the grain boundary networks. That was accomplished using X-ray diffraction, gas chromatography, Raman-spectroscopy, and scanning electron microscopy. "Bragg tomography" wa...

  14. Effects of salinity on methane gas hydrate system

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Using an approximately analytical formation,we extend the steady state model of the pure methane hydrate system to include the salinity based on the dynamic model of the methane hydrate system.The top and bottom boundaries of the methane hydrate stability zone (MHSZ) and the actual methane hydrate zone (MHZ),and the top of free gas occurrence are determined by using numerical methods and the new steady state model developed in this paper.Numerical results show that the MHZ thickness becomes thinner with increasing the salinity,and the stability is lowered and the base of the MHSZ is shifted toward the seafloor in the presence of salts.As a result,the thickness of actual hydrate occurrence becomes thinner compared with that of the pure water case.On the other hand,since lower solubility reduces the amount of gas needed to form methane hydrate,the existence of salts in seawater can actually promote methane gas hydrate formation in the hydrate stability zone.Numerical modeling also demonstrates that for the salt-water case the presence of methane within the field of methane hydrate stability is not sufficient to ensure the occurrence of gas hydrate,which can only form when the methane concentration dissolved in solution with salts exceeds the local methane solubility in salt water and if the methane flux exceeds a critical value corresponding to the rate of diffusive methane transport.In order to maintain gas hydrate or to form methane gas hydrate in marine sediments,a persistent supplied methane probably from biogenic or thermogenic processes,is required to overcome losses due to diffusion and advection.

  15. Preventing Coal and Gas Outburst Using Methane Hydration

    Institute of Scientific and Technical Information of China (English)

    吴强; 何学秋

    2003-01-01

    According to the characteristics of the methane hydrate condensing and accumulating methane, authors put forward a new technique thought way to prevent the accident of coal and gas outburst by urging the methane in the coal seams to form hydrate. The paper analyzes the feasibility of forming the methane hydrate in the coal seam from the several sides, such as, temperature,pressure, and gas components, and the primary trial results indicate the problems should be settled before the industrialization appliance realized.

  16. Geomechanical Performance of Hydrate-Bearing Sediment in Offshore Environments

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Holditch; Tad Patzek; Jonny Rutqvist; George Moridis; Richard Plumb

    2008-03-31

    The objective of this multi-year, multi-institutional research project was to develop the knowledge base and quantitative predictive capability for the description of geomechanical performance of hydrate-bearing sediments (hereafter referred to as HBS) in oceanic environments. The focus was on the determination of the envelope of hydrate stability under conditions typical of those related to the construction and operation of offshore platforms. We have developed a robust numerical simulator of hydrate behavior in geologic media by coupling a reservoir model with a commercial geomechanical code. We also investigated the geomechanical behavior of oceanic HBS using pore-scale models (conceptual and mathematical) of fluid flow, stress analysis, and damage propagation. The objective of the UC Berkeley work was to develop a grain-scale model of hydrate-bearing sediments. Hydrate dissociation alters the strength of HBS. In particular, transformation of hydrate clusters into gas and liquid water weakens the skeleton and, simultaneously, reduces the effective stress by increasing the pore pressure. The large-scale objective of the study is evaluation of geomechanical stability of offshore oil and gas production infrastructure. At Lawrence Berkeley National Laboratory (LBNL), we have developed the numerical model TOUGH + Hydrate + FLAC3D to evaluate how the formation and disassociation of hydrates in seafloor sediments affects seafloor stability. Several technical papers were published using results from this model. LBNL also developed laboratory equipment and methods to produce realistic laboratory samples of sediments containing gas hydrates so that mechanical properties could be measured in the laboratory. These properties are required to run TOUGH + Hydrate + FLAC3D to evaluate seafloor stability issues. At Texas A&M University we performed a detailed literature review to determine what gas hydrate formation properties had been measured and reported in the literature. We

  17. Critical pressure and multiphase flow in Blake Ridge gas hydrates

    Science.gov (United States)

    Flemings, P.B.; Liu, Xiuying; Winters, W.J.

    2003-01-01

    We use core porosity, consolidation experiments, pressure core sampler data, and capillary pressure measurements to predict water pressures that are 70% of the lithostatic stress, and gas pressures that equal the lithostatic stress beneath the methane hydrate layer at Ocean Drilling Program Site 997, Blake Ridge, offshore North Carolina. A 29-m-thick interconnected free-gas column is trapped beneath the low-permeability hydrate layer. We propose that lithostatic gas pressure is dilating fractures and gas is migrating through the methane hydrate layer. Overpressured gas and water within methane hydrate reservoirs limit the amount of free gas trapped and may rapidly export methane to the seafloor.

  18. Micromechanical cohesion force measurements to determine cyclopentane hydrate interfacial properties.

    Science.gov (United States)

    Aman, Zachary M; Joshi, Sanjeev E; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2012-06-15

    Hydrate aggregation and deposition are critical factors in determining where and when hydrates may plug a deepwater flowline. We present the first direct measurement of structure II (cyclopentane) hydrate cohesive forces in the water, liquid hydrocarbon and gas bulk phases. For fully annealed hydrate particles, gas phase cohesive forces were approximately twice that obtained in a liquid hydrocarbon phase, and approximately six times that obtained in the water phase. Direct measurements show that hydrate cohesion force in a water-continuous bulk may be only the product of solid-solid cohesion. When excess water was present on the hydrate surface, gas phase cohesive forces increased by a factor of three, suggesting the importance of the liquid or quasi-liquid layer (QLL) in determining cohesive force. Hydrate-steel adhesion force measurements show that, when the steel surface is coated with hydrophobic wax, forces decrease up to 96%. As the micromechanical force technique is uniquely capable of measuring hydrate-surface forces with variable contact time, the present work contains significant implications for hydrate applications in flow assurance. PMID:22484169

  19. Hydrate control for WAG injection in the Ekofisk field

    Energy Technology Data Exchange (ETDEWEB)

    Lekvam, Knut; Surguchev, Leonid M.; Ekrann, Steinar; Svartaas, Thor Martin; Kelland, Malcolm; Nilsson, Svante; Oevsthus, Jorun; Gjoevikli, Nils B.

    1997-12-31

    The report relates to a hydrate formation project for the Ekofisk field on the Norwegian continental shelf. To remove the possible hydrate formation problems during WAG (Water Alternating Gas) treatment, the following project was conducted to estimate roughly the distance from the injection well that hydrate formation can be prevented by whatever treatment is most appropriate. The first aim was to test experimentally whether selected kinetic hydrate inhibitors could be used, and in which concentrations and quantities. In addition evaluations were done to calculate the required volume of the inhibitor solutions that have to be injected to prevent mixing of uninhibited water and gas. 8 figs., 8 tabs.

  20. Formation of hydrate plug within rectangular natural gas passage

    Energy Technology Data Exchange (ETDEWEB)

    Seong, K.; Song, M.H.; Ahn, J.H.; Yoo, K.S. [Dong Guk Univ., Joong-ku, Seoul (Korea, Republic of)

    2008-07-01

    Oil and gas reservoirs in off-shore shallow areas are being depleted. At the same time, the industry is expanding its production sites into deeper waters resulting in higher pressure and lower temperature and more isolated locations. In response, connecting pipelines have been extended, but because of these pressure, temperature and distance changes in pipelines, a more favorable condition for hydrate formation is created, making the problem of flow assurance more critical for safe and economic operations at deep off-shore oil and gas production sites. Another challenge in flow assurance lies in hydrate formation and potential blockage due to hydrate plugs in gas pipelines, where no free water phase is present. This paper presented an experimental study that examined the formation and the growth of hydrates from a gas mixture of methane and propane with different moisture concentrations. The hydrates were formed in a rectangular passage cooled to temperatures below equilibrium hydrate formation temperature. The paper described the experimental procedure and apparatus that was designed and fabricated for the study. A schematic layout of the hydrate formation and plug test experimental apparatus was illustrated. The paper also described the results of two sets of experiments that were conducted. It was concluded that with enough moisture content, hydrates formed without a fresh water phase under equilibrium conditions. It was also concluded that the results of the study could be used in verifying numerical models developed to predict hydrate plugging of natural gas pipelines. 4 refs., 6 figs.

  1. Ethylene Separation via Hydrate Formation in W/O Emulsions

    Directory of Open Access Journals (Sweden)

    Yong Pan

    2015-05-01

    Full Text Available An hybrid absorption-hydration method was adopted to recover C2H4 from C2H4/CH4 binary gas mixtures and the hydrate formation conditions of C2H4/CH4 mixtures was studied experimentally in diesel in water (w/o emulsions. Span 20 at a concentration of 1.0 wt% in the aqueous phase was added to form water in diesel emulsions before hydrate formation and then hydrate in diesel slurry was separated after hydrate formation. The influences of initial gas-liquid volume ratio (53–142, pressure (3.4–5.4 MPa, temperature (274.15–278.15 K, water cuts (10–30 vol%, and the mole fraction of C2H4 in feed gas (13.19–80.44 mol% upon the C2H4 separation efficiency were systematically investigated. The experimental results show that ethylene can be enriched in hydrate slurry phase with high separation factor (S and recovery ratio (R. Most hydrate formation finished in 20 min, after that, the hydrate formation rate became very slow. The conclusion is useful for determining the suitable operation conditions when adopting an absorption-hydration method to separate C2H4/CH4.

  2. Research on Hydration of Steel Slag Cement Activated with Waterglass

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper studied the hydration and strength influence factors of Steel Slag Cement (SSC),such as the quantity of steel slag and slag and the dosage of additive.The results show that:(a) In the process of hydration of SSC,steel slag and slag activate each other;(b) Waterglass's structure forms the preliminary skeleton of SSC,and the hydration products of SSC link or fill in the skeleton;(c) Sodium in waterglass is the catalytic and its concentration does not change in the process of hydration.(d) Structure of activation is a significant factor to the property of SSC.

  3. Kinetics of hydrate formation using gas bubble suspended in water

    Institute of Scientific and Technical Information of China (English)

    马昌峰; 陈光进; 郭天民

    2002-01-01

    An innovative experimental technique, which was devised to study the effects of temperature and pressure on the rate of hydrate formation at the surface of a gas bubble suspended in a stagnant water phase, was adapted in this work. Under such conditions, the hydrate-growth process is free from dynamic mass transfer factors. The rate of hydrate formation of methane and carbon dioxide has been systematically studied. The measured hydrate-growth data were correlated by using the molar Gibbs free energy as driving force. In the course of the experiments, some interesting surface phenomena were observed.

  4. Nuclear Well Log Properties of Natural Gas Hydrate Reservoirs

    Science.gov (United States)

    Burchwell, A.; Cook, A.

    2015-12-01

    Characterizing gas hydrate in a reservoir typically involves a full suite of geophysical well logs. The most common method involves using resistivity measurements to quantify the decrease in electrically conductive water when replaced with gas hydrate. Compressional velocity measurements are also used because the gas hydrate significantly strengthens the moduli of the sediment. At many gas hydrate sites, nuclear well logs, which include the photoelectric effect, formation sigma, carbon/oxygen ratio and neutron porosity, are also collected but often not used. In fact, the nuclear response of a gas hydrate reservoir is not known. In this research we will focus on the nuclear log response in gas hydrate reservoirs at the Mallik Field at the Mackenzie Delta, Northwest Territories, Canada, and the Gas Hydrate Joint Industry Project Leg 2 sites in the northern Gulf of Mexico. Nuclear logs may add increased robustness to the investigation into the properties of gas hydrates and some types of logs may offer an opportunity to distinguish between gas hydrate and permafrost. For example, a true formation sigma log measures the thermal neutron capture cross section of a formation and pore constituents; it is especially sensitive to hydrogen and chlorine in the pore space. Chlorine has a high absorption potential, and is used to determine the amount of saline water within pore spaces. Gas hydrate offers a difference in elemental composition compared to water-saturated intervals. Thus, in permafrost areas, the carbon/oxygen ratio may vary between gas hydrate and permafrost, due to the increase of carbon in gas hydrate accumulations. At the Mallik site, we observe a hydrate-bearing sand (1085-1107 m) above a water-bearing sand (1107-1140 m), which was confirmed through core samples and mud gas analysis. We observe a decrease in the photoelectric absorption of ~0.5 barnes/e-, as well as an increase in the formation sigma readings of ~5 capture units in the water-bearing sand as

  5. Vitamins, Minerals, and Mood

    Science.gov (United States)

    Kaplan, Bonnie J.; Crawford, Susan G.; Field, Catherine J.; Simpson, J. Steven A.

    2007-01-01

    In this article, the authors explore the breadth and depth of published research linking dietary vitamins and minerals (micronutrients) to mood. Since the 1920s, there have been many studies on individual vitamins (especially B vitamins and Vitamins C, D, and E), minerals (calcium, chromium, iron, magnesium, zinc, and selenium), and vitamin-like…

  6. Luobusaite: A New Mineral

    Institute of Scientific and Technical Information of China (English)

    BAI Wenji; SHI Nicheng; FANG Qingsong; LI Guowu; XIONG Ming; YANG Jingsui; RONG He

    2006-01-01

    A group of mantle minerals including about 70-80 subtypes of minerals are discovered from a podiform chromitite in Tibet, China. Recovered minerals include diamond, coesite, moissanite,wustite, Fe-silides and a new mineral, luobusaite. All of these minerals were hand-picked from heavy-mineral separates of the podiform chromitite in the mantle peridotite of an ophiolite. The grains of luobusaite are as host mineral with inclusions of native silicon or as an intergrowth with native silicon and Fe-Si phase. Luobusaite occurs as irregular grains, with 0.1-0.2 mm in size, consisting of very finegrained aggregates. The mineral is steel-grey in color, metallic luster, and opaque. The empirical formula (based on 2 for Si) is Fe0.83Si2, according to the chemical compositions of luobusaite. X-ray powder-diffraction data: orthorhombic system, space group Cmca, a = 9.874 (14) (A), b = 7.784 (5) (A), c=7.829(7) (A), Z=16.

  7. Lithium mineral waters

    Directory of Open Access Journals (Sweden)

    Munteanu Constantin

    2011-02-01

    Full Text Available Hydrological surveys showed that Romania basement contains a variety of balneary resources located within on the surface crust. Mineral waters are spread over more than 20% of the country at different depths, with a wide range of physical, chemical and therapeutic properties depending on their genesis.Balneary resources are represented mainly by therapeutic minerals that the physicochemical properties answer the needs of medical and prophylactic maintenance, enhancement and restoration of health, work capacity and physical and mental comfort of the individual.The surface waters arising from a natural source or updated by drilling and whose physical and chemical characteristics that may exert dynamic pharmaco-therapeutic are considered therapeutic mineral waters. Mineral waters are waters that have a variable content of salts, gas, minerals, radioactive elements, which gives them therapeutic properties. In the past, name of mineral water was attributed to all shallow or groundwater mineral water that could be used for therapeutic purposes. In recent years, mineral water that could be used for therapeutic purposes have been given the name of curative water.Lithium arouses a great scientific interest because, although his structure is so simple, easy to analyze, with chemical and physical properties well established the myriad of the effects on biological systems by influencing many cellular processes and molecular and the mechanism of action are still unclear generates a mystery that modern science attempting to decipher.

  8. Mineral commodity summaries 2016

    Science.gov (United States)

    Ober, Joyce A.

    2016-01-01

    This report is the earliest Government publication to furnish estimates covering 2015 nonfuel mineral industry data. Data sheets contain information on the domestic industry structure, Government programs, tariffs, and 5-year salient statistics for more than 90 individual minerals and materials

  9. Mineral Commodity Summaries 2007

    Science.gov (United States)

    U.S. Geological Survey

    2007-01-01

    Published on an annual basis, this report is the earliest Government publication to furnish estimates covering nonfuel mineral industry data. Data sheets contain information on the domestic industry structure, Government programs, tariffs, and 5-year salient statistics for over 90 individual minerals and materials.

  10. Surface miner MTS 1250

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, D. [MAN TAKRAF Foerdertechnik GmbH, Leipzig (Germany). Mining and Machinery Planning dept.

    1999-10-01

    The German manufacturer MAN TAKRAF Foerdertechnik GmbH has developed a new series of surface miners with capacities ranging between 500-2000 bm{sup 3}/h. The Surface Miner MTS 1250, launched at MINETIME '99, is described in this article. 1 tab., 1 photo.

  11. Interactions of Polycyclic Aromatic Hydrocarbons with Mineral Surfaces

    OpenAIRE

    Bryant, Yazmina Mercedes

    2011-01-01

    The toxicity and ubiquitousness of PAHs within different terrestrial environments has been an increasing cause for concern amongst environmental scientists in the last decades, in particular regarding their transport within the soil. In an attempt to understand the role of pure inorganic phases in PAH-mobility; experiments exposing mineral soil components with low organic matter content to a PAH-representative were carried out. The systems consisted of four different mineral phases (quartz sa...

  12. The 1.7- to 4.2-micron spectrum of asteroid 1 Ceres - Evidence for structural water in clay minerals

    Science.gov (United States)

    Lebofsky, L. A.; Feierberg, M. A.; Larson, H. P.; Johnson, J. R.; Tokunaga, A. T.

    1981-01-01

    A high-resolution Fourier spectrum (1.7-3.5 microns) and medium-resolution spectrophotometry (2.7-4.2 microns) were obtained for Asteroid 1 Ceres. The presence of the 3-micron absorption feature due to water of hydration was confirmed. The 3-micron feature is compared with the 3-micron bands due to water of hydration in clays and salts. It is concluded that the spectrum of Ceres shows a strong absorption at 2.7-2.8 microns due to structural OH groups in clay minerals. The dominant minerals on the surface of Ceres are therefore hydrated clay minerals structurally similar to terrestrial montmorillonites. There is also a narrow absorption feature at 3.1 microns which is attributable to a very small amount of water ice on Ceres. This is the first evidence for ice on the surface of an asteroid.

  13. Underground mineral extraction

    Science.gov (United States)

    Miller, C. G.; Stephens, J. B.

    1980-01-01

    A method was developed for extracting underground minerals such as coal, which avoids the need for sending personnel underground and which enables the mining of steeply pitched seams of the mineral. The method includes the use of a narrow vehicle which moves underground along the mineral seam and which is connected by pipes or hoses to water pumps at the surface of the Earth. The vehicle hydraulically drills pilot holes during its entrances into the seam, and then directs sideward jets at the seam during its withdrawal from each pilot hole to comminute the mineral surrounding the pilot hole and combine it with water into a slurry, so that the slurried mineral can flow to a location where a pump raises the slurry to the surface.

  14. Applications for special-purpose minerals at a lunar base

    Science.gov (United States)

    Ming, Douglas W.

    1992-01-01

    Maintaining a colony on the Moon will require the use of lunar resources to reduce the number of launches necessary to transport goods from the Earth. It may be possible to alter lunar materials to produce minerals or other materials that can be used for applications in life support systems at a lunar base. For example, mild hydrothermal alteration of lunar basaltic glasses can produce special-purpose minerals (e.g., zeolites, smectites, and tobermorites) that in turn may be used in life support, construction, waste renovation, and chemical processes. Zeolites, smectites, and tobermorites have a number of potential applications at a lunar base. Zeolites are hydrated aluminosilicates of alkali and alkaline earth cations that possess infinite, three-dimensional crystal structures. They are further characterized by an ability to hydrate and dehydrate reversibly and to exchange some of their constituent cations, both without major change of structure. Based on their unique absorption, cation exchange, molecular sieving, and catalytic properties, zeolites may be used as a solid support medium for the growth of plants, as an adsorption medium for separation of various gases (e.g., N2 from O2), as catalysts, as molecular sieves, and as a cation exchanger in sewage-effluent treatment, in radioactive waste disposal, and in pollution control. Smectites are crystalline, hydrated 2:1 layered aluminosilicates that also have the ability to exchange some of their constituent cations. Like zeolites, smectites may be used as an adsorption medium for waste renovation, as adsorption sites for important essential plant growth cations in solid support plant growth mediums (i.e., 'soils'), as cation exchangers, and in other important application. Tobermorites are cystalline, hydrated single-chained layered silicates that have cation-exchange and selectivity properties between those of smectites and most zeolites. Tobermorites may be used as a cement in building lunar base structures, as

  15. Life Origination Hydrate Hypothesis (LOH-Hypothesis

    Directory of Open Access Journals (Sweden)

    Victor Ostrovskii

    2012-01-01

    Full Text Available The paper develops the Life Origination Hydrate Hypothesis (LOH-hypothesis, according to which living-matter simplest elements (LMSEs, which are N-bases, riboses, nucleosides, nucleotides, DNA- and RNA-like molecules, amino-acids, and proto-cells repeatedly originated on the basis of thermodynamically controlled, natural, and inevitable processes governed by universal physical and chemical laws from CH4, niters, and phosphates under the Earth's surface or seabed within the crystal cavities of the honeycomb methane-hydrate structure at low temperatures; the chemical processes passed slowly through all successive chemical steps in the direction that is determined by a gradual decrease in the Gibbs free energy of reacting systems. The hypothesis formulation method is based on the thermodynamic directedness of natural movement and consists ofan attempt to mentally backtrack on the progression of nature and thus reveal principal milestones alongits route. The changes in Gibbs free energy are estimated for different steps of the living-matter origination process; special attention is paid to the processes of proto-cell formation. Just the occurrence of the gas-hydrate periodic honeycomb matrix filled with LMSEs almost completely in its final state accounts for size limitation in the DNA functional groups and the nonrandom location of N-bases in the DNA chains. The slowness of the low-temperature chemical transformations and their “thermodynamic front” guide the gross process of living matter origination and its successive steps. It is shown that the hypothesis is thermodynamically justified and testable and that many observed natural phenomena count in its favor.

  16. Electrical properties of methane hydrate + sediment mixtures: The σ of CH4 Hydrate + Sediment

    Energy Technology Data Exchange (ETDEWEB)

    Du Frane, Wyatt L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stern, Laura A. [U. S. Geological Survey, Menlo Park, CA (United States); Constable, Steven [Scripps Institution of Oceanography, La Jolla, CA (United States); Weitemeyer, Karen A. [Scripps Institution of Oceanography, La Jolla, CA (United States); National Oceanography Centre Southampton (United Kingdom), Univ. of Southampton Waterfront Campus, Southampton (United Kingdom); Smith, Megan M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Roberts, Jeffery J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-30

    Knowledge of the electrical properties of multicomponent systems with gas hydrate, sediments, and pore water is needed to help relate electromagnetic (EM) measurements to specific gas hydrate concentration and distribution patterns in nature. We built a pressure cell capable of measuring in situ electrical properties of multicomponent systems such that the effects of individual components and mixing relations can be assessed. We first established the temperature-dependent electrical conductivity (σ) of pure, single-phase methane hydrate to be ~5 orders of magnitude lower than seawater, a substantial contrast that can help differentiate hydrate deposits from significantly more conductive water-saturated sediments in EM field surveys. We report σ measurements of two-component systems in which methane hydrate is mixed with variable amounts of quartz sand or glass beads. Sand by itself has low σ but is found to increase the overall σ of mixtures with well-connected methane hydrate. Alternatively, the overall σ decreases when sand concentrations are high enough to cause gas hydrate to be poorly connected, indicating that hydrate grains provide the primary conduction path. Our measurements suggest that impurities from sand induce chemical interactions and/or doping effects that result in higher electrical conductivity with lower temperature dependence. Finally, these results can be used in the modeling of massive or two-phase gas-hydrate-bearing systems devoid of conductive pore water. Further experiments that include a free water phase are the necessary next steps toward developing complex models relevant to most natural systems.

  17. Are seafloor pockmarks on the Chatham Rise, New Zealand, linked to CO2 hydrates? Gas hydrate stability considerations.

    Science.gov (United States)

    Pecher, I. A.; Davy, B. W.; Rose, P. S.; Coffin, R. B.

    2015-12-01

    Vast areas of the Chatham Rise east of New Zealand are covered by seafloor pockmarks. Pockmark occurrence appears to be bathymetrically controlled with a band of smaller pockmarks covering areas between 500 and 700 m and large seafloor depressions beneath 800 m water depth. The current depth of the top of methane gas hydrate stability in the ocean is about 500 m and thus, we had proposed that pockmark formation may be linked to methane gas hydrate dissociation during sealevel lowering. However, while seismic profiles show strong indications of fluid flow, geochemical analyses of piston cores do not show any evidence for current or past methane flux. The discovery of Dawsonite, indicative of significant CO2 flux, in a recent petroleum exploration well, together with other circumstantial evidence, has led us to propose that instead of methane hydrate, CO2 hydrate may be linked to pockmark formation. We here present results from CO2 hydrate stability calculations. Assuming water temperature profiles remain unchanged, we predict the upper limit of pockmark occurrence to coincide with the top of CO2 gas hydrate stability during glacial-stage sealevel lowstands. CO2 hydrates may therefore have dissociated during sealevel lowering leading to gas escape and pockmark formation. In contrast to our previous model linking methane hydrate dissociation to pockmark formation, gas hydrates would dissociate beneath a shallow base of CO2 hydrate stability, rather than on the seafloor following upward "grazing" of the top of methane hydrate stability. Intriguingly, at the water depths of the larger seafloor depressions, the base of gas hydrate stability delineates the phase boundary between CO2 hydrates and super-saturated CO2. We caution that because of the high solubility of CO2, dissociation from hydrate to free gas or super-saturated CO2 would imply high concentrations of CO2 and speculate that pockmark formation may be linked to CO2 hydrate dissolution rather than dissociation

  18. Calcium bromide hydration for heat storage systems

    OpenAIRE

    Ai Niwa; Noriyuki Kobayashi

    2015-01-01

    A chemical reaction is a common and simple way to produce heat for a heat storage system. The reaction produces heat energy without the use of electricity or fuel. The goal of this study was to develop a heat storage system for use in automobiles, which is able to provide heat rapidly via a hydration reaction. A heat storage system without an evaporator stores high-density heat and has a high heat output rate since the solid–liquid product that is formed is transferred as a heat medium to the...

  19. [Terminal phase hydration, pain and delirium

    DEFF Research Database (Denmark)

    Heick, A.

    2009-01-01

    Hydration of the terminal patient may relieve confusion and complaints of "dry mouth". But it may worsen oedema of the brain, lungs, and extremities, worsen terminal rattling and cause a need for frequent changing of diapers. The decision of whether and how to treat a dying patient with fluids sh...... should therefore be an integral part of the terminal treatment plan. Such plans should be discussed with the patient and the relatives, and it will very likely need to be revised as the condition worsens Udgivelsesdato: 2009/9/14...

  20. Dynamics of Hydration Water around Native and Misfolded α-Lactalbumin.

    Science.gov (United States)

    Brotzakis, Z F; Groot, C C M; Brandeburgo, W H; Bakker, H J; Bolhuis, P G

    2016-06-01

    As water is an essential ingredient in protein structure, dynamics, and functioning, knowledge of its behavior near proteins is crucial. We investigate water dynamics around bovine α-lactalbumin by combining molecular dynamics simulations with polarization-resolved femtosecond infrared (fs-IR) spectroscopy. We identify slowly reorienting surface waters and establish their hydrogen-bond lifetime and reorientation dynamics, which we compare to the experimentally measured anisotropy decay. The calculated number of slow surface waters is in reasonable agreement with the results of fs-IR experiments. While surface waters form fewer hydrogen bonds than the bulk, within the hydration layer water is slower when donating more hydrogen bonds. At concave sites the protein-water hydrogen bonds break preferably via translational diffusion rather than via a hydrogen-bond jump mechanism. Water molecules reorient slower near these sites than at convex water-exposed sites. Protein misfolding leads to an increased exposure of hydrophobic groups, inducing relatively faster surface water dynamics. Nevertheless, the larger exposed surface slows down a larger amount of water. While for native proteins hydrating water is slower near hydrophobic than near hydrophilic residues, mainly due to stronger confinement, misfolding causes hydrophobic water to reorient relatively faster because exposure of hydrophobic groups destroys concave protein cavities with a large excluded volume. PMID:27137845

  1. Investigating the Metastability of Clathrate Hydrates for Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Carolyn Ann [Colorado School of Mines

    2014-11-18

    Important breakthrough discoveries have been achieved from the DOE award on the key processes controlling the synthesis and structure-property relations of clathrate hydrates, which are critical to the development of clathrate hydrates as energy storage materials. Key achievements include: (i) the discovery of key clathrate hydrate building blocks (stable and metastable) leading to clathrate hydrate nucleation and growth; (ii) development of a rapid clathrate hydrate synthesis route via a seeding mechanism; (iii) synthesis-structure relations of H2 + CH4/CO2 binary hydrates to control thermodynamic requirements for energy storage and sequestration applications; (iv) discovery of a new metastable phase present during clathrate hydrate structural transitions. The success of our research to-date is demonstrated by the significant papers we have published in high impact journals, including Science, Angewandte Chemie, J. Am. Chem. Soc. Intellectual Merits of Project Accomplishments: The intellectual merits of the project accomplishments are significant and transformative, in which the fundamental coupled computational and experimental program has provided new and critical understanding on the key processes controlling the nucleation, growth, and thermodynamics of clathrate hydrates containing hydrogen, methane, carbon dioxide, and other guest molecules for energy storage. Key examples of the intellectual merits of the accomplishments include: the first discovery of the nucleation pathways and dominant stable and metastable structures leading to clathrate hydrate formation; the discovery and experimental confirmation of new metastable clathrate hydrate structures; the development of new synthesis methods for controlling clathrate hydrate formation and enclathration of molecular hydrogen. Broader Impacts of Project Accomplishments: The molecular investigations performed in this project on the synthesis (nucleation & growth)-structure-stability relations of clathrate

  2. The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, J.M. [Departamento de Física Aplicada, Universitat Politècnica de València, Camino de Vera, 46022, Valencia (Spain); Fita, I.C., E-mail: infifer@fis.upv.es [Departamento de Física Aplicada, Universitat Politècnica de València, Camino de Vera, 46022, Valencia (Spain); Soriano, L.; Payá, J.; Borrachero, M.V. [ICITECH, Instituto de Ciencia y Tecnología del Hormigón, Universitat Politècnica de València (Spain)

    2013-08-15

    In this paper, mortars and pastes containing large replacement of pozzolan were studied by mechanical strength, thermogravimetric analysis (TGA), scanning electronic microscopy (SEM), mercury intrusion porosimetry (MIP) and electrical impedance spectroscopy (EIS). The effect of metakaolin (35%) and fly ash (60%) was evaluated and compared with an inert mineral addition (andalusite). The portlandite content was measured, finding that the pozzolanic reaction produced cementing systems with all portlandite fixed. The EIS measurements were analyzed by the equivalent electrical circuit (EEC) method. An EEC with three branches in parallel was applied. The dc resistance was related to the degree of hydration and allowed us to characterize plain and blended mortars. A constant phase element (CPE) quantified the electrical properties of the hydration products located in the solid–solution interface and was useful to distinguish the role of inert and pozzolanic admixtures present in the cement matrix.

  3. Physicochemical and structural studies of clathrate hydrates of tetrabutylammonium polyacrylates.

    Science.gov (United States)

    Terekhova, Irina S; Manakov, Andrey Yu; Komarov, Vladislav Yu; Villevald, Galina V; Burdin, Alexander A; Karpova, Tamara D; Aladko, Eugeny Ya

    2013-03-01

    In this work, physicochemical and structural studies have been carried out for semiclathrate hydrates of linear (un-cross-linked) and cross-linked tetrabutylammonium polyacrylates with different degrees of cross-linking of the polymeric guest molecules (n = 0.5, 1, 2, 3%) and different degrees of substitution of proton ions of carboxylic groups in poly(acrylic acid) for TBA cations (x = 1, 0.8, 0.6). The changes in the hydrates' stability and composition depending on the outlined parameters were examined in the course of phase diagram studies of the binary systems water-tetrabutylammonium polyacrylates using differential thermal analysis method and calorimetric measurements of fusion enthalpies of the hydrates. Phase diagram studies of the binary system water-linear tetrabutylammonium polyacrylate revealed the formation of four hydrates. Based on the data of chemical analysis of hydrate crystals the compositions of all hydrates have been determined. Single-crystal X-ray diffraction studies revealed a tetragonal structure, space group 4/m, and unit cell parameters are close for different hydrates and lie in the ranges a = 23.4289-23.4713 Å and c = 12.3280-12.3651 Å (150 K). The structure can be related to tetragonal structure I typical for the clathrate hydrates of tetraalkylammonium salts with monomeric anions. Powder X-ray diffraction analyses confirmed the identity of the above crystal structure to that of the hydrates with cross-linked tetrabutylammonium polyacrylates. The behavior of TBA polyacrylate hydrates under the pressure of methane was studied and quantitative assessment of the gas content in the hydrates was made using volumetric analysis method. PMID:23383955

  4. Numerical investigations of the fluid flows at deep oceanic and arctic permafrost-associated gas hydrate deposits

    Science.gov (United States)

    Frederick, Jennifer Mary

    older than the host sediment. Old pore fluid age may reflect complex flow patterns, such a fluid focusing, which can cause significant lateral migration as well as regions where downward flow reverses direction and returns toward the seafloor. Longer pathlines can produce pore fluid ages much older than that expected with a one-dimensional compaction model. For steady-state models with geometry representative of Blake Ridge (USA), a well-studied hydrate province, pore fluid ages beneath regions of topography and within fractured zones can be up to 70 Ma old. Results suggest that the measurements of 129-I/127-I reflect a mixture of new and old pore fluid. However, old pore fluid need not originate at great depths. Methane within pore fluids can travel laterally several kilometers, implying an extensive source region around the deposit. Iodine age measurements support the existence of fluid focusing beneath regions of seafloor topography at Blake Ridge, and suggest that the methane source at Blake Ridge is likely shallow. The response of methane hydrate reservoirs to warming is poorly understood. The great depths may protect deep oceanic hydrates from climate change for the time being because transfer of heat by conduction is slow, but warming will eventually be felt albeit in the far future. On the other hand, unique permafrost-associated methane hydrate deposits exist at shallow depths within the sediments of the circum-Arctic continental shelves. Arctic hydrates are thought to be a relict of cold glacial periods, aggrading when sea levels are much lower and shelf sediments are exposed to freezing air temperatures. During interglacial periods, rising sea levels flood the shelf, bringing dramatic warming to the permafrost- and hydrate-bearing sediments. Permafrost-associated methane hydrate deposits have been responding to warming since the last glacial maximum ~18 kaBP as a consequence of these natural glacial cycles. This `experiment,' set into motion by nature itself

  5. Multifractal Modelling of Mineralization

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@Mineralization refers to the physical process, which enhances the concentration of certain elements in rocks. The end products of the mineralization include both ore bodies which provide economically useable reservoir at the current industrial standard and altered rocks with elevated element concentration values below the minimum requirement for the current mining standard. The latter may be considered as resources potentially useful in the future. From this point of view, the mineral deposits are defined to be only an economic part of the total resources (a useable reservoir).

  6. Mineral resources of Antarctica

    Science.gov (United States)

    Compiled and edited by Wright, Nancy A.; Williams, Paul L.

    1974-01-01

    Although the existence of mineral deposits in Antarctica is highly probable, the chances of finding them are quite small. Minerals have been found there in great variety but only as occurrences. Manganese nodules, water (as ice), geothermal energy, coal, petroleum, and natural gas are potential resources that could perhaps be exploited in the future. On the basis of known mineral occurrences in Antarctica and relationships between geologic provinces of Antarctica and those of neighboring Gondwana continents, the best discovery probability for a base-metal deposit in any part of Antarctica is in the Andean orogen; it is estimated to be 0.075 (75 chances in 1,000).

  7. EXPOSE-R on Mission on the ISS

    Science.gov (United States)

    Panitz, Corinna; Rabbow, Elke; Rettberg, Petra; Barczyk, Simon; Kloss, Maria; Reitz, Guenther

    Currently EXPOSE-R is on mission! This astrobiological exposure facility was accommodated at the universal workplace URM-D Zenith payload site, located outside the Russian Svezda Module of the International Space Station (ISS) by extravehicular activity (EVA) on March 10th 2009. It contains 3 trays accommodating 12 sample compartments with sample carriers in three levels either open to space vacuum or kept in a defined gas environment. In its 8 experiments of biological and chemical content, more than 1200 individual samples are exposed to solar ultraviolet (UV) radiations, vacuum, cosmic rays or extreme temperature variations. In their different experiments the involved scientists are studying the question of life's origin on Earth and the results of their experiments are contributing to different aspects of the evolution and distribution of life in the Universe. Additionally integrated into the EXPOSE-R facility are several dosimeters monitoring the ionising and the solar UV-radiation during the mission to deliver useful information to complement the sample analysis. In close cooperation with the DLR and the Technical University Munich (TUM), the Rheinisch -Westfülische Technischen Hochschule Aachen (RWTH Aachen) operates the experiment "Spores". a This is one of the 6 astrobiological experiments of the ROSE-Consortium" (Response of Or-ganisms to Space Environment) of the EXPOSE-R mission. In these experiments spores of bacteria, fungi and ferns are being over layered or mixed with meteorite material. The analysis of the effect of the space parameters on different biological endpoints of the spores of the mi-croorganism Bacillus subtilis will be performed after the retrieval of the experiment scheduled for the end of 2010. Parallel to the space mission an identical set of samples was accommodated into EXPOSE-R trays identical in construction to perform the Mission Ground Reference (MGR) Test. Currently this MGR Test is carried out in the Planetary and Space

  8. Gas Hydrate Dissociation in the Ocean

    Science.gov (United States)

    Conroy, Devin; Smith, Stefan Llewellyn

    2006-11-01

    Methane gas is known to exist in extremely large quantities below the sea floor in the sediment of the deep and cold oceanic and in permafrost regions. Due to the large hydrostatic pressure and cool temperatures the gas reacts with the surrounding water to form a crystalline substance known as a gas hydrate. The fate of these reserves is very important to climate on earth because methane is a much more efficient greenhouse gas then carbon dioxide. The dissociation process in general can occur by either a decrease in pressure or an increase in temperature. In this study we concentrate on the latter. Once the hydrate dissociates, water and free gas remain above the phase boundary, occupying a larger volume than the original solid, and are be transported through the sediment. We have modeled this physical mechanism using volume averaged equations in a porous medium with a coupled two-phase flow. The movement of the phase boundary, which is proportional to the rate of heat transfer to this interface, is modeled as a Stefan type melting problem. The resultant governing equations are solved numerically, using a front fixing method to fix the phase boundary, to determine the rate of gas flux through the sediment and the dissociation rate.

  9. Reaction of disodium cromoglycate with hydrated electrons

    International Nuclear Information System (INIS)

    A possible mechanism by which disodium cromoglycate (DSCG) prevents a decrease in regional cerebral blood flow but not hypotension in primates following whole body gamma-irradiation was studied. Several studies have implicated superoxide radicals (O2-.) in intestinal and cerebral vascular disorders following ischemia and ionizing radiation, respectively. O2-. is formed during radiolysis in the reaction between hydrated electrons (e-aq) and dissolved oxygen. For this reason, the efficiency of DSCG to scavenge e-q and possibly prevent the formation of O2-. was studied. Hydrated electrons were produced by photolysis of potassium ferrocyanide solutions. The rate constant, k = 2.92 x 10(10) M-1s-1 for the reaction between e-aq and DSCG was determined in competition experiments using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). This spin trap reacts rapidly with e-aq followed by protonation to yield the ESR observable DMPO-H spin adduct. The results show that DSCG is an efficient e-aq scavenger and may effectively compete with oxygen for e-aq preventing the radiolytic formation of O2-

  10. Reaction of disodium cromoglycate with hydrated electrons

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, A.J.; Arroyo, C.M.; Cockerham, L.G.

    1988-01-01

    A possible mechanism by which disodium cromoglycate (DSCG) prevents a decrease in regional cerebral blood flow but not hypotension in primates following whole body gamma-irradiation was studied. Several studies have implicated superoxide radicals (O/sub 2//sup -/.) in intestinal and cerebral vascular disorders following ischemia and ionizing radiation, respectively. O/sub 2//sup -/. is formed during radiolysis in the reaction between hydrated electrons (e-aq) and dissolved oxygen. For this reason, the efficiency of DSCG to scavenge e-q and possibly prevent the formation of O/sub 2//sup -/. was studied. Hydrated electrons were produced by photolysis of potassium ferrocyanide solutions. The rate constant, k = 2.92 x 10(10) M-1s-1 for the reaction between e-aq and DSCG was determined in competition experiments using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). This spin trap reacts rapidly with e-aq followed by protonation to yield the ESR observable DMPO-H spin adduct. The results show that DSCG is an efficient e-aq scavenger and may effectively compete with oxygen for e-aq preventing the radiolytic formation of O/sub 2//sup -/..

  11. Calcium bromide hydration for heat storage systems

    Directory of Open Access Journals (Sweden)

    Ai Niwa

    2015-12-01

    Full Text Available A chemical reaction is a common and simple way to produce heat for a heat storage system. The reaction produces heat energy without the use of electricity or fuel. The goal of this study was to develop a heat storage system for use in automobiles, which is able to provide heat rapidly via a hydration reaction. A heat storage system without an evaporator stores high-density heat and has a high heat output rate since the solid–liquid product that is formed is transferred as a heat medium to the object that requires heat. The exothermic heat produced from the solid–liquid reaction was measured, and the relationship between the equivalence ratio and the reaction heat was evaluated. The heat output and heat recovered by the heat storage system, which comprised a reaction vessel and a heat exchanger, were measured. We selected solid CaBr2 because it was the best metal halide for a hydration reaction and had a high heat yield from the dissolution reaction. With this system, we were able to achieve a heat recovery rate of 582 kJ/L-H2O. We found no degradation in the chemical composition of CaBr2 after it being recycled 100 times.

  12. A unified approach for description of gas hydrate formation kinetics in the presence of kinetic promoters in gas hydrate converters

    International Nuclear Information System (INIS)

    Highlights: • A unified kinetic model for description of promoted and non-promoted gas hydrate formation processes is presented. • Effects of impeller speed, promoter concentration and different kinetic promoters are investigated. • A unique region of gas hydrate formation is identified regarding gas hydrate formation processes. • The proposed model is useful for understanding the behavior of gas hydrate formation processes and design of GTH converters. - Abstract: The kinetic promoters have found wide applications in enhancing the rate of energy conversion and storage via gas hydrate formation processes. Effects of different kinetic promoters such as anionic surfactants sodium dodecyl sulfate (SDS), dodecylbenzene sulfonic acid (DBSA), and sodium dodecyl benzene sulfonate (SDBS); cationic surfactants, Cetyl trimethyl ammonium bromide (CTAB), dodecyl trimethyl ammonium bromide (DTAB) and non-ionic surfactants, alkylpolyglucoside (APG), dodecyl polysaccharide glycoside (DPG), TritonX-100 (TX100) on methane (CH4), ethane (C2H6) and propane (C3H8) gas hydrate formation processes are investigated in this work. A macroscopic kinetic model based on the time variations of reaction chemical potential is also presented for global description of gas hydrate formation processes. Experimental gas hydrate formation data are employed to validate the proposed kinetic model. Effects of promoter’s concentrations and agitation intensities on the gas consumption profiles are also investigated. A universal correlation and a unified kinetic map have been proposed for macroscopic description of gas hydrate formation kinetics in the presence or absence of kinetic promoters. According to the presented unified kinetic map, a unique region of gas hydrate formation is identified for the first time. For negligible amounts of kinetic promoters, the presented region disappears and approaches to a unique path at high agitation intensities. The presented unified approach is very useful

  13. INFLUENCE OF CHEMICAL ADDITIVES ON GAS HYDRATE FORMATION

    Institute of Scientific and Technical Information of China (English)

    TANG Cuiping; FAN Shuanshi

    2003-01-01

    One surfactant as sodium dodecyl sulfate (SDS) and one synthesized sample as gas hydrate inhibitor are introduced in this paper. Through experiments we prove sodium dodecyl sulfate can accelerate the formation rate of gas hydrate and the synthesized sample can inhibit the formation and growth.

  14. Lactate Dehydrogenase Catalysis: Roles of Keto, Hydrated, and Enol Pyruvate

    Science.gov (United States)

    Meany, J. E.

    2007-01-01

    Many carbonyl substrates of oxidoreductase enzymes undergo hydration and enolization so that these substrate systems are partitioned between keto, hydrated (gem-diol), and enol forms in aqueous solution. Some oxidoreductase enzymes are subject to inhibition by high concentrations of substrate. For such enzymes, two questions arise pertaining to…

  15. Determination of the Formula of a Hydrate: A Greener Alternative

    Science.gov (United States)

    Klingshirn, Marc A.; Wyatt, Allison F.; Hanson, Robert M.; Spessard, Gary O.

    2008-01-01

    We are currently in the process of incorporating green chemistry throughout the chemistry curriculum. In this article we describe how we applied the principles of green chemistry in one of our first-semester general chemistry courses, specifically in relation to the determination of the formula of a hydrate. We utilize a copper hydrate salt that…

  16. Potential natural gas hydrates resources in Indian Offshore areas

    Digital Repository Service at National Institute of Oceanography (India)

    Sethi, A.K.; Sathe, A.V.; Ramana, M.V.

    (geophysical proxies of gas hydrates). A qualitative map prepared based on the inferred BSRs brought out a deepwater area of about 80,000 sq.km unto 3000 m isobath as favourable for gas hydrate occurrence. Methodology for reprocessing of seismic data...

  17. Utilization of Mineral Wools as Alkali-Activated Material Precursor

    Directory of Open Access Journals (Sweden)

    Juho Yliniemi

    2016-04-01

    Full Text Available Mineral wools are the most common insulation materials in buildings worldwide. However, mineral wool waste is often considered unrecyclable because of its fibrous nature and low density. In this paper, rock wool (RW and glass wool (GW were studied as alkali-activated material precursors without any additional co-binders. Both mineral wools were pulverized by a vibratory disc mill in order to remove the fibrous nature of the material. The pulverized mineral wools were then alkali-activated with a sodium aluminate solution. Compressive strengths of up to 30.0 MPa and 48.7 MPa were measured for RW and GW, respectively, with high flexural strengths measured for both (20.1 MPa for RW and 13.2 MPa for GW. The resulting alkali-activated matrix was a composite-type in which partly-dissolved fibers were dispersed. In addition to the amorphous material, sodium aluminate silicate hydroxide hydrate and magnesium aluminum hydroxide carbonate phases were identified in the alkali-activated RW samples. The only crystalline phase in the GW samples was sodium aluminum silicate. The results of this study show that mineral wool is a very promising raw material for alkali activation.

  18. Salinity-buffered methane hydrate formation and dissociation in gas-rich systems

    Science.gov (United States)

    You, Kehua; Kneafsey, Timothy J.; Flemings, Peter B.; Polito, Peter; Bryant, Steven L.

    2015-02-01

    Methane hydrate formation and dissociation are buffered by salinity in a closed system. During hydrate formation, salt excluded from hydrate increases salinity, drives the system to three-phase (gas, water, and hydrate phases) equilibrium, and limits further hydrate formation and dissociation. We developed a zero-dimensional local thermodynamic equilibrium-based model to explain this concept. We demonstrated this concept by forming and melting methane hydrate from a partially brine-saturated sand sample in a controlled laboratory experiment by holding pressure constant (6.94 MPa) and changing temperature stepwise. The modeled methane gas consumptions and hydrate saturations agreed well with the experimental measurements after hydrate nucleation. Hydrate dissociation occurred synchronously with temperature increase. The exception to this behavior is that substantial subcooling (6.4°C in this study) was observed for hydrate nucleation. X-ray computed tomography scanning images showed that core-scale hydrate distribution was heterogeneous. This implied core-scale water and salt transport induced by hydrate formation. Bulk resistivity increased sharply with initial hydrate formation and then decreased as the hydrate ripened. This study reproduced the salinity-buffered hydrate behavior interpreted for natural gas-rich hydrate systems by allowing methane gas to freely enter/leave the sample in response to volume changes associated with hydrate formation and dissociation. It provides insights into observations made at the core scale and log scale of salinity elevation to three-phase equilibrium in natural hydrate systems.

  19. Thermal Stability and Proton Conductivity of Rare Earth Orthophosphate Hydrates

    DEFF Research Database (Denmark)

    Anfimova, Tatiana; Li, Qingfeng; Jensen, Jens Oluf;

    2014-01-01

    as the rhabdophane structure is preserved. The bound hydrate water is accommodated in the rhabdophane structure and is stable at temperatures of up to 650 oC. The thermal stability of the hydrate water and the phosphate structure are of significance for the proton conductivity. The LaPO4·0.6H2O and NdPO4•0.5H2O......Hydrated orthophosphate powders of three rare earth metals, lanthanum, neodymium and gadolinium, were prepared and studied as potential proton conducting materials for intermediate temperature electrochemical applications. The phosphates undergo a transformation from the rhabdophane structure...... to the monazite structure upon dehydration. The thermal stability of the hydrate is studied and found to contain water of two types, physically adsorbed and structurally bound hydrate water. The adsorbed water is correlated to the specific surface area and can be reversibly recovered when dehydrated as long...

  20. Calorimetric Determination of Enthalpy of Formation of Natural Gas Hydrates

    Institute of Scientific and Technical Information of China (English)

    高军; KennethN.Marsh

    2003-01-01

    This paper reports the measurements of enthalpies of natural gas hydrates in typical natural gas mixture containing methane, ethane, propane and iso-butane at pressure in the vicinity of 2000 kPa (300 psi) and 6900 kPa(1000psi). The measurements were made in a multi-cell differential scanning calorimeter using modified high pressure cells. The enthalpy of water and the enthalpy of dissociation of the gas hydrate were determined from the calorimeter response during slow temperature scanning at constant pressure. The amount of gas released from the dissociation of hydrate was determined from the pumped volume of the high pressure pump. The occupation ratio (mole ratio) of the water to gas and the enthalpy of hydrate formation are subject to uncertainty of 1.5%.The results show that the enthalpy of hydrate formation and the occupation ratio are essentially independent of pressure.

  1. Volatile inventories in clathrate hydrates formed in the primordial nebula

    CERN Document Server

    Mousis, O; Picaud, S; Cordier, D

    2010-01-01

    Examination of ambient thermodynamic conditions suggest that clathrate hydrates could exist in the martian permafrost, on the surface and in the interior of Titan, as well as in other icy satellites. Clathrate hydrates probably formed in a significant fraction of planetesimals in the solar system. Thus, these crystalline solids may have been accreted in comets, in the forming giant planets and in their surrounding satellite systems. In this work, we use a statistical thermodynamic model to investigate the composition of clathrate hydrates that may have formed in the primordial nebula. In our approach, we consider the formation sequence of the different ices occurring during the cooling of the nebula, a reasonable idealization of the process by which volatiles are trapped in planetesimals. We then determine the fractional occupancies of guests in each clathrate hydrate formed at given temperature. The major ingredient of our model is the description of the guest-clathrate hydrate interaction by a spherically a...

  2. Methane hydrate formation and dissociation in synthetic seawater

    Institute of Scientific and Technical Information of China (English)

    Vikash Kumar Saw; Iqbal Ahmad; Ajay Mandal; G.Udayabhanu; Sukumar Laik

    2012-01-01

    The formation and dissociation of methane gas hydrate at an interface between synthetic seawater (SSW) and methane gas have been experimentally investigated in the present work.The amount of gas consumed during hydrate formation has been calculated using the real gas equation.Induction time for the formation of hydrate is found to depend on the degree of subcooling.All the experiments were conducted in quiescent system with initial cell pressure of 11.14 MPa.Salinity effects on the onset pressure and temperature of hydrate formation are also observed.The dissociation enthalpies of methane hydrate in synthetic seawater were determined by Clausius-Clapeyron equation based on the measured phase equilibrium data.The dissociation data have been analyzed by existing models and compared with the reported data.

  3. Theoretical description of biomolecular hydration - Application to A-DNA

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.E.; Hummer, G. [Los Alamos National Laboratory, NM (United States); Soumpasis, D.M. [Max Planck Inst. for Biophysical Chemistry, Goettingen (Germany)

    1994-12-31

    The local density of water molecules around a biomolecule is constructed from calculated two- and three-points correlation functions of polar solvents in water using a Potential-of-Mean-Force (PMF) expansion. As a simple approximation, the hydration of all polar (including charged) groups in a biomolecule is represented by the hydration of water oxygen in bulk water, and the effect of non-polar groups on hydration are neglected, except for excluded volume effects. Pair and triplet correlation functions are calculated by molecular dynamics simulations. We present calculations of the structural hydration for ideal A-DNA molecules with sequences [d(CG){sub 5}]{sub 2} and [d(C{sub 5}G{sub 5})]{sub 2}. We find that this method can accurately reproduce the hydration patterns of A-DNA observed in neutron diffraction experiments on oriented DNA fibers.

  4. Heat of Hydration of Low Activity Cementitious Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Nasol, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-23

    During the curing of secondary waste grout, the hydraulic materials in the dry mix react exothermally with the water in the secondary low-activity waste (LAW). The heat released, called the heat of hydration, can be measured using a TAM Air Isothermal Calorimeter. By holding temperature constant in the instrument, the heat of hydration during the curing process can be determined. This will provide information that can be used in the design of a waste solidification facility. At the Savannah River National Laboratory (SRNL), the heat of hydration and other physical properties are being collected on grout prepared using three simulants of liquid secondary waste generated at the Hanford Site. From this study it was found that both the simulant and dry mix each had an effect on the heat of hydration. It was also concluded that the higher the cement content in the dry materials mix, the greater the heat of hydration during the curing of grout.

  5. The Pore Structure and Hydration Performance of Sulphoaluminate MDF Cement

    Institute of Scientific and Technical Information of China (English)

    HUANG Cong-yun; YUAN Run-zhang; LONG Shi-zong

    2004-01-01

    The hydration and pore structure of sulphoaluminate MDF cement were studied by X-ray diffractometer ( XRD ), scanning electron microscope (SEM) and mercury intrusion porosimeter ( MIP ) etc. The ex-perimental results indicate that hydration products of the materials are entringites ( Aft ), aluminium hydroxide andCSH (Ⅰ) gel etc. Due to its very low water-cement ratio, hydration function is only confined to the surfaces of ce-ment grains, and there is a lot of sulphoaluminate cement in the hardenite which is unhydrated yet. Hydration re-action was rapidly carried under the condition of the heat-pressing. Therefore cement hydrates Aft, CSH (Ⅰ) andaluminium hydroxide gel fill in pores. The expansibility of Aft makes the porosity of MDF cement lower ( less than1 percent ) and the size of pore smaller (80 percent pore was less than 250A), and enhances its strength.

  6. Seismic-Scale Rock Physics of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Amos Nur

    2009-01-08

    We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

  7. Multivitamin/Mineral Supplements

    Science.gov (United States)

    ... Online DRI Tool Daily Value (DV) Tables Consumer Datos en español Health Professional Other Resources Multivitamin/mineral ... Vitamin K lowers the drug's effectiveness and doctors base the medicine dose partly on the amount of ...

  8. sequenceMiner algorithm

    Data.gov (United States)

    National Aeronautics and Space Administration — Detecting and describing anomalies in large repositories of discrete symbol sequences. sequenceMiner has been open-sourced! Download the file below to try it out....

  9. Mineral Commodity Summaries 2009

    Science.gov (United States)

    ,

    2009-01-01

    Each chapter of the 2009 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2008 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses. For mineral commodities for which there is a Government stockpile, detailed information concerning the stockpile status is included in the two-page synopsis. Because specific information concerning committed inventory was no longer available from the Defense Logistics Agency, National Defense Stockpile Center, that information, which was included in earlier Mineral Commodity Summaries publications, has been deleted from Mineral Commodity Summaries 2009. National reserves and reserve base information for most mineral commodities found in this report, including those for the United States, are derived from a variety of sources. The ideal source of such information would be comprehensive evaluations that apply the same criteria to deposits in different geographic areas and report the results by country. In the absence of such evaluations, national reserves and reserve base estimates compiled by countries for selected mineral commodities are a primary source of national reserves and reserve base information. Lacking national assessment information by governments, sources such as academic articles, company reports, common business practice, presentations by company representatives, and trade journal articles, or a combination of these, serve as the basis for national reserves and reserve base information reported in the mineral commodity sections of this publication. A national estimate may be assembled from the following: historically reported

  10. Law of radioactive minerals

    International Nuclear Information System (INIS)

    Legal device done in order to standardize and promote the exploration and explotation of radioactive minerals by peruvian and foreign investors. This device include the whole process, since the prospection until the development, after previous auction given by IPEN

  11. Coastal placer minerals

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Gujar, A.R.

    the minerals mandatory permissions from the various governmental and local bodies are needed to obtain a prospecting mining license. One of the simplest ways to recover the placer sand is by manual scooping but sophisticated machines are also used...

  12. Minerals in environmental technology

    Energy Technology Data Exchange (ETDEWEB)

    Schuiling, R.D. [Utrecht Univ., Utrecht (Netherlands). Faculty of Earth Sciences

    2000-07-01

    Minerals play a key role in the environment; this role is often not well understood, because the emphasis of most environmentalists is on air, water, or the composition of solid wastes as a whole, without paying attention to their mineralogical composition. Several minerals can serve as effective and cheap adsorbents for many toxic chemicals. Several minerals can be used as a cheap substitute for expensive chemicals in environmental technologies. Environmental technologies that produce an economically interesting mineral will have an edge over competing technologies. Most of the problems, overreaction, panicky and expensive measures with regard to exposure from quartz and asbestos stem from a poor understanding of natural levels of common contaminants, a disregard for mineralogy, and a lack of insight into natural processes in general.

  13. Fluorescent minerals, a review

    Science.gov (United States)

    Modreski, P.J.; Aumente-Modreski, R.

    1996-01-01

    Fluorescent minerals are more than just an attractive novelty, and collecting them is a speciality for thousands of individuals who appreciate their beauty, rarity, and scientific value. Fluorescent properties can be used as an aid to mineral identification, locality determination, and distinction between natural and synthetic gemstones. This article gives an overview of those aspects of fluorescence that are of most interest to collectors, hobbyists, and mineralogists. -from Authors

  14. Heavy mineral placers

    Digital Repository Service at National Institute of Oceanography (India)

    Gujar, A.R.

    , because of their high sp. gravity. Intrusive igneous rocks and metamorphic rocks are mostly the primary source for heavy placers (Table 3). Table 3. Important Placer Deposits of the world. Country Climatic zone Mineral Deposit Present Studies... minerals are of great value in studying 1. Provenance 2. Transport history of sediments 3. Weathering history of sediments and 4. In correlation and paleogeographic studies (Folk 1968). In addition to their use in solving academic and scientific...

  15. The role of natural gas hydrates in global changes

    International Nuclear Information System (INIS)

    The main features of gas hydrates which produce global changes are: structure and composition of hydrates, heat of the phase transition and of accumulation and decomposition (about 420 kJ kg-1), the change of the water specific volume (26-32%) under its transition to the hydrate state, and the electric impulse formation between the two phases during the phase transitions of systems. One volume of water contains 70-200 volumes of gas in hydrate state. Gas pressure in the crystal lattice of hydrate is hundreds, even thousands MPa. The hydrate formation zone is associated with frigid areas of Earth sedimentary rocks; on the land, near the polar regions, in the sea, at any latitude at depths >200-500 m. Methane hydrate resources make up about 104 Gt, 99% of them under the sea. The explored resources are 500 Gt. Hydrate methane is, undoubtedly, the energy potential of mankind for the next century, but the rates of the free methane outflow into the atmosphere and their influence on the global climate, ecology, geography, etc. need to be taken into account. The current amount of methane in the atmosphere is about 4.8 Gt. Thus, the average Earth surface temperature is increased by 1.3 K. The annual increase of methane in the atmosphere is 1%. Natural gas hydrates, their spreading and features may cause blowouts of free methane to the atmosphere, much greater than the current biochemical and technogenic sources. Methane may flow from the top and from the bottom of the layer as well under changing thermodynamic conditions, such as decreasing pressure, increase of the geothermal gradient, neotectonic shifts, changing of the hydrate deposits, electric potential. The free methane provides for an increase of CO2, H2O, O3 concentration. The heating effect of methane can be equal to or exceed that of CO2

  16. Reflective terahertz (THz) imaging: system calibration using hydration phantoms

    Science.gov (United States)

    Bajwa, Neha; Garritano, James; Lee, Yoon Kyung; Tewari, Priyamvada; Sung, Shijun; Maccabi, Ashkan; Nowroozi, Bryan; Babakhanian, Meghedi; Sanghvi, Sajan; Singh, Rahul; Grundfest, Warren; Taylor, Zachary

    2013-02-01

    Terahertz (THz) hydration sensing continues to gain traction in the medical imaging community due to its unparalleled sensitivity to tissue water content. Rapid and accurate detection of fluid shifts following induction of thermal skin burns as well as remote corneal hydration sensing have been previously demonstrated in vivo using reflective, pulsed THz imaging. The hydration contrast sensing capabilities of this technology were recently confirmed in a parallel 7 Tesla Magnetic Resonance (MR) imaging study, in which burn areas are associated with increases in local mobile water content. Successful clinical translation of THz sensing, however, still requires quantitative assessments of system performance measurements, specifically hydration concentration sensitivity, with tissue substitutes. This research aims to calibrate the sensitivity of a novel, reflective THz system to tissue water content through the use of hydration phantoms for quantitative comparisons of THz hydration imagery.Gelatin phantoms were identified as an appropriate tissue-mimicking model for reflective THz applications, and gel composition, comprising mixtures of water and protein, was varied between 83% to 95% hydration, a physiologically relevant range. A comparison of four series of gelatin phantom studies demonstrated a positive linear relationship between THz reflectivity and water concentration, with statistically significant hydration sensitivities (p < .01) ranging between 0.0209 - 0.038% (reflectivity: %hydration). The THz-phantom interaction is simulated with a three-layer model using the Transfer Matrix Method with agreement in hydration trends. Having demonstrated the ability to accurately and noninvasively measure water content in tissue equivalent targets with high sensitivity, reflective THz imaging is explored as a potential tool for early detection and intervention of corneal pathologies.

  17. Clay Minerals: Adsorbophysical Properties

    International Nuclear Information System (INIS)

    The structure and features of surfaces of clay minerals (kaolin, montmorillonite, etc) have an important scientific and practical value. On the surface the interrelation of processes at electronic, atomic and molecular levels is realized. Availability of mineral surface to external influences opens wide scientific and technical opportunities of use of the surface phenomena, so the research of crystal-chemical and crystal-physical processes in near-surface area of clay minerals is important. After long term researches of gas-clay mineral system in physical fields the author has obtained experimental and theoretical material contributing to the creation of the surface theory of clays. A part of the researches is dedicated to studying the mechanism of crystal-chemical and crystal-physical processes in near surface area of clay mineral systems, selectivity of the surface centers to interact with gas phase molecules and adsorbophysical properties. The study of physical and chemical properties of fine clay minerals and their modification has a decisive importance for development of theory and practice of nanotechnologies: they are sorbents, membranes, ceramics and other materials with required electronic features

  18. Mineral commodity summaries 2013

    Science.gov (United States)

    U.S. Geological Survey

    2013-01-01

    Each chapter of the 2013 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2012 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses. For mineral commodities for which there is a Government stockpile, detailed information concerning the stockpile status is included in the two-page synopsis. Abbreviations and units of measure, and definitions of selected terms used in the report, are in Appendix A and Appendix B, respectively. “Appendix C—Reserves and Resources” includes “Part A—Resource/Reserve Classification for Minerals” and “Part B—Sources of Reserves Data.” A directory of USGS minerals information country specialists and their responsibilities is Appendix D. The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the MCS 2013 are welcomed.

  19. Mineral commodity summaries 2014

    Science.gov (United States)

    U.S. Geological Survey

    2014-01-01

    Each chapter of the 2014 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2013 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses. For mineral commodities for which there is a Government stockpile, detailed information concerning the stockpile status is included in the two-page synopsis. Abbreviations and units of measure, and definitions of selected terms used in the report, are in Appendix A and Appendix B, respectively. “Appendix C—Reserves and Resources” includes “Part A—Resource/Reserve Classification for Minerals” and “Part B—Sources of Reserves Data.” A directory of USGS minerals information country specialists and their responsibilities is Appendix D. The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the MCS 2014 are welcomed.

  20. Extreme chemical conditions of crystallisation of Umbrian Melilitolites and wealth of rare, late stage/hydrothermal minerals

    Science.gov (United States)

    Stoppa, F.; Schiazza, M.

    2014-12-01

    Melilitolites of the Umbria Latium Ultra-alkaline District display a complete crystallisation sequence of peculiar, late-stage mineral phases and hydrothermal/cement minerals, analogous to fractionated mineral associations from the Kola Peninsula. This paper summarises 20 years of research which has resulted in the identification of a large number of mineral species, some very rare or completely new and some not yet classified. The progressive increasing alkalinity of the residual liquid allowed the formation of Zr-Ti phases and further delhayelitemacdonaldite mineral crystallisation in the groundmass. The presence of leucite and kalsilite in the igneous assemblage is unusual and gives a kamafugitic nature to the rocks. Passage to non-igneous temperatures (TCO2-SO2-fluids led to the precipitation of sulphates and hydrated and/or hydroxylated silicate-sulphate-carbonates. As a whole, this mineral assemblage can be considered typical of ultra-alkaline carbonatitic rocks.

  1. Short- and Long-Term Dynamics of Gas Hydrate at GC600: A Gulf of Mexico Hydrocarbon Seep

    Science.gov (United States)

    MacDonald, I. R.; Johansen, C.; Silva, M.; Daneshgar, S.; Garcia-Pineda, O. G.; Shedd, W. W.

    2014-12-01

    The GC600 hydrocarbon seep is located at 1200 m in the northern Gulf of Mexico (GOM). Satellite data show it to be one of the most prolific sources of natural oil slicks in the entire GOM. We mapped its seafloor oil and gas vents with 3-D seismic, swath-bathymetry acoustics and submersible observations, documenting gas hydrate deposits, brine pools, benthic fauna, and authigenic carbonates. Geophysical profiles show subbottom locations of salt bodies and migration conduits. We deployed time-lapse imaging systems focused on individual vents to quantify release rates. Oil and gas flow upward along the flanks of an allochthonous salt body from source rocks at 10,000 m and migrate to the seafloor from faults emanating from the salt. Venting to the water column and surface consists of oily bubbles and occurs in two fields separated by ~1 km. The NW vent field (Megaplume) appears to be a more recent expression and hosts about three highly active vents; while the SE vent field (Birthday Candles) hosts more than 10 vents that are generally slower. We measured discharge rates of 2.6 cm3 s-1 and Megaplume and 0.09 cm3 s-1 at Birthday Candles. Although surface deposits of gas hydrate were evident at both vent fields, the Birthday Candles area featured dozens of conical mounds formed by gas hydrate that were dark brown due to large amounts of liquid oil perfused throughout the deposits. Large brine pools indicated gas hydrate formation at the seafloor. Venting occurred in horizontal fissures on the mounds, in which oil and hydrate combined to form short-lived chimneys and balloon-like structures. Ice worms (Hesiocaeca methanicola) were extremely abundant in burrows extending from the sediment into the gas hydrate. Proceeding farther to the SE, venting is reduced and absent, but surface carbonate deposits suggest relict gas hydrate mounds. We propose that the NW to SE trend at GC600 encompasses the progressive development of a biogeochemical filter that sequesters and

  2. Use of Computed X-ray Tomographic Data for Analyzing the Thermodynamics of a Dissociating Porous Sand/Hydrate Mixture

    Science.gov (United States)

    Freifeld, Barry M.; Kneafsey, Timothy J.; Tomutsa, Liviu; Stern, Laura A.; Kirby, Stephen H.

    2002-02-28

    X-ray computed tomography (CT) is a method that has been used extensively in laboratory experiments for measuring rock properties and fluid transport behavior. More recently, CT scanning has been applied successfully to detect the presence and study the behavior of naturally occurring hydrates. In this study, we used a modified medical CT scanner to image and analyze the progression of a dissociation front in a synthetic methane hydrate/sand mixture. The sample was initially scanned under conditions at which the hydrate is stable (atmospheric pressure and liquid nitrogen temperature, 77 K). The end of the sample holder was then exposed to the ambient air, and the core was continuously scanned as dissociation occurred in response to the rising temperature. CT imaging captured the advancing dissociation front clearly and accurately. The evolved gas volume was monitored as a function of time. Measured by CT, the advancing hydrate dissociation front was modeled as a thermal conduction problem explicitly incorporating the enthalpy of dissociation, using the Stefan moving-boundary-value approach. The assumptions needed to perform the analysis consisted of temperatures at the model boundaries. The estimated value for thermal conductivity of 2.6 W/m K for the remaining water ice/sand mixture is higher than expected based on conduction alone; this high value may represent a lumped parameter that incorporates the processes of heat conduction, methane gas convection, and any kinetic effects that occur during dissociation. The technique presented here has broad implications for future laboratory and field testing that incorporates geophysical techniques to monitor gas hydrate dissociation.

  3. Kinetics Characteristics of Nitrogen Hydrates Respond to Differential Scanning Calorimetry

    Science.gov (United States)

    Chen, Q.; Liu, C.; Ye, Y.; Gong, J.

    2012-12-01

    In this study, a high pressure differential scanning calorimetry (HP DSC) based on thermo-analytical technique was applied to investigate the kinetics and thermodynamics characteristics of nitrogen hydrates. Nitrogen hydrates was synthesized in the sample vessel under different pressures as temperature decreased from 293 to 233 K with a constant cooling rate of 0.2 K/min controlled by the DSC. To measure the hydrates dissociation enthalpies , the temperature was slowly raised up from 233 to 293 K at a constant rate ranging of 0.05 K/min. 1. Peak area on the heat flow curves represents the amount of heat during phase transition. In these experiments, the total water added to the sample vessel (mt) is already known. By integrating the peak areas of ice and hydrate, we know the total heats of ice (Qi) and hydrate (Qh), respectively. As the heat of ice per gram can be measured easily (336.366 J/g), the mass of ice (mi) can be obtain. Then, the dissociation heat of nitrogen hydrate per gram (Hh ) can be calculated by the equation: H(J/g)=Qh/(mt-mi) It is shown that the dissociation heats of nitrogen hydrates are a little larger than ice, but do not change a lot with different pressures. The average value of dissociation heat is 369.158 J/g. 2. During the DSC cooling stage, hydrate formed at temperature much lower than equilibrium. The biggest sub-cooling is about 291 K, while the smallest one is about 279 K. However, during these experiments, the pressure did not show obvious relationship with sub-cooling. It confirmed that even the proper conditions were achieved, formation was still a stochastic process. For one thing, due to the random distribution of dissolved gas in water, the interfacial tension and the water activity were not equal in the whole system. And if there was a free gas phase, which leads to different fugacity on water-gas interface, the stochastic behavior would be more significant in the sample vessel. 3. The energy released from hydrates formation as

  4. Gas hydrate stability zone modelling in areas of salt tectonics and pockmarks of the Barents Sea suggests an active hydrocarbon venting system

    Energy Technology Data Exchange (ETDEWEB)

    Chand, S.; Knies, J. [Geological Survey of Norway, 7491, Trondheim (Norway); Mienert, J.; Andreassen, K. [University of Tromsoe, Tromsoe (Norway); Plassen, L. [Geological Survey of Norway, Polarmiljoesenteret, 9296 Tromsoe (Norway); Fotland, B. [STATOIL, Harstad (Norway)

    2008-08-15

    The Barents Sea seabed exhibits an area of major glacial erosion exposing parts of the old hydrocarbon basins. In this region, we modelled the gas hydrate stability field in a 3D perspective, including the effects of higher order hydrocarbon gases. We used 3D seismic data to analyse the linkage between fluid-flow expressions and hydrate occurrences above old sedimentary basin systems and vertical faults. Pockmarks showed a relation to fault systems where some of them are directly connected to hydrocarbon bearing sedimentary formations. The influence of bottom water temperature, pore water salinity and geothermal gradient variation on gas hydrate stability zone (GHSZ) thickness is critically analysed in relation to both geological formations and salt tectonics. Our analysis suggests a highly variable GHSZ in the Barents Sea region controlled by local variations in the parameters of stability conditions. Recovery of gas-hydrate sample from the region and presence of gas-enhanced reflections below estimated BSR depths may indicate a prevalent gas-hydrate stable condition. (author)

  5. DFT theoretical and FT-IR spectroscopic investigations of the plasticity of clay minerals dispersions

    Science.gov (United States)

    Kasprzhitskii, A.; Lazorenko, G.; Yavna, V.; Daniel, Ph.

    2016-04-01

    Plasticity is the most important property of dispersions of clay minerals that determine the character of participation of these systems in many natural and technological processes. We report on the results of studies of hydration mechanism in typical clay minerals making part of natural dispersions of sedimentation masses by means of IR spectroscopy and theoretical density functional theory (DFT) methods. X-ray diffraction analysis of clay minerals of Millerovo mineral deposit (Russian Federation) is carried out. Regularities and peculiarities of interaction of water molecules with kaolinite basal planes (001) and (00 1 bar) are analyzed. The role of water in the formation of plasticity of clay minerals dispersions is revealed. The modes of water molecules placement and their state and structure in the system "clay mineral-water" is defined. Phase transition processes of clay minerals dispersion into plastic and liquid state and their influence on spectral characteristics of the systems are investigated. The interpretation of clay minerals phase transitions into plastic and fluid state based on the results of DFT simulation is given. The relation is established between specific variation of spectral characteristics and phase transitions of clay minerals dispersions into plastic and liquid state.

  6. Characterization of potential mineralization in Afghanistan: four permissive areas identified using imaging spectroscopy data

    Science.gov (United States)

    King, Trude V.V.; Berger, Byron R.; Johnson, Michaela R.

    2014-01-01

    As part of the U.S. Geological Survey and Department of Defense Task Force for Business and Stability Operations natural resources revitalization activities in Afghanistan, four permissive areas for mineralization, Bamyan 1, Farah 1, Ghazni 1, and Ghazni 2, have been identified using imaging spectroscopy data. To support economic development, the areas of potential mineralization were selected on the occurrence of selected mineral assemblages mapped using the HyMap™ data (kaolinite, jarosite, hydrated silica, chlorite, epidote, iron-bearing carbonate, buddingtonite, dickite, and alunite) that may be indicative of past mineralization processes in areas with limited or no previous mineral resource studies. Approximately 30 sites were initially determined to be candidates for areas of potential mineralization. Additional criteria and material used to refine the selection and prioritization process included existing geologic maps, Landsat Thematic Mapper data, and published literature. The HyMapTM data were interpreted in the context of the regional geologic and tectonic setting and used the presence of alteration mineral assemblages to identify areas with the potential for undiscovered mineral resources. Further field-sampling, mapping, and supporting geochemical analyses are necessary to fully substantiate and verify the specific deposit types in the four areas of potential mineralization.

  7. Macroscopic investigation of hydrate film growth at the hydrocarbon/water interface

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.J.; Miller, K.T.; Koh, C.A.; Sloan, E.D. [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical Engineering

    2008-07-01

    Clathrate hydrates are ice-like crystalline compounds that form as thin porous crystalline films at the interface between the water phase and the hydrocarbon guest molecule phase. The growth characteristics of these hydrate films are important in seafloor carbon dioxide sequestration, gas hydrate transport, and flow assurance in oil and gas pipelines. This paper presented a study that employed digital video microscopy to investigate the hydrate film thickness as a function of time, as well as the propagation rate for methane and cyclopentane hydrate. The purpose of the study was to enhance past measurements of hydrate film growth by incorporating gas consumption measurements simultaneously with film thickness measurements to determine which phase supplied the hydrate former during hydrate formation. The study also advanced the physical knowledge of hydrate formation by relating film formation with the water droplet to hydrate shell conversion. The paper included a schematic of the hydrate film growth apparatus and image acquisition and analysis as well as an illustration of the nucleation of a water droplet immersed in cyclopentane. The results were presented for cyclopentane hydrate film growth; methane hydrate film growth; film growth in an oil/methane/ water system; film growth/development into water phase; and gas consumption for hydrate film growth. The paper also discussed the source of methane for hydrate formation; solubility of methane in water; growth rates; proposed mechanism of hydrate film growth at the hydrocarbon/water interface; and, transferability between hydrate formation for a pool of liquid versus a water droplet. It was concluded that gas consumption data during hydrate formation presented evidence of an aqueous phase supply of hydrate former to the initial hydrate growth, followed by a vapor phase supply of hydrate former in the thickening stage of hydrate film formation. 25 refs., 18 figs.,.

  8. A temperature and photographic time-series from a seafloor gas hydrate deposit on the Gulf of Mexico Slope

    Science.gov (United States)

    MacDonald, I. R.; Vararo, M.; Bender, L.

    2003-04-01

    Under laboratory conditions, gas hydrates are highly sensitive to changes in water temperature. MacDonald et al. (1994) and Roberts et al. (1999) have monitored in-situ deposits and recorded rapid changes in gas flux from vents partially plugged with gas hydrate; the changes appear to correlate with fluctuation in bottom temperature over ranges of worms, and a number of mobile species. The temperature probes comprised two autonomous Antares thermistors, one at each end of a 50-cm PVC wand, which recorded temperatures with precision of better than 0.1 C at 30-min intervals over 327 d. One probe was implanted with a tight seal into a drill hole about 7 cm deep in the top of the gas hydrate mound. The second was inserted about 50 cm deep into the adjacent sediments. For each probe, the top thermistor recorded the ambient water temperature while the bottom thermistor recorded the internal temperature of the hydrate or sediment. Photographic results show no dramatic changes in the size, shape, or gas venting from the mound during the 96 day time-series. There were subtle increases in the amount of hydrate exposed to the water between the end of the photographic time series and the recovery of the monitoring array. Mean temperatures (SDEV) and temperature range recorded by the probes were as follows: In-water: 7.87 ( 0.44) and 6.64-9.73 C In-hydrate: 7.81 ( 0.34) and 6.87-9.18 C In-sediment: 7.81 ( 0.16) and 7.79-9.18 C Spectra of the temperature records showed significant high-frequency peaks for in-water data corresponding to K1, M2 and M3 lunar tides. Of these peaks, only the K1 (23.9 h) was evident for in-hydrate records and none of the tidal peaks were evident for in-sediment records. All three records showed significant low-frequency periodicity at about 288 h. In-hydrate temperatures lagged the in-water temperatures by 6 h with high correlation. In-sediment temperatures lagged in-water temperatures by 288 h with weak correlation. These results constrain the

  9. Inherent mineralization of 2,6-dichlorobenzamide (BAM) in unsaturated zone and aquifers - Effect of initial concentrations and adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Janniche, Gry Sander, E-mail: gsja@env.dtu.dk [DTU Environment, Technical University of Denmark, Building 113, DK-2800 Kgs. Lyngby (Denmark); Clausen, Liselotte; Albrechtsen, Hans-Jorgen [DTU Environment, Technical University of Denmark, Building 113, DK-2800 Kgs. Lyngby (Denmark)

    2011-10-15

    The dichlobenil metabolite BAM (2,6-dichlorobenzamide) is frequently detected in aquifers e.g. in Denmark despite the mother compound dichlobenil was banned here since 1997. BAM mineralization was investigated at environmentally relevant concentrations in sediment samples. Undisturbed sediment cores with known dichlobenil application were collected from topsoil to 8.5 m below surface resulting in 57 samples hereof 4 aquifer samples. Mineralization was only substantial (>10%) in the uppermost meter of the unsaturated zone. Microbial adaptation, observed as faster mineralization in pre-exposed than in pristine sediments from the same location, was only evident in sandy sediment where dichlobenil was still present, but not in clayey sediments. Higher initial concentrations (1-5000 {mu}g/kg) did not stimulate mineralization in pristine clayey or sandy sediments, or in pre-exposed sand. However, in pre-exposed clay mineralization was stimulated at high concentrations. Furthermore BAM was for the first time mineralized in aerobic aquifer sediments from different BAM-contaminated groundwater locations. - Highlights: > BAM mineralized in BAM-contaminated aerobic aquifer sediments. > In subsurface, fastest BAM mineralization in pre-exposed sandy sediments. > Increased mineralization (adaptation) only observed in contaminated sandy sediment. > In pristine sediments mineralization ratio increased with decreasing concentrations. - BAM mineralization in subsurface and groundwater was demonstrated.

  10. Cation exchange and adsorption on clays and clay minerals

    OpenAIRE

    Ammann, Lars

    2003-01-01

    The specific surface area of a clay mineral comprises the external and internal surface area and, finally, the surface area which is exposed to the solution (Chap. 6.1). The aim of this study was to correlate adsorption data of common clays with these specific surface areas.

  11. Hydration Structure of the Quaternary Ammonium Cations

    KAUST Repository

    Babiaczyk, Wojtek Iwo

    2010-11-25

    Two indicators of the hydropathicity of small solutes are introduced and tested by molecular dynamics simulations. These indicators are defined as probabilities of the orientation of water molecules\\' dipoles and hydrogen bond vectors, conditional on a generalized distance from the solute suitable for arbitrarily shaped molecules. Using conditional probabilities, it is possible to distinguish features of the distributions in close proximity of the solute. These regions contain the most significant information on the hydration structure but cannot be adequately represented by using, as is usually done, joint distance-angle probability densities. Our calculations show that using our indicators a relative hydropathicity scale for the interesting test set of the quaternary ammonium cations can be roughly determined. © 2010 American Chemical Society.

  12. DNA under Force: Mechanics, Electrostatics, and Hydration

    Directory of Open Access Journals (Sweden)

    Jingqiang Li

    2015-02-01

    Full Text Available Quantifying the basic intra- and inter-molecular forces of DNA has helped us to better understand and further predict the behavior of DNA. Single molecule technique elucidates the mechanics of DNA under applied external forces, sometimes under extreme forces. On the other hand, ensemble studies of DNA molecular force allow us to extend our understanding of DNA molecules under other forces such as electrostatic and hydration forces. Using a variety of techniques, we can have a comprehensive understanding of DNA molecular forces, which is crucial in unraveling the complex DNA functions in living cells as well as in designing a system that utilizes the unique properties of DNA in nanotechnology.

  13. Propane Clathrate Hydrate Formation Accelerated by Methanol.

    Science.gov (United States)

    Amtawong, Jaruwan; Guo, Jin; Hale, Jared S; Sengupta, Suvrajit; Fleischer, Everly B; Martin, Rachel W; Janda, Kenneth C

    2016-07-01

    The role of methanol as both an inhibitor and a catalyst for the formation of clathrate hydrates (CHs) has been a topic of intense study. We report a new quantitative study of the kinetics of propane CH formation at 253 K from the reaction of propane gas with ice particles that have been doped with varying amounts of methanol. We find that methanol significantly accelerates the formation reaction with quite small doping quantities. Even for only 1 methanol molecule per 10 000 water molecules, the maximum uptake rate of propane into CHs is enhanced and the initiation pressure is reduced. These results enable more efficient production of CHs for gas storage. This remarkable acceleration of the CH formation reaction by small quantities of methanol may place constraints on the mechanism of the inhibition effect observed under other conditions, usually employing much larger quantities of methanol. PMID:27275862

  14. Phase behavior and hydration of silk fibroin.

    Science.gov (United States)

    Sohn, Sungkyun; Strey, Helmut H; Gido, Samuel P

    2004-01-01

    The osmotic stress method was applied to study the thermodynamics of supramolecular self-assembly phenomena in crystallizable segments of Bombyx mori silkworm silk fibroin. By controlling compositions and phases of silk fibroin solution, the method provided a means for the direct investigation of microscopic and thermodynamic details of these intermolecular interactions in aqueous media. It is apparent that as osmotic pressure increases, silk fibroin molecules are crowded together to form silk I structure and then with further increase in osmotic pressure become an antiparallel beta-sheet structure, silk II. A partial ternary phase diagram of water-silk fibroin-LiBr was constructed based on the results. The results provide quantitative evidence that the silk I structure must contain water of hydration. The enhanced control over structure and phase behavior using osmotic stress, as embodied in the phase diagram, could potentially be utilized to design a new route for water-based wet spinning of regenerated silk fibroin.

  15. On the nature of structural disorder in calcium silicate hydrates with a calcium/silicon ratio similar to tobermorite

    OpenAIRE

    Grangeon, Sylvain; Claret, Francis; Lerouge, Catherine; Warmont, Fabienne; SATO, Tsutomo; ANRAKU, Sohtoru; Numako, Chiya; LINARD, Yannick; Lanson, Bruno

    2013-01-01

    Four calcium silicate hydrates (C-S-H) with structural calcium/silicon (Ca/Si) ratios ranging from 0.82 +/- 0.02 to 0.87 +/- 0.02 were synthesized at room temperature, 50, 80, and 110 degrees C. Their structure was elucidated by collating information from electron probe micro-analysis, transmission electron microscopy, extended X-ray absorption fine structure spectroscopy, and powder X-ray diffraction (XRD). A modeling approach specific to defective minerals was used because sample turbostrat...

  16. Hydration of Volcanic Glass with Super-Critical Water and its Effect on Permeability of Volcanic Rocks

    Science.gov (United States)

    Isobe, H.

    2006-12-01

    Behavior of high-temperature, high-pressure fluid flow in volcanoes depends on permeability of rocks in fluid paths. High pressure fluids or vapors in volcanoes, which are in super-critical states, are essential factors of volcanic eruptions. Especially, phreatomagmatic eruptions are caused by excess pressures of the fluid degassed from magma body or heated water contacted with magma or high temperature rocks in volcanoes. Alteration processes of rocks and minerals with super-critical fluid can change permeability of rocks by spreading of the fluid path or obstruction with precipitated minerals. In this study, experimental reproduction on the hydration and alteration processes of rocks and minerals with super-critical fluid flow were carried out with a fluid flow apparatus. Starting materials of the experiments are powdered rhyolitic obsidian and dacite. Approximately 55g of the starting material are placed in a SUS316 sample tube. Inner diameter and length of the sample tube are 9.4mm and 572mm, respectively. Temperature gradient of the pressure vessel is controlled by triple electric furnaces. Run products are retrieved by cutting off the sample tube and observed by SEM. Permeability of run products are also measured by gas flow method. Experimental pressure is 50MPa. Flow rate of distilled water at room temperature is 0.1ml / minute pumped by a low speed high-pressure pump. Temperature of the sample is approximately 450°C for rhyolitic glass powder or 420°C for dacite powder at the first half of the sample tube, then decreased to approximately 310°C at the outlet of the sample tube. Run durations are 3 to 8 days. Obsidian grains and groundmass glass of dacite partially dissolved and changed to porous at higher than approximately 400°C. Alteration products of the volcanic glass including clay minerals, cristobalite and plagioclase occur in grain boundaries and cemented grains within a few centimeters from the outlet of the sample tube. Volcanic glass

  17. Influence of Physical Activity and Ambient Temperature on Hydration: The European Hydration Research Study (EHRS).

    Science.gov (United States)

    Mora-Rodriguez, Ricardo; Ortega, Juan F; Fernandez-Elias, Valentin E; Kapsokefalou, Maria; Malisova, Olga; Athanasatou, Adelais; Husemann, Marlien; Domnik, Kirsten; Braun, Hans

    2016-01-01

    This study explored the effects of physical activity (PA) and ambient temperature on water turnover and hydration status. Five-hundred seventy three healthy men and women (aged 20-60 years) from Spain, Greece and Germany self-reported PA, registered all food and beverage intake, and collected 24-h urine during seven consecutive days. Fasting blood samples were collected at the onset and end of the study. Food moisture was assessed using nutritional software to account for all water intake which was subtracted from daily urine volume to allow calculation of non-renal water loss (i.e., mostly sweating). Hydration status was assessed by urine and blood osmolality. A negative association was seen between ambient temperature and PA (r = -0.277; p < 0.001). Lower PA with high temperatures did not prevent increased non-renal water losses (i.e., sweating) and elevated urine and blood osmolality (r = 0.218 to 0.163 all p < 0.001). When summer and winter data were combined PA was negatively associated with urine osmolality (r = -0.153; p = 0.001). Our data suggest that environmental heat acts to reduce voluntary PA but this is not sufficient to prevent moderate dehydration (increased osmolality). On the other hand, increased PA is associated with improved hydration status (i.e., lower urine and blood osmolality). PMID:27128938

  18. Influence of Physical Activity and Ambient Temperature on Hydration: The European Hydration Research Study (EHRS

    Directory of Open Access Journals (Sweden)

    Ricardo Mora-Rodriguez

    2016-04-01

    Full Text Available This study explored the effects of physical activity (PA and ambient temperature on water turnover and hydration status. Five-hundred seventy three healthy men and women (aged 20–60 years from Spain, Greece and Germany self-reported PA, registered all food and beverage intake, and collected 24-h urine during seven consecutive days. Fasting blood samples were collected at the onset and end of the study. Food moisture was assessed using nutritional software to account for all water intake which was subtracted from daily urine volume to allow calculation of non-renal water loss (i.e., mostly sweating. Hydration status was assessed by urine and blood osmolality. A negative association was seen between ambient temperature and PA (r = −0.277; p < 0.001. Lower PA with high temperatures did not prevent increased non-renal water losses (i.e., sweating and elevated urine and blood osmolality (r = 0.218 to 0.163 all p < 0.001. When summer and winter data were combined PA was negatively associated with urine osmolality (r = −0.153; p = 0.001. Our data suggest that environmental heat acts to reduce voluntary PA but this is not sufficient to prevent moderate dehydration (increased osmolality. On the other hand, increased PA is associated with improved hydration status (i.e., lower urine and blood osmolality.

  19. The mineral economy of Brazil--Economia mineral do Brasil

    Science.gov (United States)

    Gurmendi, Alfredo C.; Barboza, Frederico Lopes; Thorman, Charles H.

    1999-01-01

    This study depicts the Brazilian government structure, mineral legislation and investment policy, taxation, foreign investment policies, environmental laws and regulations, and conditions in which the mineral industry operates. The report underlines Brazil's large and diversified mineral endowment. A total of 37 mineral commodities, or groups of closely related commodities, is discussed. An overview of the geologic setting of the major mineral deposits is presented. This report is presented in English and Portuguese in pdf format.

  20. RESEARCH ON COUPLED RELATIONSHIP BETWEEN HYDRATION NUMBER WITH RAMAN SPECTRUM

    Institute of Scientific and Technical Information of China (English)

    LEI Huaiyan; LIU Zhihong; FAN Shuanshi; XU Maoquan; GUAN Baocong

    2003-01-01

    As we know, there are three structures-sⅠ, sⅡ, and sH, with hydrocarbonate gas hydrate.Because of those special structures characteristics and potentail large fossil energy resource, gas hydrate play an important role in natural carbonate cycle system. In this paper, CH4, CO2, C3H8, and CH4 +CO2 system have been experimental performed in order to model hydrate formation and discomposition and to obtain hydrate stability conditions of tempreature and pressure. The results from laboratory using Raman spectra show that Raman spectrascopy is a effective tool to identify hydrate structure. Raman spectra of clathrate hydrate guest molecules are presented for two structure (sⅠ and sⅡ) in the following systems: CH4, CO2, C3 H8. Relatively occupancy of CH4 in the large and small cavities of sⅠ were determined by deconvoluting the v1 symmetric bands, resulting in hydration numbers of 6.04±0.03. The freqyuency of the v1 bands for CH4 in structures Ⅰ and Ⅱ differ statistically. The large cavities were measured to be almost fully occupied by CH4 and CO2, whereas only a small fraction of the small cavities are occupied by CH4. No CO2 was found in the small cavities.

  1. Determination of hydration film thickness using atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    PENG Changsheng; SONG Shaoxian; GU Qingbao

    2005-01-01

    Dispersion of a solid particle in water may lead to the formation of hydration film on the particle surface, which can strongly increase the repulsive force between the particles and thus strongly affect the stability of dispersions. The hydration film thickness, which varies with the variation of property of suspension particles, is one of the most important parameters of hydration film, and is also one of the most difficult parameters that can be measured accurately. In this paper, a method, based on force-distance curve of atomic force microscopy, for determining the hydration film thickness of particles is developed. The method utilizes the difference of cantilever deflection before, between and after penetrating the hydration films between tip and sample, which reflect the difference of slope on the force-distance curve. 3 samples, mica, glass and stainless steel, were used for hydration thickness determination, and the results show that the hydration film thickness between silicon tip and mica, glass and stainless steel are 30.0(2.0, 29.0(1.0 and 32.5(2.5 nm, respectively.

  2. Physical modeling of the formation of clathrate hydrates of methane

    Science.gov (United States)

    Drobyshev, A.; Aldiyarov, A.; Kurnosov, V.; Katpaeva, K.; Korshikov, E.; Sokolov, D.; Shinbayeva, A.; Timchenko, A.

    2015-06-01

    Nowadays natural gas hydrates attract special attention as a possible source of fossil fuel. According to various estimates, the reserves of hydrocarbons in hydrates exceed considerably explored reserves of natural gas. Due to the clathrate structure the unit volume of the gas hydrate can contain up to 160-180 volumes of pure gas. In recent years interest to a problem of gas hydrates has considerably increased. Such changes are connected with the progress in searches of the alternative sources of hydrocarbonic raw materials in countries that do not possess the resources of energy carriers. Thus gas hydrates are nonconventional sources of the hydrocarbonic raw materials which can be developed in the near future. At the same time, mechanisms of methane clathrate hydrates formations have not reached an advanced level, their thermophysical and mechanical properties have not been investigated profoundly. Thereby our experimental modeling of the processes of formation of methane clathrate hydrates in water cryomatrix prepared by co-condensation from the gas phase onto a cooled substrate was carried out over the range of condensation temperatures 12-60 K and pressures 10-4-10-6 Torr. In our experiments the concentration of methane in water varied in the range of 5%-90%. The thickness deposited films was 30-60 μm. The vibrational spectra of two-component thin films of CH4 + H2O condensates were measured and analyzed.

  3. Measuring the Hardness of Minerals

    Science.gov (United States)

    Bushby, Jessica

    2005-01-01

    The author discusses Moh's hardness scale, a comparative scale for minerals, whereby the softest mineral (talc) is placed at 1 and the hardest mineral (diamond) is placed at 10, with all other minerals ordered in between, according to their hardness. Development history of the scale is outlined, as well as a description of how the scale is used…

  4. Beaufort Sea deep-water gas hydrate recovery from a seafloor mound in a region of widespread BSR occurrence

    Science.gov (United States)

    Hart, Patrick E.; Pohlman, John W.; Lorenson, T.D.; Edwards, Brian D.

    2011-01-01

    Gas hydrate was recovered from the Alaskan Beaufort Sea slope north of Camden Bay in August 2010 during a U.S. Coast Guard Cutter Healy expedition (USCG cruise ID HLY1002) under the direction of the U.S. Geological Survey (USGS). Interpretation of multichannel seismic (MCS) reflection data collected in 1977 by the USGS across the Beaufort Sea continental margin identified a regional bottom simulating reflection (BSR), indicating that a large segment of the Beaufort Sea slope is underlain by gas hydrate. During HLY1002, gas hydrate was sampled by serendipity with a piston core targeting a steep-sided bathymetric high originally thought to be an outcrop of older, exposed strata. The feature cored is an approximately 1100m diameter, 130 m high conical mound, referred to here as the Canning Seafloor Mound (CSM), which overlies the crest of a buried anticline in a region of sub-parallel compressional folds beneath the eastern Beaufort outer slope. An MCS profile shows a prominent BSR upslope and downslope from the mound. The absence of a BSR beneath the CSM and occurrence of gas hydrate near the summit indicates that free gas has migrated via deep-rooted thrust faults or by structural focusing up the flanks of the anticline to the seafloor. Gas hydrate recovered from near the CSM summit at a subbottom depth of about 5.7 meters in a water depth of 2538 m was of nodular and vein-filling morphology. Although the hydrate was not preserved, residual gas from the core liner contained >95% methane by volume when corrected for atmospheric contamination. The presence of trace C4+hydrocarbons (inflation of the seafloor caused by formation and accumulation of shallow hydrate lenses is also a likely factor in CSM growth. Pore water analysis shows the sulfate-methane transition to be very shallow (0-1 mbsf), also supporting an active high-flux interpretation. Pore water with chloride concentrations as low as 160 mM suggest fluid migration pathways may extend to the mound from buried

  5. Study on Strength and Microstructure of Cement-Based Materials Containing Combination Mineral Admixtures

    Directory of Open Access Journals (Sweden)

    Meijuan Rao

    2016-01-01

    Full Text Available The compressive strength of complex binders containing two or three blended mineral admixtures in terms of glass powder (GP, limestone powder (LP, and steel slag powder (SP was determined by a battery solution type compressive testing machine. The morphology and microstructure characteristics of complex binder hydration products were also studied by microscopic analysis methods, such as XRD, TG-DTA, and SEM. The mechanical properties of the cement-based materials were analyzed to reveal the most appropriate mineral admixture type and content. The early sample strength development with GP was very slow, but it rapidly grew at later stages. The micro aggregate effect and pozzolanic reaction mutually occurred in the mineral admixture. In the early stage, the micro aggregate effect reduced paste porosity and the small particles connected with the cement hydration products to enhance its strength. In the later stage, the pozzolanic reaction of some components in the complex powder occurred and consumed part of the calcium hydroxide to form C-S-H gel, thus improving the hydration environment. Also, the produced C-S-H gel made the structure more compact, which improved the structure’s strength.

  6. Extraterrestrial magnetic minerals

    Science.gov (United States)

    Pechersky, D. M.; Markov, G. P.; Tsel'movich, V. A.; Sharonova, Z. V.

    2012-07-01

    Thermomagnetic and microprobe analyses are carried out and a set of magnetic characteristics are measured for 25 meteorites and 3 tektites from the collections of the Vernadsky Geological Museum of the Russian Academy of Sciences and Museum of Natural History of the North-East Interdisciplinary Science Research Institute, Far Eastern Branch of the Russian Academy of Sciences. It is found that, notwithstanding their type, all the meteorites contain the same magnetic minerals and only differ by concentrations of these minerals. Kamacite with less than 10% nickel is the main magnetic mineral in the studied samples. Pure iron, taenite, and schreibersite are less frequent; nickel, various iron spinels, Fe-Al alloys, etc., are very rare. These minerals are normally absent in the crusts of the Earth and other planets. The studied meteorites are more likely parts of the cores and lower mantles of the meteoritic parent bodies (the planets). Uniformity in the magnetic properties of the meteorites and the types of their thermomagnetic (MT) curves is violated by secondary alterations of the meteorites in the terrestrial environment. The sediments demonstrate the same monotony as the meteorites: kamacite is likely the only extraterrestrial magnetic mineral, which is abundant in sediments and associated with cosmic dust. The compositional similarity of kamacite in iron meteorites and in cosmic dust is due to their common source; the degree of fragmentation of the material of the parent body is the only difference.

  7. Detecting gas hydrate behavior in crude oil using NMR.

    Science.gov (United States)

    Gao, Shuqiang; House, Waylon; Chapman, Walter G

    2006-04-01

    Because of the associated experimental difficulties, natural gas hydrate behavior in black oil is poorly understood despite its grave importance in deep-water flow assurance. Since the hydrate cannot be visually observed in black oil, traditional methods often rely on gas pressure changes to monitor hydrate formation and dissociation. Because gases have to diffuse through the liquid phase for hydrate behavior to create pressure responses, the complication of gas mass transfer is involved and hydrate behavior is only indirectly observed. This pressure monitoring technique encounters difficulties when the oil phase is too viscous, the amount of water is too small, or the gas phase is absent. In this work we employ proton nuclear magnetic resonance (NMR) spectroscopy to observe directly the liquid-to-solid conversion of the water component in black oil emulsions. The technique relies on two facts. The first, well-known, is that water becomes essentially invisible to liquid state NMR as it becomes immobile, as in hydrate or ice formation. The second, our recent finding, is that in high magnetic fields of sufficient homogeneity, it is possible to distinguish water from black oil spectrally by their chemical shifts. By following changes in the area of the water peak, the process of hydrate conversion can be measured, and, at lower temperatures, the formation of ice. Taking only seconds to accomplish, this measurement is nearly direct in contrast to conventional techniques that measure the pressure changes of the whole system and assume these changes represent formation or dissociation of hydrates - rather than simply changes in solubility. This new technique clearly can provide accurate hydrate thermodynamic data in black oils. Because the technique measures the total mobile water with rapidity, extensions should prove valuable in studying the dynamics of phase transitions in emulsions. PMID:16570953

  8. Kinetics of bread crumb hydration as related to porous microstructure.

    Science.gov (United States)

    Mathieu, Vincent; Monnet, Anne-Flore; Jourdren, Solenne; Panouillé, Maud; Chappard, Christine; Souchon, Isabelle

    2016-08-10

    During oral processing and throughout the digestion process, hydration mechanisms have a key influence on the functional properties of food. This is the case with bread, for which hydration may affect the kinetics of starch hydrolysis as well as taste, aroma and texture perceptions. In this context, the aim of the present study is to understand how crumb porous micro-architecture impacts hydration kinetics. Four types of French baguettes were considered, varying in structure and/or compositions. An experimental set-up was developed for the real-time measurement of water uptake in crumb samples. Mathematical models were then fitted to extract quantitative parameters of use for the description and the understanding of experimental observations. Finally, bread crumb samples were analyzed before and after hydration through X-ray micro-computed tomography for the assessment of crumb micro-architectural properties. Distinct hydration behaviors were observed for the four types of bread. Higher hydration rates and capacities were reported for industrial baguettes (highest porosity) compared to denser semi-industrial, whole wheat and traditional baguettes. However, crumb porosity alone is not sufficient to predict hydration behavior. This study made it possible to point out the importance of capillary action in crumb hydration mechanisms, with a strong role of cells with diameters of 2 mm and below. The high density of these small cells generates high interconnection probabilities that may have an impact both on crumb hydration duration and capacity. As a consequence, accounting for microstructural features resulting from bread formulation may provide useful leverages for the control of functional properties. PMID:27466974

  9. Draft Genome Sequence of the Carbofuran-Mineralizing Novosphingobium sp. Strain KN65.2

    Science.gov (United States)

    Nguyen, Thi Phi Oanh; De Mot, René

    2015-01-01

    Complete mineralization of the N-methylcarbamate insecticide carbofuran, including mineralization of the aromatic moiety, appears to be confined to sphingomonad isolates. Here, we report the first draft genome sequence of such a sphingomonad strain, i.e., Novosphingobium sp. KN65.2, isolated from carbofuran-exposed agricultural soil in Vietnam. PMID:26159535

  10. Draft Genome Sequence of the Carbofuran-Mineralizing Novosphingobium sp. Strain KN65.2

    OpenAIRE

    Nguyen, Thi Phi Oanh; De Mot, René; Springael, Dirk

    2015-01-01

    Complete mineralization of the N-methylcarbamate insecticide carbofuran, including mineralization of the aromatic moiety, appears to be confined to sphingomonad isolates. Here, we report the first draft genome sequence of such a sphingomonad strain, i.e., Novosphingobium sp. KN65.2, isolated from carbofuran-exposed agricultural soil in Vietnam.

  11. Types and characteristics of drinking water for hydration in the elderly.

    Science.gov (United States)

    Casado, Ángela; Ramos, Primitivo; Rodríguez, Jaime; Moreno, Norberto; Gil, Pedro

    2015-01-01

    The role of hydration in the maintenance of health is increasingly recognized. Hydration requirements vary for each person, depending on physical activity, environmental conditions, dietary patterns, alcohol intake, health problems, and age. Elderly individuals have higher risk of developing dehydration than adults. Diminution of liquid intake and increase in liquid losses are both involved in causing dehydration in the elderly. The water used for drinking is provided through regular public water supply and the official sanitary controls ensure their quality and hygiene, granting a range of variation for most of its physical and chemical characteristics, being sometimes these differences, though apparently small, responsible for some disorders in sensitive individuals. Hence, the advantages of using bottled water, either natural mineral water or spring water, are required by law to specify their composition, their major components, and other specific parameters. It is essential to take this into account to understand the diversity of indications and favorable effects on health that certain waters can offer. PMID:24915336

  12. Signs of chronic overheating of miners of deep coalfields

    Energy Technology Data Exchange (ETDEWEB)

    Peftiev, I.F.; Maksimovich, V.A. (Donetski NII Gigieny Truda i Profzabolevanii (USSR))

    1989-06-01

    Investigates informative signs of chronic overheating of miners of deep coal mines. Examines 3 groups of miners: (1) those working for a long time at permissible temperatures, i.e. controls; (2) miners working a long time in temperatures above 27 C; and (3) miners working at high temperatures previously exposed to them. Miners were examined by a therapist, neuropathologist, oculist, otolaryngologist, and endocrinologist. They were interrogated, pulse was measured, orthostatic, skin, pupillary and reflex tests were conducted. Informative signs of chronic overheating of miners of deep coal mines were complaints of pain in the heart region, irritability, apathy, sweating, loss of appetite, shortage of breath, muscle cramps, asymmetry of tendon reflexes, emotional instability and sleep disturbance, In miners of all compared groups non-specific similar symptoms were found. However, the frequency and degree of expression of signs among the three groups established reliable differences among them. In the 2nd and 3rd groups compared with controls the number of workers among whom was found a great number of symptoms predominated. Therefore, symptoms found most often in miners working in deep mines carry in themselves information on the influence of the heat factor on men working in deep mines. 10 refs.

  13. Oxygen-18 enrichment in the water of a clathrate hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, D.W.; Leaist, D.G. (National Research Council of Canada, Ottawa, Ontario. Div. of Chemistry); Hesse, R. (McGill Univ., Montreal, Quebec (Canada). Dept of Geological Sciences)

    1983-12-01

    The equilibrium constants for the fractionation of H/sub 2//sup 18/O and H/sub 2//sup 16/O between liquid and solid phases were determined by slow freezing of ice and by slow formation of the clathrate hydrate of tetrahydrofuran from liquid solution. Both systems gave ..cap alpha.. = 1.0026/sub 8/. It is likely that oxygen-18 enrichment of the water in clathrate hydrates generally is essentially the same as for ice and that the relatively high oxygen-18 content observed in pore waters from some deep-sea sediments arises from the recent presence of methane hydrate.

  14. 3-D numerical modeling of methane hydrate deposits

    OpenAIRE

    Pinero, Elena; W. Rottke; Fuchs, T.; Hensen, Christian; Haeckel, Matthias; Wallmann, Klaus

    2011-01-01

    Within the German gas hydrate initiative SUGAR, we have developed a new tool for predicting the formation of sub-seafloor gas hydrate deposits. For this purpose, a new 2D/3D module simulating the biogenic generation of methane from organic material and the formation of gas hydrates has been added to the petroleum systems modeling software package PetroMod®. T ypically, PetroMod® simulates the thermogenic generation of multiple hydrocarbon components including oil and gas, their migration t...

  15. Inhibition of Methane Hydrate Formation by Ice-Structuring Proteins

    DEFF Research Database (Denmark)

    Jensen, Lars; Ramløv, Hans; Thomsen, Kaj;

    2010-01-01

    investigated. Thermal hysteresis ice formation experiments revealed that ISP from Tenebrio molitor causes higher thermal hysteresis for ice formation compared to type III ISP identified in ocean pout while PVP did not cause thermal hysteresis. This indicates that there might be a direct relationship between......, assumed biodegradable, are capable of inhibiting the growth of methane hydrate (a structure I hydrate). The ISPs investigated were type III HPLC12 (originally identified in ocean pout) and ISP type III found in meal worm (Tenebrio molitor). These were compared to polyvinylpyrrolidone (PVP) a well...... ISP performance for ice and hydrate inhibition, and that thermal hysteresis experiments can be used to screen ISPs as kinetic inhibitors....

  16. Effect on Hydration and Hardening of Tricalcium Phosphate Bone Cement

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The bioactive α-Ca3 (PO4)2 bone cement was studied by XRD , SEM and isothermal calorimetric measurements. The results showed that a mixed pattern of TCP and hydroxylapatite were obtained after hydration and hardening. The mechanism of hydration and hardening of the α-Ca3 ( PO4 )2 was dissolution-precipitation,(NH4) H2 PO4 was the best set accelerator to the α-Ca3 ( PO4 )2 cement, and the HAP powers and the(NH4) H2 PO4 concentration had a great effect on the hydration rate of α-Ca3 ( PO4 )2.

  17. The growth rate of gas hydrate from refrigerant R12

    Energy Technology Data Exchange (ETDEWEB)

    Kendoush, Abdullah Abbas; Jassim, Najim Abid [Centre of Engineering Physics, Ministry of Sciences and Technology, P.O. Box 765, Baghdad (Iraq); Joudi, Khalid A. [Al-Nahrain University, Baghdad (Iraq)

    2006-07-15

    Experimental and theoretical investigations were presented dealing with three phase direct-contact heat transfer by evaporation of refrigerant drops in an immiscible liquid. Refrigerant R12 was used as the dispersed phase, while water and brine were the immiscible continuous phase. A numerical solution is presented to predict the formation rate of gas hydrates in test column. The solution provided an acceptable agreement when compared with experimental results. The gas hydrate growth rate increased with time. It increased with increasing dispersed phase flow rate. The presence of surface-active sodium chloride in water had a strong inhibiting effect on the gas hydrate formation rate. (author)

  18. Experimental studies for the cyclability of salt hydrates for thermochemical heat storage

    NARCIS (Netherlands)

    Donkers, P.A.J.; Pel, L.; Adan, O.C.G.

    2016-01-01

    Salt hydrates have promising potential as heat storage materials by use of their hydration/dehydration reaction. These hydration/dehydration reactions are studied in this paper for CuCl2, CuSO4, MgCl2 and MgSO4. During a hydration/dehydration reaction, the salt shrinks and expands as a result of the

  19. 43 CFR 19.8 - Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest...

    Science.gov (United States)

    2010-10-01

    .... 2 of 43 CFR, which appears in Volume II of the List of CFR Sections Affected, 1964-1972, for the... patents, and mineral leasing within National Forest Wilderness. 19.8 Section 19.8 Public Lands: Interior... § 19.8 Prospecting, mineral locations, mineral patents, and mineral leasing within National...

  20. Microbially mediated mineral carbonation

    Science.gov (United States)

    Power, I. M.; Wilson, S. A.; Dipple, G. M.; Southam, G.

    2010-12-01

    Mineral carbonation involves silicate dissolution and carbonate precipitation, which are both natural processes that microorganisms are able to mediate in near surface environments (Ferris et al., 1994; Eq. 1). (Ca,Mg)SiO3 + 2H2CO3 + H2O → (Ca,Mg)CO3 + H2O + H4SiO4 + O2 (1) Cyanobacteria are photoautotrophs with cell surface characteristics and metabolic processes involving inorganic carbon that can induce carbonate precipitation. This occurs partly by concentrating cations within their net-negative cell envelope and through the alkalinization of their microenvironment (Thompson & Ferris, 1990). Regions with mafic and ultramafic bedrock, such as near Atlin, British Columbia, Canada, represent the best potential sources of feedstocks for mineral carbonation. The hydromagnesite playas near Atlin are a natural biogeochemical model for the carbonation of magnesium silicate minerals (Power et al., 2009). Field-based studies at Atlin and corroborating laboratory experiments demonstrate the ability of a microbial consortium dominated by filamentous cyanobacteria to induce the precipitation of carbonate minerals. Phototrophic microbes, such as cyanobacteria, have been proposed as a means for producing biodiesel and other value added products because of their efficiency as solar collectors and low requirement for valuable, cultivable land in comparison to crops (Dismukes et al., 2008). Carbonate precipitation and biomass production could be facilitated using specifically designed ponds to collect waters rich in dissolved cations (e.g., Mg2+ and Ca2+), which would allow for evapoconcentration and provide an appropriate environment for growth of cyanobacteria. Microbially mediated carbonate precipitation does not require large quantities of energy or chemicals needed for industrial systems that have been proposed for rapid carbon capture and storage via mineral carbonation (e.g., Lackner et al., 1995). Therefore, this biogeochemical approach may represent a readily

  1. Comparative mineral mapping in the Colorado Mineral Belt using AVIRIS and ASTER remote sensing data

    Science.gov (United States)

    Rockwell, Barnaby W.

    2013-01-01

    This report presents results of interpretation of spectral remote sensing data covering the eastern Colorado Mineral Belt in central Colorado, USA, acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensors. This study was part of a multidisciplinary mapping and data integration project at the U.S. Geological Survey that focused on long-term resource planning by land-managing entities in Colorado. The map products were designed primarily for the regional mapping and characterization of exposed surface mineralogy, including that related to hydrothermal alteration and supergene weathering of pyritic rocks. Alteration type was modeled from identified minerals based on standard definitions of alteration mineral assemblages. Vegetation was identified using the ASTER data and subdivided based on per-pixel chlorophyll content (depth of 0.68 micrometer absorption band) and dryness (fit and depth of leaf biochemical absorptions in the shortwave infrared spectral region). The vegetation results can be used to estimate the abundance of fire fuels at the time of data acquisition (2002 and 2003). The AVIRIS- and ASTER-derived mineral mapping results can be readily compared using the toggleable layers in the GeoPDF file, and by using the provided GIS-ready raster datasets. The results relating to mineral occurrence and distribution were an important source of data for studies documenting the effects of mining and un-mined, altered rocks on aquatic ecosystems at the watershed level. These studies demonstrated a high correlation between metal concentrations in streams and the presence of hydrothermal alteration and (or) pyritic mine waste as determined by analysis of the map products presented herein. The mineral mapping results were also used to delineate permissive areas for various mineral deposit types.

  2. Geoethical approach to mineral activities in Antarctica

    Science.gov (United States)

    Talalay, Pavel

    2013-04-01

    Antarctica is the outermost from civilization space continent. From 14.0 million km2 of surface area about 98% of Antarctica is covered by ice that averages at least 1.6 km in thickness. Geologically, the continent is the least explored in the world, and it is almost absolutely unknown what mineral resources Antarctica has as they are buried in rock that is covered by a thick ice sheet. It is thought to have large and valuable mineral deposits under the ice. This is because of what has been found in samples taken from the small areas of rock that are exposed, and also from what has been found in South Africa and South America. Up until 180 million years ago, Antarctica was a part of the Gondwanaland super continent, attached to South America, the Southern part of Africa, India and Australia, these continents then drifted apart until they reached their current positions. This leads to a possibility that Antarctica may also share some of the mineral wealth of these continents. Right now on the ice-free areas of Antarctica iron ore, chromium, copper, gold, nickel, platinum, coal and hydrocarbons have been found. The Protocol on Environmental Protection to the Antarctic Treaty, also known as the Madrid Protocol, was signed in 1991 by the signatories to the Antarctic Treaty and became law in January 1998. The Protocol provides for comprehensive protection of the Antarctic environment and associated ecosystems and includes a ban on all commercial mining for at least fifty years (this is up for review in 2041). Current climate change and melting ice in Polar Regions is opening up new opportunities to exploit mineral and oil resources. Even Antarctica's weather, ice and distance from any industrialized areas mean that mineral extraction would be extremely expensive and also extremely dangerous, the depletion of mineral recourses on the Earth can reverse banning of mining in Antarctica in future. There is no question that any resource exploitation in Antarctica will cause

  3. Effect of three natural pozzolans in portland cement hydration

    Directory of Open Access Journals (Sweden)

    Rahhal, V.

    2003-03-01

    Full Text Available Natural pozzolans have been used since ancient times and continues to be used today. The chemistry and morphological composition of natural pozzolans and their particle size distribution allows classifying them as more or less reactive pozzolan. In this research several techniques have been used to study the influence of pozzolan on portland cement hydration as much as to evaluate the mechanical and durable properties of concretes, mortars and pastes containing pozzolans. This paper describes the effect of incorporating three natural pozzolans to two cements with very different mineralogical composition. The techniques used were: conduction calorimetry and Fratini test. Results proved that pozzolanic activity and the acceleration and retardation of hydration reaction depend on the mineralogical composition of the portland cernent used. Effects of dilution, stimulation, acceleration or retardation reactions, behavior into areas of heat dissipation and pozzolanic activity depend on the percentage of pozzolan used and the age in which it has been analyzed.

    El uso de las puzolanas naturales se remonta a la antigüedad, no obstante, actualmente continúa su utilización. La composición química y morfológica de las puzolanas naturales, sumado al tamaño de sus partículas, las califican como más o menos reactivas. En el estudio de las mismas, se han aplicado variadas técnicas para el análisis de sus interferencias en las reacciones de hidratación de los cementos portland; así como para la evaluación de las propiedades resistentes y duraderas que pueden conferirle a los hormigones, morteros o pastas de los que formen parte. Este trabajo versará sobre los efectos que produce la incorporación de tres puzolanas naturales a dos cementos portland de muy diferente composición mineralógica. Las técnicas aplicadas para su estudio han sido: la calorimetría de conducción y el ensayo de Fratini. Los resultados obtenidos permiten determinar

  4. Mineral and geochemical characterization of a leptic aluandic soil and a thapto aluandic-ferralsol developed on trachytes in Mount Bambouto (Cameroon volcanic line)

    OpenAIRE

    Tematio, P.; Fritsch, Emmanuel; Hodson, M E; LUCAS, Y.; Bitom, D.; Bilong, P.

    2009-01-01

    Mineral and geochemical investigations were carried out on soil samples and fresh rock (trachytes) from two selected soil profiles (TM profile on leptic aluandic soils and TL profile on thapto aluandic-ferralsols) from Mount Bambouto to better understand geochemical processes and mineral paragenesis involved in the development of soils in this environment. In TM profile, the hydrated halloysites and goethite occur in the weathered saprolite boulders of BC horizon while dehydrated halloysite, ...

  5. Early hydration cement Effect of admixtures superplasticizers

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    2001-06-01

    Full Text Available Early hydration of portland cement with superplasticizer admixtures of different nature has been studied. These admixtures were: one based on melamine synthetic, other based on vinyl copolymer and other based on polyacrylate copolymers. The dosage of the formers were constant (1% weigth of cement and for the third, the influence of admixture dosage was also evaluated, giving dosage values among 1-0.3%. The pastes obtained were studied by conduction calorimetry, XRD and FTIR. Also the apparent fluidity was determined by "Minislump" test. The main results obtained were: a superplasticizers admixtures used, regardless of their nature and for the polycarboxilate one the dosage, retard the silicate hydration (specially, alite phase, b The ettringite formation is affected by the nature of the admixture. cA relationship between the dosage of admixture based on polycarboxilates and the time at the acceleration has been established. A lineal relation (y = 11.03 + 16.05x was obtained. From these results is possible to know, in function of dosage admixture, the time when the masive hydration products and the setting times are produced. Also the total heat releases in these reactions is independent of the nature and dosage of admixture, saying that in all cases the reactions are the same.

    En el presente trabajo se ha estudiado la hidratación inicial de un cemento portland aditivado con superplastificantes de diferente naturaleza. Dichos aditivos fueron: uno basado en melaminas sintéticas, otro en copolímeros vinilicos y otro en policarboxilatos. La dosificación de los dos primeros se fijó constante en 1% en peso con relación al cemento, mientras que para el tercero se evaluó, también, la influencia de la dosificación, tomando proporciones desde el 1% hasta el 0,3%. Las pastas obtenidas se estudiaron por: calorimetría de conducción, DRX y FTIR. También se determinó la fluidez de la pasta a través del ensayo del "Minislump ". Los

  6. Influence of Cellulose Ethers on Hydration Products of Portland Cement

    Institute of Scientific and Technical Information of China (English)

    MA Baoguo; OU Zhihua; JIAN Shouwei; XU Rulin

    2011-01-01

    Cellulose ethers are widely used to mortar formulations, and it is significant to understand the interaction between cellulose ethers and cement pastes. FT-IR spectra, thermal analysis and SEM are used to investigate hydration products in the cement pastes modified by HEMC and HPMC in this article. The results show that the hydration products in modified cement pastes were finally identical with those in the unmodified cement paste, but the major hydration products, such as CH (calcium hydroxide), ettringite and C-S-H, appeared later in the modified cement pastes than in the unmodified cement paste. The cellulose ethers decrease the outer products and increase inner products of C-S-H gels. Compared to unmodified cement pastes, no new products are found in the modified cement pastes in the present experiment. The HEMC and HPMC investigation shows almost the same influence on the hydration products of Portland cement.

  7. [Nutrition and hydration at the end of life].

    Science.gov (United States)

    Devalois, Bernard; Broucke, Marion

    2015-04-01

    At the end of life the pleasure function of alimentation is to be preferred to its nutritive function. Artificial nutrition and hydration in an enteral or parenteral way are artificial life support techniques. Artificial nutrition and hydration are systematically justified for patients in curative phase that require it but not for patients in a terminal or agonal phase. The fear of death from hunger and thirst is not justified. It is more relevant of a symbolic and phantasmic dimension than of an objective reality. The practice of oral care is much more effective than installing an artificial hydration to improve the comfort of a patient at the very end of life. Withdrawing or withholding an artificial nutrition and hydration can prevent an unreasonable obstinacy prohibited by law. PMID:25823829

  8. China Has Great Potential for Tapping Natural Gas Hydrate

    Institute of Scientific and Technical Information of China (English)

    Shang Yingtao

    2010-01-01

    @@ China has successfully excavated natural gas hydrate,in permanent tundra in the south margin of the country's northwestern Qilian Mountains,according to the information recently made available from China's Ministry of Land and Resources.

  9. Methane hydrates and the future of natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2011-01-01

    For decades, gas hydrates have been discussed as a potential resource, particularly for countries with limited access to conventional hydrocarbons or a strategic interest in establishing alternative, unconventional gas reserves. Methane has never been produced from gas hydrates at a commercial scale and, barring major changes in the economics of natural gas supply and demand, commercial production at a large scale is considered unlikely to commence within the next 15 years. Given the overall uncertainty still associated with gas hydrates as a potential resource, they have not been included in the EPPA model in MITEI’s Future of Natural Gas report. Still, gas hydrates remain a potentially large methane resource and must necessarily be included in any consideration of the natural gas supply beyond two decades from now.

  10. Clinical study on orofacial photonic hydration using phototherapy and biomaterials

    Science.gov (United States)

    Lizarelli, Rosane F. Z.; Grandi, Natália D. P.; Florez, Fernando L. E.; Grecco, Clovis; Lopes, Luciana A.

    2015-06-01

    Skin hydration is important to prevent aging and dysfunction of orofacial system. Nowadays, it is known that cutaneous system is linked to muscle system, then every dentist need to treat healthy facial skin, as lips, keeping orofacial functions healthy. Thirty-two patients were treated using laser and led therapy single or associated to biomaterials (dermo-cosmetics) searching for the best protocol to promote skin hydration. Using a peace of equipment to measure electric impedance, percentage of water and oil from skin, before and after different treatments were analyzed. Statistic tests using 5% and 0.1% of significance were applied and results showed that light could improve hydration of epidermis layer of facial skin. Considering just light effect, using infrared laser followed by blue led system is more effective to hydration than just blue led system application. Considering dermo-cosmetic and light, the association between both presented the best result.

  11. The hydration/dehydration behavior of aspartame revisited.

    Science.gov (United States)

    Guguta, C; Meekes, H; de Gelder, R

    2008-03-13

    Aspartame, l-aspartyl-l-phenylalanine methyl ester, has two hydrates (IA and IB), a hemi-hydrate (IIA) and an anhydrate (IIB). The hydration/dehydration behavior of aspartame was investigated using hot-humidity stage X-ray powder diffraction (XRPD) and molecular mechanics modeling in combination with differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results of this study are compared to earlier studies on aspartame as described in literature. It is shown that earlier transition studies were hampered by incomplete conversions and wrong assignment of the forms. The combination of the techniques applied in this study now shows consistent results for aspartame and yields a clear conversion scheme for the hydration/dehydration behavior of the four forms.

  12. Infrared spectroscopy for monitoring gas hydrates in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, G.T.; Luzinova, Y.; Mizaikoff, B. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Chemistry and Biochemistry; Raichlin, Y.; Katzir, A. [Tel-Aviv Univ., Tel-Aviv (Israel). Shool of Physics and Astronomy

    2008-07-01

    This paper introduced the first principles for monitoring gas hydrate formation and dissociation in aqueous solution by evaluating state-responsive infrared (IR) absorption features of water with fiberoptic evanescent field spectroscopy. A first order linear functional relationship was also derived according to Lambert Beer's law in order to quantify the percentage gas hydrate within the volume of water probed via the evanescent field. In addition, spectroscopic studies evaluating seafloor sediments collected from a gas hydrate site in the Gulf of Mexico revealed minimal spectral interferences from sediment matrix components. As such, evanescent field sensing strategies were established as a promising perspective for monitoring the dynamics of gas hydrates in oceanic environments. 21 refs., 5 figs.

  13. Interaction Study of Guest with Host in Clathrate Hydrate

    Institute of Scientific and Technical Information of China (English)

    Lin Wang; Shunle Dong

    2007-01-01

    Lattice dynamical simulations of noble gas hydrate structures I and II have been performed. Potential energies were investigated to study the influence of guest species on the stability of the hydrate structure. Results show that when the diameter of inclusion molecules is between 3 A and 4.2 A, such as Ar and Kr, the critical role of the 512 cage in the stabilization of hydrates becomes effective. For Xe hydrates SI and SII, with the help of lattice dynamical calculations, the modes attributions are identified directly. We proposed the resonant effect of the fingerprint frequency at about 7 meV and 10 meV which arise from the coupling of Xe molecules in the 512 cage with the host lattice.

  14. Gas hydrates in Krishna-Godavari offshore basin

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.; Mazumdar, A.; Dewangan, P.

    The huge demand of energy fuels in the country poses a large burden on the exchequer. Augmenting the demand with the non conventional energy fuels is becoming inevitable. Pure form of Methane from gas hydrate deposits could be a potential...

  15. Effect of Bed Deformation on Natural Gas Production from Hydrates

    Directory of Open Access Journals (Sweden)

    Mohamed Iqbal Pallipurath

    2013-01-01

    Full Text Available This work is based on modelling studies in an axisymmetric framework. The thermal stimulation of hydrated sediment is taken to occur by a centrally placed heat source. The model includes the hydrate dissociation and its effect on sediment bed deformation and resulting effect on gas production. A finite element package was customized to simulate the gas production from natural gas hydrate by considering the deformation of submarine bed. Three sediment models have been used to simulate gas production. The effect of sediment deformation on gas production by thermal stimulation is studied. Gas production rate is found to increase with an increase in the source temperature. Porosity of the sediment and saturation of the hydrate both have been found to significantly influence the rate of gas production.

  16. Ion-water clusters, bulk medium effects, and ion hydration

    CERN Document Server

    Merchant, Safir; Dean, Kelsey R; Asthagiri, D

    2011-01-01

    Thermochemistry of gas-phase ion-water clusters together with estimates of the hydration free energy of the clusters and the water ligands are used to calculate the hydration free energy of the ion. Often the hydration calculations use a continuum model of the solvent. The primitive quasichemical approximation to the quasichemical theory provides a transparent framework to anchor such efforts. Here we evaluate the approximations inherent in the primitive quasichemical approach and elucidate the different roles of the bulk medium. We find that the bulk medium can stabilize configurations of the cluster that are usually not observed in the gas phase, while also simultaneously lowering the excess chemical potential of the ion. This effect is more pronounced for soft ions. Since the coordination number that minimizes the excess chemical potential of the ion is identified as the optimal or most probable coordination number, for such soft ions, the optimum cluster size and the hydration thermodynamics obtained with...

  17. Multicomponent seismic forward modeling of gas hydrates beneath the seafloor

    Institute of Scientific and Technical Information of China (English)

    Yang Jia-Jia; He Bing-Shou; Zhang Jian-Zhong

    2014-01-01

    We investigated the effect of microscopic distribution modes of hydrates in porous sediments, and the saturation of hydrates and free gas on the elastic properties of saturated sediments. We simulated the propagation of seismic waves in gas hydrate-bearing sediments beneath the seafloor, and obtained the common receiver gathers of compressional waves (P-waves) and shear waves (S-waves). The numerical results suggest that the interface between sediments containing gas hydrates and free gas produces a large-amplitude bottom-simulating reflector. The analysis of multicomponent common receiver data suggests that ocean-bottom seismometers receive the converted waves of upgoing P-and S-waves, which increases the complexity of the wavefield record.

  18. KIGAM Seafloor Observation System (KISOS) for the baseline study in monitoring of gas hydrate test production in the Ulleung Basin, Korea

    Science.gov (United States)

    Lee, Sung-rock; Chun, Jong-hwa

    2013-04-01

    For the baseline study in the monitoring gas hydrate test production in the Ulleung Basin, Korea Institute of Geoscience and Mineral Resources (KIGAM) has developed the KIGAM Seafloor Observation System (KISOS) for seafloor exploration using unmanned remotely operated vehicle connected with a ship by a cable. The KISOS consists of a transponder of an acoustic positioning system (USBL), a bottom finding pinger, still camera, video camera, water sampler, and measuring devices (methane, oxygen, CTD, and turbidity sensors) mounted on the unmanned ROV, and a sediment collecting device collecting sediment on the seafloor. It is very important to monitoring the environmental risks (gas leakage and production water/drilling mud discharge) which may be occurred during the gas hydrate test production drilling. The KISOS will be applied to solely conduct baseline study with the KIGAM seafloor monitoring system (KIMOS) of the Korean gas hydrate program in the future. The large scale of environmental monitoring program includes the environmental impact assessment such as seafloor disturbance and subsidence, detection of methane gas leakage around well and cold seep, methane bubbles and dissolved methane, change of marine environments, chemical factor variation of water column and seabed, diffusion of drilling mud and production water, and biological factors of biodiversity and marine habitats before and after drilling test well and nearby areas. The design of the baseline survey will be determined based on the result of SIMAP simulation in 2013. The baseline survey will be performed to provide the gas leakage and production water/drilling mud discharge before and after gas hydrate test production. The field data of the baseline study will be evaluated by the simulation and verification of SIMAP simulator in 2014. In the presentation, the authors would like introduce the configuration of KISOS and applicability to the seafloor observation for the gas hydrate test production in

  19. Clay Mineral: Radiological Characterization

    Science.gov (United States)

    Cotomácio, J. G.; Silva, P. S. C.; Mazzilli, B. P.

    2008-08-01

    Since the early days, clays have been used for therapeutic purposes. Nowadays, most minerals applied as anti-inflammatory, pharmaceutics and cosmetic are the clay minerals that are used as the active ingredient or, as the excipient, in formulations. Although their large use, few information is available in literature on the content of the radionuclide concentrations of uranium and thorium natural series and 40K in these clay minerals. The objective of this work is to determine the concentrations of 238U, 232Th, 226Ra, 228Ra, 210Pb and 40K in commercial samples of clay minerals used for pharmaceutical or cosmetic purposes. Two kinds of clays samples were obtained in pharmacies, named green clay and white clay. Measurement for the determination of 238U and 232Th activity concentration was made by alpha spectrometry and gamma spectrometry was used for 226Ra, 228Ra, 210Pb and 40K determination. Some physical-chemical parameters were also determined as organic carbon and pH. The average activity concentration obtained was 906±340 Bq kg-1 for 40K, 40±9 Bq kg-1 for 226Ra, 75±9 Bq kg-1 for 228Ra, 197±38 Bq kg-1 for 210Pb, 51±26 Bq kg-1 for 238U and 55±24 Bq kg-1 for 232Th, considering both kinds of clay.

  20. Marine Mineral Exploration

    DEFF Research Database (Denmark)

    The past 20 years have seen extensive marine exploration work by the major industrialized countries. Studies have, in part, been concentrated on Pacific manganese nodule occurrences and on massive sulfides on mid-oceanic ridges. An international jurisdictional framework of the sea-bed mineral...